

Energy & Sustainability Statement

Hallmark Property Group

66 Chalk Farm Road

Final

Conor O'Sullivan MEng (Hons), AMIMechE

Alicia Ramos BSC (Hons), MSc

August 2020

DOCUMENT CONTROL RECORD

REPORT STATUS: FINAL

Version	Date	Reason for issue	Author	Checked by	Approved for Issue by Project Manager
v.1	7.8.2020	Draft	AR/COS	ZL/JP	C O'Sullivan
v.2	17.8.202	Final	AR/COS	ZL/JP	C O'Sullivan

ABOUT HODKINSON CONSULTANCY

Our team of technical specialists offer advanced levels of expertise and experience to our clients. We have a wide experience of the construction and development industry and tailor teams to suit each individual project.

We are able to advise at all stages of projects from planning applications to handover.

Our emphasis is to provide innovative and cost-effective solutions that respond to increasing demands for quality and construction efficiency.

This report has been prepared by Hodkinson Consultancy using all reasonable skill, care and diligence and using evidence supplied by the design team, client and where relevant through desktop research.

Hodkinson Consultancy can accept no responsibility for misinformation or inaccurate information supplied by any third party as part of this assessment.

This report may not be copied or reproduced in whole or in part for any purpose, without the agreed permission of Hodkinson Consultancy of Rickmansworth, Hertfordshire.

Executive Summary

The purpose of this Energy and Sustainability Statement is to demonstrate that the proposed development at 66 Chalk Farm Road by Hallmark Property Group in the London Borough of Camden is considered sustainable, as measured against relevant local, regional and national planning policies.

The proposed development will comprise a single dwelling located above an existing commercial space.

Through the incorporation of sustainable design and construction methods, energy and water saving measures, sustainable transport methods, waste reduction techniques and measures to enhance the ecological value of the site, a good quality and sustainable development is proposed.

The key features outlined in this combined Energy and Sustainability Statement are listed below:

Energy Strategy: The energy strategy has been formulated following the London Plan energy hierarchy: **Be Lean**, **Be Clean** and **Be Green**. The overriding objective is the formulation of a strategy which effectively balances a number of key elements, including CO₂ emissions, affordability of heat, climate change adaption, and the provision of high-quality living space. These elements need to work with the regulatory and planning requirements for the development.

- Energy demands to be reduced substantially through fabric '*Be Lean*' measures to ensure a sustainable level of building design is achieved. This locks in CO₂ savings irrespective of the source of the delivered energy;
- > A balanced strategy for the generation of low carbon heating. Hallmark Property Group are committed to the delivery of heat which is both low in CO₂ and not unreasonably costly. A strategy has therefore been proposed which utilises an air source heat pump in the dwelling.

The commitment to energy efficient design and renewable technologies will enable a reduction in Regulated CO₂ of **49.1%** using SAP 10.0 CO₂ emissions factors, well above the minimum requirement of 19% for new builds within the London Borough of Camden.

	Regulated CO ₂ (kg/yr)	Total CO₂ (kg/yr)	% Improvement (Regulated)		
Baseline (TER)	1,304	1,567	-		
Following Be Lean Measures	1,297	1,560	0.5%		
Following Be Clean Measures	1,297	1,560	0.5%		
Following Be Green Measures	663	927	49.1 %		

- > **Water efficiency:** Flow control devices and water efficient fixtures and fittings will be installed to target a maximum internal daily water consumption of 105 litres/person/day.
- > **Waste and recycling:** Adequate facilities will be provided for domestic and construction related waste, including segregated bins for refuse and recycling.
- Materials: Where practical, new building materials will be sourced locally to reduce transportation pollution and support the local economy. New materials will be selected based on their environmental impact and responsible suppliers will be used where possible.
- > **Flood Risk and SUDs:** The proposed development site lies in a low flood risk zone and will benefit from SUDs such as a green roof.
- > **Security:** The principles of Secure by Design will be implemented, where appropriate.
- > **Sound insulation:** An improvement on Building Regulations Part E will be targeted.
- > **Sustainable transport:** The site will benefit from a good existing public transport network and sustainable modes will be encouraged.
- > Biodiversity and ecology: Enhancements will be implemented through the provision of a green roof.

CONTENTS

	Executive Summary	2
1.	INTRODUCTION	5
2.	DEVELOPMENT OVERVIEW	7
3.	RELEVANT PLANNINC POLICY	9
4.	ASSESSMENT METHODOLOGY – BASELINE EMISSIONS	14
5.	BE LEAN – ENERGY EFFICIENCY	15
	CO ₂ Emissions at Be Lean Stage	17
6.	BE GREEN: RENEWABLE ENERGY TECHNOLOGIES	19
	CO ₂ Emissions at <i>Be Green</i> Stage	20
7.	SUSTAINABILITY: DESIGN CONSIDERATIONS	21
8.	SUSTAINABILITY: LOCAL ENVIRONMENTAL IMPACTS	25
9.	SUMMARY	30
AP	PENDICES	32

1. INTRODUCTION

- **1.1** This document has been prepared by Hodkinson Consultancy, a specialist energy and environmental consultancy for planning and development, appointed by Hallmark Property Group.
- **1.2** This Statement sets out the sustainable design and construction measures included in the planning application for the proposed development at 66 Chalk Farm Road in the London Borough of Camden.

Energy and Sustainability Statement Structure and Methodology

- **1.3** The Sustainability and Energy Strategy for the proposed development has taken into account several important objectives, including:
 - > To achieve a viable reduction in CO₂ emissions with an affordable, deliverable and technically appropriate strategy;
 - > To address all national and local planning policies and requirements;
 - > To provide a high-quality development that is adaptable to future changes in climate;
 - > To minimise the negative impact of the proposed development on both the local and wider climate and environment;
 - > To achieve the highest viable levels of sustainable design and construction;
 - > To provide a resilient supply of reasonably priced heat to the residents;
 - > To minimise emissions of pollutants such as oxides of nitrogen and particulate matter; and
 - > To create a pleasant, safe and friendly living environment that will be flexible to its occupants' needs.
- 1.4 The energy strategy first establishes a baseline assessment of the energy demands and associated CO₂ emissions. The strategy will then follow The London Plan Energy Hierarchy approach of Be Lean, Be Clean and Be Green to enable the maximum viable reductions in Regulated and Total CO₂ emissions to be achieved.
- **1.5** This Energy and Sustainability Statement does not duplicate the work of the technical reports prepared in support of the application but presents the findings in the overall context of sustainability.

- 1.6 Section 2 introduces the site and the proposed development. Section 3 sets out the relevant national and local policy documents which have been used to guide and inform the energy and sustainability strategies for the proposed development. Sections 4 to 8 outline the energy and sustainability strategy of the proposed development in relation to the policy documents listed in Chapter 3.
- **1.7 Section 9** provides a summary of the key sustainability features associated with the proposed development.

2. DEVELOPMENT OVERVIEW

2.1 The proposed development site at 66 Chalk Farm Rd in the London Borough of Camden is located at Chalk Farm, London, NW1 8AN, as shown in Figure 1 below.

Figure 1: Site Location - OpenStreetMap © 2020

2.2 The site is currently occupied by retail units on the ground floor.

Proposed Development

2.3 The proposed development is described as follows:

"Proposed 1 bedroom first floor flat over existing commercial units."

2.4 Figure 2 illustrates the proposed site layout.

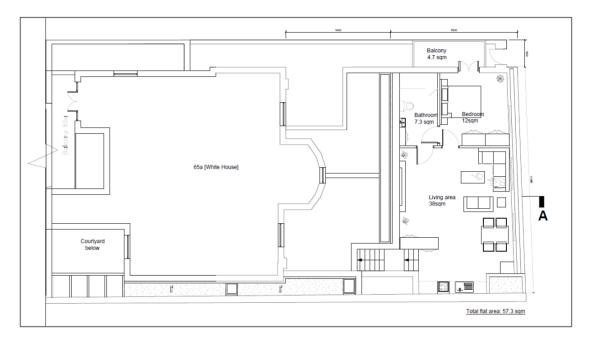


Figure 2: Proposed Plan of First Floor Extension (Contemporary Design Solutions, 2020)

3. RELEVANT PLANNINC POLICY

3.1 The planning policies and requirements in Figure 3 below have informed the sustainable design of the proposed development.

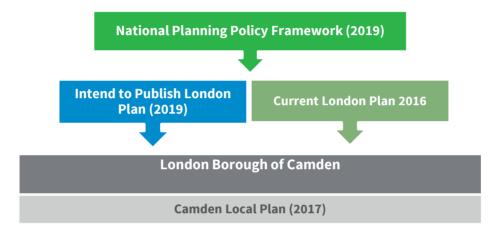


Figure 3: Relevant Planning Policy Documents.

National Policy: NPPF

- **3.2** The revised National Planning Policy Framework (NPPF) was published on the 19th June 2019 and sets out the Government's planning policies for England.
- **3.3** The NPPF provides a framework for achieving sustainable development, which has been summarised as "*meeting the needs of the present without compromising the ability of future generations to meet their own needs*" (Resolution 42/187 of the United National General Assembly). At the heart of the framework is a **presumption in favour of sustainable development**.
- **3.4** The document states that the planning system has three overarching objectives which are interdependent and need to be pursued in mutually supportive ways:
 - a) An economic objective to help build a strong, responsive and competitive economy, by ensuring that sufficient land of the right types is available in the right places and at the right time to support growth, innovation and improved productivity; and by identifying and coordinating the provision of infrastructure;
 - **b)** A social objective to support strong, vibrant and healthy communities, by ensuring that a sufficient number and range of homes can be provided to meet the needs of present and future generations; and by fostering a well-designed and safe built environment, with

accessible services and open spaces that reflect current and future needs and support communities' health, social and cultural well-being; and

c) An environmental objective – to contribute to protecting and enhancing our natural, built and historic environment; including making effective use of land, helping to improve biodiversity, using natural resources prudently, minimising waste and pollution, and mitigating and adapting to climate change, including moving to a low carbon economy.

Regional Policy: The London Plan

Adopted London Plan (2016)

- **3.5** The existing London Plan sets out an integrated economic, environmental, transport and social framework for the development of London. The following policies are considered relevant to the proposed development and this Statement:
- **3.6 Policy 5.2 Minimising Carbon Dioxide Emissions** requires that residential developments minimise carbon dioxide emissions in line with the energy hierarchy: *Be Lean, Be Clean, Be Green.*
- **3.7 Policy 5.3 Sustainable Design and Construction** states that the highest standards of sustainable design and construction should be achieved in London to improve the environmental performance of new developments and to adapt to the effects of climate change over their lifetime.

- **3.8** Development proposals should demonstrate that sustainable design standards are integral to the proposal, including its construction and operation, and ensure that they are considered at the beginning of the design process.
- **3.9** Major development proposals should meet the minimum standards outlined in the Mayor's supplementary planning guidance and this should be clearly demonstrated within a design and access statement. The standards include measures to achieve other policies in the London Plan and the following sustainable design principles:
 - a) Minimising carbon dioxide emissions across the site, including the building and services (such as heating and cooling systems)
 - b) Avoiding internal overheating and contributing to the urban heat island effect

- c) Efficient use of natural resources (including water), including making the most of natural systems both within and around buildings
- d) Minimising pollution (including noise, air and urban runoff)
- e) Minimising the generation of waste and maximising reuse or recycling
- f) Avoiding impacts from natural hazards (including flooding)
- g) Ensuring developments are comfortable and secure for users, including avoiding the creation of adverse local climatic conditions
- h) Securing sustainable procurement of materials, using local supplies where feasible, and
- i) Promoting and protecting biodiversity and green infrastructure.
- **3.10 Policy 5.13 Sustainable Drainage** requires that development should use sustainable urban drainage systems (SUDS) unless there are practical reasons for not doing so, and should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible in line with the drainage hierarchy.
- **3.11 Policy 5.15 Water Use and Supplies** requires that development should minimise the use of mains water by incorporating water saving measures and equipment and that residential development is designed so that mains water consumption meets a target of 105 litres/person/day or less.

Intend to Publish London Plan (2020)

- **3.12** While not yet adopted, the Intend to Publish London Plan now carries increasing weight as a material consideration. The Mayor has set out his Intend to Publish version. The Intend to Publish version of the London Plan has been reviewed by the Secretary of State. Directions have been issued in respect of some policies but none that relate to the sustainability matters.
- 3.13 The policies, which are listed below, are considered relevant to the proposed development.
- **3.14 Policy SI5 Water Infrastructure** states that in order to minimise the use of mains water, water supplies and resources should be protected and conserved in a sustainable manner. Development proposals should minimise the use of mains water in line with the Optional Requirement of the Building Regulations (residential development) achieving mains water consumption of 105 litres or less per head per day (excluding allowance of up to five litres for external water consumption).

Local Policy: London Borough of Camden

Camden Local Plan 2017

- **3.15** The London Borough of Camden's Local Plan will cover the period from 2016-2031. It sets out the key elements of the Council's planning vision and strategy for the borough. The principle policies relevant to the Energy and Sustainability Statement are presented below.
- **3.16 Policy H6 Housing choice and mix** encourages inclusion of functional, adaptable and accessible spaces. Self-contained homes should meet the nationally described space standard; be accessible and adaptable in accordance with Building Regulation M4(2); and be suitable for occupation by a wheelchair user or easily adapted for occupation by a wheelchair user in accordance with Building Regulation M4(3).
- **3.17 Policy C5 Safety and security** requires developments to demonstrate that they have incorporated design principles which contribute to safety and security.
- **3.18 Policy C6 Access for all** requires the highest practicable standards of accessible and inclusive design to be met. Spaces, routes and facilities between buildings should be designed to be fully accessible.
- **3.19 Policy A1 Managing the impact of development** requires that the amenity of occupiers and neighbours is protected. This involves considering daylight, noise, construction phase impacts, and transport impacts, among others.
- **3.20 Policy A3 Biodiversity** seeks to protect and enhance biodiversity. Developments will be assessed against their ability to realise benefits for biodiversity through the layout, design and materials used in the built structure and landscaping elements of a proposed development, proportionate to the scale of development proposed. In addition, the demolition and construction phase of development is to be planned to avoid disturbance to habitats and species.
- **3.21 Policy D1 Design** seeks to ensure the development is sustainable in design and construction, incorporating best practice in resource management and climate change mitigation and adaptation; is of sustainable and durable construction; comprises details and materials that are of high quality; is secure and designed to minimise crime and antisocial behaviour; and maximises opportunities for greening.
- **3.22 Policy CC1 Climate change mitigation** requires development to promote zero carbon development and reduce carbon dioxide emissions in line with the energy hierarchy, ensure that the location of development minimises the need to travel by car, support and encourage sensitive energy efficiency improvements to existing buildings, and optimise resource efficiency.
- **3.23 Policy CC2 Adapting to climate change** requires reducing surface water runoff through increasing permeable surfaces and use of Sustainable Drainage Systems, incorporating bio-diverse roofs, and

measures to reduce the impact of overheating. New build residential development is encouraged to use the Home Quality Mark and Passivhaus design standards.

- **3.24 Policy CC3 Water and flooding** seeks to ensure that development does not increase flood risk and reduces the risk of flooding where possible. Developments should incorporate water efficiency measures and utilise Sustainable Drainage Systems (SuDS).
- **3.25 Policy T1 Prioritising walking, cycling and public transport** seeks to promote sustainable transport by prioritising walking, cycling and public transport.
- **3.26 Policy T2 Parking and car-free development** seeks to limit the availability of parking and require all new developments to be car-free.
- **3.27 Policy CC5 Waste** requires developments to include facilities for the storage and collection of waste and recycling.

Other planning guidance

- **3.28** The Council has a number of documents that provide advice and guidance on how the planning policies will be applied for certain cases known as Supplementary Planning Guidance (SPG). These documents do not have the same weight in decision making as Camden development plan document but they are important supporting documents. The following are those relevant to this statement:
- **3.29 Amenity CPG March 2018** specifies key requirements for in relation to privacy, daylight and sunlight, construction management plans, and noise and vibration.
- **3.30 Design CPG March 2019** provides guidance that supports Local Plan policies C5, C6, A1, A3, D1, T1, CC2, and CC5, which are relevant to this statement.
- **3.31 CPG 2 Housing March 2019** provides guidance that supports Local Plan policies H6, A1, and D1, which are relevant to this statement.
- **3.32** Altering and extending your home CPG March 2019 seeks to ensure extensions or alterations to residential houses and flats can be designed to a high quality to respect the character of the property, neighbours, and surrounding environment and to help promote improved health and wellbeing. It provides guidance that supports Local Plan policies CC2, A1, A3 and D1, which are relevant to this statement.
- **3.33** Access for all CPG March 2019 expects all development to be inclusively designed and useable by all to promote equality of opportunity. Design and Access Statements should contain an inclusive design statement, including the specific needs of disabled people.

3.34 Energy efficiency and adaptation CPG - March 2019 requires carbon dioxide emissions to be reduced by following the energy hierarchy in accordance with Local Plan policy CC1. Energy strategies are to be designed following the steps set out in the energy hierarchy.

Energy Efficiency and Adaption – Camden Planning Guidance 2019

3.35 Table 2a of this guidance document sets out that minor domestic planning applications should achieve a minimum of a 19% reduction in Regulated CO₂ emissions over Part L Building Regulations (2013) Baseline.

4. ASSESSMENT METHODOLOGY – BASELINE EMISSIONS

- **4.1** This statement first establishes a baseline assessment of the energy demands and associated CO₂ emissions for the developments.
- **4.2** The report will then follow the hierarchy approach of Be Lean, Be Clean and Be Green to enable the maximum viable reductions in Regulated and Total CO₂ emissions over the calculated baseline.
- **4.3** The estimated annual energy demand for dwelling has been calculated using Standard Assessment Procedure methodology. SAP calculates the Regulated energy demands associated with hot water, space heating and fixed electrical items. The unregulated energy demands for appliances and cooking are taken from BRE standard occupancy calculations.
- **4.4** As the development only compromises a single dwelling, calculations have been performed on this unit.

