

Appendix B Contents

GEA 2016 and 2017 ground investigation reports -fieldwork records

GEA 2016 and 2017 groundinvestigation reports – laboratory test results

Evans River & Coastal flood risk assessment

Eldreds Figure 2 – GEA BH4 data

Eldreds Figure 3 – GEA BH4 + Rudall BH1, BH2 SPT profiles

Date February 2020 52

APPENDIX – PART 1B

Ground Investigation

Site Plan

Borehole Records

Dynamic Probe Results

Trial Pit Records

Laboratory Testing

Geotechnical Laboratory Test Results

SPT & Cohesion / Depth Graph

Chemical Analyses (Soil)

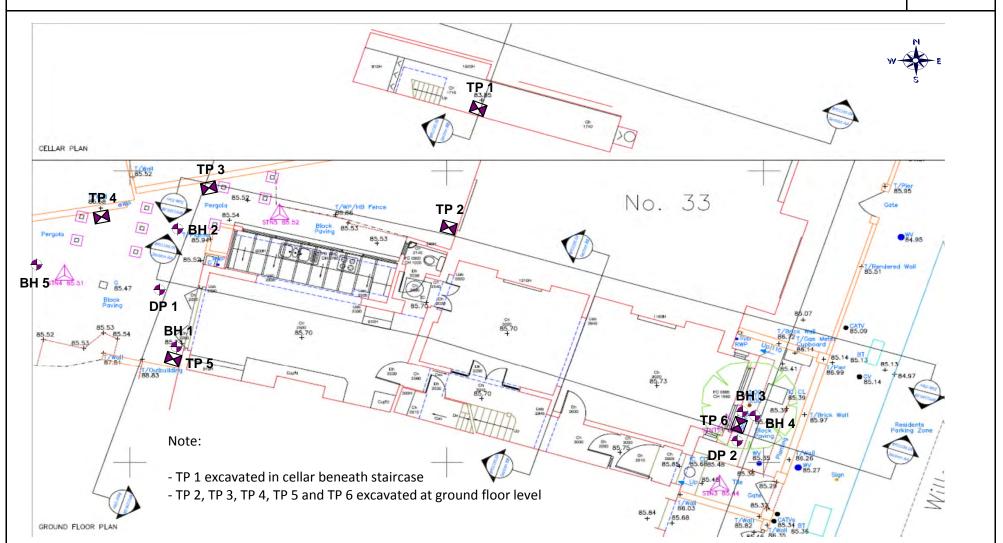
Generic Risk Based Screening Values

Groundwater Monitoring Records & Rising Head Tests

Widbury Barn Widbury Hill Ware Herts SG12 7QE

Site Plan

Site 31 Willoughby Road, London, NW3 1RT


Job Number J15315

1/1

Client Manuela Eleuteri

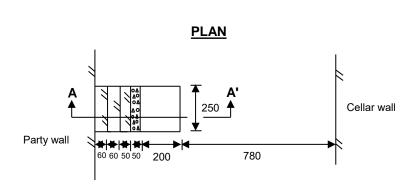
Sheet

Engineer Richard Tant Associates

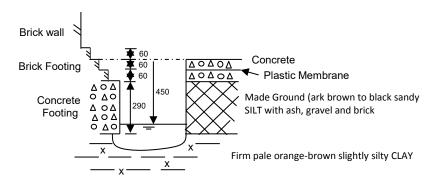
Geotechnical & Environmental Associates			Widbury Widbur Ware, SG12	ry Hill Herts	Site 31 Willoughby Road, London, NW3 1RT		Numbe	
Excavation Method	Dimens	ions	Ground Level (m	nOD)	Client		Job Numbe	or
Drive-in Windowless Sampler			85.55		Manuela Eleuteri		J1531	
	Locatio	n	Dates 13/01/2016	6	Engineer Richard Tant Associates		Sheet 1/1	
Depth (m) Sample / Tests	Water Depth (m)	Field Records	Level Dept (mOD) (Thickn	th) iess)	Description		Legend	Water
1.20 D1 1.50 D2 1.90 D3 2.25 D4 2.75 D5 3.50 D6		Slow Inflow(1) at 3.00m, not sealed.	85.45 (0 85.40 (0 85.25 (1 85.25 (1 84.15 (1 83.45 (2 83.45 (2 82.45 (3 82.45 (0 82.45 (0	0.10 1.150 1.150 1.100 1	Brick Paving Made Ground (yellowish brown sand with gravel) Concrete Made Ground (brown to dark brown silty sandy clay gravel and occasional brick fragments) Made Ground (pale greenish grey and orange-brow slightly sandy silty clay with occasional gravel, carbonaceous material and brick fragments) Made Ground (orange-brown slightly sandy silty clay gravel; dark grey between 2.7-2.8m) Firm becoming stiff brown becoming brownish grey CLAY Terminated at 4.00m	vn ay with		∑ 1
Remarks Groundwater monitoring standpig Borehole completed from base o	pe installe f Trial Pit	d to 3.1m No 5				Scale (approx) 1:50 Figure N	Logged By JS o. 15.BH1	d

तु	Geotechnical & Environmental Associates				Widbury Barn Widbury Hill Ware,Herts SG12 7QE	Site 31 Willoughby Road, London, NW3 1RT	Number BH2
Excavation I	Method dowless Sampler	Dimens	ions		Level (mOD) 85.50	Client Manuela Eleuteri	Job Number J15315
		Locatio	n	Dates 13	3/01/2016	Engineer Richard Tant Associates	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend Nate
0.50 1.50 2.50 4.50	D1 D2 D3 D4		Slow Inflow(1) at 3.00m, not sealed.	85.40 85.35 85.30 82.30 82.00 81.80	(3.00)	Brick Paving Made Ground (yellowish brown sand with gravel) Concrete Made Ground (brown, orange-brown and greenish grey silty sandy clay with gravel, rootlets and brick fragments) Firm greenish grey to orange-brown & dark grey slightly sity CLAY with gravel and carbonaceous material Firm mottled pale grey to bluish & orange-brown slightly sity CLAY with occasional gravel Firm becoming stiff brown becoming brownish grey silty CLAY Terminated at 5.00m	▼1 × _ ×
Remarks Groundwater	r monitoring standpip	e installe	d to 4.0 m	1		Scale (approx) 1:50 Figure I J155	JS

1	Geotechnical & Environmental Associates				Widbury Barn Widbury Hill Ware,Herts SG12 7QE	Site 31 Willoughby Road, London, NW3 1RT		Number BH3
Excavation I	Method dowless Sampler	Dimens	ions		Level (mOD) 85.40	Client Manuela Eleuteri		Job Number J15315
		Locatio	n	Dates 13	3/01/2016	Engineer Richard Tant Associates		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kater Market
2.00 3.00 4.00-4.50	D1 D2	(III)		83.70 83.00 81.65	(1.70) 1.70 1.70 1.70 2.40 1.1.35) 1.75 1.75 1.75	Made Ground (brown to dark brown sandy silty clagravel, ash, charcoal, rootlets and brick fragments Made Ground (orange-brown & grey mottled slight clay with rare brick fragments) Firm greenish grey and orange-brown slightly silty with carbonaceous material and gravel Firm becoming stiff pale orange-brown becoming grey slightly silty CLAY Terminated at 4.50m	ay with	× × × × × × × × × × × × × × × × × × ×
Remarks Taken from b Groundwater Groundwater	pase of TP6 r not encountered r monitoring standpip	e installe	d at 3.0m				Scale (approx) 1:50 Figure N J153	Logged By JS o. 15.BH3

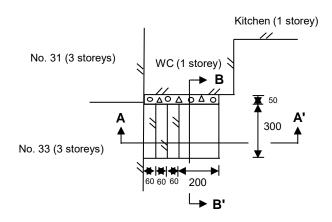

Depth (m) Sample / Tests	Dimensions 110mm to 1.00m Location	Ground Level (mO 85.40 Dates 20/01/2016	Manuela Eleuteri	Job Number J15315
			<u> </u>	
Depth (m) Sample / Tests			Engineer Richard Tant Associates	Sheet 1/1
	Water Depth (m) Field Records	Level Depth (m) (Thickness	Description (Section (1997)	Legend
.00-1.45 SPT N=7 .00-2.45 SPT N=6 .00-3.45 SPT N=7 .00 D3 .00-4.45 SPT N=10 .50 D4 .00-6.45 SPT N=14 .50 D5 .00-7.45 SPT N=13 .50 D6 .00-8.45 SPT N=13 .50 D7 .00-9.45 SPT N=13 .50 D8 .00-9.45 SPT N=11	1,2/2,1,2,2 0,0/1,2,1,2 0,0/1,2,2,2 Slow Inflow(1) at 3.30m, not sealed. 2,1/2,1,2,2 2,1/2,2,3,3 2,2/2,2,3,7 2,3/2,3,4,4 2,3/3,3,4,3	85.35	Made Ground (brown to orange brown mottled grey sandy sity clay with gravel, brick fragments, charcoal, ash and roots) Made Ground (grey and orange-brown mottled slightly silty clay with rare brick fragments and rootlets) Firm pale orange-brown and greenish grey silty CLAY with occasional gravel and carbonaceous material; dark grey carbonaceous layers at 2.8 m to 3.0 m and 3.3 m to 3.4 m) Firm pale orange-brown mottled grey slightly silty CLAY Firm becoming stiff pale orange-brown becoming brownish grey slightly silty CLAY with rare selenite crystals and occasional partings of silt and sand Stiff dark brownish grey slightly silty CLAY with occasional partings of silt and sand; claystone encountered at 6.5 m to 6.7 m	× × × × × ×

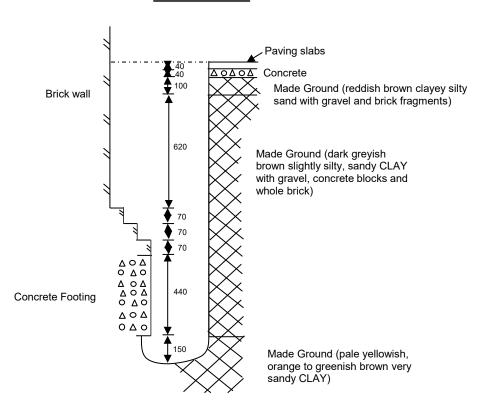
T	Geotechnical & Environmental Associates				Widbury Barn Widbury Hill Ware,Herts SG12 7QE	Site 31 Willoughby Road, London, NW3 1RT	Number BH5
Excavation Opendrive p sampler	Method ercussive lined	Dimens	oions 0mm to 1.00m		Level (mOD) 85.50	Client Manuela Eleuteri	Job Number J15315
		Locatio	n	Dates 11	/07/2017	Engineer Richard Tant Associates	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend Nater
1.00-1.45 2.00-2.45	SPT(C) N=9 SPT(C) N=8	DRY	0,1/2,2,2,3	85.40 85.35 85.30 83.30	(2.00)	Brick Paving Made Ground (yellowish brown sand) Concrete Made Ground (brown silty slightly sandy clay with occasional gravel, ash and small brick fragments) Made Ground (brown silty clay with rare brick fragments)	
3.00-3.45 4.00-4.45	SPT(C) N=8 SPT N=12	DRY	0,0/0,3,2,3 2,2/3,3,3,3	82.55 82.10	(0.45)	Made Ground (greenish brown silty clay with very rare bric fragments) Firm becoming stiff brownish grey silty CLAY with relic root traces	× — ×
5.00-5.45	SPT N=16	DRY	2,2/3,4,5,4	80.05	5.45	Complete at 5.45m	x x x x x x x x x x x x x x x x x x x
Remarks Groundwate	r not encountered du	uring drillin	ng and borehole remained dry	throughou	t an observati	on period of approximatley 4 hours. Scale (approxi	k) Logged
						1:50 Figure j1:	MP e No. 5315.BH5


Composition	TE	Geotechnical Environment Associates			Widbury Barn Widbury Hill Ware,Herts SG12 7QE	Site 31 Wil	lloughby	Road	, Londo	n, NW3	3 1RT			Probe Numb	
The content of the	Method DPSH		Cone Dimensions	Ground			ela Eleut	eri						Numb	
Color Colo			Location		07/2017	_		ssoci	ates						
0.10-0.203	Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0 -	1 2						0	0	10
Section Sect	0.10-0.20	1		85.50	0.00					+			0		=
0.504.50 1	0.20-0.30 0.30-0.40	1 0			<u>-</u>										\vdash
1.00 1.00	0.50-0.60 0.60-0.70	1 0 0		85.00	0.50										
1 20-1-30 1 1 1-30-1-50 1 1-30-1-50 1 1-30-1-50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.80-0.90 0.90-1.00 1.00-1.10	2 3 1		84.50	1.00										\vdash
1.50 1.60 0 1 1.50 0 1 1.50 0 1 1.50 0 1 1.50 0 1 1.50 0 1 1.50 1.50	1.20-1.30 1.30-1.40	1 0			<u>-</u>										\vdash
1.70-1.80	1.50-1.60	0		84.00	1.50										
2002-10 0	1.80-1.90	0			<u>-</u> - -										-
2302.40 0	2.00-2.10	0		83.50	2.00										+
2.50 2.60 1	2.30-2.40	0			Ē										
280 280 1 0	2.50-2.60 2.60-2.70	Ö		83.00	2.50										-
3.10.3.20 1 2 3.20.3.20 1 3 4 3.20 1 3 4 3.50 1 2 3.50 3.50 1 2 3.50.3.50 1 2 3.60.3.70 1 2 3.70.3.20 1 3 4 3.50 3.50 3.60 2 3.50.3.70 1 2 3.70.3.20 1 3 4 3.60.3.70 1 2 3.70.3.20 1 3 4 3.60.3.70 1 2 3.70.3.20 1 3 4 3.60.3.70 1 2 3.70.3.20 1 3 4 3.60.3.70 1 2 3.70.3.20 1 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3	2.80-2.90 2.90-3.00	1 0			<u> </u>										+
3.30.3.40 1 2 3.40.3.50 2 2 3.60.3.70 2 3.50.3.70 3.80 2 3.60.3.70 2 3.60.3.70 2 3.60.3.70 2 3.60.3.70 2 3.60.3.70 2 3.60.3.70 3.80 2 3.80.3.90 3 3.390.4.00 4 4 4.00.4.20 4 4 4.20.4.30 4 4 4.40.4.50 3 4 4.50.4.60 3 4 4.50.4.60 3 4 4.50.4.60 3 4 4.50.4.60 3 4 4.50.4.60 3 4 4.50.4.60 3 4 4.50.4.60 3 4 4.50.4.60 3 4 4.50.4.60 3 4 4.50.4.60 3 4 4.50.4.60 3 4 4.50.4.60 3 4 4.50.4.60 3 5 4.50.5.00 5 5 5 5	3.10-3.20 3.20-3.30	1		82.50	3.00										
4.30-4.0 4 4 4.40-4.50 3 4.50-4.60 3 4.50-4.60 3 4.50-4.60 3 4.50-4.60 3 4.70-4.80 3 4.70-4.80 3 4.70-4.80 3 4.70-4.80 3 4.70-4.80 3 4.70-4.80 3 4.70-4.80 4 4.70-4.80 4 4.70-4.80 4 4.70-4.80 4 4.70-4.80 4 4.70-4.80 4 4.70-5.10 5 5.10-5.20 6 5.20-5.30 6 5.20-5.30 6 5.20-5.30 6 5.20-5.30 6 5.20-5.30 6 5.20-5.30 7 7 7 9.50 6 5.50-5.70 6 5.50-5.70 6 5.50-5.70 6 5.50-5.70 7 7 9.50 6 6.50 7 7 9.50 6 6.50 7 7 9.50 6 6.50 7 7 9.50 6 6.50 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3.30-3.40 3.40-3.50	1		83.00	3.50										_
4.30-4.0 4 4 4.40-4.50 3 4.50-4.60 3 4.50-4.60 3 4.50-4.60 3 4.50-4.60 3 4.70-4.80 3 4.70-4.80 3 4.70-4.80 3 4.70-4.80 3 4.70-4.80 3 4.70-4.80 3 4.70-4.80 4 4.70-4.80 4 4.70-4.80 4 4.70-4.80 4 4.70-4.80 4 4.70-4.80 4 4.70-5.10 5 5.10-5.20 6 5.20-5.30 6 5.20-5.30 6 5.20-5.30 6 5.20-5.30 6 5.20-5.30 6 5.20-5.30 7 7 7 9.50 6 5.50-5.70 6 5.50-5.70 6 5.50-5.70 6 5.50-5.70 7 7 9.50 6 6.50 7 7 9.50 6 6.50 7 7 9.50 6 6.50 7 7 9.50 6 6.50 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3.60-3.70 3.70-3.80	2 2		02.00	5.50										\vdash
4.30-4.0 4 4 4.40-4.50 3 4.50-4.60 3 4.50-4.60 3 4.50-4.60 3 4.50-4.60 3 4.70-4.80 3 4.70-4.80 3 4.70-4.80 3 4.70-4.80 3 4.70-4.80 3 4.70-4.80 3 4.70-4.80 4 4.70-4.80 4 4.70-4.80 4 4.70-4.80 4 4.70-4.80 4 4.70-4.80 4 4.70-5.10 5 5.10-5.20 6 5.20-5.30 6 5.20-5.30 6 5.20-5.30 6 5.20-5.30 6 5.20-5.30 6 5.20-5.30 7 7 7 9.50 6 5.50-5.70 6 5.50-5.70 6 5.50-5.70 6 5.50-5.70 7 7 9.50 6 6.50 7 7 9.50 6 6.50 7 7 9.50 6 6.50 7 7 9.50 6 6.50 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3.90-4.00	3 3 4		81.50	4.00										
4.50-4.50 3 4 4.50-4.50 3 4 4.50-4.70 4 4 4.70-4.80 3 4 4.80-4.70 4 9 4 4 5.00-6.10 5 5.00-6.10 5 5.10-5.20 6 5 5.20-5.30 6 5.30-5.40 6 5.30-5.40 6 5.30-5.40 6 5.30-5.40 6 5.30-5.40 6 5.30-5.40 7 7 9.50 7 9.50 7 7 9.50 7 9.50 7 9.50 7 7 9.50	4.10-4.20 4.20-4.30				E										_
4,90-4,90 4 4,90-5,00 4 4,90-5,00 4 4,90-5,00 4 5,00-5,10 5 5,00-5,10 5 5,00-5,10 5 5,30-5,40 6 5,30-5,40 6 5,30-5,40 6 5,30-5,40 6 5,30-5,40 6 5,30-5,40 6 5,30-5,40 7 7,9-50 6,00 7 7,9-50 6,00 7 7,9-50 6,00 7 7,9-50 7,50 7,50 7,50 7,50 7,50 7,50 7,50 7,	4.40-4.50 4.50-4.60	3 3		81.00	4.50										\vdash
79.50 6.00 79.00 6.50 78.50 7.00 78.50 7.50 78.00 7.50 8.00 78.50 8.00 Remarks Groundwater not encountered Classification after Huntley (1990): Very Soft = <1; Soft = 1 to 2; Firm: 3 to 4; Stiff = 5 to 8; Very stiff = > 8 Scale (approx) By 1:40 MJD Figure No.	4.70-4.80 4.80-4.90	3			E E										
79.50 6.00 79.00 6.50 78.50 7.00 78.50 7.50 78.00 7.50 8.00 78.50 8.00 Remarks Groundwater not encountered Classification after Huntley (1990): Very Soft = <1; Soft = 1 to 2; Firm: 3 to 4; Stiff = 5 to 8; Very stiff = > 8 Scale (approx) By 1:40 MJD Figure No.	5.00-5.10	4 5 6		80.50	5.00										\vdash
79.50 6.00 79.00 6.50 78.50 7.00 78.50 7.50 78.00 7.50 8.00 78.50 8.00 Remarks Groundwater not encountered Classification after Huntley (1990): Very Soft = <1; Soft = 1 to 2; Firm: 3 to 4; Stiff = 5 to 8; Very stiff = > 8 Scale (approx) By 1:40 MJD Figure No.	5.20-5.30 5.30-5.40	6			<u>-</u>										+
79.50 6.00 79.00 6.50 78.50 7.00 78.50 7.50 78.00 7.50 8.00 78.50 8.00 Remarks Groundwater not encountered Classification after Huntley (1990): Very Soft = <1; Soft = 1 to 2; Firm: 3 to 4; Stiff = 5 to 8; Very stiff = > 8 Scale (approx) By 1:40 MJD Figure No.	5.50-5.60 5.60-5.70	5 5 6		80.00	5.50										
79.50 6.00 79.00 6.50 78.50 7.00 78.50 7.50 78.00 7.50 8.00 78.50 8.00 Remarks Groundwater not encountered Classification after Huntley (1990): Very Soft = <1; Soft = 1 to 2; Firm: 3 to 4; Stiff = 5 to 8; Very stiff = > 8 Scale (approx) By 1:40 MJD Figure No.	5.80-5.90	5 7 7			E										_
Remarks Groundwater not encountered Classification after Huntley (1990): Very Soft = <1; Soft = 1 to 2; Firm: 3 to 4; Stiff = 5 to 8; Very stiff = > 8 Scale (approx) 1:40 MJD Figure No.	0.00 0.00	,		79.50	6.00										\vdash
Remarks Groundwater not encountered Classification after Huntley (1990): Very Soft = <1; Soft = 1 to 2; Firm: 3 to 4; Stiff = 5 to 8; Very stiff = > 8 Scale (approx) 1:40 MJD Figure No.					<u> </u>										
Remarks Groundwater not encountered Classification after Huntley (1990): Very Soft = <1; Soft = 1 to 2; Firm: 3 to 4; Stiff = 5 to 8; Very stiff = > 8 Scale (approx) 1:40 MJD Figure No.				79.00	6.50										-
Remarks Groundwater not encountered Classification after Huntley (1990): Very Soft = <1; Soft = 1 to 2; Firm: 3 to 4; Stiff = 5 to 8; Very stiff = > 8 Scale (approx) 1:40 MJD Figure No.				70.50	7.00										\vdash
Remarks Groundwater not encountered Classification after Huntley (1990): Very Soft = <1; Soft = 1 to 2; Firm: 3 to 4; Stiff = 5 to 8; Very stiff = > 8 Scale (approx) Hogged By Figure No.				/8.50	7.00										
Remarks Groundwater not encountered Classification after Huntley (1990): Very Soft = <1; Soft = 1 to 2; Firm: 3 to 4; Stiff = 5 to 8; Very stiff = > 8 Scale (approx) Hogged By Figure No.				78 00	7.50										_
Remarks Groundwater not encountered Classification after Huntley (1990): Very Soft = <1; Soft = 1 to 2; Firm: 3 to 4; Stiff = 5 to 8; Very stiff = > 8 Scale (approx) 1:40 MJD Figure No.				, 3.50	L 7.50										+
Remarks Groundwater not encountered Classification after Huntley (1990): Very Soft = <1; Soft = 1 to 2; Firm: 3 to 4; Stiff = 5 to 8; Very stiff = > 8 Scale (approx) 1:40 MJD Figure No.				77.50	8.00										
1:40 MJD Figure No.	Groundwa	ater not encountere	id 1990): Very Soft = <1: Soft = 1 to 2: Eirm			ery etiff =	> 8						Scale (approx)	Logg By	ed
	Jiassilludi	aon anei Tiurilley (1.000/. vory ook = >1, ook = 1 to 2, Filli	0 10 4, 5	→ J W O, VE	y 3uii = .							1:40	MJ	D

Œ	Geotechnica Environment Associates			Widbury Barn Widbury Hill Ware,Herts SG12 7QE	Site 31 Wil	lloughby	Road	, Londo	n, NW3	3 1RT			Probe Numb	
Method Super Heav (DPSH)	y Dynamic Probe	Cone Dimensions	Ground	Level (mOD) 85.40	Client Manue	ela Eleut	teri						Job Numb	
		Location	Dates	07/2017	Engine Richa	er rd Tant A	Associ	ates					Sheet	
Depth (m)	Blows for Depth Increment	t Field Records	Level (mOD)	Depth (m)	0	1 2		Blows			t 7	8 !	9	10
0.00-0.10 0.10-0.20	2 3		85.40	0.00										
0.20-0.30 0.30-0.40	2			<u>-</u>										\vdash
0.40-0.50 0.50-0.60 0.60-0.70 0.70-0.80	1 1 2 1		84.90	0.50										\vdash
0.80-0.90 0.90-1.00	1 1		04.40	1.00										
1.00-1.10 1.10-1.20 1.20-1.30 1.30-1.40	1 1 2 1		84.40	1.00										-
1.40-1.50 1.50-1.60	0 0		83.90	1.50										+
1.60-1.70 1.70-1.80 1.80-1.90	0 0			Ē										\blacksquare
1.90-2.00 2.00-2.10 2.10-2.20	0 0		83.40	2.00										\vdash
2.20-2.30 2.30-2.40 2.40-2.50	1 0 0			E										
2.50-2.60 2.60-2.70 2.70-2.80	0 1 0		82.90	2.50										\vdash
2.80-2.90 2.90-3.00 3.00-3.10	1 1		82.40	3.00										
3.10-3.20 3.20-3.30 3.30-3.40	1		02.40	0.00										<u> </u>
3.40-3.50 3.50-3.60	2 2 2 2 2 3 3 3 4		81.90	3.50										+
3.60-3.70 3.70-3.80 3.80-3.90	2 2 3			Ē										\sqsubseteq
3.90-4.00 4.00-4.10 4.10-4.20	3 3 4		81.40	4.00										\vdash
4.20-4.30 4.30-4.40 4.40-4.50	4 4 3			E										
4.50-4.60 4.60-4.70 4.70-4.80	4 4 3		80.90	4.50										\vdash
4.80-4.90 4.90-5.00 5.00-5.10	4 4 5		80.40	5.00										
5.10-5.20 5.20-5.30 5.30-5.40	5 7		00.10	- 0.00 -										<u> </u>
5.40-5.50 5.50-5.60 5.60-5.70	4 4 5 5 7 6 7 7 7 7		79.90	5.50										\vdash
5.70-5.80 5.80-5.90	7 7 7			Ē										\blacksquare
5.90-6.00	,		79.40	6.00										\vdash
				Ē										\perp
			78.90	6.50										\vdash
			78.40	7.00										
														\vdash
			77.90	7.50										\perp
				E										\sqsubseteq
Remarks			77.40	8.00								Sools	Loge	
Groundwa	ter not encountere ion after Huntley (*	ed 1990): Very Soft = <1;	n: 3 to 4; S	tiff = 5 to 8; Ve	ery stiff =	> 8						Scale (approx)	By	Ju
											ļ	1:40 Figure I	MJ No.	D
													315.DP	2

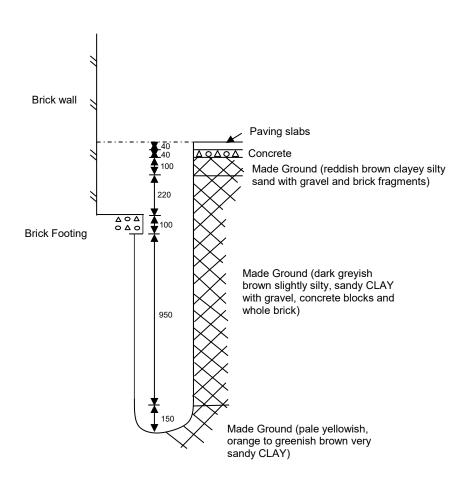
	echnical & onmental lates	Widbury Barns Widbury Hill Ware Herts SG12 7QE	Site 31 Willoughby Road, London, NW3 1RT	Trial Pit Number 1
Excavation Method Manual	Dimensions 250 x 420 x 500	Ground Level (mOD) 83.85	Client Manuela Eleuteri	Job Number J15315
	Location Ground Level	Dates 12/01/16 to 13/01/16	Engineer Richard Tant Associates	Sheet 1/1




Remarks:	Scale:	
All dimensions in millimetres	1:20	
Trial pit sides remained stable during excavation	Logged by:	
Groundwater encountered at a depth of 0.45 m	JS	

	chnical & onmental iates	Widbury Barns Widbury Hill Ware Herts SG12 7QE	Site 31 Willoughby Road, London, NW3 1RT	Trial Pit Number 2
Excavation Method Manual	Dimensions 350 x 380 x 1600	Ground Level (mOD) 85.50	Client Manuela Eleuteri	Job Number J15315
	Location Ground Level	Dates 12/01/16 to 13/01/16	Engineer Richard Tant Associates	Sheet 1/2

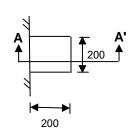
<u>PLAN</u>

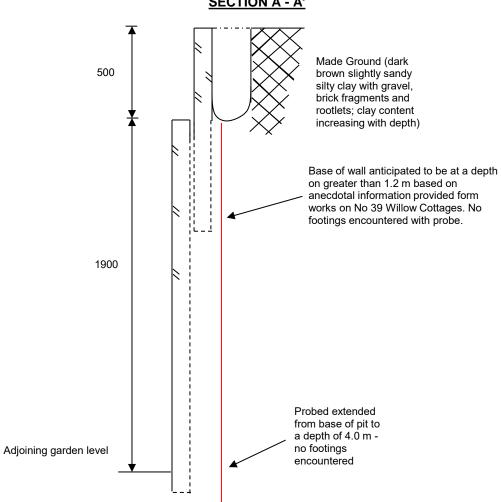


Remarks:	Scale:
All dimensions in millimetres	1:20
Trial pit sides remained stable during excavation	Logged by:
Groundwater not encountered	JS

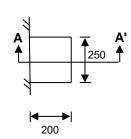
	chnical & onmental iates	Widbury Barns Widbury Hill Ware Herts SG12 7QE	Site 31 Willoughby Road, London, NW3 1RT	Trial Pit Number 2
Excavation Method Manual	Dimensions 350 x 380 x 1600	Ground Level (mOD) 85.50	Client Manuela Eleuteri	Job Number J15315
	Location Ground Level	Dates 12/01/16 to 13/01/16	Engineer Richard Tant Associates	Sheet 2/2

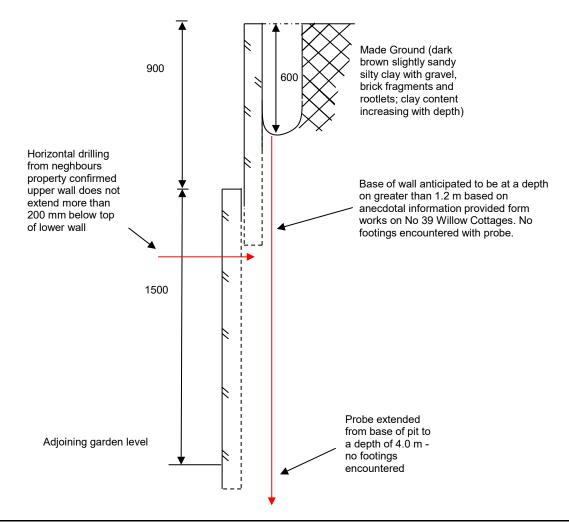
SECTION B - B'



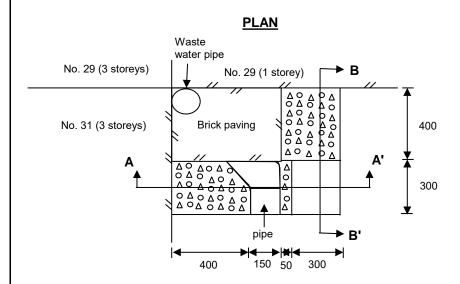

Remarks:	Scale:
All dimensions in millimetres	1:20
Trial pit sides remained stable during excavation	Logged by:
Groundwater not encountered	JS

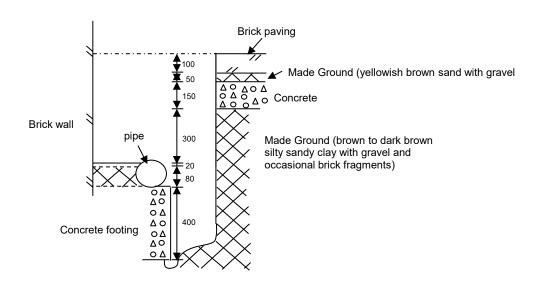
GEA Geotech Environ Associat	mental	Widbury Barns Widbury Hill Ware Herts SG12 7QE	Site 31 Willoughby Road, London, NW3 1RT	Trial Pit Number 3
Excavation Method Manual	Dimensions 200 x 200 x 500	Ground Level (mOD) 85.50	Client Manuela Eleuteri	Job Number J15315
	Location Ground Level	Dates 12/01/16 to 13/01/16	Engineer Richard Tant Associates	Sheet 1/1




Remarks:	Scale:
All dimensions in millimetres	1:20
Trial pit sides remained stable during excavation	Logged by:
Groundwater not encountered	JS

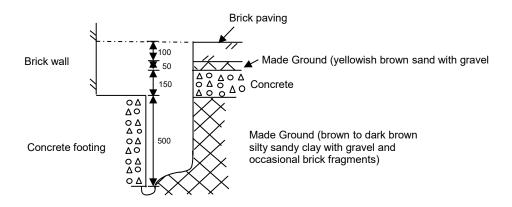
	chnical & onmental iates	Widbury Barns Widbury Hill Ware Herts SG12 7QE	Site 31 Willoughby Road, London, NW3 1RT	Trial Pit Number 4
Excavation Method Manual	Dimensions 200 x 250 x 600	Ground Level (mOD) 85.50	Client Manuela Eleuteri	Job Number J15315
	Location Ground Level	Dates 12/01/16 to 13/01/16	Engineer Richard Tant Associates	Sheet 1/1





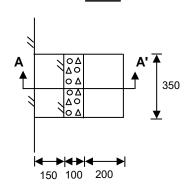
Remarks:	Scale:
All dimensions in millimetres	1:20
Trial pit sides remained stable during excavation	Logged by:
Groundwater not encountered	JS

	chnical & onmental iates	Widbury Barns Widbury Hill Ware Herts SG12 7QE	Site 31 Willoughby Road, London, NW3 1RT	Trial Pit Number 5
Excavation Method Manual	Dimensions 700 x 900 x 1200	Ground Level (mOD) 85.50	Client Manuela Eleuteri	Job Number J15315
	Location Ground Level	Dates 12/01/16 to 13/01/16	Engineer Richard Tant Associates	Sheet 1/2

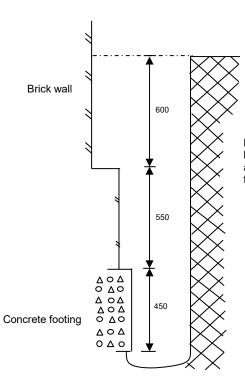


Remarks:	Scale:
All dimensions in millimetres	1:20
Trial pit sides remained stable during excavation	Logged by:
Groundwater not encountered	JS

	echnical & onmental lates	Widbury Barns Widbury Hill Ware Herts SG12 7QE	Site 31 Willoughby Road, London, NW3 1RT	Trial Pit Number 5
Excavation Method Manual	Dimensions 700 x 900 x 1200	Ground Level (mOD) 85.50	Client Manuela Eleuteri	Job Number J15315
	Location Ground Level	Dates 12/01/16 to 13/01/16	Engineer Richard Tant Associates	Sheet 2/2


SECTION B - B'

Remarks:	Scale:
All dimensions in millimetres	1:20
Trial pit sides remained stable during excavation	Logged by:
Groundwater not encountered	JS


A CONTRACTOR OF THE PROPERTY O	echnical & onmental ciates	Widbury Barns Widbury Hill Ware Herts SG12 7QE	Site 31 Willoughby Road, London, NW3 1RT	Trial Pit Number 6
Excavation Method Manual	Dimensions 350 x 450 x 1800	Ground Level (mOD) 85.40	Client Manuela Eleuteri	Job Number J15315
	Location Ground Level	Dates 12/01/16 to 13/01/16	Engineer Richard Tant Associates	Sheet 1/1

<u>PLAN</u>

SECTION A - A'

Made Ground (brown to dark brown sandy silty clay with gravel, ash, charcoal, rootlets and brick fragments)

Remarks:	Scale:
All dimensions in millimetres	1:20
Trial pit sides remained stable during excavation	Logged by:
Groundwater not encountered	JS

Trial Pit No 1

Job Number

J15315

1/1

Sheet

Engineer Richard Tant Associates

Manuela Eleuteri

Client

View of TP1 - looking southeast

View into TP1 - looking southeast

Widbury Barns Widbury Hill Ware SG12 7QE Geotechnical & Environmental Associates

Trial Pit No 2

Job Number Site 31 Willoughby Road, London, NW3 1RT

Manuela Eleuteri Client

Engineer Richard Tant Associates J15315

1/1

Sheet

View of TP2 - looking southeast

View into TP2 - looking southeast

Geotechnical & Widbury Barns
Environmental Ware
Associates SG12 7QE

Trial Pit No 3

1/1

Site 31 Willoughby Road, London, NW3 1RT J15315

Client Manuela Eleuteri

Richard Tant Associates

Engineer

Manuela Eleuteri
Sheet

View of TP3 - looking northeast

View into TP3 - looking north

Geotechnical & Widbury Barns
Environmental
Associates Widbury Hill
Ware
SG12 7QE

oury Hill Ware Trial Pit No 4

Site 31 Willoughby Road, London, NW3 1RT

Job Number J15315

Client Manuela Eleuteri

Sheet

Engineer Richard Tant Associates

1/1

View of TP4 - looking northwest

Plan view of TP4 - looking northwest

Widbury Barns Widbury Hill Ware SG12 7QE

Trial Pit No 5

Site 31 Willoughby Road, London, NW3 1RT

Job Number J15315

Client Manuela Eleuteri

Sheet

Engineer Richard Tant Associates

1 / 1

View of TP5 - looking southeast

View into TP5 - looking east

Widbury Barns Widbury Hill Ware SG12 7QE

Trial Pit No 6

Site 31 Willoughby Road, London, NW3 1RT

Job Number J15315

Client Manuela Eleuteri

Sheet

Engineer Richard Tant Associates

1/1

View of TP6 - looking northwest

View into TP6 - looking northeast

K	Summary of Test Results											
Job No.			Project	Name			ramme					
20	228		31 Will	oughb	y Road				Samples I		21/01/2016 21/01/2016	
roject No.			Client						Project sta		22/01/2016	
J15	5315		GEA						Testing St	tarted	02/02/2016	
Hole No.		Sa	mple		Soil Description	NMC	Passing 425µm	LL	PL	PI	Remarks	
	Ref	Тор	Base	Туре		%	%	%	%	%		
BH1	6	3.50		D	Brown and occasional blue grey silty CLAY	33	100	63	23	40		
BH2	5	4.50		D	Brown and occasional blue grey silty CLAY with rare fine gravel	32	99	64	26	38		
BH4	1	3.00		D	Dark grey slightly fine sandy slightly gravelly silty CLAY (gravel is fine)	30	97	48	24	24		
BH4	3	4.50		D	Brown and occasional blue grey silty CLAY with rare fine gravel	31	99	69	25	44		
BH4	5	6.50		D	Dark brown silty CLAY with rare fine gravel	32	99	70	24	46		
BH4	7	8.50		D	Dark blue grey silty CLAY with rare fine gravel	29	99	67	25	42		
	Natur	al Moistu	ds: BS13 re Conten s: clause	t : clau	se 3.2		(4 SOILS Close Olds Herts WD	s Appro 18 9RU	ach		Checked and Approved Initials J.P	
UKAS						Email: Ja			n		Date: 03/02/20	

Soils			Loss On Ignition - Summary of Results												
Job No.			Project Name									Programme			
20228			,,,,,,,			21 \/\iii	loughby Roa	Samples	Samples received 21/01/201						
			<u> </u>			31 77111	loughby Roa	<u> </u>				e received	21/01		
Project No. J15315			Client				t Started	22/01 02/02							
J15315	Sar	mple Passing 2mm									g Started	02/02	2016		
Hole No.	 				Loss	on Ignition	Remarks								
BH4	1	3.00		D	Dark grey sli silty CLAY (g	ghtly fine sa gravel is fine	andy slightly e)	gravelly	100		6.2				
C C			s: BS1377 gnition : cla		t 3: 1990: 0		Unit 8		OILS LABORATO Olds Approach WD18 9RU	RY		Checked Initials	d and App		
UKAS TESTING								Tel: 01923				Date:	03/02/20		
TESTING 2519	Appro	oved Signa	atories: K.F	Phaure	(Tech.Mgr) J.Pha	ure (Lab.Mgr)							F-5-R30 (Rev. (

Sulphate Content (Gravimetric Method) for 2:1 Soil: Water Extract and pH Value - Summary of Results

	SOIL	s			Tested in accordance with BS1377 : I	Part 3 : 1	990, claı	use 5.3 a	ınd clau	se 9	
Job No.			Project N	Name						Progra	mme
			-	ughby Ro	ad				Samples r		21/01/2016
20228				ugnby Ro	ad				Schedule r	eceived	21/01/2016
Project No).		Client						Project s	tarted	22/01/2016
J15315			GEA						Testing S	Started	01/02/2016
		Sa	ample			Dry Mass	SO3	SO4			
Hole No.					Soil description	passing 2mm	Content	Content	рН		Remarks
	Ref	Тор	Base	Type		%	g/l	g/l			
BH1	6	3.50		D	Brown and occasional blue grey silty CLAY	100	0.30	0.36	7.80		
BH2	5	4.50		D	Brown and occasional blue grey silty CLAY with rare fine gravel	100	0.87	1.04	7.82		
BH4	1	3.00		D	Dark grey slightly fine sandy slightly gravelly silty CLAY (gravel is fine)	100	0.38	0.46	7.48		
BH4	5	6.50		D	Dark brown silty CLAY with rare fine gravel	100	0.74	0.89	7.90		
一	Test Report by K4 SOILS LABORATORY										ecked and
_	_				Unit 8 Olds Close Olds Approach					Α	pproved
- (≯∢	(1)				Watford Herts WD18 9RU					Initials	J.P
U K A	ス <i>=</i>				Tel: 01923 711 288					Det = :	00/00/0040
2519				Approved	Email: James@k4soils.com d Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.	.Mar)				Date:	03/02/2016 -5-R29 (Rev. 0)
2519	9	l		Approved	d Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.	.Mgr)				MSF	-5-R29 (Rev. 0)

Unit A2
Windmill Road
Ponswood Industrial Estate
St Leonards on Sea
East Sussex
TN38 9BY

Telephone: (01424) 718618 Facsimile: (01424) 729911 info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number: 16-05425

Issue: 1

Date of Issue: 29/01/2016

Contact: James Phaure

Customer Details: K4 Soils Laboratory Ltd

Unit 8 Watford

HertfordshireWD18 9RU

Quotation No: Q15-00248

Order No: 20228

Customer Reference: J15315

Date Received: 27/01/2016

Date Approved: 29/01/2016

Details: 31 Willoughby Way

Approved by:

John Wilson, Operations Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683

Sample Summary

Report No.: 16-05425

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
51816	BH4 D1 3.00	Not Provided	27/01/2016	Silty loam	а

Results Summary

Report No.: 16-05425

Determinand

Miscellaneous Soil Organic Matter

	51816		
Cus	D1		
	SOIL		
	BH4		
5	3.00		
	Sam	pling Date	
Codes			
U	%	0.1	3.3

Method Summary Report No.: 16-05425

Parameter		Analysis Undertaken On	Date Tested	Method Number	Technique	
Soil						
Soil organic matter	U	Air dried sample	29/01/2016	BS1377:P3	Titrimetry	

Report Information

Report No.: 16-05425

Key

U	hold UKAS accreditation
M	hold MCERTS and UKAS accreditation
Ν	do not currently hold UKAS accreditation
٨	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"

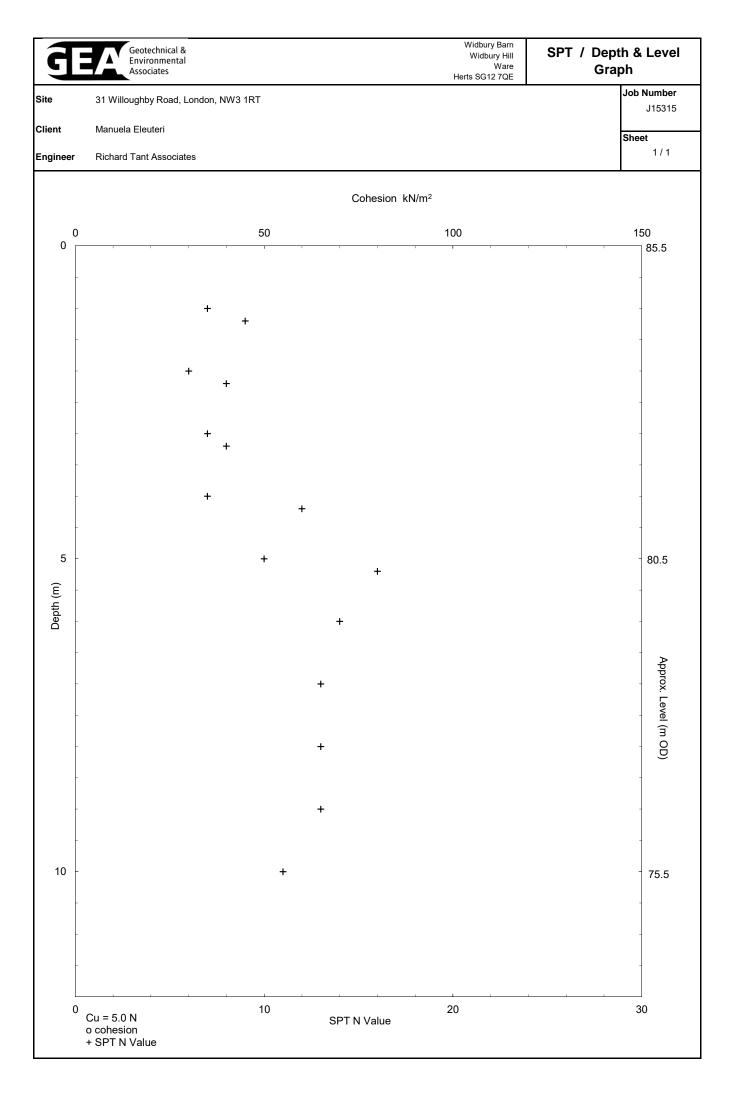
Soil sample results are expressed on an air dried basis

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

PCB congener results may include any coeluting PCBs

Uncertainty of measurement for the determinands tested are available upon request


Deviation Codes

a No date of sampling supplied
b No time of sampling supplied (Waters Only)
c Sample not received in appropriate containers
d Sample not received in cooled condition
e The container has been incorrectly filled
f Sample age exceeds stability time (sampling to receipt)
g Sample age exceeds stability time (sampling to analysis)

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

		Che	mtest J	ob No.:	16-00910	16-00910	16-00910	16-00910
Quotation No.:		Chemte	st Sam	ple ID.:	241134	241135	241136	241139
Order No.:		Client Sample Ref.:		BH1	BH2	TP1	TP6	
	Client Sample ID.:			1	1	1	1	
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL
			Top De _l	oth (m):	2.25	0.50	0.40	0.50
		Bot	tom De _l	oth (m):				1.00
			Date Sa		13-Jan-2016	13-Jan-2016	13-Jan-2016	13-Jan-2016
Determinand	Accred.	SOP	Units	LOD				
Moisture	N	2030	%	0.020	23	21	27	16
Stones	N	2030	%	0.020	< 0.020	< 0.020	< 0.020	< 0.020
Soil Colour	N	2040		N/A	Brown	Brown	Brown	Brown
Other Material	N	2040		N/A	Stones	Stones	Stones	Stones, Bric
Soil Texture	N	2040		N/A	Clay	Clay	Clay	Clay
рН	М	2010		N/A	7.3	8.1	8.2	8.2
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	0.058	< 0.010	0.16	0.011
Chloride (Extractable)	М	2220	g/l	0.010	0.023	< 0.010	0.019	< 0.010
Cyanide (Total)	M	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)	М	2325	mg/kg	0.50	2.1	1.6	6.8	1.9
Sulphate (Total)	M	2430	mg/kg	100	1300	850	3000	1100
Arsenic	М	2450	mg/kg	1.0	9.8	17	47	19
Cadmium	M	2450	mg/kg	0.10	0.10	< 0.10	< 0.10	< 0.10
Chromium	М	2450	mg/kg	1.0	39	40	52	34
Copper	М	2450	mg/kg	0.50	16	33	270	50
Mercury	М	2450	mg/kg	0.10	< 0.10	0.80	0.13	0.66
Nickel	M	2450	mg/kg	0.50	43	25	53	25
Lead	М	2450	mg/kg	0.50	37	330	670	350
Selenium	М	2450	mg/kg	0.20	0.28	< 0.20	< 0.20	< 0.20
Zinc	М	2450	mg/kg	0.50	58	81	180	120
Total Organic Carbon	М	2625	%	0.20	0.41	0.67	5.8	1.1
TPH >C5-C6	N	2670	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH >C6-C7	N	2670	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH >C7-C8	N	2670	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH >C8-C10	N	2670	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH >C10-C12	N	2670	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH >C12-C16	N	2670	mg/kg	1.0	< 1.0	< 1.0	< 1.0	4.7
TPH >C16-C21	N	2670	mg/kg	1.0	< 1.0	2.7	< 1.0	31
TPH >C21-C35	N	2670	mg/kg	1.0	< 1.0	5.3	< 1.0	38
Total TPH >C5-C35	N	2670	mg/kg	10	< 10	< 10	< 10	74
Naphthalene	М	2700	mg/kg		< 0.10	< 0.10	< 0.10	2.6
Acenaphthylene	М	2700	mg/kg		< 0.10	< 0.10	< 0.10	0.20
Acenaphthene	М	2700	mg/kg		< 0.10	< 0.10	< 0.10	1.5
	M	2700	mg/kg		< 0.10	< 0.10	< 0.10	1.5
Fluorene								_
	М	2700	ma/ka	0.10	< 0.10	< 0.10	< 0.10	19
Fluorene Phenanthrene Anthracene	M M	2700 2700	mg/kg mg/ka	0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	19 2.2
Phenanthrene			mg/kg mg/kg mg/kg	0.10				

Results - Soil

Froject. 313313 - 31 Willoughby	1							
Client: GEA		Che	mtest Jo	ob No.:	16-00910	16-00910	16-00910	16-00910
Quotation No.:		Chemte	st Sam	ple ID.:	241134	241135	241136	241139
Order No.:		Client Sample Ref.:				BH2	TP1	TP6
		Cli	ent Sam	ple ID.:	1	1	1	1
			Sample	е Туре:	SOIL	SOIL	SOIL	SOIL
		Top Depth (m): Bottom Depth (m):				0.50	0.40	0.50
								1.00
		Date Sampled:			13-Jan-2016	13-Jan-2016	13-Jan-2016	13-Jan-2016
Determinand	Accred.	SOP	Units	LOD				
Benzo[a]anthracene	M	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	9.3
Chrysene	M	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	9.7
Benzo[b]fluoranthene	M	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	11
Benzo[k]fluoranthene	M	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	4.5
Benzo[a]pyrene	M	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	7.6
Indeno(1,2,3-c,d)Pyrene	M	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	5.2
Dibenz(a,h)Anthracene	M	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	1.3
Benzo[g,h,i]perylene	M	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	4.1
Total Of 16 PAH's	М	2700	mg/kg	2.0	< 2.0	< 2.0	< 2.0	120
Total Phenols	М	2920	mg/kg	0.30	< 0.30	< 0.30	< 0.30	< 0.30

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at our Coventry laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

Sample Retention and Disposal

All soil samples will be retained for a period of 60 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.co.uk</u>

Generic Risk-Based Soil Screening Values

ite 31 Willoughby Road, London, NW3 1RT

Job Number J15315

Client Manuela Eleuteri

Sheet

Engineer Richard Tant Associates

1/2

Proposed End Use Residential with plant uptake

Soil pH 8

Soil Organic Matter content % 6.0

Contaminant	Screening Value mg/kg	Data Source
	Metals	
Arsenic	37	C4SL
Cadmium	26	C4SL
Chromium (III)	3000	LQM/CIEH
Chromium (VI)	21	C4SL
Copper	2,330	LQM/CIEH
Lead	200	C4SL
Elemental Mercury	1	SGV
Inorganic Mercury	170	SGV
Nickel	97	LQM/CIEH
Selenium	350	SGV
Zinc	3,750	LQM/CIEH
Нус	drocarbons	
Benzene	0.87	C4SL
Toluene	610	SGV
Ethyl Benzene	350	SGV
Xylene	230	SGV
Aliphatic C5-C6	110	LQM/CIEH
Aliphatic C6-C8	370	LQM/CIEH
Aliphatic C8-C10	110	LQM/CIEH
Aliphatic C10-C12	540	LQM/CIEH
Aliphatic C12-C16	3000	LQM/CIEH
Aliphatic C16-C35	76,000	LQM/CIEH
Aromatic C6-C7	See Benzene	LQM/CIEH
Aromatic C7-C8	See Toluene	LQM/CIEH
Aromatic C8-C10	151	LQM/CIEH
Aromatic C10-C12	346	LQM/CIEH
Aromatic C12-C16	593	LQM/CIEH
Aromatic C16-C21	770	LQM/CIEH
Aromatic C21-C35	1230	LQM/CIEH
PRO (C ₅ -C ₁₀)	1352	Calc
DRO (C ₁₂ –C ₂₈)	80,363	Calc
Lube Oil (C ₂₈ –C ₄₄)	77,230	Calc
ТРН	1000	Trigger for speciated testing

Contaminant	Screening Value mg/kg	Data Source
A	nions	
Soluble Sulphate	500 mg/l	Structures
Sulphide	50	Structures
Chloride	400	Structures
C	Others	
Organic Carbon (%)	6	Methanogenic potential
Total Cyanide	140	WRAS
Total Mono Phenols	420	SGV
	PAH	0.401
Naphthalene	12.40	C4SL exp & LQM/CIEH
Acenaphthylene	850	LQM/CIEH
Acenaphthene	1,000	LQM/CIEH
Fluorene	780	LQM/CIEH
Phenanthrene	380	LQM/CIEH
Anthracene	9,200	LQM/CIEH
Fluoranthene	670	LQM/CIEH
Pyrene	1,600	LQM/CIEH
Benzo(a) Anthracene	8.7	C4SL exp & LQM/CIEH
Chrysene	14	C4SL exp & LQM/CIEH
Benzo(b) Fluoranthene	10.5	C4SL exp & LQM/CIEH
Benzo(k) Fluoranthene	15.0	C4SL exp & LQM/CIEH
Benzo(a) pyrene	5.00	C4SL
Indeno(1 2 3 cd) Pyrene	6.2	C4SL exp & LQM/CIEH
Dibenzo(a h) Anthracene	1.35	C4SL exp & LQM/CIEH
Benzo (g h i) Perylene	71	C4SL exp & LQM/CIEH
Screening value for PAH	71.4	B(a)P / 0.15
Chlorina	ted Solven	ts
1,1,1 trichloroethane (TCA)	53.1	LQM/CIEH
tetrachloroethane (PCA)	2.4	LQM/CIEH
tetrachloroethene (PCE)	4.5	LQM/CIEH
trichloroethene (TCE)	0.598	LQM/CIEH
1,2-dichloroethane (DCA)	0.014	LQM/CIEH
vinyl chloride (Chloroethene)	0.00329	LQM/CIEH
tetrachloromethane (Carbon tetra	0.089	LQM/CIEH
trichloromethane (Chloroform)	3.86	LQM/CIEH

Notes

Concentrations measured below the above values may be considered to represent 'uncontaminated conditions' which pose 'LOW' risk to human

health. Concentrations measured in excess of these valuesindicate a potential risk which require further, site specific risk assessment.

