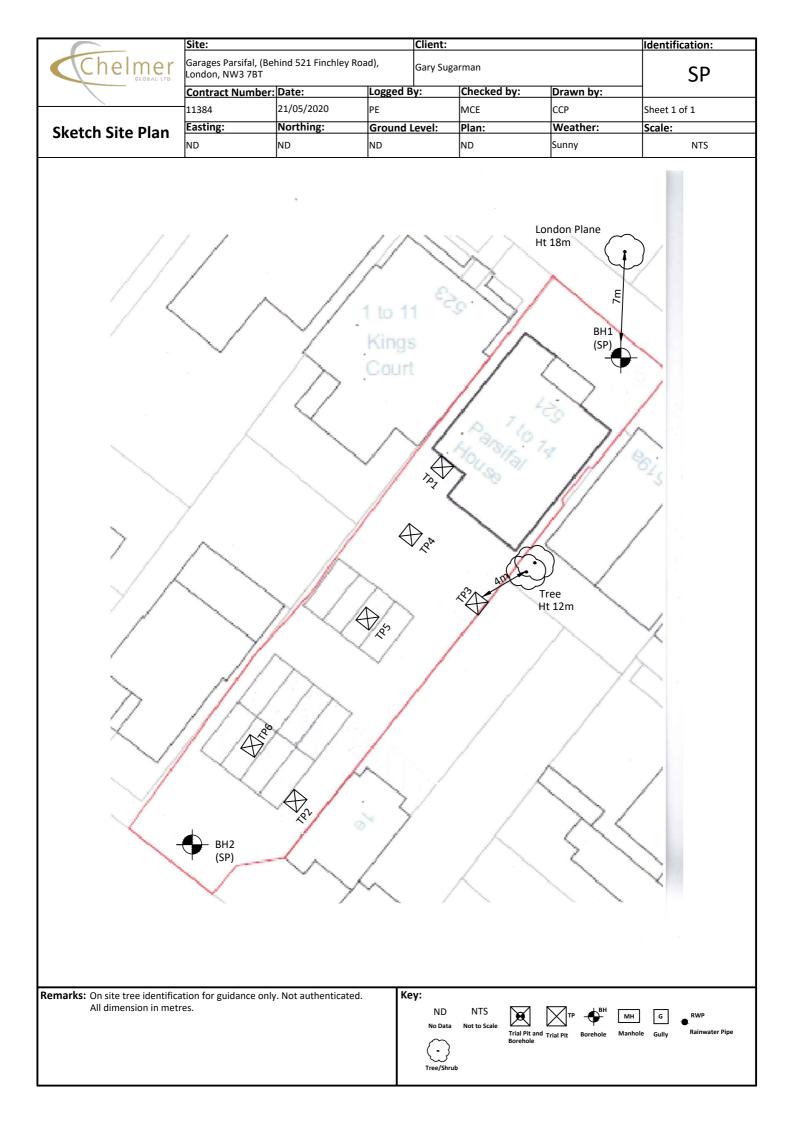
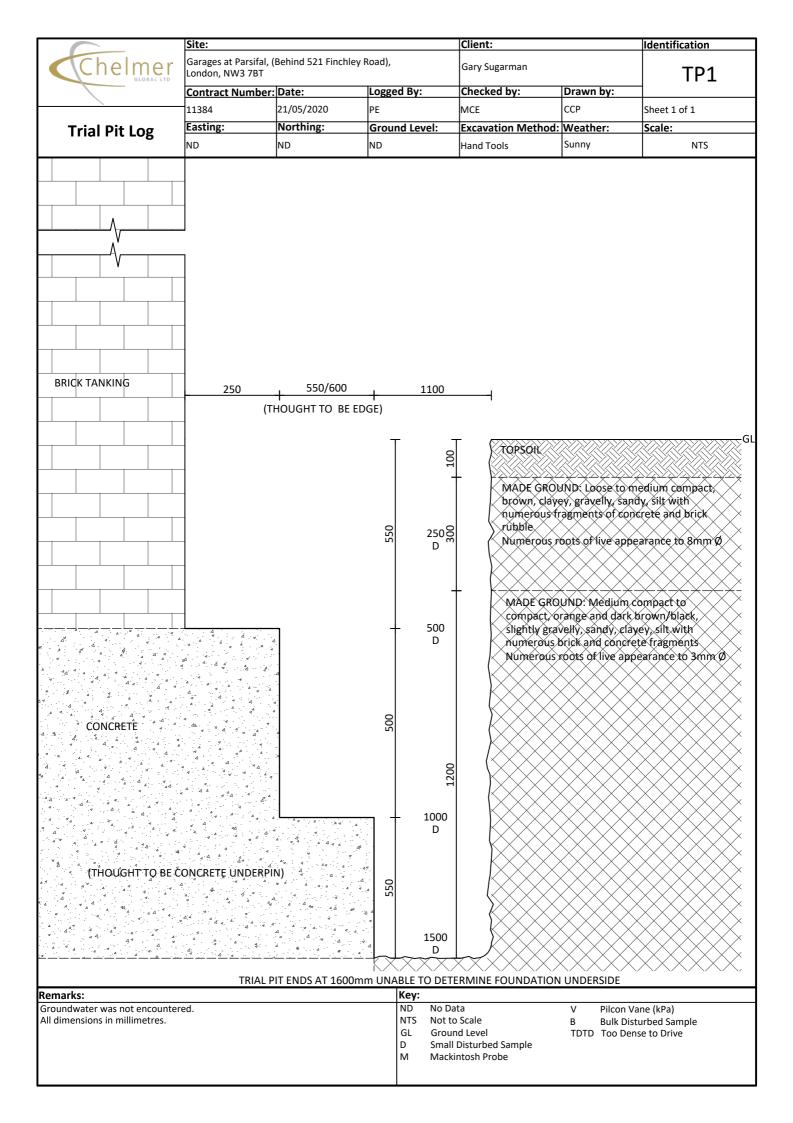
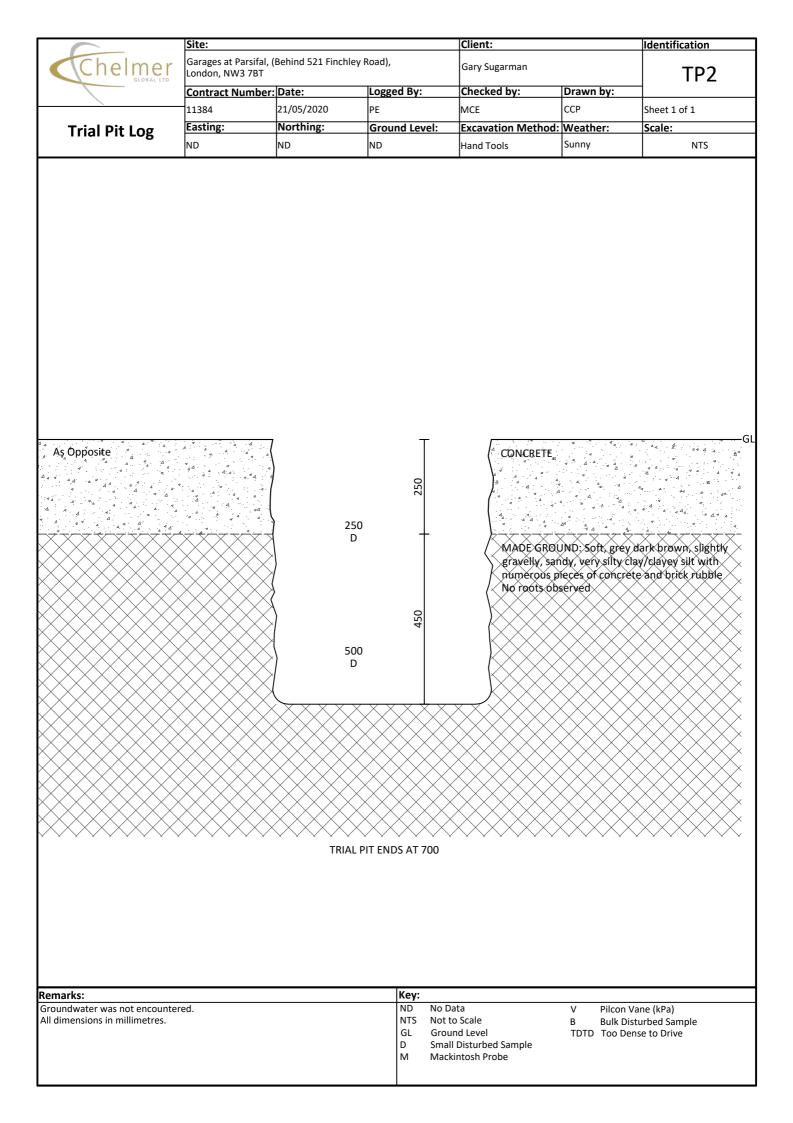