Baseline Emissions

- **4.5** A baseline calculation has been carried out to establish the Regulated CO₂ emissions by which this energy strategy will be compared against. SAP 10.0 emission factors have been utilised in this energy strategy.
- **4.6** Table 1 shows the Regulated and Total baseline CO₂ emissions rates. TER worksheets supporting these calculations are presented in Appendix B.

Table 1: TER Baseline case	•
----------------------------	---

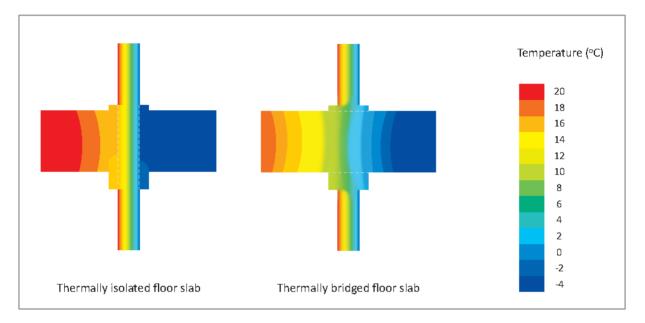
Baseline CO ₂ emissions (kg CO ₂ per annum)									
	Regulated	Total							
Baseline (TER)	1,304	1,567							

5. BE LEAN – ENERGY EFFICIENCY

5.1 Section 5 sets out the potential measures to be implemented to enable the targets outlined in Section 1 to be achieved, thereby locking in significant CO₂ reductions through a reduction in energy demands.

Insulation Standards

- **5.2** All dwellings will incorporate enhanced insulation in the building envelope (walls, roofs, floors and glazing) to achieve U-values which are likely to be similar to the following:
 - > Glazing with a U-value of 1.30 W/m².K;
 - > External wall U-value of 0.18 W/m².K;
 - > Exposed floor (over existing premises) U-value of 0.15 W/m².K;
 - > A main roof U-value of 0.16 W/m².K;


Air Tightness & Ventilation

- **5.3** Air tightness standards will conform to, and exceed, Approved Document Part L requirements. By reducing air leakage loss and convective bypass of insulation, an improvement of design air permeability rate from 10m³/h.m² to 4.0m³/h.m² will further reduce space heating requirements.
- **5.4** Extract fans will be installed within all wet rooms. Additionally, the dwelling will have openable windows and therefore have the ability to naturally ventilate should the occupant desire. Convective ventilation and night purging of heat will therefore be facilitated.

Thermal Bridging

- 5.5 In well insulated buildings, as much as 30% of heat loss can occur through thermal bridges, which occur when highly conductive elements (e.g. metal studs) in the wall construction enable a low resistance escape route for heat. Hallmark Property Group are committed to delivering a development which prioritises the conservation of energy through lean design and have therefore placed particular importance on the development of construction details which minimise the effect of thermal bridges.
- **5.6** Figure 4 illustrates the benefits of reducing thermal bridges.

- **5.7** It is also considered that a specification which actively seeks to design out poor junction performance demonstrates a more balanced approach than the use of very low U-values.
- **5.8** It is proposed that for this development Accredited Construction Details (ACDs) or bespoke calculations are required to recognise the performance from thermal bridges across the development.

Space Heating & Hot Water

- **5.9** The space heating requirement will be reduced by the fabric, air tightness and ventilation measures detailed above.
- **5.10** In line with energy assessment guidance, a gas boiler baseline has been used in the Be Lean stage assessment.
- **5.11** The size of the development is the predominant reason as to why individual heat sources are more appropriate than a communal heating system.
- **5.12** As the 66 Chalk Farm Road development only compromises a single dwelling, the heat demands are low and thus decentralised heating is not appropriate.

Lighting & Appliances

5.13 Energy efficient lighting will be installed in 100% of internal fittings in the homes.

5.14 It is very difficult to design and construct homes to reduce the unregulated electricity demands, because this is almost entirely dependent on the occupant of a home and can vary substantially. However, efforts are made to enable the residents to minimise their unregulated electricity consumption.

Limiting the Risk of Summer Overheating

- **5.15** Minimising the risk of summer overheating is important so as to ensure that homes are adapted to climate change and remain comfortable to occupy in the future.
- **5.16** The following overheating measures are to be adopted for the development to assist in reducing any risk:
 - > Solar control glazing to reduce uncomfortable solar heat gains whilst maximising energy efficiency a g-value of 0.5 has been applied to all facades.
 - > Openable windows to allow for purging of internal heat;
- **5.17** It has been assumed that windows can be openable during summer nights to mitigate overheating in bedrooms.

CO₂ Emissions at Be Lean Stage

5.18 Table 2 outlines the CO_2 emissions following the inclusion of the above energy efficiency measures for the development. It can be seen that the TER baseline has been exceeded by 0.5%.

	Regulated CO ₂ (kg/yr)	Total CO₂ (kg/yr)	% Improvement	
Baseline (TER)	1,304	1,567	-	
Following Be Lean Measures	1,297	1,560	0.5	

Table 2: Regulated and total emissions following Be Lean measures.

5.19 The dwelling also exceeds the Target Fabric Energy Efficiency (TFEE) requirements of Building Regulations Part L 2013 by 15.2%, as shown in Table 3 by the SAP calculations. This represents a high level of sustainable design.

Table 3: TFEE and DFEE results for sampled dwelling types.

Residential - Example Unit	Unit Area	TFEE	DFEE	%
Type	(m²)	(kWh/m²/yr)	(kWh/m²/yr)	Improvement
66 Chalk Farm Road	60.4	72.6	61.6	15.2%

5.20 Further calculations including Dwelling Emissions Rate (DER) worksheet can be seen in appendix A.

6. BE GREEN: RENEWABLE ENERGY TECHNOLOGIES

- **6.1** The final part of the Energy Hierarchy is Be Green which seeks for renewable energy technologies to be specified to provide, where feasible, a reduction in expected CO₂ emissions.
- 6.2 In line with GLA guidance, heat pumps have been considered as a Be Green measure.

Solar Thermal Panels

- **6.3** Solar thermal panels generate heat for hot water. However, as the proposed development will incorporate a curved roof space, the mounting of solar thermal panels would provide a significant technical challenge whilst also requiring a safe method of access for routine maintenance.
- **6.4** Due to the structure of the proposed roof space and the requirement for safe access not being met, the incorporation of solar thermal panels is not considered feasible.

Wind Turbines

6.5 Small rooftop wind turbines are designed to generate electricity from the wind for use within each dwelling. However, urban rooftop wind turbines do not generally perform sufficiently well to warrant their installation, due to the low and turbulent wind conditions present. They are therefore likely to remain technically unfeasible.

Air Source Heat Pumps (Proposed)

- **6.6** As two of the central aims in the preparation of this energy strategy are to be low in CO_2 emissions for the lifespan of the development and for the cost of heat to not be unreasonably high, it is proposed for individual dwelling heat pumps to be installed.
- **6.7** The selection of air over ground or water source has been made due to restrictions that the site location would place on access to the latter two. Air source does not require the expensive and complex boreholes that ground source does, or the unique access that water source does.
- **6.8** ASHPs generate heat via compression of a refrigerant which has extracted ambient heat from the external air. The compressive action raises the temperature of the refrigerant and allows it to provide heating.
- 6.9 ASHP's have been specified for heating and hot water provision in the dwelling.
- **6.10** The layout of the apartment has where possible catered for the flexibility to incorporate differing heat pump systems. For instance, balcony space has been maximised so as to allow for the

inclusion of external units. Additionally, space has been set aside within the apartment to account for a hot water cylinder.

6.11 A Monobloc Mitsubishi Ecodan unit (datasheet provided as Appendix D) has been used in the calculations for this energy strategy. Hallmark Property Group shall aim to match the performance characteristics of this unit with whichever system and model they select once the design has progressed further.

Photovoltaic (PV) Panels

- **6.12** PV panels enable developments to generate electricity onsite that can subsequently be used within the dwelling. This has the benefit of reducing electricity bills to residents.
- **6.13** As mentioned above, the proposed development will incorporate a curved roof space and therefore the mounting of PV panels would provide a significant technical challenge whilst also requiring a safe method of access for maintenance.
- **6.14** Due to the structure of the proposed roof space and the requirement for safe access not being met, the incorporation of PV panels is not considered feasible. Furthermore, the inclusion of an air source heat pump contributes to a significant reduction in regulated emissions well beyond the Camden requirement of 19%.

CO₂ Emissions at Be Green Stage

6.15 Table 4, below, shows the Regulated and Total CO₂ reductions following the application of **Be Green** measures. DER worksheets can be found in Appendix F. This shows that the local Camden requirement of a 19% reduction in regulated CO₂ has been significantly exceeded with a reduction of 49.1% achieved.

	Regulated CO ₂ (kg/yr)	Total CO₂ (kg/yr)	% Improvement (Regulated)	
Baseline (TER)	1,304	1,567	-	
Following Be Lean Measures	1,297	1,560	0.5%	
Following Be Clean Measures	1,297	1,560	0.5%	
Following Be Green Measures	663	927	49.1 %	

Table 4: Be Green reductions.

7. SUSTAINABILITY: DESIGN CONSIDERATIONS

This section will summarise other sustainability measures that will apply to this development

Building Quality

Security

- **7.1** Hallmark Property Group are committed to ensuring the development is safe and secure for the occupants; reduce the risks and costs associated with crime; and improve occupiers' quality of life by reducing the fear of crime.
- **7.2** As such, the proposed development will be aiming to incorporate the principles of Secured by Design where appropriate. This may involve consultation with a Security Consultant during the detailed design stage.

Sound Insulation

7.3 In order to reduce the likelihood of noise complaints and to ensure a high quality development is created, the development will be aiming to achieve airborne sound insulation values that will improve upon the performance standards outlined within the Building Regulations for England and Wales, Approved Document E.

Inclusive Design

7.4 Hallmark Property Group will endeavour to incorporate the requirements of the Equality Act (2010) into their design, making reasonable adjustments to enable disabled access, regularly reviewing whether the buildings are accessible and effective, and providing necessary design adjustments where it is practical to do so.

Overheating

7.5 Minimising the risk of summer overheating and high uncontrollable temperatures is important so as to ensure that homes are comfortable for their occupants and remain comfortable in the future. Hallmark Property Group commits to ensuring that the dwelling will not have a high risk of summer overheating and will adopt appropriate measures to ensure this is delivered.

Appliances

7.6 The EU Labelling Scheme shows how appliances are rated according to their energy consumption. Due to improved energy efficiency in many new products, more appliances achieve A+, A++ and A+++. In January 2019, it was announced that A+ to A+++ will be phased-out over the coming years

and the new grading system will revert back to A to G ratings. This should make it easier for consumers to understand how appliances compare against each other.

7.7 The choice of energy efficient appliances and the effective use of them will not only reduce unregulated CO₂ emissions but will save occupants money. Where provided, white goods will aim to be energy efficient with at least a B rating.

Sustainable construction

- **7.8** Sustainable construction involves the prudent use of existing and new resources and the efficient management of the construction process. This includes the following measures:
 - > Reducing waste during construction and sorting waste on site where practical;
 - Reducing the risk of statutory nuisance to neighbouring properties as much as possible through effective site management;
 - > Controlling dust and emissions from demolition and construction; and
 - > Complying with protected species legislation.

Considerate Constructors Scheme

- **7.9** The development site will be registered with the Considerate Constructors Scheme. This is designed to encourage environmentally and socially considerate ways of working, to reduce any adverse impacts arising from the construction process. As commonly known, the Considerate Constructors Scheme aims are as follows:
 - > Enhancing the appearance;
 - > Respecting the community;
 - > Protecting the environment;
 - > Securing everyone's safety;
 - > Caring for the workforce.

Monitoring Construction Site Impacts

7.10 During the construction processes, control procedures will be put in place to minimise noise and dust pollution and roads will be kept clean. The management systems will generally comprise procedures and working methods that are approved by the development team together with commercial arrangements to ensure compliance.

- **7.11** Further to the above, additional measures will be adopted to minimise the impact on the local area during construction. This will include the limiting of air and water pollution in accordance with best practice principles.
- 7.12 In terms of construction traffic, this will be minimised by restricting deliveries and arrival times in order to manage potential impacts on existing site occupants and users. Work will be limited to appropriate hours to be agreed with the Council, and suppressors will be used to reduce noise from machinery.

Water reduction

Internal Water Efficiency

7.13 Increased frequency of drought across Europe lines up with climate change projections and water companies in the UK capture much less rain for our use than people assume. As of February 2019, 12 out of the 23 water companies operating in areas of England were classified as being under 'serious' stress (Energy Saving Trust, 2019). Each individual in the UK currently uses on average 140 litres/person/day and total UK demand for water in the 2080s is projected to increase by between 4-18% (CCRA2, 2015).

7.14 Reducing water consumption will not only help to preserve our water sources but will also save energy. As much as 25% of a household's energy consumption is used for heating water. As such, internal water consumption will be significantly reduced through the use of practical and hygienic water saving measures.

Residential Water Use

7.15 The dwelling will target a minimum water efficiency standard of 105 litres/person/day in accordance with Policy 5.15 of the Adopted London Plan and Policy SI5 of the Intend to Publish London Plan and the optional tighter Building Regulations Approved Document G requirement (110 litres/person/day).

Waste Management

7.16 Waste reduction and recycling is another key challenge of sustainable development and something which is strongly encouraged in the London Plan (Policy 5.17). The waste hierarchy, illustrated in Figure 5 below, prioritises those waste management options which are best for the environment.

Figure 5: Waste Hierarchy

7.17 The waste hierarchy establishes waste management options according to what is best for the environment. It places great importance on preventing waste in the first place. When waste is created it prioritises preparing if for re-use, then recycling, recovery and lastly disposal (e.g. landfill).

Construction waste

- **7.18** The reduction of construction waste not only minimises environmental impacts through ensuring the responsible use of resources and waste disposal but can also significantly reduce construction costs for the developer
- **7.19** The following waste minimisation actions will be considered:
 - > Design for the use of fewer materials;
 - > Return packaging for reuse;
 - > Consider community reuse of surplus materials or offcuts; and
 - > Engage with supply chains and include waste minimisation initiatives and targets in tenders and contracts.

7.20 As part of their commitment to divert construction waste from landfill, Hallmark Property Group will regularly monitor and record the site's waste reduction performance. This will be compared against a target benchmark where at least 85% (by volume) of non-hazardous waste is to be diverted from landfill.

Household Waste

- **7.21** Adequate internal refuse storage will be provided in accordance with the London Borough of Camden's collection service.
- **7.22** This will include space for segregated recycling waste bins within the kitchen areas. This will involve the installation of recycling bins, where waste can be segregated into paper, glass, cans, plastic and cardboard, if necessary.

8. SUSTAINABILITY: LOCAL ENVIRONMENTAL IMPACTS

Ecology

8.1 The site has been previously used for development and is therefore considered 'brownfield'.Redeveloping and revitalising vacant and under-used sites is supported by the NPPF.

Green Roof

- **8.2** Green roof is to be provided in order to meet Policy 5.11 of the London Plan. Green roofs have demonstrable sustainability benefits, including:
 - > Reduction in urban heat island effect (localised cooling through increased evaporation);
 - > Provision of ecological habitats for fauna and flora, particularly where these roofs can replicate pre-existing ecological conditions; and
 - > Reduction in surface water run-off.

Materials

Environmental Impact

- **8.3** New building materials will be selected, where possible, to ensure that they minimise environmental impact and have low embodied energy from manufacture, transportation and operational stages, through to eventual demolition and disposal.
- **8.4** All insulation materials will have an Ozone Depleting Potential (ODP) of zero and a Global Warming Potential (GWP) of less than 5.

Local and Responsible Sourcing

- 8.5 In accordance with London Plan Policy 5.3, preference will be given to the use of locally sourced materials and local suppliers, where viable. This will benefit the local economy as well as having environmental benefits through reduced transportation.
- 8.6 The main building materials will be responsibly and legally sourced from manufacturers with environmental management systems and/or responsible sourcing credentials, such as BES 6001.
- **8.7** Timber used on site, including timber used in the construction phase, such as hoarding, fencing and scaffolding, will be sourced from sustainable forestry sources (e.g. PEFC and FSC) where possible.

Recycled Materials

8.8 Where feasible, Hallmark Property Group will commit to using materials that have been recycled. The use of recycled materials (e.g. crushed concrete from waste, used for hard-standing) has less embodied energy impact, other than that expended in their processing or transport.

Flood Risk and Surface Water Run-off

- **8.9** Developments in low flood risk areas are promoted to, not only protect homes and local communities and reduce the cost implications if flooding occurs, but to protect the environment from the transfer of pollutants during flooding events.
- **8.10** As shown in the Environment Agency's Flood Map in Figure 6, the proposed development lies in a low risk flood zone (Flood Zone 1).

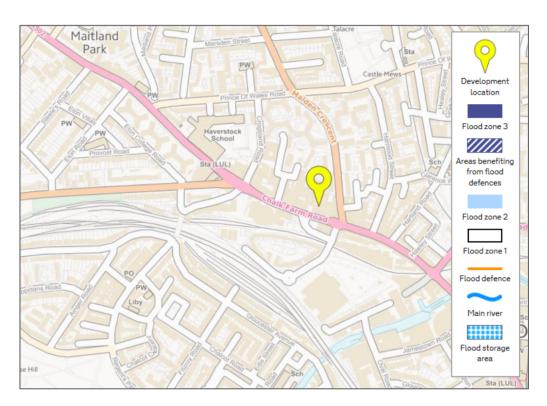


Figure 6: Environment Agency Flood Map – https://flood-map-for-planning.service.gov.uk

Sustainable drainage systems

- 8.11 Sustainable drainage systems (SuDS) can deliver multiple benefits which broadly fit into four categories: water quantity, water quality, amenity and biodiversity. The overarching principle of SuDS design is that surface water runoff should be managed for maximum benefit. Sustainable drainage takes account of the quantity and quality of runoff, and the amenity and aesthetic value of surface water in the urban environment.
- **8.12** Green roofs are proposed as part of the SuDS. These will not only help to attenuate surface water but will provide the necessary water treatment. They will help to intercept and retain precipitation, reducing the volume of runoff and attenuating peak flows.