SGV - Soil Guideline Value, derived from the CLEA model and published by Environment Agency 2009

LQM/CIEH - Generic Assessment Criteria for Human Health Risk Assessment 2nd edition (2009)derived using CLEA 1.04 model 2009

C4SL - Defra Category 4 Screening value based on Low Level of Toxicological Risk

C4SL exp & LQM/CIEH calculated using C4SL revisions to exposure assessment but LQM/CIEH health croiteria values

Calc - sum of nearest available carbon range specified including BTEX for PRO fraction

B(a)P / 0.15 - GEA experince indicates that Benzo(a) pyrene (one of the most common and most carcenogenic of the PAHs) rarely exceeds 15% of the total PAH concentration, hence this Total PAH threshold is regarded as being conservative

Widbury Barn

Œ		nnmental ates		Widbury Hill Ware Herts SG12 7QE		Risk-Based Soil ening Values
Site	31 Willough	by Road, London, NW3 1RT				Job Number J15315
Client	Manuela El	euteri				Sheet
Engineer	Richard Tai	nt Associates				2/2
Proposed	End Use	Residential with plant uptake				
The key g	generic assu	ımptions for this end use are as fo	ollows;			
	that grour	dwater will not be a critical risk recep	otor;			
-	that the ci	itical receptor for human health will b	ne a young female aged 0 to 6	years old;		
	that the ex	xposure duration will be six years;				
-	that the b	uilding type equates to a terraced ho	use.			
		itical exposure pathways will be direction of soil adhering to home grown p		•	-	•
acceptable are measu	e level of ris ured in exce	oncentrations are measured at conce c and thus further consideration of the ss of the generic screening value the be required which could include:	ese contaminant concentration	ns is not require	ed. However,	where concentrations
	additional	testing to zone the extent of the con	taminated material and thus re	educe the uncer	rtainty with reç	gard to its potential risk;
-		ic risk assessment to refine the assetion present would pose an unaccep		assessment to b	oe made as to	whether the
-	soil remed	liation or risk management to mitigat	e the risk posed by the contar	ninant to a deg	ree that it pos	es an acceptable risk.

Œ	Å	ι' En	otechnical vironment sociates	& al			Widb War	ry Barn ury Hill e,Herts 2 7QE	Site 31 Willou	ghby Roa	ıd, Londo	on, NW3 1	IRT			Borehole Number BH1	
n stallatio Standpipe		pe		Dimensi Interna Diame	ons al Diameter of Tube [A] = 3 eter of Filter Zone = 60 mm	0 mm			Client Manuela I	Eleuteri						Job Number J15315	
				Location	1	Ground I	Level (m	OD)	Engineer						;	Sheet	
						8	5.55		Richard T	ant Assoc	ciates					1/1	
gend ×	In:	str A)	Level (mOD)	Depth (m)	Description				G	roundwa	9	•					
						Date	Time	Depth Struc (m)	Casing k Depth (m)	Inflo	w Rate		Read	lings		Depti Seale (m)	
						13/01/16		3.00	(m)	Slow In		5 min	10 min	15 min	20 min	NOT	
					Bentonite Seal												
			0.4.55	4.00				1	Gr	oundwat	ter Obse	rvations	During D	Drilling			
	\$800 #8000	38000 08000	84.55	1.00		Start of Shift Date Depth Casing Water Water Level Time Hole Depth D											
		2000 2000 2000 2000 2000 2000 2000 200				Date	Time	Dept Hole (m)	h Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Wate Leve (mOD	
	000000000000000000000000000000000000000	2000 2000 2000 2000 2000 2000 2000 200															
		000000 0000000000000000000000000000000															
		60,000 of 000 of			Slotted Standpipe				Instr	ument G	roundwa	iter Obse	ervations	i			
		00000000000000000000000000000000000000				Inst.	[A] Type	: Slotte	ed Standpip	e							
	000000000000000000000000000000000000000	60000000000000000000000000000000000000					Ins	trumer	nt [A]								
	0 4 00 B 05 B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000				Date	Time	Dept (m)	h Level (mOD)				Rem	arks			
		00 0 00 80 0 00 00 00 00 00 00 00 00 00				02/02/16 23/02/16 05/07/17 11/07/17		2.5 2.3 2.4 3.0	4 83.21 6 83.09								
∑ 1	100 000 000 000 000 000 000 000 000 000	20 00 00 00 00 00 00 00 00 00 00 00 00 0															
			82.45	3.10													
×																	
× ×					General Backfill												
×																	
×																	
x x x x x x x x x x x x x x x x x x x			81.55	4.00													
Remarks	<u>pxx</u>	~~~X															

त्		A	Geotechnica Environmen Associates	l & tal			War	ry Barn eury Hill e,Herts 2 7QE	Site 31 Willoug	ghby Roa	d, Londo	n, NW3 1	IRT			Borehole Number BH2	
nstalla Stand _l		n Type		Dimensi Intern Diame	i ons al Diameter of Tube [A] = 3 eter of Filter Zone = 60 mm	30 mm			Client Manuela E	Eleuteri						Job Number J15315	
				Location	า	Ground	Level (m	iOD)	Engineer							Sheet	
							5.50		Richard Ta	ant Assoc	ciates					1/1	
gend	Water	Instr (A)	Level (mOD)	Depth (m)	Description			T	G	roundwa	iter Strik	es Durin		-			
						Date	Time	Depth Struck	Casing Depth (m)	Inflo	w Rate		Read	_		Depti Seale (m)	
					Bentonite Seal	13/01/16	16	3.00	(m)	Slow Inflow		5 min 10 min		15 min	20 min	NOT	
		900 900 900 900 900 900 900 900 900 900	84.50	1.00					Groundwater Obs			ervations During Drilling					
			69 20 20 80			Start of Shift End of Shift Date Depth Casing Water Water Depth Casing Water											
						Date	Time	Depti Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Wate Leve (mOD	
			সূত্রত প্রস্তিপূর্বত প্রস্তিপূর্বত করিন্দ্রত করিন্দ্রত প্রস্তিপূর্বত পরিক্র পর্বত পরিক্র পরিক্র পর্বত পরিক্র পরি		Slotted Standpipe	Inst.	[A] Type	: Slotte	Instru d Standpip	ument Gi	roundwa	ter Obse	ervations				
			000000000000000000000000000000000000000				Ins	trumen	t [A]								
	∇ 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Date	Time	Depti (m)	Level (mOD)				Rema	arks			
× × × × × × × × × × × × × × × × × × ×		0.000 0.000	0.000 % 200			02/02/16 23/02/16 05/07/17 11/07/17		3.00 3.04 3.17 3.20	4 82.46 7 82.33								
× × × × × × × × × × × × × × × × × × ×		100 (100 (100 (100 (100 (100 (100 (100	81.50	4.00													
× × × × ×					General Backfill												
			80.50	5.00													

<u>g:</u>	7	▲ 'En	eotechnical ivironment sociates				Widb War	ry Barn ury Hill e,Herts 2 7QE	Site 31 Willoug	jhby Roa	d, Londo	n, NW3 1	RT		1	Borehole Number BH3	
nstallat Standpi		Туре		Dimensi Interna Diame	ons al Diameter of Tube [A] = 3 eter of Filter Zone = 60 mm	0 mm			Client Manuela E	Eleuteri					1	lob Number J15315	
				Location	1	Ground	Level (m	OD)	Engineer						5	Sheet	
						8	5.40		Richard Ta	ant Assoc	ciates					1/1	
gend	Water	Instr (A)	Level (mOD)	Depth (m)	Description				G	roundwa	ter Strik	es Durin	g Drilling	3			
						Date	Time	Depth	Casing	luflas	v Rate		Read	lings		Depti Seale (m)	
					Bentonite Seal	Date	Time	Depth Struck (m)	Casing Depth (m)		vitate	5 min	10 min	15 min	20 min	<u>(m)</u>	
	0.0		84.40	1.00					Gre	oundwat	er Obse	rvations	During E	Prilling		L	
	000 000					5			Start of S					End of SI			
	0.00000					Date	Time	Depti Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Wate Leve (mOD	
	ລິດ ສິດທັດ ວັດ "ສິດລິດ ສິດທັດ ວັດ" ຄົດລິດ ສິດທັດ ສິດທັດ ວັດ" ຄົດ ວັດ"				Slotted Standpipe	Inst	[A] Time	. Slotte			roundwa	ter Obse	ervations				
	and Book o					inst.			d Standpip	e							
×	0,000,00					Data	Ins	trumen	t [A]				Rem	arks			
×	000000000					Date	Time	Depti (m)	Level (mOD)								
x x x x x x x x x x x x x x x x x x x	or no of the		82.40 80.90	3.00 4.50	General Backfill	02/02/16 23/02/16 14/12/16 05/07/17 11/07/17		2.79 2.77 2.78 2.88 2.80	0 82.70								

व		▲ ` Er	eotechnical nvironment ssociates				Widb War	ry Barn oury Hill e,Herts 2 7QE	Site 31 Willou	ghby Roa	ıd, Londo	n, NW3 1	RT			Borehole Number BH4
Installa Stand		n Type		Dimensi Interna Diame	ons al Diameter of Tube [A] = \$ ster of Filter Zone = 60 mn	30 mm 1			Client Manuela I	Eleuteri						Job Number J15315
				Location	1	Ground	Level (m	iOD)	Engineer							Sheet
						8	5.40		Richard T	ant Assoc	ciates					1/1
egend	Water	Instr (A)	Level (mOD)	Depth (m)	Description				G	roundwa	iter Strik	es Durin	g Drilling	3	l .	
****	_					Dete	Time	Depth Struci	Casing	ludia.	Data		Read	lings		Depth
					Bentonite Seal	Date	Time	(m)	Casing Depth (m)	intiov	w Rate	5 min	10 min	15 min	20 min	Depth Sealed (m)
		100 00 00 00 00 00 00 00 00 00 00 00 00	84.40	1.00		20/01/16		3.30	1.00	Slow In	flow					NOT
									Gr	oundwat	ter Obse	rvations	During D	Orilling		
<u>×</u>						Date		T	Start of S					End of SI		
<u>×</u>					Slotted Standpipe	Date	Time	Dept Hole (m)	h Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)
× × ×	∇ 1				Siotied Standpipe											
× × × × × × × × × × × × × × × × × × ×			80.40	5.00					Instr	ument G	roundwa	ter Obse	ervations			
×						Inst.	[A] Type	: Slotte	ed Standpip	e						
_ ×							Ins	trumen	t [A]							
× ×						Date	Time	Dept (m)	h Level (mOD)				Rema	arks		
x x x x x x x x x x x x x x x x x x x					General Backfill	02/02/16 23/02/16 13/12/16 05/07/17 11/07/17		2.7 2.7 2.7 2.8 2.8	6 82.64 5 82.65 8 82.52							
× × ×					General Backiiii											
× × × × × × × × × × × × × × × × × × ×																
× × ×			75.40	10.00												

Borehole Soakage Test

Site 31 Willoughby Road, London, NW3 1RT

Job Number J15315

Client Manuela Eleuteri

Sheet

Engineer Richard Tant Associates

1/1

Date: 05 July 2017

Borehole No: 1
Test No: 1

Test Data

Soakage Calculation

R	Δf	۸r	_	sta	art	Ωf	+	20	ŧ.
ப	CI	91	┏	- OLG	21 L	v	L		L.

Standpipe depth (m): 3.28 Screen depth (m): 1.00 Water level (m): 2.46

Time (mins)	Depth to Water (m)	Depth of Water (m)
0.0	3.12	0.16
1.0	3.12	0.16
3.0	3.12	0.16
5.0	3.11	0.17
10.0	3.11	0.17
15.0	3.11	0.17
20.0	3.11	0.17
30.0	3.11	0.17
45.0	3.11	0.17

3.10

3.10

3.10

0.18

0.18

0.18

Borehole Diameter (m) 0.0600 Borehole Area (m) 0.0028 Borehole Perimeter (m) 0.188

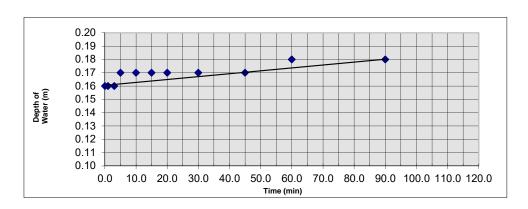
From Plot: D1 (m) 3.12

D2 (m) 3.10 T1 (min) 0 T2 (min) 120

Soakage Volume (m³) 0.000 Soakage Area (m²) 0.43 Time (min) 120

 Soakage rate (m/sec)
 1.81554E-08

 Soakage rate (m/day)
 0.001568627


At end of test:

60.0

90.0

120.0

Standpipe depth (m): 3.28 Screen depth (m): 1.00 Water level (m): 3.10

Remarks: Bailing at this position to reduce the water level, had no measureable effect on the water level in the nearby standpipe within BH2

Borehole Soakage Test

Site 31 Willoughby Road, London, NW3 1RT

Job Number J15315

Client Manuela Eleuteri

Sheet

Engineer Richard Tant Associates

1/1

Date: 05 July 2017

Borehole No: 2 Test No: 1

Test Data

Soakage Calculation

Before start of test:

Standpipe depth (m): 3.82 Screen depth (m): 1.00 Water level (m): 3.17

> Time (mins) Depth to Depth of Water (m) Water (m) 3.48 0.34 0.0 1.0 3.47 0.35 3.0 3.46 0.36 5.0 3.43 0.39 10.0 3.40 0.42 15.0 3.38 0.44 20.0 3.35 0.47 30.0 3.32 0.50 3.29 0.53 45.0

> > 3.26

3.23

3.21

0.56

0.59

0.61

Borehole Diameter (m) 0.0600

Borehole Area (m) 0.0028

Borehole Perimeter (m) 0.188

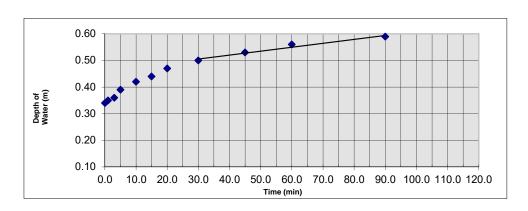
From Plot: D1 (m) 3.32

D2 (m) 3.21 T1 (min) 30 T2 (min) 120

Soakage Volume (m^3) 0.000 Soakage Area (m^2) 0.53 Time (min) 90

 Soakage rate (m/sec)
 1.0778E-07

 Soakage rate (m/day)
 0.009312169


At end of test:

60.0

90.0

120.0

Standpipe depth (m): 3.82 Screen depth (m): 1.00 Water level (m): 3.21

Remarks: Bailing at this position to reduce the water level, had no measureable effect on the water level in the nearby standpipe within BH1

Borehole Soakage Test

Site 31 Willoughby Road, London, NW3 1RT

Job Number J15315

Client Manuela Eleuteri

Sheet

Engineer Richard Tant Associates

1/1

Date: 05 July 2017

Borehole No:

Test Data

Soakage Calculation

Before start of test:

Standpipe depth (m): 4.80 Screen depth (m): 1.00 Water level (m): 2.88

 Time (mins)
 Depth to Water (m)
 Depth of Water (m)

 0.0
 4.80
 0.00

 1.0
 4.80
 0.00

 3.0
 4.79
 0.01

 5.0
 4.79
 0.01

0.00 0.01 4.79 0.01 5.0 10.0 4.77 0.03 15.0 4.76 0.04 20.0 4.75 0.05 4.73 0.07 30.0 4.71 0.09 45.0 60.0 4.68 0.12 90.0 4.64 0.16

4.62

0.18

Borehole Diameter (m) 0.1000

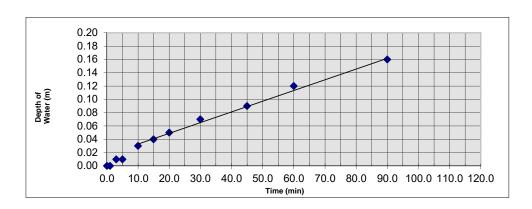
Borehole Area (m) 0.0079

Borehole Perimeter (m) 0.314

From Plot: D1 (m) 4.77

D2 (m) 4.62 T1 (min) 10 T2 (min) 120

Soakage Volume (m³) 0.001 Soakage Area (m²) 1.20 Time (min) 110


 Soakage rate (m/sec)
 1.48544E-07

 Soakage rate (m/day)
 0.012834225

At end of test:

120.0

Standpipe depth (m): 4.80 Screen depth (m): 1.00 Water level (m): 4.62

Remarks: Monitoring of the adjacent standpipe within BH3 showed no change in the observed water level (2.85 m) during bailing out of BH4 and throughout the subsequent test.

PROPOSED BASEMENT AT 31 WILLOUGHBY ROAD, LONDON, NW3 1RT

FLOOD RISK ASSESSMENT

JANUARY 2016

REF: 1542/RE/12-15/01 REVISION A

Evans Rivers and Coastal Ltd

T: 07896 328220

E: Enquiries@evansriversandcoastal.co.uk W: www.evansriversandcoastal.co.uk

i

CONTRACT

Evans Rivers and Coastal Ltd has been commissioned by Geotechnical and Environmental Associates to carry out a Flood Risk Assessment for a proposed basement at number 31 Willoughby Road, London, NW3 1RT.

QUALITY ASSURANCE, ENVIRONMENT AND HEALTH AND SAFETY

Evans Rivers and Coastal Ltd operates a Quality Assurance, Environmental, and Health and Safety Policy.

This project comprises various stages including data collection; hydrological and hydrogeological assessments; surface water drainage designs; and reporting. Quality will be maintained throughout the project by producing specific methodologies for each work stage. Quality will also be maintained by initiating internal quality procedures including the validation of third party deliverables; creation of an audit trail to record any changes made; and document control using a database and correspondence log file system.

To adhere to the Environmental Policy, data will be obtained and issued in electronic format and alternatively by post. Paper use will also be minimised by communicating via email or telephone where possible. Documents and drawings will be transferred in electronic format where possible and all waste paper will be recycled. Meetings away from the office of Evans Rivers and Coastal Ltd will be minimised to prevent unnecessary travel, however for those meetings deemed essential, public transport will be used in preference to car journeys.

The project will follow the commitment and objectives outlined in the Health and Safety Policy operated by Evans Rivers and Coastal Ltd. All employees will be equipped with suitable personal protective equipment prior to any site visits and a risk assessment will be completed and checked before any site visit. Other factors which have been taken into consideration are the wider safety of the public whilst operating on site, and the importance of safety when working close to a water source and highway. Any designs resulting from this project and directly created by Evans Rivers and Coastal Ltd will also take into account safety measures within a "designers risk assessment".

Report carried out by:

1 W/ Em

Rupert Evans, BSc (Hons), MSc, CEnv, C.WEM, MCIWEM, AIEMA

DISCLAIMER

This report has been written and produced for Geotechnical and Environmental Associates. No responsibility is accepted to other parties for all or any part of this report. Any other parties relying upon this report without the written authorisation of Evans Rivers and Coastal Ltd do so at their own risk.

COPYRIGHT

The contents of this document must not be copied or reproduced in whole or part without the written consent of Evans Rivers and Coastal Ltd or Geotechnical and Environmental Associates. The copyright and intellectual property in all designs, drawings, reports and other documents

ii

(including material in electronic form) provided to the Client by Evans Rivers and Coastal Ltd shall remain vested in Evans Rivers and Coastal Ltd. The Client shall have licence to copy and use drawings, reports and other documents for the purposes for which they were provided.

© Evans Rivers and Coastal Ltd

CONTENTS

DISCI	ITY AS LAIMER RIGHT	?	ICE, ENVIRONMENT AND HEALTH AND SAFETY	i i i i
1.	INTRO 1.1	DDUCT Projec	ION t scope	1 1
2.	DATA	COLLE	CTION	2
3.	SITE (3.1 3.2	Existin	CTERISTICS g Site Characteristics and Location oposals	3 3 3
4.	4.1 4.2 4.3	Fluvial Critica Ground Surfac	F FLOODING /Tidal I Drainage Areas (CDA) dwater Flooding e Water Flooding and Sewer Flooding roirs, Canals And Other Artificial Sources	4 4 4 5 7
5.	SURF	ACE W	ATER DRAINAGE	8
6.	CONC	LUSIO	NS	9
7.	BIBLI	OGRAF	РНҮ	10
APPE	NDIX A	١	SUMMARY OF GROUND INVESTIGATION PRELIMINARY FINDINGS	
DRAV	VINGS		BPS1195.02 4186/SM01	

1. INTRODUCTION

1.1 Project Scope

- 1.1.1 Evans Rivers and Coastal Ltd has been commissioned by Geotechnical and Environmental Associates to carry out a Flood Risk Assessment for a proposed basement at number 31 Willoughby Road, London, NW3 1RT.
- 1.1.2 Specifically, this assessment intends to:
 - 1) Carry out an appraisal of flood risk from all sources such as fluvial/tidal, groundwater, surface water/sewers, artificial sources in accordance with NPPF and other documents such as the SFRA and SWMP;
 - 2) Recommend mitigation measures where appropriate;
 - 3) Report findings and recommendations.
- 1.1.3 This assessment is carried out in accordance with the requirements of the National Planning Policy Framework (NPPF) dated March 2012. Other documents which have been consulted include:
 - DEFRA/EA document entitled *Framework and guidance for assessing and managing flood risk for new development Phase 2 (FD2320/TR2)*, 2005;
 - DEFRA/Jacobs 2006. Groundwater flooding records collation, monitoring and risk assessment (ref HA5).
 - National Planning Practice Guidance Flood Risk and Coastal Change.
 - London Borough of Camden Preliminary Flood Risk Assessment (PFRA) Version 0.2 dated 2011.
 - London Borough of Camden Strategic Flood Risk Assessment (SFRA) dated 2014.
 - London Borough of Camden Surface Water Management Plan (SWMP) Version 1 dated 2011.
 - London Borough of Camden flood risk management strategy (FRMS) dated 2013.
 - London Borough of Camden, Camden geological, hydrogeological and hydrological study Guidance for subterranean development dated 2010.
 - London Borough of Camden, Camden Planning Guidance Basements and Lightwells (CPG 4) dated July 2015.
 - Woods-Ballard., et al. 2015. *The SUDS Manual, Report C753*. London: CIRIA.
 - National SUDS Working Group. 2004. Interim Code of Practice for Sustainable Drainage Systems.

2. DATA COLLECTION

- 2.1 To assist with this report, the data collected included:
 - 1:250,000 Soil Map of South East England (Sheet 6) published by Cranfield University and Soil Survey of England and Wales 1983.
 - 1:625,000 *Hydrogeological Map of England and Wales*, published in 1977 by the Institute of Geological Sciences (now the British Geological Survey).
 - Local borehole data extracted from the BGS Online Geology Viewer.
 - Summary of ground investigation preliminary findings produced by Geotechnical and Environmental Associates in January 2016 (excerpts in Appendix A).
 - Information and data from:
 - London Borough of Camden Preliminary Flood Risk Assessment (PFRA) Version 0.2 dated 2011.
 - London Borough of Camden Strategic Flood Risk Assessment (SFRA) dated 2014.
 - London Borough of Camden Surface Water Management Plan (SWMP) Version 1 dated 2011.
 - London Borough of Camden Flood Risk Management Strategy (FRMS) dated 2013.
 - London Borough of Camden, Camden geological, hydrogeological and hydrological study Guidance for subterranean development dated 2010.
- 2.2 All third party data used in this study has been checked and verified prior to use in accordance with Evans Rivers and Coastal Ltd Quality Assurance procedures.

3. SITE CHARACTERISTICS

3.1 Existing Site Characteristics and Location

3.1.1 The site is located at number 31 Willoughby Road, London, NW3 1RT. The approximate Ordnance Survey (OS) grid reference for the site is 526727 185854 and the location of the site is shown on Figure 1.

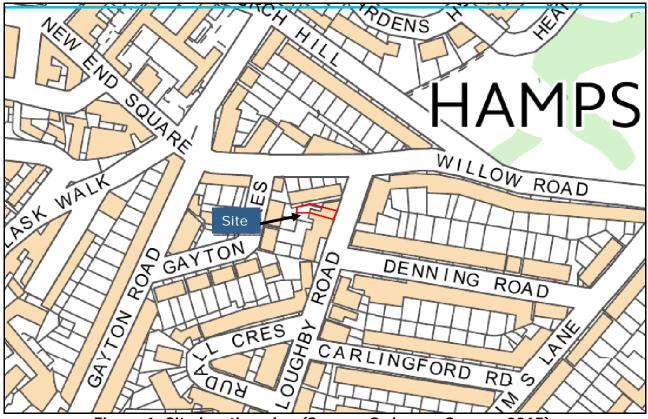


Figure 1: Site location plan (Source: Ordnance Survey, 2015)

- 3.1.2 The site is located within a residential area and comprises a four-storey building which is accessed from Willoughby Road adjacent to the eastern frontage of the site. There are front and rear garden areas which are largely covered by block paving apart from a small area of the front garden which remains vegetated (i.e. bedding plants).
- 3.1.3 The topographical survey/existing layout can be seen on Drawing Number BPS1195.02 and shows that ground levels across the site do not vary significantly and that the dwelling is set approximately 300mm higher than existing ground levels.

3.2 Site Proposals

- 3.2.1 It is understood that the development will comprise the construction of a single level basement beneath the existing property, which will extend beneath part of rear garden and beyond the existing front footprint to create a lightwell space. The proposed basement is understood to extend to a depth of approximately 3m, such that formation level is expected to be within the London Clay.
- 3.2.2 It is understood that this Flood Risk Assessment needs to assess the flood risk to the basement level only. The site proposals can be seen on Drawing Number 4186/SM01.

4. SOURCES OF FLOODING

4.1 Fluvial/Tidal

- 4.1.1 The Environment Agency Flood Map shows that the site is located within the NPPF Flood Zone 1, 'Low Probability' which comprises land as having less than a 1 in 1000 year annual probability of fluvial or tidal flooding (i.e. an event more severe than the extreme 1 in 1000 year event). NPPF states that all uses of land, including basements, are appropriate in this zone.
- 4.1.2 The SFRA also states that there has been no historical flooding within the Borough from fluvial or tidal sources. Furthermore, the SWMP confirms that the Borough does not fall within the Environment Agency's flood zones and therefore is not at significant risk from fluvial or tidal flooding.
- 4.1.3 The SFRA and SWMP states that all main rivers historically located within the Borough are now culverted and incorporated into the sewer network. The SWMP discusses the River Fleet which is one of London's "lost rivers" and which historically originates from springs on Hampstead Heath and drains to the Thames through the Borough. The Fleet is entirely incorporated within the sewer network.
- 4.1.4 The SFRA continues to discuss the Borough's historic rivers and in addition to the Fleet, the Tyburn, Kilburn and Brent were also located in the area of Hampstead Heath. All of these "lost rivers" are also now incorporated into the local sewer system maintained by Thames Water. It is for these reasons that the Borough is located entirely within Flood Zone 1.

4.2 Critical Drainage Areas (CDA)

4.2.1 Despite the site being located within Flood Zone 1, it is understood from Figure 6/Rev 2 of the SFRA and Figure 3.1 of the SWMP, that the site is located within the Group3-010 Critical Drainage Area (CDA).

4.2.2 The SWMP defines the CDA as:

"A discrete geographic area (usually a hydrological catchment) where multiple and interlinked sources of flood risk (surface water, groundwater, sewer, main river and/or tidal) cause flooding in one or more Local Flood Risk Zones during severe weather thereby affecting people, property or local infrastructure."

4.3 Groundwater Flooding

- 4.3.1 In addition to the information provided in the SFRA and SWMP, in order to assess the potential for groundwater flooding, the Jacobs/DEFRA report entitled *Strategy for Flood and Coastal Erosion Risk Management: Groundwater Flooding Scoping Study*, published in May 2004, was consulted, together with the guidance offered within the document entitled *Groundwater flooding records collation, monitoring and risk assessment (ref HA5)*, commissioned by DEFRA and carried out by Jacobs in 2006.
- 4.3.2 The Summary of ground investigation preliminary findings produced by Geotechnical and Environmental Associates in January 2016, indicates that the soils beneath the site comprise Made Ground (sandy clay) overlying London Clay. Groundwater seepages were encountered during the investigation and within the London Clay at 3m bgl.

- 4.3.3 Paragraphs 2.10.4 and 2.10.6 of the SFRA states that the London Clay has a low permeability but is likely to permit moderate infiltration. Paragraph 6.4.8 of the SFRA suggests that there could be perched water within sand pockets of the London Clay.
- 4.3.4 Figure 4e/Rev 1 of the SFRA shows that the site has not been affected in the past from groundwater flooding incidents and that the site is not located within an area of increased susceptibility to elevated groundwater and is therefore expected to remain at depth. Figure 4a/Rev 1 of the SFRA also shows that the site is not located across an area with superficial (and more permeable) deposits beneath the surface.
- 4.3.5 The BGS Groundwater Susceptibility Map also indicates that there is "Limited Potential for Groundwater Flooding to Occur" at the site.
- 4.3.6 The results from the intrusive testing indicate that groundwater is likely to be encountered below the site to a depth of 3m and therefore equal to or higher than the proposed basement floor.
- 4.3.7 The potential for groundwater to rise significantly is low considering the low permeable soil types, however, it is recommended that the basement is designed to achieve a Grade 3 level of waterproofing protection as outlined in BS8102:2009. A new reinforced concrete lining wall and ground-bearing concrete slab could be constructed using water resistant concrete to form the primary barrier. An internal drained cavity system will act as a secondary barrier against water ingress.
- 4.3.8 The evidence suggests that it is unlikely that the water table has the potential to breach the ground surface and flow into the building and basement via the ground floor.
- 4.3.9 The groundwater flooding risk to the property and basement is considered to be overall low and the risk reduced further by the appropriate mitigation measures stated within this section.

4.4 Surface Water Flooding and Sewer Flooding

4.4.1 Surface water and sewer flooding across urban areas is often a result of high intensity storm events which exceed the capacity of the sewer thus causing it to surcharge and flood. Poorly maintained sewer networks and blockages can also exacerbate the potential for sewer flooding.

Surface Water Flooding

- 4.4.2 It has been established that the site lies within the Group3-010 Critical Drainage Area. The SFRA notes that the surface water mapping indicates that the surface water flood extent broadly follows the natural topography of the borough and man-made features such as roads and rail lines. During extreme modelling scenarios, the SFRA states that there is increased ponding in areas of properties. For example, the SWMP indicates that the modelling shows deep flooding at Gospel Park, affecting Oak Village, Lamble St, Grafton Road and Kiln Place, caused by railway embankments creating a "basin" into which surface water collects.
- 4.4.3 The SFRA discusses the two large surface water flooding events in the Borough, which occurred in 1975 and 2002 and caused widespread damage. It is understood that during these events the sewers reached maximum capacity, however, Figure 3ii/Rev 1 of the SFRA shows that the site and the adjacent highway of Willoughby Road were not affected during these events.

- 4.4.4 Figure 3ii/Rev 1 of the SFRA (Figure 2 below) also shows that the site and the adjacent highway of Willoughby Road are not at risk from surface water flooding during events up to and including the 1 in 1000 year event. In fact, the site is located across an area with a less than 1 in 1000 year return period of surface water flooding.
- 4.4.5 It is considered that the site is not at risk of surface water flooding as indicated by the maps.

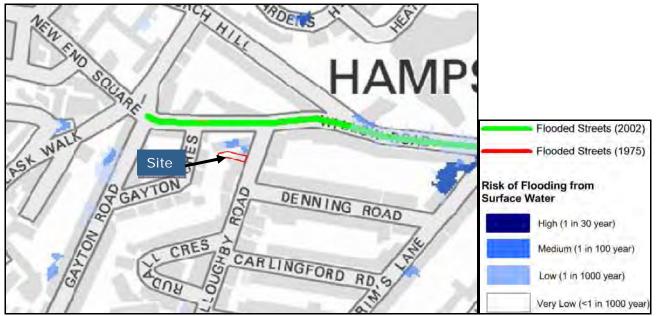


Figure 2: Location of site in relation to surface water flood extent (Source: taken from Figure 3ii/Rev 1 of the SFRA)

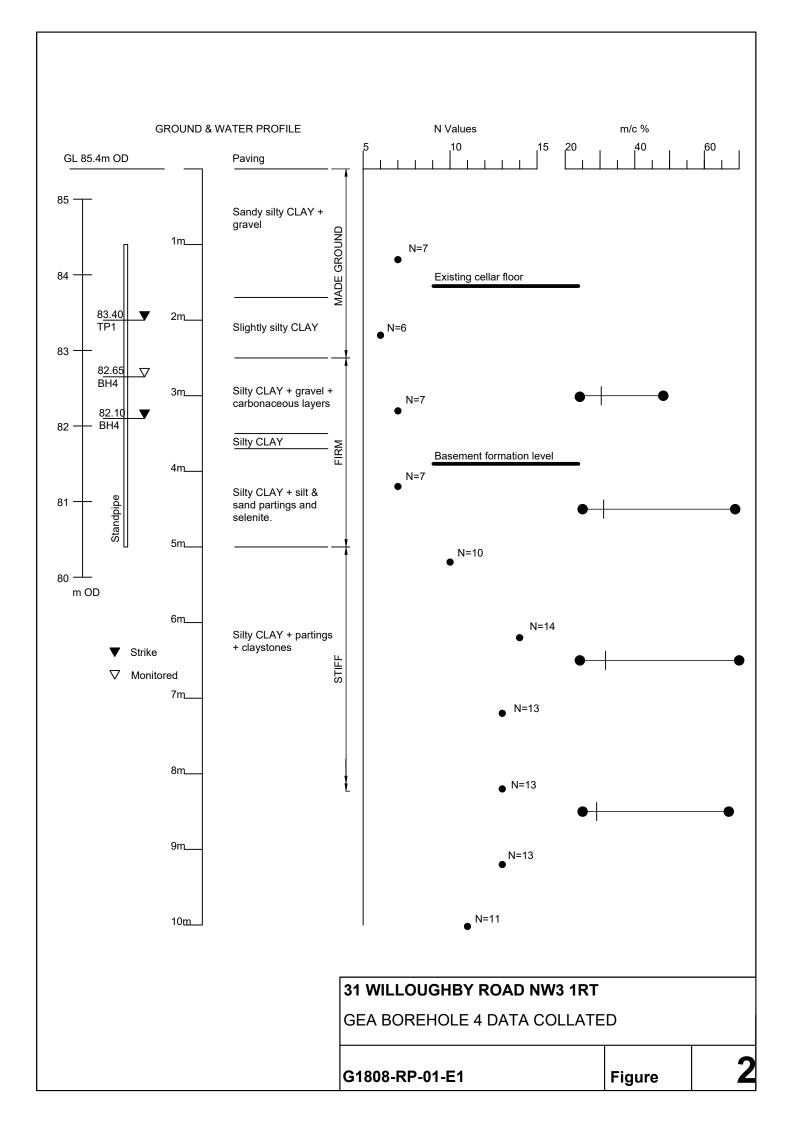
Sewer Flooding

- 4.4.6 The SFRA states that the majority of the Borough is served by a combined surface and foul water system which is designed to accommodate rainfall events of up to 1 in 30 years return period.
- 4.4.7 The combined sewer network outfalls into the River Thames during intense rainfall events when the sewer network reaches capacity. The evidence suggests that as the sewer capacity becomes exceeded this results in surcharging of the network prior to sufficient discharge into the Thames.
- 4.4.8 Figure 5a/Rev 1 of the SFRA indicates that the site is located across an area which has had 4 recorded internal sewer flooding incidents. Figure 5b/Rev 1 of the SFRA that the site is located across an area which has had 1 external sewer flooding incidents.
- 4.4.9 It is likely that foul water from the basement level will be drained to a submersible packaged pumping station and pumped to ground level where it will flow into the surrounding sewer system via gravity. It is understood that a non-return valve (e.g. http://www.forgevalves.co.uk/) will be installed so that the basement (and upper floors) will be protected further from sewer flooding.
- 4.4.10 This approach also complies with paragraph 5.11 of the Camden Planning Guidance CPG4 dated 2015. Therefore, if the sewer in the road becomes completely full during a heavy storm, foul water does not backflow into the property.

4.5 Reservoirs, Canals And Other Artificial Sources

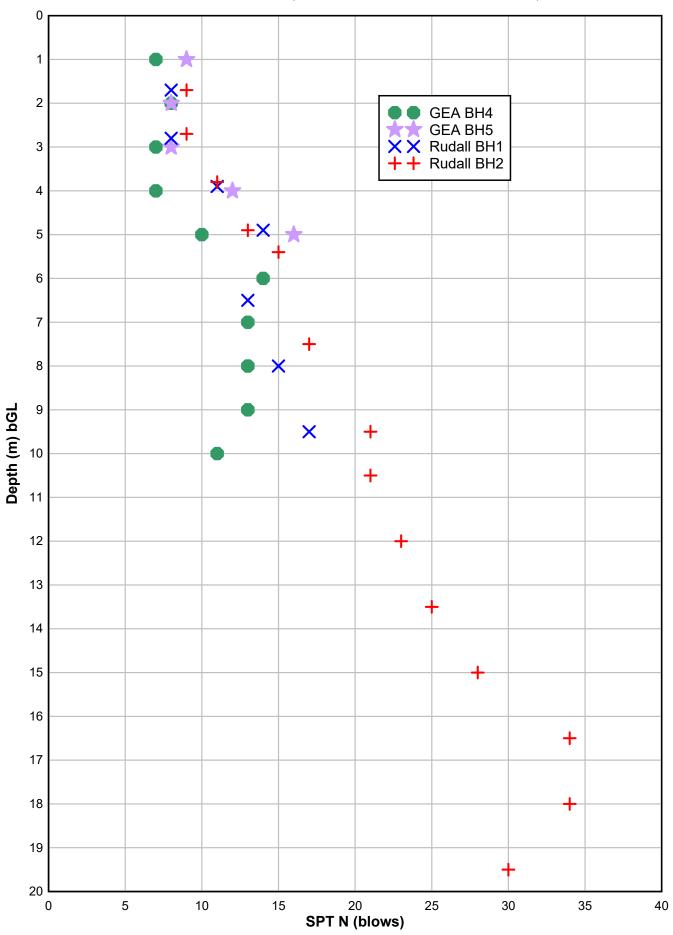
- 4.5.1 The failure of man-made infrastructure such as flood defences and other structures can result in unexpected flooding. Flooding from artificial sources such as reservoirs, canals and lakes can also occur suddenly and without warning, leading to high depths and velocities of flood water which pose a safety risk to people and property.
- 4.5.2 The Environment Agency's "Risk of flooding from reservoirs" map suggests that the site is not at risk from reservoir flooding. This supported by the SFRA which also states that the risk of flooding from the Regent's Canal is low.

5. SURFACE WATER DRAINAGE


- 5.1 Policy 5.13 in Chapter 5 of the London Plan dated March 2015, requires sustainable drainage systems (SUDS) to be installed where appropriate and in line with the drainage hierarchy in order for runoff to be managed as close to its source as possible.
- 5.2 The London Plan states that SUDS should be utilised unless there are practical reasons for not doing so. The less permeable soils beneath the site are unlikely to possess sufficient infiltration capacity for the practical use of infiltration devices.
- 5.3 Despite a small increase in impermeable area at the front of the property as a result of the basement development, there is a lack of available space and little opportunity to reduce runoff rates from the site via attenuation or rainwater harvesting.
- If an attenuation tank was included at the site, it would need to be located in the rear garden area and therefore it may be difficult to direct flows from this device through the house and into the sewer beneath Willoughby Road. It is likely that in this instance, surface water from the tank would be directed to the foul water pump at basement level in order to maintain a discharge into the sewer. There is uncertainty about the viability of this approach, especially when considering the positions of existing downpipes and the reliability of the pump to accommodate surface water flows as well as foul water flows.
- Despite this, other SUDS measures should be considered such as rain gardens (i.e. vegetated depressions which hold back water) and pervious surfaces (i.e. possibly permeable paving which could temporarily retain surface water).

6. CONCLUSIONS

- A review of the relevant guidance documents and various types of data collected at the site has enabled a full assessment of the flood risks to be quantified.
- The site is located within the Flood Zone 1 therefore all uses of land are appropriate in this zone.
- This assessment has investigated the possibility of groundwater flooding and flooding from other sources at the site. It is considered that there will be low risk of groundwater flooding and surface water flooding across the site.
- There is a low to moderate risk of flooding from sewers, however, as a precaution; the risk from sewer flooding should be mitigated further by introducing a non-return valve to the pumped system.


7. BIBLIOGRAPHY

- i. Communities and Local Government 2012. *National Planning Policy Framework.*
- ii. DEFRA/EA 2005. Framework and guidance for assessing and managing flood risk for new development, Phase 2, Flood and Coastal Defence R&D Programme, R&D Technical Report FD2320/TR2. Water Research Council.
- iii. DEFRA/Jacobs 2004. Strategy for Flood and Coastal Erosion Risk Management: Groundwater Flooding Scoping Study (LDS), Final Report, Volumes 1 and 2.
- iv. Geological Society of London 2006. *Groundwater and Climate Change*. Geoscientist magazine, Volume 16, No 3.
- v. Institute of Geological Sciences 1977. *Hydrogeological Map of England and Wales*, 1:625,000. NERC.
- vi. London Borough of Camden Preliminary Flood Risk Assessment (PFRA) Version 0.2 dated 2011.
- vii. London Borough of Camden 2014. Strategic Flood Risk Assessment.
- viii. London Borough of Camden 2013a. CPG4 Basement and Lightwells.
- ix. London Borough of Camden 2013b. Flood risk management strategy.
- x. London Borough of Camden 2011. Surface Water Management Plan Version 1.
- xi. London Borough of Camden 2010. *Camden geological, hydrogeological and hydrological study Guidance for subterranean development.*
- xii. Water UK 2012. Sewers for Adoption 7th Edition, A design and construction guide for developers. Water Research Council.

G1808 31 WILLOUGHBY ROADNW3 1RT - Proposed Basement SPT Profiles GEA BH4, BH5 & 37-39 Rudall Crescent BH1, BH2

Report::G1808-RP-01-E1 Figure No 3

Appendix C Contents

Eldreds 2018-2019 ground investigation – factual report

Figure 4 - Site plan

Borehole records

Laboratory test results

Figure 5 – Transducer arrangement

Figure 6 – Plot of particle size distribution test results

Figure 7 – Plot of Moisture content, plasticity and clay content profiles

Figure 8 – Plot of groundwater measurement August 2018 to March 2019

Figure 9 – Sketched long section

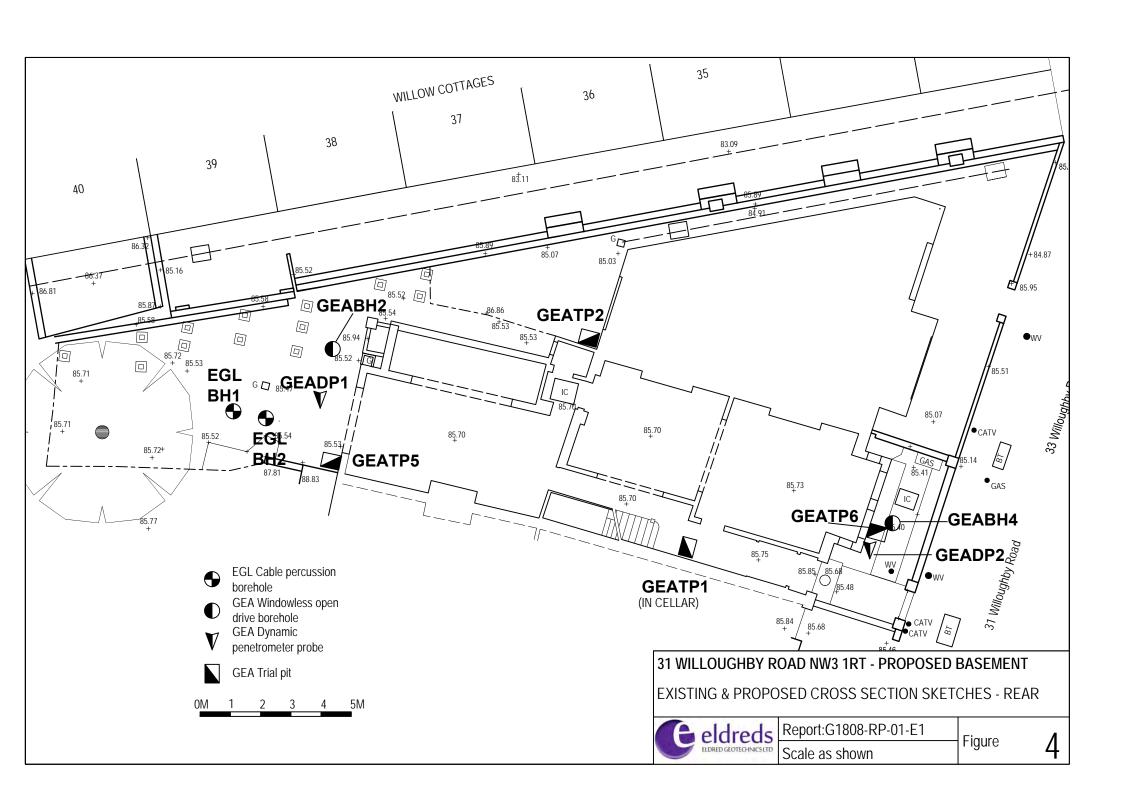

Figure 10 – Sketched cross section of front part of No.31

Figure 11 – Sketched cross section of rear part of No.31

Figure 12 – Plot of SPT and U100 blow count profiles

Figure 13 – Plot of SPTCu and Triaxial test undrained shear strength profiles

Date February 2020 49

Project					
31 WILLOUG	HBY ROAD NW3 1RT	- BASEMENT			BH1
Job No	Date 13-08-18	Ground Level (m ODN)	Co-Ordinates (OSGI	336)	ВПТ
G1808	14-08-18	85,50	E 526.718,0	N 185.855,0	
Method			•		Sheet
Demountable cat	ole percussion rig; borehole	200dia. to 5m, 150dia. 5m	to EOB		1 of 3

Depth	Туре	Test	Water	Reduced Level	l egend	Depth (Thick-				MATER	RIAL DES	CRIPTIO	N		
	No	Result		Level		ness)			ain Descr	<u> </u>			Stra	ta Notes	
0,50-0,95	B1						0,2- 0,3 0,3- 0,5 0,5- 1,3 (cutting	Brick pave Concrete Crushed I Soft grey/ tool drove GROUND	orick green clag brick to 2	y sand &					
1,00-1,95 . 1,00	B3 C	N7 1/2/1/2/2/2		84,20		1,30	Soft low	strength b	prown sa	ndy and s	silty CLAY	,			
1,50-1,95 1,50	B4 C	N8 2/1/1/2/3/2				L I	with rare brick fra	e rounded gments (d GROUNE	flint grave riven fron	and 5m	m angula	ır			
2,00-2,45	U5	12 blows				- - -									
2,50 2,50 2,80	S6 SPT	N7 1/1/2/2/1/2	<u></u>			(2,20) - - - -									
3,00-3,45	U7	16 blows			XXX	-									
3,00-3,45	B8	NR		82,00		3,50									
3,50 3,50	S9 SPT	N10 1/2/2/2/3/3		ŕ	<u>,</u>	(0,50)	Firm me CLAY w (HEAD)	dium strer ith rare m.	ngth brow f. rounde	n slightly d flint gra	sandy sil vel.	ty			
4,50 4,50	U10	25 blows		81,50	×	-	fragmen disturbe concent	coming stit ted and th d by freeze rated mob	inly lamin e/thaw, po lization. (ated silty ssibly wi Occasiona	CLAY th zones	of ots.			
4,50 4,50	S11 SPT	N15 1/2/3/3/4/5				-	(LONDC	ON CLAY -	· Disturbe	a)					
Groundv Date &Time 13/08 00:0 13/08 00:0	U12	30 blows			× – – – – – – – – – – – – – – – – – – –	(2,00) - - - -									
Groundy	vater C	bservations	During	g Drilling	<u> </u>		Grour	ıdwater St	rikes Duri	ng Drillin	g			Chiselling	l
Date &Time	Ob (m		Casir Dept (m)	h Dept	և II	Date &Time	Obs. (min)	Strike Depth (m)	Casing Depth (m)	Inflow Rate	Rise to depth	Depth Sealed (m).	From (m).	To (m)	Tin (hhn
13/08 00:0 13/08 00:0	0 W 0 Di	1 ' 1	2,00 4,00		13	/08 00:00	30	2.8	2,00	Seep					
	<u> </u>	metres C	ontrac	4				lant Used					Logged	Dv.	