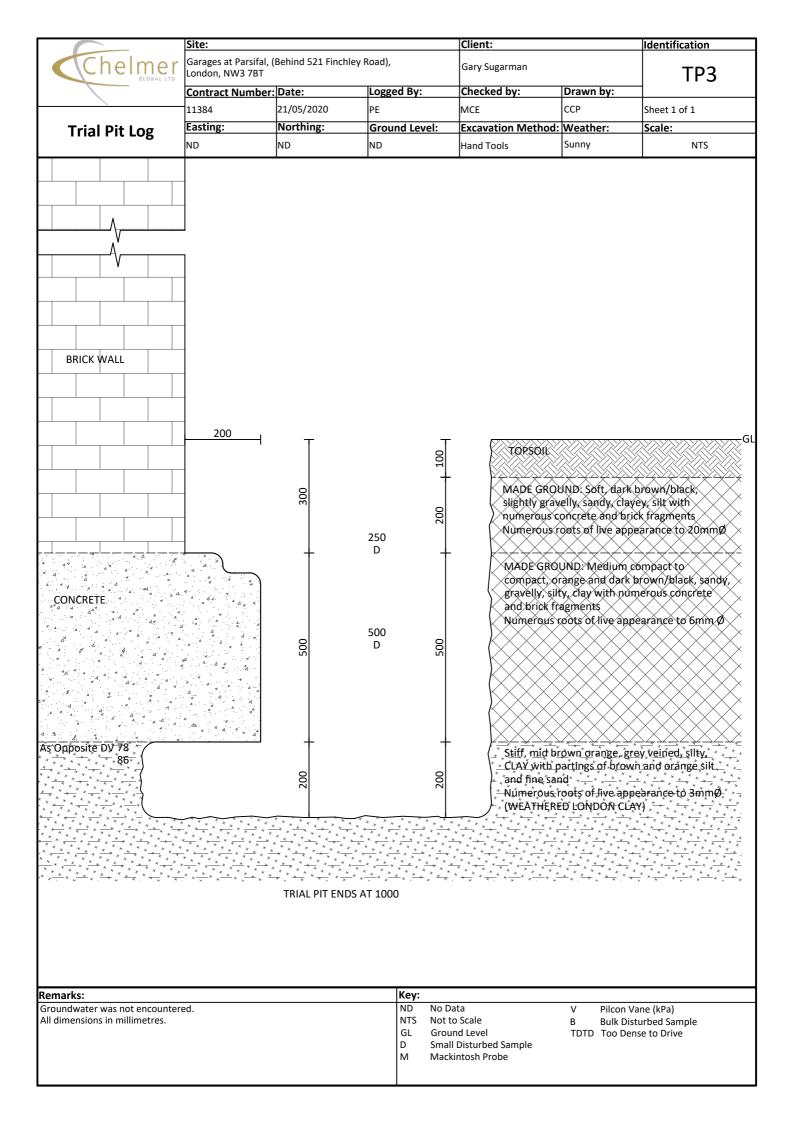
Factual Report

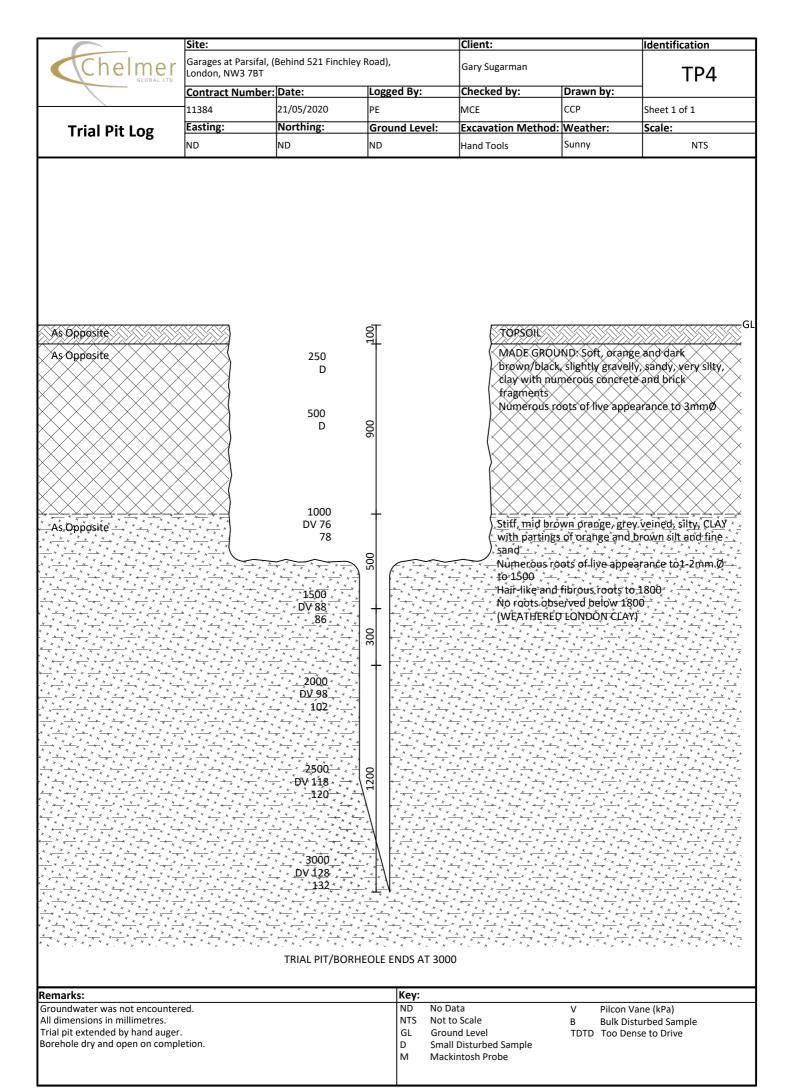
Site Garages at Parsifal Behind 521 Finchley Road London NW3 Client Gary Sugarman Date 21/05/20 Our Ref FACT/11384