Sustainable Transport and Local Amenities

- **8.13** Sustainable transport links are central to the sustainability debate. They provide a positive contribution to environmental, societal and economic sustainability of the places they serve.
- **8.14** The provision of alternative sustainable transport options and associated facilities reduces dependency on traditionally fuelled cars and has the following benefits:
 - > Encourages active travel and helps improve people's health and wellbeing;

- > Reduces congestion and encourages clean travel which helps to improve the air quality of the local area; and
- > Provides cost savings compared with maintaining and running traditionally fuelled cars.

Local Amenities

- **8.15** The proposed development has access to the following key amenities in the local area which will help to reduce dependency on private transport:
 - > Administrative services (e.g. post office, banks and cash points);
 - > Health services (e.g. pharmacies);
 - > Small/large scale retail services (e.g. shops and restaurants);
 - > Recreation and leisure facilities (e.g. gyms and cinemas); and
 - > Education and community facilities (e.g. nurseries, schools and community centres).

Public Transport

- 8.16 The site is well located within close proximity to a number of transport links, such as:
 - > **Chalk Farm Station,** which is approximately 250 meters from the site, provides trains to Morden, Edgware, and Kennington;
 - Camden Town Station provides trains to Morden, Edgware, High Barnet, Kennington, and Mill Hill East; and
 - > **Local bus services** including 393, 24, 31, 27, and 168 within the vicinity of the site, providing frequent trips in all directions.
- **8.17** The Transport for London Public Transport Accessibility Level (PTAL) map for the site is presented in Figure 7 below. The site's PTAL rating of 6 represents a very good level of transport accessibility.

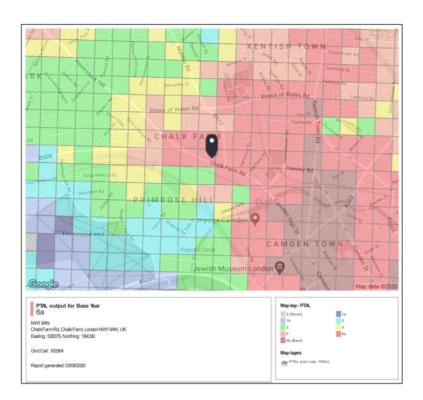


Figure 7: PTAL map - https://tfl.gov.uk/

Working from Home

8.18 The concept of working from home will be promoted by the provision of internal services and infrastructure, enabling a home office to be established in the dwelling. This will offer additional environmental benefits in terms of potentially reducing the demand for transportation.

The home office space will likely comprise the provision of two double electric sockets, a broadband connection, good ventilation and adequate internal daylight levels.

9. SUMMARY

- **9.1** The purpose of this Energy and Sustainability Statement is to demonstrate that the proposed development at 66 Chalk Farm Road by Hallmark Property Group in the London Borough of Camden is considered sustainable, as measured against relevant local, regional and national planning policies.
- **9.2** The proposed development will comprise a single dwelling located above an existing commercial space.
- **9.3** Through the incorporation of sustainable design and construction methods, energy and water saving measures, sustainable transport methods, waste reduction techniques and measures to enhance the ecological value of the site, a good quality and sustainable development is proposed.
- **9.4** The key features outlined in this combined Energy and Sustainability Statement are listed below:

Energy Strategy: The energy strategy has been formulated following the London Plan energy hierarchy: *Be Lean*, *Be Clean* and *Be Green*. The overriding objective is the formulation of a strategy which effectively balances a number of key elements, including CO₂ emissions, affordability of heat, climate change adaption, and the provision of high-quality living space. These elements need to work with the regulatory and planning requirements for the development.

- Energy demands to be reduced substantially through fabric '*Be Lean*' measures to ensure a sustainable level of building design is achieved. This locks in CO₂ savings irrespective of the source of the delivered energy;
- > A balanced strategy for the generation of low carbon heating. Hallmark Property Group are committed to the delivery of heat which is both low in CO₂ and not unreasonably costly. A strategy has therefore been proposed which utilises an air source heat pump in the dwelling. No existing heat networks are in the vicinity of 66 Chalk Farm Road;
- **9.5** The commitment to energy efficient design and renewable technologies will enable a reduction in Regulated CO₂ of **49.1%** using SAP 10.0 CO₂ emissions factors, well above the minimum requirement of 19% for new builds within the London Borough of Camden.

	Regulated CO ₂ (kg/yr)	Total CO₂ (kg/yr)	% Improvement (Regulated)	
Baseline (TER)	1,304	1,567	-	
Following <i>Be Lean</i> Measures	1,297	1,560	0.5%	
Following Be Clean Measures	1,297	1,560	0.5%	
Following Be Green Measures	663	927	49.1 %	

- > **Water efficiency:** Flow control devices and water efficient fixtures and fittings will be installed to target a maximum internal daily water consumption of 105 litres/person/day.
- > **Waste and recycling:** Adequate facilities will be provided for domestic and construction related waste, including segregated bins for refuse and recycling.
- Materials: Where practical, new building materials will be sourced locally to reduce transportation pollution and support the local economy. New materials will be selected based on their environmental impact and responsible suppliers will be used where possible.
- > **Flood Risk and SUDs:** The proposed development site lies in a low flood risk zone and will benefit from SUDs such as a green roof.
- > **Security:** The principles of Secure by Design will be implemented, where appropriate.
- > **Sound insulation:** An improvement on Building Regulations Part E will be targeted.
- > **Sustainable transport:** The site will benefit from a good existing public transport network and sustainable modes will be encouraged.
- > Biodiversity and ecology: Enhancements will be implemented through the provision of a green roof.

APPENDICES

Appendix A

Building Regulations, *Be Lean* and *Be Green* Calculations – SAP 10.0 Calculations

Appendix B

TER Worksheets for Representative Dwellings

Appendix C

DER Worksheets for Representative Dwellings (Be Lean)

Appendix D

Indicative Heat Pump Specification

Appendix E

DER Worksheets for Representative Dwellings (Be Green)

Appendix A

Building Regulations, Be Lean and Be Green Calculations – SAP 10.0

Appendix A - Building Regulations, **Be Lean and Be Green** Calculations

SAP Outputs per Dwelling Type - Be Lean													
				Energy	(kWh/yr)			Energy (kW	h/m²/yr)	Regulated CO ₂ (kg/m2/yr)		Total CO₂ (kg/m2/yr)
Description	Orier	ntation	Space Heating	Hot Water	Regulated Electrical	Unregulated Appliances & Cooking		TFEE	DFEE	TER	DER	TER	DER
66 Chalk Farm Road		SW	3,643	2,142	353	2,308		72.6	61.6	21.6	21.5	25.94	25.83
Energy Demands & CO ₂ Emissions - Be	nergy Demands & CO ₂ Emissions - Be Lean												
				Energy	(kWh/yr)			Energy (k	Wh/yr)	Regulated CO ₂ (k	g/yr)	Total CO₂ (kg/m2/yr)	
Description	Unit Area (m2)	No. Units	Space Heating	Hot Water	Regulated Electrical	Unregulated Appliances & Cooking		TFEE	DFEE	TER	DER	TER	DER
66 Chalk Farm Road	60.4	1	3,643	2,142	353	2,308		4,385	3,718	1,304	1,297	1,567	1,560
TOTAL (Residential)		3,643	2,142	353	2,308		4,385	3,718	1,304	1,297	1,567	1,560	
Area Weighted Average (/m2)								72.6	61.6	21.58	21.48	25.9	25.8
Improvement over Target								15.2	%	0.5%		0.4%	
SAP Outputs per Dwelling Type - Be Gr	reen												
	Orientation			Energy	(kWh/yr)			Energy (kW	h/m²/yr)	Regulated CO₂ (kg/	m2/yr)	Total CO₂ (kg/m2/yr)
Description			Space Heating	Hot Water	Regulated Electrical	Unregulated Appliances & Cooking		TFEE	DFEE	TER	DER	TER	DER
66 Chalk Farm Road	9	SW	1,383	1,186	278	2,308		72.6	61.6	21.6	10.98	25.94	15.34
Energy Demands & CO ₂ Emissions - Be	Green												
				Energy	(kWh/yr)				Wh/yr)	Regulated CO₂ (kg/yr)		Total CO₂ (kg/m2/yr)	
Description	Unit Area (m2)	No. Units	Space Heating	Hot Water	Regulated Electrical	Unregulated Appliances & Cooking		TFEE	DFEE	TER	DER	TER	DER
66 Chalk Farm Road 60.4			1,383	1,186	278 278	2,308		4,385	3,718	1,304	663	1,567	927
TOTAL (Residential)	TOTAL (Residential)					2,308		4,385	3,718	1,304	663	1,567	927
Area Weighted Average (/m2)								72.6	61.6	21.6	11.0	25.9	15.3
Improvement over Target	vement over Target							15.2	%	49.1%		40.	9%

Appendix B

TER Worksheet

TER Worksheet Design - Draft

This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

Assessor name	Mr Ionat	than Peck					4	ssessor nur	nher	10160)	
Client								ast modified				
								ast modified		07/08	/2020	
Address	66 , Cam	den, NW1	8AN									
1. Overall dwelling dime	ensions											
				A	rea (m²)			erage storey leight (m)	I	Vo	lume (m³)	
Lowest occupied					60.40	(1a) x		2.40	(2a) =		144.96	(3a)
Total floor area	(1a)	+ (1b) + (1	c) + (1d)(1n) =	60.40] (4)						
Dwelling volume						-	(33	a) + (3b) + (3	3c) + (3d)(3	8n) =	144.96	(5)
2. Ventilation rate									_			
2. Ventilation rate										m	³ per hour	
									7		-	7 (2.)
Number of chimneys								0	x 40 =		0	(6a)
Number of open flues								0	x 20 =		0	(6b)
Number of intermittent fa	ans							2	x 10 =		20] (7a)
Number of passive vents								0	x 10 =		0	_ (7b)
Number of flueless gas fir	es							0	x 40 =	L	0	(7c)
										Air	changes pe hour	r
Infiltration due to chimne	ys, flues, fan	s, PSVs		(6a)	+ (6b) + (7	'a) + (7b) + (7c) =	20	÷ (5) =	: [0.14	(8)
If a pressurisation test ha			ntended, p	roceed to (17), otherv	vise continu	e from (9)	to (16)				
Air permeability value, q5	0, expressed	in cubic m	etres per h	our per squ	uare metre	of envelope	e area				5.00	(17)
If based on air permeabili	ty value, the	n (18) = [(1]	7) ÷ 20] + (8), otherwi	se (18) = (1	.6)					0.39	(18)
Number of sides on which	the dwelling	g is sheltere	ed								0	(19)
Shelter factor								1	- [0.075 x (1	9)] =	1.00	(20)
Infiltration rate incorpora	ting shelter f	actor							(18) x (2	20) =	0.39	(21)
Infiltration rate modified	for monthly	wind speed	:									_
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Monthly average wind sp	eed from Tab	ole U2										
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	(22)
Wind factor (22)m ÷ 4												
1.28	1.25	1.23	1.10	1.08	0.95	0.95	0.93	1.00	1.08	1.13	1.18	(22a)
Adjusted infiltration rate	(allowing for	shelter and	d wind fact	or) (21) x (2	22a)m							
0.49	0.48	0.48	0.43	0.42	0.37	0.37	0.36	0.39	0.42	0.44	0.46	(22b)
Calculate effective air cha	nge rate for	the applica	ble case:									
If mechanical ventilati	on: air chang	e rate thro	ugh system	ı							N/A	(23a)
If balanced with heat i	ecovery: effi	ciency in %	allowing f	or in-use fa	ctor from T	Fable 4h					N/A	(23c)
d) natural ventilation of	or whole hou	se positive	input vent	ilation fron	n loft							
0.62	0.62	0.61	0.59	0.59	0.57	0.57	0.56	0.58	0.59	0.60	0.60	(24d)
Effective air change rate -	enter (24a)	or (24b) or	(24c) or (24	4d) in (25)								_
0.62	0.62	0.61	0.59	0.59	0.57	0.57	0.56	0.58	0.59	0.60	0.60	(25)

3. Heat losses a	and heat lo	ss paramet	er										
Element			а	Gross irea, m ²	Openings m ²		: area , m²	U-value W/m²K	AxUV		value, I/m².K	Ахк, kJ/K	
Door						2	.10 x	1.00	= 2.10)			(26)
Window						9	.83 x	1.33	= 13.03	3			(27)
Ground floor						60	0.40 x	0.13	= 7.85	 ;]			(28a)
External wall						91	L.77 x	0.18	= 16.52	2			(29a)
Roof						54	1.24 x	0.13	= 7.05	 ;]			(30)
Total area of ext	ernal elem	ents ∑A, m²	:			21	8.34						(31)
Fabric heat loss,	W/K = ∑(A	× U)							(2	6)(30) + ((32) =	46.55	(33)
Heat capacity Cr	n = ∑(А x к))						(28)	(30) + (32)	+ (32a)(3	2e) =	N/A	(34)
Thermal mass pa	arameter (1	TMP) in kJ/r	n²K									250.00	(35)
Thermal bridges	: ∑(L x Ѱ) c	alculated us	sing Appen	dix K								14.95	(36)
Total fabric heat	loss									(33) + ((36) =	61.50	(37)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	_
Ventilation heat	loss calcula	ated month	ly 0.33 x (2	25)m x (5)									
	29.77	29.54	29.32	28.27	28.08	27.17	27.17	27.00	27.52	28.08	28.47	28.89	(38)
Heat transfer co	efficient, W	V/K (37)m +	- (38)m										
	91.27	91.05	90.82	89.78	89.58	88.67	88.67	88.50	89.02	89.58	89.98	90.39	
									Average =	∑(39)112	/12 =	89.78	(39)
Heat loss param	eter (HLP),	W/m²K (39	9)m ÷ (4)										
	1.51	1.51	1.50	1.49	1.48	1.47	1.47	1.47	1.47	1.48	1.49	1.50	
									Average =	∑(40)112	/12 =	1.49	(40)
Number of days	in month (Table 1a)											
	31.00	28.00	31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00	30.00	31.00	(40)
A Water besti													
4. Water heating		requiremen	l									1.00	
Assumed occupa					(25 y N) y	26						1.99	(42)
Annual average	Jan	Feb	Mar		e = (25 x N) + May	Jun	Jul	Aug	Sep	Oct	Nov	81.53 Dec	(43)
Hot water usage				Apr Vd m – fac				Aug	зер	000	NOV	Dec	
not water usage	89.69	86.42	83.16	79.90	76.64	73.38	73.38	76.64	79.90	83.16	86.42	89.69	٦
	89.09	00.42	85.10	79.90	70.04	/5.50	75.50	70.04	79.90	∑(44)1		978.38	
Energy content of	of hot wate	ar used = 4.1	l 8 v Vd m v	nm v Tm/	3600 kWh/m	onth (see	Tables 1h	1c 1d)		2(44)1.	12 –	970.30	(44)
Lifergy content (133.00	116.32	120.03	104.65	100.41	86.65	80.29	92.14	93.24	108.66	118.61	128.80	7
	133.00	110.32	120.03	104.05	100.41	80.05	80.29	92.14	55.24	∑(45)1	·	1282.81	 (45)
Distribution loss	0 15 x (45	Jm								Z(43)1.	12 -	1202.01	_ (43)
Distribution 1033	19.95	17.45	18.01	15.70	15.06	13.00	12.04	13.82	13.99	16.30	17.79	19.32	(46)
Water storage lo					15.00	15.00	12.04	15.02	15.55	10.50	17.75	15.52	_ (40)
Water storage ie	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(56)
If the vessel cont	L								0.00	0.00	0.00	0.00	_ (50)
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(57)
Primary circuit lo		1		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
i i i i i i i i i i i i i i i i i i i	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(59)
Combi loss for ea	L				0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	45.70	39.78	42.38	39.40	39.05	36.19	37.39	39.05	39.40	42.38	42.62	45.70	(61)
Total heat requi								1					_ (**)
	178.70	156.10	162.41	144.05	139.47	122.84	117.69	131.19	132.64	151.04	161.23	174.51	(62)
		100.10						101.10				1, 1,51	_ (52)