Groundwat	ter Obs	ervations	During D	rilling		Groundwater Strikes During Drilling								Chiselling			
Date &Time	Obs. (min)	Hole Depth (m)	Casing Depth (m)	Water Depth (m)	Date &Time	Obs. (min)	Strike Depth (m)	Casing Depth (m)	Inflow Rate	Rise to depth	Depth Sealed (m).	From (m).	To (m)	Time (hhmm)			
13/08 00:00 13/08 00:00	Wet Dry	2,80 4,00	2,00 4,00	2,80	13/08 00:00	30	2.8	2,00	Seep								

Project					
31 WILLOUGI	HBY ROAD NW3 1RT	- BASEMENT			BH1
Job No	Date 13-08-18	Ground Level (m ODN)	Co-Ordinates (OSG	B36)	ВПΊ
G1808	14-08-18	85,50	E 526.718,0	N 185.855,0	
Method					Sheet
Demountable cab	le percussion rig; borehole	200dia. to 5m, 150dia. 5m	to EOB		2 of 3

Depth	Туре	Test	Water	Reduced Level	Leaend	Depth (Thick-					RIAL DES	CINIF 110			
	No	Result		Level		ness)		Ma	ain Descr	iption			Stra	ita Notes	
5,50 5,50	S13 SPT	N17		ŀ	<u>× </u>	_									
. 5,50	3F I	3/2/3/4/5/5			<u>×</u>										
				70.50	×_	6,00									
_ .6,00-6,45	U14	25 blows		79,50	<u>× — </u>	6,00	Stiff me	dium to hiç	nh strenat	h arev sli	ahtly silty	,			
	0	20 5,0110			×		l thinly laı	minated ar	nd verv clo	oselv fiss	ured				
					<u>*</u>	-	(fissures	s are horizon N CLAY)	ontal) CL	AY;					
•					×		LONDO	JN CLAT)							
. 6,50 . 6,50	S15 SPT	N17		ŀ		-									
. 0,30	01 1	1/2/4/4/4/5													
					<u>×</u>	-									
_ .7,00-7,45	U16	35 blows		ŀ	<u> </u>	_									
					×	(2.50)									
-				}	<u>x</u>	(2,50) [
7.50	047				×	F									
. 7,50 . 7,50	S17 SPT	N18		-	<u>X</u>	-									
,00	O: 1	2/3/4/4/5/5		ŀ		Ī									
					x	}									
8,00-8,45	U18	40 blows		}	X	<u> </u>							nm thick ba		oken
						ŀ						shell	s at circa 8	3.0m	
				ŀ	×										
	S19			77,00	_	8,50	Ctiff bial	a atropath	grov silty	thinly lon	ainated a	24			
. 8,50 . 8,50	SPT	N17				Ĺ	verv to e	n strength extremely c	grey silly closely fiss	uniny ian sured (fis	ninaled al sures are	iu			
		1/2/3/4/5/5		ŀ	×		horizont	al to sub h	orizontal)	CLAY.					
					^_	_	(LONDO	ON CLAY)							
9,00-9,45	U20	40 blows			×	-									
				ŀ	<u>× </u>	_									
· -					×										
9,45	D21			ŀ	<u>×</u>	-									
9,50	S22	NO4		Ì	<u>*</u>										
9,50	SPT	N21 2/3/4/4/5/8			×	-									
- _ _ 10,00- _ 10,45				ŀ		_									
10,00-	U23	40 blows													
. 10,45				ŀ	<u>× </u>										
-				ļ	<u></u>	-									
10,45	D24				X	<u> </u>									
10,50 10,50	S25 SPT	N24		ł		-									
,		3/4/5/5/7/7			x	_									
													1		
Groundv	vater C	bservations	During	g Drilling			Grour	ndwater St	rikes Duri	ng Drillin	g			Chiselling	1
Date	Ob		Casir	ng Wate	<u>և </u>	Date	Obs.	Strike	Casing	Inflow	Rise	Depth	From	То	Tir
&Time	(m		Dept (m)	h Dept (m)		&Time	(min)	Depth (m)	Depth (m)	Rate	to depth	Sealed (m).	(m).	(m)	(hhr
13/08 00:0	0 Di	<u> </u>	4,50						. ,		<u>'</u>	` /			
		1 1		1	1.1		1	1			1		11	1	1

HBY R	Groundwat	er Obse	ervations	During D	rilling	Groundwater Strikes During Drilling							Chiselling			
WILLOUG	Date &Time	Obs. (min)	Hole Depth (m)	Casing Depth (m)	Water Depth (m)	Date &Time	Obs. (min)	Strike Depth (m)	Casing Depth (m)	Inflow Rate	Rise to depth	Depth Sealed (m).	From (m).	To (m)	Time (hhmm)	
BH_LUG_EG G1808 31	13/08 00:00	Dry	6,10	4,50				. ,	. ,		·					
;													1			

Project					
31 WILLOUGI	HBY ROAD NW3 1RT	- BASEMENT			BH1
Job No	Date 13-08-18	Ground Level (m ODN)	Co-Ordinates (OSG	B36)	ВПΊ
G1808	14-08-18	85,50	E 526.718,0	N 185.855,0	
Method					Sheet
Demountable cab	ole percussion rig; borehole	200dia. to 5m, 150dia. 5m	to EOB		3 of 3

J, ((V))		TESTS	Water			Depth		EXCAV			RIAL DES	CRIPTIC)N		
Depth	Type No	Test Result	×	Reduced Level	Legend	(Thick- ness)		M:	ain Descr		NAL DES	OCKIF IIC		ta Notes	
11,00- 11,45 11,45 11,50 11,50	U26 D27 S28 SPT	45 blows N28 2/7/7/7/7/7		-	X X X X X X X	(6,50)	very to e	n strength extremely cal to sub h	grey silty closely fissorizontal)	thinly lan sured (fis CLAY.	ninated a sures are	nd e	<u> </u>	<u></u>	
12,00- 12,45	U29	45 blows		-		- 									
12,45 12,50 12,50	D30 S31 SPT	N29 3/6/7/7/7/8	2			- - - - - - -									
113,000- 13,45	U32	48 blows	<u>*</u>	-		- - -									
13,45 13,50 13,50	D33 S34 SPT	N34 4/6/7/8/9/10		-		- - - - - - - - -									
14,00- 14,45	U35	48 blows		-		- - - -						Con 14.0	sistency is)m	locally firn	n at c
14,45 14,55- 15,00 14,55	D36 S37 SPT	N35 7/7/8/8/9/10		70,50	x	15,00	Borehole								
14,55						- - - - - - - - - - - -	20,01,01	5 61145							
Ground	lwater C	Observations	Durin	g Drilling			Grour	idwater St	rikes Duri	ng Drillin	g			Chiselling	9
Date &Time	Ot (m	in) Depth (m)	Casir Dept	th Depth) (m)	1	Date &Time	Obs. (min)	Strike Depth (m)	Casing Depth (m)	Inflow Rate	Rise to depth	Depth Sealed (m).	From (m).	To (m)	Tir (hhr
14/08 00: 14/08 00:		ry 13,00 ry 15,00	4,50 4,50) 14	·/08 00:00	30	13	4,50	Seep					
		metres C	ontrac					lant Used					Logged I		

Groundwate	er Obs	ervations	During D	rilling		Groun	dwater St	rikes Duri	ing Drillin	g		Chiselling			
Date &Time	Obs. (min)	Hole Depth (m)	Casing Depth (m)	Water Depth (m)	Date &Time	Obs. (min)	Strike Depth (m)	Casing Depth (m)	Inflow Rate	Rise to depth	Depth Sealed (m).	From (m).	To (m)	Time (hhmm)	
14/08 00:00 14/08 00:00	Wet Dry	13,00 15,00	4,50 4,50	13,00	14/08 00:00	30	13	4,50	Seep						

Project					
31 WILLOUGI	HBY ROAD NW3 1RT	- BASEMENT			DUO
Job No	Date 15-08-18	Ground Level (m ODN)	Co-Ordinates (OSG	336)	BH2
G1808	15-08-18	85,50	E 526.719,0	N 185.855,0	
Method					Sheet
Demountable cab	le percussion rig; borehole	200dia.			1 of 1

SAMPL	ES &	TESTS	ڀ				EXCAVATION RECORD	
Depth	Туре	Test	Water	Reduced	Legend	Depth (Thick-	MATERIAL DESCRI	PTION
———	Ν̈́ο	Result	>	Level	Legend	ness)	Main Description	Strata Notes
				85,00		(0,50) 0,50	Brick paviours on sand to 0.15m on 100mm thick concrete on soft dark grey/brown clay with brick. (MADE GROUND)	
0,50-0,95	B1	NR				- 	Soft low strength dark grey/brown becoming brown mottled green silty sandy and slightly gravelly CLAY. Gravel is m.f rounded flint with rare crushed brick. Occasional fine roots. (MADE GROUND).	
1,00-1,45 1,00	B3 SPT	N4 1/2/1/1/1/1				- - -		
1,50-1,95	U4	11 blows				(2,50)		
1,95 2,00 2,00-2,45 2,00	D5 S6 B7 SPT	N4 2/1/1/1/1/1				- - - -		
2,50-2,95	U8	11 blows		82,50		3,00		15mm layer of organic material; possibly from stream bed. circa 2.5m
-2,95 3,00 3,00-3,45 3,00	D9 S10 B11 SPT	N7 1/1/1/2/2/2		62,30		3,00	Soft medium strength brown silty, slightly sandy CLAY. Occasional fine roots. (HEAD)	
3,45 3,50-3,95	D12 U11	15 blows			X	(1,50)		
-3,95 4,00 4,00	D12 S13 SPT	N12 1/1/2/3/3/4		04.00	xxxxxxx-	-		
4,50-4,95	U14			81,00	×	(0,50)	Firm medium strength thinly laminated brown silty CLAY. Occasional fine roots. (DISTURBED LONDON CLAY)	
⁻ 4,95	D15			80,50	<u>x</u>	5,00 - - -	Borehole ends	

o.uk :D-2013.GDT 14/07/19		D12 S13 SPT U14	N12 1/1/2/3/3/	4	81,00		(1,50) - - - - - - - 4,50	Firm mo	dium strer	agth thinly	, laminate	ed brown				
s-geo.c	- - -	014			- - -	<u>×</u> _	(0,50)	silty CLA (DISTUF	Y. Occas RBED LON	ional fine NDON CL	roots. .AY)	od brown				
Telephone: 01689 869406 Email: mail@eldreds-geo.co.uk G1808 31 WILLOUGHBY ROAD NW3 1RT.GPJ ELDRED-2013.GDT	- -4,95 - - -	D15			80,50 5	<u>x</u>	5,00 - - - -	Borehole			<u> </u>					
369406 3HBY R	Groundv	vater C	bservation	s During	Drilling			Groun	dwater St	rikes Duri	ng Drillin	g			Chiselling	J
e: 01689 8 WILLOUG	Date &Time	Ob (m		Casing Depth (m)			Date &Time	Obs. (min)	Strike Depth (m)	Casing Depth (m)	Inflow Rate	Rise to depth	Depth Sealed (m).	From (m).	To (m)	Time (hhmm)
Eldred Geotechnics Ltd Telephon 2019_CPBH_LOG_EG G1808 31			1,35 3,00 3,50 5,00	2,00 3,00 3,00	Dry											
იც	All dimens			Contract	tor			PI	ant Used					Logged	By	

Bulk(B), SPT(S), Cutting shoe (CS) samples logged 13th-15th August U(UUTxI) extruded & tested 15th November; logged 26th November 2018 Vocabulary of spacing:

Fissuring. Very close = 20 – 60mm. Extremely close = <20mm.

Thinly laminated = < 6mm

Loc'n	Depth	Туре	Description	Geology
BH1	0.5	В		
	1.0-1.45	В		
	1.5-1.95	В		
	2.0-2.45	U	Soft brown clay @PL comprising angular fragments of clay mixed with ~ 0.5cm lenses silt which together exhibit a crude stratification, plus occasional 0.5cm angular fragment of red brick. Fine rootlets present.	Made Ground
	2.5-2.95	S	Soft brown damp clay with possibly slightly silt/fine sand content with rounded flint fragment medium gravel size. @ PL or just wet of.	Made Ground
	3.0-3.45	В	Soft, brown, moist to almost wet clay matrix supporting isolated medium to fine (and suspect smaller) size angular fragments of brick and stone. Brown colouration in clay contains patches of different hues. Wet of PL	
	3.5-3.95	S	Firm brown damp mosaic of angular clasts ~ 7mm side length of London Clay some being litho-relics, with veins and blotches of blue. Rounded flints of medium and fine grained gravel size. @PL or just wet of	London Clay
	4.0-4.45	U	Soft to firm brown horizontally thinly laminated brown clay @ PL comprised of angular but rounded fragments of laminated clay up to 4cm across often with smooth surfaces, closely packed and mainly outlined by light brown 1mm rim of light brown clay; occasional 1mm rim of soft light blue clay. (Disturbed by freeze-thaw).	London Clay
	4.5-4.95	S	Stiff brown damp mosaic of angular lithorelics of thinly laminated London Clay ~ 7mm side length, bounded by veins of blue clay <1mm thick. @PL	London Clay

Bulk(B), SPT(S), Cutting shoe (CS) samples logged 13th-15th August U(UUTxI) extruded & tested 15th November; logged 26th November 2018 Vocabulary of spacing:

Fissuring. Very close = 20 – 60mm. Extremely close = <20mm.

Thinly laminated = < 6mm

Loc'n	Depth	Туре	Description	Geology
BH1	5.0-5.45	U	Firm grey very closely fissured clay going brown on the fissures. Fissures producing blocks 5cm -6cm across; clay in blocks @ PL. Between these blocks is soft grey clay on wet side of PL consisting of 1cm angular fragments forming a clay clast supported fabric in a soft clay matrix. Some of the boundaries between this soft clay and the blocks bounded by fissures are striated surfaces that are sub-horizontal and at 45°. Fine lace-like network of black fibrous rootlets on some planar surfaces. (Disturbed with what appear to be zones of concentrated mobilization; slope instability, valley bulge?).	London Clay
	5.5-5.95	S	Stiff brown damp mosaic of angular fragments larger than those above ~10mm+ very well thinly laminated; appears to be undisturbed. @PL.	London Clay
	6.0-6.45	U	Stiff horizontally very closely fissured grey thinly laminated clay that has a dry silty appearance, just turning brown on fissure surfaces; on dry side of PL. Horizontal fissures smooth, undulating and extremely closely spaced	London Clay
	6.5-6.95	S	Stiff grey damp very well & thinly laminated clay. @PL	London Clay
	7.0-7.45	U	Stiff grey thinly laminated clay that glistens suggesting a visible silt content. On dry side of PL. Horizontal smooth undulating fissures just discernible. Small gastropods occasionally present	London Clay
	7.5-7.95	S	Stiff grey damp very well & thinly laminated clay. @PL	London Clay
	8.0-8.45	U	Firm grey thinly laminated clay just wet of PL. Bands of broken shells 1cm thick at 40° subparallel to laminations. Weakly developed	London Clay

Bulk(B), SPT(S), Cutting shoe (CS) samples logged 13th-15th August U(UUTxI) extruded & tested 15th November; logged 26th November 2018 Vocabulary of spacing:

Fissuring. Very close = 20 – 60mm. Extremely close = <20mm.

Thinly laminated = < 6mm

Loc'n	Depth	Туре	Description	Geology
BH1			horizontal and sub-vertical fissuring. Although it looks disturbed (40° dips) no striated surfaces were found.	
	8.5-8.95	S	Stiff grey damp very well & thinly laminated clay. @PL	London Clay
	9.0-9.45	U	Stiff grey thinly laminated very closely fissured clay on dry side of PL, possibly silty. Fissures smooth and planar to undulating. No striations. (Undisturbed)	London Clay
	9.45	cs	Firm to stiff thinly laminated extremely closely fissured damp grey clay. Dry of PL	London Clay
	9.5-9.95	S	Stiff grey damp very well & thinly laminated clay. @PL	London Clay
	10.0-10.45	U		
	10.5	cs	Stiff thinly laminated extremely closely fissured damp grey clay. @ PL	London Clay
	10.5-10.95	S	Stiff grey damp very well & thinly laminated clay. @PL or just below	London Clay
	11.0-11.45	U		
	11.5-11.95	S	Stiff grey damp very well thinly laminated clay that breaks more easily and could contain more silt than above. Dry of PL	London Clay
	12.0-12.45	U	Stiff grey thinly laminated clay on dry side of PL, possibly silty. Very closely fissured.	London Clay
	12.5-12.95	S	Stiff to Very Stiff grey damp very well thinly laminated clay that breaks more easily and could contain more silt than that to 11.5m. Dry of PL	London Clay
	13.0-13.45	U		
	13.5-13.95	S	Stiff to Very Stiff grey damp very well thinly laminated clay that breaks more easily and could contain more silt than that to 11.5m. Dry of PL	London Clay

Bulk(B), SPT(S), Cutting shoe (CS) samples logged 13th-15th August U(UUTxI) extruded & tested 15th November; logged 26th November 2018 Vocabulary of spacing:

Fissuring. Very close = 20 – 60mm. Extremely close = <20mm.

Thinly laminated = < 6mm

Loc'n	Depth	Туре	Description	Geology
BH1	14.0-14.45	U	Firm grey thinly laminated very closely fissured clay with m/c close to PL; possibly silty. Occasional light brown 1mm thick bands of silt to fine sand	London Clay
	14.45	cs	Stiff thinly laminated extremely closely fissured damp grey clay. Occasional fragments of shell. More easily split than that at 190.5 and may contain more silt. Appears to be unfissured. Dry of PL	London Clay
	14.5-14.95	S	Stiff to Very Stiff grey extremely closely fissured damp thinly laminated clay that breaks more easily and could contain more silt than that to 11.5m. Fissures are fine and delicate in nature. No sign of polishing on them. Dry of PL	London Clay
BH2	0.5	В		
	1.0-1.45	В		
	1.5-1.95	U	Brown mottled green clay peds 2cm – 3cm just wet of PL, intermixed with lenticles of green silt/sand separated by a sharp horizontal boundary from structureless brown clay wet of PL with included angular fine gravel size fragments of red brick	Made ground
	2.0	cs	Soft brown structureless clay matrix with sand and silt content supporting fragments of brick and stone fine gravel to medium sand in size. Rootlets and @ just dry of PL. Crumbles on remoulding	

Bulk(B), SPT(S), Cutting shoe (CS) samples logged 13th-15th August U(UUTxI) extruded & tested 15th November; logged 26th November 2018 Vocabulary of spacing:

Fissuring. Very close = 20 – 60mm. Extremely close = <20mm.

Thinly laminated = < 6mm

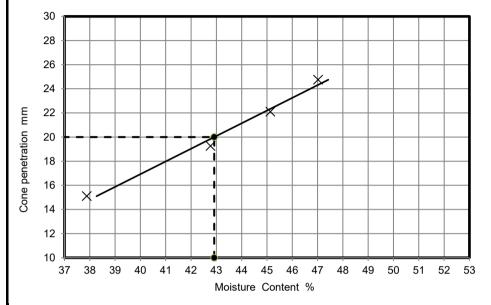
Loc'n	Depth	Туре	Description	Geology
BH2	2.0-2.45	s	Soft brown structureless clay matrix supporting fragments of brick and stone fine gravel to medium sand in size. Rootlets and @ PL or just wet of.	Made Ground
	2.5-2.95	В	Stiff light brown/orange structureless clay on wet side of PL containing rootlets and occasional rounded flint of fine/medium size gravel, and 1.5cm sub-horizontal layer of structureless black clay containing soft elongate fragments of wood (10mm long x 2mm across) and possibly peat.	Made Ground
	2.5-2.95	U	No recovery	
	2.95	cs	Soft brown clay with silt and occasional rounded flint med to coarse gravel size. Light brown 1mm peds of soil surrounded by darker mottled brown with light and dark hues clay matrix forming agglomerates ~ 1cm in diameter with an elliptical shape that has its long axis approx. sub-horizontal. Separates along the boundaries of the aggregates which often have blue veining and staining and sometimes rootlets. Overall @ PL.	Transported
	3.0-3.45	В	Soft brown clay with silt. Light brown 1mm peds of soil surrounded by darker clay matrix forming agglomerates ~ 1cm in diameter with an elliptical shape that has its long axis approx. sub-horizontal. Separates along the boundaries of the aggregates which often have blue veining and staining and sometimes rootlets. Overall @ PL.	Transported
	3.45	cs	Soft brown clay with silt. Light brown 1mm peds of soil surrounded by darker clay matrix forming agglomerates ~ 1cm in diameter with an elliptical shape that has its long axis approx. sub-horizontal. Separates along the boundaries	Transported

Descriptions of samples from 31 Willoughby Road recovered 13th to 15th August 2018 Logged by M.H. de Freitas

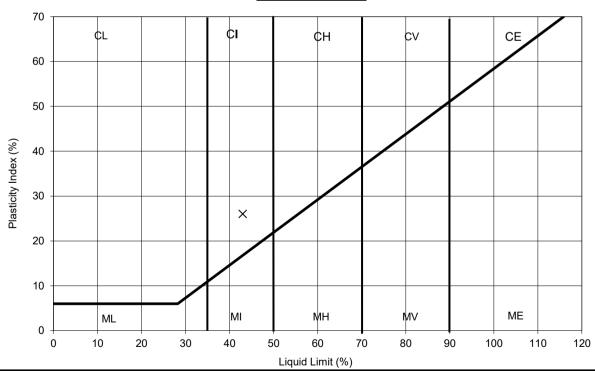
Bulk(B), SPT(S), Cutting shoe (CS) samples logged 13th-15th August U(UUTxI) extruded & tested 15th November; logged 26th November 2018 Vocabulary of spacing:

Fissuring. Very close = 20 – 60mm. Extremely close = <20mm.

Thinly laminated = < 6mm

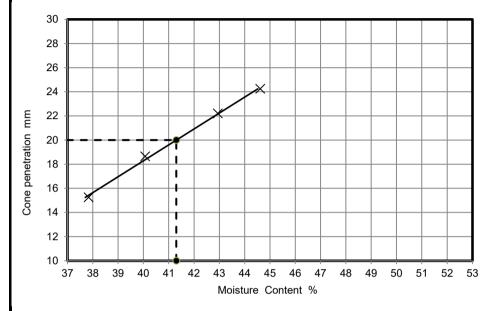

Loc'n	Depth	Туре	Description	Geology
BH2			of the aggregates which often have blue veining and staining and sometimes rootlets. Overall @ PL.	
	3.5-3.95	U	Accumulation of stiff/firm brown thinly laminated clay peds at PL, clast supported but exhibiting extremely closely fissuring with green gleying 1mm on occasional subvertical surfaces.	Transported
	3.95	cs	Soft and highly remoulded sample on wet side of PL. Of dubious representativeness.	
	4.0-4.45		Soft to firm brown thinly laminated clay with blue staining on some laminae. @ PL (in situ).	London Clay
	4.5-4.95	U	Firm brown thinly laminated clay comprising of angular but rounded fragments of the clay 1cm – 2cm across at around PL, with much green gleying on sub-horizontal and 45° pervasive surfaces; no striations or polishing. 1cm thick orange brown lens of fine-medium sand that thins to nothing across the diameter of the core and containing fine network of black rootlets.	Disturbed
	4.95	CS	Firm brown thinly laminated London Clay just on dry side of PL and appears to be silty with blue staining on some laminae and blue veining on some fissures. Occasional rootlets penetrating fissures.	

Date 5

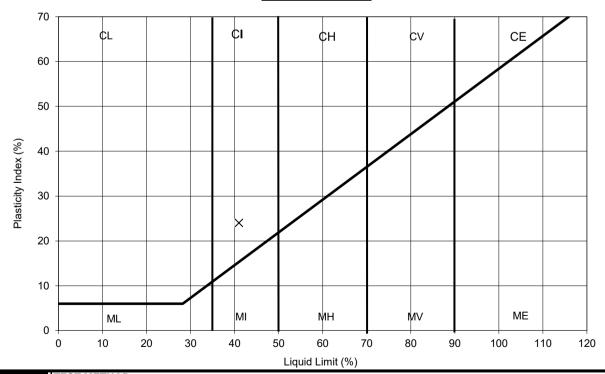

K	SOILS)	Sur	nma	ary of Natural Moisture Co	ontent, L	iquid	Limit	and Pla	astic L	imit Results
Job No.			Project	Name							ramme 17/08/2018
25	366		31 Willo	1 Willoughby Road, London NW3 1RT Samples received Schedule received							
Project No.			Client						Project sta		22/10/2018 23/10/2018
G1	808		Eldred	Geote	chnics Ltd				Testing St	tarted	01/11/2018
Hole No.	- (mple	I_	Soil Description	NMC	Passing 425µm	LL	PL	PI	Remarks
	Ref	Top m	Base m	Туре		%	%	%	%	%	
BH1	4	1.50	1.95	В	Green silty clayey SAND with numerous brow slightly sandy silty clay lumps and rare fm sub angular to sub-rounded gravel		91	43	17	26	
BH1	5	2.00	2.45	U	High strength brown mottled orangish brown clayey gravelly silty SAND with rare fine brick fragments (gravel is fmc and rounded to subangular)	17	80	41	17	24	
BH1	8	3.00	3.45	В	Brown and occasional greenish grey slightly gravelly sandy silty CLAY (gravel is fm and sub-angular to sub-rounded)	28	94	42	18	24	
BH1	10	4.00	4.45	U	Medium strength brown slightly mottled grey silty CLAY with rare pockets of orange fine sand / silt and traces of selenite crystals and rootlets	33	99	66	23	43	
BH1	12	5.00	5.45	U	High strength brown silty CLAY with rare pockets of orange fine sand / silt	32	100	68	27	41	
BH1	14	6.00	6.45	υ	High strength dark brown slightly mottled orangish brown silty CLAY with occasional pockets of fine sand / silt	28	99	67	25	42	
BH1	16	7.00	7.45	U	High strength dark grey silty CLAY with rare pockets of fine sand	28	100	68	24	44	
BH1	18	8.00	8.45	U	High strength dark grey silty CLAY	29	100	66	25	41	
BH2	3	1.00	1.45	В	Greenish grey and occasional dark grey gravelly clayey very silty SAND with rare cobbles (gravel is fmc and sub-angular to sub rounded)	20	87	36	18	18	
BH2	4	1.50	1.95	U	High strength brown and orangish brown mottled slightly gravelly sandy silty CLAY with rare brick fragments and traces of carbonaceous deposits (gravel is fm and subangular)	21	87	33	15	18	
BH2	8	2.50	2.95	U	Medium strength grey, brown and orangish brown mottled slightly gravelly sandy silty CLAY (gravel is fm and rounded to subangular)	27	74	42	20	22	
BH2	11	3.00	3.45	В	Brown slightly mottled grey slightly sandy silty CLAY	33	99	62	22	40	
UKAS TESTING 2519	Natura Atterb	al Moistur erg Limit	re Content s: clause 4	t : clau 4.3, 4.4	se 3.2		Close Olds Herts WD 01923 711	s Appro 18 9RU 288	ach	•	Checked and Approved Initials J.P Date: 06/11/2018

K	1 SOILS		Sur	nma	ary of Natural Moisture Co	ontent, L	iquid	Limit	and Pla	astic L	imit Results
Job No.			Project						Samples		ramme 17/08/2018
25	366		31 Willo	oughb	y Road, London NW3 1RT				Schedule		22/10/2018
Project No.			Client						Project st	arted	23/10/2018
G1	808		Eldred (Geote	chnics Ltd		1	L	Testing S	tarted	01/11/2018
Hole No.	Ref	Sar Top	mple Base	Туре	Soil Description	NMC	Passing 425µm	LL	PL	PI	Remarks
	Kei	m	m	Туре		%	%	%	%	%	
BH2	11	3.50	3.95	U	High strength brown and orangish brown mottled silty CLAY with occasional pockets of fine sand and rare fine gravel	31	99	68	24	44	
BH2	14	4.50	4.95	U	High strength slightly mottled orangish brown and grey silty CLAY with occasional pockets of fine sand	of 34	100	72	24	48	
UKAS	Natura	al Moistur	ls: BS13 e Content s: clause 4	t : clau	se 3.2		Close Old: Herts WD 01923 711	s Appro 18 9RU 288	ach		Checked and Approved Initials J.P Date: 06/11/2018
2519	Appr	oved Sig	natories:	K.Pha	ure (Tech.Mgr) J.Phaure (Lab.Mgr)						MSF-5-R1

(K	LIQUID LIMIT,	Job No.	25366			
SOILS		INDEX	Borehole/Pit No.	BH1		
Site Name	31 Willoughby Road, L	ondon NW3 1RT		Sample No.	4	
Project No.	G1808	Client	Eldred Geotechnics Ltd	Depth Top	1.50	m
				Depth Base	1.95	m
	Consequently alones CA	ND with more and	e berein aliabile and edite	Sample Type	В	
Soil Description	, , ,		s brown slightly sandy silty r to sub-rounded gravel	Samples received	17/08/2018	
	Ciay lumps and re	are iiii sub-arigula	i to sub-rounded graver	Schedules received	22/10/2018	
				Project Started	23/10/2018	
				Date Tested	01/11/2018	

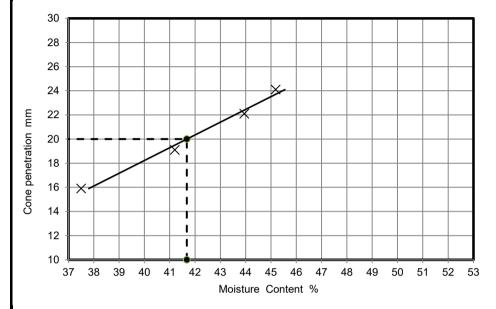


NATURAL MOISTURE CONTENT	21	%
% PASSING 425µm SIEVE	91	%
LIQUID LIMIT	43	%
PLASTIC LIMIT	17	%
PLASTICITY INDEX	26	%

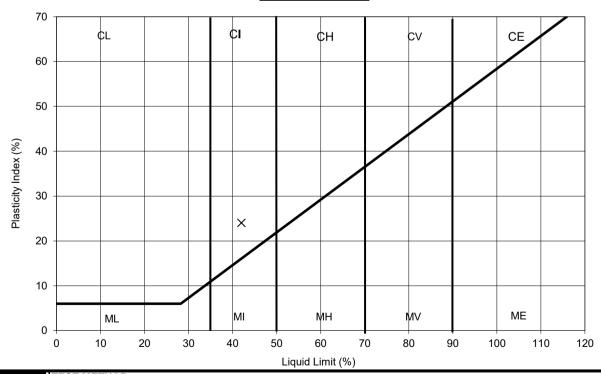


<u> [</u>	(≱≰	BS1377: Part 2 :Clause 4.4 : 1990 Determination of the liquid limit by the cone penetrometer method BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tel: 01923 711 288 Email: James@k4soils.com	Approved Initials: J.P Date: 06/11/2018
	2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

(4)	LIQUID LIMIT,		Job No.	25366			
SOILS		INDEX		Borehole/Pit No.	BH1		
Site Name	31 Willoughby Road, Lo	ondon NW3 1RT		Sample No.	5		
Project No.	G1808	Client	Eldred Geotechnics Ltd	Depth Top	2.00	m	
	S 1000 Short Elared Section in 100 El			Depth Base	2.45	m	
	High strength brown	mottled orangish	brown clayey gravelly silty	Sample Type	U		
Soil Description			ravel is fmc and rounded to	Samples received	17/08/2018		
		sub-angular)	Schedules received	ived 22/10/2018		
				Project Started	23/10/2018		
				Date Tested	01/11/2018		

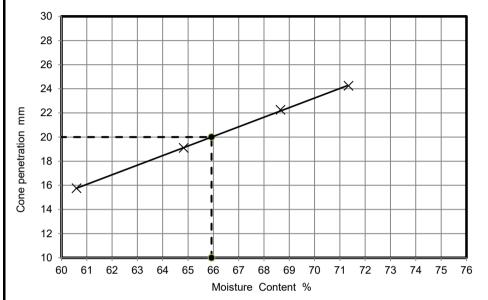


NATURAL MOISTURE CONTENT	17	%
% PASSING 425µm SIEVE	80	%
LIQUID LIMIT	41	%
PLASTIC LIMIT	17	%
PLASTICITY INDEX	24	%

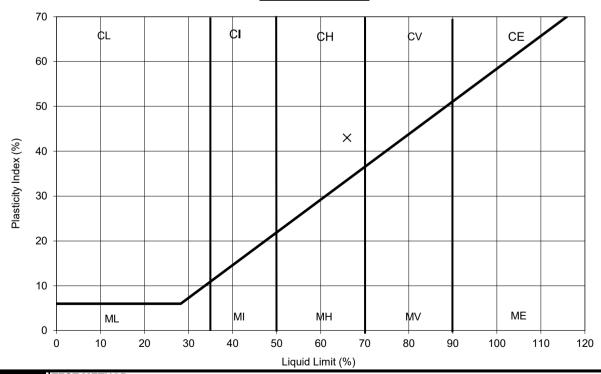


<u> [</u>	(≱≰	BS1377: Part 2 :Clause 4.4 : 1990 Determination of the liquid limit by the cone penetrometer method BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tel: 01923 711 288 Email: James@k4soils.com	Approved Initials: J.P Date: 06/11/2018
	2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

(K	LIQUID LIMIT, I		Job No.	Job No. 25366		
SOILS		INDEX		Borehole/Pit No.	BH1	
Site Name	31 Willoughby Road, London NW3 1RT Sample No.		8			
Project No.	G1808	Client	Eldred Geotechnics Ltd	Depth Top	3.00	m
			Depth Base	3.45	m	
	Duante and accessor		slimbali, marralli, a analy sila.	Sample Type	В	
Soil Description			slightly gravelly sandy silty Jular to sub-rounded)	Samples received	17/08/2018	
	OLAT (graver)	3 IIII and 3db-ang	dia to sub-rounded)	Schedules received	22/10/2018	
				Project Started	23/10/2018	
				Date Tested	01/11/2018	

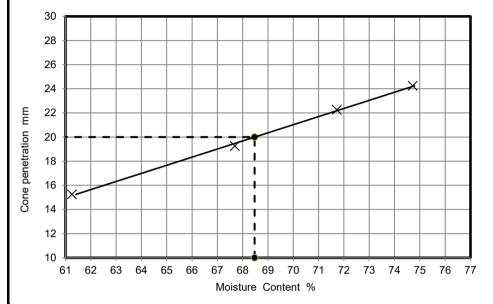


NATURAL MOISTURE CONTENT	28	%
% PASSING 425µm SIEVE	94	%
LIQUID LIMIT	42	%
PLASTIC LIMIT	18	%
PLASTICITY INDEX	24	%

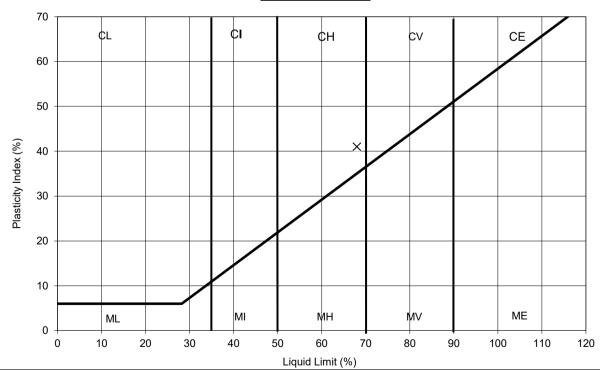


→	TEST METHOD BS1377: Part 2 :Clause 4.4 : 1990 Determination of the liquid limit by the cone penetrometer method BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tel: 01923 711 288 Email: James@k4soils.com	Approved Initials: J.P Date: 06/11/2018
2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX		Job No.	25366			
		Borehole/Pit No.	BH1			
Site Name	31 Willoughby Road, London NW3 1RT		Sample No.	10		
Project No.	G1808	Client	Eldred Geotechnics Ltd	Depth Top	4.00	m
			Depth Base	4.45	m	
	Medium strength bro	wn slightly mottle	d grey silty CLAY with rare	Sample Type	U	
Soil Description	pockets of orange fine sand / silt and traces of selenite crystals and			Samples received	17/08/2018	
	rootlets		Schedules received	22/10/2018		
				Project Started	23/10/2018	
			Date Tested	01/11/2018		

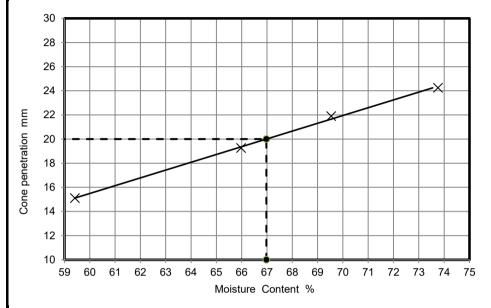


NATURAL MOISTURE CONTENT	33	%
% PASSING 425µm SIEVE	99	%
LIQUID LIMIT	66	%
PLASTIC LIMIT	23	%
PLASTICITY INDEX	43	%

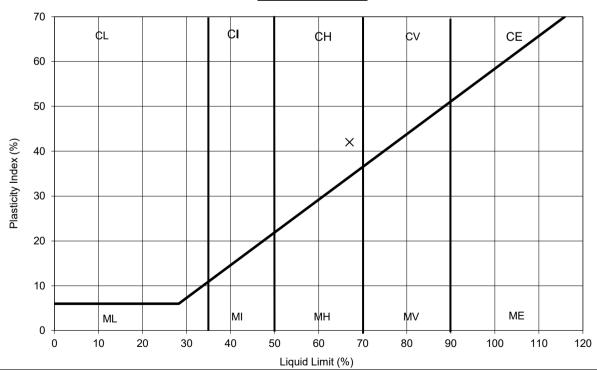


	Jane Brace	IEST METHOD	Checked and
	œ	BS1377: Part 2 :Clause 4.4 : 1990 Determination of the liquid limit by the cone penetrometer method	Approved
Ξ		BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index	
	(≱≰):	BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying	Initials: J.P
Ξ	<i>ـ</i> ي	Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU	Date: 06/11/2018
	UKAS TESTING	Tel: 01923 711 288 Email: James@k4soils.com	
	2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

(K	LIQUID LIMIT,		T AND PLASTICITY	Job No.	25366	
SOILS		INDEX		Borehole/Pit No.	BH1	
Site Name	31 Willoughby Road, London NW3 1RT		Sample No.	12		
Project No.	t No. G1808 C		Eldred Geotechnics Ltd	Depth Top	5.00	m
	· ·		Depth Base	5.45	m	
	High strength brown silty CLAY with rare pockets of orange fine sand / silt			Sample Type	U	
Soil Description				Samples received	17/08/2018	
				Schedules received	22/10/2018	
				Project Started	23/10/2018	
				Date Tested	01/11/2018	

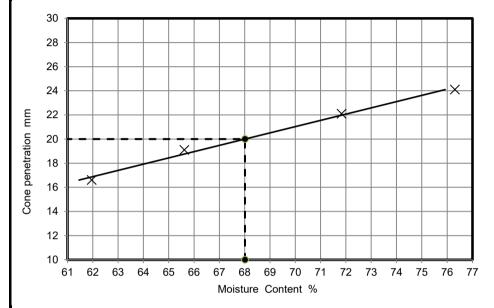


NATURAL MOISTURE CONTENT	32	%
% PASSING 425µm SIEVE	100	%
LIQUID LIMIT	68	%
PLASTIC LIMIT	27	%
PLASTICITY INDEX	41	%

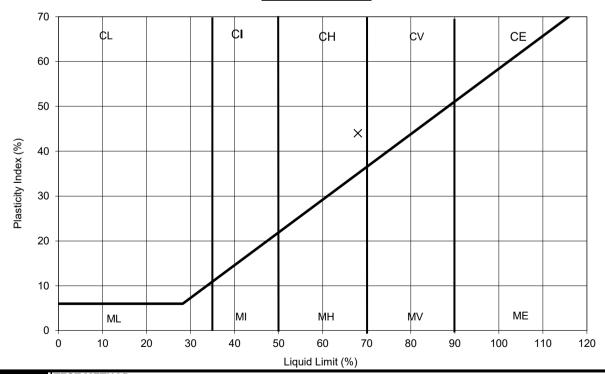


	Jane Brace	IEST METHOD	Checked and
	œ	BS1377: Part 2 :Clause 4.4 : 1990 Determination of the liquid limit by the cone penetrometer method	Approved
Ξ		BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index	
	(≱≰):	BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying	Initials: J.P
Ξ	<i>ـ</i> ي	Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU	Date: 06/11/2018
	UKAS TESTING	Tel: 01923 711 288 Email: James@k4soils.com	
	2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

(4)	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY		Job No.	25366		
Soils		INDEX		Borehole/Pit No.	BH1	
Site Name	31 Willoughby Road, London NW3 1RT		Sample No.	14		
Project No.	G1808	Client	Eldred Geotechnics Ltd	Depth Top	6.00	m
	·		Depth Base	6.45	m	
	Link story with doub by		d anan niah huawa ailtu CLAV	Sample Type	U	
Soil Description		High strength dark brown slightly mottled orangish brown silty CLAY with occasional pockets of fine sand / silt			17/08/2018	
	with occasional pockets of line sailu / siit		Schedules received	22/10/2018		
				Project Started	23/10/2018	
				Date Tested	01/11/2018	

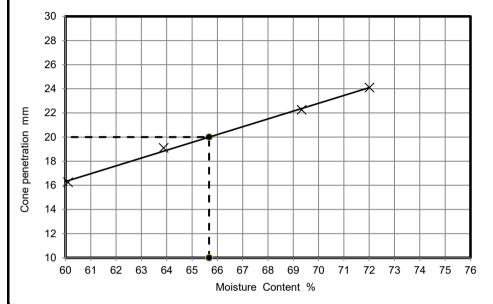


NATURAL MOISTURE CONTENT	28	%
% PASSING 425µm SIEVE	99	%
LIQUID LIMIT	67	%
PLASTIC LIMIT	25	%
PLASTICITY INDEX	42	%

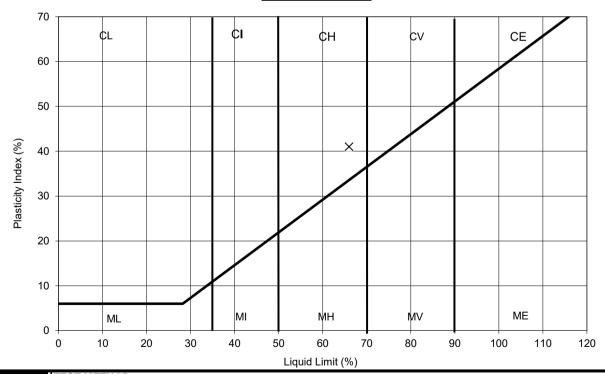


	Jane Brace	IEST METHOD	Checked and
	œ	BS1377: Part 2 :Clause 4.4 : 1990 Determination of the liquid limit by the cone penetrometer method	Approved
Ξ		BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index	
	(≱≰):	BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying	Initials: J.P
Ξ	<i>ـ</i> ي	Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU	Date: 06/11/2018
	UKAS TESTING	Tel: 01923 711 288 Email: James@k4soils.com	
	2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

K	LIQUID LIMIT,	I, FLASTIC LIMIT AND FLASTICITY		Job No.	25366	
SOILS		INDEX		Borehole/Pit No.	BH1	
Site Name	31 Willoughby Road, London NW3 1RT		Sample No.	16		
Project No.	G1808	Client	Eldred Geotechnics Ltd	Depth Top	7.00	m
			Depth Base	7.45	m	
	High strength dark grey silty CLAY with rare pockets of fine sand			Sample Type	U	
Soil Description				Samples received	17/08/2018	
				Schedules received	22/10/2018	
				Project Started	23/10/2018	
				Date Tested	01/11/2018	

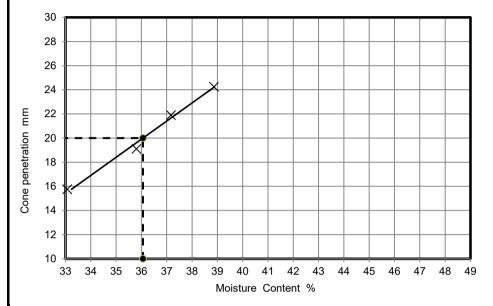


NATURAL MOISTURE CONTENT	28	%
% PASSING 425µm SIEVE	100	%
LIQUID LIMIT	68	%
PLASTIC LIMIT	24	%
PLASTICITY INDEX	44	%

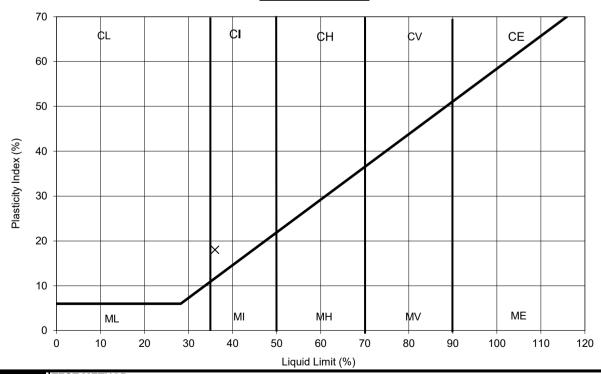


	يامور المامور	<u> TEST METHOD</u>	Checked and
	GÍO .	BS1377: Part 2 :Clause 4.4 : 1990 Determination of the liquid limit by the cone penetrometer method	Approved
Ξ		BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index	
	·(≯≰)·	BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying	Initials: J.P
E		Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU	Date: 06/11/2018
	UKAS TESTING	Tel: 01923 711 288 Email: James@k4soils.com	
	2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

K	LIQUID LIMIT,		T AND PLASTICITY	Job No.	25366	
SOILS		INDEX		Borehole/Pit No.	BH1	
Site Name	31 Willoughby Road, London NW3 1RT		Sample No.	18		
Project No.	G1808	Client	Eldred Geotechnics Ltd	Depth Top	8.00	m
			Depth Base	8.45	m	
			Sample Type	U		
Soil Description	High	High strength dark grey silty CLAY			17/08/2018	
			Schedules received	22/10/2018		
				Project Started	23/10/2018	
				Date Tested	01/11/2018	

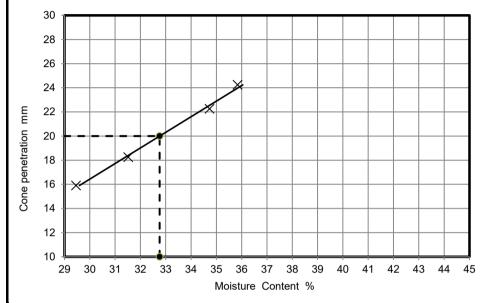


NATURAL MOISTURE CONTENT	29	%
% PASSING 425µm SIEVE	100	%
LIQUID LIMIT	66	%
PLASTIC LIMIT	25	%
PLASTICITY INDEX	41	%

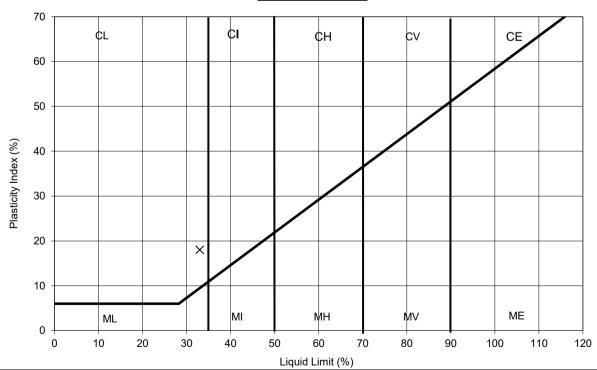


	Jane Brace	IEST METHOD	Checked and
	œ	BS1377: Part 2 :Clause 4.4 : 1990 Determination of the liquid limit by the cone penetrometer method	Approved
Ξ		BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index	
	(≱≰):	BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying	Initials: J.P
Ξ	<i>ـ</i> ي	Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU	Date: 06/11/2018
	UKAS TESTING	Tel: 01923 711 288 Email: James@k4soils.com	
	2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

(K	LIQUID LIMIT,	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX		Job No.	25366	
Soils		INDEX		Borehole/Pit No.	BH2	
Site Name	31 Willoughby Road, London NW3 1RT		Sample No.	3		
Project No.	G1808	Client	Eldred Geotechnics Ltd	Depth Top	1.00	m
				Depth Base	1.45	m
	Greenish grey and o	ccasional dark gre	ey gravelly clayey very silty	Sample Type	В	
Soil Description	SAND with rare cob	SAND with rare cobbles (gravel is fmc and sub-angular to sub- rounded)		Samples received	17/08/2018	
				Schedules received	22/10/2018	
				Project Started	23/10/2018	
				Date Tested	01/11/2018	

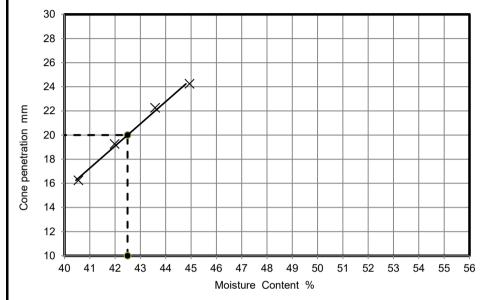


NATURAL MOISTURE CONTENT	20	%
% PASSING 425µm SIEVE	87	%
LIQUID LIMIT	36	%
PLASTIC LIMIT	18	%
PLASTICITY INDEX	18	%

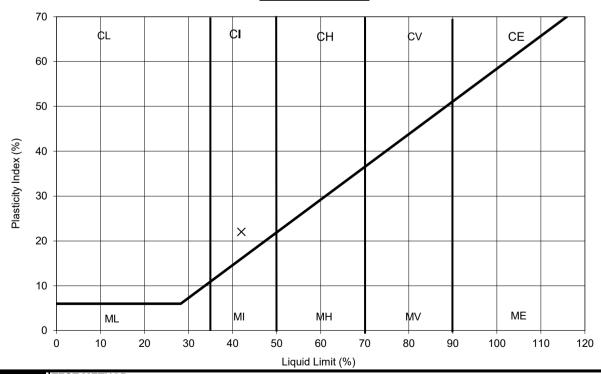


<u> [</u>	(≱≰	BS1377: Part 2 :Clause 4.4 : 1990 Determination of the liquid limit by the cone penetrometer method BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tel: 01923 711 288 Email: James@k4soils.com	Approved Initials: J.P Date: 06/11/2018
	2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

