ENERGY STATEMENT (To Accompany Full Planning Application) ### Site LAND BETWEEN GONDAR HOUSE AND SOUTH MANSIONS WEST HAMPSTEAD NW6 1QD Proposal ERECTION OF SIX RESIDENTIAL DWELLINGS Client AN:X DEVELOPMENTS 14th MAY 2020 Ref. E909-ES-02 ### **CONTENTS** | 1.0 | INTRODUCTION | 3 | |------------|--|----| | 2.0 | POLICY CONTEXT | 5 | | 3.0 | LOW CARBON AND RENEWABLE ENERGY SYSTEMS | | | 3.1 | Introduction | | | 3.2 | Baseline Carbon Dioxide Emissions | | | 3.3 | Improved Baseline Carbon Dioxide Emissions – BE LEAN | 11 | | 3.4
3.5 | Supplying Energy Efficiently – BE CLEAN
District Heat Network | | | 3.6 | Combined Heat and Power | | | 3.7 | Renewable Technologies Considered – BE GREEN | 15 | | 3.8 | Renewables Toolkit Assessment | 16 | | 3.9 | Solar Photovoltaics | | | 3.10 | Energy Hierarchy Carbon Dioxide Emissions Summary | 23 | | 4.0 | OVERHEATING | 25 | | 5.0 | WATER CALCULATIONS | 27 | | 6.0 | CONCLUSION | 28 | | Apper | ndix A – SAP Worksheets | 29 | | Apper | ndix B – Water Calculations | 30 | | List of | <u>f Tables</u> | | | Table 1 | Baseline Carbon Dioxide Emissions | 10 | | Table 2 | - Actual Carbon Dioxide Emissions | 13 | | | - Renewable Technology Feasibility Assessment | | | | - Photovoltaic Carbon Dioxide Emissions | | | | - Summary of Reduction in Carbon Dioxide Emissions | | | | - Carbon Dioxide Emissions after each stage of the Energy Hierarchy | | | rable / | $-$ Regulated carbon dioxide savings from each stage of the Energy Hierarchy \dots | 24 | #### 1.0 INTRODUCTION - a) Doherty Energy Limited have been instructed by AN:X Developments to prepare an Energy Statement to support the submission of the planning application for the development at Land between Gondar House and South Mansions, West Hampstead NW6 1QD. This report must be read in conjunction with the application forms, certificates, detailed plans and other supporting documents submitted to the Local Authority as part of the application. - b) This development is for the erection of six dwellings in a single block at Land between Gondar House and South Mansions, West Hampstead NW6 1QD. - c) It is proposed that in order to meet the requirements of policy this development will adopt a high standard of design with regard to energy efficiency principles. - d) The objectives of this Energy Statement are to make an appraisal of the carbon dioxide emissions of the proposed development, assess the potential fabric and building services efficiencies to reduce the carbon dioxide emission, review the various methods of generating and using renewable energy at source, and to suggest the most appropriate means by which the development can contribute towards the aspiration of policy relating to reducing energy consumption and renewable energy provision. It also investigates the water usage of the development with a view to reducing the water consumptions of the dwelling. - e) The Energy Statement also looks at the initial risk of overheating with the view of following the cooling hierarchy. - f) The Assessment shall be carried out following the principles set out in the "Energy Hierarchy". These principles can be summarised as follows: - Be Lean –use less energy - Be Clean supply energy efficiently - Be Green use renewable energy - g) At this stage in the design of the development, the detailed Building Regulations construction information has not been prepared and therefore following detailed construction design, the energy calculations will be revisited to ensure the energy requirements and carbon dioxide emissions are up to date. - h) In order to demonstrate the carbon dioxide emissions, it is proposed to use the Standard Assessment Procedure (SAP) for the calculations to obtain initial baseline carbon dioxide emissions figures for the dwellings. Further calculations will be used to demonstrate the potential carbon dioxide emission savings from the initial calculations by enhancements to the building fabric, plant and controls BE LEAN. The suitability of supplying energy, both heat and power, through the use of a combined heat and power system shall be assessed BE CLEAN. Finally, the carbon dioxide emission saving by the use of renewable energy shall be assessed through the outputs from the SAP calculations BE GREEN. #### 2.0 POLICY CONTEXT - a) The London Borough of Camden and the Greater London Authority aim to tackle the causes of climate change in the borough and London as a whole by ensuring developments use less energy and assess the feasibility of decentralised energy and renewable energy technologies. - b) As any new development has the potential to increase carbon dioxide emissions and if local and national carbon dioxide reduction targets are to be met, it is crucial that planning policy limits carbon dioxide emissions from new development wherever possible. - c) The Camden Local Plan sets five policies with regard to sustainability and climate change. Although this Energy Statement shall address CC1 Climate change mitigation and the associated Sustainability Statement shall mainly address Policy CC2 Adapting to climate change, as these Policies are interlinked, there is a degree of cross over between the two reports. - d) Under Policy CC1 Climate change mitigation, the Local Authority require all developments to help minimise their effects on climate change by encouraging them to meet the highest feasible environmental standards that are financially viable during the construction and occupation of the development. - e) The Policy CC1 states that Camden will: - a. promote zero carbon development and require all development to reduce carbon dioxide emissions through following the steps in the energy hierarchy; - b. require all major development to demonstrate how London Plan targets for carbon dioxide emissions have been met; - c. ensure that the location of development and mix of land uses minimise the need to travel by car and help to support decentralised energy networks; - d. support and encourage sensitive energy efficiency improvements to existing buildings; - e. require