Solar DHW inpu	t calculated	l using Appe	endix G or A	Appendix H								
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 (63)
Output from wa	ter heater f	for each mo	nth (kWh/ı	month) (62	2)m + (63)n	n						
	178.70	156.10	162.41	144.05	139.47	122.84	117.69	131.19	132.64	151.04	161.23	174.51
										∑(64)1	.12 = 1	1771.87 <mark>(64)</mark>
Heat gains from	water heat	ing (kWh/m	nonth) 0.25	5 × [0.85 ×	(45)m + (61	L)m] + 0.8 ×	[(46)m + (57)m + (59)	m]			
	55.65	48.62	50.51	44.65	43.15	37.86	36.05	40.40	40.85	46.72	50.09	54.25 (65)
E laternal sets												
5. Internal gair	15											
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Metabolic gains	(Table 5)	i			i	i	1			1	i	i1
	99.65	99.65	99.65	99.65	99.65	99.65	99.65	99.65	99.65	99.65	99.65	99.65 (66)
Lighting gains (c	alculated in	n Appendix I	, equation	L9 or L9a),	also see Ta	able 5						
	16.13	14.32	11.65	8.82	6.59	5.57	6.01	7.82	10.49	13.32	15.55	16.57 (67)
Appliance gains	(calculated	in Appendi	x L, equatio	on L13 or L	13a), also s	ee Table 5						
	173.95	175.76	171.21	161.53	149.30	137.81	130.14	128.33	132.88	142.57	154.79	166.28 (68)
Cooking gains (c	alculated ir	n Appendix	L, equation	L15 or L15	a), also see	e Table 5						
	32.96	32.96	32.96	32.96	32.96	32.96	32.96	32.96	32.96	32.96	32.96	32.96 (69)
Pump and fan g	ains (Table !	5a)			•							· · · · ·
	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00 (70)
Losses e.g. evap	oration (Ta	ble 5)										
	-79.72	-79.72	-79.72	-79.72	-79.72	-79.72	-79.72	-79.72	-79.72	-79.72	-79.72	-79.72 (71)
Water heating g			,5.72	, , , , , , , , , , , , , , , , , , , ,	75.72	13.72	/5./2	, 5.72	1 75.72	, 5.72	, 5.72	, 5., 2
Water neuting b	74.80	72.35	67.88	62.01	58.00	52.58	48.45	54.30	56.74	62.80	69.57	72.92 (72)
Total internal as					1		40.45	54.50	50.74	02.80	09.57	72.92 (72)
Total internal ga					1							
Total internal ga	320.77	318.33	306.64	m + (70)m 288.25	+ (71)m + (269.79	72)m 251.85	240.49	246.34	256.01	274.58	295.80	311.67 (73)
_					1		240.49	246.34	256.01	274.58	295.80	311.67 (73)
6. Solar gains			306.64	288.25	269.79	251.85		246.34			295.80	
_				288.25	1	251.85 Sol	240.49 ar flux //m²	•	g ific data	274.58 FF specific c	1	311.67 (73) Gains W
_			306.64 Access f	288.25	269.79 Area	251.85 Sol	ar flux	spec	g	FF	Jata	Gains
_			306.64 Access f	288.25 actor 6d	269.79 Area	251.85 Sol W	ar flux //m²	spec or T	g ific data	FF specific c or Table	data 2 6c	Gains
6. Solar gains			306.64 Access f Table	288.25 actor 6d 7 x [269.79 Area m ²	251.85 Sol V	ar flux //m² 6.79 x	spec or T 0.9 x	g ific data able 6b	FF specific c or Table	data 2 6c	Gains W
6. Solar gains	320.77	318.33	306.64 Access f Table	288.25 actor 6d 7 x [269.79 Area m ² 7.52	251.85 Sol V	ar flux //m² 6.79 x	spec or T 0.9 x	g ific data able 6b D.63 ×	FF specific c or Table	data 2 6c	Gains W 84.56 (79)
6. Solar gains SouthWest SouthEast	320.77	318.33	306.64 Access f Table	288.25 actor 6d 7 x [269.79 Area m ² 7.52	251.85 Sol V	ar flux //m² 6.79 x	spec or T 0.9 x	g ific data able 6b D.63 ×	FF specific c or Table	data 2 6c	Gains W 84.56 (79)
6. Solar gains SouthWest SouthEast Solar gains in wa	320.77 atts Σ(74)m 110.54	318.33 h(82)m 188.28	306.64 Access f Table 0.7 0.7 257.62	288.25	269.79 Area m ² 7.52 2.31	251.85 Sol M x 3 x 3	ar flux //m ² 6.79 x 6.79 x	spec or T 0.9 x (0.9 x (g ific data able 6b D.63 x D.63 x	FF specific c or Table 0.70 0.70	data 9 6c = =	Gains W 84.56 (79) 25.98 (77)
6. Solar gains SouthWest SouthEast	320.77 atts Σ(74)m 110.54 ernal and sc	318.33 n(82)m 188.28 olar (73)m +	306.64 Access f Table 0.7 0.7 257.62 (83)m	288.25 actor 6d 7 x (7 x (319.20	269.79 Area m ² 7.52 2.31 357.53	251.85 Sol M x 3 x 3 354.94	ar flux //m ² 6.79 x 6.79 x 342.20	spec or T 0.9 x (0.9 x (313.61	g ific data able 6b 0.63 x 0.63 x	FF specific c or Table 0.70 0.70 208.09	data e 6c = = 132.40	Gains W 84.56 (79) 25.98 (77) 94.60 (83)
6. Solar gains SouthWest SouthEast Solar gains in wa	320.77 atts Σ(74)m 110.54	318.33 h(82)m 188.28	306.64 Access f Table 0.7 0.7 257.62	288.25	269.79 Area m ² 7.52 2.31	251.85 Sol M x 3 x 3	ar flux //m ² 6.79 x 6.79 x	spec or T 0.9 x (0.9 x (g ific data able 6b D.63 x D.63 x	FF specific c or Table 0.70 0.70	data 9 6c = =	Gains W 84.56 (79) 25.98 (77)
6. Solar gains SouthWest SouthEast Solar gains in wa	320.77 atts Σ(74)m 110.54 ernal and sc 431.31	318.33 h(82)m 188.28 blar (73)m + 506.61	306.64 Access f Table 0.7 0.7 257.62 (83)m 564.25	288.25 actor 6d 7 x (7 x (319.20	269.79 Area m ² 7.52 2.31 357.53	251.85 Sol M x 3 x 3 354.94	ar flux //m ² 6.79 x 6.79 x 342.20	spec or T 0.9 x (0.9 x (313.61	g ific data able 6b 0.63 x 0.63 x	FF specific c or Table 0.70 0.70 208.09	data e 6c = = 132.40	Gains W 84.56 (79) 25.98 (77) 94.60 (83)
6. Solar gains SouthWest SouthEast Solar gains in wa Total gains - inte	atts $\Sigma(74)$ m 110.54 ernal and sc 431.31 mal tempera	318.33 (82)m 188.28 olar (73)m + 506.61 ture (heating)	306.64 Access f Table 0.7 0.7 257.62 (83)m 564.25 ng season)	288.25 actor 6d 7 x [7 x] 319.20 607.45	269.79 Area m ² 7.52 2.31 357.53 627.32	251.85 Sol M X 3 X 3 354.94 606.80	ar flux //m ² 6.79 x 6.79 x 342.20	spec or T 0.9 x (0.9 x (313.61	g ific data able 6b 0.63 x 0.63 x	FF specific c or Table 0.70 0.70 208.09	data e 6c = = 132.40	Gains W 84.56 (79) 25.98 (77) 94.60 (83)
 6. Solar gains SouthWest SouthEast Solar gains in wa Total gains - inter 7. Mean intern 	atts $\Sigma(74)$ m 110.54 ernal and sc 431.31 mal tempera	318.33 (82)m 188.28 olar (73)m + 506.61 ture (heating)	306.64 Access f Table 0.7 0.7 257.62 (83)m 564.25 ng season)	288.25 actor 6d 7 x [7 x] 319.20 607.45	269.79 Area m ² 7.52 2.31 357.53 627.32	251.85 Sol M X 3 X 3 354.94 606.80	ar flux //m ² 6.79 x 6.79 x 342.20	spec or T 0.9 x (0.9 x (313.61	g ific data able 6b 0.63 x 0.63 x	FF specific c or Table 0.70 0.70 208.09	data e 6c = = 132.40	Gains W 84.56 (79) 25.98 (77) 94.60 (83) 406.26 (84)
 6. Solar gains SouthWest SouthEast Solar gains in wa Total gains - inter 7. Mean intern 	atts $\Sigma(74)$ m 110.54 ernal and sc 431.31 nal tempera iring heating Jan	318.33 (82)m 188.28 blar (73)m + 506.61 ture (heating g periods in Feb	306.64 Access f Table 0.7 0.7 257.62 (83)m 564.25 ng season) the living a Mar	288.25 actor 6d 7 × [7 × [7 × [319.20 607.45 area from 7 Apr	269.79 Area m ² 7.52 2.31 357.53 627.32 Fable 9, Th' May	251.85 Sol X 3 X 3 354.94 606.80	ar flux //m ² 6.79 x 6.79 x 342.20 582.70	spec or T 0.9 x () 0.9 x () 313.61 559.95	g ific data able 6b 0.63 x 0.63 x 278.94 534.95	FF specific c or Table 0.70 0.70 208.09 482.67	data e 6c = = [= 2 132.40 428.20	Gains W 84.56 (79) 25.98 (77) 94.60 (83) 406.26 (84) 21.00 (85)
 6. Solar gains SouthWest SouthEast Solar gains in wa Total gains - inter 7. Mean intern Temperature du 	atts $\Sigma(74)$ m 110.54 ernal and sc 431.31 nal tempera iring heating Jan	318.33 (82)m 188.28 blar (73)m + 506.61 ture (heating g periods in Feb	306.64 Access f Table 0.7 0.7 257.62 (83)m 564.25 ng season) the living a Mar	288.25 actor 6d 7 × [7 × [7 × [319.20 607.45 area from 7 Apr	269.79 Area m ² 7.52 2.31 357.53 627.32 Fable 9, Th' May	251.85 Sol X 3 X 3 354.94 606.80	ar flux //m ² 6.79 x 6.79 x 342.20 582.70	spec or T 0.9 x () 0.9 x () 313.61 559.95	g ific data able 6b 0.63 x 0.63 x 278.94 534.95	FF specific c or Table 0.70 0.70 208.09 482.67	data e 6c = = [= 2 132.40 428.20	Gains W 84.56 (79) 25.98 (77) 94.60 (83) 406.26 (84) 21.00 (85)
 6. Solar gains SouthWest SouthEast Solar gains in wa Total gains - inter 7. Mean intern Temperature du 	atts $\Sigma(74)$ m 110.54 ernal and sc 431.31 nal tempera iring heatin Jan r for gains f 1.00	318.33 318.33 188.28 0lar (73)m + 506.61 ture (heating periods in Feb for living are 0.99	306.64 Access f Table 0.7 0.7 0.7 257.62 (83)m 564.25 (83)m 564.25 the living a Mar ea n1,m (se 0.98	288.25 actor 6d 7 x [7 x [7 x [319.20 607.45 area from 7 Apr e Table 9a) 0.96	269.79 Area m ² 7.52 2.31 357.53 627.32 Fable 9, Th: May 0.90	251.85 Sol X 3 X 354.94 606.80	ar flux //m ² 6.79 x 6.79 x 342.20 582.70	spec or T 0.9 x () 0.9 x () 313.61 559.95 Aug	g ific data able 6b 0.63 x 0.63 x 278.94 534.95 Sep	FF specific c or Table 0.70 0.70 208.09 482.67 Oct	data e 6c = [= [132.40 428.20 Nov	Gains W 84.56 (79) 25.98 (77) 94.60 (83) 406.26 (84) 21.00 (85) Dec
 6. Solar gains SouthWest SouthEast Solar gains in wa Total gains - inter 7. Mean intern Temperature du Utilisation factor 	atts $\Sigma(74)$ m 110.54 ernal and sc 431.31 ring heatin Jan r for gains f 1.00 emp of livin	318.33 318.33 (82)m 188.28 0lar (73)m + 506.61 ture (heating g periods in Feb for living are 0.99 g area T1 (s	306.64 Access f Table 0.7 0.7 257.62 (83)m 564.25 (83)m 564.25 ng season) the living a Mar ea n1,m (se 0.98 teps 3 to 7	288.25 actor 6d 7 x 7 7 x 7 319.20 607.45 607.45 area from 7 Apr e Table 9a 0.96 in Table 9a	269.79 Area m ² 7.52 2.31 357.53 627.32 Fable 9, Th: May 0.90 c)	251.85 Sol X 3 X 354.94 606.80	ar flux //m ² 6.79 x 6.79 x 342.20 582.70 582.70 Jul 0.62	spec or T 0.9 x (0 0.9 x (1 313.61 559.95 Aug 0.66	g ific data able 6b 0.63 x 0.63 x 278.94 534.95 Sep 0.86	FF specific c or Table 0.70 0.70 208.09 482.67 0ct 0.97	data e 6c = [= [132.40 428.20 Nov Nov	Gains W 84.56 (79) 25.98 (77) 94.60 (83) 406.26 (84) 21.00 (85) Dec 1.00 (86)
 6. Solar gains SouthWest SouthEast Solar gains in wa Total gains - intern 7. Mean intern Temperature du Utilisation facto Mean internal tern 	atts $\Sigma(74)$ m 110.54 ernal and sc 431.31 nal tempera r for gains f 1.00 emp of livin 19.40	318.33 318.33 188.28 0lar (73)m + 506.61 ture (heating g periods in Feb for living are 0.99 g area T1 (s 19.59	306.64 Access f Table 0.7 0.7 257.62 (83)m 564.25 (83)m 564.25 (83)m 564.25 the living a Mar ea n1,m (se 0.98 teps 3 to 7 19.89	288.25 actor 6d 7 x [7 x [7 x [319.20 607.45 607.45 area from 7 Apr e Table 9a) 0.96 in Table 9c	269.79 Area m ² 7.52 2.31 357.53 627.32 Fable 9, Th: May 0.90 c) 20.61	251.85 Sol W 2 X 3 X 3 354.94 606.80 L(°C) Jun 0.78 20.86	ar flux //m ² 6.79 x 6.79 x 342.20 582.70	spec or T 0.9 x () 0.9 x () 313.61 559.95 Aug	g ific data able 6b 0.63 x 0.63 x 278.94 534.95 Sep	FF specific c or Table 0.70 0.70 208.09 482.67 Oct	data e 6c = [= [132.40 428.20 Nov	Gains W 84.56 (79) 25.98 (77) 94.60 (83) 406.26 (84) 21.00 (85) Dec
 6. Solar gains SouthWest SouthEast Solar gains in wa Total gains - inter 7. Mean intern Temperature du Utilisation factor 	atts $\Sigma(74)$ m 110.54 ernal and sc 431.31 ring heatin Jan r for gains f 1.00 emp of livin 19.40 rring heatin	318.33 318.33 318.33 188.28 0lar (73)m + 506.61 ture (heating g periods in Feb for living are 0.99 g area T1 (s 19.59 g periods in	306.64 Access f Table 0.7 0.7 257.62 (83)m 564.25 (83)m (83)m 564.25 (83)m	288.25 actor 6d 7 x (7 x (7 x (319.20 607.45 607.45 607.45 area from 7 Apr e Table 9a) 0.96 in Table 9c 20.26 f dwelling f	269.79 Area m ² 7.52 2.31 357.53 627.32 Gable 9, Th2 May 0.90 c) 20.61 rom Table 9	251.85 Sol X 3 X 354.94 606.80 L(°C) Jun 0.78 20.86 9, Th2(°C)	ar flux //m ² 6.79 x 6.79 x 342.20 582.70 Jul 0.62 20.96	spec or T 0.9 x () 313.61 559.95 Aug 0.66 20.95	g ific data able 6b 0.63 x 0.63 x 278.94 534.95 Sep 0.86 20.77	FF specific c or Table 0.70 0.70 208.09 482.67 0ct 0.97 20.32	data e 6c = [] = [132.40 428.20 Nov 0.99 19.79	Gains 84.56 (79) 25.98 (77) 94.60 (83) 406.26 (84) 21.00 (85) Dec 1.00 1.00 (86) 19.37 (87)
 6. Solar gains SouthWest SouthEast Solar gains in wat Total gains - internation 7. Mean internation Temperature du Utilisation factoon Mean internation Temperature du 	atts $\Sigma(74)$ m 110.54 ernal and sc 431.31 al tempera r for gains f 1.00 emp of livin 19.40 tring heatin 19.68	318.33 318.33 188.28 0lar (73)m + 506.61 ture (heating g periods in Feb for living are 0.99 g area T1 (s 19.59 g periods in 19.68	306.64 Access f Table 0.7 0.7 257.62 (83)m 564.25 (83)m (83)m 564.25 (83)m	288.25 actor 6d 7 x [7 x [7 x [319.20 607.45 607.45 area from 1 Apr e Table 9a] 0.96 in Table 9a 0.96 in Table 9a 20.26 f dwelling f 19.70	269.79 Area m ² 7.52 2.31 357.53 627.32 Fable 9, Th: May 0.90 c) 20.61	251.85 Sol W 2 X 3 X 3 354.94 606.80 L(°C) Jun 0.78 20.86	ar flux //m ² 6.79 x 6.79 x 342.20 582.70 582.70 Jul 0.62	spec or T 0.9 x (0 0.9 x (1 313.61 559.95 Aug 0.66	g ific data able 6b 0.63 x 278.94 534.95 Sep 0.86	FF specific c or Table 0.70 0.70 208.09 482.67 0ct 0.97	data e 6c = [= [132.40 428.20 Nov 0.99	Gains W 84.56 (79) 25.98 (77) 94.60 (83) 406.26 (84) 21.00 (85) Dec 1.00 (86)
 6. Solar gains SouthWest SouthEast Solar gains in wa Total gains - intern 7. Mean intern Temperature du Utilisation facto Mean internal tern 	atts $\Sigma(74)$ m 110.54 ernal and sc 431.31 al tempera r for gains f 1.00 emp of livin 19.40 tring heatin 19.68	318.33 318.33 188.28 0lar (73)m + 506.61 ture (heating g periods in Feb for living are 0.99 g area T1 (s 19.59 g periods in 19.68	306.64 Access f Table 0.7 0.7 257.62 (83)m 564.25 (83)m (83)m 564.25 (83)m	288.25 actor 6d 7 x [7 x [7 x [319.20 607.45 607.45 area from 1 Apr e Table 9a] 0.96 in Table 9a 0.96 in Table 9a 20.26 f dwelling f 19.70	269.79 Area m ² 7.52 2.31 357.53 627.32 Gable 9, Th2 May 0.90 c) 20.61 rom Table 9	251.85 Sol X 3 X 354.94 606.80 L(°C) Jun 0.78 20.86 9, Th2(°C)	ar flux //m ² 6.79 x 6.79 x 342.20 582.70 Jul 0.62 20.96	spec or T 0.9 x () 313.61 559.95 Aug 0.66 20.95	g ific data able 6b 0.63 x 0.63 x 278.94 534.95 Sep 0.86 20.77	FF specific c or Table 0.70 0.70 208.09 482.67 0ct 0.97 20.32	data e 6c = [] = [132.40 428.20 Nov 0.99 19.79	Gains 84.56 (79) 25.98 (77) 94.60 (83) 406.26 (84) 21.00 (85) Dec 1.00 1.00 (86) 19.37 (87)