K	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY		Job No.	25366		
SOILS		INDEX		Borehole/Pit No.	BH2	
Site Name	31 Willoughby Road, London NW3 1RT		Sample No.	4		
Project No.	G1808	Client	Eldred Geotechnics Ltd	Depth Top	1.50	m
				Depth Base	1.95	m
	High strength brown	and orangish bro	wn mottled slightly gravelly	Sample Type	U	
Soil Description	sandy silty CLAY with rare brick fragments and traces of			Samples received	17/08/2018	
	carbonaceous deposits (gravel is fm and sub-angular)		Schedules received	22/10/2018		
				Project Started	23/10/2018	
				Date Tested	01/11/2018	

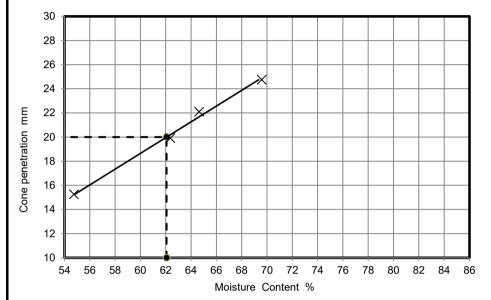


NATURAL MOISTURE CONTENT	21	%
% PASSING 425µm SIEVE	87	%
LIQUID LIMIT	33	%
PLASTIC LIMIT	15	%
PLASTICITY INDEX	18	%

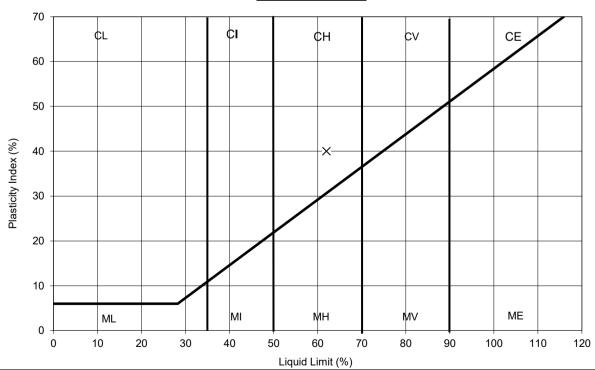


	Jane Brace	IEST METHOD	Checked and
	œ	BS1377: Part 2 :Clause 4.4 : 1990 Determination of the liquid limit by the cone penetrometer method	Approved
Ξ		BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index	
	(≱≰):	BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying	Initials: J.P
Ξ	<i>ـ</i> ي	Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU	Date: 06/11/2018
	UKAS TESTING	Tel: 01923 711 288 Email: James@k4soils.com	
	2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

(K	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY		Job No.	25366		
SOILS		INDEX			BH2	
Site Name	31 Willoughby Road, London NW3 1RT		Sample No.	8		
Project No.	G1808	Client	Eldred Geotechnics Ltd	Depth Top	2.50	m
	· · · · · · · · · · · · · · · · · · ·		Depth Base	2.95	m	
	Mandissum atmansatic assessment		ariala la marrora na addita di alimbali.	Sample Type	U	
Soil Description	0 0	•	igish brown mottled slightly	Samples received	17/08/2018	
	gravelly sandy silty CLAY (gravel is fm and rounded to sub-angular)			Schedules received	22/10/2018	
				Project Started	23/10/2018	
				Date Tested	01/11/2018	

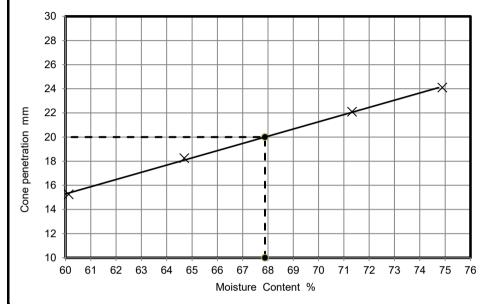


NATURAL MOISTURE CONTENT	27	%
% PASSING 425µm SIEVE	74	%
LIQUID LIMIT	42	%
PLASTIC LIMIT	20	%
PLASTICITY INDEX	22	%

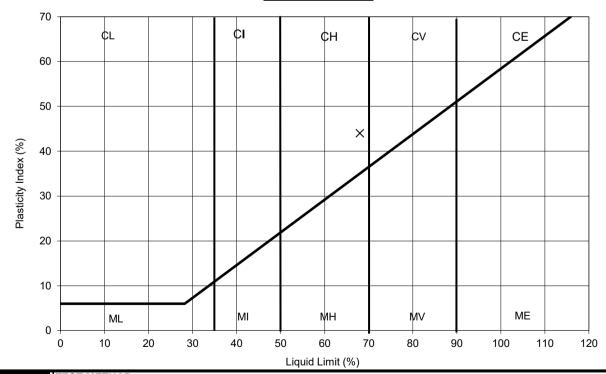


	Jane Brace	IEST METHOD	Checked and
	œ	BS1377: Part 2 :Clause 4.4 : 1990 Determination of the liquid limit by the cone penetrometer method	Approved
Ξ		BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index	
	(≱≰):	BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying	Initials: J.P
Ξ	<i>ـ</i> ي	Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU	Date: 06/11/2018
	UKAS TESTING	Tel: 01923 711 288 Email: James@k4soils.com	
	2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

K	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX		Job No.	25366		
SOILS			Borehole/Pit No.	BH2		
Site Name	31 Willoughby Road, London NW3 1RT			Sample No.	11	
Project No.	G1808 Client Eldred Geotechnics Ltd		Depth Top	3.00	m	
			-	Depth Base	3.45	m
		Brown slightly mottled grey slightly sandy silty CLAY		Sample Type	В	
Soil Description	Brown slightly			Samples received	17/08/2018	
			Schedules received	22/10/2018		
				Project Started	23/10/2018	
				Date Tested	01/11/2018	

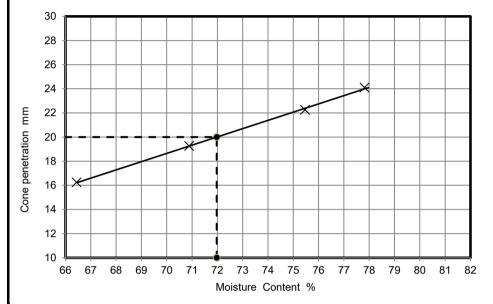


NATURAL MOISTURE CONTENT	33	%
% PASSING 425µm SIEVE	99	%
LIQUID LIMIT	62	%
PLASTIC LIMIT	22	%
PLASTICITY INDEX	40	%

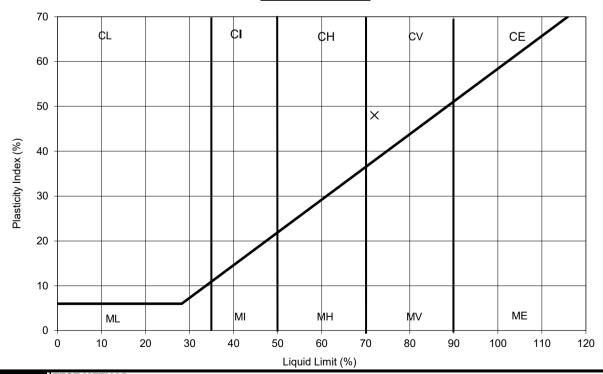


	Jane Brace	IEST METHOD	Checked and
	œ	BS1377: Part 2 :Clause 4.4 : 1990 Determination of the liquid limit by the cone penetrometer method	Approved
Ξ		BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index	
	(≱≰):	BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying	Initials: J.P
Ξ	<i>ـ</i> ي	Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU	Date: 06/11/2018
	UKAS TESTING	Tel: 01923 711 288 Email: James@k4soils.com	
	2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

(K	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX		Job No.	25366		
SOILS			Borehole/Pit No.	BH2		
Site Name	31 Willoughby Road, London NW3 1RT		Sample No.	11		
Project No.	G1808 Client Eldred Geotechnics Ltd		Depth Top	3.50	m	
			-	Depth Base	3.95	m
	l liede etwe wette brooken	High strength brown and orangish brown mottled silty CLAY with occasional pockets of fine sand and rare fine gravel			U	
Soil Description					17/08/2018	
	occasional pockets of fine sand and fare fine graver		Schedules received	22/10/2018		
				Project Started	23/10/2018	
				Date Tested	01/11/2018	

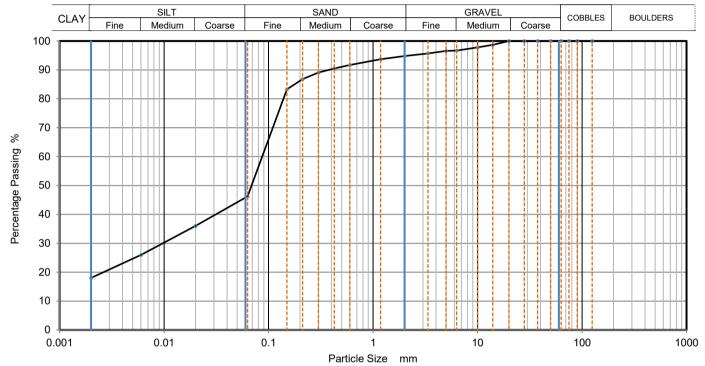


NATURAL MOISTURE CONTENT	31	%
% PASSING 425µm SIEVE	99	%
LIQUID LIMIT	68	%
PLASTIC LIMIT	24	%
PLASTICITY INDEX	44	%



	Jane Brace	IEST METHOD	Checked and
	œ	BS1377: Part 2 :Clause 4.4 : 1990 Determination of the liquid limit by the cone penetrometer method	Approved
Ξ		BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index	
	(≱≰):	BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying	Initials: J.P
Ξ	<i>ـ</i> ي	Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU	Date: 06/11/2018
	UKAS TESTING	Tel: 01923 711 288 Email: James@k4soils.com	
	2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

(K	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY		Job No.	25366		
SOILS		INDEX		Borehole/Pit No.	BH2	
Site Name	31 Willoughby Road, London NW3 1RT			Sample No.	14	
Project No.	G1808	G1808 Client Eldred Geotechnics Ltd		Depth Top	4.50	m
				Depth Base	4.95	m
	High storage the disability and the decrease in the contract of the CLAV			Sample Type	U	
Soil Description		High strength slightly mottled orangish brown and grey silty CLAY with occasional pockets of fine sand			17/08/2018	
	with occasional pockets of fine sailu			Schedules received	22/10/2018	
				Project Started	23/10/2018	
				Date Tested	01/11/2018	



NATURAL MOISTURE CONTENT	34	%
% PASSING 425µm SIEVE	100	%
LIQUID LIMIT	72	%
PLASTIC LIMIT	24	%
PLASTICITY INDEX	48	%

	ÇÎQ	IEST METHOD	Checked and
		BS1377: Part 2 :Clause 4.4 : 1990 Determination of the liquid limit by the cone penetrometer method	Approved
Ξ	∕ a .\∃	BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index	
	(≯≮)⋾	BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying	Initials: J.P
Ξ.	<u>ـ</u> يــ	Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU	Date: 06/11/2018
	UKAS TESTING	Tel: 01923 711 288 Email: James@k4soils.com	
	2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

14	PARTICLE SIZE DISTRIBUTION		Job Ref	25366		
SOILS			Borehole/Pit No.	BH1		
Site Name	31 Willoughby Road, L	31 Willoughby Road, London NW3 1RT			4	
Project No.	G1808 Client Eldred Geotechnics Ltd		Depth Top	1.50	m	
				Depth Base	1.95	m
Soil Description	, , ,	Green silty clayey SAND with numerous brown slightly sandy silty clay lumps and rare fm sub-angular to sub-rounded gravel		Sample Type	В	
	Ciay lumps and re			Samples received	17/08/2018	
					22/10/2018	
Test Method	BS1377:Part 2: 1990, o	BS1377:Part 2: 1990, clause 9.0		Project started	23/10/2018	
				Date tested	01/11/2018	

Siev	/ing	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0200	36	
90	100	0.0060	26	
75	100	0.0020	18	
63	100			
50	100			
37.5	100			
28	100			
20	100			
14	99			
10	98			
6.3	97			
5	97			
3.35	96			
2	95			
1.18	94			
0.6	92	Particle density	(assumed)	
0.425	91	2.70	Mg/m3	
0.3	89			
0.212	87	1		
0.15	83	1		
0.063	46	1		

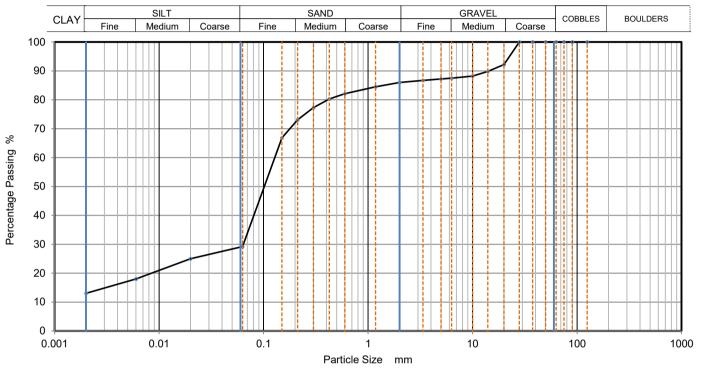
Dry Mass of sample, g	333
-----------------------	-----

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	5.2
Sand	48.5
Silt	27.9
Clay	18.4

Grading Analysis		
D100	mm	
D60	mm	0.087
D30	mm	0.01
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377 unless noted below

K4 Soils Laboratory
Unit 8, Olds Close, Watford, Herts, WD18 9RU


Email: james@k4soils.com Tel: 01923 711288 Initials: J.P

Date: 06/11/2018

Checked and Approved

MSF-5-R3

	PARTICLE SIZE DISTRIBUTION		Job Ref	25366		
SOILS	PARTIC	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH1	
Site Name	31 Willoughby Road, Lo	31 Willoughby Road, London NW3 1RT		Sample No.	5	
Project No.	G1808	G1808 Client Eldred Geotechnics Ltd		Depth Top	2.00	m
					2.45	m
Soil Description	o o	High strength brown mottled orangish brown clayey gravelly silty SAND with rare fine brick fragments (gravel is fmc and rounded to sub-angular)		Sample Type	U	
				Samples received	17/08/2018	
			Schedules received	22/10/2018		
Test Method	BS1377:Part 2: 1990, clause 9.0		Project started	23/10/2018		
				Date tested	31/10/2018	

Siev	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	25
90	100	0.0060	18
75	100	0.0020	13
63	100		
50	100		
37.5	100		
28	100		
20	92		
14	90		
10	88		
6.3	88		
5	87		
3.35	87		
2	86		
1.18	85		
0.6	82	Particle density	(assumed)
0.425	80	2.70	Mg/m3
0.3	77		
0.212	73		
0.15	67		
0.063	29		

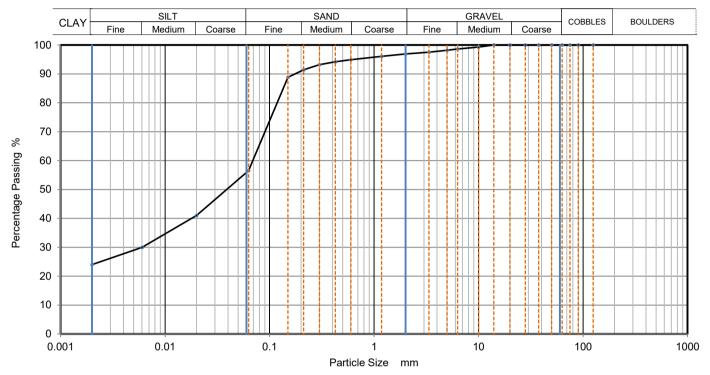
Dry Mass of sample, g	189
-----------------------	-----

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	14.0
Sand	56.8
Silt	16.5
Clay	12.7

Grading Analysis		
D100	mm	
D60	mm	0.128
D30	mm	0.0642
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377 unless noted below

K4 Soils Laboratory
Unit 8, Olds Close, Watford, Herts, WD18 9RU


Email: james@k4soils.com Tel: 01923 711288 Initials: J.P

Date: 06/11/2018

Checked and Approved

MSF-5-R3

	PARTICLE SIZE DISTRIBUTION		Job Ref	25366		
SOILS			Borehole/Pit No.	BH1		
Site Name	31 Willoughby Road, Lo	31 Willoughby Road, London NW3 1RT		Sample No.	8	
Project No.	G1808	G1808 Client Eldred Geotechnics Ltd		Depth Top	3.00	m
					3.45	m
Soil Description	Brown and occasional greenish grey slightly gravelly sandy silty		Sample Type	В		
	CLAT (graver)	CLAY (gravel is fm and sub-angular to sub-rounded)		Samples received	17/08/2018	
			Schedules received	22/10/2018		
Test Method	BS1377:Part 2: 1990, clause 9.0		Project started	23/10/2018		
		Date tested	01/11/2018			

Siev	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	41
90	100	0.0060	30
75	100	0.0020	24
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	99		
6.3	99		
5	98		
3.35	98		
2	97		
1.18	96		
0.6	95	Particle density	(assumed)
0.425	94	2.70	Mg/m3
0.3	93		
0.212	91		
0.15	89		
0.063	57		

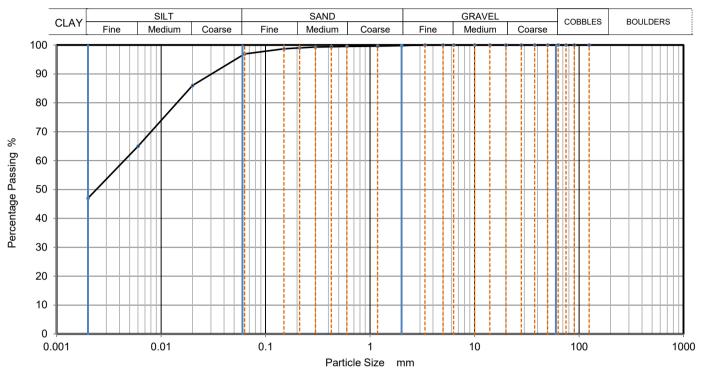
Dry Mass of sample, g	349
-----------------------	-----

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	3.1
Sand	40.4
Silt	32.7
Clay	23.8

Grading Analysis		
D100	mm	
D60	mm	0.0692
D30	mm	0.0057
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377 unless noted below

K4 Soils Laboratory Unit 8, Olds Close, Watford, Herts, WD18 9RU


Email: james@k4soils.com Tel: 01923 711288

Checked and Approved

MSF-5-R3

Date: 06/11/2018

	PARTICLE SIZE DISTRIBUTION		Job Ref	25366		
SOILS			Borehole/Pit No.	BH1		
Site Name	31 Willoughby Road, Lo	31 Willoughby Road, London NW3 1RT			10	
Project No.	G1808	G1808 Client Eldred Geotechnics Ltd		Depth Top	4.00	m
	Medium strength brown slightly mottled grey silty CLAY with rare Soil Description pockets of orange fine sand / silt and traces of selenite crystals and rootlets		Depth Base	4.45	m	
Soil Description			Sample Type	U		
			Samples received	17/08/2018		
			Schedules received	22/10/2018		
Test Method	BS1377:Part 2: 1990, c	BS1377:Part 2: 1990, clause 9.0		Project started	23/10/2018	
· ·		Date tested	31/10/2018			

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	86
90	100	0.0060	65
75	100	0.0020	47
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100	Particle density	(assumed)
0.425	99	2.70	Mg/m3
0.3	99		
0.212	99		
0.15	99		
0.063	97		

Dry Mass of sample, g	4
-----------------------	---

Sample Proportions	% dry mass		
Very coarse	0.0		
Gravel	0.2		
Sand	2.9		
Silt	50.0		
Clay	46.9		

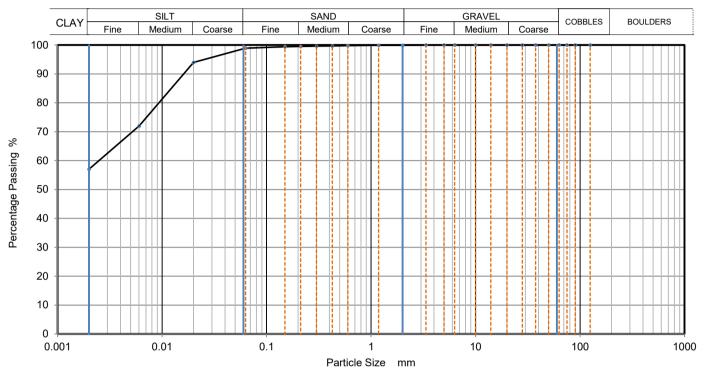
Grading Analysis		
D100	mm	
D60	mm	0.00447
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377 unless noted below

K4 Soils Laboratory Unit 8, Olds Close, Watford, Herts, WD18 9RU

Email: james@k4soils.com Tel: 01923 711288

Date:


Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

J.P Initials: 06/11/2018

MSF-5-R3

Checked and Approved

1	PARTICLE SIZE DISTRIBUTION		Job Ref	25366		
FARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH1			
Site Name	31 Willoughby Road, Lo	31 Willoughby Road, London NW3 1RT			12	
Project No.	G1808	G1808 Client Eldred Geotechnics Ltd		Depth Top	5.00	m
					5.45	m
Soil Description	High strength brown silty CLAY with rare pockets of orange fine sand / silt		Sample Type	U		
		/ Siit		Samples received	17/08/2018	
					22/10/2018	
Test Method	BS1377:Part 2: 1990, c	BS1377:Part 2: 1990, clause 9.0			23/10/2018	
					31/10/2018	

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	94
90	100	0.0060	72
75	100	0.0020	57
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100	Particle density	(assumed)
0.425	100	2.70	Mg/m3
0.3	100		
0.212	100		
0.15	99		
0.063	99		

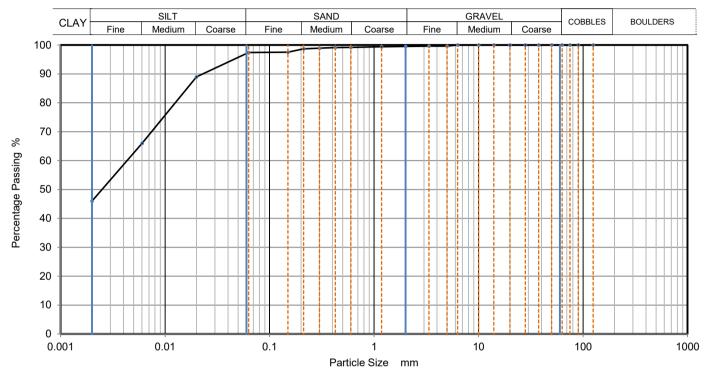
Dry Mass of sample, g	3
-----------------------	---

Sample Proportions	% dry mass	
Very coarse	0.0	
Gravel	0.1	
Sand	1.1	
Silt	42.2	
Clay	56.6	

Grading Analysis		
D100	mm	
D60	mm	0.00255
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377 unless noted below

K4 Soils Laboratory Unit 8, Olds Close, Watford, Herts, WD18 9RU Email: james@k4soils.com


Tel: 01923 711288

J.P Initials: Date: 06/11/2018

Checked and Approved

MSF-5-R3

14	PARTICLE SIZE DISTRIBUTION		Job Ref	25366		
SOILS			Borehole/Pit No.	BH1		
Site Name	31 Willoughby Road, Lo	31 Willoughby Road, London NW3 1RT		Sample No.	14	
Project No.	G1808	G1808 Client Eldred Geotechnics Ltd		Depth Top	6.00	m
				Depth Base	6.45	m
Soil Description	High strength dark brown slightly mottled orangish brown silty CLAY with occasional pockets of fine sand / silt		Sample Type	U		
	With occa	with occasional pockets of fine saild / silt		Samples received	17/08/2018	
			Schedules received	22/10/2018		
Test Method	BS1377:Part 2: 1990, c	BS1377:Part 2: 1990, clause 9.0		Project started	23/10/2018	
				Date tested	31/10/2018	

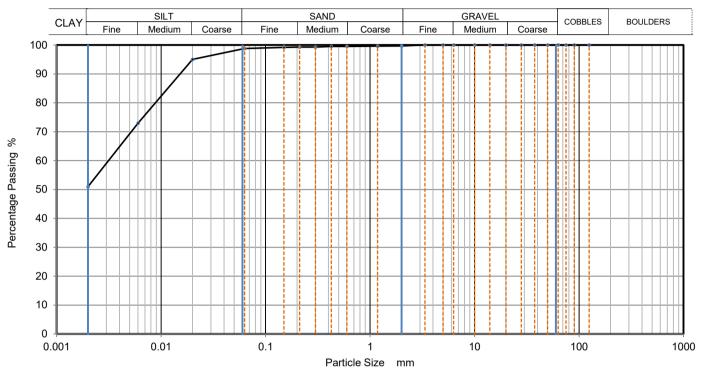
Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	89
90	100	0.0060	66
75	100	0.0020	46
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	99	Particle density	(assumed)
0.425	99	2.70	Mg/m3
0.3	99		
0.212	99		
0.15	98		
0.063	97		

Dry Mass of sample, g	4
-----------------------	---

Sample Proportions	% dry mass	
Very coarse	0.0	
Gravel	0.5	
Sand	2.1	
Silt	51.6	
Clay	45.8	

Grading Analysis		
D100	mm	
D60	mm	0.00439
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377 unless noted below


K4 Soils Laboratory Unit 8, Olds Close, Watford, Herts, WD18 9RU

Email: james@k4soils.com Tel: 01923 711288

J.P Initials: Date: 06/11/2018

Checked and Approved

	PARTICLE SIZE DISTRIBUTION		Job Ref	25366		
SOILS	PARTIC	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH1	
Site Name	31 Willoughby Road, Lo	31 Willoughby Road, London NW3 1RT		Sample No.	16	
Project No.	G1808	G1808 Client Eldred Geotechnics Ltd		Depth Top	7.00	m
	High strength dark grey silty CLAY with rare pockets of fine sand		Depth Base	7.45	m	
Soil Description			Sample Type	U		
			Samples received	17/08/2018		
			Schedules received	22/10/2018		
Test Method	BS1377:Part 2: 1990, clause 9.0		Project started	23/10/2018		
				Date tested	31/10/2018	

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	95
90	100	0.0060	73
75	100	0.0020	51
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100	Particle density	(assumed)
0.425	100	2.70	Mg/m3
0.3	99		
0.212	99		
0.15	99		
0.063	99		

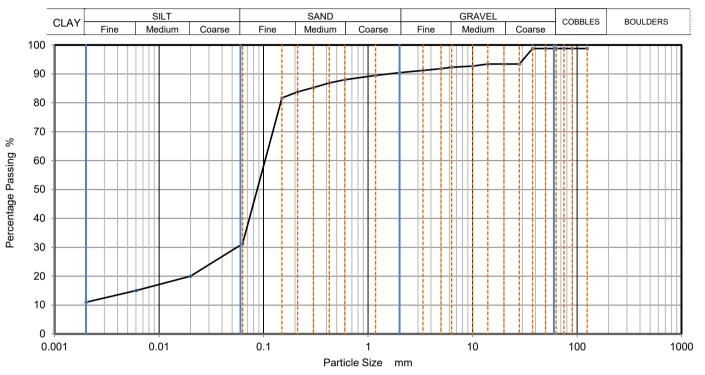
Dry Mass of sample, g	1
-----------------------	---

Sample Proportions	% dry mass	
Very coarse	0.0	
Gravel	0.3	
Sand	1.0	
Silt	47.3	
Clay	51.4	

Grading Analysis		
D100	mm	
D60	mm	0.00312
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377 unless noted below

K4 Soils Laboratory Unit 8, Olds Close, Watford, Herts, WD18 9RU


Email: james@k4soils.com

Tel: 01923 711288

Checked and Approved J.P Initials:

Date: 06/11/2018

	PARTICLE SIZE DISTRIBUTION		Job Ref	25366		
SOILS			Borehole/Pit No.	BH2		
Site Name	31 Willoughby Road, Lo	31 Willoughby Road, London NW3 1RT		Sample No.	3	
Project No.	G1808	Client	Eldred Geotechnics Ltd	Depth Top	1.00	m
	Greenish grey and occasional dark grey gravelly clayey very silty SAND with rare cobbles (gravel is fmc and sub-angular to sub-		Depth Base	1.45	m	
Soil Description			Sample Type	В		
		rounded)		Samples received	17/08/2018	
			Schedules received	22/10/2018		
Test Method	BS1377:Part 2: 1990, clause 9.0		Project started	23/10/2018		
				Date tested	01/11/2018	

Siev	Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	99	0.0200	20	
90	99	0.0060	15	
75	99	0.0020	11	
63	99			
50	99			
37.5	99			
28	93			
20	93			
14	93			
10	93			
6.3	92			
5	92			
3.35	91			
2	90			
1.18	90			
0.6	88	Particle density	(assumed)	
0.425	87	2.70	Mg/m3	
0.3	85			
0.212	84			
0.15	82			
0.063	31			

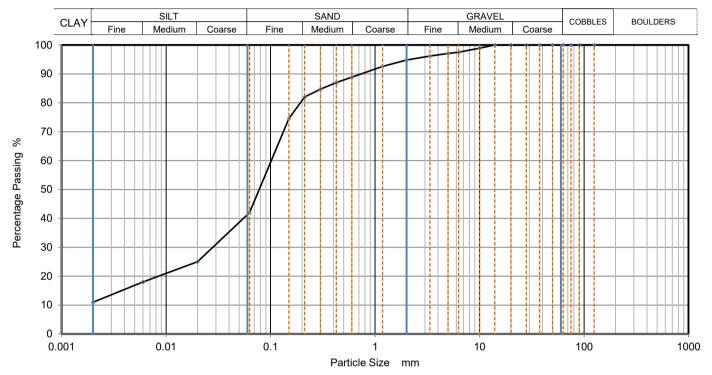
Dry Mass of sample, g	601

Sample Proportions	% dry mass
Very coarse	1.2
Gravel	8.4
Sand	59.2
Silt	20.1
Clay	11.1

Grading Analysis		
D100	mm	
D60	mm	0.103
D30	mm	0.0557
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377 unless noted below

K4 Soils Laboratory
Unit 8, Olds Close, Watford, Herts, WD18 9RU


Email: james@k4soils.com Tel: 01923 711288 Initials: J.P

Date: 06/11/2018

Checked and Approved

MSF-5-R3

	PARTICLE SIZE DISTRIBUTION		Job Ref	25366		
SOILS	PARTIC	TICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH2	
Site Name	31 Willoughby Road, L	31 Willoughby Road, London NW3 1RT		Sample No.	4	
Project No.	G1808	G1808 Client Eldred Geotechnics Ltd		Depth Top	1.50	m
		High strength brown and orangish brown mottled slightly gravelly sandy silty CLAY with rare brick fragments and traces of carbonaceous deposits (gravel is fm and sub-angular)		Depth Base	1.95	m
Soil Description	o o			Sample Type	U	
	carbonaceous			Samples received	17/08/2018	
			Schedules received	22/10/2018		
Test Method	BS1377:Part 2: 1990, clause 9.0		Project started	23/10/2018		
				Date tested	31/10/2018	

Siev	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	25
90	100	0.0060	18
75	100	0.0020	11
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	99		
6.3	98		
5	97		
3.35	96		
2	95		
1.18	93		
0.6	89	Particle density	(assumed)
0.425	87	2.70	Mg/m3
0.3	85		
0.212	82		
0.15	75		
0.063	42		

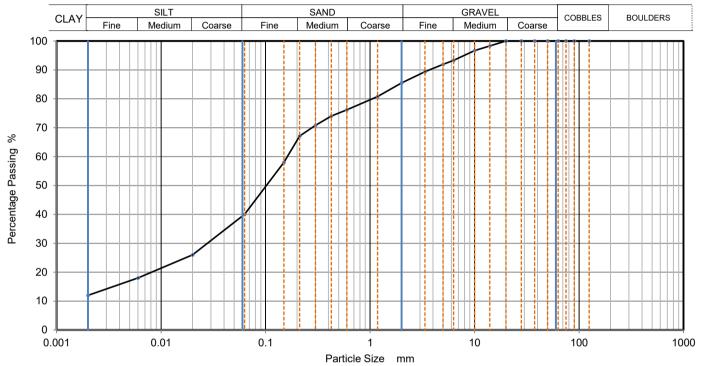
Dry Mass of sample, g	312
-----------------------	-----

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	5.2
Sand	52.8
Silt	30.7
Clay	11.3

Grading Analysis		
D100	mm	
D60	mm	0.102
D30	mm	0.0286
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377 unless noted below

K4 Soils Laboratory
Unit 8, Olds Close, Watford, Herts, WD18 9RU
Email: iames@k4soils.com


Email: james@k4soils.com Tel: 01923 711288 Initials: J.P

Date: 06/11/2018

Checked and Approved

MSF-5-R3

14	PARTICLE SIZE DISTRIBUTION		Job Ref	25366		
SOILS	PARTIC	ICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH2	
Site Name	31 Willoughby Road, Lo	31 Willoughby Road, London NW3 1RT		Sample No.	8	
Project No.	G1808	G1808 Client Eldred Geotechnics Ltd		Depth Top	2.50	m
	Medium strength grey, brown and orangish brown mottled slightly		Depth Base	2.95	m	
Soil Description			Sample Type	U		
	gravelly salidy silty CL	gravelly sandy silty CLAY (gravel is fm and rounded to sub-angular)		Samples received	17/08/2018	
			Schedules received	22/10/2018		
Test Method	BS1377:Part 2: 1990, clause 9.0		Project started	23/10/2018		
			Date tested	31/10/2018		

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	26
90	100	0.0060	18
75	100	0.0020	12
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	98		
10	97		
6.3	93		
5	92		
3.35	89		
2	86		
1.18	81		
0.6	76	Particle density	(assumed)
0.425	74	2.70	Mg/m3
0.3	71		
0.212	67	1	
0.15	58	1	
0.063	40	1	

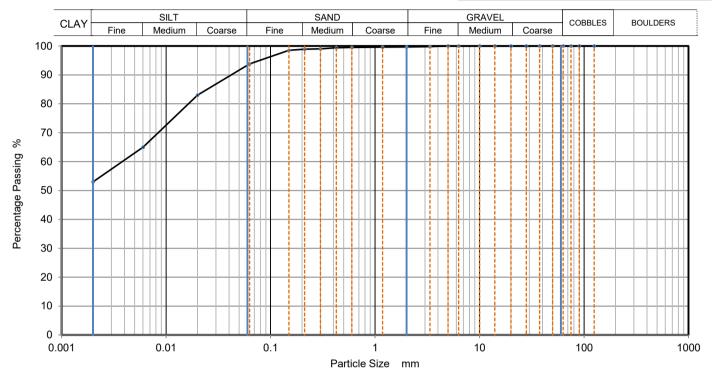
Dry Mass of sample, g	188
-----------------------	-----

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	14.5
Sand	45.5
Silt	27.5
Clay	12.5

Grading Analysis		
D100	mm	
D60	mm	0.162
D30	mm	0.0275
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377 unless noted below

K4 Soils Laboratory Unit 8, Olds Close, Watford, Herts, WD18 9RU Email: james@k4soils.com


Tel: 01923 711288

Checked and Approved J.P Initials: Date: 06/11/2018

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

MSF-5-R3

	PARTICLE SIZE DISTRIBUTION		Job Ref	25366		
SOILS	PARTIC	ARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH2	
Site Name	31 Willoughby Road, Lo	ondon NW3 1RT		Sample No.	11	
Project No.	G1808	Client	Eldred Geotechnics Ltd	Depth Top	3.00	m
		· · · · · · · · · · · · · · · · · · ·		Depth Base	3.45	m
Soil Description	Brown slightly	mottled grey sligh	nottled grey slightly sandy silty CLAY		В	
				Samples received	17/08/2018	
			Schedules received	22/10/2018		
Test Method	BS1377:Part 2: 1990, c	BS1377:Part 2: 1990, clause 9.0		Project started	23/10/2018	
				Date tested	01/11/2018	

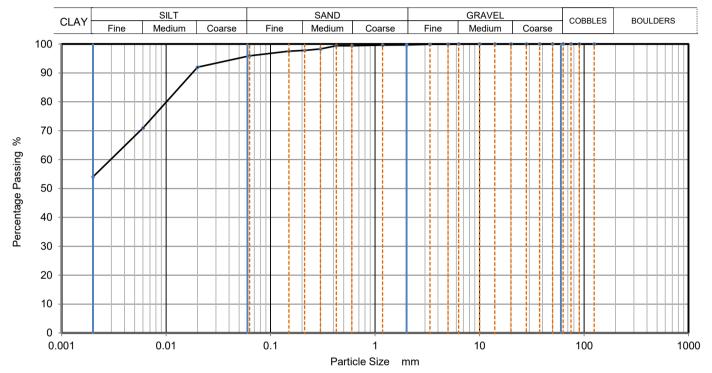
Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	83
90	100	0.0060	65
75	100	0.0020	53
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100	Particle density	(assumed)
0.425	99	2.70	Mg/m3
0.3	99		_
0.212	99		
0.15	99		
0.063	94		

Dry Mass of sample, g	14
-----------------------	----

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	0.3
Sand	5.9
Silt	40.8
Clay	53.0

Grading Analysis		
D100	mm	
D60	mm	0.00378
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377 unless noted below



K4 Soils Laboratory Unit 8, Olds Close, Watford, Herts, WD18 9RU Email: james@k4soils.com

Tel: 01923 711288

Checked and Approved J.P Initials: Date: 06/11/2018

14	PARTICLE SIZE DISTRIBUTION		Job Ref	25366		
SOILS	PARTIC	LE SIZE DISTRIBUTION		Borehole/Pit No.	BH2	
Site Name	31 Willoughby Road, Lo	31 Willoughby Road, London NW3 1RT		Sample No.	11	
Project No.	G1808	Client	Eldred Geotechnics Ltd	Depth Top	3.50	m
				Depth Base	3.95	m
Soil Description	o o	•	and orangish brown mottled silty CLAY with		U	
	occasional pockets of fine sand and rare fine gravel		and rate line graver	Samples received	17/08/2018	
			Schedules received	22/10/2018		
Test Method	BS1377:Part 2: 1990, c	BS1377:Part 2: 1990, clause 9.0		Project started	23/10/2018	
				Date tested	31/10/2018	

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	92
90	100	0.0060	71
75	100	0.0020	54
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99	Particle density	(assumed)
0.425	99	2.70	Mg/m3
0.3	98		
0.212	98		
0.15	98		
0.063	96		

Dry Mass of sample, g	4
-----------------------	---

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	0.3
Sand	3.8
Silt	41.9
Clay	54.0

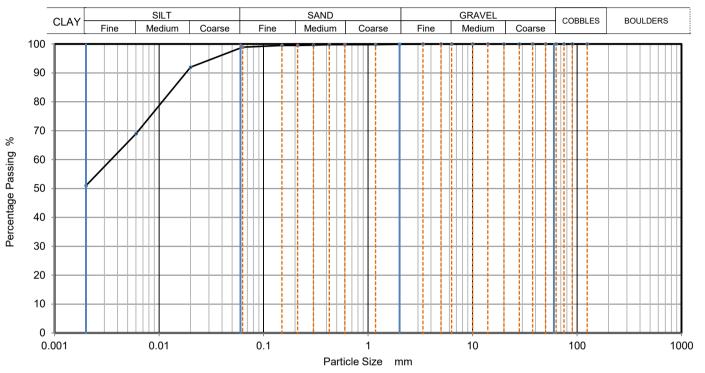
Grading Analysis		
D100	mm	
D60	mm	0.00293
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377 unless noted below

K4 Soils Laboratory Unit 8, Olds Close, Watford, Herts, WD18 9RU Email: james@k4soils.com

Tel: 01923 711288

Initials: Date:


J.P

06/11/2018

Checked and Approved

MSF-5-R3

14	PARTICLE SIZE DISTRIBUTION		Job Ref	25366		
SOILS	PARTIC	LE SIZE DISTRIBUTION		Borehole/Pit No.	BH2	
Site Name	31 Willoughby Road, L	31 Willoughby Road, London NW3 1RT		Sample No.	14	
Project No.	G1808	Client	Eldred Geotechnics Ltd	Depth Top	4.50	m
				Depth Base	4.95	m
Soil Description		•	nottled orangish brown and grey silty CLAY		U	
	with occasional pockets of fine sand		or line sand	Samples received	17/08/2018	
				Schedules received	22/10/2018	
Test Method	BS1377:Part 2: 1990, c	BS1377:Part 2: 1990, clause 9.0		Project started	23/10/2018	
				Date tested	31/10/2018	

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	92
90	100	0.0060	69
75	100	0.0020	51
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100	Particle density	(assumed)
0.425	100	2.70	Mg/m3
0.3	100		
0.212	100		
0.15	100		
0.063	99		

Dry Mass of sample, g	2
-----------------------	---

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	0.1
Sand	1.0
Silt	47.8
Clay	51.1

Grading Analysis		
D100	mm	
D60	mm	0.00345
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377 unless noted below

K4 Soils Laboratory Unit 8, Olds Close, Watford, Herts, WD18 9RU

Email: james@k4soils.com

Tel: 01923 711288

	Checked and Appro	ved
Initials:		J.P

Date: 06/11/2018

Unconsolidated Undr

Unconsolidated Undrained Triaxial Compression tests without measurement of pore pressure Summary of Results

Tests carried out in accordance with BS1377:Part 7: 1990 clause 8 or 9 as appropriate to test

	100to carriou cut in docordanco mun Donorm artir 1000 ciado	0 0 0. 0 a0 app. 0	priate to toot	
Job No.	Project Name	Programme		
25366	31 Willoughby Road, London NW3 1RT	Samples received	17/08/2018	
23300	31 Willoughby Road, Eondon NW3 TRT	Schedule received	22/10/2018	
Project No.	Client	Project started	23/10/2018	
G1808	Eldreds	Testing Started	29/10/2018	

G1808			Eldreds	3									Те	sting S	Started	t	29/10/2018
		Sar	nple			Test	Der	nsity	w	I ength	Diametei	σ3		At fail	ure		
Hole No.	Ref	Тор	Base	Турє	Soil Description	Type	bulk	dry	.,	Longui	Diameter	00	Axial strain	σ1 - σ	cu	M o d	Remarks
		m	m				Mg	/m3	%	mm	mm	kPa	%	kPa	kPa	e	
BH1	5	2.00	2.45	U	High strength brown mottled orangish brown clayey gravelly silty SAND with rare fine brick fragments (gravel is fmc and rounded to sub-angular)	UU	1.83	1.48	23	198	102	50	5.6	170	85	В	
BH1	10	4.00	4.45	U	Medium strength brown slightly mottled grey silty CLAY with rare pockets of orange fine sand / silt and traces of selenite crystals and rootlets	UU	1.93	1.45	33	198	102	70	7.1	140	70	В	
BH1	12	5.00	5.45	U	High strength brown silty CLAY with rare pockets of orange fine sand / silt	UU	1.88	1.42	33	198	102	100	7.6	202	101	В	
BH1	14	6.00	6.45	U	High strength dark brown slightly mottled orangish brown silty CLAY with occasional pockets of fine sand / silt	UU	1.94	1.50	29	198	102	120	5.1	255	127	В	
BH1	16	7.00	7.45	U	High strength dark grey silty CLAY with rare pockets of fine sand	UU	1.99	1.52	30	198	102	140	7.6	204	102	В	
BH1	18	8.00	8.45	U	High strength dark grey silty CLAY	UU	2.03	1.57	29	198	102	160	11	190	95	С	
BH1	23	10.00	10.45	U	Very high strength dark grey silty CLAY with occasional pockets of fine sand	UU	2.03	1.59	28	198	102	200	5.1	360	180	В	
BH1	29	12.00	12.45	U	Very high strength dark grey silty CLAY with occasional pockets of fine sand	UU	2.02	1.63	24	198	102	240	2.5	340	170	В	Disturbed
BH1	35	14.00	14.45	U	Very high strength dark grey silty CLAY with frequent pockets of fine sand and rare decayed shell deposits	UU	2.11	1.69	25	198	102	280	19	335	168	С	
BH2	4	1.50	1.95	U	High strength brown and orangish brown mottled slightly gravelly sandy silty CLAY with rare brick fragments and traces of carbonaceous deposits (gravel is fm and sub-angular)	UU	2.05	1.62	27	198	102	50	17	172	86	С	
BH2	8	2.50	2.95	U	Medium strength grey, brown and orangish brown mottled slightly gravelly sandy silty CLAY (gravel is fm and rounded to sub-angular)	UU	2.04	1.66	23	198	102	50	20	83	41	Р	
BH2	11	3.50	3.95	U	High strength brown and orangish brown mottled silty CLAY with occasional pockets of fine sand and rare fine gravel	UU	1.99	1.50	33	198	102	60	6.1	175	87	В	
BH2	14	4.50	4.95	U	High strength slightly mottled orangish brown and grey silty CLAY with occasional pockets of fine sand	UU	2.01	1.51	33	198	102	75	8.1	171	86	С	
Legend	UU -	sinale st	l age test	l Sinale	and multiple specimens)	σ3	Cell r	ressure				Mode	of failu	l re :	B - E	Brittle	<u> </u>

Legend UU - single stage test (single and multiple specimens)

UUM - Multistage test on a single specimen

σ3 Cell pressure

P - Plastic

suffix R - remoulded or recompacted

 σ 1 - σ 3 Maximum corrected deviator stress cu Undrained shear strength, $\frac{1}{2}$ (σ 1 - σ 3)

C - Compound

Test Report by K4 SOILS LABORATORY
Unit 8 Olds Close Olds Approach
Watford Herts WD18 9RU
Tel: 01923 711 288
Email: james@k4soils.com

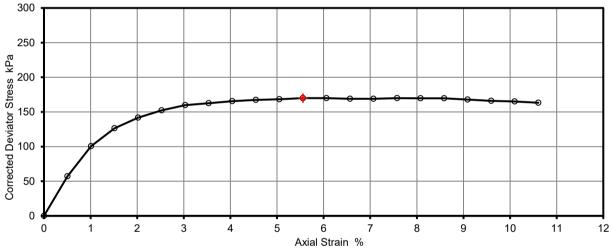
Initials: J.P

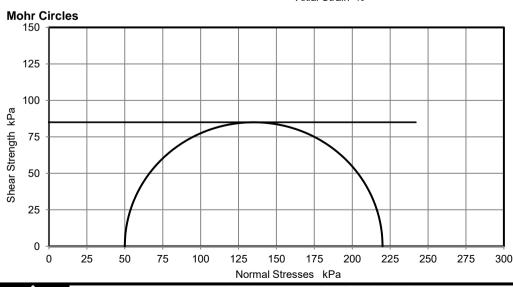
Checked and Approved

Date:

15/11/2018

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)


MSF-5-R7b


4	Unconsolidated Compression T		Job Ref	25366		
SOILS	pore pressure -		Borehole/Pit No.	BH1		
Site Name	31 Willoughby Road,	London NW3 1	Sample No.	5		
Project No.	G1808	Client	Eldreds	Depth Top	2.00	m
				Depth Base	2.45	m
Soil Description	High strength brow	•	Sample Type	U		
	,	ounded to sub-a	Samples received	17/08/2018		
				Schedules received	22/10/2018	
Test Method	BS1377 : Part 7 : 199	00, clause 8, sing	gle specimen	Date of test	29/10/2018	

Remarks		

0
am
s ric
Position within sample
ition
Pos

Test Number	1	
Length	198.0	mm
Diameter	102.0	mm
Bulk Density	1.83	Mg/m3
Moisture Content	23	%
Dry Density	1.48	Mg/m3
Rate of Strain	2.0	%/min
Cell Pressure	50	kPa
Axial Strain	5.6	%
Deviator Stress, (σ1 - σ3)f	170	kPa
Undrained Shear Strength, cu	85	kPa ½(σ1 - σ3)f
Mode of Failure	Brittle	

Deviator stress corrected for area change and membrane effects

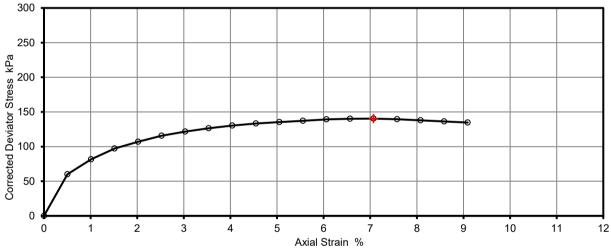
Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

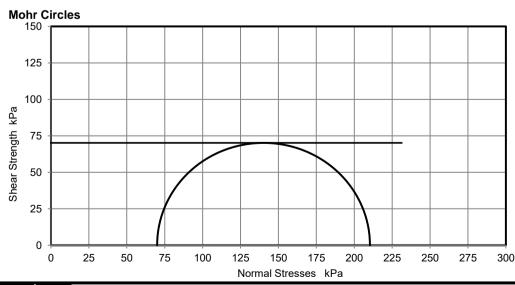
Test Report by K4 SOILS LABORATORY
Unit 8 Olds Close Olds Approach
Watford Herts WD18 9RU
Tel: 01923 711 288

Email: James@k4soils.com

Checked and Approved Initials: J.P

Date 15/11/2018


MSF-5 R7


4	Unconsolidated Compression To		Job Ref	25366		
SOILS	pore pressure -	Borehole/Pit No.	BH1			
Site Name	31 Willoughby Road,	London NW3 1	Sample No.	10		
Project No.	G1808	Client	Eldreds	Depth Top	4.00	m
				Depth Base	4.45	m
0.115	Medium strength b		Sample Type	U		
Soil Description	rare pockets of ora	crystals and ro	Samples received	17/08/2018		
			Schedules received	22/10/2018		
Test Method	BS1377 : Part 7 : 199	00, clause 8, sing	gle specimen	Date of test	28/10/2018	

Remarks		

ple	Ī
Position within sample	
withir	
ition	
Pos	

		_
Test Number	1]
Length	198.0	mm
Diameter	102.0	mm
Bulk Density	1.93	Mg/m3
Moisture Content	33	%
Dry Density	1.45	Mg/m3
	_]
Rate of Strain	2.0	%/min
Cell Pressure	70	kPa
Axial Strain	7.1	%
Deviator Stress, (σ1 - σ3)f	140	kPa
Undrained Shear Strength, cu	70	kPa ½(σ1 - σ3)f
Mode of Failure	Brittle]

