

COYLE KENNEDY Consulting Engineers

Third Floor GW Business Centre Great West House Great West Road Brentford TW8 9DF England

Tel: +44 (0)203 393 1174 Fax: +44 (0)203 004 1234

Irish Office: GFSC Moneenageisha Road Galway

Galway Ireland Tel: +353 (0)

+353 (0)91 752000 +353 (0)91 753000

website: email:

Fax:

www.coylekennedy.com mail@ coylekennedy.com

Coyle Kennedy Limited Registered in Ireland 346183

Directors: Brian Coyle BE CEng MIEI MIStructE Tadhg Kennedy BE MEngSc CEng MIEI MIStructE

REV B 20TH JULY 2020 REV C 14TH AUGUST 2020

REV A 20TH SEPTEMBER 2019

Civil Engineering

Drainage Report

For

Fitzroy Park Development

27th February 2019

CONTENTS	i
Introduction	
Surface Water Disposal	1
Foul Water Network	4
<u>Appendix A</u>	
Surface & Foul Water Layout with Sections and Calculations	А
Appendix B	
Attenuation Summary	В
Blue and Green Roof Process	
Landscaping adjacent to Plot 5	

INTRODUCTION

It is the intention of the applicant to redevelop this property through the removal of the existing large house and replacement of this by five new smaller homes in accordance with documents lodged. It is proposed that this development will be connected to the existing services that exist on Fitzroy Park & Millfield Lane adjacent to the site.

This report, in conjunction with calculations and relevant drawings included in the appendices demonstrates the proposed surface water network and foul water network for the development. The drawings also incorporate the attenuation requirement as identified in the report by LBH Wembley.

SURFACE WATER DISPOSAL

At present the area around the existing house and driveway drains into the combined sewer that runs beneath Fitzroy Park, and the remainder of the site drains across Millfield Lane to the Heath – see reports by LBH Wembley in relation to same.

The proposed redevelopment will largely follow the existing drainage principals with some improvements.

For surface water drainage, the surface water networks have been divided up as follows;

- (i) taking the runoff from the paved carparking & road areas & discharging to the combined sewer running beneath Fitzroy Park via attenuation and a hydrocarbon interceptor. Refer to Figure 1.
- o (ii) taking runoff from proposed blue/green roofs, paved areas & footpaths discharging through the attenuation/infiltration trench via percolation within the existing made ground and head/superficial deposits to the Heath.

Attenuation of the surface water is proposed in several different ways.

- The surface from the parking areas and vehicle trafficked areas will be attenuated using stormwater tanks.
- Attenuation will be provided on the roofs of the houses using blue roofs.
- Additional stormwater attenuation tanks will be used adjacent to Millfield Lane.

See appendix B for a summary of the attenuation volumes and a schematic showing how the green/blue roof functions.

Refer to Coyle Kennedy drawings in Appendix A for details of proposed storm water networks and relevant calculations.

Paved Carparking & Road areas discharging to the combined sewer running beneath Fitzroy Park.

Figure 2.

Plan indicating Blue/Green Roofs, Access Path Attenuation and Infiltration trench location.

FOUL WATER NETWORK

It is intended that sanitary effluent will be collected on site via traditional gravity pipe networks. There will be two foul sewer networks. Effluent from plots 1,2 & 3 will be collected in a traditional gravity sewer & discharge to the combined sewer that runs beneath Fitzroy Park. See Figure 3 below. Effluent from plots 4 & 5 on the lower side of the site will be collected in a pumping chamber and pumped through a rising main to the existing combined sewer that runs beneath Fitzroy Park, along the Eastern boundary of the site. See Figure 3 below

Refer to Coyle Kennedy drawings in Appendix A for details of proposed foul network and relevant calculations.

Figure 3.

Plan indicating foul water network.

Appendix A

Surface & Foul Water Layout Drawings With Sections and Calculations

SECTION THROUGH FOUL NETWORK 1

SECTION THROUGH STORM NETWORK 1

SECTION THROUGH FOUL NETWORK 3

TYPICAL PIPE SECTION

	REFER TO DRAWING 300 FOR PLAN LAYOUT OF SEWERS								
F_{a} –	8/1								
*	NETWORK UPDATED	22/7/2							
Rev.	Revision	Date							
<u> </u>	DRAMING STATUS								

COYLE KENNEDY Consulting Engineers

+353 (0)91 752000 +353 (0)91 753000

Fitzroy Park Development

DRAINAGE NETWORK SECTIONS

www.coylekennedy.com mail@coylekennedy.com

T TENDER

STATUS - DRAWING No.