Mean internal te	emperature	in the rest	of dwelling	g T2 (follow	steps 3 to	7 in Table 9	Əc)						
	17.60	17.87	18.30	18.84	19.31	19.62	19.70	19.69	19.53	18.93	18.17	17.56	(90)
Living area fract	ion								Liv	ving area ÷	(4) =	0.59	(91)
Mean internal to	emperature	for the wh	ole dwellin	g fLA x T1 -	+(1 - fLA) x	Т2							
	18.66	18.89	19.24	19.68	20.08	20.35	20.44	20.43	20.26	19.75	19.13	18.63	(92)
Apply adjustme	nt to the me	ean interna	l temperati	ure from Ta	ble 4e whe	ere appropr	iate						-
	18.66	18.89	19.24	19.68	20.08	20.35	20.44	20.43	20.26	19.75	19.13	18.63	(93)
	-	·		•	•		·	•	·		•	•	-
8. Space heating	ng requirem	ient											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation facto	r for gains,	ηm								•			_
	0.99	0.99	0.97	0.94	0.87	0.73	0.56	0.60	0.82	0.95	0.99	0.99	(94)
Useful gains, ηπ	1Gm, W (94	l)m x (84)m	۱										_
	428.14	499.40	548.38	570.79	545.44	443.19	324.50	334.92	436.25	458.73	422.41	403.90	(95)
Monthly average	e external t	emperature	e from Tabl	e U1									_
	4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20	(96)
Heat loss rate fo	or mean inte	ernal tempe	erature, Lm	, W [(39)m	n x [(93)m -	(96)m]							
	1311.06	1273.80	1156.83	967.88	750.44	510.00	340.77	356.98	548.59	819.88	1082.34	1304.30	(97)
Space heating re	equirement,	, kWh/mon	th 0.024 x	[(97)m - (9	5)m] x (41)	m							
	656.90	520.40	452.68	285.90	152.52	0.00	0.00	0.00	0.00	268.70	475.15	669.90]
									∑(98	8)15, 10	.12 = 3	482.15	(98)
Space heating re	equirement	kWh/m²/y	ear							(98)	÷ (4)	57.65	(99)
9a. Energy req	vivorento	أمرانيناسما	heating au	stores in clu		CUD		_					
	unements -	mulviuuai	neating sys	stems men		J-CHP							
Space heating Fraction of spac	- h + fu - u-											0.00	
•				illary syste		.)				1 - (20	01) – [0.00	(201)
Fraction of spac		-								1 - (20	JI) – [(202)
Fraction of spac		-							(20)2) x [1- (20	2)] _ [0.00	(202)
Fraction of total									(20			1.00	(204)
Fraction of total			system 2							(202) x (20		0.00	(205)
Efficiency of ma	-								6	0.1		93.40	(206)
C	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating fu	-			205.44	162.20	0.00	0.00	0.00	0.00	207.00	500 70	747.04	Т
	703.32	557.17	484.67	306.11	163.29	0.00	0.00	0.00	0.00	287.68	508.72	717.24	
									Σ(21)	1)15, 10	.12 =	3728.21	(211)
Water heating													
Efficiency of wat					07.00						07.04		
	88.03	87.85	87.49	86.74	85.28	80.30	80.30	80.30	80.30	86.49	87.61	88.11	(217)
Water heating f		1				L				1			Ъ
	203.00	177.69	185.63	166.07	163.55	152.97	146.56	163.38	165.18	174.64	184.04	198.06]
										∑(219a)1	.12 = 2	2080.75	(219)
Annual totals													Ъ
Space heating fu		/stem 1										3728.21] 7
Water heating f											2	2080.75	
Electricity for pu								r		1			10.5
central heati		water pun	np within w	arm air hea	ating unit				30.00]			(230c)
boiler flue fa									45.00]			(230e)
Total electricity	for the abo	ve, kWh/ye	ar									75.00	(231)

Total delivered energy for all uses

10a. Fuel costs - individual heating systems including micro-CHP

(232) (238)

284.78

6168.74

	Fuel kWh/year		Fuel price	Fuel cost £/year	
Space heating - main system 1	3728.21	x	3.48 x 0.01	= 129.74	(240)
Water heating	2080.75	x	3.48 x 0.01	. = 72.41	(247)
Pumps and fans	75.00	x	13.19 x 0.01	= 9.89	(249)
Electricity for lighting	284.78	x	13.19 x 0.01	= 37.56	(250)
Additional standing charges				120.00	(251)
Total energy cost			(240)(242) + (245)(2	54) = 369.61	(255)
11a. SAP rating - individual heating systems inc	cluding micro-CHP				
Energy cost deflator (Table 12)				0.42	(256)
Energy cost factor (ECF)				1.47	(257)
SAP value				79.45	
SAP rating (section 13)				79	(258)
SAP band				C	
12a. CO ₂ emissions - individual heating systems	s including micro-CHP				
12a. CO ₂ emissions - individual heating system	s including micro-CHP Energy kWh/year		Emission factor kg CO ₂ /kWh	Emissions kg CO ₂ /year	
12a. CO ₂ emissions - individual heating systems Space heating - main system 1	Energy	x			(261)
	Energy kWh/year	x x	kg CO₂/kWh	kg CO₂/year	_ (261) _ (264)
Space heating - main system 1	Energy kWh/year 3728.21		kg CO ₂ /kWh 0.216 =	kg CO ₂ /year 805.29 449.44	
Space heating - main system 1 Water heating	Energy kWh/year 3728.21		kg CO ₂ /kWh 0.216 = 0.216 =	kg CO ₂ /year 805.29 449.44	(264)
Space heating - main system 1 Water heating Space and water heating	Energy kWh/year 3728.21 2080.75	x	$kg CO_2/kWh$ 0.216 = 0.216 = (261) + (262) + (263) + (26) +	kg CO ₂ /year 805.29 449.44 64) = 1254.74	(264) (265)
Space heating - main system 1 Water heating Space and water heating Pumps and fans	Energy kWh/year 3728.21 2080.75 75.00	x x	$kg CO_2/kWh$ 0.216 = 0.216 = (261) + (262) + (263) + (2 0.519 =	kg CO ₂ /year 805.29 449.44 64) = 1254.74 38.93 147.80	(264) (265) (267)
Space heating - main system 1 Water heating Space and water heating Pumps and fans Electricity for lighting	Energy kWh/year 3728.21 2080.75 75.00	x x	$kg CO_2/kWh$ 0.216 = 0.216 = (261) + (262) + (263) + (2 0.519 = 0.519 = 0.519 =	kg CO ₂ /year 805.29 449.44 1254.74 38.93 147.80 171) = 1441.46	(264) (265) (267) (268)
Space heating - main system 1 Water heating Space and water heating Pumps and fans Electricity for lighting Total CO ₂ , kg/year	Energy kWh/year 3728.21 2080.75 75.00	x x	$kg CO_2/kWh$ 0.216 = 0.216 = (261) + (262) + (263) + (2 0.519 = 0.519 = (265)(2)	kg CO ₂ /year 805.29 449.44 1254.74 38.93 147.80 171) = 1441.46	(264) (265) (267) (268) (268) (272)
Space heating - main system 1 Water heating Space and water heating Pumps and fans Electricity for lighting Total CO ₂ , kg/year Dwelling CO ₂ emission rate	Energy kWh/year 3728.21 2080.75 75.00	x x	$kg CO_2/kWh$ 0.216 = 0.216 = (261) + (262) + (263) + (2 0.519 = 0.519 = (265)(2)	$kg CO_2/year$ 805.29 449.44 1254.74 38.93 147.80 147.80 $(71) = 1441.46$ $(4) = 23.87$	(264) (265) (267) (268) (268) (272)

12a Drimary	<u>i oporav - indivi</u>	dual heating sys	stoms including	micro_CHD
LJa. Fiinai	/ energy - maivi	uuai neating sys	sterns including	

	Energy kWh/year		Primary factor		Primary Energy kWh/year	
Space heating - main system 1	3728.21	x	1.22	=	4548.41	(261)
Water heating	2080.75	x	1.22	=	2538.52	(264)
Space and water heating			(261) + (262) +	(263) + (264) =	7086.93	(265)
Pumps and fans	75.00	x	3.07	=	230.25	(267)
Electricity for lighting	284.78	x	3.07	=	874.29	(268)
Primary energy kWh/year					8191.47	(272)
Dwelling primary energy rate kWh/m2/year					135.62	(273)

Appendix C

DER Worksheet (Be Lean)

DER Worksheet Design - Draft

This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

Assessor name	Mr Jonat	than Peck						Assessor nun	nber	10160)	
Client								Last modified	ł	07/08	/2020	
Address	66 , Cam	den, NW1 8	BAN									
	,	,										
1. Overall dwelling dime	nsions											
				A	area (m²)			verage storey height (m)	,	Vo	lume (m³)	
Lowest occupied					60.40	(1a) x	Г	2.40	(2a) =		144.96	(3a)
Total floor area	(1a)	+ (1b) + (1	c) + (1d)(1n) =	60.40] (4)			-			-
Dwelling volume							(3	3a) + (3b) + (3	sc) + (3d)(3	3n) =	144.96	(5)
2. Ventilation rate												
										m	³ per hour	
Number of chimneys								0	x 40 =	:	0	(6a)
Number of open flues								0	 x 20 =	. [0	(6b)
Number of intermittent fa	ns							2	 x 10 =	:	20	(7a)
Number of passive vents								0	x 10 =	:	0	(7b)
Number of flueless gas fire	es							0	x 40 =	:	0	(7c)
										Air o	changes pe hour	r
Infiltration due to chimney	/s, flues, fan	s, PSVs		(6a)) + (6b) + (7	a) + (7b) + (7c) =	20	÷(5) =	-	0.14	(8)
If a pressurisation test has	been carrie	d out or is i	ntended, p	roceed to (17), otherw	ise continu	e from (9	9) to (16)				
Air permeability value, q5	D, expressed	in cubic m	etres per h	our per squ	uare metre	of envelope	e area				4.00	(17)
If based on air permeabilit	y value, the	n (18) = [(1	7) ÷ 20] + (8	8), otherwi	se (18) = (1	6)					0.34	(18)
Number of sides on which	the dwelling	g is sheltere	ed								0	(19)
Shelter factor								1	- [0.075 x (1	9)] =	1.00	(20)
Infiltration rate incorporat	ing shelter f	actor							(18) x (2	20) =	0.34	(21)
Infiltration rate modified f	or monthly	wind speed	:									
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Monthly average wind spe	ed from Tak	ole U2										_
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	(22)
Wind factor (22)m ÷ 4	_				-	-						_
1.28	1.25	1.23	1.10	1.08	0.95	0.95	0.93	1.00	1.08	1.13	1.18	(22a)
Adjusted infiltration rate (-			1								-
0.43	0.42	0.41	0.37	0.36	0.32	0.32	0.31	0.34	0.36	0.38	0.40	(22b)
Calculate effective air char	-											٦
If mechanical ventilation	-		• •								N/A	(23a)
If balanced with heat r		•	-			able 4h					N/A	(23c)
d) natural ventilation o			-		-							٦
0.59	0.59	0.59	0.57	0.57	0.55	0.55	0.55	0.56	0.57	0.57	0.58	(24d)
Effective air change rate -				1	0.5-	0	a =:	0	0.5-	o ==	0.55	
0.59	0.59	0.59	0.57	0.57	0.55	0.55	0.55	0.56	0.57	0.57	0.58	(25)

3. Heat losses a	and heat lo	ss paramet	er										
Element			а	Gross rea, m ²	Openings m ²		t area , m²	U-value W/m²K	A x U V		value, /m².K	Ахк, kJ/K	
Door						2	.10 x	1.00	= 2.10)			(26)
Window						9	.83 x	1.24	= 12.1	5			(27)
Ground floor						60	0.40 x	0.15	= 9.06	;			(28a)
External wall						91	1.77 x	0.18	= 16.5	2			(29a)
Roof						54	4.24 x	0.16	= 8.68	;			(30)
Total area of ext	ernal elem	ents ∑A, m²	:			21	8.34						(31)
Fabric heat loss,	W/K = ∑(A	× U)							(2	6)(30) + (32) =	48.50	(33)
Heat capacity Cr	n = ∑(А x к)							(28)	(30) + (32)	+ (32a)(3	2e) =	N/A	(34)
Thermal mass pa	arameter (1	「MP) in kJ/r	n²K									100.00	(35)
Thermal bridges	:Σ(L x Ψ) c	alculated us	sing Appen	dix K								15.64	(36)
Total fabric heat	loss									(33) + (36) =	64.14	(37)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	-
Ventilation heat	loss calcul	ated month	ly 0.33 x (2	25)m x (5)									
	28.36	28.19	28.02	27.22	27.08	26.38	26.38	26.26	26.65	27.08	27.38	27.69	(38)
Heat transfer co	efficient, W	//K (37)m +	+ (38)m		•							•	_
	92.50	92.33	92.16	91.36	91.22	90.52	90.52	90.40	90.79	91.22	91.52	91.83	7
	-		•		• •				Average =	Σ(39)112,	/12 =	91.36	(39)
Heat loss param	eter (HLP),	W/m²K (39	9)m ÷ (4)										_
	1.53	1.53	1.53	1.51	1.51	1.50	1.50	1.50	1.50	1.51	1.52	1.52	7
									Average =	∑(40)112,	/12 =	1.51	(40)
Number of days	in month (Table 1a)											_
	31.00	28.00	31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00	30.00	31.00	(40)
													_
4. Water heati	ng energy r	equiremen	t			-							
Assumed occupa												1.99	(42)
Annual average									_	_		81.53	(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Hot water usage		-	1										-
	89.69	86.42	83.16	79.90	76.64	73.38	73.38	76.64	79.90	83.16	86.42	89.69	
	6 1									∑(44)1	12 =	978.38	(44)
Energy content							-				1	1	7
	133.00	116.32	120.03	104.65	100.41	86.65	80.29	92.14	93.24	108.66	118.61	128.80	
										∑(45)1	12 =	1282.81	(45)
Distribution loss			10.01	15.50	1 15 00			10.00	10.00	10.00	1	10.00	7 (10)
	19.95	17.45	18.01	15.70	15.06	13.00	12.04	13.82	13.99	16.30	17.79	19.32	(46)
Water storage lo													7 ()
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(56)
If the vessel con		1			1 1		1	1			1	1	7>
.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(57)
Primary circuit le	-	1	1					1			1	1	7 ()
o 1:1 (0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(59)
Combi loss for e					<u>-</u>								/ ٦
Tatalbast	53.05	47.90	53.00	51.26	52.94	51.21	52.90	52.93	51.23	52.98	51.30	53.04	(61)
Total heat requi		-			1						400	101-	
	186.05	164.22	173.03	155.91	153.36	137.86	133.19	145.06	144.47	161.64	169.92	181.84	(62)