Deviator stress corrected for area change and membrane effects

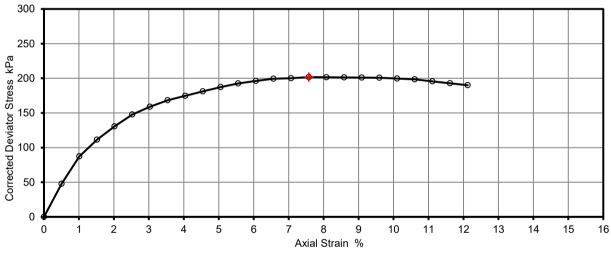
Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

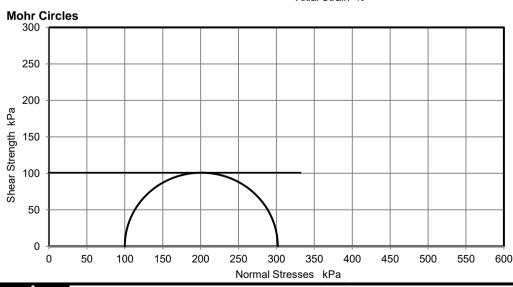
Test Report by K4 SOILS LABORATORY
Unit 8 Olds Close Olds Approach
Watford Herts WD18 9RU
Tel: 01923 711 88

Email: James@k4soils.com

Checked and Approved Initials: J.P

Date 15/11/2018


MSF-5 R7


Unconsolidated Undrained Triaxial Compression Test without measurement of		Job Ref	25366			
SOILS	pore pressure - single specimen			Borehole/Pit No.	BH1	
Site Name	31 Willoughby Road, London NW3 1RT			Sample No.	12	
Project No.	G1808	Client	Eldreds	Depth Top	5.00	m
			Depth Base	5.45	m	
Soil Description	High strength brown	silty CLAY with r	Sample Type	U		
	sand / silt			Samples received	17/08/2018	
			Schedules received	22/10/2018		
Test Method	BS1377 : Part 7 : 1990, clause 8, single specimen		Date of test	29/10/2018		

Remarks		

Position within sample	
Ë	l
Š	
⋛	
₹	
_	l
<u>:</u> ≘	
os	
<u> </u>	l

Test Number	1	
Length	198.0	mm
Diameter	102.0	mm
Bulk Density	1.88	Mg/m3
Moisture Content	33	%
Dry Density	1.42	Mg/m3
Rate of Strain	2.0	%/min
Cell Pressure	100	kPa
Axial Strain	7.6	%
Deviator Stress, (σ1 - σ3)f	202	kPa
Undrained Shear Strength, cu	101	kPa ½(σ1 - σ3)t
Mode of Failure	Brittle	

Deviator stress corrected for area change and membrane effects

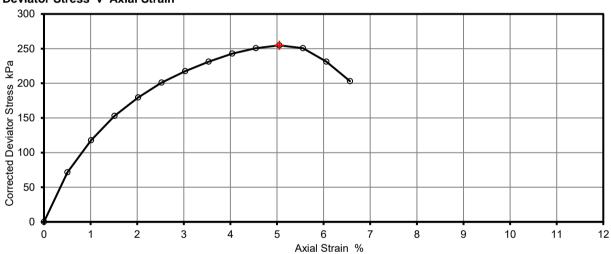
Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

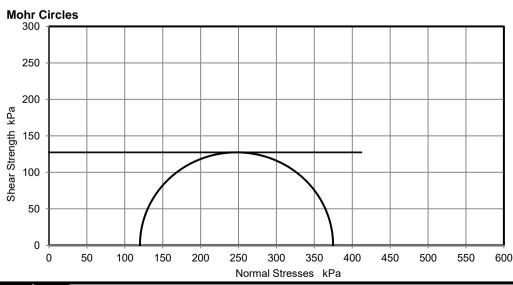
Test Report by K4 SOILS LABORATORY
Unit 8 Olds Close Olds Approach
Watford Herts WD18 9RU
Tel: 01923 711 288

Email: James@k4soils.com

Checked and Approved Initials: J.P

Date 15/11/2018


MSF-5 R7


Unconsolidated Undrained Triaxial Compression Test without measurement of		Job Ref	25366			
SOILS	pore pressure - single specimen			Borehole/Pit No.	BH1	
Site Name	31 Willoughby Road, London NW3 1RT			Sample No.	14	
Project No.	G1808	G1808 Client Eldreds		Depth Top	6.00	m
				Depth Base	6.45	m
Soil Description	High strength dark b	orown slightly mo	Sample Type	U		
	CLAY with o	ccasional pocke	Samples received	17/08/2018		
				Schedules received	22/10/2018	
Test Method	BS1377 : Part 7 : 199	BS1377 : Part 7 : 1990, clause 8, single specimen			29/10/2018	

Remarks			

ple	ĺ
Position within sample	
ithin	
N N	
Sitic	
ď	

Test Number	1	
Length	198.0	mm
Diameter	102.0	mm
Bulk Density	1.94	Mg/m3
Moisture Content	29	%
Dry Density	1.50	Mg/m3
	_	
Rate of Strain	2.0	%/min
Cell Pressure	120	kPa
Axial Strain	5.1	%
Deviator Stress, (σ1 - σ3)f	255	kPa
Undrained Shear Strength, cu	127	kPa ½(σ1 - σ3)f
Mode of Failure	Brittle	

Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

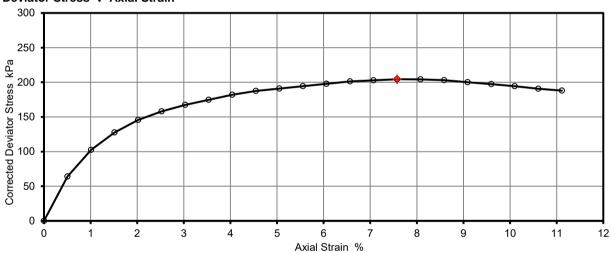
Test Report by K4 SOILS LABORATORY **Unit 8 Olds Close Olds Approach** Watford Herts WD18 9RU Tel: 01923 711 288

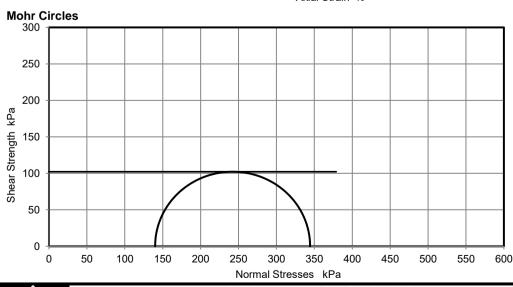
Email: James@k4soils.com

Approved J.P Initials:

15/11/2018

Checked and


MSF-5 R7


		nconsolidated Undrained Triaxial properties of the consolidated Undrained Un			25366	
SOILS	pore pressure -			Borehole/Pit No.	BH1	
Site Name	31 Willoughby Road, London NW3 1RT			Sample No.	16	
Project No.	G1808	Client	Eldreds	Depth Top	7.00	m
			Depth Base	7.45	m	
	High strength dark	grey silty CLAY	Sample Type	U		
Soil Description		sand		Samples received	17/08/2018	}
			Schedules received	22/10/2018	}	
Test Method	BS1377 : Part 7 : 1990, clause 8, single specimen		Date of test	29/10/2018	,	

Remarks		

ble	I
san	
Position within sample	
N N	
Sitic	
ď	

Test Number	1	
Length	198.0	mm
Diameter	102.0	mm
Bulk Density	1.99	Mg/m3
Moisture Content	30	%
Dry Density	1.52	Mg/m3
Rate of Strain	2.0	%/min
Cell Pressure	140	kPa
Axial Strain	7.6	%
Deviator Stress, (σ1 - σ3)f	204	kPa
Undrained Shear Strength, cu	102	kPa ½(σ1 - σ3)f
Mode of Failure	Brittle	

Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

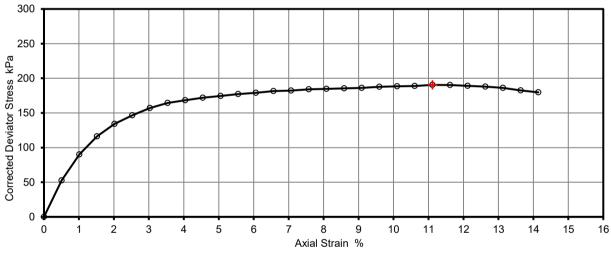
Test Report by K4 SOILS LABORATORY
Unit 8 Olds Close Olds Approach
Watford Herts WD18 9RU
Tel: 01923 711 288

Email: James@k4soils.com

Approved Initials: J.P

Checked and

Date 15/11/2018


MSF-5 R7


1	Unconsolidated Undrained Triaxial			Job Ref	25366	
SOILS	•	Compression Test without measurement of pore pressure - single specimen		Borehole/Pit No.	BH1	
Site Name	31 Willoughby Road	1 Willoughby Road, London NW3 1RT		Sample No.	18	
Project No.	G1808	Client	Eldreds	Depth Top	8.00	m
Soil Description		High strength dark grey silty CLAY			8.45	m
					U	
	High				17/08/2018	
					22/10/2018	
Test Method	BS1377 : Part 7 : 19	990, clause 8, sin	gle specimen	Date of test	29/10/2018	
temarks		Test Number Length		1 198.0	mm	
		Diameter		102.0	mm	

Remarks		

Position within sample	
Ë	l
Š	
⋛	
₹	
_	l
<u>:</u> ≘	
os	
<u> </u>	l

Test Number	1	
Length	198.0	mm
Diameter	102.0	mm
Bulk Density	2.03	Mg/m3
Moisture Content	29	%
Dry Density	1.57	Mg/m3
Rate of Strain	2.0	%/min
Cell Pressure	160	kPa
Axial Strain	11	%
Deviator Stress, (σ1 - σ3)f	190	kPa
Undrained Shear Strength, cu	95	kPa ½(σ1 - σ3)f
Mode of Failure	Compound	

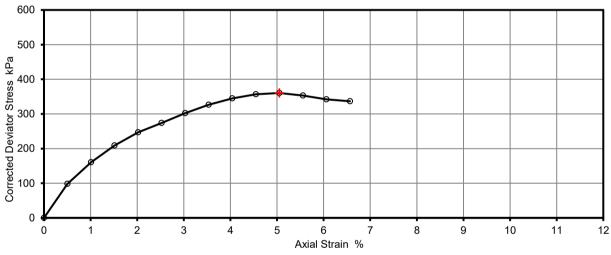
Deviator stress corrected for area change and membrane effects

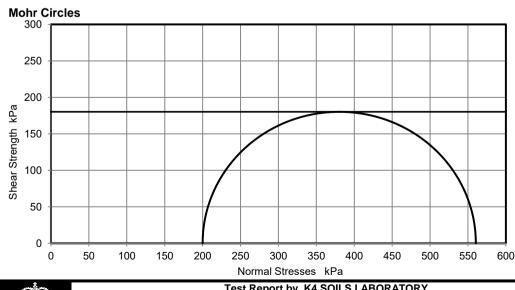
Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Test Report by K4 SOILS LABORATORY **Unit 8 Olds Close Olds Approach** Watford Herts WD18 9RU Tel: 01923 711 288

Email: James@k4soils.com

Checked and **Approved** J.P Initials:


15/11/2018


Unconsolidated Undrain				Job Ref	25366	
SOILS	Compression Test without measurement of pore pressure - single specimen		Borehole/Pit No.	BH1		
Site Name	31 Willoughby Road, London NW3 1RT		Sample No.	23		
Project No.	G1808	Client	Eldreds	Depth Top	10.00	m
					10.45	m
Soil Description	Very high strength da	ark grey silty CLA	Sample Type	U		
	of fine sand			Samples received	17/08/2018	
			Schedules received	22/10/2018		
Test Method	BS1377 : Part 7 : 199	BS1377 : Part 7 : 1990, clause 8, single specimen			13/11/2018	

Remarks		

b e	Ī
Position within sample	
ithin	
N W	
ositic	
Δ.	

Test Number	1	
Length	198.0	mm
Diameter	102.0	mm
Bulk Density	2.03	Mg/m3
Moisture Content	28	%
Dry Density	1.59	Mg/m3
Rate of Strain	2.0	%/min
Cell Pressure	200	kPa
Axial Strain	5.1	%
Deviator Stress, (σ1 - σ3)f	360	kPa
Undrained Shear Strength, cu	180	kPa ½(σ1 - σ3)f
Mode of Failure	Brittle	

Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

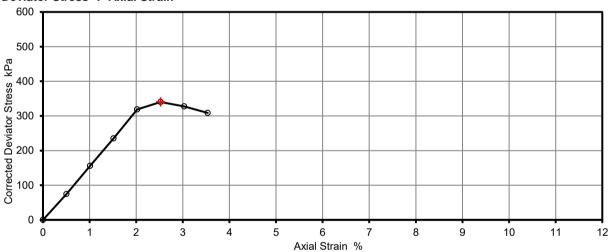
Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tel: 01923 711 288

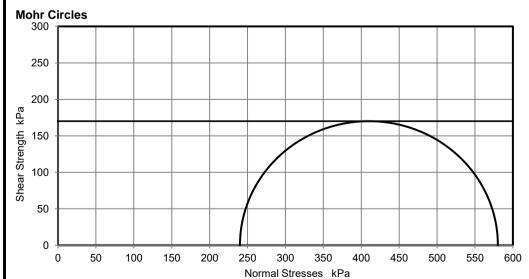
Tel: 01923 711 288
Email: James@k4soils.com

Checked and Approved Initials: J.P

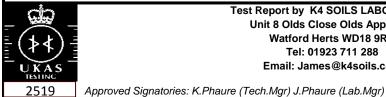
Date 15/11/2018

14	Unconsolidated Undrained Triaxial Compression Test without measurement of pore pressure - single specimen				Job Ref	25366	
SOILS			Borehole/Pit No.	BH1			
Site Name	31 Willoughby Road, London NW3 1RT		Sample No.	29			
Project No.	G1808 Client Eldreds		Depth Top	12.00	m		
					12.45	m	
Cail Deceription	Very high strength dark grey silty CLAY with occasional pockets		Sample Type	U			
Soil Description	of fine sand			Samples received	17/08/2018		
				Schedules received	22/10/2018		
Test Method	BS1377 : Part 7 : 199	00, clause 8, sin	gle specimen	Date of test	13/11/2018		


Remarks


Disturbed

Test Number	1	
Length	198.0	mm
Diameter	102.0	mm
Bulk Density	2.02	Mg/m3
Moisture Content	24	%
Dry Density	1.63	Mg/m3
Rate of Strain	2.0	%/min
Cell Pressure	240	kPa
Axial Strain	2.5	%
Deviator Stress, (σ1 - σ3)f	340	kPa
Undrained Shear Strength, cu	170	kPa ½(σ1 - σ3)f
Mode of Failure	Brittle	


Deviator Stress v Axial Strain

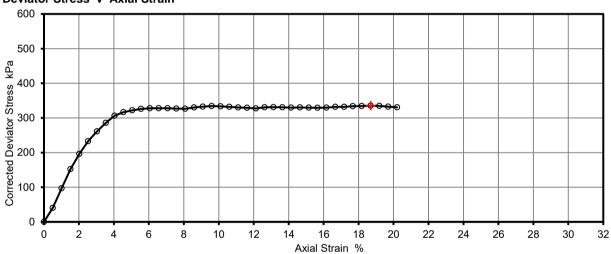
Deviator stress corrected for area change and membrane effects

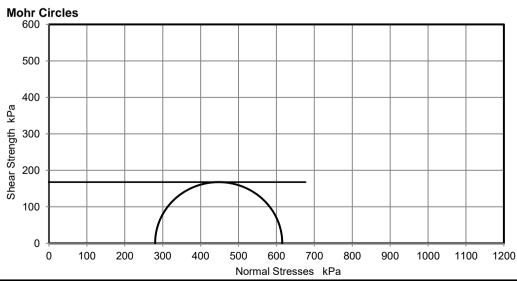
Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Test Report by K4 SOILS LABORATORY **Unit 8 Olds Close Olds Approach** Watford Herts WD18 9RU Tel: 01923 711 288

Email: James@k4soils.com

Checked and **Approved** J.P Initials:


15/11/2018


4	Unconsolidated Undrained Triaxial Compression Test without measurement of						Job Ref	25366	
SOILS	pore pressure -			Borehole/Pit No.	lo. BH1				
Site Name	31 Willoughby Road, London NW3 1RT		Sample No.	35					
Project No.	G1808	Client	Eldreds	Depth Top	14.00	m			
Soil Description			Depth Base	14.45	m				
	Very high strength da	ark grey silty CLA	Sample Type	U					
	fine sand	and rare decaye	Samples received	17/08/2018					
		Schedules received	22/10/2018						
Test Method	BS1377 : Part 7 : 199	90. clause 8. sind	ale specimen	Date of test	13/11/2018				

Remarks		

(I)	,	
현		
аĭ		
S		
₹		
Position within sample		
o		ŀ
siti		
В.		
		L

Test Number	1	
Length	198.0	mm
Diameter	102.0	mm
Bulk Density	2.11	Mg/m3
Moisture Content	25	%
Dry Density	1.69	Mg/m3
Rate of Strain	2.0	%/min
Cell Pressure	280	kPa
Axial Strain	19	%
Deviator Stress, (σ1 - σ3)f	335	kPa
Undrained Shear Strength, cu	168	kPa ½(σ1 - σ3)f
Mode of Failure	Compound	

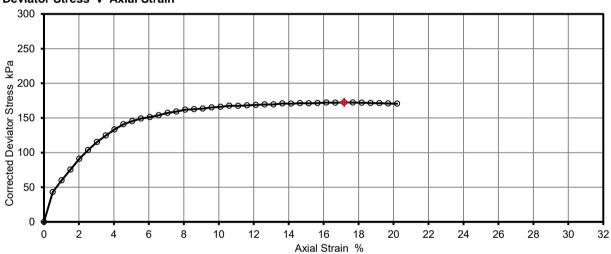
Deviator stress corrected for area change and membrane effects

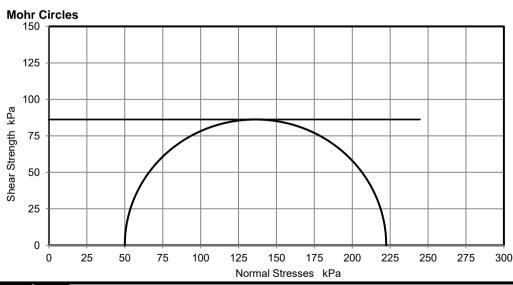
Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Test Report by K4 SOILS LABORATORY
Unit 8 Olds Close Olds Approach
Watford Herts WD18 9RU
Tel: 01923 711 288
Email: James@k4soils.com

Approved Initials: J.P

Checked and


Date 15/11/2018


14	Unconsolidated		Job Ref	25366		
Compression Test without measurement of pore pressure - single specimen		Borehole/Pit No.	BH2			
Site Name	31 Willoughby Road, London NW3 1RT		Sample No.	4		
Project No.	G1808	G1808 Client Eldreds		Depth Top	1.50	m
				Depth Base	1.95	m
Soil Description	High strength bro	•	Sample Type	U		
	, , ,		orick fragments and traces is fm and sub-angular)	Samples received	17/08/2018	
				Schedules received	22/10/2018	
Test Method	BS1377 : Part 7 : 199	BS1377 : Part 7 : 1990, clause 8, single specimen		Date of test	29/10/2018	

Remarks		

Jple	
า san	
withir	
ū	l
Position within sample	

Test Number	1	
Length	198.0	mm
Diameter	102.0	mm
Bulk Density	2.05	Mg/m3
Moisture Content	27	%
Dry Density	1.62	Mg/m3
	_	
Rate of Strain	2.0	%/min
Cell Pressure	50	kPa
Axial Strain	17	%
Deviator Stress, (σ1 - σ3)f	172	kPa
Undrained Shear Strength, cu	86	kPa ½(σ1 - σ3)f
Mode of Failure	Compound	

Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Test Report by K4 SOILS LABORATORY
Unit 8 Olds Close Olds Approach
Watford Herts WD18 9RU
Tel: 01923 711 288

Email: James@k4soils.com

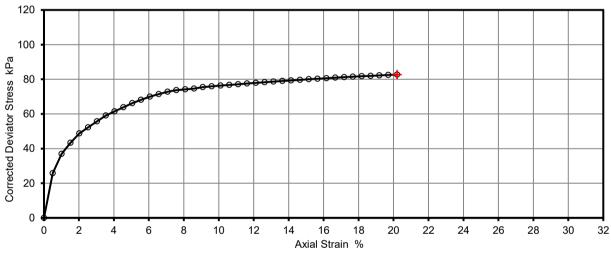
Date 15/11/2

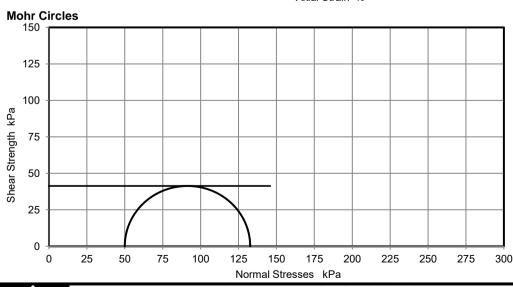
Initials:

Date 15/11/2018

Checked and

Approved


J.P


4		Unconsolidated Undrained Triaxial Compression Test without measurement of			25366	
SOILS	pore pressure - single specimen		Borehole/Pit No.	BH2		
Site Name	31 Willoughby Road,	31 Willoughby Road, London NW3 1RT		Sample No.	8	
Project No.	G1808	Client	Eldreds	Depth Top	2.50	m
				Depth Base	2.95	m
Soil Description	Medium strength		Sample Type	U		
	slightly gravelly san	sub-angula	Samples received	17/08/2018		
			Schedules received	22/10/2018		
Test Method	BS1377 : Part 7 : 199	BS1377 : Part 7 : 1990, clause 8, single specimen		Date of test	29/10/2018	

Remarks		

ple	I
Position within sample	
withir	
ition	
Pos	

Test Number	1	
Length	198.0	mm
Diameter	102.0	mm
Bulk Density	2.04	Mg/m3
Moisture Content	23	%
Dry Density	1.66	Mg/m3
Rate of Strain	2.0	%/min
Cell Pressure	50	kPa
Axial Strain	20	%
Deviator Stress, (σ1 - σ3)f	83	kPa
Undrained Shear Strength, cu	41	kPa ½(σ1 - σ3)f
Mode of Failure	Plastic	

Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Test Report by K4 SOILS LABORATORY
Unit 8 Olds Close Olds Approach
Watford Herts WD18 9RU
Tel: 01923 711 288

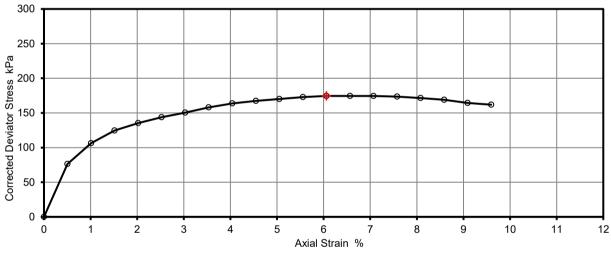
Email: James@k4soils.com

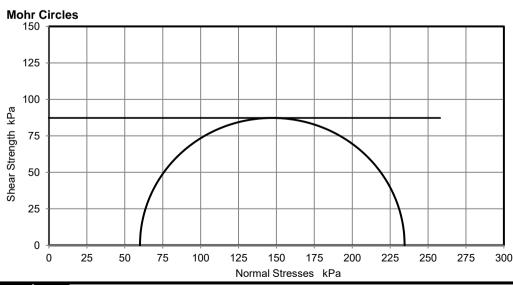
Initials:

Date 15/11/2018

Checked and

Approved


J.P


14		Unconsolidated Undrained Triaxial Compression Test without measurement of			25366	
pore pressure - single specimen		Borehole/Pit No.	BH2			
Site Name	31 Willoughby Road,	31 Willoughby Road, London NW3 1RT		Sample No.	11	
Project No.	G1808	Client	Eldreds	Depth Top	3.50	m
				Depth Base	3.95	m
Soil Description	High strength brow	n and orangish l	prown mottled silty CLAY	Sample Type	U	
	with occasional p	ockets of fine sa	and rare fine gravel	Samples received	17/08/2018	
				Schedules received	22/10/2018	
Test Method	BS1377 : Part 7 : 199	BS1377 : Part 7 : 1990, clause 8, single specimen		Date of test	29/10/2018	

Remarks			

ple	ľ
sam	
Position within sample	
Position	

Test Number	1	
Length	198.0	mm
Diameter	102.0	mm
Bulk Density	1.99	Mg/m3
Moisture Content	32	%
Dry Density	1.50	Mg/m3
	_	
Rate of Strain	2.0	%/min
Cell Pressure	60	kPa
Axial Strain	6.1	%
Deviator Stress, (σ1 - σ3)f	175	kPa
Undrained Shear Strength, cu	87	kPa ½(σ1 - σ3)f
Mode of Failure	Brittle	

Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tel: 01923 711 288

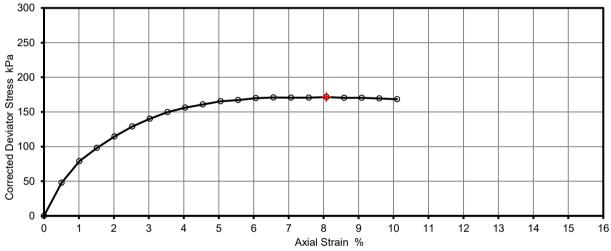
Email: James@k4soils.com

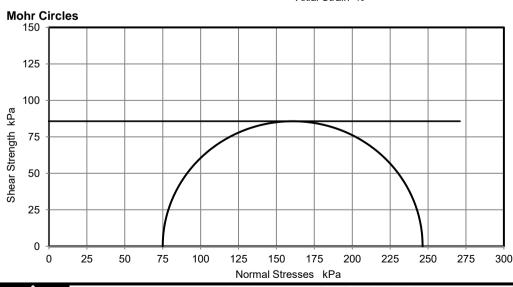
Date 15/11/2018

Checked and

Approved

Initials:


J.P


4	Unconsolidated		Job Ref	25366				
SOILS	•			Borehole/Pit No.	it No. BH2			
Site Name	31 Willoughby Road,	London NW3 1	RT	Sample No.	14			
Project No.	G1808	Client	Eldreds	Depth Top	4.50	m		
		c pressure - single specimen illoughby Road, London NW3 1RT G1808 Client I gh strength slightly mottled orangish brown CLAY with occasional pockets of fine		Depth Base	4.95	m		
Soil Description High strength	High strength sligh	tly mottled orang	gish brown and grey silty	Sample Type	U			
Soil Description	roject No. G1808 Client High strength slightly mottled or CLAY with occasional p	occasional pocl	kets of fine sand	Samples received	17/08/2018			
				Schedules received	22/10/2018			
Test Method	BS1377 : Part 7 : 199	00, clause 8, sing	gle specimen	Date of test	29/10/2018			

Remarks		

ble	
sam	
vithin	
ion v	
Position within sample	

Test Number	1	
Length	198.0	mm
Diameter	102.0	mm
Bulk Density	2.01	Mg/m3
Moisture Content	33	%
Dry Density	1.51	Mg/m3
Rate of Strain	2.0	%/min
Cell Pressure	75	kPa
Axial Strain	8.1	%
Deviator Stress, (σ1 - σ3)f	171	kPa
Undrained Shear Strength, cu	86	kPa ½(σ1 - σ3)f
Mode of Failure	Compound	

Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Test Report by K4 SOILS LABORATORY **Unit 8 Olds Close Olds Approach** Watford Herts WD18 9RU Tel: 01923 711 288

Email: James@k4soils.com

Checked and **Approved** J.P Initials:

15/11/2018

Subject

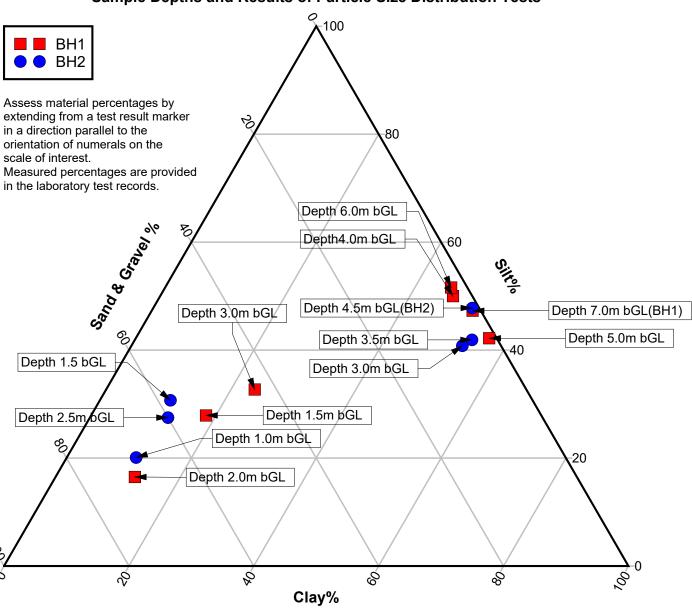
Project

31 Willoughby Road NW3 1RT

Project No.

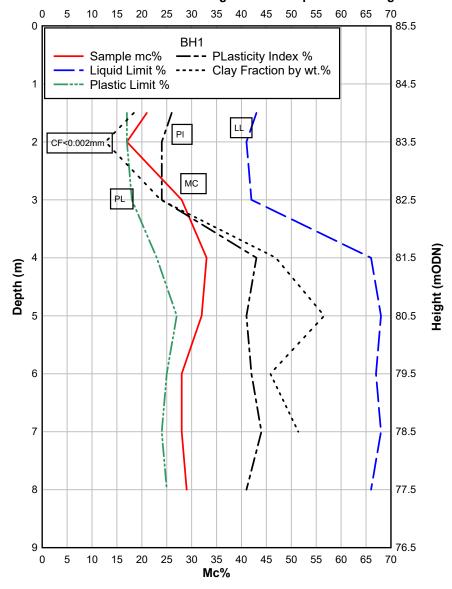
Page

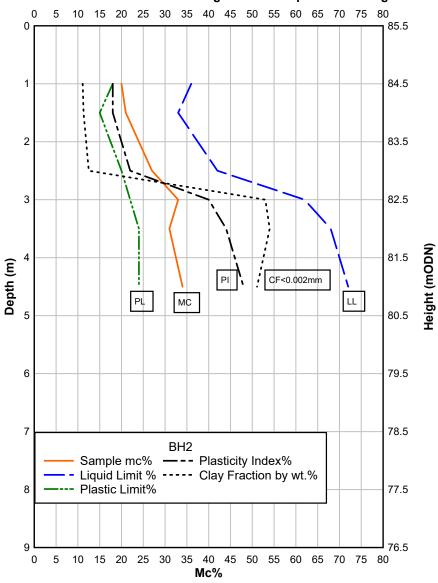
G1808 Date 14/05/2019


Fig.5

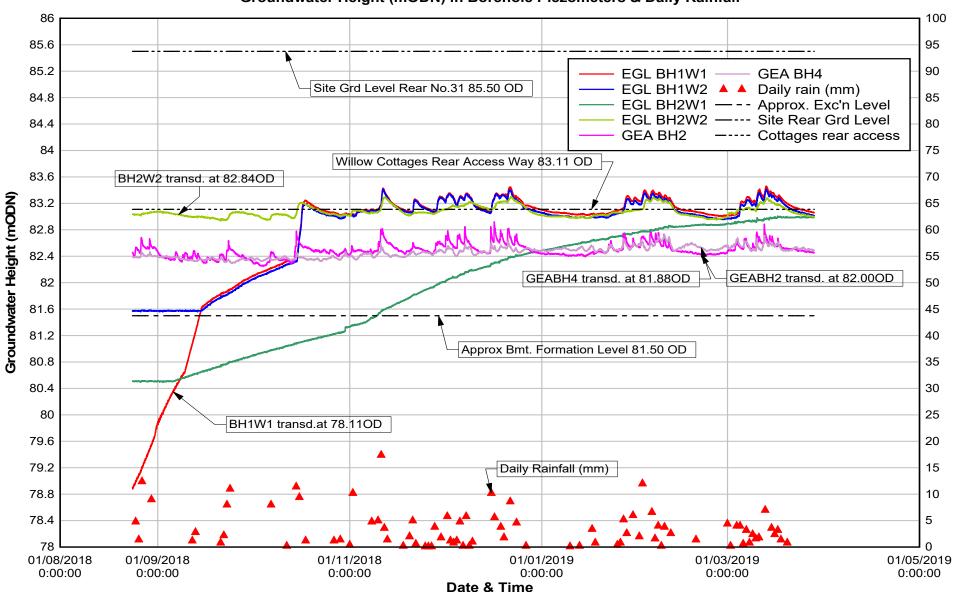
Groundwater instrumentation

Borehole	GEA BH2 (rear)	GEA BH4 (front)	EGL BH1 W1	EGL BH1 W2	EGL BH2 W1	EGL BH2 W2
Transducerr ref.	B12690	B12691	B12692	B12701	B12703	B12698
Well depth mbGL	3.75	4.00	7.79	4.00	5.10	3.16
Ground level mOD	85.50	85.40	85.50	85.50	85.50	85.50
Datum level mOD	85.50	85.40	85.61	85.70	85.65	85.64
Well base level mOD	81.75	81.40	77.71	81.50	80.40	82.34
Depth Datum to transducer m.	3.50	3.52	7.50	4.15	5.10	2.80
Transducer level mOD	82.00	81.88	78.11	81.55	80.55	82.84
Slots top level mOD	84.50	84.40	78.71	82.50	81.40	83.34
Slots btm level mOD	81.50	81.40	77.71	81.50	80.40	82.34
Filter top level mOD	84.50	84.40	78.71	82.50	81.40	83.34
Filter base level mOD	81.50	81.40	77.71	81.50	80.40	82.34
BH dia. at filter mm.	60	60	150	200	200	200
Well ID mm	30	30	50	50	50	50
Well OD mm	36	36	60	60	60	60

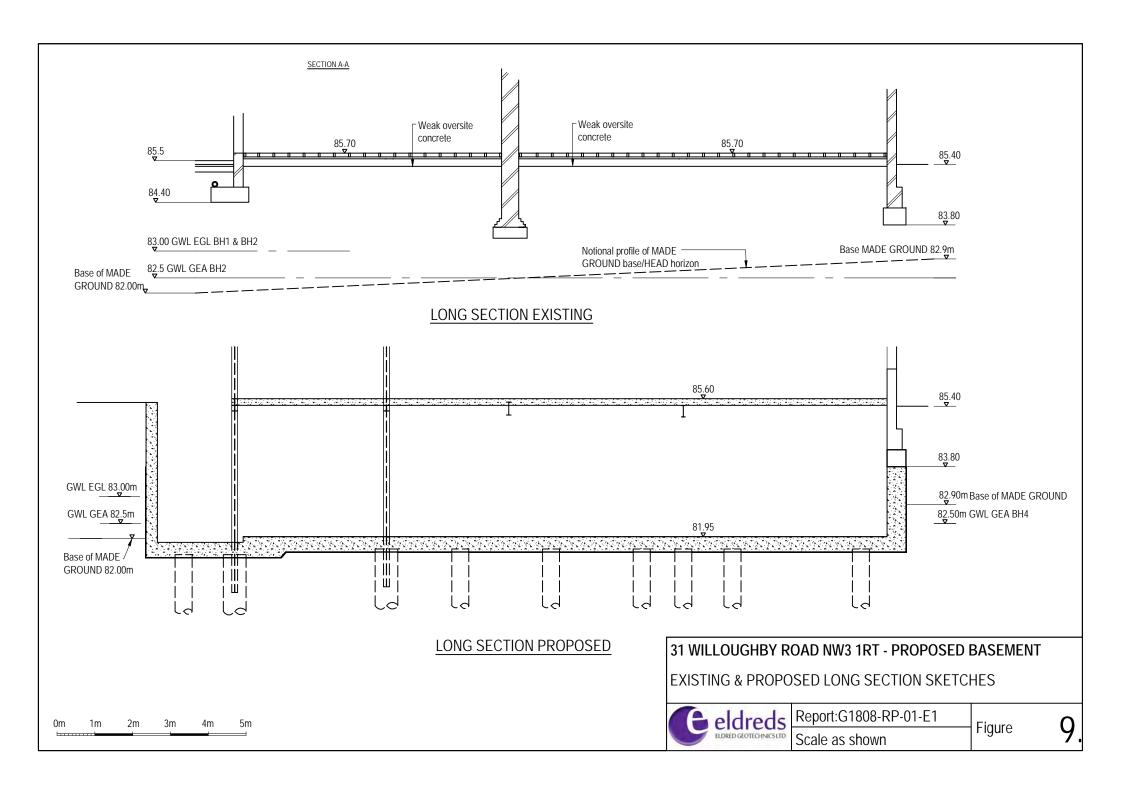

G1808 31 Willoughby Road NW3 1RT - Proposed Basement Sample Depths and Results of Particle Size Distribution Tests

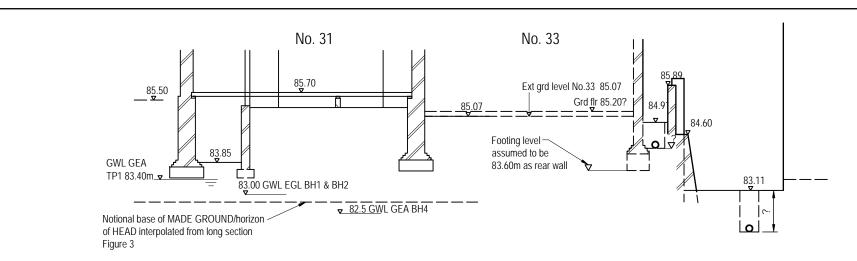

Report::G1808-RP-01-E1 Figure **No.6**

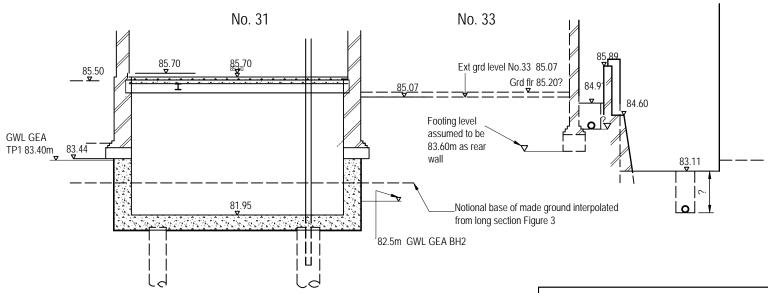
G1808 31 Willoughby Road NW3 1RT - Proposed Basement
BH1 Moisture Content & Atterberg Limits vs Depth & ODN Height



G1808 31 Willoughby Road NW3 1RT - Proposed Basement
BH2 Moisture Content & Atterberg Limits vs Depth & ODN Height


Report:: G1808-RP-01-E1 Figure No.7


G1808 31 Willoughby Road NW3 1RT - Proposed Basement Groundwater Height (mODN) in Borehole Piezometers & Daily Rainfall

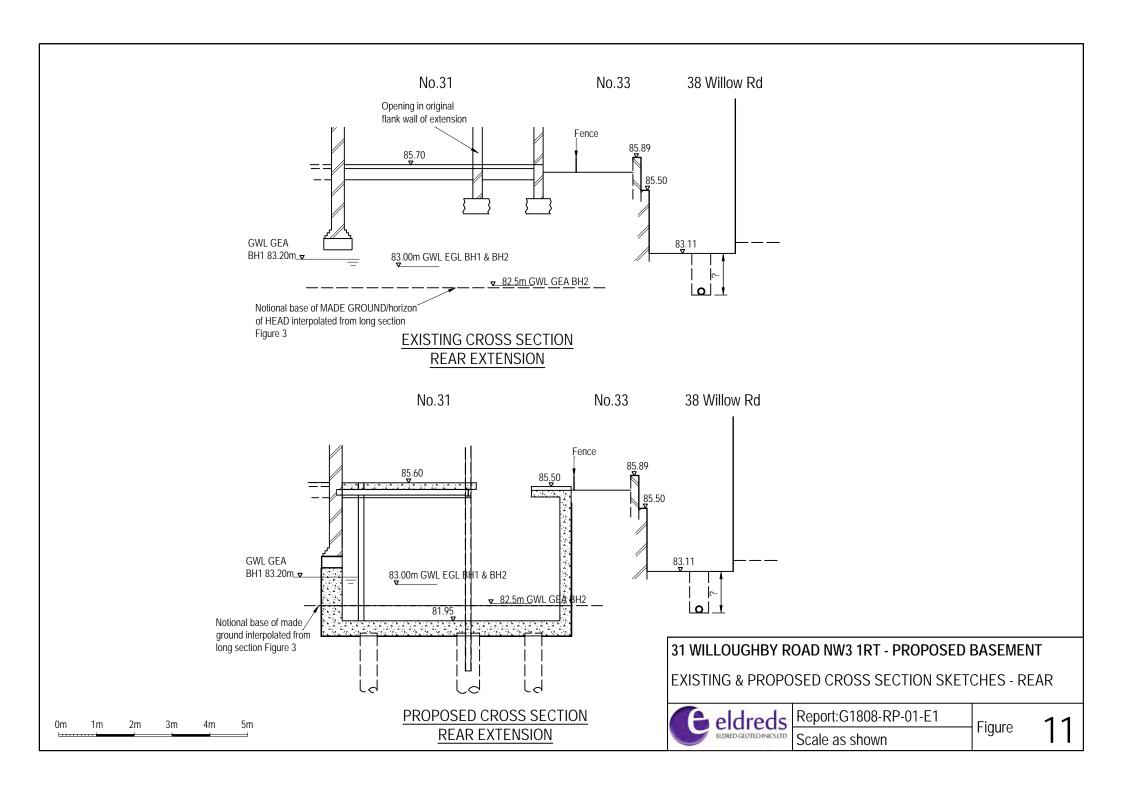

Report:: G1808-RP-01-E1

Daily Precipitation (mm)

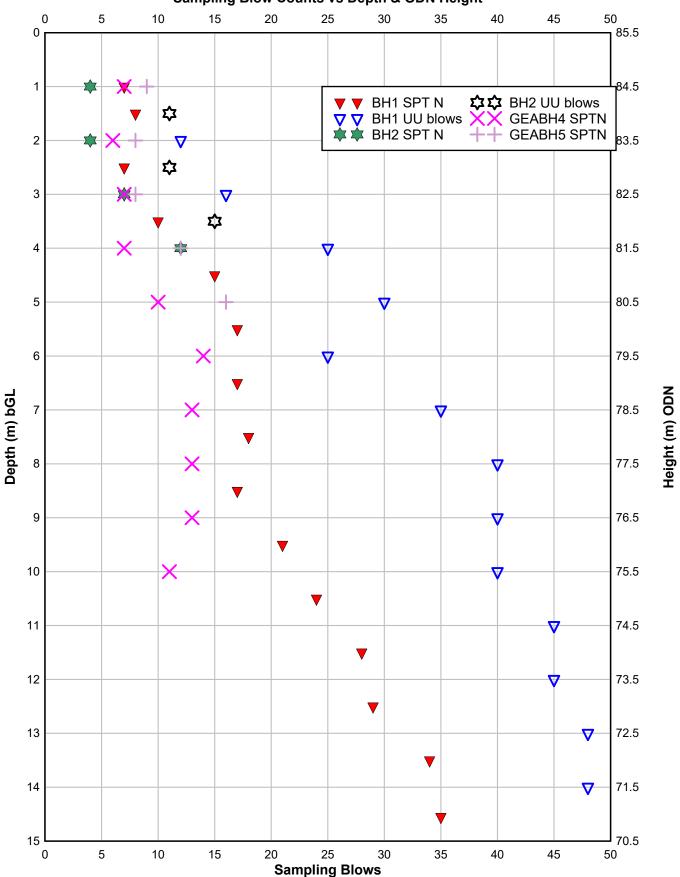
EXISTING CROSS SECTION REAR EXTENSION

PROPOSED CROSS SECTION FRONT OF HOUSE

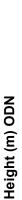
31 WILLOUGHBY ROAD NW3 1RT - PROPOSED BASEMENT


EXISTING & PROPOSED CROSS SECTION SKETCHES - FRONT

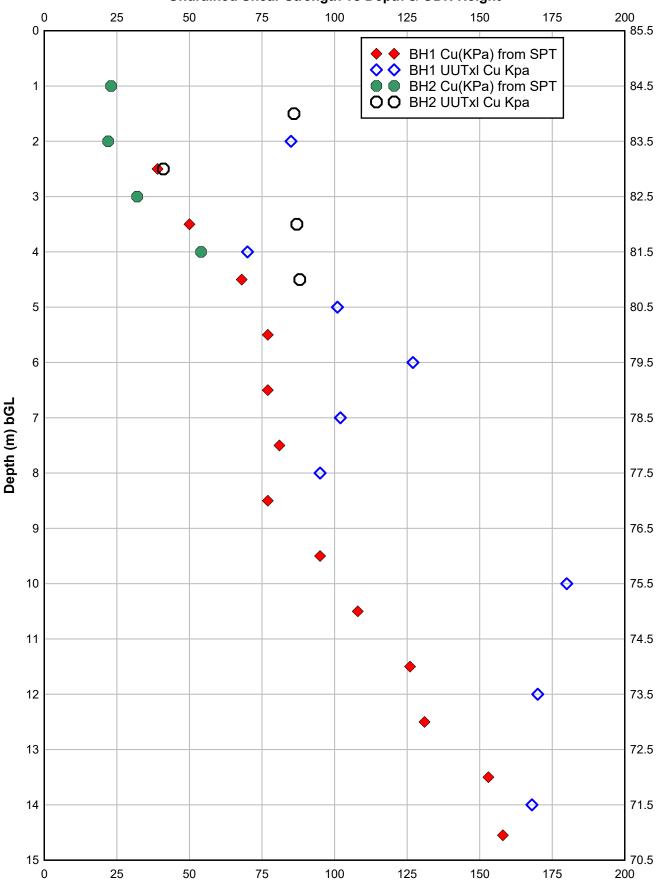
Report:G1808-RP-01-E1
Scale as shown


Figure

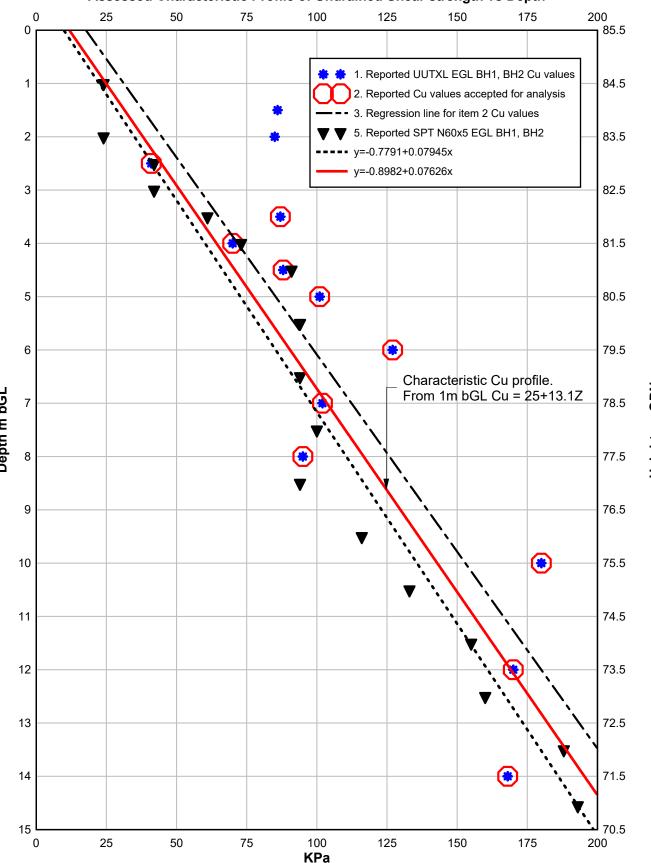
10



G1808 31 Willoughby Road NW3 1RT - Proposed Basement Sampling Blow Counts vs Depth & ODN Height



Report::G1808-RP-01-E1 Figure **No 12**


G1808 31 Willoughby Road NW3 1RT - Proposed Basement Undrained Shear Strength vs Depth & ODN Height

Report::G1808-RP-01-E1 Figure **No 13**

G1808 31 Willoughby Road NW3 1RT - Proposed Basement Assessed Characteristic Profile of Undrained Shear strength vs Depth

Report::G1808-RP-01-E1 Figure **No 14**

Appendix D Contents

Preliminary structural design report

Drawings of existing structure

G1808-PA-001 -E1 Existing site plan and sections

G1808-PA-002-E1 Existing sub-ground floor plan and sections

G1808-PA-003-E1 Existing ground floor plan showing first floor structure above

G1808-PA-004-E1 Existing first floor plan showing second floor structure above

G1808-PA-005-E1 Existing second floor plan showing study structure above

G1808-PA-006-E1 Existing third floor plan showing roof structure above

G1808-PA-007-E1 Existing sections

Drawings of proposed structure

G1808-PA-101 -E2 Proposed relationship of rear basement to boundary walls

G1808-PA-102-E2 Proposed basement plan and sections

G1808-PA-103-E2 Proposed ground floor plans showing ground & first floor

structure

G1808-PA-104-E2 Proposed general section A-A

G1808-PA-005-E2 Proposed general cross sections

Date February 2020 54

 Prepared by:
 MLE
 Units:
 kN meter
 Date:
 14/07/19

Outline structural design report G1808-ST-01-E1 for basement extension of 31 Willoughby Road NW3 1RT

1 Criteria references

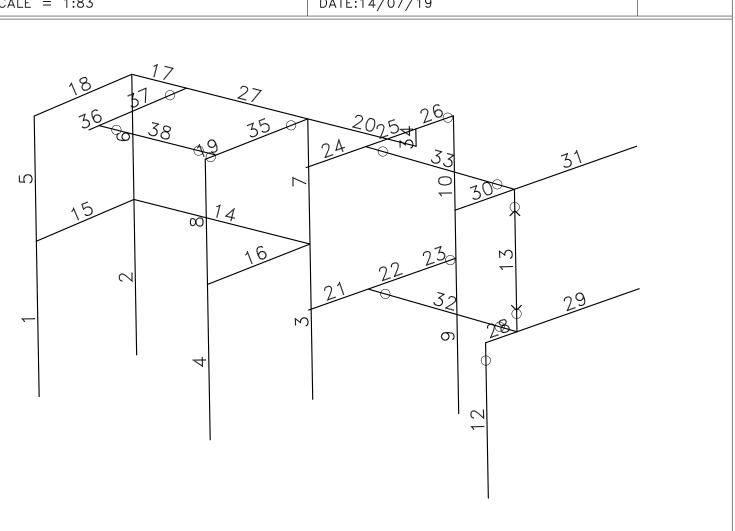
1.	BS EN 1990	Basis of struct	ural design
----	------------	-----------------	-------------

- 2. BS EN 1991 Actions on structures
- 3. BS EN 1992 Design of concrete structures
- 4. BS EN 1993 Design of steel structures
- 5. BS EN 1995 Design of timber structures
- 6. BS EN 1996 Design of masonry structures

2 Overview

7. Structural alterations are required as part of a scheme to provide a single storey basement below the property. The structural proposal is for a steel framed solution which will be inserted as work proceeds to provide maximum working space for the basement and ground floor works. Refer to the engineering design illustrated by Eldreds' accompanying drawings and method statement.