P-302

Α

DRAWING REV.

P PRELIMINARY A APPROVAL C CONSTRUCTION R RECORD

GFSC,

Galway.

Tel·

Fax:

PROJECT

CLIENT

TITLE

© COPYRIGHT COYLEKENNEDY

PROJECT No.

Website: email:

Geoff Springer

16-254

SCALE BY CHECKED 1:500,1:100;,1:20 @ A1 AC TK 1:1000,1:200,1:40 @ A3

FEBRUARY 2019

Moneenageisha Rd,

Hor Scale 500 Ver Scale 100 (m)76.5 \$1.00 81.003 er Level (m nvert Level (m)

SECTION THROUGH STORM NETWORK 3

Coyle Kennedy	Page 1	
Consulting Civil & Structura	Fitzroy Park Development	
email: mail@coyleken		L.
Website: www.coylekenned		Micco
Date 27/02/2019 18:59	Designed by AC	
File 16-254-P-300A.MDX	Checked by	Diamacje
Innovyze	Network 2017.1.2	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - England and WalesReturn Period (years)5PIMP (%)100M5-60 (mm)21.000Add Flow / Climate Change (%)0Ratio R0.436Minimum Backdrop Height (m)0.200Maximum Rainfall (mm/hr)58Maximum Backdrop Height (m)1.500Maximum Time of Concentration (mins)30Min Design Depth for Optimisation (m)1.200Foul Sewage (l/s/ha)0.000Min Vel for Auto Design only (m/s)1.00Volumetric Runoff Coeff.1.000Min Slope for Optimisation (1:X)500

Designed with Level Soffits

Network Design Table for Storm

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section Type
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT	(mm)	
S1.000	12.656	0.216	58.6	0.003	15.00	0.0	0.600	0	150	Pipe/Conduit
S1.001	17.022	0.169	100.6	0.004	0.00	0.0	0.600	0	150	Pipe/Conduit
S1.002	13.139	0.131	100.6	0.007	0.00	0.0	0.600	0	150	Pipe/Conduit
~~ ~~~	10 500		100.0	0 01 0	1 - 00				150	
S2.000	13.502	0.135	100.0	0.012	15.00	0.0	0.600	0	150	Pipe/Conduit
S1.003	6.985	0.070	99.7	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit
S3.000	13.422	0.229	58.6	0.006	15.00	0.0	0.600	0	150	Pipe/Conduit
S3.001	16.329	0.165	99.1	0.006	0.00	0.0	0.600	0	150	Pipe/Conduit
S3.002	12.410	0.125	99.1	0.006	0.00	0.0	0.600	0	150	Pipe/Conduit
S3.003	15.760	1.212	13.0	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit
S3.004	9.948	0.765	13.0	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
			. ,								
S1.000	55.32	15.16	82.800	0.003	0.0	0.0	0.0	1.32	23.3	0.6	
S1.001	54.69	15.44	82.584	0.007	0.0	0.0	0.0	1.00	17.7	1.5	
S1.002	54.22	15.66	82.415	0.014	0.0	0.0	0.0	1.00	17.7	2.8	
S2.000	55.18	15.22	81.650	0.012	0.0	0.0	0.0	1.00	17.8	2.3	
S1.003	53.97	15.78	81.515	0.026	0.0	0.0	0.0	1.01	17.8	5.1	
S3.000	55.30	15.17	82.800	0.006	0.0	0.0	0.0	1.32	23.3	1.1	
S3.001	54.70	15.44	82.571	0.012	0.0	0.0	0.0	1.01	17.8	2.3	
S3.002	54.25	15.64	82.406	0.017	0.0	0.0	0.0	1.01	17.8	3.4	
S3.003	54.05	15.74	82.281	0.017	0.0	0.0	0.0	2.81	49.6	3.4	
S3.004	53.93	15.80	81.069	0.017	0.0	0.0	0.0	2.81	49.6	3.4	
			©	1982-201	7 XP Solu	tions					

Coyle Kennedy	Page 2	
Consulting Civil & Structura	Fitzroy Park Development	
email: mail@coyleken		L.
Website: www.coylekenned		Micco
Date 27/02/2019 18:59	Designed by AC	
File 16-254-P-300A.MDX	Checked by	Diamaye
Innovyze	Network 2017.1.2	