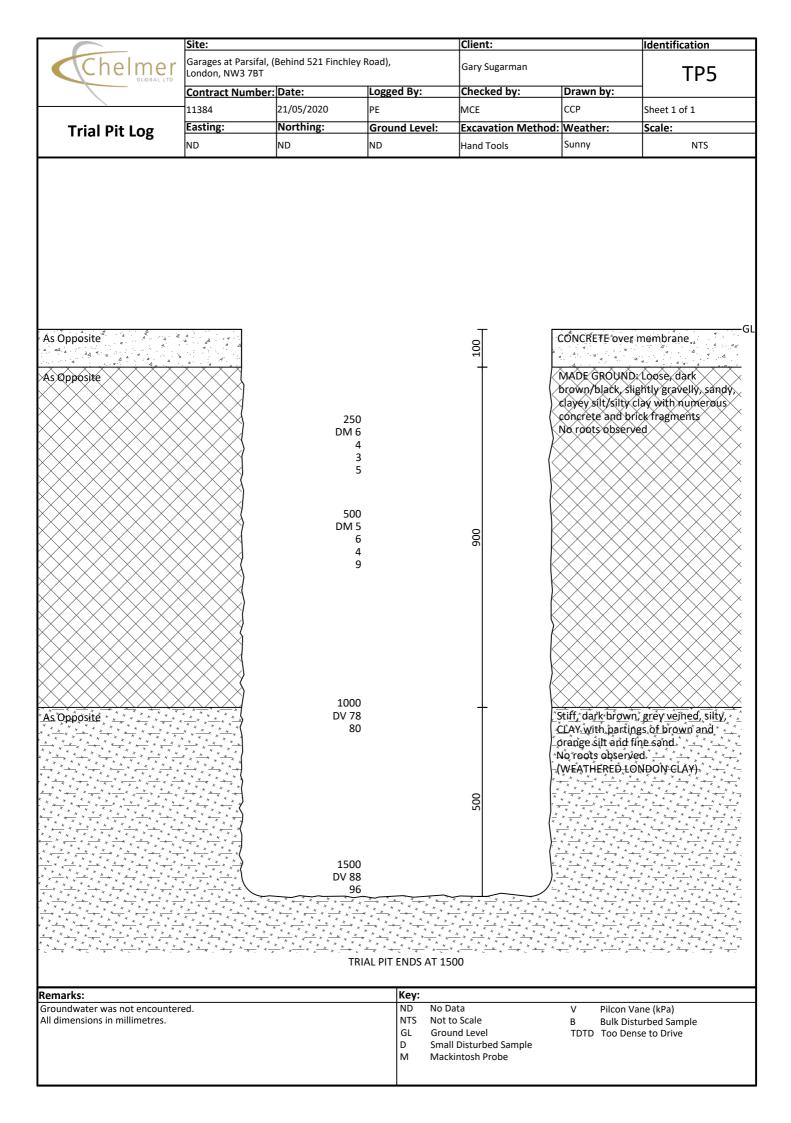

Chelmer Global Ltd

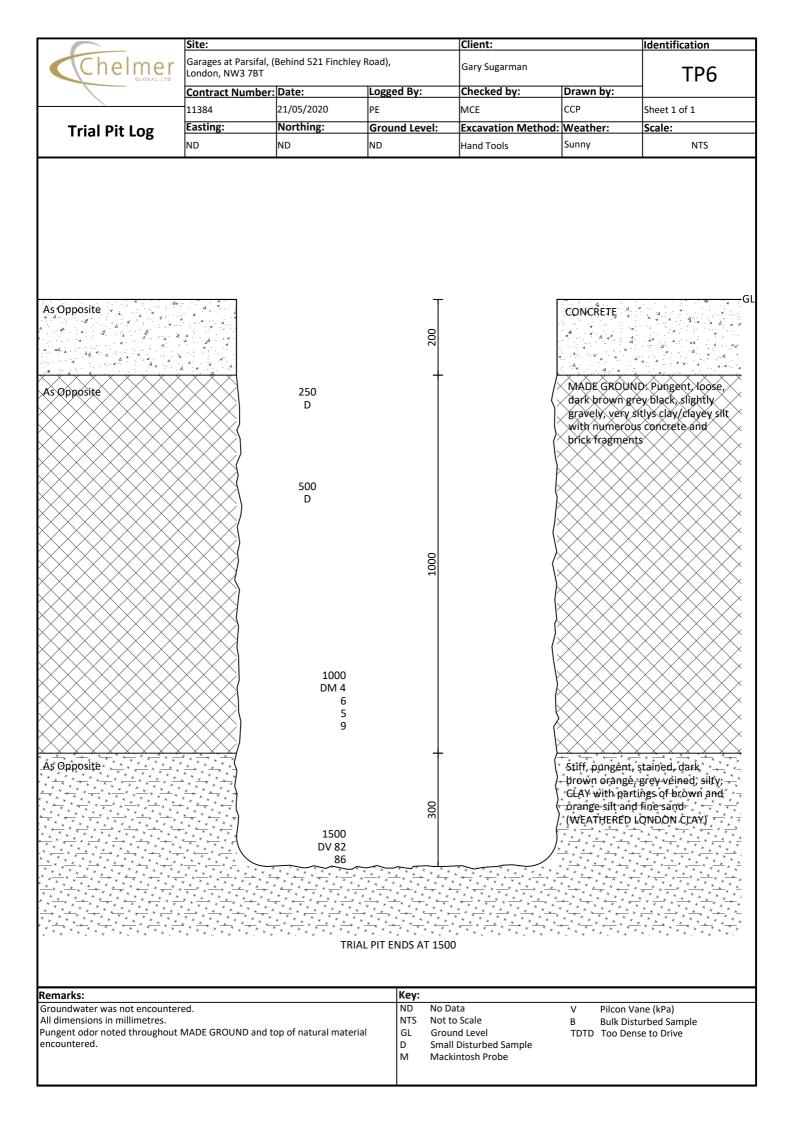

Unit 7 Hall Road Industrial Estate, Hall Road, Southminster, Essex CM0 7DA Essex: 01245 400930 | info@siteinvestigations.co.uk | www.siteinvestigations.co.uk




FACTUAL REPORT CONTENT


- 1.0 SITE PLAN
- 2.0 TRIAL PIT SECTION DRAWINGS
- 3.0 BOREHOLE LOGS
- 4.0 LANDBORNE GAS ASSESSMENT
- 5.0 GEOTECHNICAL SOIL TESTING RESULTS
- 6.0 CHEMICAL SOIL TESTING RESULTS
- 7.0 REPORT NOTES





	Che	_ Imer	Site: Garages at London, N		(Behind 5	521 Finchley Road),	Clier Gary	nt: Sugarman				Identificati	
		GLOBAL LTD	Contract		·Data	Logged		Check	ad by:	Drawn b		BI	41
			11384	Number	21/05/2		Dy.	MCE	eu by.	CCP		Sheet 1 of 1	
B/	araha	le Log	Easting:		Northi		d Level:		Jsed:	Weathe		Scale:	
Ы	JIEIIU	IC LUG	ND		ND	ND		Second		Sunny			TS
	oles & In Sit	u Testing				Strata	Details			I		Roots and Gro	
Depth (m)	Sample	Test Result	Depth (m)	Thickness (m)	Legend		S	trata Descripti	on		Roots	s Information	Groundwat (m)
GL			GL		\times	PAVING over MADE GR gravelly, sandy, clayey,						s of live and appearance	
0.25 0.50	D D				\boxtimes	graveny, sandy, clayey,	SIL WILLI	numerous pier	les of concrete			mmØ to 2.20.	
0.50				1.20	$\left \right\rangle$								
1.00	D				$\left \right\rangle$								
			1.20			 ≤Stiff, mid orange-brow	n. grev ve	eined. silty. CL/	AY with parting	s of orange and	-		
1.50	D	V 128			* * * * *	brown silt and fine san							
		130			* * * *	(WEATHERED LONDON	CLAY)						
2.00	D	V 134			* <u>*</u> ***	£							
		138			* * * *	*						ir-like and ous roots to	
2.50	D				* * * *		from 2.50	D				3.40.	
					* * * * * * * * * *	*							
3.00	D	V 140+ 140+			+++++++++++++++++++++++++++++++++++++++	*							
					+ + + + + + + + + + + + + + + + + + + +	*					No ro	ots observed	
3.50	D				* * * *	<u>*</u>					be	low 3.40.	
4.00	D	V 140+			* * * * *) Ir							
4.00		140+				*							
4.50	D			6.80	* * * *	, *							
				0.00	* * * *	*							
5.00	D	V 140+			***** * * * * * * ***								
		140+			* * * *								
					+ + + + + + + + + + + + + + + + + + + +	<u>,</u> *							
					* * * *	20							
6.00	D	V 140+ 140+				3 E							
					* * * *	*							
					* * * *	ж.							
7.00	D	V 140+			****								
7.00		140+			****								
					* * * * *	*							
					* * * *	<u></u>							
8.00	D	V 140+ 140+	8.00		* * * <u>*</u> *		BO	REHOLE ENDS AT 8	00		-		
		140+											
Remarl	<u>.</u>								Key:				
orehole	'dry' and 'c	open' on complet	tion.						ND No Dat	ta	V	Pilcon Vane	
	sions in me e installed a		tion (1m plaiı	n plastic pip	be and 7m	slotted plastic pipe)			NTS Not to		M SPT	Mackintosh Standard Pe	netration Te
										d Level Disturbed Sample	N TDTI	Blow Count D Too Dense t	