3 Software


8. STRAP (STRuctural Analysis Programs) 2018 version by Atir Engineering Software Ltd has been used for analysis of the structure. At this preliminary stage no attempt has been made to model staged construction sequences or stress reversals that installation and removal of temporary supports will cause as the frame develops: the analysis allows for what are judged to be the worst conditions likely to occur.

 Prepared by: MLE
 Units: kN meter
 Page: 2

 Date: 14/07/19

4 Frame arrangement

31 WILLOUGHBY ROAD NW3 1RT — BASEMENT	
Steel frame isometric — STRAP beam Nos.	X3 X2 X1
SCALE = 1:83 DATE:14/07/19	,,,

31 WILLOUGHBY ROAD NW3 1RT - BASEMENT

Page: 3

Prepared by: MLE

Units: kN meter

Date: 14/07/19

 Prepared by:
 MLE
 Units:
 kN meter
 Page:
 14/07/19

5 Loads

_		15			LOUID IFOT					D T.	LIOD DEE	OUEET	I D EL VIOLO		
		Road I	NW3 1F	RT		Excel t	ables u	sed to					REVISIO		
Proposed Basement Extension Item Table Column Description Item Table Column Description Of the State Interest Column Item Table Column Item															
	ltem	Table	Column	Descri	ption										
	1	Memb	er	Element o	of constru	ction iden	tified as r	eceiving lo	ad						
	2	Action	source	Element o	, .,										
	3	Туре				-	•	N/m2); L =	linearly di	stributed	over a cer	tain			
	4	Unit ac	ction		ensity (KN/m3) actor converting the source action to the corresponding effective action upon the ember; e.g. in the simplest case, if the member spreads a source point load to cause uniformly distributed load of length X at the level considered, the effect at that level is										
	5	Factor		member; a uniform											
	6	Width	or Ht.	Refer to d	diagram. (d is A+B.	Considerin	g load on	Beam 2, tl	ne w idth o	f the slab	load and				
				Height is area on e	entered f						•				
	7	Propoi	rtion	diagram a	are simply	supporte	d, the pro	portion of							
	8	Perm.	& Var.	End value	es of pern	nanent an	d variable	actions a	re the prod	duct of ite	ms 3, 4, 5	and 6			
		ı		inear load	$\overline{\mathcal{A}}$	eam 1									
		P		X	7 /	- 1									
	_	SI	tart	End	/s	lab									
				X	В (eam 3									
		End 1		\times		End 2	2								

 Prepared by: MLE
 Units: kN meter
 Page: 5

 Date: 14/07/19

ROJEC 31 W	'illoughby	Road N	W3 1F	T	SUBJECT	toto fo	-1			DATE		SHEET	REVISIO
	osed Bas				Limit s	state fa	ctors			4/19	G1808	2	
			ent and	P	ermanent	actions	(1G)		y variable	Accom	panying va [0 if favo		ion (1C
Combi	nation case	transien situa	-	Unfav	ourable	Fav	ourable		n (2Q) /ourable]	Main (if any)	Oth	ers
1	EQU SetA	Eqn	6.10	1.	.10		0.90	1.	.50	N	/A	1.5	БЕ в
2		Eqn 6.10		1.	.35		1.00	1.	.50	N	/A	1.5	δN ₁
2a	STR/GEO Set B	Eqn 6.10a		1.	.35		1.00	N	I/A	1.5	5X _x	1.5	51 1
2b				Eqn 6.10b		1.	.25		1.00	1.	.50	N	/A
3	STR/GEO Set C	Eqn	6.10	1.	.00		1.00	1.	.30	N	/A	1.3 _X ₁	
4	ACCIDENT- AL	Eqn 6	.11a/b	1.	.00		1.00	1.	.00	1	1 1		N
5		Charac	teristic	1.	.00		1.00	1.	.00	N	/A	X _N	
5a	SERVICE- ABILITY	Freq	uent	1.	.00		1.00	5	5 1	N/A		2 _N	
5b		Quasi-pe	ermanent	1.	.00		1.00	N	I/A	1	Σ	X	N
Propos Catego	ed Use ory	X 5	5 5	5 5		Design combination cases for actions		Comment	:				
A: Res	idential	0.70	0.50	0.30		ULS	1, 2						
						SLS	5		Alteration Q+G	ns; Q/G sn	nall; deflec	tion limit L	/360 fc

 Prepared by: MLE
 Units: kN meter
 Page: 6

 Date: 14/07/19

ROJECT	- 4 NIMO 4DT	SUBJECT			DATE	JOB REF.	SHEET	REVISI
1 Willoughby Ro		Construction			4/19	G1808	3	
Proposed Baseme	ent Extension	Characterist	ic Unit Load	S				
EXISTING	BUILDINGS: Ref	er to current e	ditions of dr	awings G18	08-GA	-001 to 0	007	
Ditabaal sa	-f- N 00 9 04							
Pitched roo	ofs Nos 29 & 31							
Permanen	t Slate			0.25				
	Battens			0.04				
	Rafters			0.10				
	Ceiling (P/Bo	l & skim)		0.17				
				0.56	I/n a			
	Total			0.56	npa			
	30 deg. Pitch	factor		<u>1.15</u>				
	Total on plan			0.64	KPa			
	Total on plan							
Variable				0.60	KPa			
Floors Nos	s 29-33							
Permanent	t 12mm HW o	verlay		0.09				
				0.50				
	Boards Joist	s, ceiling		0.50				
	NI- II			0.59	Кра			
Variable	No 31 upper			0.90	Кра			
Variable								
	All floors occ	upied		1.50	Kpa			
D.41. 1	0.1			0.00				
Patio roofs	Concrete tile	S		0.38				
	50mm scree	d		1.15				
	Asphalt			0.42				
	Boards Joist	s, ceiling		0.50				
				2.45	Кра			
,,								
Variable				1.50	кРа			

 Page : 7

 Prepared by: MLE
 Units: kN meter
 Date: 14/07/19

PROJECT			SUBJECT					DATE	JOB REF.	SHEET	REVISIO
	lloughby Road				notes ar			4/19	G1808	4	
ropo	sed Basemer	it Extension	Charac	teristic	Unit Lo	ads					
	EXISTING R	<u>UILDINGS</u> : Ref	er to curi	ant adi	tions of	drawing	ie (218	808-GA-	.001 to (007	
	LXISTING D	OLDINGS. Nei	er to curr	ent eur	10113 01	urawing	js G10	00-GA-	001101	JO 1	
	Flat roof No.	33									
	Permanent	Lead, code 5	underla	v pape	·r		0.30				
		Boards Joists	s, ceiling				0.50				
							0.80	Кра			
	Variable						0.60	KPa			
	Tiled roof No	0.33									
	Permanent	Clay tiles pla	n				0.65				
		Battens					0.04				
		Rafters					0.10				
		Ceiling (P/Bd	& skim)				0.17				
		Total					0.96	Кра			
		30 deg. Pitch	factor				1.15				
		Total on plan					1.10	KPa			
	Variable						0.60	KPa			
	\\/ - II -										
	Walls										
	Permanent	Brick mediun	n dense	21.53	KN.m3						
		Thickness (n	nm)	450			9.69	Кра			
				340			7.32	Kpa			
				225			4.84	Кра			
				112			2.41	KPa			
		Plaster/rende	er per sid	е			0.25	KPa			
			,								

 Prepared by: MLE
 Units: kN meter
 Page: 8

PROJECT					SUBJECT					DATE	JOB REF.	SHEET	REVISION
	lloughby						notes ar			4/19	G1808	5	
Propo	sed Bas	ement	Extensi	on	Charac	teristic	Unit Lo	ads		.,	0.000		<u> </u>
	EVICTI	VIO DI I	II DINO(D - f -		4			040	000 04	004 to 1	207	
	EXISTI	NG BU	ILDINGS	s: Rele	r to curi	rent ear	lions of	drawii	igs GT	008-GA-	001101	<i>J</i> 0 <i>1</i>	-
	Walls (contd)											
			flr & abo	ove No	e 20 31								
	Permai	nent	SW stu	ıdwork					0.10				
			Lathing	2 side	s				0.12				
			Plaster	2 side	s 3 coa	te			1.00				
			i lastei	2 3146	3 3 COA	13							
									1.22	Кра			-
	Partitio	ns 1st	flr & abo	ove, No	.33								
	Permai	nent	SW stu	ıdwark					0.10				
	i Cilliai	TOTAL											+
			P/Bd &	skim 2	sides				0.40				
									0.50	Kpa			
										.,			
	Sash w	indows	s based	on 1.8	x1m fra	me			0.30	Kpa			-
	Rear C	himnev	y Breast	t: notior	nal load	on 1st	floor						
									40.00	1201/			
	Permar	nent	340mm	n brick v	work 1.	bm high	1		10.98	KN/m			-
													+
													-
													-

 Prepared by: MLE
 Units: kN meter
 Page: 9

 Date: 14/07/19

PROJECT			SUBJECT					DATE	JOB REF.	SHEET	REVISION
	Road NW3 1F sement Extens		Charac	cteristic	Membe	er Actio	ns	4/19	G1808	6	
	Action source		Unit load	Factor	Width/	height	Prop'n	Va	lue	(m) fro	m End
					Start	End		Start	End	Start	End
Ridge Beam beam similar	No.31. No.29										
Permanent	Pitched roof	U	0.64	1.00	9.00	9.00	0.50	2.90	2.90		
Variable		U	0.60	1.00	9.00	9.00		2.70			
	s 29/31 Front										
Roof to Grd											
Permanent	Ridge beams 225 Wall roof	U	2.90	0.22	6.00	6.00	0.50	1.93	1.93		
	to 3rd (ave	U	5.34	1.00	1.75	1.75	1.00	9.35	9.35		
	340 wall 3rd- 1st 450 wall 1st-	U	7.82	1.00	6.20	6.20	1.00	48.49	48.49		
	grd 2nd-grd stair	U	10.19	1.00	3.35	3.35	1.00	34.13	34.13		
	well strips Total at grd	U	0.59	6.00	2.00	2.00	0.50	3.54	3.54		
	(KN/m)							97.44	97.44		
<u>Variable</u>	Ridge beams 2nd-grd stair	U	0.60	0.22	6.00	6.00	0.50	0.40	0.40		
	well strips Total at grd	U	1.50	6.00	2.00	2.00	0.50	9.00	9.00		
	(KN/m)							9.40	9.40		
	-										
450mm Party											
Permanent	Wall	U	9.69		2.00	2.00		19.38			
	Ftg spread	U	21.53	0.23	0.63	0.63		3.03			
	Concrete	U	23.00	0.30	0.90	0.90	1.00	6.21			
	Total (KN/m)							28.61	28.61		

 Prepared by: MLE
 Units: kN meter
 Page: 10

 Date: 14/07/19

	y Road NW3 1F sement Extensi			cteristic	Membe	er Actio	ns ——	4/19	G1808	7	
Member/Cas	e Load source	Туре	Unit load	Factor	Width/	height	Prop'n	Va	lue	(m) fro	m End 1
					Start	End		Start	End	Start	End
Party/Ext Wa	all Nos 31/33_										
Front & back	sections 2.5m	ong, Ro	oof- Gro	<u>1</u>							
Permanent	Ridge beam No.31 225 Wall roof	U	2.90	0.11	6.00	6.00	0.50	0.97	0.97		
	- 3rd (ave ht) Stack 0.3m2	U	5.34	1.00	1.75	1.75	1.00	9.35	9.35	Stack	50%
	net 340 wall 3rd-	U	21.53	0.06	3.75	3.75	1.00	4.84	4.84	l .	JU 76
	1st 450 wall 1st-	U	7.82	1.00	6.20	6.20	1.00	48.49	48.49		
	grd Stack 0.5m2	U	10.19	1.00	3.35	3.35	1.00	34.13	34.13	Stack	50%
	net	U	21.53	0.10	9.55	9.55	1.00	20.56	20.56		JU 70
	No.33 flat roof No.33 1st	U	0.80	1.00	3.50	3.50	0.50	1.40	1.40		
	&2nd flrs	U	0.59	1.00	4.00	4.00	0.50	1.18	1.18		
	(KN/m) Ridge beam							120.92	120.92		
<u>Variable</u>	No.31	U	2.70	0.11	6.00	6.00	0.50	0.90	0.90		
	No.33 flat roof No.33 1st	U	0.60	1.00	3.50	3.50	0.50	1.05	1.05		
	&2nd flrs Total at Grd	U	1.50	1.00	4.00	4.00	0.50	3.00	3.00		
	(KN/m)							4.95	4.95		
Middle sectio	n 4.5m long, Ro Ridge beam	of- Grd									
Permanent	No.31	U	2.90	0.11	6.00	6.00	0.50	0.97	0.97		
	225 Wall roof - 3rd (ave ht)	U	5.34	1.00	1.75	1.75	1.00	9.35	9.35		
	Stack 0.3m2 net	U	21.53	0.07	3.75	3.75	1.00	5.38	5.38	Stack : void	50%
	340 wall 3rd- 1st	U	7.82	1.00	6.20	6.20	1.00	48.49	48.49		
	450 wall 1st- grd	U	10.19	1.00	3.35	3.35	1.00	34.13	34.13		
	Štack 0.5m2 net	U	21.53	0.11	9.55	9.55	1.00	22.85	22.85	Stack : void	50%
	No.33 flat roof	U	0.80	1.00	3.50	3.50	0.50	1.40	1.40		
	No.33 1st &2nd flrs	U	0.59	1.00	4.00	4.00	0.50	<u>1.18</u>	1.18		
	Total at Grd (KN/m)							123.74	123.74		

 Page : 11

 Prepared by: MLE
 Units: kN meter
 Date: 14/07/19

PROJECT		1	SUBJECT				1	DATE	JOB REF.	SHEET	REVISION
31 Willoughby	per/Case Load source Type				Membe	er Actio	ns	4/19	G1808		
Member/Case	Load source	Туре	Unit load	Factor	W idth/	height)	Prop'n	Va	lue	(m) fro	m End 1
					Start	End		Start	End	Start	End
Party/Ext Wa	II Nos 31/33 C	<u>ontd</u>									
Middle section	n 4.5m long, Ro Ridge beam	oof- Grd	Contd								
Variable	No.31	U	2.70	0.11	6.00	6.00	0.50	0.90	0.90		
	No.33 flat room	U	0.60	1.00	3.50	3.50	0.50	1.05	1.05		
	&2nd flrs Total at Grd	U	1.50	1.00	4.00	4.00	0.50	3.00	3.00		
	(KN/m)							<u>4.95</u>	4.95		
450mm Party	wall Grd-Ftg.	2.5m d	eep)								
Permanent	Wall	U	9.69	1.00	2.00	2.00	1.00	19.38	19.38		
	Ftg spread	U	3.03	1.00	1.00	1.00	1.00	3.03	3.03		
	Conccrete	U	6.90	1.00	0.90	0.90	1.00	6.21	6.21		
	Total							28.61	28.61		
Party Wall No	os 29/31 Rear	Section	<u>1</u>								
Roof to Grd F	<u>lr.</u>										
Permanent	Patio roof Stack above	U	2.45	2.00	3.50	3.50	0.50	8.58	8.58		
	r'f 0.4m2 net 225 wall roof-	U	21.53	0.07	4.00	4.00	1.00	5.74	5.74		
	1st Stack r'f-grd	U	5.34	1.00	3.25	3.25	1.00	17.37	17.37		
	0.6m2 net 340 wall 1st-	U	21.53	0.10	5.80	5.80	1.00	12.49	12.49		
	grd	U	7.82	1.00	2.84	2.84	1.00	22.21	22.21		
	1st flr Total at Grd	U	0.59	2.00	3.50	3.50	0.50	2.07	2.07		
	(KN/m)							<u>68.45</u>	<u>68.45</u>		
<u>Variable</u>	Patio roof	U	1.50	2.00	3.50	3.50	0.50	5.25	5.25		
	1st Flr. Total at Grd	U	1.50	2.00	3.50	3.50	0.50	5.25	<u>5.25</u>		
	(KN/m)							10.50	10.50		

 Prepared by: MLE
 Units: kN meter
 Page: 12

 Date: 14/07/19

				LOUID IFOT					5.4.7.5	100 055	OUEET	DEVIOLON I
31 Willoughby Proposed Bas				Charac	cteristic	Membe	er Actio	ns	4/19	JOB REF. G1808	SHEET 9	REVISION
Member/Case	Load s	ource	Туре	Unit load	Factor	W idth/	height	Prop'n	Va	lue	(m) fro	m End 1
						Start	End		Start	End	Start	End
Party Wall No	os 29/31	Rear	Section	1 Conto	<u>t</u>							
340mm Party	wall Gr	d-Ftg (1	.5m de	ep)								
Permanent	Wall		U	7.32	1.00	1.00	1.00	1.00	7.32	7.32		
	Stack ⁻	1.2m2	U	21.53	0.30	1.00	1.00	1.00	6.46	6.46		
	Ftg spi	read	U	21.53	0.23	0.63	0.63	1.00	3.03	3.03		
	Concre	ete	U	23.00	0.30	0.90	0.90	1.00	6.21	6.21		
	Total (I	KN/m)							23.02	23.02		
Front Bay wa	<u>ll</u>											
Roof-grd												
Permanent	Tiled ro	oof	U	1.10	1.00	1.00	1.00	0.50	0.55	0.55		
	1st flr		U	0.59	1.00	1.00	1.00	0.50	0.30	0.30		
	225 bri		U	5.09	1.00	6.80	6.80	1.00	34.64	34.64		
	fenest'		U	-4.54	7.00	0.29	0.29	1.00	<u>-9.07</u>	-9.07		
	Total (I	KN/m)							26.42	26.42		
Variable	Tiled ro	oof	U	0.60	1.00	1.00	1.00	0.50	0.30	0.30		
	1st flr		U	1.50	1.00	1.00	1.00	0.50	0.75	<u>0.75</u>		
	Total (I	KN/m)							1.05	1.05		
Grd-Ftg												
Permanent	225mn	n brick	U	4.84	1.00	1.00	1.00	1.00	4.84	4.84		
	340mn	n brick	U	7.32	1.00	1.00	1.00	1.00	7.32	7.32		
	Concre	ete	U	5.52	1.00	1.00	1.00	1.00	<u>5.52</u>	<u>5.52</u>		
	Total (I	KN/m)							<u>17.68</u>	<u>17.68</u>		

 Page : 13

 Prepared by: MLE
 Units: kN meter
 Date: 14/07/19

PROJECT	, , , , , , , , , , , , , , , , , , , ,		SUBJECT					DATE	JOB REF.	SHEET	REVISION
31 Willoughb	y Road NW3 1F sement Extensi			cteristic	Membe	er Actio	ns	4/19	G1808		REVISION
Member/Cas	e Load source	Туре	Unit load	Factor	W idth/	/height	Prop'n	Va	lue	(m) fro	m End 1
					Start	End		Start	End	Start	End
Eaves partit	ions at 3rd floo	or(unit	<u>load)</u>								
Permanent	Roof	U	0.64	1.00	4.50	4.50	0.50	1.45	1.45		
	Self wt	U	1.22	1.00	1.00	1.00	1.00	1.22	1.22		
	Total							2.67	2.67		
Variable	Roof	U	0.60	1.00	4.50	4.50	0.50	1.35	1.35		
Internal cros	swall at Grd. F	Ir. (1m	<u>& 0.75</u>	m long	wing	walls 1	st-Grd.)			
Permanent	Eaves partn	U	2.67	5.14	1.00	1.00	0.39	5.34	5.34		
	3rd-1st . Flrs	U	0.59	7.71	9.00	9.00	0.50	20.48	20.48		
	1st flr partn. Self wt stud	U	1.22	2.57	3.30	3.30	0.67	6.90	6.90		
	3rd-1st SW brick wall	U	1.22	2.57	6.20	6.20	1.00	19.45	19.45		
	grd flr	U	2.91	1.00	3.35	3.35	1.00	<u>9.75</u>	9.75		
	Total at grd (K							52.17	52.17		
Variable	Eaves partn	U	1.35	5.14	1.00	1.00	0.39	2.70	2.70		
	3rd-1st floors	U	1.50	7.71	9.00	9.00	0.50	52.07	52.07		
	Total at grd (K	N/m)						54.77	54.77		
Internal cros	sswall to 1st &	1st. Fli	<u>.</u>								
Permanent	Eaves partn	U	2.67	2.00	1.00	1.00	0.39	2.08	2.08		
	3rd-1st . Flrs	U	0.59	3.00	9.00	9.00	0.50	7.97	7.97		
	1st flr partn. Self wt stud	U	1.22	1.00	3.30	3.30	0.67	2.68	2.68		
	3rd-1st	U	1.22	1.00	6.20	6.20	1.00	7.56	7.56		
	Total at 1st flr	soffit (k	(N/m)					20.29	20.29		
Variable	Eaves partn	U	1.35	2.00	1.00	1.00	0.39	1.05	1.05		
	3rd-1st floors	U	1.50	3.00	9.00	9.00	0.50	20.25	20.25		
	Total at 1st flr	soffit (k	(N/m)					21.30	21.30		

 Prepared by: MLE
 Units: kN meter
 Page: 14

 Date: 14/07/19

PROJECT	1			SUBJECT					DATE	JOB REF.	SHEET	REVISION
31 Willoughb Proposed Ba					cteristic	Membe	er Actio	ns	4/19	G1808		REVISION
Member/Cas	1	Load source Typ			Factor	Width/	height/	Prop'n	Va	lue	(m) fro	m End 1
						Start	End		Start	End	Start	End
Main front w	<u>all</u>											
1m wide left s	section be	earing	on 29/3	1 party	wall ab	ove ent	rance					
Permanent	Roof		U	0.64	1.00	1.50		0.50	0.48			
	Eaves p	artns	U	2.67	1.00	1.00		0.67	1.78			
	3rd flr		U	0.59	1.00	4.50		0.50	1.33			
	2nd flr		U	0.59	1.00	4.50		0.50	1.33			
	1st flr		U	0.59	1.00	4.50		0.50	1.33			
	Wall roo		U	5.09	1.00	2.90		1.00	14.77			
	0.8m2	uows	U	-4.79	0.80	1.00		1.00	-3.84			
		Wall 2nd-1st Ddt windows		7.57	1.00	3.30		1.00	24.98			
	1.8m2	uows	U	-7.27	1.00	1.00		1.00	<u>-7.27</u>			
	Total (K	N/m)							34.89			
Variable	Roof		U	0.60	1.00	1.50		0.50	0.45			
	Eaves p	artns	U	1.35	1.00	1.00		0.67	0.90			
	3rd-1st	floors	U	1.50	3.00	4.50		0.50	<u>10.13</u>			
	Total (K	N/m)							11.48			
340mm wall		2.5m d										
Permanent	Wall		U	7.32	1.00	2.00	2.00		14.64			
	Ftg spre		U	21.53		0.63	0.63		3.03			
	Concret		U	23.00	0.30	0.90	0.90	1.00	6.21	6.21		
	Total (K	N/m)							23.88	23.88		

 Prepared by: MLE
 Units: kN meter
 Page: 15

 Date: 14/07/19

PROJECT 31 Willoughby	y Road NW3 1I	RT	SUBJECT					DATE	JOB REF.	SHEET	REVISION
	sement Extens			cteristic	Membe	er Actio	ns	4/19	G1808		
Member/Case	Load source	Туре	Unit load	Factor	W idth/	/height	Prop'n	Va	lue	(m) fro	om End 1
					Start	End		Start	End	Start	End
Main front w	all Contd.										
Left side of ba	ay, 1m long at 0	Grd Flr									
Permanent	Roof	U	0.64	2.50	1.50	1.50	0.50	1.21	1.21		
	Eaves partns	U	2.67	2.50	1.00	1.00	1.00	6.67	6.67		
	3rd-1st floors	U	0.59	7.50	4.50	4.50	0.50	9.96	9.96		
	Wall 3rd-2nd	U	5.09	2.50	2.90	2.90	1.00	36.93	36.93		
	Ddt windows 2.4m2	U	-4.79	2.40	1.00	1.00	1.00	-11.51	-11.51		
	Wall 2nd-1st	U	7.57	1.50	3.30	3.30	1.00	37.47	37.47		
	Ddt windows 1m2	U	-7.27	1.00	1.00	1.00	1.00	-7.27	-7.27		
	Wall 1st-Grd	U	7.57	1.00	3.35	3.35	1.00	25.36	<u>25.36</u>		
	Total (KN/m)							98.83	98.83		
Variable	Roof	U	0.60	2.50	1.50	1.50	0.50	1.13	1.13		
	Eaves partns	U	1.35	2.50	1.00	1.00	1.00	3.38	3.38		
	3rd-1st floors	U	1.50	7.50	4.50	4.50	0.50	25.31	25.31		
	Total (KN/m)							29.81	29.81		
Right (No.33)	side of bay, 1n	n long a	t Grd F	<u>lr</u>							
Permanent	Roof	U	0.64	2.00	1.50	1.50	0.50	0.97	0.97		
	Eaves partns	U	2.67	2.00	1.00	1.00	1.00	5.34	5.34		
	3rd-1st floors	U	0.59	6.00	4.50	4.50	0.50	7.97	7.97		
	Wall 3rd-2nd	U	5.09	2.00	2.90	2.90	1.00	29.55	29.55		
	Ddt windows 1.6m2	U	-4.79	1.60	1.00	1.00	1.00	-7.67	<u>-7.67</u>		
	Wall 2nd-Grd	U	7.57	1.00	6.35	6.35	1.00	48.07	48.07		
	Total (KN/m)							84.22	84.22		

 Prepared by: MLE
 Units: kN meter
 Page: 16

 Date: 14/07/19

31 Willoughby Road NW 3 1RT Characteristic Member Actions 4/19 G1808 13	PROJECT		1	SUBJECT				1	DATE	JOB REF.	SHEET	REVISION
Namin Nam	31 Willoughb				teristic	Membe	er Actio	ns				REVISION
Main front wall Contd. Start End Start End Start End Start End Start End Main front wall Contd. Main front wall Contd. Image: colspan="2">Start Image: colspan="2">S	Member/Cas	e Load source	Туре		Factor	Width/	height	Prop'n	Va	lue	(m) fro	m End 1
Right (No.33) side of bay, 0.8m long at Grd Fir Contd Variable Roof U 0.60 3.13 1.50 1.50 0.50 1.41 1.41						Start	End		Start	End	Start	End
Variable Roof U 0.60 3.13 1.50 1.50 0.50 1.41 1.41 Eaves partns U 1.35 3.13 1.00 1.00 1.00 4.22 4.22 3rd-1st floors U 1.50 9.38 4.50 4.50 0.50 31.64 31.64 Total (KN/m) Image: control of the control	Main front w	all Contd.										
Eaves partns U 1.35 3.13 1.00 1.00 1.00 4.22 4.22 3rd-1st floors U 1.50 9.38 4.50 4.50 0.50 31.64 31.64 Total (KN/m) Main rear wall Left(No.33) side of bay, 0.7m long at Grd FIr Permanent Roof U 0.64 1.79 1.50 1.50 0.50 0.86 0.86 Eaves partns U 2.67 1.79 1.00 1.00 1.00 14.30 14.30 3rd-1st floors U 0.59 5.36 4.50 4.50 0.50 7.11 7.11 Wall 3rd-2nd U 5.09 1.79 2.90 2.90 1.00 26.38 26.38 Ddt windows 0.8m2 U -4.79 1.14 1.00 1.00 1.00 -5.48 -5.48 Wall 2nd-1st U 7.57 1.79 3.30 3.30 1.00 44.61 44.61 Ddt windows 1m2 Wall 1st-Grd U 7.57 1.43 1.00 1.00 1.00 -10.39 -10.39 Wall 1st-Grd U 7.57 1.43 3.35 3.35 1.00 36.23 36.23 Total (KN/m) Variable Roof U 0.60 1.79 1.50 1.50 0.50 0.80 0.80 Eaves partns U 1.35 1.79 1.00 1.00 1.00 2.41 2.41 3rd-1st floors U 1.50 5.36 4.50 4.50 0.50 18.08 18.08 Total (KN/m) Left(No.33) side of bay, 0.7m long at soffit 1st Fir Permanent As above Deduct wall 1s	Right (No.33)	side of bay, 0.8	3m long	at Grd	Flr Con	<u>td</u>						
Strict floors U 1.50 9.38 4.50 4.50 0.50 31.64 31.64 Total (KN/m)	Variable	Roof	U	0.60	3.13	1.50	1.50	0.50	1.41	1.41		
Total (KN/m)		Eaves partns	U	1.35	3.13	1.00	1.00	1.00	4.22	4.22		
Main rear wall Left(No.33) side of bay, 0.7m long at Grd Fir Permanent Roof U 0.64 1.79 1.50 1.50 0.50 0.86 0.86 Eaves partns U 2.67 1.79 1.00 1.00 1.00 1.00 14.30 14.30 3rd-1st floors U 0.59 5.36 4.50 4.50 0.50 7.11 7.11 Wall 3rd-2nd U 5.09 1.79 2.90 2.90 1.00 26.38 26.38 Ddt windows 0.8m2 U -4.79 1.14 1.00 1.00 1.00 -5.48 -5.48 Wall 2nd-1st Ddt windows 1m2 U -7.57 1.79 3.30 3.30 3.30 1.00 44.61 44.61 Ddt windows 1m2 U -7.27 1.43 1.00 1.00 1.00 -10.39 -10.39 Wall 1st-Grd U 7.57 1.43 3.35 3.35 1.00 36.23 36.23 Total (KN/m) Variable Roof U 0.60 1.79 1.50 1.50 0.50 0.80 0.80 Eaves partns U 1.35 1.79 1.00 1.00 1.00 2.41 2.41 3rd-1st floors U 1.50 5.36 4.50 4.50 0.50 18.08 18.08 Total (KN/m) Left(No.33) side of bay, 0.7m long at soffit 1st Fir Permanent As above Deduct wall 1s -36.23 -36.23 -36.23 -36.23		3rd-1st floors	U	1.50	9.38	4.50	4.50	0.50	31.64	31.64		
Left(No.33) side of bay, 0.7m long at Grd Fir U 0.64 1.79 1.50 1.50 0.50 0.86 0.86 Permanent Roof U 0.64 1.79 1.50 1.50 0.50 0.86 0.86 Eaves partns U 2.67 1.79 1.00 1.00 1.00 14.30 14.30 3rd-1st floors U 0.59 5.36 4.50 4.50 0.50 7.11 7.11 Wall 3rd-2nd U 5.09 1.79 2.90 2.90 1.00 26.38 26.38 Ddt windows 0.8m2 U -4.79 1.14 1.00 1.00 1.00 -5.48 -5.48 Wall 2nd-1st U 7.57 1.79 3.30 3.30 1.00 44.61 44.61 Ddt windows 1m2 U -7.27 1.43 1.00 1.00 1.00 -10.39 -10.39 Wall 2nd-1st U 7.57 1.43 3.35 3.35		Total (KN/m)							37.27	37.27		
Permanent Roof U 0.64 1.79 1.50 1.50 0.50 0.86 0.86	Main rear wa	all										
Eaves partns U 2.67 1.79 1.00 1.00 1.00 14.30 14.30 3rd-1st floors U 0.59 5.36 4.50 4.50 0.50 7.11 7.11 Wall 3rd-2nd U 5.09 1.79 2.90 2.90 1.00 26.38 26.38 Ddt windows 0.8m2 U -4.79 1.14 1.00 1.00 1.00 -5.48 -5.48 Wall 2nd-1st Ddt windows 1m2 U -7.27 1.43 1.00 1.00 1.00 -10.39 -10.39 Wall 1st-Grd U 7.57 1.79 3.30 3.35 1.00 36.23 36.23 Total (KN/m)	Left(No.33) s	ide of bay, 0.7m	long a	t Grd FI	<u>r</u>							
3rd-1st floors	Permanent	Roof	U	0.64	1.79	1.50	1.50	0.50	0.86	0.86		
Wall 3rd-2nd		Eaves partns	U	2.67	1.79	1.00	1.00	1.00	14.30	14.30		
Ddt windows U -4.79 1.14 1.00 1.00 1.00 -5.48 -5.48		3rd-1st floors	U	0.59	5.36	4.50	4.50	0.50	7.11	7.11		
0.8m2			U	5.09	1.79	2.90	2.90	1.00	26.38	26.38		
Ddt windows 1m2			U	-4.79	1.14	1.00	1.00	1.00	-5.48	-5.48		
1m2			U	7.57	1.79	3.30	3.30	1.00	44.61	44.61		
Total (KN/m) Variable Roof U 0.60 1.79 1.50 1.50 0.50 0.80 0.80 Eaves partns U 1.35 1.79 1.00 1.00 1.00 2.41 2.41 3rd-1st floors U 1.50 5.36 4.50 4.50 0.50 18.08 18.08 Total (KN/m) 21.29 Left(No.33) side of bay, 0.7m long at soffit 1st Flr Permanent As above Deduct wall 1s -36.23 -36.23			U	-7.27	1.43	1.00	1.00	1.00	-10.39	-10.39		
Variable Roof U 0.60 1.79 1.50 1.50 0.50 0.80 0.80 Eaves partns U 1.35 1.79 1.00 1.00 1.00 2.41 2.41 3rd-1st floors U 1.50 5.36 4.50 4.50 0.50 18.08 18.08 Total (KN/m) 21.29 21.29 21.29 Left(No.33) side of bay, 0.7m long at soffit 1st Flr 113.63 113.63 Permanent As above 113.63 -36.23 -36.23		Wall 1st-Grd	U	7.57	1.43	3.35	3.35	1.00	36.23	36.23		
Eaves partns U 1.35 1.79 1.00 1.00 1.00 2.41 2.41 3rd-1st floors U 1.50 5.36 4.50 4.50 0.50 18.08 18.08 Total (KN/m) 21.29 21.29 Left(No.33) side of bay, 0.7m long at soffit 1st Flr Permanent As above 113.63 113.63 Deduct wall 1s -36.23 -36.23		Total (KN/m)							113.63	113.63		
3rd-1st floors U 1.50 5.36 4.50 4.50 0.50 18.08 18.08 Total (KN/m) 21.29 21.29 Left(No.33) side of bay, 0.7m long at soffit 1st Flr Permanent As above 113.63 113.63 Deduct wall 1s -36.23 -36.23	Variable	Roof	U	0.60	1.79	1.50	1.50	0.50	0.80	0.80		
Total (KN/m) Left(No.33) side of bay, 0.7m long at soffit 1st Flr Permanent As above 113.63 113.63 Deduct wall 1s -36.23 -36.23		Eaves partns	U	1.35	1.79	1.00	1.00	1.00	2.41	2.41		
Left(No.33) side of bay, 0.7m long at soffit 1st Flr Permanent As above 113.63 113.63 Deduct wall 1s -36.23 -36.23		3rd-1st floors	U	1.50	5.36	4.50	4.50	0.50	18.08	18.08		
Permanent As above 113.63 113.63 Deduct wall 1s -36.23 -36.23		Total (KN/m)							21.29	21.29		
Deduct wall 1s -36.23 -36.23	Left(No.33) s	ide of bay, 0.7m	long a	t soffit 1	st Flr							
	Permanent	As above							113.63	113.63		
Total (KN/m) 77.40 77.40		Deduct wall 1s							-36.23	-36.23		
		Total (KN/m)							77.40	77.40		

 Page : 17

 Prepared by: MLE
 Units: kN meter
 Date: 14/07/19

PROJECT					SUBJECT					DATE	JOB REF.	SHEET	REVISION
31 Willou Proposed						cteristic	Membe	er Actio	ns	4/19	G1808	14	
Member/	ear wall Contd				Unit load	Factor	Width/	height	Prop'n	Va	lue	(m) fro	m End
							Start	End		Start	End	Start	End
Main rea	ır wa	II Cont	<u>d</u>										
Mid secti	on of	wall 2m	long a	t Grd F	<u>lr</u>								
Permane	nt	Roof		U	0.56	1.75	1.50	1.50	0.50	0.74	0.74		
		Eaves 3rd-	partns	U	2.67	1.75	1.00	1.00	1.00	4.67	4.67		
		1st		U	0.59	5.25	4.50	4.50	0.50	6.97	6.97		
		Wall 3r Ddt wir		U	5.09	1.75	2.90	2.90	1.00	25.85	25.85		
		2m2	idows	U	-4.79	1.00	1.00	1.00	1.00	-4.79	-4.79		
		Wall 2r Ddt wir		U	7.57	1.25	6.35	6.35	1.00	60.09	60.09		
		2.25m2		U	-7.27	1.13	1.00	1.00	1.00	<u>-8.18</u>	<u>-8.18</u>		
		Total (I	KN/m)							85.34	85.34		
		Total at 1st flr soffit(KI		N/m)					65.31	<u>65.31</u>			
Variable		Roof		U	0.60	1.75	1.50	1.50	0.50	0.79	0.79		
		Eaves	partns	U	1.35	1.75	1.00	1.00	1.00	2.36	2.36		
		3rd-1st	t floors	U	1.50	5.25	4.50	4.50	0.50	17.72	17.72		
		Total (I	KN/m)							20.87	20.87		
Right(No	.29) s	ide, 1m	long s	upporte	ed at 2n	d flr.							
Permane	<u>nt</u>	Roof		U	0.56	1.00	1.50	1.50	0.50	0.42	0.42		
		Eaves	partns	U	2.67	1.00	1.00	1.00	1.00	2.67	2.67		
		3rd-2n	d flrs	U	0.59	1.00	4.50	4.50	0.50	1.33	1.33		
ı		Wall 3r Ddt wir		U	5.09	1.00	3.70	3.70	1.00	18.85	18.85		
		1.25m2 Total(K	2	U	-4.79	1.25	1.00	1.00	1.00	-5.99	-5.99		
		on bea								17.27	17.27		
Variable		Roof		U	0.60	1.75	1.50	1.50	0.50	0.79	0.79		
		Eaves	partns	U	1.35	1.75	1.00	1.00	1.00	2.36	2.36		
3rd-1st floors U Total(KN/m)			1.50	5.25	4.50	4.50	0.50	17.72	<u>17.72</u>				
		on bea	-							20.87	20.87		

 Prepared by: MLE
 Units: kN meter
 Page: 18

 Date: 14/07/19

PROJECT			SUBJECT					DATE	JOB REF.	SHEET	REVISION
31 Willoughby	Road NW3 1F sement Extens			cteristic	Membe	er Actio	ns	4/19	G1808	15	REVISION
Member/Case	Load source	Туре	Unit load	Factor	Width/	height	Prop'n	Value		(m) fro	m End
					Start	End		Start	End	Start	End
Rear extens	ion flank & rea	ar walls	<u> </u>								
Flank wall at 1	Ist floor										
Permanent	Patio roof	U	2.45	1.00	3.50	3.50	0.50	4.29	4.29		
	1st Floor	U	0.59	1.00	3.50	3.50	0.50	1.03	1.03		
	Wall roof-1st	U	5.09	1.00	3.75	3.75	1.00	19.10	19.10		
	Total (KN/m)							24.42	24.42		
Variable	Roof	U	1.50	1.75	3.50	3.50	0.50	4.59	4.59		
	1st Floor	U	1.50	1.75	3.50	3.50	0.50	4.59	4.59		
	Total (KN/m)							9.19	9.19		
Rear wall at 1	st floor										
<u>Permanent</u>	Wall roof-1st	U	5.09	1.00	3.75	3.75	1.00	<u>19.10</u>	<u>19.10</u>		
<u>Longitudinal</u>	wall adj stair										
3rd-1st flr											
<u>Permanent</u>	Stud wall	U	1.22	1.00	7.70	7.70	1.00	9.39	9.39		
	Floors	U	0.59	3.00	2.00	2.00	0.50	<u>1.77</u>	<u>1.77</u>		
	Total (KN/m)							<u>11.16</u>	<u>11.16</u>		
<u>Variable</u> 1st-Grd floor	Floors	U	1.50	3.00	2.00	2.00	0.50	4.50	4.50		
brick 2.4m	Wall	U	2.91	1.88	3.35	3.35	1.00	18.29	18.29		

 Prepared by: MLE
 Units: kN meter
 Page: 19

 Date: 14/07/19

IECT		Daad	11412 4 12	_	SUBJECT			DATE	JOB REF.	SHEET	REVISIO
			NW3 1R Extension		Load S	Summaries		4/19	G1808	16	
	EVICE	NO DI II				. 1:0:		000 04 0	044 0	0.7	
<u>!</u>	EXISTI	NG BUI	LDINGS	: Refer	to curi	ent editions	s of drawings G1 Main rear wa		υ1 το υ	07	
<u> </u>	Front B	ay	Perm.	Var.		Page	adj PW33	Perm.	Var.		Page
-	Total to	Grd	26.42	1.05		B4	Total-Grd	113.63	21.29	KN/m	В8
(Grd-Fto	3	<u>17.68</u>			B4	Grd-Ftg	23.88			B4
-	Total to	Ftg	44.11	1.05	KN/m		Total at Ftg	137.51	21.29	KN/m	
		J									
							Main rear wa	_			
							mid section	Perm.	Var.		Page
							Total-Grd	85.34	20.87		В9
		U					Grd-Ftg	23.88			B4
	<u>Front ₩</u> adj PW		Perm.	Var.		Page	Total at Ftg	109.22	20.87	KN/m	
-	Total-G	ird	34.89	11.48		В6					
							Main rear wa	_	.,		_
	Grd-Fto	3	23.88			B4	adj PW29	Perm.	Var.		Page
-	Total at	t Ftg	58.77	11.48	KN/m		Total on bea	m <u>17.27</u>	20.87	KN/m	B9
	Lront W	V OII					Rear wall				
	Front V LHS Ba		Perm.	Var.		Page	back extn	Perm.	Var.		Page
-	Total at	t Grd	98.83	29.81		B7	Total at 1st	19.10		KN/m	B10
				20.01			Total at 10t	10.10		1314/111	D 10
-	Grd-Ftg	3	23.88			B4	Flank wal				
			122.70	29.81	KN/m		back extn Lotal on	Perm.	Var.		Page
	Front V	V all					beam at 1st	24.42	9.19	KN/m	B10
-	adj PW		Perm.	Var.		Page					
-	Total at	t Grd	84.22	37.27		B7/8	Party Wall 3	3 Perm.	Var.		Page
	Grd-Ftg		23.88			B4	Total at Grd	123.74	4.95		B2/3
	J. 4 1 10	1			I/NI/mr				7.00		
			108.09	37.27	r\IV/M		Grd-Ftg	28.61			В3
	Internal	cross						152.36	4.95	KN/m	
	wall UDL		Perm.	Var.		Page					
	in		<u>52.17</u>	<u>54.77</u>	KN/m	B5					

 Prepared by: MLE
 Units: kN meter
 Page: 20

 Date: 14/07/19

PROJECT					SUBJECT					DATE	JOB REF.	SHEET	REVISION
	lloughby Ro sed Basem				Load S	Summai	ies			4/19	G1808	17	
	EXISTING	BUILD	INGS:	Refer	to curr	ent edit	ions of	drawin	gs G18	08-GA-0	01 to 00	07	
	Wall adj s	toir											
	to grd		erm.	Var.		Page							
	Total to 1s	st 1	1.16	4.50		B10							
	1st-grd br 2.4m long		8.29			B10							
	Total to G	rd <u>2</u>	9.45	<u>4.50</u>	KN/m								
	PW 29 fro	ont Pe	erm.	Var.		Page							
	Total to gr	rd 9	7.44	9.40		B1							
	Grd-ftg	28	3. <u>61</u>			B1							
	Toptal to F	Ftg <u>12</u>	6.06	9.40	KN/m								
	PW 29 rea	ar Pe	erm.	Var.		Page							
	Total to gr	rd 6	8.45	10.50		В3							
	Grd-ftg	<u>23</u>	3.02			B4							
	Toptal to F	Ftg <u>9</u>	1.46	10.50	KN/m								

 Page : 21

 Prepared by: MLE
 Units: kN meter
 Date: 14/07/19

lloughby Boo	4 VI/V/3 4D	т	SUBJECT		DATE	JOB REF.	SHEET
lloughby Roa sed Baseme			Load Sum	maries	4/19	G1808	18
EXISTING E	UILDINGS	: Refer	to current	editions of drawing	ıs G1808-GA-0	001 to 00)7
Total existin	g footing lo	oads					
Wall	Perm.	Var.	Length	Total Perm.	Total Var.		
Front Bay Front Wall	44.11	1.05	5.00	220.53	5.25		
adj PW 29 Front Wall	58.77	11.48	2.00	117.54	22.96		
LHS Bay Front Wall	122.70	29.81	1.00	122.70	29.81		
adj PW33 Internal cros	108.09	37.27	1.00	108.09	37.27		
wall Main rear w	52.17	54.77	5.50	286.94	301.24		
adj PW33 Main rear w	137.51 all	21.29	1.00	137.51	21.29		
mid section Main rear w	109.22 all	20.87	2.00	218.44	41.74		
adj PW29 Rear wall	17.27	20.87	1.70	29.36	35.48		
back extn Flank wal	19.10		3.50	66.86	0.00		
back extn	24.42	9.19	7.50	183.18	68.91		
Party Wall 3 Wall adj sta	<u>ir</u>			1447.40	47.03		
to grd	29.45	4.50		132.53	20.25		
PW 29 from		9.40		1197.53	89.30		
PW 29 rear	91.46	10.50	7.00	640.25 4908.87	73.50 794.02		
				4900.01	<u> 194.02</u>		

 Prepared by:
 MLE
 Units:
 kN meter
 Date:
 14/07/19

STRAP LOADS INPUT

Load no. 1: Permanent SLS (units - kN meter) BEAM LOADS SELF X3 -1. B 1 TO 10 12 TO 35 DIST GL FX3 -20.39 B 31 30 BEAM LOADS DIST GL FX3 -19.1 B 18 DIST GL FX3 -24.42 B 17 20 27 DIST GL FX3 -11.16 B 33 DIST GL FX3 -18.29 B 32 DIST GL FX3 -63.88 B 25 DIST GL FX3 -7.08 B 15 14 DIST GL FX3 -18.76 B 16 DIST GL FX3 -20.36 B 21 TO 23 DIST GL FX3 -24.43 B 28 29 BEAM LOADS SELF X3 -1. B 38 37 36 DIST GL FX3 -10.98 B 38 / END FORCE SUMMATION

Load no. 2: Variable SLS (units - kN meter)

```
/ BEAM LOADS
DIST GL FX3 -21.3 B 31 30
DIST GL FX3 -4.5 B 33
DIST GL FX3 -20.87 B 25
DIST GL FX3 -20.87 B 24
DIST GL FX3 -20.87 B 26
DIST GL FX3 -9.19 B 17 20 27
DIST GL FX3 -1.8 B 15 14
DIST GL FX3 -4.8 B 16
DIST GL FX3 -5.17 B 21 TO 23
DIST GL FX3 -6.2 B 28 29
/ END
F O R C E S U M M A T I O N
```

FX1=0. kN FX2=0. kN FX3=-403.75 kN

*** PDELTA EFFECT WILL BE COMPUTED ***

*** PDELTA EFFECT WILL BE COMPUTED ***

Load no. 3: Wind +X2 (units - kN meter)

GLOBAL LOADS

FX1=0. kN FX2=0. kN FX3=-1029.2 kN

* WIND NAME Panel no. 1

WIND PARAM EC1BS HEI X3 0. DIR +X2 TABLE 3

WIND VAL B 30. CT 1. QREF 308.17 SEA 100. TOWN 1.

* WIND CP 1.15 ALL

WIND ON BEAM -8.15 3.02 6.5 -3.105 3.317 6.5 -3.105 3.317 3.6 0. C

* WIND ON 2.9 E

DIST 0.6336 PLANE -8.15 3.02 6.5 -3.105 3.317 6.5 -3.105 3.317

3.6 P 0. 2.9 BEAMS

3.6 P 0. 2.9 BEA * WIND END

* WIND NAME Panel no. 2

* WIND PARAM EC1BS HEI X3 0. DIR +X2 TABLE 3

* WIND VAL B 30. CT 1. QREF 308.17 SEA 100. TOWN 1.