Network Design Table for Storm

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section Type
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s) (mm)	SECT	(mm)	
S3.005	14.104	1.085	13.0	0.005	0.00	0.	0 0.600	0	150	Pipe/Conduit
S3.006	11.140	0.800	13.9	0.004	0.00	0.	0 0.600	0	150	Pipe/Conduit
S3.007	7.658	0.766	10.0	0.000	0.00	0.	0 0.600	0	150	Pipe/Conduit
S3.008	14.554	0.291	50.0	0.030	0.00	0.	0 0.600	0	150	Pipe/Conduit

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(l/s)	(m/s)	(l/s)	(l/s)
S3.005	53.75	15.88	80.304	0.022	0.0	0.0	0.0	2.81	49.6	4.3
S3.006	53.60	15.95	79.219	0.026	0.0	0.0	0.0	2.71	48.0	5.1
S3.007	53.52	15.99	78.419	0.026	0.0	0.0	0.0	3.21	56.6	5.1
S3.008	53.17	16.16	77.653	0.056	0.0	0.0	0.0	1.43	25.2	10.7

Coyle Kennedy	Page 1	
Consulting Civil & Structura	Fitzroy Park Development	
email: mail@coyleken		L'
Website: www.coylekenned		Micro
Date 27/02/2019 19:00	Designed by AC	
File 16-254-P-300A.MDX	Checked by	Diamaye
Innovyze	Network 2017.1.2	

FOUL SEWERAGE DESIGN

Design Criteria for Foul - Main

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (l/s/ha)	0.00	Add Flow / Climate Change (%)	0
Industrial Peak Flow Factor	0.00	Minimum Backdrop Height (m)	0.200
Flow Per Person (l/per/day)	250.00	Maximum Backdrop Height (m)	1.500
Persons per House	4.00	Min Design Depth for Optimisation (m)	1.200
Domestic (l/s/ha)	0.00	Min Vel for Auto Design only (m/s)	0.75
Domestic Peak Flow Factor	6.00	Min Slope for Optimisation (1:X)	180

Designed with Level Soffits

Network Design Table for Foul - Main

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	Bas Flow (e l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type
F1.000	14.001	0.233	60.0	0.000	1		0.0	1.500	0	100	Pipe/Conduit
F1.001	16.085	0.259	62.0	0.000	1		0.0	1.500	0	100	Pipe/Conduit
F1.002	9.943	0.160	62.0	0.000	1		0.0	1.500	0	100	Pipe/Conduit
F1.003	7.466	0.096	77.6	0.000	5		0.0	1.500	0	100	Pipe/Conduit
F2.000	18.974	0.316	60.0	0.000	1		0.0	1.500	0	100	Pipe/Conduit
F2.001	13.359	0.172	77.7	0.000	1		0.0	1.500	0	100	Pipe/Conduit

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
F1.000	82.850	0.000	0.0	1	0.0	7	0.26	0.86	6.8	0.1
F1.001	82.617	0.000	0.0	2	0.0	10	0.32	0.85	6.6	0.1
F1.002	82.357	0.000	0.0	3	0.0	12	0.37	0.85	6.6	0.2
F1.003	82.197	0.000	0.0	8	0.0	21	0.47	0.76	5.9	0.6
F2.000	77.100	0.000	0.0	1	0.0	7	0.26	0.86	6.8	0.1
F2.001	76.784	0.000	0.0	2	0.0	11	0.30	0.76	5.9	0.1

Calculated by:	Alan Clancy
Site name:	Fitzroy Park Development
Site location:	Fitzroy Park N6 6JA
	Parking area

This is an estimation of the storage volume requirements that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the SuDS Manual, C753 (Ciria, 2015). It is not to be used for detailed design of drainage systems. It is recommended that hydraulic modelling software is used to calculate volume requirements and design details before finalising the drainage scheme.

Surface water storage requirements for sites

www.uksuds.com | Storage estimation tool

Site coordinates

Latitude:	51.56695° N
Longitude:	0.15783° W
Reference:	6530830
Date:	2019-02-27T11:03:07

Methodology	IH124

Site characteristics

Total site area (ha)	0.1275
Significant public open space (ha)	0.08
Area positively drained (ha)	0.0475
Pervious area contribution (%)	30
Impermeable area (ha)	0.026
Percentage of drained area that is impermeable (%)	55
Impervious area drained via infiltration (ha)	0
Return period for infiltration system design (year)	10
Impervious area drained to rainwater harvesting systems (ha)	0
Return period for rainwater harvesting system design (year)	10
Compliance factor for rainwater harvesting system design (%)	66
Net site area for storage volume design (ha)	0.05
Net impermeable area for storage volume design (ha)	0.03

* Where rainwater harvesting or infiltration has been used for managing surface water runoff such that the effective impermeable area is less than 50 % of the 'area positively drained', the 'net site area' and the estimates of Qbar and other flow rates will have been reduced accordingly.