			Site:				Clien	it:				Identificati	on
Q	Che		Garages at London, N	t Parsifal, (W3 7BT	(Behind 5	21 Finchley Road),		Sugarman				BI	H2
			Contract	Number		Logged	By:	Check	ed by:	Drawn b			
			11384		21/05/2			MCE		ССР		Sheet 1 of 1	
В	oreho	le Log	Easting:		Northi		Level:			Weathe Sunny	r:	Scale:	ITC
Samr	oles & In Sit	tu Testing	ND		ND	ND	Details	Second	man	Sunny	1	N Roots and Gro	ITS
Depth (m)	Sample	Test Result	Depth (m)	Thickness (m)	Legend	Strutt		trata Descripti	on			s Information	Groundwate (m)
GL			GL	(11)		CONCRETE over MADE	GROUND): Loose. dark l	prown/black. s	lightly gravelly.	No ro	ots observed	()
0.25	D				\times	sandy, very silty clay/cl							
0.50	D			1.20	\bigotimes								
		M 5 9			\bowtie								
1.00	D	7 9	1.20		\times								
			1.20		+++++++++++++++++++++++++++++++++++++++	Stiff, mid orange-brown	n, grey ve d	ined, silty, CLA	Y with parting	s of orange and			
1.50	D	V 110 108			+++++++++++++++++++++++++++++++++++++++	(WEATHERED LONDON	CLAY)						
2.00	D	V 116				- 							
2.00		118			* * * *	· · · · · · · · · · · · · · · · · · ·							
2.50	D				* * * *	4							
					* * * * * * * * * * * * * * * * * * *	*							
3.00	D	V 122			**** ****								
		126			+ + + + + + + + + + + + + + + + + + +	*							
3.50	D				* * * * *	<u>A</u>							
						becoming very stiff	from 3.80).					
4.00	D	V 140+ 140+			* * * *	*							
4.50	D			6.80	* * * *	r r							
4.50					****	*							
5.00	D	V 140+			* * * * * * * * *								
		140+			* * * *	*							
						2 c							
					$\frac{1}{2}$ + $\frac{1}$								
6.00	D	V 140+ 140+			* * * * * * * * *	4							
		140+			* * * *	*							
					* * * *	-							
7.00	D	V 140+			* * * * *	*							
7.00		140+			****								
						*							
					$\frac{1}{2}$ + $\frac{1}$	4							
8.00	D	V 140+	8.00		* * * * *		BOI	REHOLE ENDS AT 8.	00		-		
		140+											
Remarl	<u> </u> (s:]			Key:				
orehole		open' on complet	tion.						ND No Dat	a uous Flight Auger	V	Pilcon Vane	
			tion (1m plair	n plastic pip	be and 7m	slotted plastic pipe)			NTS Not to	Scale	M SPT		netration Tes
									GL Ground D Small [d Level Disturbed Sample	N TDT	Blow Count D Too Dense t	

Laboratory Report

Site	Garages @ Parsifal, Finchley Road, London, NW3 7BT
Client	Gary Sugarman
	05-Jun-20
Our Ref	CSI/11384
CGL Ref	11384

Chelmer Global Ltd

Unit 7 Hall Road Industrial Estate, Hall Road, Southminster, Essex CM0 7DA Essex: 01245 400930 | info@siteinvestigations.co.uk | www.siteinvestigations.co.uk

Content Summary

This report contains all test results as indicated on the test instruction/summary.

CGL Reference : 11	384
Client Reference : C	SI/11384
For the attention of : G	ary Sugarman
This report comprises of the following : 1	Cover Page
1	Inside Cover/Contents Page
4	Pages of Results
1	Moisture/Shear Strength Chart
1	Plasticity Chart
1	Limitations of Report Page

Notes : General

Please refer to report summary notes for details pertaining to methods undertaken and their subsequent accreditations

Samples were supplied by Chelmer Global Ltd

All tests performed in-house unless otherwise stated

Deviant Samples

Samples were received in suitable containers	Yes
A date and time of sampling was provided	Yes
Arrived damaged and/or denatured	No

Job Number : 11384 Client : Gary Sugarman Client Reference : CSI/11384

Date Received : 26/05/2020 Date Testing Started : 26/05/2020 Date Testing Completed : 05/06/2020 Laboratory Used : Chelmer Geotechnical, CM3 8AB

Site Name : Garages @ Parsifal, Finchley Road, London, NW3 7BT

	Sample Ref	1	the internet Constants	*Soil Faction	*L involution to the	*Dis stis Limit	*Dis stisitu is dau	*Linusiality for almost	*Modified	*0-il 0l	Filter Paper	t0-il 0-mala	Insitu Shear Vane	Orregia Organizati	****	*Sulph	ate Conter	ıt (g/l)
BH/TP/WS	Depth (m) UID	Sample Type	*Moisture Content (%) [1]	> 0.425mm (%) [2]	*Liquid Limit (%) [3]	*Plastic Limit (%) [4]	*Plasticity Index (%) [5]	*Liquidity Index (%) [5]	Plasticity Index (%) [6]	*Soil Class [7]	Contact Time (h) [8]	*Soil Sample Suction (kPa)	Strength (kPa) [9]	Organic Content (%) [10]	*pH Value [11]	SO ₃ [12]	SO ₄ [13]	Class [14]
BH1	1.5	D	28	<5	69	29	40	-0.02	38	СН			129					
BH1	3.0	D	27	<5	70	28	42	-0.01	40	CV			140					
BH1	4.0	D	28	<5	72	27	45	0.02	43	CV			140					
BH1	6.0	D	31	<5	73	28	45	0.06	42	CV			140					
BH1	8.0	D	28	<5	71	30	41	-0.06	39	CV			140					
ļ														1		1		
Notes :-	*UKAS Accredited Test	s												Key		-		
[1] BS 1377	: Part 2 : 1990, Test No	3.2	[7] BS 5930 : 1981	: Figure 31 - Plastic	ity Chart for the clas	sification of fine so	ils		[12] BS 1377 : Part	3 : 1990, Test No 5	5.6			D - Disturbed sample	9	-		
[2] Estimate	d if <5%, otherwise mea	asured	[8] In-house metho	d S9a adapted from	BRE IP 4/93				[13] SO ₄ = 1.2 x SO	D ₃				B - Bulk sample		-		
[3] BS 1377	: Part 2 : 1990, Test No	4.4	[9] Values of shear (GV).	strength were deter	mined in situ by Ch	elmer Global usin	g a Pilcon hand van	e or Geonor vane	[14] BRE Special D	ligest One (Concret	e in Aggressive Gro	und) 2005		U - U100 (undisturbe	d sample)	-		
[4] BS 1377	: Part 2 : 1990, Test No	5.3	x = 1*								ne DS-4 or DS-5 cla			W - Water sample		-		
	: Part 2 : 1990, Test No est 240 : 1993	5.4	[10] BS 1377 : Part [11] BS 1377 : Part						sample as falling ir testing is undertake		S-5m class respectiv se	eiy unless water sol	iuble magnesium	ENP - Essentially No		-		
Comments			1													<u> </u>		
Technician :-	MW					Checke	d & Authorised By:-	ft-	Martin Edwards- C	helmer Global Con	npany Director			C	Date Checked :-	08/06	/2020	

Job Number : 11384 Client : Gary Sugarman Client Reference : CSI/11384

Date Testing Completed : 05/06/2020 Laboratory Used : Chelmer Geotechnical, CM3 8AB