* WIND CP -1. ALL

* WIND ON BEAM -7.8 -0.46 3.6 -7.8 -0.46 6.5 -8.15 3.02 6.5 0. 3.4976 E

Page: 23 Prepared by: MLE Units: kN meter Date: 14/07/19

Load no. 3: Wind +X2 (units - kN meter)

DIST 0.551 PLANE -7.8 -0.46 3.6 -7.8 -0.46 6.5 -8.15 3.02 6.5

P 0. 3.4976 BEAMS * WIND END

/ END STATIC

FORCE SUMMATION

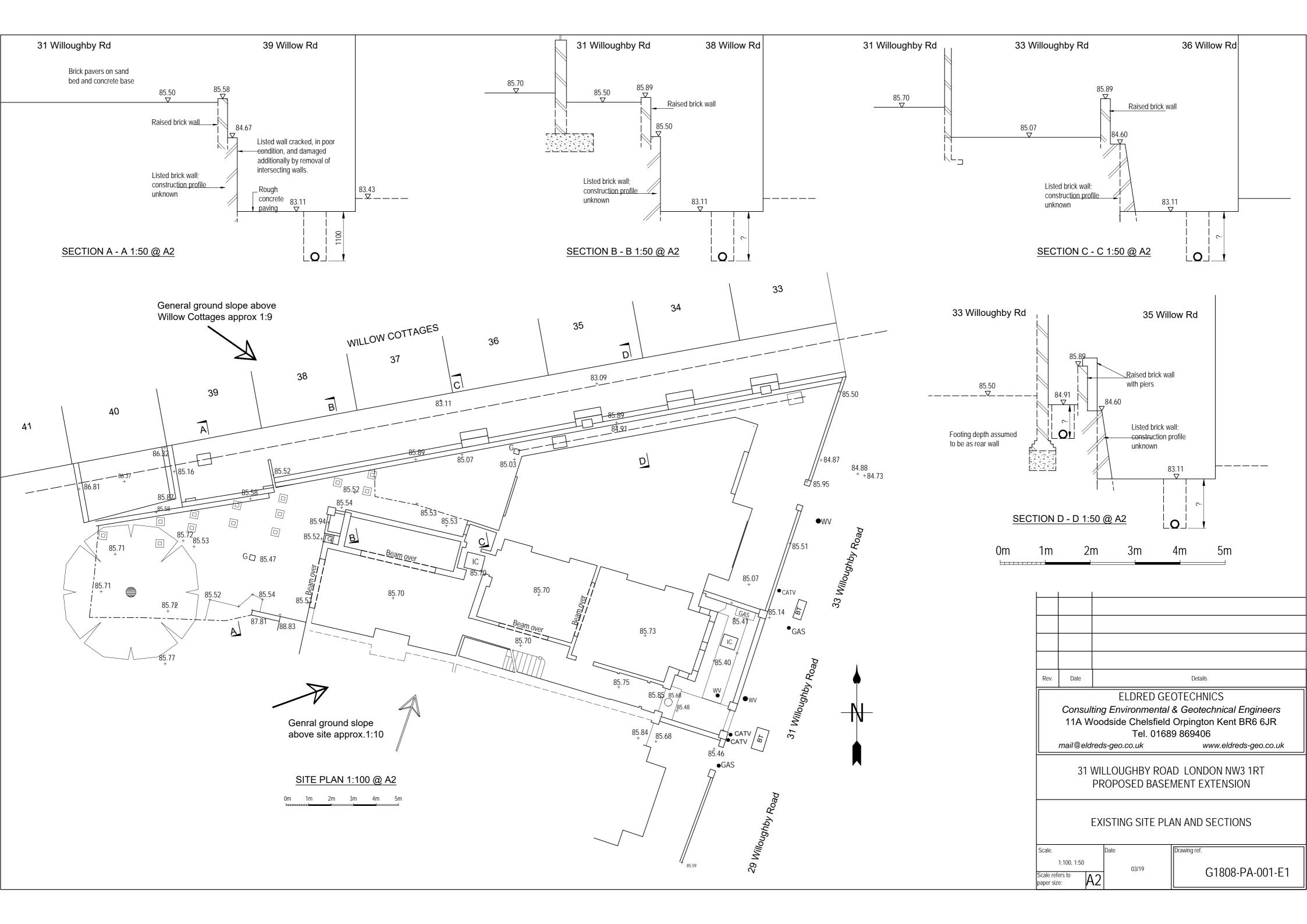
FX1=-6.1064 kN

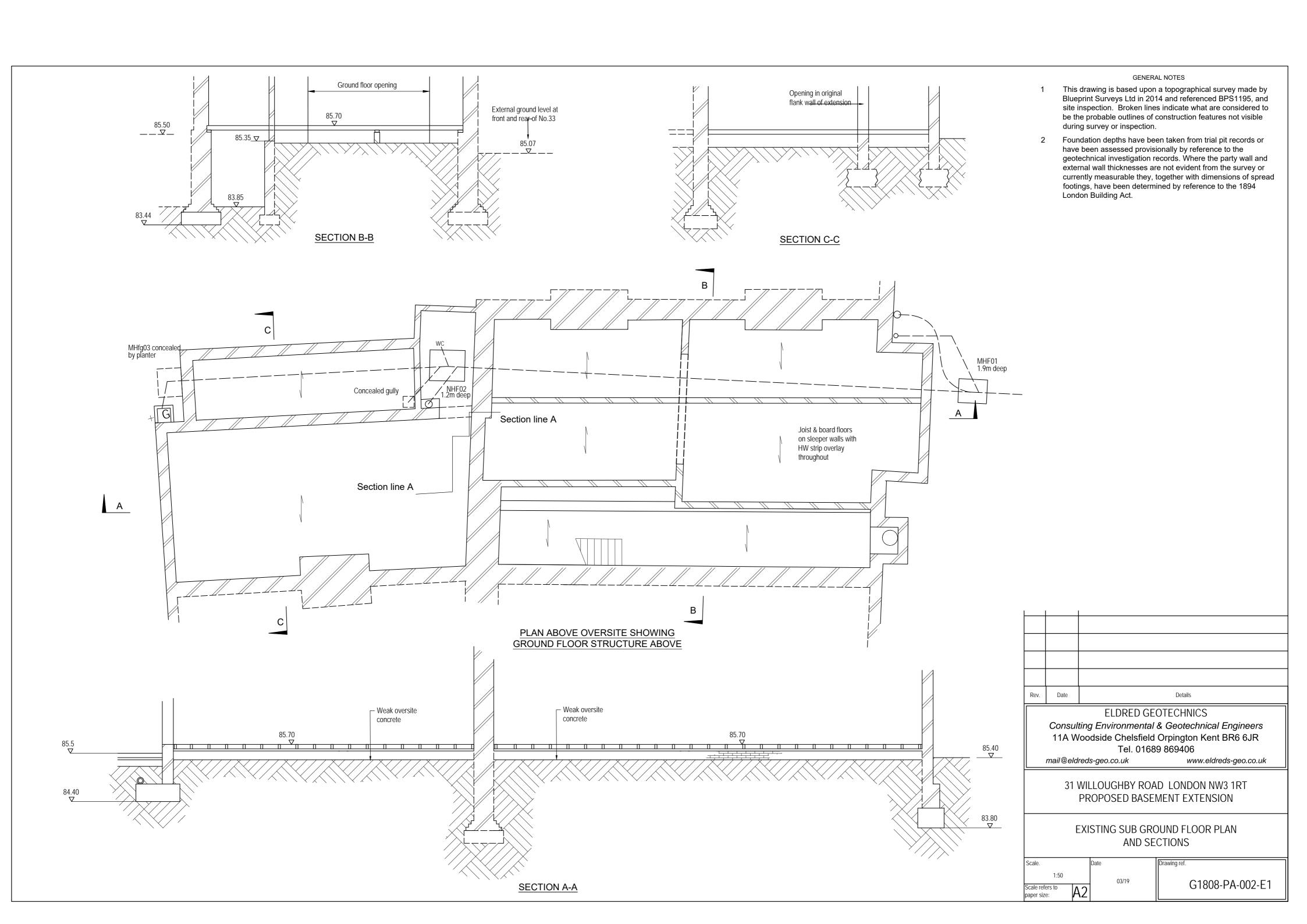
FX2=8.7107 kN

FX3=0. kN
*** PDELTA EFFECT WILL BE COMPUTED ***

Steel Member check 6

Member references: STRAP correlated to Eldreds drawings 6.1

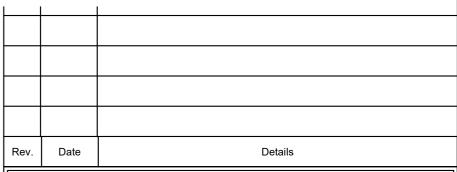

EGL	STRAP	EGL	STRAP	EGL	STRAP
B1	30,31	B10	21,22,23	C6	1
B2	24,25,26	B11	16	C7	13
В3	33	B12	15	C8	10
B4	17,27,20	B13	14	C9	7
B5	18	C1	12	C10	6
В6	37	C2	9	C11	8
B7	35	C3	3	C12	5
B8	38	C4	4		
В9	28,29	C5	2		


Results				Su	mmar	у Т	able)			
					Nsd		Vsd	М	М	Con	nbined
			Defl			Dir				Axial	+Mom
Beam	Section	Com	L/	Slen	Npl		VpI	Мс	Mb	Loc.	Over.
1	UC 152x152x23	1	9999	97	-0.14	MJ	0.00	0.02	0.02	0.09	0.16
2	UC 152x152x23	1	1861	97	-0.38	MJ	0.01	0.13	0.13	0.34	0.53
						MI	0.00	0.03	0.00		
3	UC 152x152x23	1	876	97	-0.63	MJ	0.00	0.01	0.01	0.60	0.88
						MI	0.00	0.29	0.00		
4	UC 152x152x23	1	1204	97	-0.17	MJ	0.02	0.21	0.21	0.29	0.37
5	UC 152x152x23	1	1687	78	-0.08	MJ	0.05	0.35	0.35	0.42	0.43
						MI	0.00	0.02	0.00		
6	UC 152x152x30	1	987	76	-0.17	MJ	0.07	0.37	0.37	0.39	0.62
						MI	0.01	0.26	0.00		
7	UC 152x152x30	1	932	76	-0.27	MJ	0.07	0.26	0.26	0.36	0.68
						MI	0.01	0.28	0.00		
8	UC 152x152x23	1	1210	78	-0.04	MJ	0.03	0.26	0.26	0.28	0.29
9	UC 152x152x23	1	9999	97	-0.59	MI	0.00	0.00	0.00	0.28	0.60
10	UC 152x152x23	1	9999	89	-0.35	MI	0.00	0.00	0.00	0.19	0.35
12	UC 152x152x23	1	9999	97	-0.29	MI	0.00	0.00	0.00	0.14	0.29
13	UC 152x152x23	1	9999	89	0.00	MI	0.00	0.00	0.00	0.00	0.00
14	UB 178x102x19	1	507	0	0.02	MJ	0.15	0.38	0.00	0.29	0.00
						MI	0.01	0.15	0.00		
15	UC 152x152x23	1	1825	0	0.01	MJ	0.11	0.22	0.00	0.32	0.00
						MI	0.00	0.09	0.00		

 Page : 24

 Prepared by: MLE
 Units: kN meter
 Date: 14/07/19

	Results Summary Table										
					Nsd		Vsd	М	М	Con	nbined
			Defl			Dir				Axial	+Mom_
Beam	Section	Com	L/	Slen	Npl		VpI	Мс	Mb	Loc.	Over.
16	UC 152x152x23	1	428	0	0.00	MJ	0.28	0.47	0.00	0.59	0.00
						MI	0.00	0.11	0.00		
17	UB 305x102x28	1	811	167	-0.05	MJ	0.32	0.80	0.95	0.69	0.98
						MI	0.01	0.05	0.00		
18	UC 152x152x23	1	493	94	-0.01	MJ	0.23	0.38	0.39	0.43	0.44
						MI	0.00	0.05	0.00		
19	UC 152x152x23	1	1558	84	0.00	MJ	0.11	0.14	0.14	0.14	0.14
21	UB 356x127x33	1	396	0	0.00	MJ	0.23	0.78	0.00	0.60	0.00
23	UB 305x102x25	1	1490	0	0.00	MJ	0.26	0.79	0.00	0.63	0.00
24][CHANNELS381x10	1	608	33	0.00	MJ	0.12	0.41	0.41	0.41	0.41
						MI	0.00	0.01	0.00		
28	UB 406x140x39	1	436	0	0.00	MJ	0.25	0.58	0.00	0.33	0.00
30	UB 457x152x60	1	407	121	0.00	MJ	0.23	0.60	0.71	0.36	0.71
32	UB 305x102x25	1	425	0	0.00	MJ	0.14	0.50	0.00	0.25	0.00
33	UC 203x203x46	1	504	88	0.00	MJ	0.13	0.30	0.32	0.09	0.32
34	UC 152x152x23	1	9999	11	0.04	MJ	0.01	0.01	0.01	0.06	0.01
						MI	0.00	0.01	0.00		
36	UC 152x152x23	1	1584	85	0.00	MJ	0.11	0.14	0.14	0.14	0.14
38	UC 152x152x23	1	478	91	0.00	MJ	0.12	0.35	0.37	0.35	0.37


GENERAL NOTES This drawing is based upon a topographical survey made by Blueprint Surveys Ltd in 2014 and referenced BPS1195 and site inspection. Broken lines indicate what are considered to be the probable outlines of construction features not visible during survey or inspection. No. 33 Structural materials & construction type taken to be similar to No. 31 Partition over Partition over ____ MHF02 MH concealed by planter Glazed roof over Concealed MHF01 Joist & board floors with HW strip overlay in all rooms Stairs & landings: Joist & board_ with hardboard & carpet overlay All internal walls between Beam over ground & 1st floors are solid & taken to be brick. Stairwell & timber Details trimmers over ELDRED GEOTECHNICS Consulting Environmental & Geotechnical Engineers 11A Woodside Chelsfield Orpington Kent BR6 6JR No. 29 Tel. 01689 869406 Structural materials & construction mail@eldreds-geo.co.uk www.eldreds-geo.co.uk arrangement taken to be mirrored version of No. 31 31 WILLOUGHBY ROAD LONDON NW3 1RT GROUND FLOOR PLAN SHOWING PROPOSED BASEMENT EXTENSION FIRST FLOOR STRUCTURE ABOVE EXISTING GROUND FLOOR PLAN SHOWING FIRST FLOOR STRUCTURE ABOVE 5m 1:50 03/19 G1808-PA-003-E1 Scale refers to paper size:

GENERAL NOTES This drawing is based upon a topographical survey made by Blueprint Surveys Ltd in 2014 and referenced BPS1195 and site inspection. Broken lines indicate what are considered to be the probable outlines of construction features not visible during survey or inspection. No. 33 Structural materials & construction type taken to be similar to No. 31 1st floor partitions 2nd floor partitions above shown thus Joist & board floors with HW strip overlay in all rooms Stairs & landings: Joist & board_ All internal walls between 1st & with hardboard & carpet 2nd floors are hollow & taken overlay to be stud with lath & plaster Partition above Stairwell & timber trimmers over ELDRED GEOTECHNICS No. 29 Consulting Environmental & Geotechnical Engineers Structural materials & construction 11A Woodside Chelsfield Orpington Kent BR6 6JR arrangement taken to be mirrored Tel. 01689 869406 version of No. 31 mail@eldreds-geo.co.uk www.eldreds-geo.co.uk FIRST FLOOR PLAN SHOWING SECOND FLOOR STRUCTURE ABOVE 31 WILLOUGHBY ROAD LONDON NW3 1RT PROPOSED BASEMENT EXTENSION EXISTING FIRST FLOOR PLAN SHOWING SECOND FLOOR STRUCTURE ABOVE 5m 0m 1:100, 1:50 03/19 G1808-PA-004-E1 Scale refers to paper size:

Ridge line over Eaves closure Flat roof partitions over bay Eaves closure Flat roof over partitions Patio flat roof taken as: Clay tiles asphalt bed Concrete screed Boards Joists Eaves closures &partitons over Eaves closures &partitons over Stairwell & timber 0m 2m 3m 4m 5m

GENERAL NOTES

This drawing is based upon a topographical survey made by Blueprint Surveys Ltd in 2014 and referenced BPS1195 and site inspection. Broken lines indicate what are considered to be the probable outlines of construction features not visible during survey or inspection.

ELDRED GEOTECHNICS

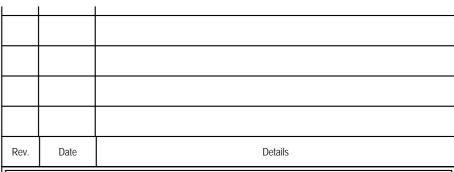
Consulting Environmental & Geotechnical Engineers
11A Woodside Chelsfield Orpington Kent BR6 6JR
Tel. 01689 869406

mail@eldreds-geo.co.uk

www.eldreds-geo.co.uk

31 WILLOUGHBY ROAD LONDON NW3 1RT PROPOSED BASEMENT EXTENSION

EXISTING SECOND FLOOR PLAN SHOWING STUDY FLOOR STRUCTURE ABOVE


03/19

G1808-PA-005-E1

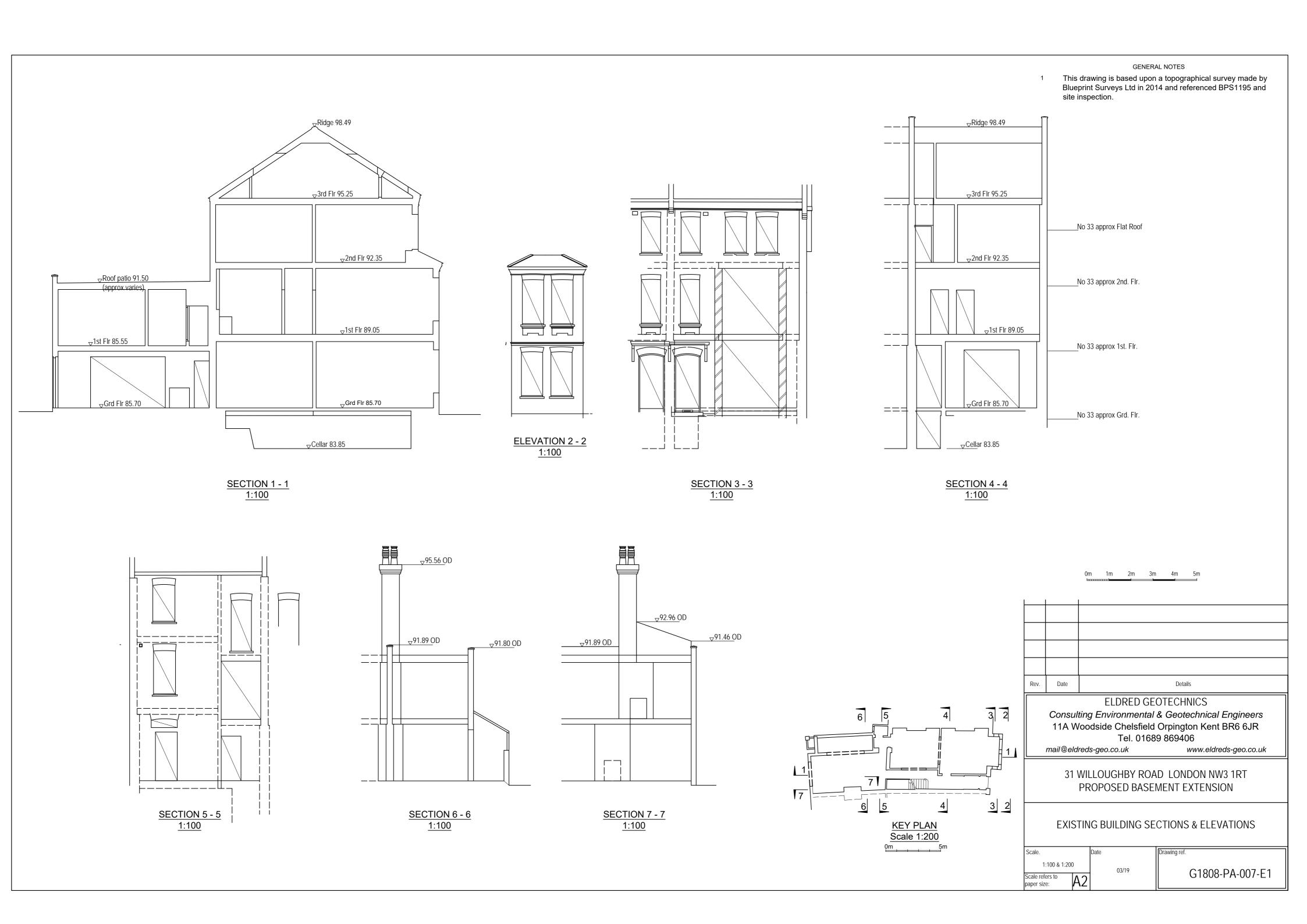
Roof 93.77mOD 3rd Floor 95.24mOD 2m 3m 4m 5m

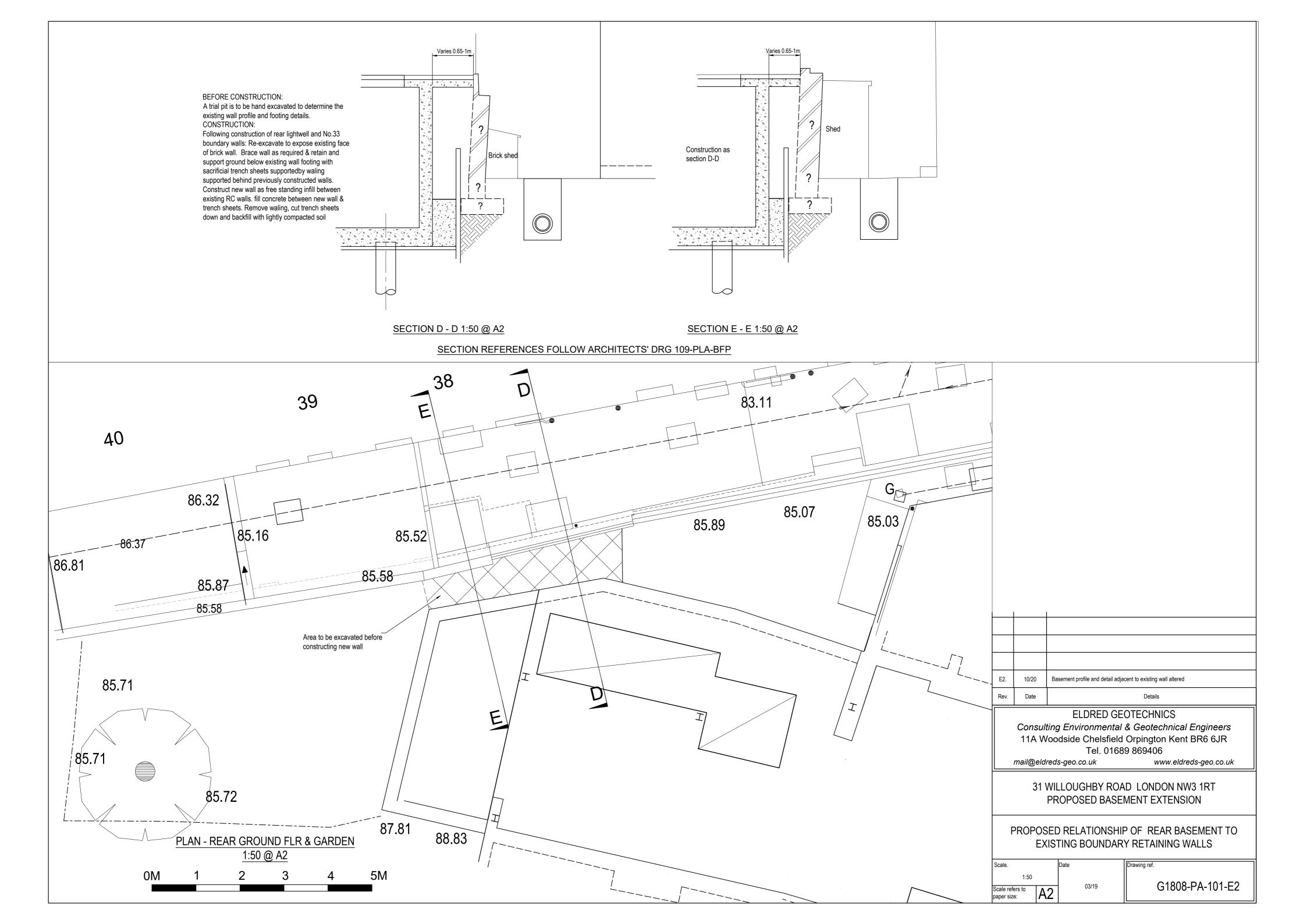
GENERAL NOTES

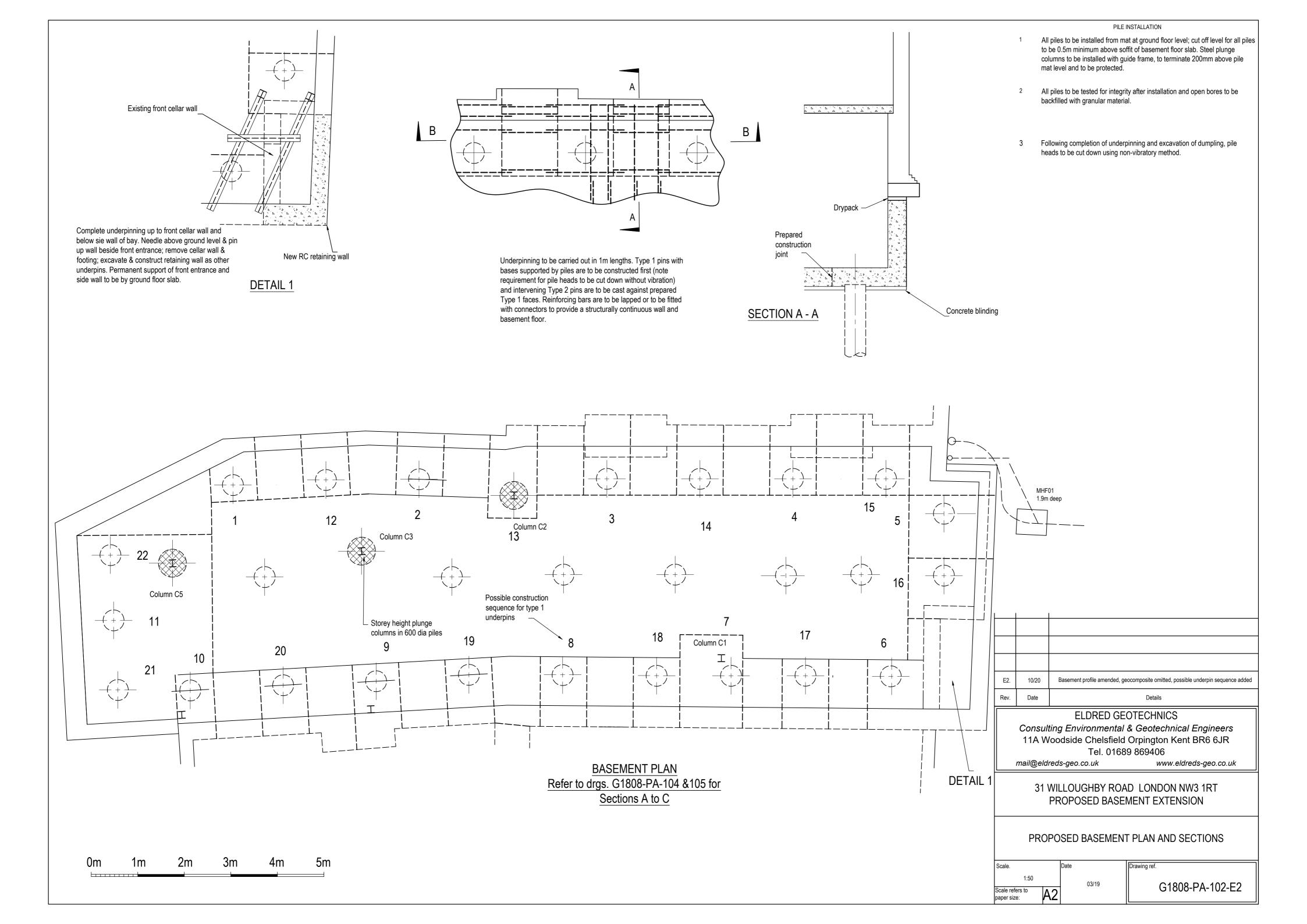
This drawing is based upon a topographical survey made by Blueprint Surveys Ltd in 2014 and referenced BPS1195 and site inspection. Broken lines indicate what are considered to be the probable outlines of construction features not visible during survey or inspection.

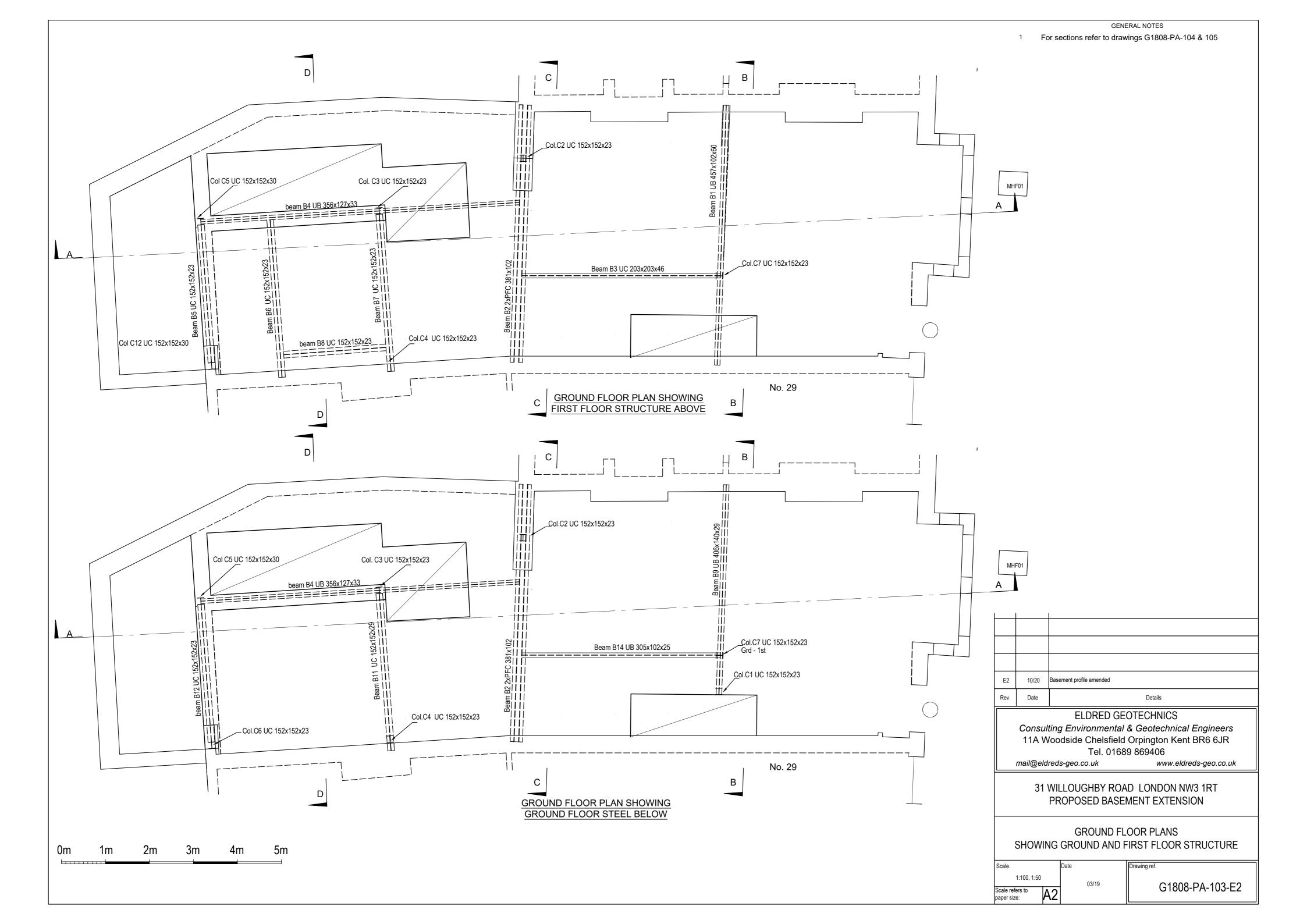
ELDRED GEOTECHNICS

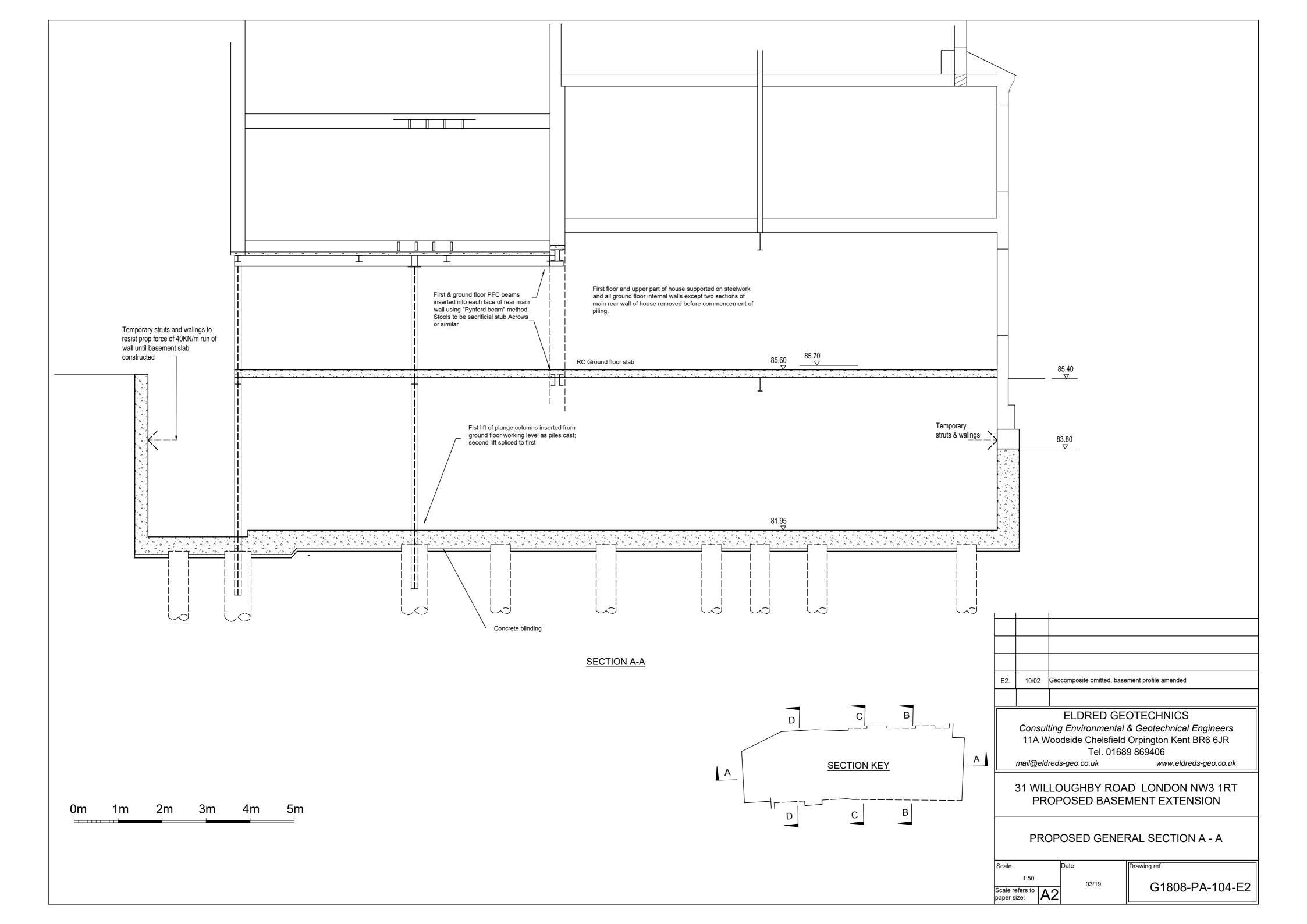
Consulting Environmental & Geotechnical Engineers
11A Woodside Chelsfield Orpington Kent BR6 6JR
Tel. 01689 869406

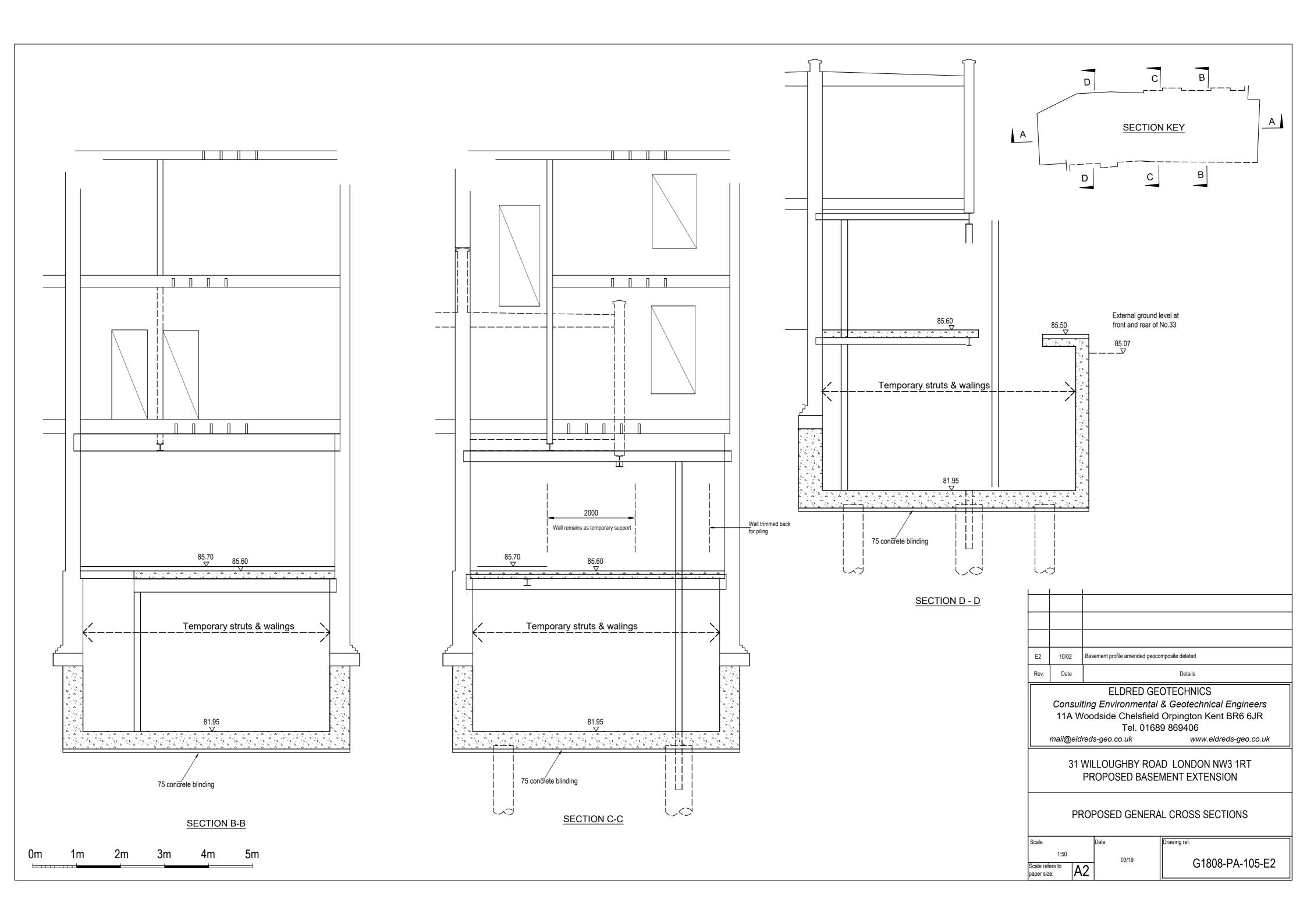

mail@eldreds-geo.co.uk


www.eldreds-geo.co.uk


31 WILLOUGHBY ROAD LONDON NW3 1RT PROPOSED BASEMENT EXTENSION


EXISTING THIRD FLOOR PLAN SHOWING ROOF STRUCTURE ABOVE


Scale.	Date	Drawing rei.
1:100, 1:50	03/19	C1000 DA 004 F1
Scale refers to paper size: A2		G1808-PA-006-E1



Appendix E Contents

Preliminary geotechnical design report

Figure 14 – Plot of derived shear strengths and characteristic profile

Figure 15 – Groundwater flow direction & gradient

Figure 16 – Arrangement of analytical sections F1 to F4

Figure 17 – FLAC analysis geometry and monitor points section F1

Figure 18 – FLAC analysis monitor point detail section F1

Output data section F1

Figure 19 – FLAC analysis geometry and monitor points section F2

Figure 20 – FLAC analysis monitor point detail section F2

Output data section F2

Figure 21 – FLAC analysis geometry and monitor points section F3

Figure 22 – FLAC analysis monitor point detail section F3

Output data section F3

Figure 23 – FLAC analysis geometry and monitor points section F4

Output data section F4

Damage risk assessment

Date February 2020 55

PROJECT	SUBJECT	DATE	JOB REF.	SHEET	REVISION
31 Willoughby Road NW3 1RT Proposed Basement Extension	Geotechnical report	08/19	G1808	1	

PROPOSED BUILDINGS: Refer to current editions of drawings G1808-GA-102 to 105

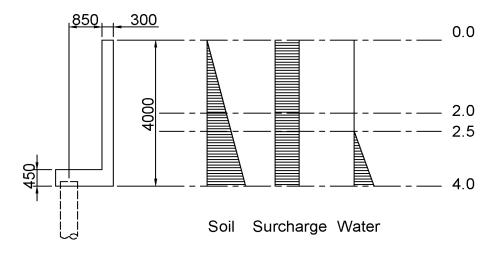
<u>Front part of basement; preliminary estimate of unfactored loads imposed at basement floor soffit level (81.50 OD)</u>

<u>Permanent</u>	<u>Variable</u>
126.06	9.40
152.36	4.95
21.60	
70.20	
8.85	
	8.85
24.78	
8.85	
	8.85
412.69	32.05 KN/m
rnal walls; piles @ 2n	n c/c
412.69	32.05 KN/m
<u>557.14</u>	48.08 KN/m
<u>412.69</u>	41.67 KN/m
	126.06 152.36 21.60 70.20 8.85 24.78 8.85 412.69 rnal walls; piles @ 2n 412.69

Rear part of basement; unfactored loads imposed at basement floor soffit level (81.50 OD)

Item	Permanent	Variable
Existing: No.29 party wall	91.46	10.50 KN/m
Other loads as front/2	<u>67.14</u>	<u>8.85</u> KN/m
Total unfactored loads/m length of basement	158.60	19.35 KN/m
For preliminary purposes assume all load carried by piles close to externa	I walls; piles @ 2m	c/c
SLS Loads/pile	158.60	19.35 KN/m
DA1 Comb A1	<u>214.11</u>	29.03 KN/m
DA1 Comb A2	<u>158.60</u>	25.16 KN/m

PROJECT	SUBJECT	DATE	JOB REF.	SHEET	REVISION
31 Willoughby Road NW3 1RT Proposed Basement Extension	Geotechnical report	08/19	G1808	2	


Preliminary assessment of Pile Capacity

	nary assessm		•		,	. 0	E: 44				
<u>11m pı</u>	<u>le below base</u>				<u>eter</u>		-	<u> </u>			
Load	DA1 Comb.		•	454 KN		Tension	247 KN				
	Pile dia r	m.	Perimeter	m. O	l	Section len	gth m	Cu	γ_{Cu}	Resistance	
Shaft	0.45		1.41	0).50	11.00		129.00	1.40	716.54	KN
End	CSA	0.16		9	00.			196.00	1.40	201.60	KN
									Total	918.14	KN
Resita	nce factors		R4 Comp	2	2.02	R4	Tens	2.90	>2	Adequate	_
	DA1 Comb.	1 =		605 KN		Tension	333 KN				
	Pile dia r	m.	Perimeter	m. O	ι	Section len	gth m	Cu	γ_{Cu}	Resistance	
Shaft	0.45		1.41	0).50	11.00		129.00	1.00	1003.16	KN
End	CSA	0.16		9	00.			196.00	1.00	282.24	KN
										1285.40	KN
Resita	nce factors		R1 Comp	2	2.12	R1	Tens	3.01	>1	Adequate	_
<u>11m pi</u>	le below base	ment	soffit. 300 dia	a. Rear. Re	efer	to Cu profile	Figure 14				
	DA1 Comb.	2 =		184 KN		Tension	247 KN				
	Pile dia r	m.	Perimeter	m. O	ι	Section len	gth m	Cu	γ_{Cu}	Resistance	
Shaft	0.30		0.94	0).50	11.00		129.00	1.40	477.70	KN
End	CSA	0.07		9	00.			196.00	1.40	88.20	KN
										565.90	KN
Resita	nce factors		R4 Comp	3	3.08	R4	Tens	1.93	>=2	Adequate	_
	DA1 Comb.	1 =		243 KN		Tension	333 KN				
	Pile dia r	m.	Perimeter	m. O	l	Section len	gth m	Cu	γ_{Cu}	Resistance	
Shaft	0.30		0.94	0).50	11.00		129.00	1.00	668.77	KN
End	CSA	0.07		9	0.00			196.00	1.00	123.48	KN
										792.25	KN
Resita	nce factors		R1 Comp	3	3.26	R1	Tens	2.01	>1	Adequate	_

SUBJECT	DATE	JOB REF.	SHEET	REVISION
Geotechnical report	08/19	G1808	3	

Preliminary check on stability of cantilever retaining wall in rear extension - short term condition

Soil	γ_{sat}	18.00 KN/m ³
Conc.	γ	24.00 KN/m ³

< int. friction	φ'	25.00 deg.
Cohes.	c'	0.00 Kpa

Ka 0.41 frac'n

DA1	Char.	A1		A2			A1	A2		A1	A2	
Action	Pv	Pah		Pah		Arm	M O/T	МО	/T	MR	MR	
Soil	72.00)	40		30	1.33	53		39			
Surch	10.00)	25		21	2.00	49)	43			
Water	7.50)	10		8	0.50	5		4			
Stem	28.80)				1.00	l			28.80	28.80	
Base	9.18	}				0.43				3.90	3.90	
							107.27	8	5.65	32.70	32.70	
Resista	nce facto	rs		R1/A	.1	0.30		R1/	\ 2	0.38	,	Inadequate.

Provide struts 1.5m from top of wall ULS force/m run =

(107.27-32.7)/2.5 =

29.83 KN/m

PROJECT	SUBJECT	DATE	JOB REF.	SHEET	REVISION
31 Willoughby Road NW3 1RT Proposed Basement Extension	Geotechnical report	9/20	G1808	4	

Preliminary EC2 check on Section F3 wall at junction of Nos. 31 &33

515 actions from analysis (31/33 party sall) M = 37 kwm/m; Y = 108 kw/m MLS Say: 37x 1.5= 56kw/m 108x1.5 = 162kw. Allow for 400m wall (d = 350) & 500 base(d = 450) Concrete: 635/45	MP68 MP71.
At age $t = 7 dans$ 5:0.2 Bcc(t) = 0.819 $fck(t) = 28 N fm^2$.	
K = 56E3 = 0.01 Z = 0.95d. H503×28 Wall: ASt = 56E6×1.15 = 390 mm/m 500×0.95×356	
$min 2 = 3.n + \% = 466$ Base; Shear Stress = $162 \times 10^3 = 0.378 \text{ Novin}$ $450 \times 0.95 \times 10^3 = 0.378 \text{ Novin}$	1120 200 (565)
VRde With 0.25 % AST = 4/10 Nmm² AST = 1068 mm²/m.	120@ 200 (1571)
Hoo wall + 500 base lass fought adequate	

31 Willoughby Road NW3 1RT
Proposed Basement Extension

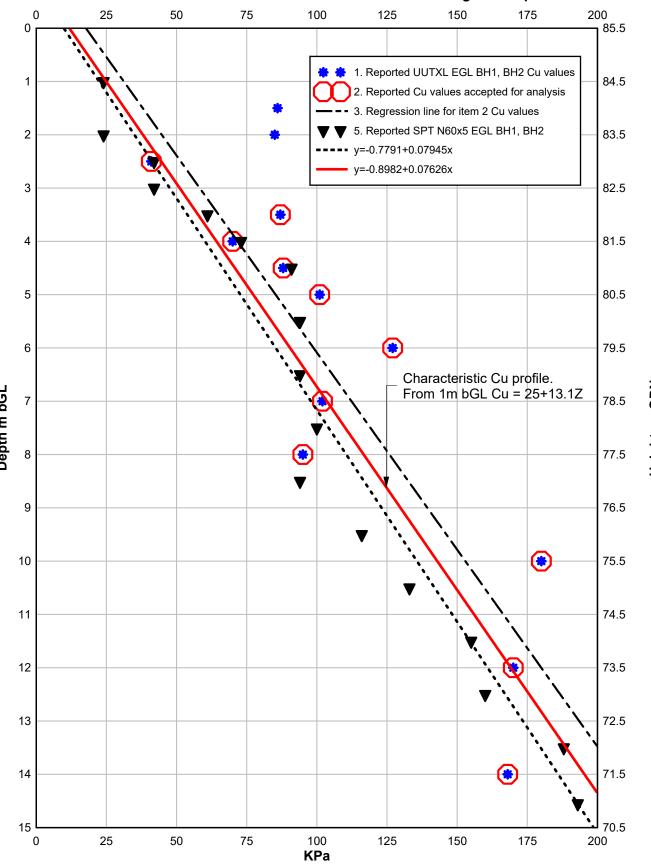
SUBJECT	DATE	JOB REF.	SHEET	REVISION
Geotechnical report	08/19	G1808	5	

FLAC Analysis -primary input values. Figures 15 to 23 show groundwater flow direction and model geometry together with tabled critical results extracted from output data.

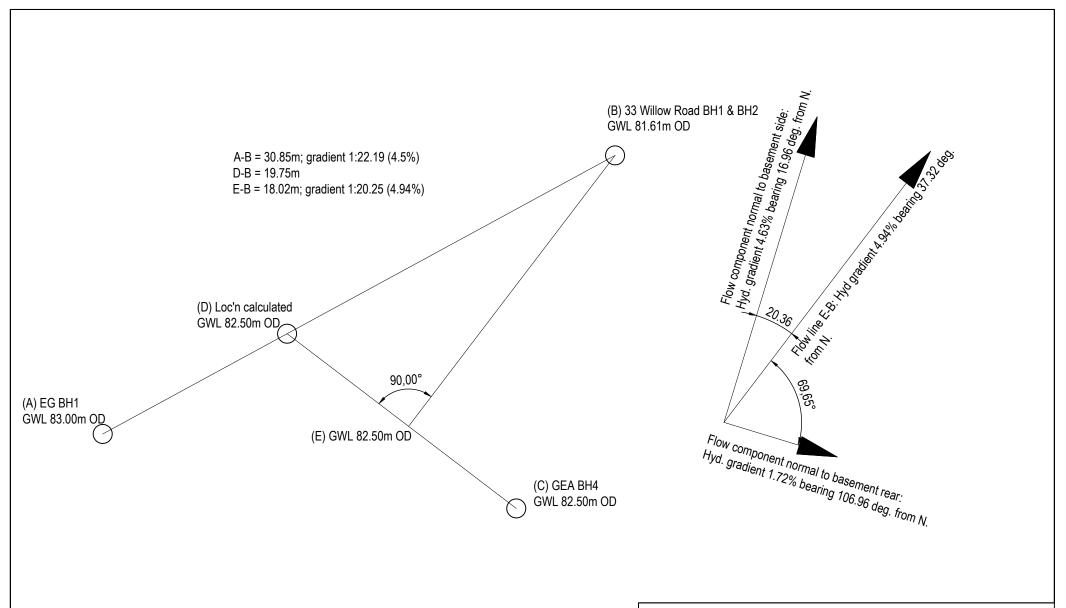
Units are Mg - m - sec. Stress is expressed in Kpa.

For soils, FLAC does not accept input in terms of Youngs Modulus, which is replaced by drained bulk modulus K' of the solid matrix and shear modulus G. E'=3K'(1-2v')=2G(1+v). The undrained bulk modulus is

K = K'+Kw/n: Kw is the bulk modulus of water (2E+9 GPa), n is porosity.


The permeability k used is not the hydraulic conductivity (m/sec) but the mobility coefficient (m 2 /KPa.sec). The numerical conversion is k(m 2 /KPa.sec) = k(m/s)/10.

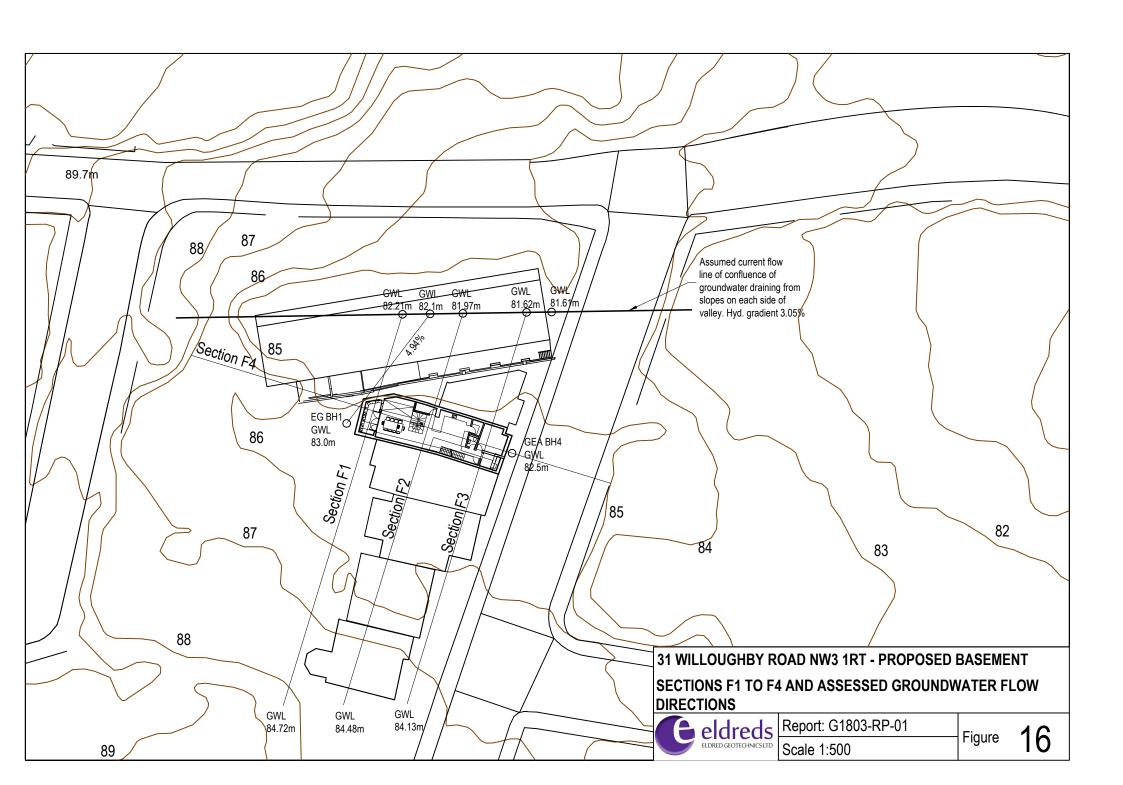
Properties of structural members are input in convential form.