Site discharge rates	Default	Edited
Qbar total site area (l/s)	0.57	0.57
Qbar net site area (l/s)	0.21	0.21
1 in 1 year (l/s)	5	5
1 in 30 years (l/s)	5	5
1 in 100 years (l/s)	5	5

Design criteria

Volume control approach controlled discharge				
		Default	Edited	
Climate change allowance f	actor	1.4	1.4	
Urban creep allowance fact	or	1.1	1.1	
Interception rainfall depth (n	nm)	5	5	
Minimum flow rate (I/s)		5	5	
Qbar estimation method Calculate fro		om SPR and SAAR		
SPR estimation method	SPR estimation method Calculate fr		om SOIL type	
		Default	Edited	
Qbar total site area (I/s)		0.57		
SOIL type		4	4	
HOST class		N/A	N/A	
SPR		0.47	0.47	
Hydrology		Default	Edited	
SAAR (mm)		659	659	
M5-60 Rainfall Depth (mm)		20	20	
'r' Ratio M5-60/M5-2 day		0.4	0.4	
Rainfall 100 yrs 6 hrs		63		
Rainfall 100 yrs 12 hrs		98.56		
FEH/FSR conversion factor		1.28	1.28	
Hydrological region		6		
Growth curve factor: 1 year		0.85	0.85	
Growth curve factor: 10 year		1.62	1.62	
Growth curve factor: 30 year		2.3	2.3	
Growth curve factor: 100 year		3.19	3.19	
Estimated storage volume	es	Default	Edited	

	Delault	Eulleu
Interception storage (m ³)	1	1
Attenuation storage (m ³)	2	2
Long term storage (m ³)	0	0
Treatment storage (m ³)	3	3
Total storage (excluding treatment) (m ³)	3	3

_

This report was produced using the Storage estimation tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at http://uksuds.com/terms-and-conditions.htm. The outputs from this tool have been used to estimate storage volume requirements. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for use of this data in the design or operational characteristics of any drainage scheme.

Appendix B

Attenuation Summary

55 Fitzroy Park - Attenuation Summary

COYLE KENNEDY Consulting Engineers

Third Floor GW Business Centre Great West House Great West Road Brentford TW8 9DF England

Tel: +44 (0)203 393 1174 Fax: +44 (0)203 004 1234

website: www.coylekennedy.com email: mail@coylekennedy.com

Make up of attenuation volumes:

Attenuation tank – 95% voids	$=35m^{3}$	
Blue and Green roof Plot 1 - $101m^2$ of roof by 150mm deep Plot 2 - $98m^2$ of roof by 150mm deep Plot 3 - $95m^2$ of roof by 150mm deep Plot 4 - $214m^2$ of roof by 150mm deep Plot 5 - $329m^2$ of roof by 150mm deep	$= 15.2m^{3}$ = 14.7m ³ = 14.3m ³ = 32.1m ³ = 49.4m ³	Irish Office: GFSC Moneenageisha Road Galway Ireland Tel: +353 (0)91 752000 Fax: +353 (0)91 753000 CKCE Limited
Total	$= 160.7 \text{ m}^3$	Registered in England 11566522

Directors: Brian Coyle BE CEng MIEI MIStructE Tadhg Kennedy BE MEngSc CEng MIEI MIStructE

Civil Engineering

Blue and Green roof Process

Green/Blue roof makeup

Maximum attenuation level

Normal levels of rainfall – sunstrate saturates, reservoir holds water for vegations – no discharge

Heavy rainfall – water overflows the storage cells into the void space and drains through the flow restricter attenauting the discharge

1:100 year event – if the rainfall exceeds the maximum 1:100 rainfall event the excess rainfall discharges the via the overflow pipe at high level – the remainder of the water is attenuted as normal.

Landscaping detail – typical detail shown adjacent to plot 5

The details be low show the intent of the landscaping/drainage adjacent to divert the water away from the buildings to the attenuation/Infiltration trench area.

Layout of plat 4

Section B-B

Tall US

Tadhg Kennedy COYLE KENNEDY CHARTERED ENGINEERS