Solar DHW input	calculated	using Appe	ndix G or A	ppendix H									
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(63)
Output from wate	er heater fo	or each mo	nth (kWh/r	month) (62	2)m + (63)n	n							
	186.05	164.22	173.03	155.91	153.36	137.86	133.19	145.06	144.47	161.64	169.92	181.84	
										∑(64)1	.12 = 1	1906.54	(64)
Heat gains from w	vater heatii	ng (kWh/m	ionth) 0.25	5 × [0.85 ×	(45)m + (6:	1)m] + 0.8 ×	[(46)m + (!	57)m + (59)	m]				
	57.48	50.65	53.16	47.61	46.62	41.61	39.92	43.87	43.81	49.37	52.26	56.09	(65)
5. Internal gains													
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Metabolic gains (Table 5)												
	99.65	99.65	99.65	99.65	99.65	99.65	99.65	99.65	99.65	99.65	99.65	99.65	(66)
Lighting gains (cal	lculated in	Appendix L	, equation	L9 or L9a),	also see Ta	able 5							
Γ	15.76	14.00	11.38	8.62	6.44	5.44	5.88	7.64	10.25	13.02	15.19	16.20	(67)
Appliance gains (c	calculated i	n Appendix	< L, equatio	on L13 or L1	13a), also s	ee Table 5							
Γ	173.95	175.76	171.21	161.53	149.30	137.81	130.14	128.33	132.88	142.57	154.79	166.28	(68)
L Cooking gains (cal	I						100.11	120.00	102.00	112.57	10 11/ 5	100.20	(00)
					1	-	22.06	32.96	22.06	22.06	22.06	22.06	(60)
	32.96	32.96	32.96	32.96	32.96	32.96	32.96	32.90	32.96	32.96	32.96	32.96	(69)
Pump and fan gai													
L	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	(70)
Losses e.g. evapor	ration (Tab	le 5)											
L	-79.72	-79.72	-79.72	-79.72	-79.72	-79.72	-79.72	-79.72	-79.72	-79.72	-79.72	-79.72	(71)
Water heating gai	ins (Table 5	5)											
	77.26	75.37	71.45	66.13	62.67	57.80	53.66	58.96	60.85	66.36	72.59	75.39	(72)
Total internal gair	ns (66)m +	(67)m + (6	8)m + (69)ı	m + (70)m	+ (71)m + (72)m							
Total internal gair	ns (66)m + 322.87	(67)m + (6 321.03	8)m + (69)ı 309.94	m + (70)m 292.16	+ (71)m + (274.30	72)m 256.94	245.57	250.83	259.88	277.84	298.47	313.76	(73)
[1		245.57	250.83	259.88	277.84	298.47	313.76	(73)
Total internal gair			309.94	292.16	274.30	256.94		250.83			298.47]]	(73)
[292.16 actor	1	256.94 Sol	245.57 ar flux //m²	1	259.88 g ific data	277.84 FF specific c		313.76 Gains W	(73)
[309.94 Access f	292.16 actor	274.30 Area	256.94 Sol	ar flux	spec	g	FF	lata	Gains	(73)
[309.94 Access f	292.16 actor 6d	274.30 Area	256.94 Sol	ar flux //m²	spec or T	g ific data	FF specific c or Table	lata 9 6c	Gains	(73)
6. Solar gains			309.94 Access f Table	292.16 actor 6d	274.30 Area m ²	256.94 Sol W	ar flux //m² 6.79 x	spec or T 0.9 x	g ific data able 6b	FF specific c or Table	lata : 6c	Gains W	
6. Solar gains	322.87	321.03	309.94 Access f Table	292.16 actor 6d	274.30 Area m ² 7.52	256.94 Sol W	ar flux //m² 6.79 x	spec or T 0.9 x	g ific data able 6b 0.50 ×	FF specific c or Table	lata : 6c	Gains W 76.70	(79)
6. Solar gains SouthWest SouthEast	322.87 ts Σ(74)m.	321.03	309.94 Access f Table	292.16 actor 6d 7 x [7 x [274.30 Area m ² 7.52 2.31	256.94 Sol. M x 3 x 3	ar flux //m² 6.79 x 6.79 x	spec or T 0.9 x (0.9 x (g ific data able 6b 0.50 x 0.50 x	FF specific c or Table 0.80 0.80	data : 6c = =	Gains W 76.70 23.56	(79) (77)
6. Solar gains SouthWest SouthEast Solar gains in wat	322.87 ts Σ(74)m. 100.26	321.03 (82)m 170.78	309.94 Access f Table 0.77 0.77 233.67	292.16 actor 6d	274.30 Area m ² 7.52	256.94 Sol W	ar flux //m² 6.79 x	spec or T 0.9 x	g ific data able 6b 0.50 ×	FF specific c or Table	lata : 6c	Gains W 76.70	(79)
6. Solar gains SouthWest SouthEast	322.87 ts Σ(74)m. 100.26 nal and sol	321.03 (82)m 170.78 ar (73)m +	309.94 Access f Table 0.77 0.77 233.67 (83)m	292.16 actor 6d 7 x 7 x 289.52	274.30 Area m ² 7.52 2.31 324.29	256.94 Sol W X 3 X 3 321.94	ar flux //m ² 6.79 x 6.79 x 310.39	spec or T 0.9 x (0.9 x (284.45	g ific data able 6b 0.50 x 0.50 x 253.01	FF specific c or Table 0.80 0.80 188.75	data : 6c = = 120.09	Gains W 76.70 23.56 85.80	(79) (77) (83)
6. Solar gains SouthWest SouthEast Solar gains in wat	322.87 ts Σ(74)m. 100.26	321.03 (82)m 170.78	309.94 Access f Table 0.77 0.77 233.67	292.16 actor 6d 7 x [7 x [274.30 Area m ² 7.52 2.31	256.94 Sol. M x 3 x 3	ar flux //m² 6.79 x 6.79 x	spec or T 0.9 x (0.9 x (g ific data able 6b 0.50 x 0.50 x	FF specific c or Table 0.80 0.80	data : 6c = =	Gains W 76.70 23.56	(79) (77)
6. Solar gains SouthWest SouthEast Solar gains in wat	322.87 ts Σ(74)m. 100.26 nal and sol 423.13	321.03 (82)m 170.78 ar (73)m + 491.80	309.94 Access f Table 0.77 0.77 233.67 (83)m 543.61	292.16 actor 6d 7 x 7 x 289.52	274.30 Area m ² 7.52 2.31 324.29	256.94 Sol W X 3 X 3 321.94	ar flux //m ² 6.79 x 6.79 x 310.39	spec or T 0.9 x (0.9 x (284.45	g ific data able 6b 0.50 x 0.50 x 253.01	FF specific c or Table 0.80 0.80 188.75	data : 6c = = 120.09	Gains W 76.70 23.56 85.80	(79) (77) (83)
6. Solar gains SouthWest SouthEast Solar gains in wat Total gains - inter 7. Mean interna	322.87 ts ∑(74)m. 100.26 nal and sol 423.13 I temperat	321.03 (82)m 170.78 ar (73)m + 491.80 ure (heatin	309.94 Access f Table 0.77 0.77 233.67 (83)m 543.61	292.16 actor 6d 7 x [7 x [289.52 581.69	274.30 Area m ² 7.52 2.31 324.29 598.59	256.94 Sol. M X 3 X 3 321.94 578.89	ar flux //m ² 6.79 x 6.79 x 310.39	spec or T 0.9 x (0.9 x (284.45	g ific data able 6b 0.50 x 0.50 x 253.01	FF specific c or Table 0.80 0.80 188.75	data : 6c = = 120.09	Gains W 76.70 23.56 85.80 399.56	(79) (77) (83) (84)
6. Solar gains SouthWest SouthEast Solar gains in wat Total gains - inter	322.87 ts Σ(74)m. 100.26 nal and sol 423.13 I temperat ing heating	321.03 (82)m 170.78 ar (73)m + 491.80 ure (heatin periods in	309.94 Access f Table 0.77 0.77 233.67 (83)m 543.61 ng season) the living a	292.16 actor 6d 7 x [7 x [289.52 581.69 area from 1	274.30 Area m ² 7.52 2.31 324.29 598.59	256.94 Sol x 3 x 3 321.94 578.89	ar flux //m ² 6.79 x 6.79 x 310.39 555.96	spec or T 0.9 x (0.9 x (284.45 535.28	g ific data able 6b 0.50 x 0.50 x 253.01 512.89	FF specific c or Table 0.80 0.80 188.75 466.59	data e 6c = = [= 2 120.09 418.56	Gains W 76.70 23.56 85.80 399.56 21.00	(79) (77) (83)
6. Solar gains SouthWest SouthEast Solar gains in wat Total gains - inter 7. Mean interna Temperature duri	322.87 ts ∑(74)m. 100.26 nal and sol 423.13 I temperat ing heating Jan	321.03 (82)m 170.78 ar (73)m + 491.80 ure (heatin periods in Feb	309.94 Access f Table 0.77 0.77 233.67 (83)m 543.61 hg season) the living a Mar	292.16 actor 6d 7 × [7 ×	274.30 Area m ² 7.52 2.31 324.29 598.59 598.59	256.94 Sol. M X 3 X 3 321.94 578.89	ar flux //m ² 6.79 x 6.79 x 310.39	spec or T 0.9 x (0.9 x (284.45	g ific data able 6b 0.50 x 0.50 x 253.01	FF specific c or Table 0.80 0.80 188.75	data : 6c = = 120.09	Gains W 76.70 23.56 85.80 399.56	(79) (77) (83) (84)
6. Solar gains SouthWest SouthEast Solar gains in wat Total gains - inter 7. Mean interna	322.87 ts $\Sigma(74)$ m. 100.26 nal and sol 423.13 l temperat ing heating Jan for gains fo	321.03 (82)m 170.78 ar (73)m + 491.80 ure (heatin periods in Feb or living are	309.94 Access f Table 0.77 0.77 233.67 (83)m 543.61 ng season) the living a Mar a n1,m (sec	292.16 actor 6d 7 x 7 7 x 7 289.52 581.69 area from 7 Apr e Table 9a)	274.30 Area m ² 7.52 2.31 324.29 598.59 598.59	256.94 Sol. X 3 X 3 321.94 578.89	ar flux //m ² 6.79 x 6.79 x 310.39 555.96	spec or T 0.9 x () 0.9 x () 284.45 535.28 Aug	g ific data able 6b 0.50 x 0.50 x 253.01 512.89 Sep	FF specific c or Table 0.80 0.80 188.75 466.59 Oct	data : 6c = [= [120.09 418.56 Nov	Gains W 76.70 23.56 85.80 399.56 21.00 Dec	(79) (77) (83) (84) (85)
6. Solar gains SouthWest SouthEast Solar gains in wat Total gains - inter 7. Mean interna Temperature duri Utilisation factor	322.87 ts ∑(74)m. 100.26 nal and sol 423.13 I temperat ing heating Jan for gains fo 0.96	321.03 (82)m 170.78 ar (73)m + 491.80 ure (heatir periods in Feb or living are 0.94	309.94 Access f Table 0.77 0.77 233.67 (83)m 543.61 mg season) the living a Mar a n1,m (sec 0.91	292.16 actor 6d 7 x [7 x	274.30 Area m ² 7.52 2.31 324.29 598.59 598.59	256.94 Sol x 3 x 3 321.94 578.89	ar flux //m ² 6.79 x 6.79 x 310.39 555.96	spec or T 0.9 x () 0.9 x () 284.45 535.28	g ific data able 6b 0.50 x 0.50 x 253.01 512.89	FF specific c or Table 0.80 0.80 188.75 466.59	data e 6c = = [= 2 120.09 418.56	Gains W 76.70 23.56 85.80 399.56 21.00	(79) (77) (83) (84)
6. Solar gains SouthWest SouthEast Solar gains in wat Total gains - inter 7. Mean interna Temperature duri	322.87 100.26	321.03 (82)m 170.78 ar (73)m + 491.80 ure (heatin periods in Feb or living are 0.94 ; area T1 (s	309.94 Access f Table 0.77 0.77 233.67 (83)m 543.61 ng season) the living a Mar a n1,m (sec 0.91 teps 3 to 7	292.16 actor 6d 7 x 7 7 x 7 289.52 581.69 area from 7 Apr e Table 9a) 0.87 in Table 9c	274.30 Area m ² 7.52 2.31 324.29 598.59 598.59 able 9, Th: May 0.80 c)	256.94 Sol. X 3 X 3 321.94 578.89 I(°C) Jun 0.69	ar flux //m ² 6.79 x 6.79 x 310.39 555.96 Jul 0.57	spec or T 0.9 x () 0.9 x () 284.45 535.28 Aug 0.60	<pre>g ific data able 6b 0.50 x 0.50 x 253.01 512.89 6 0.76 0.76</pre>	FF specific c or Table 0.80 0.80 188.75 466.59 0ct 0.88	data = 6c = [= [120.09 418.56 Nov 0.94	Gains W 76.70 23.56 85.80 399.56 21.00 Dec 0.96	(79) (77) (83) (84) (85) (86)
6. Solar gains SouthWest SouthEast Solar gains in wat Total gains - inter 7. Mean internal Temperature duri Utilisation factor to Mean internal ter	322.87 ts $\Sigma(74)$ m. 100.26 nal and sol 423.13 I temperat ing heating Jan for gains fo 0.96 mp of living 18.02	321.03 (82)m 170.78 ar (73)m + 491.80 ure (heatir periods in Feb or living are 0.94 ; area T1 (s 18.32	309.94 Access f Table 0.77 0.77 233.67 (83)m 543.61 (83)m 543.61 the living a Mar a n1,m (see 0.91 teps 3 to 7 18.80	292.16 actor 6d 7 x [7 x	274.30 Area m ² 7.52 2.31 324.29 598.59 598.59 	256.94 Sol. W X 3 X 3 321.94 578.89 L(°C) Jun 0.69 20.53	ar flux //m ² 6.79 x 6.79 x 310.39 555.96	spec or T 0.9 x () 0.9 x () 284.45 535.28 Aug	g ific data able 6b 0.50 x 0.50 x 253.01 512.89 Sep	FF specific c or Table 0.80 0.80 188.75 466.59 Oct	data : 6c = [= [120.09 418.56 Nov	Gains W 76.70 23.56 85.80 399.56 21.00 Dec	(79) (77) (83) (84) (85)
6. Solar gains SouthWest SouthEast Solar gains in wat Total gains - inter 7. Mean interna Temperature duri Utilisation factor	322.87 322.87 100.26 100.2	321.03 (82)m 170.78 ar (73)m + 491.80 ure (heatin periods in Feb or living are 0.94 ; area T1 (s 18.32 periods in	309.94 Access f Table 0.77 0.77 233.67 (83)m 543.61 (83)m 543.61 ng season) the living a Mar a n1,m (sec 0.91 teps 3 to 7 18.80 the rest of	292.16 actor 6d 7 x 7 7 x 7 289.52 581.69 area from 7 Apr e Table 9a) 0.87 in Table 9c 19.42 dwelling f	274.30 Area m ² 7.52 2.31 324.29 598.59 598.59 598.59 0.80 0.80 c) 20.03 rom Table	256.94 Sol X 3 X 3 321.94 578.89 L(°C) Jun 0.69 20.53 9, Th2(°C)	ar flux //m ² 6.79 x 6.79 x 310.39 555.96 Jul 0.57 20.79	spec or T 0.9 x (0.9 x (284.45 535.28 Aug 0.60 20.75	<pre>g ific data able 6b 0.50 x 253.01 253.01 512.89 Sep 0.76 20.37</pre>	FF specific c or Table 0.80 0.80 188.75 466.59 466.59 Oct 0.88 19.59	data = 6c = [= [120.09 418.56 Nov 0.94 18.69	Gains W 76.70 23.56 85.80 399.56 21.00 Dec 0.96 17.96	(79) (77) (83) (84) (85) (86) (87)
6. Solar gains SouthWest SouthEast Solar gains in wat Total gains - inter 7. Mean internal Temperature duri Utilisation factor f Mean internal ter Temperature duri	322.87 322.87 100.26 nal and sol 423.13 1 temperat ing heating Jan for gains fo 0.96 mp of living 18.02 ing heating 19.66	321.03 (82)m 170.78 ar (73)m + 491.80 ure (heatin periods in Feb or living are 0.94 ; area T1 (s 18.32 periods in 19.67	309.94 Access f Table 0.77 0.77 233.67 (83)m 543.61 (83)m 543.61 the living a Mar a n1,m (see 0.91 teps 3 to 7 18.80 the rest of 19.67	292.16 actor 6d 7 x [7 x	274.30 Area m ² 7.52 2.31 324.29 598.59 598.59 	256.94 Sol. W X 3 X 3 321.94 578.89 L(°C) Jun 0.69 20.53	ar flux //m ² 6.79 x 6.79 x 310.39 555.96 Jul 0.57	spec or T 0.9 x () 0.9 x () 284.45 535.28 Aug 0.60	<pre>g ific data able 6b 0.50 x 0.50 x 253.01 512.89 6 0.76 0.76</pre>	FF specific c or Table 0.80 0.80 188.75 466.59 0ct 0.88	data = 6c = [= [120.09 418.56 Nov 0.94	Gains W 76.70 23.56 85.80 399.56 21.00 Dec 0.96	(79) (77) (83) (84) (85) (86)
6. Solar gains SouthWest SouthEast Solar gains in wat Total gains - inter 7. Mean internal Temperature duri Utilisation factor to Mean internal ter	322.87 322.87 100.26 nal and sol 423.13 1 temperat ing heating Jan for gains fo 0.96 mp of living 18.02 ing heating 19.66	321.03 (82)m 170.78 ar (73)m + 491.80 ure (heatin periods in Feb or living are 0.94 ; area T1 (s 18.32 periods in 19.67	309.94 Access f Table 0.77 0.77 233.67 (83)m 543.61 (83)m 543.61 the living a Mar a n1,m (see 0.91 teps 3 to 7 18.80 the rest of 19.67	292.16 actor 6d 7 x [7 x	274.30 Area m ² 7.52 2.31 324.29 598.59 598.59 598.59 0.80 0.80 c) 20.03 rom Table	256.94 Sol X 3 X 3 321.94 578.89 L(°C) Jun 0.69 20.53 9, Th2(°C)	ar flux //m ² 6.79 x 6.79 x 310.39 555.96 Jul 0.57 20.79	spec or T 0.9 x (0.9 x (284.45 535.28 Aug 0.60 20.75	<pre>g ific data able 6b 0.50 x 253.01 253.01 512.89 Sep 0.76 20.37</pre>	FF specific c or Table 0.80 0.80 188.75 466.59 466.59 Oct 0.88 19.59	data = 6c = [= [120.09 418.56 Nov 0.94 18.69	Gains W 76.70 23.56 85.80 399.56 21.00 Dec 0.96 17.96	(79) (77) (83) (84) (85) (85) (86) (87)

Mean internal t	emperature	in the rest	of dwelling	g T2 (follow	v steps 3 to	7 in Table 9	əc)						
	15.77	16.20	16.89	17.78	18.62	19.27	19.56	19.53	19.09	18.03	16.75	15.69	(90)
Living area fract	ion								Li	ving area ÷	(4) =	0.59	(91)
Mean internal t	emperature	for the wh	ole dwellin	g fLA x T1 +	+(1 - fLA) x ⁻	Т2							
	17.10	17.46	18.02	18.75	19.45	20.01	20.28	20.25	19.85	18.95	17.90	17.03	(92)
Apply adjustme	nt to the me	ean interna	l temperati	ure from Ta	able 4e whe	ere appropr	iate						-
	16.95	17.31	17.87	18.60	19.30	19.86	20.13	20.10	19.70	18.80	17.75	16.88	(93)
			•					•		•		•	-
8. Space heati	ng requirem	ient											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation facto	r for gains,	ηm 				•							-
	0.93	0.91	0.87	0.82	0.74	0.62	0.49	0.52	0.69	0.83	0.91	0.94	(94)
Useful gains, ηn	nGm, W (94	l)m x (84)m	۱ 										_
	393.45	445.46	473.99	476.23	442.36	359.77	272.50	278.47	352.53	388.09	379.49	374.29	(95)
Monthly averag	e external t	emperatur	e from Tabl	e U1									_
	4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20	(96)
Heat loss rate fo	or mean inte	ernal tempe	erature, Lm	, W [(39)m	n x [(93)m -	(96)m]							
	1170.31	1145.35	1048.07	886.48	693.30	476.47	319.92	334.56	508.11	748.10	974.63	1164.74	(97)
Space heating r	equirement	, kWh/mon	th 0.024 x	[(97)m - (9	5)m] x (41)	m							
	577.98	470.32	427.12	295.38	186.70	0.00	0.00	0.00	0.00	267.85	428.50	588.09	
									∑(98	3)15, 10	.12 = 3	3241.94	(98)
Space heating r	equirement	kWh/m²/y	ear							(98)	÷ (4)	53.67	(99)
9a. Energy req	uiromonto	individual	hosting ou	stoms inclu	uding micro	CHD							
Space heating	unements -	maiviadai	fieating sys	stems mere		Jeenip							
Fraction of space	a haat from	cocondon	launnlama	ntaniausta	m (tabla 11							0.00	(201)
Fraction of space				illary syste		-)				1 - (20	 1) – [1.00	(201)
Fraction of space										1 - (20	J1) – [0.00	-
Fraction of tota									(20)2) x [1- (20	2)] _ [1.00	(202)
Fraction of tota									(20				(204)
			system 2							(202) x (20		0.00	
Efficiency of ma	Jan	(%) Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	90.50 Dec	(206)
Space heating f				Дрі	lvidy	Jun	Jui	Aug	Зер	000	NOV	Dec	
	638.66	519.69	471.95	326.39	206.29	0.00	0.00	0.00	0.00	295.96	473.48	649.83	1
	058.00	519.09	471.95	520.59	200.29	0.00	0.00	0.00		I	r]
Watar boating									2(21.	1)15, 10	.12 –	3582.25	_ (211)
Water heating Efficiency of wa	tor bostor												
		00 CT	00.55	00.27	80.02	07.00	07.00	07.20	07.20	00.27	00.57	00.72	
Watar boating f	89.70	89.65	89.55	89.37	89.03	87.30	87.30	87.30	87.30	89.27	89.57	89.72	(217)
Water heating f	[102.22	174.45	172.20	157.01	152.57	100 17	105 40	101.07	100 71	202.07	Г
	207.41	183.18	193.22	174.45	172.26	157.91	152.57	166.17	165.49	181.07	189.71	202.67	
A										∑(219a)1	.12 =	2146.10	(219)
Annual totals													Г
Space heating f		stem 1										3582.25] 1
Water heating f			haan bat (2146.10	
Electricity for pu								Г 	20.00	1			(222.)
central heat		water pun	ip within w	arm air nea	ating unit				30.00]]			(230c)
boiler flue fa		1						L	45.00]		75.00	(230e)
Total electricity	for the abo	ve, kWh/ye	ar									75.00	(231)