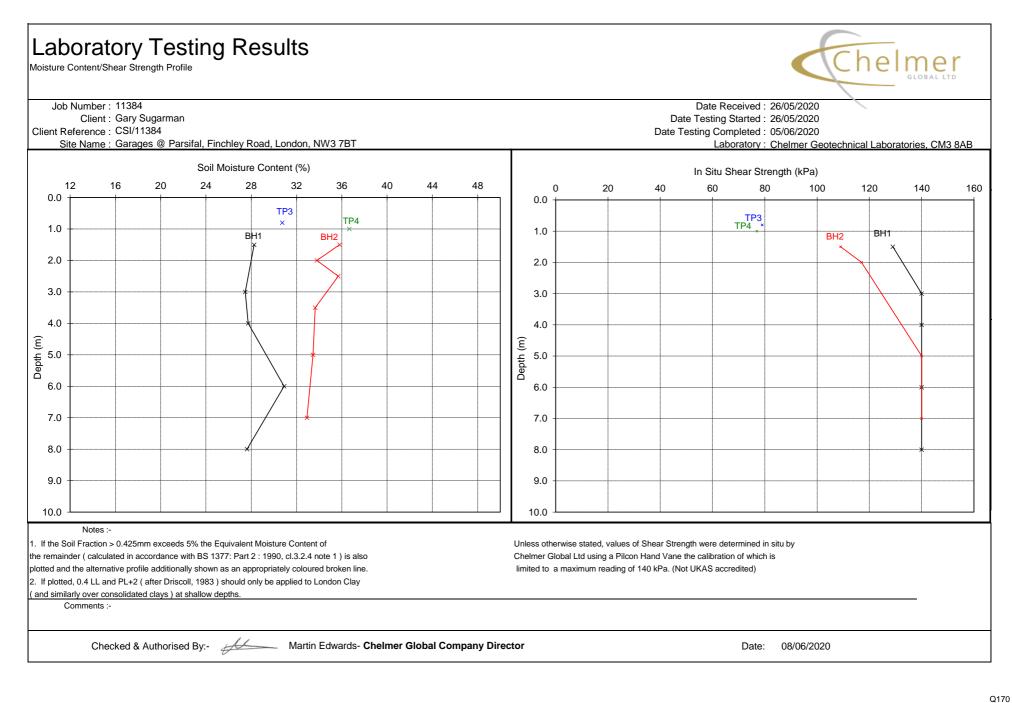
Site Name : Garages @ Parsifal, Finchley Road, London, NW3 7BT

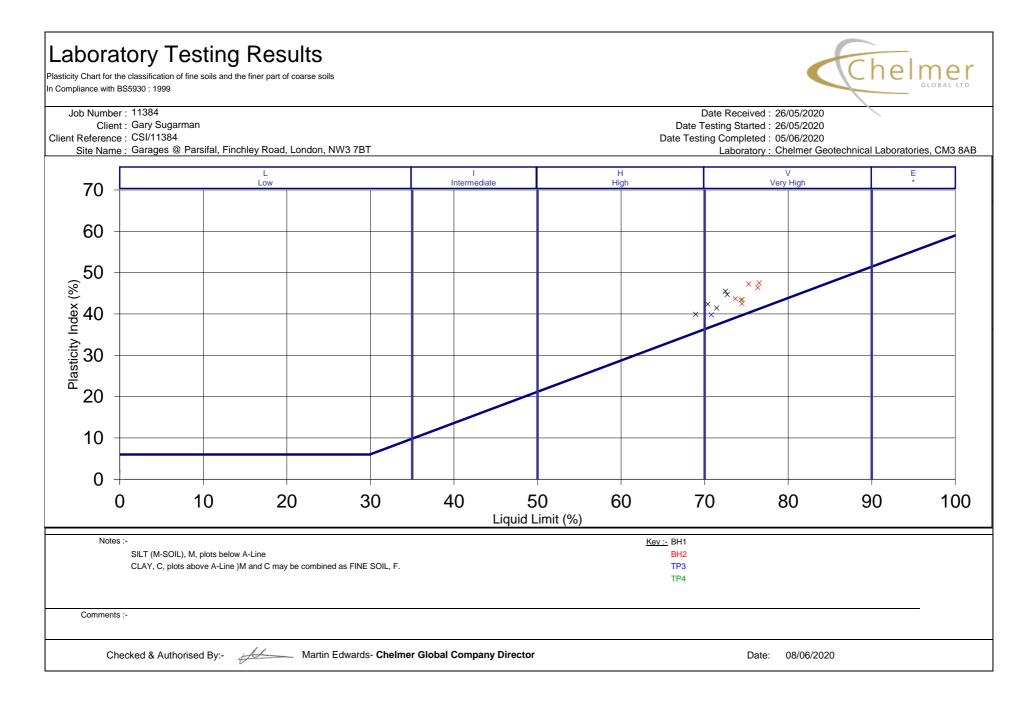
ŝ	Sample Re	ef	1		*Soil Faction	-				*Modified		Filter Paper		Insitu Shear Vane			*Sulph	ate Content	. (g/l)
BH/TP/WS	Depth (m)	UID	Sample Type	*Moisture Content (%) [1]	> 0.425mm (%) [2]	*Liquid Limit (%) [3]	*Plastic Limit (%) [4]	*Plasticity Index (%) [5]	*Liquidity Index (%) [5]	Plasticity Index (%) [6]	*Soil Class [7]	Contact Time (h) [8]	*Soil Sample Suction (kPa)	Strength (kPa) [9]	Organic Content (%) [10]	*pH Value [11]	SO3 [12]	SO ₄ [13]	Class [14]
BH2	1.5		D	36	<5	77	29	48	0.14	45	CV			109					
BH2	2.0		D	34	<5	74	30	44	0.09	41	CV			117					
BH2	2.5		D	36	<5	74	32	42	0.09	40	CV								
BH2	3.5		D	34	<5	76	30	46	0.08	44	CV								
BH2	5.0		D	33	<5	74	31	43	0.06	41	CV			140					
BH2	7.0		D	33	<5	75	28	47	0.10	45	CV			140					
Notes :- *		credited Tests		[7] BS 5930 : 1981 :	· Figure 31 - Plastic	ity Chart for the class	scification of fine so	ile		[12] BS 1377 : Part	3 · 1990 Test No.4	5.6			Key D - Disturbed sample				
[1] BS 1377 . [2] Estimated				[8] In-house method	-		sourceation of fille SU			[13] SO ₄ = 1.2 x SC		0.0			B - Bulk sample				
[2] Estimated				[9] Values of shear : (GV).			elmer Global usin	ig a Pilcon hand van	e or Geonor vane			te in Aggressive Gro	und) 2005		U - U100 (undisturbe	d sample)			
[4] BS 1377 :	: Part 2 : 1	990, Test No		(GV).								he DS-4 or DS-5 clas		ent to consider the	W - Water sample				
[5] BS 1377 :	: Part 2 : 1	990, Test No	5.4	[10] BS 1377 : Part	3 : 1990, Test No 4						to the DS-4m or DS	S-5m class respectiv			ENP - Essentially No	n-Plastic			
[6] BRE Dige	est 240 : 19	993		[11] BS 1377 : Part	2 : 1990, Test No 9					J					U/S - Underside Four	ndation			
Comments :-	-																		
Technician :- 1	MW						Checke	ed & Authorised By:-	the	Martin Edwards- CI	nelmer Global Cor	mpany Director			D	ate Checked :-	08/06/	2020	

Job Number : 11384 Client : Gary Sugarman Client Reference : CSI/11384 Site Name : Garages @ Parsifal, Finchley Road, London, NW3 7BT

Date Received : 26/05/2020 Date Testing Started : 26/05/2020 Date Testing Completed : 05/06/2020 Laboratory Used : Chelmer Geotechnical, CM3 8AB