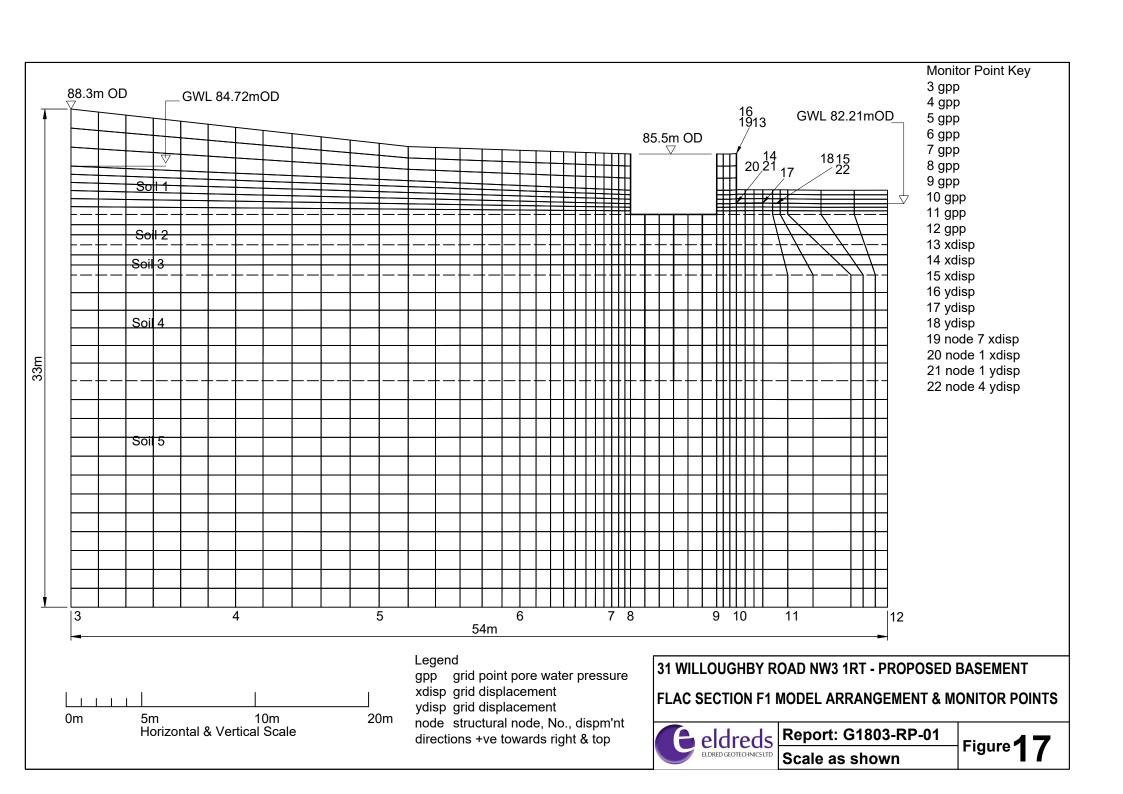

Soil Properties:	$\gamma \; \text{dry}$	ν	E'	Bulk K'	Shear G	Cu	C'	φ'
	Mg/m3		Kpa	Кра	Кра	Kpa	Кра	Deg.
Soil 1 0 - 4m bGL	1.8	0.20	2.43E+04	1.35E+02	1.01E+04	38.0	2.0	25.0
Soil 2 4 - 6m bGL	1.9	0.20	5.24E+04	2.91E+04	2.18E+04	77.0	2.0	25.0
Soil 3 6 - 8m bGL	2.0	0.20	6.66E+04	3.70E+04	2.78E+04	104.0	2.0	25.0
Soil 4 8 - 15m bGL	2.0	0.20	1.04E+05	5.78E+04	4.33E+04	163.0	2.0	25.0
Soil 5 15 - 30m bGL	_ 2.0	0.20	1.97E+05	1.09E+05	8.21E+04	307.0	2.0	25.0
Structural elements	Density	ensity Dia or E Thickn'		Rot'n stiffness KNm^2	Pitch m		ity & Per (see no	meability te)
Concrete piles 10m long	2.4	0.45	2.60E+07	not used	2.00		n	k
Concrete walls	2.4	0.40	2.60E+07	not used	Cont.	Soil 1	0.5	1.00E-09
UC 152x152x23	7.85		2.10E+08	not used	3.00	Soil 2	0.6	1.00E-09
Floor slabs	2.4	0.4*	2.60E+07	not used	Cont.	Soil 3	0.50	1.00E-10
	*increas	ed to 0.5r	n below perimete	r walls		Soil 4	0.50	1.00E-10
Interfaces		l spring s Kpa/m	Shear spring stiffness Kpa/m	Cohesion Kpa	Friction Deg.	Soil 5	0.50	1.00E-10
Piles	6.30	E+05	6.30E+05	2.00	16.5			
Walls	5.38	E+05	5.38E+05	2.00	16.5			
Wall bases	5.38	E+05	5.38E+05	2.00	16.5			

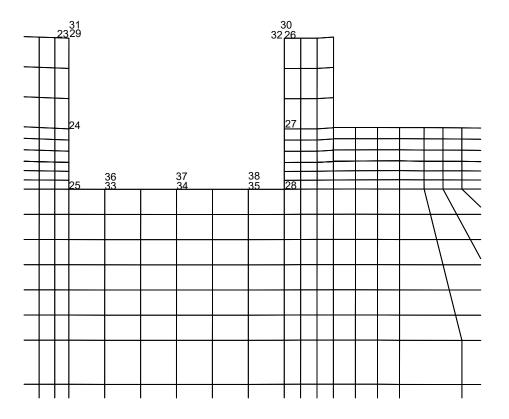
G1808 31 Willoughby Road NW3 1RT - Proposed Basement Assessed Characteristic Profile of Undrained Shear strength vs Depth

Report::G1808-RP-01-E1 Figure **No 14**

31 WILLOUGHBY ROAD NW3 1RT - PROPOSED BASEMENT ASSESSED GROUNDWATER FLOW DIRECTION AND COMPONENTS FOR ANALYSES




Report: G1803-RP-01


Scale as indicated

Figure

15

31 WILLOUGHBY ROAD NW3 1RT - PROPOSED BASEMENT FLAC SECTION F1 MODEL ARRANGEMENT & MONITOR POINTS

AT BASEMENT

Report: G1803-RP-01

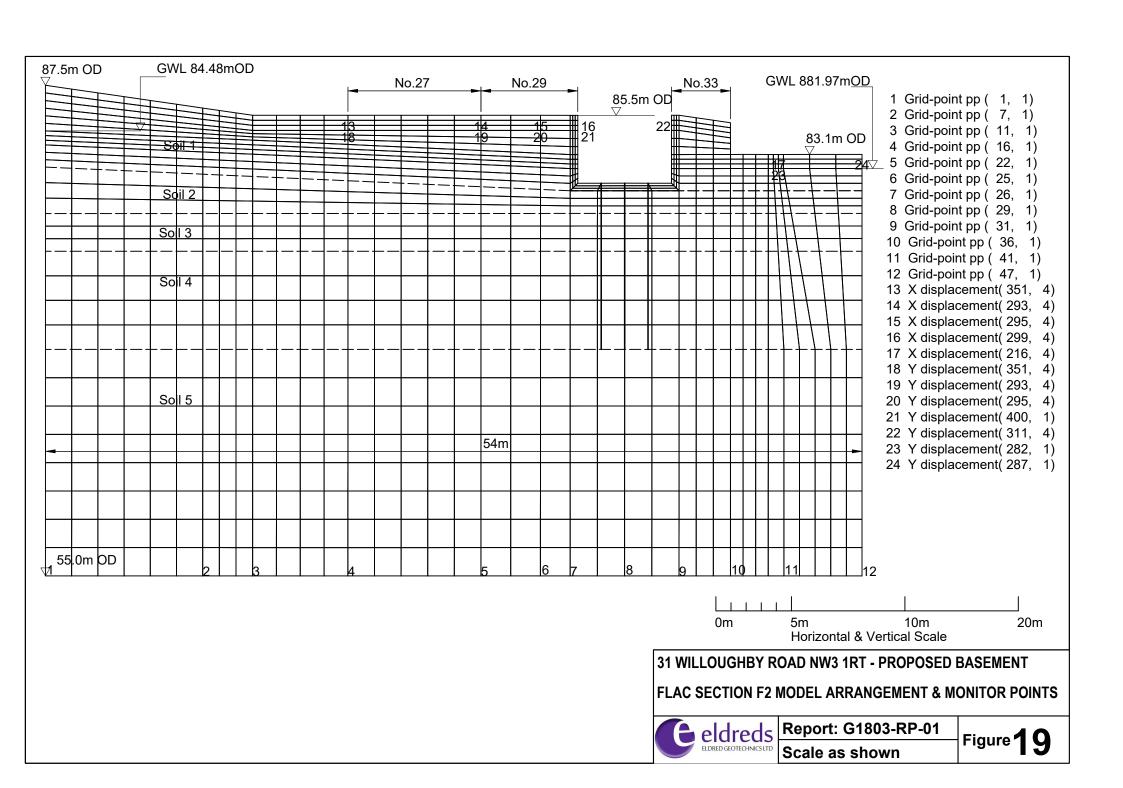
Scale 1:100 approx

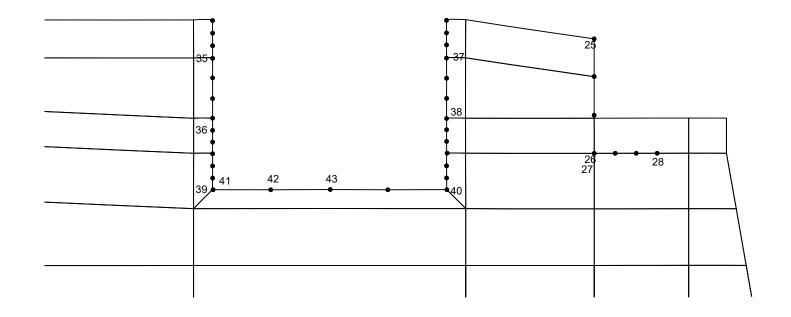
Figure 18

FLAC SECTION F1 GROUNDWATER MONITORING DATA

Condition/ Monitor points	MP3pp	MP3pp	MP5pp	МР6рр	MP7pp	MP8pp	MP9pp	MP10pp	MP11pp
1. Predevelopment c19 Kpa	2.92E+02	2.85E+02	2.80E+02	2.76E+02	2.73E+02	2.73E+02	2.70E+02	2.70E+02	2.69E+02
Existing state Kpa	2.92E+02	2.85E+02	2.80E+02	2.76E+02	2.73E+02	2.72E+02	2.70E+02	2.70E+02	2.68E+02
3. GWL change stages 1 to 2 (mm)	0.00	-19.92	-22.91	-22.31	-20.76	-20.30	-17.38	-16.44	-13.27
4. Basement exc. & dewatered Kpa	2.92E+02	2.82E+02	2.75E+02	2.69E+02	2.67E+02	2.67E+02	2.66E+02	2.65E+02	2.66E+02
5. GWL change stages 2 to 4 (mm)	0.00	-287.37	-503.75	-621.64	-603.02	-587.12	-458.73	-417.36	-291.26
6. Final state Kpa	2.92E+02	2.85E+02	2.80E+02	2.76E+02	2.73E+02	2.73E+02	2.70E+02	2.70E+02	2.69E+02
7. GWL change stages 4 to 6 (mm)	0.00	299.60	524.10	643.70	621.87	604.96	471.08	428.36	298.73
8.GWL change stages 2 to 6 (mm)	0.00	12.23	20.35	22.06	18.85	17.84	12.35	11.01	7.47

Condition/ Monitor points 1. Predevelopment c19 Kpa 2. Existing state Kpa 3. GWL change stages 1 to 2 (mm)	MP12pp 2.67E+02 2.67E+02 0.00
4. Basement exc. & dewatered Kpa 5. GWL change stages 2 to 4 (mm)	2.67E+02 0.00
6. Final state Kpa 7. GWL change stages 4 to 6 (mm) 8.GWL change stages 2 to 6 (mm)	2.67E+02 0.00 0.00


MECHANICAL MONITORING DATA


Condition/ Monitor points	MP13X	MP14X	MP15X	MP16Y	MP17Y	MP18Y	MP19NX	MP20NX	MP21NY
1. Predevelopment c19 (m)	4.11E-03	1.14E-03	1.34E-04	-1.11E-02	-4.86E-03	-6.51E-03	4.07E-03	1.05E-03	-3.21E-03
2. Existing state (m)	7.01E-03	2.89E-03	5.53E-04	-8.17E-03	-1.87E-03	-4.87E-03	7.36E-03	3.01E-03	-2.14E-04
3. Disp. change stages 1 to 2 (mm)	2.91	1.75	0.42	2.93	2.99	1.63	3.29	1.96	2.99
Basement exc. & dewatered (m)	7.28E-03	2.68E-03	2.04E-04	-8.43E-03	-2.35E-03	-5.32E-03	7.57E-03	2.81E-03	-4.87E-04
5. Disp. change stages 2 to 4 (mm)	0.26	-0.20	-0.35	-0.26	-0.48	-0.45	0.21	-0.20	-0.27
6. Final state (m)	7.19E-03	2.87E-03	5.51E-04	-8.27E-03	-1.92E-03	-4.93E-03	7.41E-03	3.06E-03	-2.82E-04
7. Disp. change stages 4 to 6 (mm)	-0.08	0.19	0.35	0.17	0.42	0.40	-0.16	0.25	0.21
8 .Disp. change stages 2 to 6 (mm)	0.18	-0.01	0.00	-0.10	-0.06	-0.05	0.05	0.05	-0.07

Condition/ Monitor points 1. Predevelopment c19 (m) 2. Existing state (m) 3. Disp. change stages 1 to 2 (mm)	MP22NY -6.63E-03 -5.02E-03 1.61
4. Basement exc. & dewatered (m) 5. Disp. change stages 2 to 4 (mm)	-5.47E-03 -0.45
6. Final state (m) 7. Disp. change stages 4 to 6 (mm) 8 .Disp. change stages 2 to 6 (mm)	-5.07E-03 0.39 - 0.05

MECHANICAL MONITORING DATA									
Condition/ Monitor points 1. Predevelopment c19 (m)	MP23X	MP24X	MP25X	MP26X	MP27X	MP28X	MP29Y	MP30Y	MPN31X
2. Existing state (m) 3. Disp. change stages 1 to 2 (mm)	5.62E-03	4.84E-03	4.08E-03	5.22E-03	3.70E-03	3.27E-03	-3.79E-02	-3.96E-02	0.00E+00
4. Basement exc. & dewatered (m) 5. Disp. change stages 2 to 4 (mm)	5.62E-03 -0.0025								-1.06E-03 -1.0593
6. Final state (m) 7. Disp. change stages 4 to 6 (mm) 8 .Disp. change stages 2 to 6 (mm)	5.62E-03 -0.0015 -0.0040	-0.0029	-0.0020	-0.0014	0.0004	0.0000	0.0039	0.0028	
Condition/ Monitor points 1. Predevelopment c19 (m)	MPN31X	MPN32X	MPN33X	MPN34X	MPN35X	MPN36Y	MPN37Y	MPN38Y	
2. Existing state (m)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

7. Disp. change stages 4 to 6 (mm) 8 .Disp. change stages 2 to 6 (mm)	-0.0015 -0.0040	-0.0029	-0.0020 -0.0053			0.0000 0.0000	0.0039 0.0104	0.0028 0.0075
Condition/ Monitor points 1. Predevelopment c19 (m)	MPN31X	MPN32X	MPN33X	MPN34X	MPN35X	MPN36Y	MPN37Y	MPN38Y
2. Existing state (m)3. Disp. change stages 1 to 2 (mm)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
4. Basement exc. & dewatered (m) 5. Disp. change stages 2 to 4 (mm)	-1.06E-03 -1.0593		-5.59E-06 - 0.0056		-7.71E-06 -0.0077		-9.94E-06 - 0.0099	-8.71E-05 - 0.0871
6. Final state (m) 7. Disp. change stages 4 to 6 (mm) 8 .Disp. change stages 2 to 6 (mm)	-1.07E-03 -0.0086 -1.0679	-0.0040		-0.0003		-0.0092	-1.31E-05 -0.0032 -0.0131	

Pt.	Direction	Node	
25	X Displacement	(Nd	1)
26	X Displacement	(Nd	2)
27	Y Displacement	(Nd	2)
28	Y Displacement	(Nd	3)
35	X Displacement	(Nd	11)
36	X Displacement	(Nd	15)
37	X Displacement	(Nd	25)
38	X Displacement	(Nd	29)
39	X Displacement	(Nd	20)
40	X Displacement	(Nd	34)
41	Y Displacement	(Nd	20)
42	Y Displacement	(Nd	21)
43	Y Displacement	(Nd	37)

31 WILLOUGHBY ROAD NW3 1RT - PROPOSED BASEMENT

FLAC SECTION F2 MODEL ARRANGEMENT & STRUCTURAL MONITOR POINTS

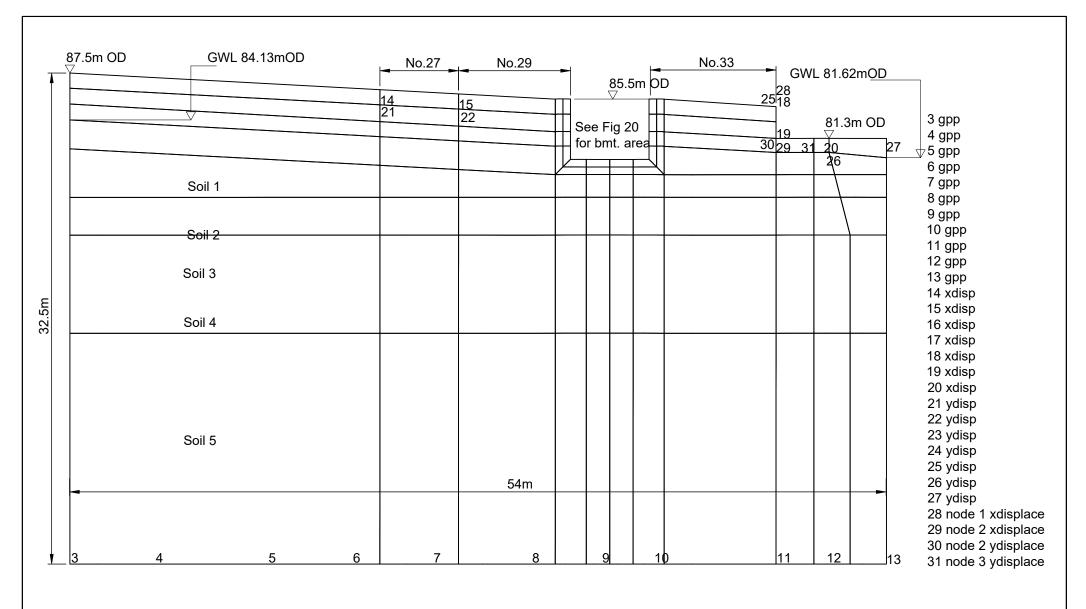
Report: G1803-RP-01
Scale as shown

Figure 20

FLAC SECTION F2 GROUNDWATER MONITORING DATA

Condition/ Monitor points	MP1pp	MP2pp	MP3pp	MP4pp	MP5pp	МР6рр	MP7pp	MP8pp	MP9pp
1. Predevelopment c19 Kpa	2.95E+02	2.88E+02	2.86E+02	2.83E+02	2.79E+02	2.77E+02	2.76E+02	2.75E+02	2.73E+02
Existing state Kpa	2.95E+02	2.88E+02	2.86E+02	2.83E+02	2.79E+02	2.77E+02	2.76E+02	2.75E+02	2.73E+02
3. GWL change stages 1 to 2 (mm)	0.00	-0.13	-0.13	-0.13	-0.13	-0.13	-0.13	-0.14	-0.13
Basement exc. & dewatered Kpa	2.95E+02	2.84E+02	2.81E+02	2.76E+02	2.70E+02	2.68E+02	2.68E+02	2.67E+02	2.67E+02
5. GWL change stages 2 to 4 (mm)	0.00	-395.02	-509.34	-701.72	-863.22	-868.96	-851.75	-782.45	-664.13
6. Final state Kpa	2 95F+02	2 88F+02	2 86F+02	2 83F+02	2 79F+02	2 77F+02	2 76F+02	2.75E+02	2 73F+02
7. GWL change stages 4 to 6 (mm)	0.00	395.73				_	858.25		663.81
• • • • • • • • • • • • • • • • • • • •							000.20		
8.GWL change stages 2 to 6 (mm)	0.00	0.71	3.66	8.68	10.18	8.08	6.50	3.10	-0.32

Condition/ Monitor points	MP10pp	MP11pp	MP12pp
1. Predevelopment c19 Kpa	2.72E+02	2.71E+02	2.70E+02
2. Existing state Kpa	2.72E+02	2.71E+02	2.70E+02
3. GWL change stages 1 to 2 (mm)	-0.13	-0.13	0.00
4. Basement exc. & dewatered Kpa	2.67E+02	2.68E+02	2.70E+02
5. GWL change stages 2 to 4 (mm)	-511.64	-319.67	0.00
6. Final state Kpa	2.72E+02	2.71E+02	2.70E+02
7. GWL change stages 4 to 6 (mm)	508.83	315.71	0.00
8.GWL change stages 2 to 6 (mm)	-2.81	-3.96	0.00

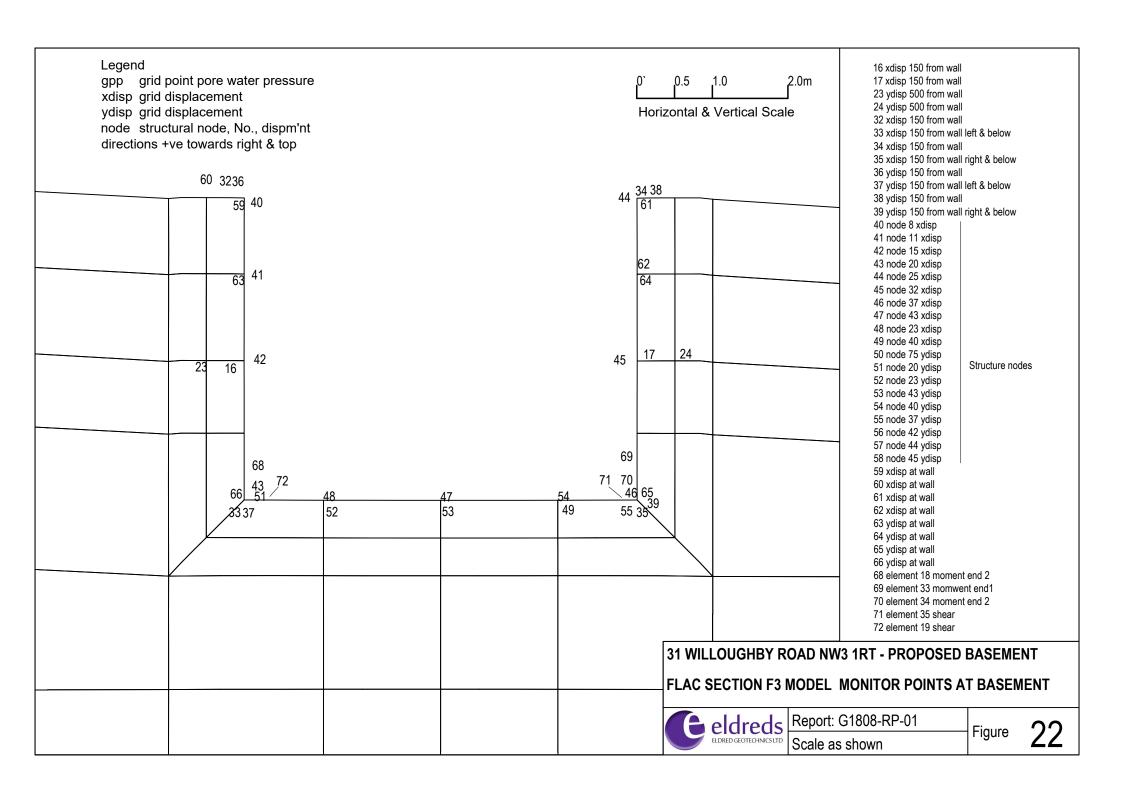

MECHANICAL MONITORING DATA

Condition/ Monitor points	MP13X	MP14X	MP15X	MP16X	MP17X	MP18Y	MP19Y	MP20Y	MP21Y
1. Predevelopment c19 (m)	3.06E-03	3.02E-03	2.15E-03	3.00E-03	1.65E-03	-2.79E-02	-3.56E-02	-3.68E-02	-2.43E-02
2. Existing state (m)	3.13E-03	3.09E-03	2.20E-03	3.27E-03	1.77E-03	-2.80E-02	-3.60E-02	-3.81E-02	-3.01E-02
3. Disp. change stages 1 to 2 (mm)	0.07	0.07	0.05	0.28	0.12	-0.10	-0.41	-1.32	-5.81
4. Basement exc. & dewatered (m)	4.44E-03	4.28E-03	3.64E-03	6.60E-03	6.59E-04	-2.89E-02	-3.67E-02	-3.87E-02	-3.10E-02
5. Disp. change stages 2 to 4 (mm)	1.31	1.19	1.44	3.32	-1.11	-0.95	-0.70	-0.55	-0.85
6. Final state (m)	3.66E-03	4.04E-03	3.85E-03	7.00E-03	1.39E-03	-2.78E-02	-3.55E-02	-3.80E-02	-3.11E-02
7. Disp. change stages 4 to 6 (mm)	-0.78	-0.24	0.21	0.40	0.73	1.17	1.28	0.62	-0.14
8 .Disp. change stages 2 to 6 (mm)	0.53	0.95	1.65	3.73	-0.39	0.22	0.58	0.07	-0.99
Condition/ Monitor points	MP22Y	MP23Y	MP24Y						
1. Predevelopment c19 (m)	-2.47E-02	-2.99E-02	-3.59E-02						
1. Predevelopment C19 (III)	-2.47E-U2	-2.99E-02	-3.59E-02						

Condition/ Monitor points	MDOOV	MDOOV	MDOAV
Condition/ Monitor points	MP22Y	MP23Y	MP24Y
1. Predevelopment c19 (m)	-2.47E-02	-2.99E-02	-3.59E-02
2. Existing state (m)	-2.59E-02	-2.88E-02	-3.08E-02
3. Disp. change stages 1 to 2 (mm)	-1.17	1.18	5.08
4. Basement exc. & dewatered (m)	-2.78E-02	-2.85E-02	-3.03E-02
5. Disp. change stages 2 to 4 (mm)	-1.96	0.25	0.43
6. Final state (m)	-2.77E-02	-2.80E-02	-3.02E-02
7. Disp. change stages 4 to 6 (mm)	0.12		0.15
8 .Disp. change stages 2 to 6 (mm)	-1.84	0.76	0.58

FLAC SECTION F2 BIA REPORT G1808-RP-01 MECHANICAL MONITORING DATA

Condition/ Monitor points 1. Predevelopment c19 (m)	MP25NX 0.00E+00	MP26NX 0.00E+00	MP27NX	MP28NX 0.00E+00	MP35NX	MP36NX	MP37NX	MP39NX	MP40NY
2. Existing state (m) 3. Disp. change stages 1 to 2 (mm)	6.63E-04 0.66	7.11E-04		1.08E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
4. Basement exc. & dewatered (m) 5. Disp. change stages 2 to 4 (mm)	-9.35E-04 -1.60						-8.44E-04 -0.84		-1.68E-03 -1.68
6. Final state (m)7. Disp. change stages 4 to 6 (mm)8 .Disp. change stages 2 to 6 (mm)	-4.79E-04 0.46 -1.14	0.78	0.58	0.68	0.40	0.46	0.31	0.31	-1.22E-03 0.46 -1.22
Condition/ Monitor points 1. Predevelopment c19 (m)	MP41NY	MP42NY	MP43NY						
Condition/ Monitor points 1. Predevelopment c19 (m) 2. Existing state (m) 3. Disp. change stages 1 to 2 (mm)	MP41NY 0.00E+00		MP43NY 0.00E+00						
Predevelopment c19 (m) Existing state (m)		0.00E+00 7.53E-04	0.00E+00 8.08E-04						



Legend gpp grid point pore water pressure xdisp grid displacement ydisp grid displacement node structural node, No., dispm'nt directions +ve towards right & top

31 WILLOUGHBY ROAD NW3 1RT - PROPOSED BASEMENT FLAC SECTION F1 MODEL ARRANGEMENT & MONITOR POINTS

Figure 21

FLAC SECTION F3 GROUNDWATER MONITORING DATA

Condition/ Monitor points	MP3PP	MP4PP	MP5PP	MP6PP	MP7PP	MP8PP	MP9PP	MP10PP	MP11PP
1. Predevelopment c19 Kpa	2.89E+02	2.86E+02	2.83E+02	2.81E+02	2.78E+02	2.75E+02	2.73E+02	2.72E+02	2.68E+02
Existing state Kpa	2.89E+02	2.86E+02	2.83E+02	2.81E+02	2.78E+02	2.75E+02	2.73E+02	2.72E+02	2.68E+02
3. GWL change stages 1 to 2 (mm)	0.00	-0.87	-0.89	-0.91	-0.92	-0.86	-0.75	-0.81	-0.90
4. Basement exc. & dewatered Kpa	2.89E+02	2.84E+02	2.79E+02	2.75E+02	2.71E+02	2.68E+02	2.66E+02	2.65E+02	2.64E+02
5. GWL change stages 2 to 4 (mm)	0.00	-191.74	-425.87	-576.05	-682.95	-736.70	-704.49	-638.57	-355.45
6. Final state Kpa	2.89E+02	2.86E+02	2.83E+02	2.81E+02	2.78E+02	2.75E+02	2.73E+02	2.71E+02	2.68E+02
7. GWL change stages 4 to 6 (mm)	0.00	181.85	412.08	561.53	668.10	721.14	688.40	622.67	343.29
8.GWL change stages 2 to 6 (mm)	0.00	-9.88	-13.79	-14.52	-14.85	-15.56	-16.08	-15.90	-12.16

Condition/ Monitor points 1. Predevelopment c19 Kpa 2. Existing state Kpa 3. GWL change stages 1 to 2 (mm)		2.64E+02 2.64E+02
4. Basement exc. & dewatered Kpa5. GWL change stages 2 to 4 (mm)	2.64E+02 -202.07	2.64E+02 0.00
6. Final state Kpa 7. GWL change stages 4 to 6 (mm) 8.GWL change stages 2 to 6 (mm)	2.66E+02 193.72 -8.35	

MECHANICAL MONITORING DATA

Condition/ Monitor points	MP14X	MP15X	MP16X	MP17X	MP18X	MP19X	MP20X	MP21Y	MP22Y
1. Predevelopment c19 (m)	5.17E-03	5.39E-03	3.70E-03	2.01E-03	-3.44E-04	9.65E-04	9.09E-04	-3.78E-02	-4.01E-02
2. Existing state (m)	5.61E-03	6.02E-03	3.30E-03	2.61E-03	-1.98E-04	1.08E-03	9.64E-04	-3.82E-02	-4.10E-02
3. Disp. change stages 1 to 2 (mm)	0.44	0.63	-0.40	0.60	0.15	0.11	0.06	-0.37	-0.87
4. Basement exc. & dewatered (m)	6.37E-03	6.31E-03	3.16E-03	2.86E-03	-1.09E-04	1.14E-03	9.95E-04	-3.92E-02	-4.17E-02
5. Disp. change stages 2 to 4 (mm)	0.76	0.29	-0.15	0.25	0.09	0.07	0.03	-0.96	-0.73
6. Final state (m)	5.81E-03	5.93E-03	3.14E-03	2.87E-03	-9.72E-05	1.15E-03	1.00E-03	-3.82E-02	-4.09E-02
7. Disp. change stages 4 to 6 (mm)	-0.56	-0.38	-0.02	0.01	0.01	0.01	0.01	0.92	0.81
8 .Disp. change stages 2 to 6 (mm)	0.20	-0.09	-0.16	0.26	0.10	0.08	0.04	-0.05	0.08
Condition/ Monitor points	MP23Y	MP24Y	MP25Y	MP26Y	MP27Y	MP28NX	MP29NX	MP30NY	MP31NY
Condition/ Monitor points 1. Predevelopment c19 (m)	MP23Y -2.25E-02		_			_	MP29NX 0.00E+00		
-	_	-2.28E-02	-4.05E-02		-3.77E-02	0.00E+00	0.00E+00	0.00E+00	
1. Predevelopment c19 (m)	-2.25E-02	-2.28E-02 -3.60E-02	-4.05E-02 -4.05E-02	-3.52E-02 -3.53E-02	-3.77E-02 -3.78E-02	0.00E+00 1.46E-04	0.00E+00 1.33E-04	0.00E+00	0.00E+00
Predevelopment c19 (m) Existing state (m)	-2.25E-02 -3.22E-02	-2.28E-02 -3.60E-02 -13.18	-4.05E-02 -4.05E-02 - 0.03	-3.52E-02 -3.53E-02	-3.77E-02 -3.78E-02 - 0.06	0.00E+00 1.46E-04 0.15	0.00E+00 1.33E-04 0.13	0.00E+00 -3.59E-05 - 0.04	0.00E+00 -1.81E-04
 Predevelopment c19 (m) Existing state (m) Disp. change stages 1 to 2 (mm) 	-2.25E-02 -3.22E-02 -9.72	-2.28E-02 -3.60E-02 -13.18 -3.36E-02	-4.05E-02 -4.05E-02 -0.03	-3.52E-02 -3.53E-02 -0.02	-3.77E-02 -3.78E-02 - 0.06	0.00E+00 1.46E-04 0.15 2.35E-04	0.00E+00 1.33E-04 0.13 1.24E-04	0.00E+00 -3.59E-05 - 0.04	0.00E+00 -1.81E-04 -0.18
 Predevelopment c19 (m) Existing state (m) Disp. change stages 1 to 2 (mm) Basement exc. & dewatered (m) 	-2.25E-02 -3.22E-02 - 9.72 -3.07E-02	-2.28E-02 -3.60E-02 -13.18 -3.36E-02 2.36	-4.05E-02 -4.05E-02 -0.03 -4.05E-02 -0.02	-3.52E-02 -3.53E-02 -0.02	-3.77E-02 -3.78E-02 -0.06 -3.78E-02 -0.03	0.00E+00 1.46E-04 0.15 2.35E-04 0.09	0.00E+00 1.33E-04 0.13 1.24E-04 -0.01	0.00E+00 -3.59E-05 -0.04 -5.12E-05 -0.02	0.00E+00 -1.81E-04 - 0.18 -2.53E-04
 Predevelopment c19 (m) Existing state (m) Disp. change stages 1 to 2 (mm) Basement exc. & dewatered (m) Disp. change stages 2 to 4 (mm) 	-2.25E-02 -3.22E-02 -9.72 -3.07E-02 1.50	-2.28E-02 -3.60E-02 -13.18 -3.36E-02 2.36 -3.35E-02	-4.05E-02 -4.05E-02 -0.03 -4.05E-02 -4.05E-02	-3.52E-02 -3.53E-02 -0.02 -3.53E-02 -0.01 -3.53E-02	-3.77E-02 -3.78E-02 -0.06 -3.78E-02 -0.03 -3.78E-02	0.00E+00 1.46E-04 0.15 2.35E-04 0.09 2.47E-04	0.00E+00 1.33E-04 0.13 1.24E-04 -0.01 1.95E-04	0.00E+00 -3.59E-05 -0.04 -5.12E-05 -0.02	0.00E+00 -1.81E-04 -0.18 -2.53E-04 -0.07

					10 D/ (I/ (
Condition/ Monitor points 1. Predevelopment c19 (m)	MP32X	MP33X	MP34X	MP35X	MP36Y	MP37Y	MP38Y	MP39Y	MN40NX
Existing state (m) Disp. change stages 1 to 2 (mm)	5.30E-03	3.65E-03	9.93E-04	1.55E-03	-2.91E-02	-2.41E-02	-3.23E-02	-2.52E-02	0.00E+00
4. Basement exc. & dewatered (m) 5. Disp. change stages 2 to 4 (mm)	5.40E-03 0.10	3.73E-03 0.08				-2.40E-02 0.06			7.44E-04 0.74
6. Final state (m) 7. Disp. change stages 4 to 6 (mm)	5.42E-03 0.01	3.63E-03 -0.10				-2.39E-02 0.11			7.37E-04 -0.01
8 .Disp. change stages 2 to 6 (mm)	0.12	-0.01	-0.11	0.10	6.31	0.18	7.68	0.27	0.74
Condition/ Monitor points 1. Predevelopment c19 (m)	MP41NX	MP42NX	MP43NX	MP44NX	MP45NX	MP46NX	MP47NX	MP48NX	MP49NX
Condition/ Monitor points 1. Predevelopment c19 (m) 2. Existing state (m) 3. Disp. change stages 1 to 2 (mm)	MP41NX 0.00E+00								MP49NX 0.00E+00
 Predevelopment c19 (m) Existing state (m) 		0.00E+00 1.05E-04	0.00E+00 2.93E-05	0.00E+00 8.89E-04	0.00E+00 5.41E-04	0.00E+00 6.72E-06	0.00E+00	0.00E+00	0.00E+00 8.51E-06

31 WILLOUGHDT NOAD NW3 HYT		TEAC SECTION 13								
	MECHANICAL MONITORING DATA									
Condition/ Monitor points 1. Predevelopment c19 (m)	MP50Y	MP51Y	MP52Y	MP53Y	MP54Y	MP55Y	MP56Y	MP57Y		
2. Existing state (m)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		

0.01

0.00

0.02

0.01

0.00

0.02

5. Disp. change stages 2 to 4 (mm)

7. Disp. change stages 4 to 6 (mm)

8 .Disp. change stages 2 to 6 (mm)

6. Final state (m)

Condition/ Monitor points	MP50Y	MP51Y	MP52Y	MP53Y	MP54Y	MP55Y	MP56Y	MP57Y	MP58Y
 Predevelopment c19 (m) Existing state (m) Disp. change stages 1 to 2 (mm) 	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
4. Basement exc. & dewatered (m)	-1.15E-03	-2.29E-04	-4.00E-05	-7.40E-06	-6.35E-07	-5.68E-04	-1.09E-05	1.73E-06	3.69E-05
5. Disp. change stages 2 to 4 (mm)	-1.15	-0.23	-0.04	-0.01	0.00	-0.57	-0.01	0.00	0.04
6. Final state (m) 7. Disp. change stages 4 to 6 (mm) 8 .Disp. change stages 2 to 6 (mm)	-1.15E-03 0.00 - 1.15	0.00	-0.02	-0.07	-0.03	0.00	-0.06	-0.08	
Condition/ Monitor points 1. Predevelopment c19 (m)	MP59X	MP60X	MP61X	MP62X	MP63Y	MP64Y	MP65Y	MP66Y	MP67M1
2. Existing state (m) 3. Disp. change stages 1 to 2 (mm)	6.74E-03	4.28E-03	-4.55E-04	1.90E-03	-3.62E-02	-3.95E-02	-2.61E-02	-2.50E-02	0.00E+00
4. Basement exc. & dewatered (m)	6.75E-03	4.30E-03	-4.31E-04	1.92E-03	-3.62E-02	-3.95E-02	-2.61E-02	-2.50E-02	3.29E+01

0.02

0.00

0.03

0.02

0.00

0.03

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

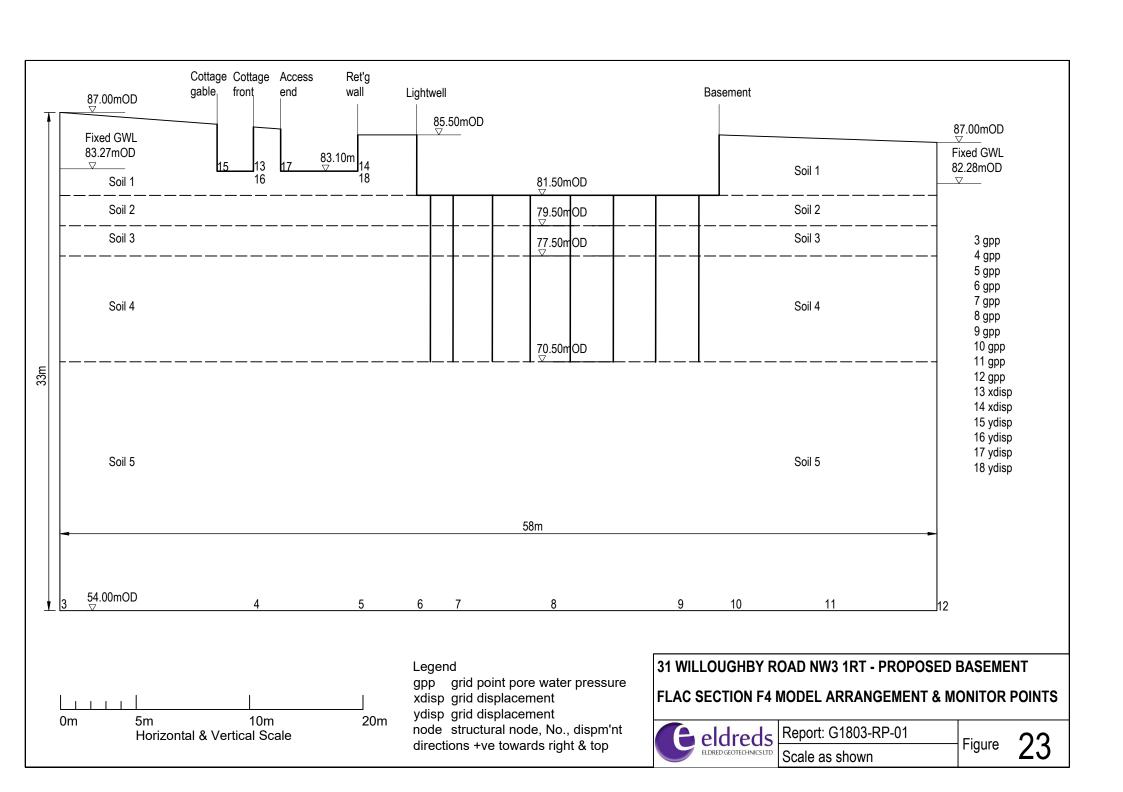
0.00

0.00

32.86

-1.71

31.14


BIA REPORT G1808-RP-01

FLAC SECTION F3 MECHANICAL MONITORING DATA

Condition/ Monitor points 1. Predevelopment c19 (m)	MP68M2	MP69M1	MP70M2	MP71S	MP72S
 2. Existing state (m) 3. Disp. change stages 1 to 2 (mm) 	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
4. Basement exc. & dewatered (m) 5. Disp. change stages 2 to 4 (mm)	3.65E+01 36.46	-3.3E+01 - 32.86	-3.6E+01 -36.38		-6.44E+01 - 64.38
6. Final state (m) 7. Disp. change stages 4 to 6 (mm)	3.46E+01 -1.87	-3.1E+01 1.71	-3.4E+01 1.90		-6.45E+01 -0.08
8 .Disp. change stages 2 to 6 (mm)	34.59	-31.14	-34.48	107.93	-64.46

Condition/ Monitor points

- 1. Predevelopment c19 (m)
- 2. Existing state (m)
- 3. Disp. change stages 1 to 2 (mm)
- 4. Basement exc. & dewatered (m)
- 5. Disp. change stages 2 to 4 (mm)
- 6. Final state (m)
- 7. Disp. change stages 4 to 6 (mm)
- 8 .Disp. change stages 2 to 6 (mm)

BIA REPORT G1808-RP-01

FLAC SECTION F4 GROUNDWATER MONITORING DATA

Condition/ Monitor points	MP3pp	MP4pp	MP5pp	MP6pp	MP7pp	MP8pp	МР9рр	MP10pp	MP11pp
1. Predevelopment c19 Kpa	2.89E+02	2.85E+02	2.84E+02	2.83E+02	2.83E+02	2.81E+02	2.80E+02	2.79E+02	2.78E+02
Existing state Kpa	2.89E+02	2.85E+02	2.84E+02	2.83E+02	2.82E+02	2.81E+02	2.80E+02	2.79E+02	2.78E+02
3. GWL change stages 1 to 2 (mm)	0.00	-20.70	-23.10	-23.50	-23.50	-23.00	-20.70	-19.00	-14.20
4. Basement exc. & dewatered Kpa	2.89E+02	2.79E+02	2.75E+02	2.73E+02	2.72E+02	2.71E+02	2.71E+02	2.72E+02	2.74E+02
5. GWL change stages 2 to 4 (mm)	0.00	-599.40	-854.80	-956.70	-1000.70	-1025.30	-854.60	-722.20	-424.10
6. Final state Kpa	2.89E+02	2.85E+02	2.84E+02	2.83E+02	2.82E+02	2.81E+02	2.80E+02	2.79E+02	2.78E+02
7. GWL change stages 4 to 6 (mm)	0.00	601.90	857.20	958.30	1001.60	1024.00	851.00	718.40	421.70
8.GWL change stages 2 to 6 (mm)	0.00	2.50	2.40	1.60	0.90	-1.30	-3.60	-3.80	-2.40

Condition/ Monitor points	MP12pp
1. Predevelopment c19 Kpa	2.77E+02
2. Existing state Kpa	2.77E+02
3. GWL change stages 1 to 2 (mm)	0.00
4. Basement exc. & dewatered Kpa 5. GWL change stages 2 to 4 (mm)	2.77E+02 0.00
6. Final state Kpa	2.77E+02
7. GWL change stages 4 to 6 (mm)	0.00
8.GWL change stages 2 to 6 (mm)	0.00

FLAC SECTION F4 MECHANICAL MONITORING DATA

Condition/ Monitor points	MP13 X di:	MP14 X dis	MP15Ydis	MP16 Y dis	MP17Y di	MP18Y disp
1. Predevelopment c19 (m)	4.02E-04	8.63E-04	-4.62E-02	-4.31E-02	-4.18E-02	-4.08E-02
2. Existing state (m)	6.28E-04	1.15E-03	-4.66E-02	-4.41E-02	-4.23E-02	-4.15E-02
3. Disp. change stages 1 to 2 (mm)	0.23	0.29	-0.46	-0.94	-0.46	-0.74
4. Basement exc. & dewatered (m)	7.52E-04	1.31E-03	-4.69E-02	-4.46E-02	-4.25E-02	-4.08E-02
5. Disp. change stages 2 to 4 (mm)	0.12	0.16	-0.25	-0.51	-0.25	0.74
6. Final state (m)	8.53E-04	1.44E-03	-4.71E-02	-4.50E-02	-4.28E-02	-4.22E-02
7. Disp. change stages 4 to 6 (mm)	0.10	0.13	-0.21	-0.42	-0.21	-1.49
8 .Disp. change stages 2 to 6 (mm)	0.22	0.29	-0.46	-0.93	-0.46	-0.75

Condition/ Monitor points

- 1. Predevelopment c19 (m)
- 2. Existing state (m)
- 3. Disp. change stages 1 to 2 (mm)
- 4. Basement exc. & dewatered (m)
- 5. Disp. change stages 2 to 4 (mm)
- 6. Final state (m)
- 7. Disp. change stages 4 to 6 (mm)
- 8 .Disp. change stages 2 to 6 (mm)

DAMAGE RISK ASSESSMENT (BURLAND)

Section	Property(s)	Element	Strain type	Location	Value mm	Eff. length	% disp.	Damage Cat'y
F1	Willow Cotts.	Rear wall-Bound'y	lateral	Notional excn face	-5	11000	-0.045	
			lateral	MP15X	0	7000	0.000	
			Net total				<u>-0.045</u>	Cat 0
			angular	MP22Ny	-0.05	7000	-0.001	
F2	Willow Cotts	Rear wall-Bound'y	lateral	Notional excn face	5	12000	0.042	
			lateral	MP17X	0.39	7000	0.006	
			Net total				0.028	
			angular	MP23Y	0.76	5500	0.014	Cat 0
			J	MP24Y	0.58			
			Net total				-0.020	
	No.29	Width	lateral	Notional excn face	5	15000	0.033	1
			lateral	MP35NX	0.92			
				MP14X	0.98			
			Net total				0.034	
			angular	MPN41Y	-0.43			Cat 0
			-	MP20Y	0.58			
				MP19Y	0.07			
			Net total (hog)		0.33	6400	<u>0.005</u>	
	No.27	Width	lateral	Notional excn face	5	15000	0.033	
			lateral	MP13X	0.53	8800	0.006	
				MP14X	0.98	8800	<u>0.011</u> <u>0.050</u>	
								Cat 0-1
			ang. + No.29	MPN41Y	-0.43			
				MP19Y	0.07			
			NI-44-4-176	MP18Y	0.22		0.004	
			Net total (hog)		0.175	15000	0.001	

DAMAGE RISK ASSESSMENT (BURLAND)

Section	Property(s)	Element	Strain type	Location	Value mm		% disp.	Damage Cat'y
F3	No.33	Width	lateral	Notional excn face	-5		-0.063	
			lateral	MP44NX	0.87	7900	<u>0.011</u>	
			Net total	MP15X	0.1	7900	<u>-0.056</u>	
								Cat 1
			angular	MP55NY	-0.56	7900	-0.007	
				MP25Y	-0.02	7900	0.000	
			Net total				<u>-0.007</u>	
	No.29	Width	lateral	Notional excn face	5	15000	0.033	
			lateral	MP40NX	0.74	6400	0.012	
				MP14X	-0.09	6400	<u>-0.001</u>	
			Net total				0.020	Cat 0
			angular	MP51NY	-0.23	6400	-0.004	
			· ·	MP22Y	0.08	6400	0.001	
			Net total				0.005	
	No.27	Width	lateral	Notional excn face	5	15000	0.033	
			lateral	MP14X	0.2	8800	0.002	
				MP15X	-0.09	8800	<u>-0.001</u>	
							0.035	
								Cat 0-1
			ang. + No.29	MPN51Y	-0.43			
				MP22Y	0.08			
				MP21Y	-0.05			
			Net total (sag)		0.32	15000	0.002	
All	Willow Cotts	F1 to F3	angular	F1 MP22Y	-0.05			
	rear wall			F2 MP23Y	0.76			Cat 0
				F3 MP26Y	<u>-0.01</u>			Cal U
			Net total (hog)		<u>0.79</u>	17400	0.005	