Total delivered energy for all uses

(232)

278.33

6081.69

10a. Fuel costs - individual heating systems inclu						
	Fuel kWh/year		Fuel price		Fuel cost £/year	
Space heating - main system 1	3582.25	x	3.48	x 0.01 =	124.66	(240
Water heating	2146.10	x	3.48	x 0.01 = [74.68	(247
Pumps and fans	75.00	x	13.19	x 0.01 =	9.89	(249
Electricity for lighting	278.33	x	13.19	x 0.01 =	36.71	(250
Additional standing charges				[120.00	(25:
Total energy cost			(240)(242) +	(245)(254) = [365.95	(255
11a. SAP rating - individual heating systems incl	uding micro-CHP					
Energy cost deflator (Table 12)				[0.42	(256
Energy cost factor (ECF)				[1.46	(25
				[79.66]
SAP value				L		
					80	(258
SAP rating (section 13)						_] (258]
SAP rating (section 13) SAP band					80] (258]
GAP rating (section 13) GAP band		5			80 C] (258]
SAP rating (section 13) SAP band	including micro-CHP Energy kWh/year		Emission factor kg CO₂/kWh		80] (258]
GAP rating (section 13) GAP band 12a. CO₂ emissions - individual heating systems	Energy	x		=	80 C Emissions] (258]] (261
SAP rating (section 13) SAP band 12a. CO ₂ emissions - individual heating systems Space heating - main system 1	Energy kWh/year	x x	kg CO₂/kWh	= [= [80 C Emissions kg CO ₂ /year] (26:
SAP rating (section 13) SAP band 12a. CO₂ emissions - individual heating systems Space heating - main system 1 Water heating	Energy kWh/year 3582.25		kg CO₂/kWh 0.216	= [80 C Emissions kg CO ₂ /year 773.77]
SAP rating (section 13) SAP band 12a. CO₂ emissions - individual heating systems Space heating - main system 1 Water heating Space and water heating	Energy kWh/year 3582.25		kg CO₂/kWh 0.216 0.216	= [80 C Emissions kg CO ₂ /year 773.77 463.56] (26:] (264
SAP rating (section 13) SAP band 12a. CO₂ emissions - individual heating systems Space heating - main system 1 Water heating Space and water heating Pumps and fans	Energy kWh/year 3582.25 2146.10	x	kg CO₂/kWh 0.216 0.216 (261) + (262) + (= [(263) + (264) = [80 C Emissions kg CO ₂ /year 773.77 463.56 1237.32] (26:] (264] (265] (265
SAP rating (section 13) SAP band 12a. CO₂ emissions - individual heating systems Space heating - main system 1 Water heating Space and water heating Pumps and fans Electricity for lighting	Energy kWh/year 3582.25 2146.10 75.00	x x	kg CO₂/kWh 0.216 0.216 (261) + (262) + (0.519 0.519	= [(263) + (264) = [= [80 C Emissions kg CO ₂ /year 773.77 463.56 1237.32 38.93) (26:) (26:) (26:) (26:) (26:) (26:
SAP rating (section 13) SAP band 12a. CO ₂ emissions - individual heating systems Space heating - main system 1 Nater heating Space and water heating Pumps and fans Electricity for lighting Fotal CO ₂ , kg/year	Energy kWh/year 3582.25 2146.10 75.00	x x	kg CO₂/kWh 0.216 0.216 (261) + (262) + (0.519 0.519	= [[263) + (264) = [= [= [80 C Emissions kg CO ₂ /year 773.77 463.56 1237.32 38.93 144.46] (26:] (264] (264
SAP rating (section 13) SAP band 12a. CO ₂ emissions - individual heating systems Space heating - main system 1 Water heating Space and water heating Pumps and fans Electricity for lighting Fotal CO ₂ , kg/year Dwelling CO ₂ emission rate	Energy kWh/year 3582.25 2146.10 75.00	x x	kg CO₂/kWh 0.216 0.216 (261) + (262) + (0.519 0.519	= [(263) + (264) = [= [(265)(271) = [80 C Emissions kgCO ₂ /year 773.77 463.56 1237.32 38.93 144.46 1420.70) (26:) (26:) (26:] (26:] (26:] (26:] (27:
SAP rating (section 13) SAP band 12a. CO ₂ emissions - individual heating systems Space heating - main system 1 Water heating Space and water heating Pumps and fans Electricity for lighting Total CO ₂ , kg/year Dwelling CO ₂ emission rate El value	Energy kWh/year 3582.25 2146.10 75.00	x x	kg CO₂/kWh 0.216 0.216 (261) + (262) + (0.519 0.519	= [(263) + (264) = [= [(265)(271) = [80 C Emissions kg CO ₂ /year 773.77 463.56 1237.32 38.93 144.46 1420.70 23.52) (26:) (26:) (26:] (26:] (26:] (26:] (27:
SAP value SAP rating (section 13) SAP band 12a. CO2 emissions - individual heating systems	Energy				80 C Emissions	
SAP rating (section 13) SAP band	Energy kWh/year 3582.25 2146.10	x	kg CO₂/kWh 0.216 0.216 (261) + (262) + (= [(263) + (264) = [80 C Emissions kg CO ₂ /year 773.77 463.56 1237.32] (20] (20] (20
SAP rating (section 13) SAP band 12a. CO₂ emissions - individual heating systems Space heating - main system 1 Water heating Space and water heating Pumps and fans	Energy kWh/year 3582.25 2146.10 75.00	x x	kg CO₂/kWh 0.216 0.216 (261) + (262) + (0.519	= [(263) + (264) = [= [80 C Emissions kg CO ₂ /year 773.77 463.56 1237.32 38.93] (26] (26] (26] (26
SAP rating (section 13) SAP band 12a. CO₂ emissions - individual heating systems Space heating - main system 1 Water heating Space and water heating Pumps and fans Electricity for lighting	Energy kWh/year 3582.25 2146.10 75.00	x x	kg CO₂/kWh 0.216 0.216 (261) + (262) + (0.519 0.519	= [[263) + (264) = [= [= [80 C Emissions kg CO ₂ /year 773.77 463.56 1237.32 38.93 144.46] (26] (26] (26] (26] (26
GAP rating (section 13) GAP band 12a. CO₂ emissions - individual heating systems Gpace heating - main system 1 Nater heating Gpace and water heating Pumps and fans Electricity for lighting Fotal CO₂, kg/year	Energy kWh/year 3582.25 2146.10 75.00	x x	kg CO₂/kWh 0.216 0.216 (261) + (262) + (0.519 0.519	= [(263) + (264) = [= [(265)(271) = [80 C Emissions kgCO ₂ /year 773.77 463.56 1237.32 38.93 144.46 1420.70] (26] (26] (26] (26] (26] (26] (27
SAP rating (section 13) SAP band 12a. CO ₂ emissions - individual heating systems Space heating - main system 1 Water heating Space and water heating Pumps and fans Electricity for lighting Fotal CO ₂ , kg/year Dwelling CO ₂ emission rate	Energy kWh/year 3582.25 2146.10 75.00	x x	kg CO₂/kWh 0.216 0.216 (261) + (262) + (0.519 0.519	= [(263) + (264) = [= [(265)(271) = [80 C Emissions kg CO ₂ /year 773.77 463.56 1237.32 38.93 144.46 1420.70 23.52] (26] (26] (26] (26] (26] (26] (27
SAP rating (section 13) SAP band 12a. CO ₂ emissions - individual heating systems Space heating - main system 1 Water heating Space and water heating Pumps and fans Electricity for lighting Fotal CO ₂ , kg/year Dwelling CO ₂ emission rate El value	Energy kWh/year 3582.25 2146.10 75.00	x x	kg CO₂/kWh 0.216 0.216 (261) + (262) + (0.519 0.519	= [(263) + (264) = [= [(265)(271) = [80 C Emissions kg CO ₂ /year 7773.77 463.56 1237.32 38.93 144.46 1420.70 23.52 81.94] (26] (26] (26] (26] (26] (27] (27
SAP rating (section 13) SAP band 12a. CO₂ emissions - individual heating systems Space heating - main system 1 Water heating Space and water heating	Energy kWh/year 3582.25 2146.10 75.00	x x	kg CO₂/kWh 0.216 0.216 (261) + (262) + (0.519 0.519	= [(263) + (264) = [= [(265)(271) = [80 C Emissions kg CO ₂ /year 7773.77 463.56 1237.32 38.93 144.46 1420.70 23.52 81.94] (26] (26] (26] (26] (26] (26] (27] (27

	Energy kWh/year		Primary factor		Primary Energy kWh/year	
Space heating - main system 1	3582.25	x	1.22	=	4370.35	(261)
Water heating	2146.10	x	1.22	=	2618.24	(264)
Space and water heating			(261) + (262) +	(263) + (264) =	6988.59	(265)
Pumps and fans	75.00	x	3.07	=	230.25	(267)
Electricity for lighting	278.33	x	3.07	=	854.48	(268)
Primary energy kWh/year					8073.32	(272)
Dwelling primary energy rate kWh/m2/year					133.66	(273)

Appendix D

Indicative Heat Pump Specification

Heating

Product Information

PUHZ-(H)W50-140VHA(2)/YHA2(-BS) Ecodan Monobloc Air Source Heat Pumps Making a World of Difference

Designed to meet the demands of today's heating needs

Our range of Ecodan monobloc air source heat pumps includes 5, 8.5, 11.2 and 14kW sizes. Now with the ability to cascade up to six units of the same output, Ecodan monobloc systems offer a capacity range from 5 through to 84kW. Designed to suit a wide number of applications, these models offer a viable solution for the varying requirements that domestic and small commercial applications demand.

Key Features

- Self-contained unit, only requiring water and electric connections
- No need for gas supply, flues or ventilation
- Single phase power supply with a low starting current (3 phase available for 14kW)

Renewable Heating Technolo

- Low maintenance and quiet operation
- Operates with outside temperatures as low as -25°C
- Multiple unit connection
- Hybrid function, for use with conventional boilers
- 2-zone energy efficient space heating control
 - Available as a standalone, packaged or semi packaged system
 - Energy monitoring as standard

Coastal protection models available (-BS)

Application Examples

- The vast majority of UK homes
- Small Retail Outlets
- Dental / Doctor's Surgeries
- Public Sector / Commercial Buildings

Air Conditioning | Heating Ventilation | Controls

Heatir

Product Information

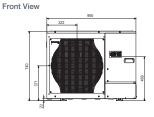
PUHZ-(H)W50-140VHA(2)/YHA2(-BS)

Ecodan Monobloc Air Source Heat Pumps

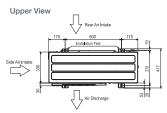
Making a World of Difference

OUTDOOR UNIT		PUHZ-W50VHA2(-BS)	PUHZ-W85VHA2(-BS)	PUHZ-W112VHA(-BS)	PUHZ-HW140VHA2(-BS)	PUHZ-HW140YHA2(-BS)
HEAT PUMP SPACE	ErP Rating	A++	A++	A++	A++	A++
HEATER - 55°C	η"	127%	128%	125%	126%	126%
	SCOP	3.17	3.18	3.11	3.12	3.12
HEAT PUMP SPACE	ErP Rating	A++	A++	A++	A++	A++
HEATER - 35°C	η _s	162%	162%	164%	157%	157%
	SCOP	4.03	4.01	4.06	3.87	3.87
HEAT PUMP COMBINATION	ErP Rating	A	A	A	A	A
HEATER - Large Profile ¹¹	η _{wh}	99%	97%	100%	96%	96%
HEATING ^{*2}	Capacity (kW)	4.8	8.3	11.0	14.0	14.0
(A-3/W35)	Power Input (kW)	1.63	2.96	3.65	4.81	4.81
	COP	2.95	2.80	3.01	2.91	2.91
OPERATING AMBIENT TEMPERATURE (°C DB)		-15 ~ +35°C	-20 ~ +35°C	-20 ~ +35°C	-25 ~ +35°C	-25 ~ +35°C
SOUND PRESSURE LEVE	L AT 1M (dBA) ^{•3*4}	45	48	53	53	53
LOW NOISE MODE (dBA)	3	40	42	46	46	46
WATER DATA	Pipework Size (mm)	22	22	28	28	28
	Flow Rate (I/min)	14.3	25.8	32.1	40.1	40.1
	Water Pressure Drop (kPa)	12	13.5	6.3	9	9
DIMENSIONS (mm) ^{*7}	Width	950	950	1020	1020	1020
	Depth	330+30'5	330+30.2	330+30'5	330+3015	330+30.2
	Height	740	943	1350	1350	1350
WEIGHT (kg)		64	77	133	134	148
ELECTRICAL DATA	Electrical Supply	220-240v, 50Hz	220-240v, 50Hz	220-240v, 50Hz	220-240v, 50Hz	380-415v, 50Hz
	Phase	Single	Single	Single	Single	3
	Nominal Running Current [MAX] (A)	5.4 [13]	10.3 [23]	11.2 [29.5]	14.9 [35]	5.1 [13]
	Fuse Rating - MCB Sizes (A) ^{*6}	16	25	32	40	16

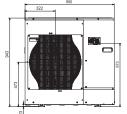
Combination with EHPT20X-MHCW Cylinder
 Conditions at outdoor temp: -3°CDB / -4°CWB, outlet water temp 35°C, inlet water temp 30°C.
 Conditions at outdoor temp: -3°CDB / 6°CWB, outlet water temp 35°C, inlet water temp 30°C as tested to BS EN14511.
 Sound power level of the PUHZ-WSOVHA2 is 67.5dBA, PUHZ-WB2VHA2 is 62.5dBA, PUHZ-W112VHA is 65.5dBA, PUHZ-HW140VHA2 is 65.5dBA, PUHZ-HW140VHA2 is 67.5dBA. Tested to BS EN12102.
 Sound power best of the PUHZ-WSOVHA2 is 67.5dBA. Tested to BS EN12102.
 Sound power best of the PUHZ-WB2VHA2 is 67.5dBA. Tested to BS EN12102.
 Sound power best of the PUHZ-WB2VHA2 is 67.5dBA. Tested to BS EN12102.

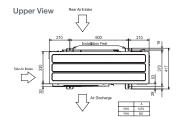

5 Griller ¹⁶ MCB Sizes BS EN60898-2 & BS EN60947-2. ¹⁷ Flow Temperature Controller (FTC) for standalone systems PAC-IF062B-E Dimensions WxDxH (mm) - 520x150x450

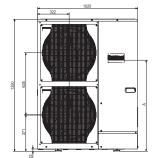
 η_{s} is the seasonal space heating energy efficiency (SSHEE) η_{sh} is the water heating energy efficiency


DIMENSIONS

PUHZ-W50VHA2(-BS)




PUHZ-W85VHA2(-BS)


Front View

PUHZ-(H)W112-140VHA(2) / YHA2(-BS)

Front View

Telephone: 01707 282880

email: heating@meuk.mee.com web: heating.mitsubishielectric.co.uk

UNITED KINGDOM Mitsubishi Electric Europe Living Environmental Systems Division Travellers Lane, Hatfield, Hertfordshire, AL10 8XB, England General Enquiries Telephone: 01707 282880 Fax: 01707 278881 IRELAND Mitsubishi Electric Europe Westgate Business Park, Ballymount, Dublin 24, Ireland Telephone: Dublin (01) 419 8800 Fax: Dublin (01) 419 8890 International code: (003531)

Country of origin: United Kingdom – Japan – Thaland – Malaysia. (Mitsubishi Bectric Europe 2016. Mitsubishi and Mitsubishi Bectric are trademarks of Mitsubishi Bectric Europe B.V. The company reserves the right to make any variation in technical specification to the equipment described, or to withdraw or replace products without provides. Al descriptions, libutations, dawings and specifications in this publication preserves the and moryong its products. Al descriptions, libutations, dawings and specifications in the product start descriptions, libutations, dawings and specifications in the product start descriptions, libutations, dawings and specifications in the product and brand names may be trademarks or registered trademarks of their respective owners.