	Sample R	ef			*Soil Faction					*Modified	*** ** **	Filter Paper		Insitu Shear Vane			*Sulph	ate Conte	nt (g/l)
BH/TP/WS	Depth (m)	UID	Sample Type	*Moisture Content (%) [1]	> 0.425mm (%) [2]	*Liquid Limit (%) [3]	*Plastic Limit (%) [4]	*Plasticity Index (%) [5]	*Liquidity Index (%) [5]	Plasticity Index (%) [6]	*Soil Class [7]	Contact Time (h) [8]	*Soil Sample Suction (kPa)	Strength (kPa) [9]	Organic Content (%) [10]	*pH Value [11]	SO3 [12]	SO ₄ [13]	Class [14]
TP3	0.8		D	31	<5	71	31	40	-0.01	38	CV			79					
Notes :-	*UKAS Ac	credited Tests													Key	L			
[1] BS 1377	: Part 2 : 1	990, Test No 3	3.2	[7] BS 5930 : 1981	: Figure 31 - Plastic	ity Chart for the clas	ssification of fine so	ils		[12] BS 1377 : Part	3 : 1990, Test No 5	.6			D - Disturbed sample	9			
[2] Estimate	ed if <5%, o	therwise meas	sured	[8] In-house metho	d S9a adapted from	BRE IP 4/93				[13] SO ₄ = 1.2 x SO	9 3				B - Bulk sample U - U100 (undisturbe	d complo)			
		990, Test No 4		[9] Values of shear (GV).	strength were deter	mined in situ by Ch	elmer Global usi	ng a Pilcon hand var	e or Geonor vane	[14] BRE Special D	igest One (Concrete	e in Aggressive Gro	und) 2005		W - Water sample	a sample)			
		1990, Test No 5		[10] BS 1377 : Part	3 : 1990. Test No 4					Note that if the SO, sample as falling in	to the DS-4m or DS	-5m class respectiv			ENP - Essentially No	n-Plastic			
[6] BRE Dig				[11] BS 1377 : Part						testing is undertake	en to prove otherwis	e			U/S - Underside Fou	ndation			
Comments	:-																		
Technician :-	MW						Checke	d & Authorised By:-	the	Martin Edwards- C	nelmer Global Com	npany Director			C	Date Checked :-	08/06	/2020	


Job Number : 11384 Client : Gary Sugarman Client Reference : CSI/11384



Laboratory Used : Chelmer Geotechnical, CM3 8AB

Site Name : Garages @ Parsifal, Finchley Road, London, NW3 7BT

	Sample R	tef			*Soil Faction					*Modified		Filter Paper		Insitu Shear Vane			*Sulph	nate Conter	nt (g/l)
BH/TP/WS	Depth (m)	UID	Sample Type	*Moisture Content (%) [1]	> 0.425mm (%) [2]	*Liquid Limit (%) [3]	*Plastic Limit (%) [4]	*Plasticity Index (%) [5]	*Liquidity Index (%) [5]	Plasticity Index (%) [6]	*Soil Class [7]	Contact Time (h) [8]	*Soil Sample Suction (kPa)	Strength (kPa) [9]	Organic Content (%) [10]	*pH Value [11]	SO3 [12]	SO ₄ [13]	Class [14]
TP4	1.0		D	37	<5	74	31	43	0.13	41	CV			77					
Notes :-	*UKAS Ac	credited Tests													Key				
[1] BS 1377	' : Part 2 : 1	990, Test No 3	3.2	[7] BS 5930 : 1981	: Figure 31 - Plastic	ity Chart for the clas	ssification of fine soi	Is		[12] BS 1377 : Part	3 : 1990, Test No 5	5.6			D - Disturbed sample				
[2] Estimate	ed if <5%, o	therwise meas	sured	[8] In-house method	d S9a adapted from	BRE IP 4/93				[13] SO ₄ = 1.2 x SO	13				B - Bulk sample				
		990, Test No 4		[9] Values of shear (GV).	strength were deter	mined in situ by <mark>Ch</mark>	elmer Global usir	ng a Pilcon hand var	ne or Geonor vane	[14] BRE Special D	igest One (Concret	e in Aggressive Gro	und) 2005		U - U100 (undisturber W - Water sample	u sampie)			
		1990, Test No 5		[10] BS 1377 : Part	3 : 1990, Test No 4					Note that if the SO ₄ sample as falling in	to the DS-4m or DS	6-5m class respectiv			ENP - Essentially Nor	n-Plastic			
[6] BRE Dig	jest 240 : 19			[11] BS 1377 : Part						testing is undertake	n to prove otherwis	9 0			U/S - Underside Four	ndation			
Comments	:-																		
Technician :-	MW						Checke	d & Authorised By:-	the second secon	Martin Edwards- Ch	nelmer Global Con	npany Director			D	ate Checked :-	08/06	/2020	

This report is personal to the client, confidential and non assignable. It is issued with no admission of liability to any third party.

This report shall not be reproduced, except in full, without the written approval of Chelmer Global Ltd.

Where our involvement consists exclusively of testing samples, the results and comments (if provided) relate only to the samples tested.

Any samples that are deemed to be subject to deviation will be recorded as such within the test summary.

Landborne Gas Assessment

Site Ref:11384Site Name:Garages @ Parsifal, 521 Finchley Road, London

Well	Date	Methane Peak	Methane Steady	Methane GSV	Carbon Dioxide Peak	Carbon Dioxide Steady	Carbon Dioxide GSV	Oxygen	Atmos.	Flow	Response Zone	Depth to Water	со	H2S	voc
		%v/v	%v/v	l/hr	%v/v	%v/v	l/hr	%v/v	mbar	l/hr	m bgl	m bgl	ppm	ppm	ppm
				0.0000			0.0000								
				0.0000			0.0000								
BH2	03/06/2020	0.5	0.5	0.0020	4.7	4.7	0.0188	17.4	1000	0.4	1.0-8.0	6.62	2	0	12.6
впг	10/06/2020	0.5	0.5	0.0020	2.7	2.0	0.0108	19.4	1007	0.4	1.0-8.0	6.00	1	0	2.6
				0.0000			0.0000								
				0.0000			0.0000								
				0.0000			0.0000								
				0.0000			0.0000								
DU1	03/06/2020	4.6	4.6	0.0184	4.6	4.6	0.0184	13.8	999	0.4	1000	dry	1	0	6.6
BH1	10/06/2020	0.5	0.5	0.0030	3.8	3.8	0.0228	14.5	1007	0.6	1.0-8.0	dry	1	0	4.4
				0.0000			0.0000								
				0.0000			0.0000								

Notes

Martin Edwards Chelmer Global Ltd Unit 7 and 8 Hall Road Industrial E Hall Road Southminster Essex CM0 7DA

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: medwards@chelmerglobal.co.uk

Analytical Report Number : 20-11532

Replaces Analytical Report Number : 20-11532, issue no. 1

Additional analysis undertaken.

Project / Site name:	Garages Parsifal behind 521 Finchley Road NW3	Samples received on:	28/05/2020
Your job number:	11384	Sample instructed/ Analysis started on:	28/05/2020
Your order number:		Analysis completed by:	05/08/2020
Report Issue Number:	2	Report issued on:	07/08/2020
Samples Analysed:	9 soil samples		

Durado

Signed:

Joanna Wawrzeczko Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Iss No 20-11532-2 Garages Parsifal behind 521 Finchley Road NW3 11384.XLS

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Project / Site name: Garages Parsifal behind 521 Finchley Road NW3

					1			
Lab Sample Number				1520080	1520081	1520082	1520083	1520084
Sample Reference				TP2	TP3	TP4	TP5	TP5
Sample Number				None Supplied				
Depth (m)				0.25	0.25	0.25	0.25	0.50
Date Sampled				21/05/2020	21/05/2020	21/05/2020	21/05/2020	21/05/2020
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	18	16	2.5	20	22
Total mass of sample received	kg	0.001	NONE	1.5	1.0	1.6	1.5	0.50
	_ g	0.001	HOLL	210	210	110	110	0.00
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	Not-detected	Not-detected	Not-detected	-
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	< 0.001	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	< 0.001	-	-	-	-
General Inorganics pH - Automated	pH Units	N/A	MCERTS	9.8	8.5	7.9	8.9	-
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	-
Organic Matter	%	0.1	MCERTS	3.3	4.9	9.5	3.7	-
Total Phenols Total Phenols (monohydric) Speciated PAHs	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	0.34	< 0.05	< 0.05	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	0.57	< 0.05	< 0.05	-
Phenanthrene	mg/kg	0.05	MCERTS	1.8	5.6	1.5	0.50	-
Anthracene	mg/kg	0.05	MCERTS	0.30	1.1	0.28	< 0.05	-
Fluoranthene	mg/kg	0.05	MCERTS	2.8	7.3	4.0	1.2	-
Pyrene	mg/kg	0.05	MCERTS	2.3	6.1	3.6	1.1	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.5	3.6	2.6	0.75	-
Chrysene	mg/kg	0.05	MCERTS	1.3	2.7	2.3	0.60	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.8	4.6	4.0	0.86	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.67	1.5	0.91	0.31	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.4	3.5	2.7	0.75	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.84	1.9	1.5	0.48	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.26	0.48	0.41	< 0.05	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.95	2.2	1.7	0.53	-
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	16.0	41.4	25.4	7.06	-
Heavy Metals / Metalloids				20	20	40	21	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	29	28	40	21	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.7	0.6	0.8	< 0.2	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	33	37	43	33	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	98	88	190	68	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	1100	410	2500	560	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	2.2	1.5	2.1	1.9	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	29	28	40	22	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	640	380	1200	170	-

Project / Site name: Garages Parsifal behind 521 Finchley Road NW3

				1520000	1520001	4520002	4520002	1500001
Lab Sample Number				1520080	1520081	1520082	1520083	1520084
Sample Reference				TP2	TP3	TP4	TP5	TP5
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)		0.25	0.25	0.25	0.25	0.50		
Date Sampled		21/05/2020	21/05/2020	21/05/2020	21/05/2020	21/05/2020		
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates	-		-					
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	32	< 8.0	< 8.0	< 8.0	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	32	< 10	< 10	< 10	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	6.4	< 2.0	< 2.0	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	25	15	< 10	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	26	34	30	14	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	34	66	45	22	-

PCBs	bv	GC-M	s

gener 28	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
gener 52	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
gener 101	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
gener 118	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
gener 138	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
gener 153	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
gener 180	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
gener 180	mg/kg	0.001	MCERTS	-	-	-	-	

Total PCBS by GC-MS								
Total PCBs	mg/kg	0.007	MCERTS	-	-	-	-	< 0.007

Iss No 20-11532-2 Garages Parsifal behind 521 Finchley Road NW3 11384.XLS

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report relate only to the sample(s) submitted for testing.

Project / Site name: Garages Parsifal behind 521 Finchley Road NW3

Lab Sample Number				1520085	1520086	1520087	1520088	
Sample Reference				TP6	BH1	BH2	BH2	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.25	0.25	0.25	0.50	
Date Sampled				21/05/2020	21/05/2020	21/05/2020	21/05/2020	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
			Ac					
Analytical Parameter	c	Limit of detection	Accreditation Status					
(Soil Analysis)	Units	ect	creditat Status					
	s	할 역	atio					
		_	on					
Stone Content	%	0.1	NONE	< 0.1	-	-	< 0.1	
Moisture Content	%	N/A	NONE	10	-	-	21	
Total mass of sample received	kg	0.001	NONE	1.5	-	-	1.0	
	• •							
	_							
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	-	
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	11.0	-	-	9.3	
Free Cyanide	mg/kg	1	MCERTS	< 1	-	-	< 1	
Organic Matter	%	0.1	MCERTS	2.2	-	-	4.2	
					a			
Total Phenols								
	ma/ka	1	MCERTS	< 1.0	-	-	< 1.0	
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-	-	< 1.0	
	mg/kg	1	MCERTS	< 1.0	-	-	< 1.0	
Total Phenols (monohydric) Speciated PAHs					-	-		
Total Phenols (monohydric) Speciated PAHs Naphthalene	mg/kg	0.05	MCERTS	< 0.05			< 0.05	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05		-	< 0.05 < 0.05	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene	mg/kg mg/kg mg/kg	0.05 0.05 0.05	MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05		-	< 0.05 < 0.05 < 0.05	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene	mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05	- - -	- - - -	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.27	- - - - -		< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.74	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.27 < 0.05	- - - -	- - - -	< 0.05 < 0.05 < 0.05 < 0.05 0.74 0.18	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60	- - - - - - -	- - - - - - -	< 0.05 < 0.05 < 0.05 < 0.05 0.74 0.18 2.1	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60 0.53	- - - - - -	- - - - -	< 0.05 < 0.05 < 0.05 < 0.05 0.74 0.18 2.1 1.9	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Fluoranthene Pyrene Benzo(a)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60 0.53 0.37	- - - - - - - - - - - -	- - - - - - - - - - -	< 0.05 < 0.05 < 0.05 < 0.05 0.74 0.18 2.1 1.9 1.5	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60 0.53 0.37 0.33	- - - - - - - - - - - - - - -	- - - - - - - - -	< 0.05 < 0.05 < 0.05 < 0.05 0.74 0.18 2.1 1.9 1.5 1.4	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60 0.53 0.37 0.33 0.51	- - - - - - - - - - - - -	- - - - - - - - - - - - - -	< 0.05 < 0.05 < 0.05 < 0.05 0.74 0.18 2.1 1.9 1.5 1.4 1.9	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60 0.53 0.37 0.33 0.51 0.27	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - -	< 0.05 < 0.05 < 0.05 < 0.05 0.74 0.18 2.1 1.9 1.5 1.4 1.9 1.1	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60 0.53 0.37 0.33 0.51 0.27 0.38	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ 0.74 \\ 0.18 \\ \hline 2.1 \\ 1.9 \\ 1.5 \\ 1.4 \\ 1.9 \\ 1.1 \\ 1.8 \\ \end{array}$	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60 0.53 0.37 0.33 0.51 0.27 0.38 0.25	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	< 0.05 < 0.05 < 0.05 < 0.05 0.74 0.18 2.1 1.9 1.5 1.4 1.9 1.1 1.8 1.0	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorane Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60 0.53 0.37 0.33 0.51 0.27 0.38 0.25 < 0.05	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ 0.74 \\ 0.18 \\ 2.1 \\ 1.9 \\ 1.5 \\ 1.4 \\ 1.9 \\ 1.1 \\ 1.8 \\ 1.0 \\ 0.25 \\ \end{array}$	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60 0.53 0.37 0.33 0.51 0.27 0.38 0.25	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	< 0.05 < 0.05 < 0.05 < 0.05 0.74 0.18 2.1 1.9 1.5 1.4 1.9 1.1 1.8 1.0	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Fluoranthene Pyrene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60 0.53 0.37 0.33 0.51 0.27 0.38 0.25 < 0.05	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ 0.74 \\ 0.18 \\ 2.1 \\ 1.9 \\ 1.5 \\ 1.4 \\ 1.9 \\ 1.1 \\ 1.8 \\ 1.0 \\ 0.25 \\ \end{array}$	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorane Phenanthrene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(qhi)perylene Total PAH	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60 0.53 0.37 0.33 0.51 0.27 0.38 0.25 < 0.05 < 0.05			< 0.05 < 0.05 < 0.05 0.74 0.18 2.1 1.9 1.5 1.4 1.9 1.1 1.8 1.0 0.25 1.2	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Fluoranthene Pyrene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60 0.53 0.37 0.33 0.51 0.27 0.38 0.25 < 0.05	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ 0.74 \\ 0.18 \\ 2.1 \\ 1.9 \\ 1.5 \\ 1.4 \\ 1.9 \\ 1.1 \\ 1.8 \\ 1.0 \\ 0.25 \\ \end{array}$	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60 0.53 0.37 0.33 0.51 0.27 0.38 0.25 < 0.05 < 0.05			< 0.05 < 0.05 < 0.05 0.74 0.18 2.1 1.9 1.5 1.4 1.9 1.1 1.8 1.0 0.25 1.2	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(qhi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60 0.53 0.37 0.33 0.51 0.27 0.38 0.25 < 0.05 0.28			< 0.05 < 0.05 < 0.05 < 0.05 0.74 0.18 2.1 1.9 1.5 1.4 1.9 1.1 1.8 1.0 0.25 1.2 15.0	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorant Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(qhi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60 0.53 0.37 0.33 0.51 0.27 0.38 0.25 < 0.05 0.28 3.79			$ \begin{array}{r} < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ \hline 0.74 \\ 0.18 \\ \hline 2.1 \\ 1.9 \\ 1.5 \\ 1.4 \\ 1.9 \\ 1.1 \\ 1.8 \\ 1.0 \\ 0.25 \\ 1.2 \\ \end{array} $	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Phonanthrene Phonanthrene Phonanthrene Pyrene Benzo(a)anthracene Chrysene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(qhi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Cadmium (aqua regia extractable)	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60 0.53 0.37 0.33 0.51 0.27 0.38 0.25 < 0.05 0.28 3.79			< 0.05 < 0.05 < 0.05 < 0.05 0.74 0.18 2.1 1.9 1.5 1.4 1.9 1.1 1.8 1.0 0.25 1.2 15.0 53 1.0	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Phenanthrene Phenanthrene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(qhi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Cadmium (aqua regia extractable) Chromium (aqua regia extractable)	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60 0.53 0.37 0.33 0.51 0.27 0.38 0.25 < 0.05 0.28 3.79 16 < 0.2 46			< 0.05 < 0.05 < 0.05 0.74 0.18 2.1 1.9 1.5 1.4 1.9 1.1 1.8 1.0 0.25 1.2 15.0 53 1.0 34	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Phenanthrene Phenanthrene Riuoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)fluoranthene Benzo(a)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Cadmium (aqua regia extractable) Chromium (aqua regia extractable) Copper (aqua regia extractable)	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60 0.53 0.37 0.33 0.51 0.27 0.38 0.25 < 0.05 0.28 3.79 16 < 0.2 46 42			< 0.05 < 0.05 < 0.05 0.74 0.18 2.1 1.9 1.5 1.4 1.9 1.1 1.8 1.0 0.25 1.2 15.0 53 1.0 34 75	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(qhi)perylene Total PAH Speciated Total EPA-16 PAHs Arsenic (aqua regia extractable) Cadmium (aqua regia extractable) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable)	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60 0.53 0.37 0.33 0.51 0.27 0.38 0.25 < 0.05 0.28 3.79 16 < 0.2 46 42 720			< 0.05 < 0.05 < 0.05 < 0.05 0.74 0.18 2.1 1.9 1.5 1.4 1.9 1.1 1.8 1.0 0.25 1.2 15.0 53 1.0 34 75 880	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Phenanthrene Phuoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(qhi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Cadmium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60 0.53 0.37 0.33 0.51 0.27 0.38 0.25 < 0.05 0.28 3.79 16 < 0.2 46 42 720 0.9			< 0.05 < 0.05 < 0.05 < 0.05 0.74 0.18 2.1 1.9 1.5 1.4 1.9 1.1 1.8 1.0 0.25 1.2 15.0 53 1.0 34 75 880 1.6 1.6 1.0 35 1.6 1.6 1.0 1.6 1.6 1.0 1.6 1.6 1.0 1.6 1.6 1.0 1.6 1.0 1.6 1.6 1.0 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(qhi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Cadmium (aqua regia extractable) Chromium (aqua regia extractable) Copper (aqua regia extractable) Mercury (aqua regia extractable) Mercury (aqua regia extractable) Mickel (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60 0.53 0.37 0.33 0.51 0.27 0.38 0.25 < 0.05 0.28 3.79 16 < 0.2 46 42 720 0.9 18			< 0.05 < 0.05 < 0.05 < 0.05 0.74 0.18 2.1 1.9 1.5 1.4 1.9 1.1 1.8 1.0 0.25 1.2 15.0 53 1.0 34 75 880 1.6 25	
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Phenanthrene Phuoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(qhi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Cadmium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.27 < 0.05 0.60 0.53 0.37 0.33 0.51 0.27 0.38 0.25 < 0.05 0.28 3.79 16 < 0.2 46 42 720 0.9			< 0.05 < 0.05 < 0.05 < 0.05 0.74 0.18 2.1 1.9 1.5 1.4 1.9 1.1 1.8 1.0 0.25 1.2 15.0 53 1.0 34 75 880 1.6 1.6 1.0 35 1.6 1.6 1.0 1.6 1.6 1.0 1.6 1.6 1.0 1.6 1.6 1.0 1.6 1.0 1.6 1.6 1.0 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	