Mitsubishi Electric UK's commitment to the environment

Appendix E

DER Worksheet (Be Green)

DER Worksheet Design - Draft

This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

Assessor name	Mr Jona	Mr Jonathan Peck						Assessor nun	nber	10160	10160		
Client								Last modified	ł	07/08	/2020		
Address	66, Cam	den, NW1 8	AN										
	,												
1. Overall dwelling dim	ensions												
				А	area (m²)			verage storey height (m)	1	Vo	lume (m³)		
Lowest occupied					60.40	<mark>(1a)</mark> x		2.40	(2a) =		144.96	(3a)	
Total floor area	(1a)) + (1b) + (1	c) + (1d)(1n) =	60.40	(4)							
Dwelling volume							(3	3a) + (3b) + (3	3c) + (3d)(3	8n) =	144.96	(5)	
2. Ventilation rate													
										m	³ per hour		
Number of chimneys								0	x 40 =		0	(6a)	
Number of open flues								0	 x 20 =		0	(6b)	
Number of intermittent	ans							2	x 10 =	:	20	(7a)	
Number of passive vents								0	x 10 =		0	(7b)	
Number of flueless gas fi	res							0	x 40 =		0	(7c)	
										Air	changes pe hour	r	
Infiltration due to chimne	eys, flues, fan	is, PSVs		(6a)) + (6b) + (7	a) + (7b) + (7c) =	20	÷ (5) =	-	0.14	(8)	
If a pressurisation test ha	ns been carrie	ed out or is i	ntended, p	roceed to (17), otherw	ise continu	e from (9	9) to (16)					
Air permeability value, q	50, expressed	l in cubic m	etres per h	our per squ	uare metre	of envelope	e area				4.00	(17)	
If based on air permeabil	ity value, the	n (18) = [(1	7) ÷ 20] + (8	8), otherwi	se (18) = (1	6)					0.34	(18)	
Number of sides on whic	h the dwellin	g is sheltere	ed								0	(19)	
Shelter factor								1	- [0.075 x (1	9)] =	1.00	(20)	
Infiltration rate incorpora	ating shelter f	factor							(18) x (2	20) =	0.34	(21)	
Infiltration rate modified	for monthly	wind speed	:										
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp	eed from Tal	ble U2										_	
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	(22)	
Wind factor (22)m ÷ 4					-				-			-	
1.28	1.25	1.23	1.10	1.08	0.95	0.95	0.93	1.00	1.08	1.13	1.18	(22a)	
Adjusted infiltration rate				1								-	
0.43	0.42	0.41	0.37	0.36	0.32	0.32	0.31	0.34	0.36	0.38	0.40	(22b)	
Calculate effective air ch	-											٦	
If mechanical ventilat	-		• •								N/A	(23a)	
If balanced with heat			-			able 4h					N/A	(23c)	
d) natural ventilation		-	-		-					a] <i>(</i> a:	
0.59	0.59	0.59	0.57	0.57	0.55	0.55	0.55	0.56	0.57	0.57	0.58	(24d)	
Effective air change rate				1	0	0	0.55	0.50	0	0	0.50	7 (2-)	
0.59	0.59	0.59	0.57	0.57	0.55	0.55	0.55	0.56	0.57	0.57	0.58	(25)	

3. Heat losses a	and heat lo	ss paramet	er:										
Element			а	Gross irea, m ²	Openings m ²		t area , m²	U-value W/m²K	A x U V		value, I/m².K	Ахк, kJ/K	
Window						9	.83 x	1.24	= 12.1	5			(27)
Door						2	.10 x	1.00	= 2.10)			(26)
Ground floor						60	0.40 x	0.15	= 9.06	5			(28a)
External wall						9:	1.77 x	0.18	= 16.5	2			(29a)
Roof						54	4.24 x	0.16	= 8.68	3			(30)
Total area of ext	ernal elem	ents ∑A, m ²	2			21	.8.34						(31)
Fabric heat loss,	W/K = ∑(A	× U)							(2	26)(30) + ((32) =	48.50	(33)
Heat capacity Cr	n = ∑(А x к))						(28)	(30) + (32)	+ (32a)(3	2e) =	N/A	(34)
Thermal mass pa	arameter (1	TMP) in kJ/r	m²K									100.00	(35)
Thermal bridges	:Σ(L x Ψ) c	alculated u	sing Appen	dix K								15.64	(36)
Total fabric heat	loss									(33) + ((36) =	64.14	(37)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	_
Ventilation heat	loss calcul	ated month	ily 0.33 x (2	25)m x (5)									
	28.36	28.19	28.02	27.22	27.08	26.38	26.38	26.26	26.65	27.08	27.38	27.69	(38)
Heat transfer co	efficient, V	V/K (37)m +	+ (38)m	-						·			_
	92.50	92.33	92.16	91.36	91.22	90.52	90.52	90.40	90.79	91.22	91.52	91.83	
									Average =	∑(39)112	/12 =	91.36	(39)
Heat loss parameter (HLP), W/m ² K (39)m ÷ (4)													
	1.53	1.53	1.53	1.51	1.51	1.50	1.50	1.50	1.50	1.51	1.52	1.52	
									Average =	∑(40)112	/12 =	1.51	(40)
Number of days	in month (Table 1a)											
	31.00	28.00	31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00	30.00	31.00	(40)
4 14/-1 h t									·				
4. Water heating		requiremen	ιτ										
Assumed occupa					(25	26						1.99	(42)
Annual average	Jan	Feb	es per day Mar		e = (25 x N) + May	30 Jun	Jul	Aug	Sep	Oct	Nov	81.53 Dec	(43)
Hot water usage				Apr				Aug	Seh	000	NOV	Dec	
not water usage	89.69	86.42	83.16	79.90	76.64	73.38	73.38	76.64	79.90	83.16	86.42	89.69	٦
	69.09	00.42	05.10	79.90	70.04	/5.50	75.50	70.04	79.90	∑(44)1	·	978.38	
Energy content	of bot wate	ar used = 1 °	18 v Vd m v	nm v Tm/	3600 kWb/m	onth (see	a Tables 1h	1c 1d)		2(44)1.	12 =	978.38	(44)
Lifergy content	133.00	116.32	120.03	104.65	100.41	86.65	80.29	92.14	93.24	108.66	118.61	128.80	٦
	155.00	110.52	120.05	104.05	100.41	80.05	60.29	92.14	95.24	∑(45)1	·	1282.81	 (45)
Distribution loss	0 15 x (45	Jm								2(43)1.	12	1202.01	_ (43)
Distribution 1033	19.95	17.45	18.01	15.70	15.06	13.00	12.04	13.82	13.99	16.30	17.79	19.32	(46)
Storage volume	L						12.04	15.02	15.55	10.50	17.75	170.00	(47)
Water storage lo		during driv 5										170.00	_ (+/)
a) If manufactur		ed loss facto	or is known	(kWh/day)							1.20	(48)
Temperature				(kwii) day	/							0.70	(49)
Energy lost fi			(h/day) (4)	8) v (49)								0.84	(50)
Enter (50) or (54		Storage (KM	////uuy/ (4	5) ^ (+5)								0.84	(55)
Water storage lo		ed for each	month (5	5) x (41)m							Ĺ	0.04	
	26.11	23.59	26.11	25.27	26.11	25.27	26.11	26.11	25.27	26.11	25.27	26.11	(56)
If the vessel con		1			1				23.27		20.27	20.11	
	26.11	23.59	26.11	25.27	26.11	25.27	26.11	26.11	25.27	26.11	25.27	26.11	(57)
						/	20.11	1 20.11	23.27		1 23.27	20.11	

Primary circuit lo	oss for each	n month from	n Table 3										
	54.86	49.55	54.86	53.09	54.86	22.51	23.26	23.26	22.51	54.86	53.09	54.86	(59)
Combi loss for ea	ach month	from Table	3a, 3b or 3	с	•	•	•		•				-
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(61)
Total heat requir	red for wat	er heating c	alculated f	or each mo	onth 0.85 x	(45)m + (4	l6)m + (57)r	n + (59)m +	· (61)m				
	213.97	189.46	201.01	183.01	181.39	134.43	129.67	141.51	141.02	189.63	196.97	209.78	(62)
Solar DHW input	calculated	using Appe	ndix G or A	ppendix H									
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(63)
Output from wat	ter heater f	or each mo	nth (kWh/r	month) (62	2)m + (63)m	า							
	213.97	189.46	201.01	183.01	181.39	134.43	129.67	141.51	141.02	189.63	196.97	209.78	
										∑(64)1	.12 = 2	111.85	(64)
Heat gains from	water heat	ing (kWh/m	onth) 0.25	5 × [0.85 ×	(45)m + (61	.)m] + 0.8 >	< [(46)m + (!	57)m + (59)	m]				
	109.00	97.19	104.69	97.48	98.17	67.04	66.20	70.14	69.23	100.91	102.13	107.60	(65)
5. Internal gain													
5. Internal gain		Fab	Mor	A	Max	1		A	For	Oct	Nev	Dee	
Metabolic gains	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
	99.65	99.65	99.65	99.65	99.65	99.65	00.65	99.65	99.65	99.65	99.65	99.65	
Lighting gains (ca		1 1					99.65	99.05	99.05	99.05	99.05	99.05	(66)
Lighting gains (co	15.76	14.00	11.38	8.62	6.44	5.44	5.88	7.64	10.25	13.02	15.19	16.20	(67)
Appliance gains		1 1			1		5.88	7.04	10.25	13.02	15.19	10.20] (07)
	173.95	175.76	171.21	161.53	149.30	137.81	130.14	128.33	132.88	142.57	154.79	166.28	(68)
Cooking gains (ca							130.14	120.55	152.88	142.57	134.79	100.28] (08)
Cooking Bains (co	32.96	32.96	32.96	32.96	32.96	32.96	32.96	32.96	32.96	32.96	32.96	32.96	(69)
Pump and fan ga		11	52.50	52.50	52.50	32.50	32.50	52.50	52.50	52.50	52.50	32.50] (03)
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(70)
Losses e.g. evapo			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00] (70)
200000 0.8. 0100	-79.72	-79.72	-79.72	-79.72	-79.72	-79.72	-79.72	-79.72	-79.72	-79.72	-79.72	-79.72	(71)
Water heating ga		11	15.12	13.72	15.72	15.12	15.72	15.72	75.72	15.72	15.72	15.12] (/ 1)
	146.51	144.62	140.71	135.39	131.94	93.11	88.98	94.27	96.15	135.63	141.84	144.63	(72)
Total internal ga							00.50	51.27	50.15	100.00	111.01	11100] (/ _/
	389.11	387.27	376.20	358.43	340.58	, 289.26	277.89	283.14	292.18	344.11	364.72	380.00	(73)
	000111	00/12/	070120			200120	277100	100121	101.10	0	00.112	000100] (: 0)
6. Solar gains													
			Access f		Area		lar flux		g Stie dete	FF	lata	Gains	
			Table	80	m²	v	V/m²	-	ific data able 6b	specific o or Table		W	
SouthWest			0.7	7 x [7.52	x	36.79 x	0.9 x 0).50 x	0.80	=	76.70	(79)
SouthEast			0.7		2.31				0.50 x		= [23.56	(77)
Solar gains in wa	ntts ∑(74)m	(82)m] (,
Ū	100.26	170.78	233.67	289.52	324.29	321.94	310.39	284.45	253.01	188.75	120.09	85.80	(83)
Total gains - inte					1			1			I], ,
Ū	489.37	558.05	609.87	647.96	664.87	611.20	588.28	567.59	545.19	532.85	484.81	465.80	(84)
	<u>.</u>												
7. Mean intern	al tempera	ture (heatir	ng season)								_		
Temperature du	ring heatin	g periods in	the living a	area from T	able 9, Th1	.(°C)						21.00	(85)
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation factor	r for gains f	or living are	a n1,m (se	e Table 9a)									_
	0.94	0.93	0.90	0.85	0.77	0.67	0.55	0.58	0.74	0.86	0.92	0.95	(86)

Mean internal temp of live	/ing area T1 ((steps 3 to 7	in Table 90	c)								
21.00	21.00	21.00	21.00	21.00	21.00	21.00	21.00	21.00	21.00	21.00	21.00	(87)
Temperature during hea	ing periods in	n the rest o	f dwelling f	rom Table	9 <i>,</i> Th2(°C)							
19.66	19.67	19.67	19.68	19.68	19.69	19.69	19.69	19.69	19.68	19.68	19.67	(88)
Utilisation factor for gair	s for rest of c	dwelling n2,	m									
0.94	0.91	0.88	0.82	0.72	0.59	0.42	0.46	0.67	0.82	0.91	0.94	(89)
Mean internal temperati	ure in the res	t of dwelling	g T2 (follow	, steps 3 to	7 in Table 9	e)	•					
19.66	19.67	19.67	19.68	19.68	19.69	19.69	19.69	19.69	19.68	19.68	19.67	(90)
Living area fraction		1	1	I	1	I	1	Liv	ving area ÷	(4) =	0.59	(91)
Mean internal temperati	ire for the w	hole dwellin	g fl A x T1 -	+(1 - fl A) x	т2] (/
20.45		20.46	20.46	20.46	20.46	20.46	20.46	20.46	20.46	20.46	20.46	(92)
Apply adjustment to the		_		1			20.40	20.40	20.40	20.40	20.40	(32)
		20.46	1		1		20.40	20.40	20.40	20.40	20.40	(02)
20.45	20.45	20.46	20.46	20.46	20.46	20.46	20.46	20.46	20.46	20.46	20.46	(93)
8. Space heating requir	ement											
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation factor for gair	s, ŋm											
0.94	0.92	0.89	0.84	0.75	0.64	0.50	0.53	0.71	0.84	0.92	0.95	(94)
Useful gains, nmGm, W		_] (/
460.6	. , . ,	542.24	541.43	499.13	391.77	295.28	302.57	387.25	449.80	445.34	441.02	(95)
Monthly average externa				455.15	551.77	255.20	502.57	307.23	4-5.00	-+5.5+	441.02	(55)
			.	11.70	14.00	10.00	10.40	14.10	10.00	7 1 0	4.20	
4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20	(96)
Heat loss rate for mean i		1	ı	1								1 ()
1494.2			1056.12	799.06	530.80	349.75	367.40	577.64	899.40	1222.53	1492.89	(97)
Space heating requireme				1								1
768.9	9 619.84	553.44	370.58	223.15	0.00	0.00	0.00	0.00	334.50	559.58	782.60	 1
								∑(98	3)15, 10		4212.67	(98)
Space heating requireme	nt kWh/m²/y	year							(98)	÷ (4)	69.75	(99)
9a. Energy requirement	s - individua	l heating sy	stems inclu	iding micro	D-CHP							
Space heating		i neuting by										
Fraction of space heat from	am cocondan	v/cupplomo	ntany avata	m (table 1'	1)						0.00	(201)
			illary syste	III (table 1.	1)				1 - (20	21) - [, ,
Fraction of space heat fr									1 - (20	JT) = [1.00	(202)
Fraction of space heat fr								(0.0			0.00	(202)
Fraction of total space he								(20	02) x [1- (20		1.00	(204)
Fraction of total space he		n system 2							(202) x (20		0.00	(205)
Efficiency of main system	. ,									L	304.50	(206)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating fuel (main	system 1), k\	Wh/month										
252.5	4 203.56	181.75	121.70	73.28	0.00	0.00	0.00	0.00	109.85	183.77	257.01	l
								∑(211	1)15, 10	.12 = 1	1383.45	(211)
Water heating												
Efficiency of water heate	r											
178.1	3 178.13	178.13	178.13	178.13	178.13	178.13	178.13	178.13	178.13	178.13	178.13	(217)
Water heating fuel, kWh	/month											
120.1	2 106.36	112.85	102.74	101.83	75.47	72.80	79.45	79.17	106.46	110.58	117.77	
									∑(219a)1	.12 = 1	1185.60	(219)

Annual totals

						-
Space heating fuel - main system 1					1383.45	
Water heating fuel					1185.60]
Electricity for pumps, fans and electric keep-hot (Table 4f)						
Total electricity for the above, kWh/year					0.00	(231)
Electricity for lighting (Appendix L)					278.33	(232)
Total delivered energy for all uses		(211))(221) + (231) +	(232)(237b) =	2847.39	(238)
	5					
10a. Fuel costs - individual heating systems including micro-CH						
	Fuel kWh/year		Fuel price		Fuel cost £/year	
Space heating - main system 1	1383.45	x	13.19	x 0.01 =	182.48	(240)
Water heating	1185.60	x	13.19	x 0.01 =	156.38	(247)
Electricity for lighting	278.33	x	13.19	x 0.01 =	36.71	(250)
Additional standing charges	270.55	×	13.15]	0.00	(251)
			(240) (242)	. (245) (254)		
Total energy cost			(240)(242) -	+ (245)(254) =	375.57	(255)
11a. SAP rating - individual heating systems including micro-CH	IP					
Energy cost deflator (Table 12)					0.42	(256)
Energy cost factor (ECF)					1.50	(257)
SAP value					79.12]
SAP rating (section 13)					79	(258)
SAP band					С]
12a. CO ₂ emissions - individual heating systems including micro	СНР					
12a. CO ₂ emissions - mulvidual heating systems including micro						
	Energy kWh/year		Emission factor		Emissions	

	kWh/year		kg CO₂/kWh		kg CO₂/year	
Space heating - main system 1	1383.45	x	0.519	= [718.01	(261)
Water heating	1185.60	x	0.519	= [615.33	(264)
Space and water heating			(261) + (262) +	(263) + (264) = [1333.34	(265)
Electricity for lighting	278.33	x	0.519	= [144.46	(268)
Total CO₂, kg/year				(265)(271) = [1477.79	(272)
Dwelling CO₂ emission rate				(272) ÷ (4) = [24.47	(273)
El value				[81.21	
El rating (section 14)				[81	(274)
El band				[В	

13a. Primary energy - individual heating systems including micro-CHP

	Energy kWh/year		Primary factor		Primary Energy kWh/year	,
Space heating - main system 1	1383.45	x	3.07	=	4247.20	(261)
Water heating	1185.60	x	3.07	=	3639.79	(264)
Space and water heating			(261) + (262) +	(263) + (264) =	7886.99	(265)
Electricity for lighting	278.33	x	3.07	=	854.48	(268)
Primary energy kWh/year					8741.48	(272)
Dwelling primary energy rate kWh/m2/year					144.73	(273)