Project / Site name: Garages Parsifal behind 521 Finchley Road NW3

Lab Sample Number				1520085	1520086	1520087	1520088	
Sample Reference				TP6	BH1	BH2	BH2	
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)		0.25	0.25	0.25	0.50			
Date Sampled		21/05/2020	21/05/2020	21/05/2020	21/05/2020			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	µg/kg	1	MCERTS	< 1.0	-	-	< 1.0	
Toluene	µg/kg	1	MCERTS	< 1.0	-	-	< 1.0	
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	-	-	< 1.0	
p & m-xylene	µg/kg	1	MCERTS	< 1.0	-	-	< 1.0	
o-xylene	µg/kg	1	MCERTS	< 1.0	-	-	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	-	-	< 1.0	

Petroleum Hydrocarbons

	-							
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	-	< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	-	< 2.0	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	-	-	< 8.0	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	-	-	< 8.0	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	-	< 10	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	-	< 1.0	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	-	< 2.0	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	-	-	< 10	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	-	-	15	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	-	22	

PCBs by GC-MS

mg/kg	0.001	MCERTS	-	-	-	-	
mg/kg	0.001	MCERTS	-	-	-	-	
mg/kg	0.001	MCERTS	-	-	-	-	
mg/kg	0.001	MCERTS	-	-	-	-	
mg/kg	0.001	MCERTS	-	-	-	-	
mg/kg	0.001	MCERTS	-	-	-	-	
mg/kg	0.001	MCERTS	-	-	-	-	
	mg/kg mg/kg mg/kg mg/kg mg/kg	mg/kg 0.001 mg/kg 0.001 mg/kg 0.001 mg/kg 0.001 mg/kg 0.001 mg/kg 0.001	mg/kg 0.001 MCERTS mg/kg 0.001 MCERTS	mg/kg 0.001 MCERTS - mg/kg 0.001 MCERTS -	mg/kg 0.001 MCERTS - - mg/kg 0.001 MCERTS - -	mg/kg 0.001 MCERTS - - mg/kg 0.001 MCERTS - -	mg/kg 0.001 MCERTS - - - - mg/kg 0.001 MCERTS -<

Total PCBs by GC-MS								
Total PCBs	mg/kg	0.007	MCERTS	-	-	-	-	

Iss No 20-11532-2 Garages Parsifal behind 521 Finchley Road NW3 11384.XLS

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report relate only to the sample(s) submitted for testing.

 Analytical Report Number:
 20-11532

 Project / Site name:
 Garages Parsifal behind 521 Finchley Road NW3

 Your Order No:
 Carages Parsifal behind 521 Finchley Road NW3

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1520080	TP2	0.25	132	Loose Fibres	Chrysotile	< 0.001	< 0.001

Both Qualitative and Quantitative Analyses are UKAS accredited.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name: Garages Parsifal behind 521 Finchley Road NW3

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1520080	TP2	None Supplied	0.25	Brown loam and clay with gravel.
1520081	TP3	None Supplied	0.25	Brown loam and clay with gravel.
1520082	TP4	None Supplied	0.25	Brown loam and clay with gravel.
1520083	TP5	None Supplied	0.25	Brown loam and clay with gravel.
1520084	TP5	None Supplied	0.50	Brown loam and clay with gravel.
1520085	TP6	None Supplied	0.25	Brown loam and clay with gravel.
1520086	BH1	None Supplied	0.25	-
1520087	BH2	None Supplied	0.25	-
1520088	BH2	None Supplied	0.50	Brown clay with gravel.

Project / Site name: Garages Parsifal behind 521 Finchley Road NW3

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

REPORT NOTES

Equipment Used

Hand tools, Mechanical Concrete Breaker and Spade, Hand Augers, 100mm/150mm diameter Mechanical Flight Auger Rig, GEO205 Flight Auger Rig, Window Sampling Rig, and Large or Limited Access Shell & Auger Rig upon request and/or access permitting.

<u>On Site Tests</u>

By Pilcon Shear-Vane Tester (kN/m) in clay soils, and/or Mackintosh Probe in granular soils or made ground and/or upon request Continuous Dynamic Probe Testing and Standard Penetration Testing.

<u>Note</u>:

Details reported in trial-pits and boreholes relate to positions investigated only as instructed by the client or engineer on the date shown.

We are therefore unable to accept any responsibility for changes in soil conditions not investigated i.e. variations due to climate, season, vegetation and varying ground water levels.

Full terms and conditions are available upon request.