all proposals that involve substantial demolition to demonstrate that it is not possible to retain and improve the existing building; and - f. expect all developments to optimise resource efficiency. For decentralised energy networks, we will promote decentralised energy by: - g. working with local organisations and developers to implement decentralised energy networks in the parts of Camden most likely to support them; - h. protecting existing decentralised energy networks (e.g. at Gower Street, Bloomsbury, King's Cross, Gospel Oak and Somers Town) and safeguarding potential network routes; and - requiring all major developments to assess the feasibility of connecting to an existing decentralised energy network, or where this is not possible establishing a new network. To ensure that the Council can monitor the effectiveness of renewable and low carbon technologies, major developments will be required to install appropriate monitoring equipment. - f) The London Borough of Camden's Sustainability Plan 'Green Action for Change' commits the Local Authority to seek low and where possible zero carbon buildings. New developments in Camden will be expected to be designed to minimise energy use and carbon dioxide emissions in operation through the application of the energy hierarchy. This is in line with the requirements of the London Plan. - g) The Council's Sustainability Plan 'Green Action for Change' commits the Council to seek low and where possible zero carbon buildings. New developments in Camden will be expected to be designed to minimise energy use and carbon dioxide emissions in operation through the application of the energy hierarchy. - i) The Assessment shall be carried out following the principles set out in the "Energy Hierarchy". These principles can be summarised as follows: - Be Lean –use less energy - Be Clean supply energy efficiently - Be Green use renewable energy - h) At this stage in the design of the development, the detailed Building Regulations construction information has not been prepared and therefore following detailed construction design, the energy calculations will be revisited to ensure the energy requirements and carbon dioxide emissions are up to date. - i) The target for new dwellings within the policy area must be carbon neutral. A carbon neutral development can be defined as one where the building and its use contribute no net additional carbon dioxide emissions to the atmosphere during occupation in a calendar year. This includes emissions from 'regulated' and 'unregulated' energy use covered under Approved Document L1A of the Building Regulations - j) Regulated energy uses include space and water heating, lighting and ventilation. Unregulated energy uses are those relating to 'plug loads' or 'process loads' (electricity usage by 'unregulated' appliances and equipment used within the building). - k) In a calendar year, to be carbon neutral the emissions from both 'regulated' energy use and expected energy use from 'unregulated' appliances, must be cancelled out by the generation of renewable energy. As renewable energy is generated irregularly throughout - Under the Policy CC2 Adapting to climate change, the Local Authority requires new development to be resilient to climate change. - m) The Policy states that all development should adopt appropriate climate change adaptation measures such as: - a. the protection of existing green spaces and promoting new appropriate green infrastructure; - b. not increasing, and wherever possible reducing, surface water runoff through increasing permeable surfaces and use of Sustainable Drainage Systems; - c. incorporating bio-diverse roofs, combination green and blue roofs and green walls where appropriate; and - d. measures to reduce the impact of urban and dwelling overheating, including
application of the cooling hierarchy. - n) Developments of highly sustainable buildings will go some way to achieving the principles of sustainable living and should ensure that carbon emissions in construction and occupation are minimised. - o) In addition, as Greater London is an area of serious water stress as it's rainfall is lower than the national average, a key part of achieving sustainable development is making sure new developments are as water efficient as possible. As such, the London Borough of Camden would expect new residential developments to deliver predicted water consumption of below 110 litres per person per day. - p) There are numerous water saving measures that can be incorporated to improve the water efficiency of the development, such as low flush toilets and water efficient taps, showers, dishwashers and washing machines. It should also include water recycling through rainwater harvesting and/or greywater recycling. #### 3.0 LOW CARBON AND RENEWABLE ENERGY SYSTEMS #### 3.1 Introduction - a) This section of the Energy Statement shall make an appraisal of the carbon dioxide emissions of the proposed development, assess the implications of fabric and building services enhancements, the various methods of generating and using renewable energy at source, and to suggest the most appropriate means by which the development can contribute towards the aspiration of policy relating to reducing carbon dioxide emissions and renewable energy provision. - b) The Renewables Toolkit (LRT) is the system developed by the Greater London Authority to assist Planners, Developers and Consultants with the assessment of the appropriateness of renewable energy resources and technologies. It offers advice on which renewable technologies are suitable including aesthetic issues, risks, reliability and gives an insight into the cost benefit analysis of installing renewable. Whilst this development in not within the Greater London Area, the principles set out in the Toolkit can still be applied to this development. - c) Within Section 4 of the Renewable Toolkit 'Including Renewables in the Development Proposals', a route map is provided to help consider the feasibility of renewable technologies and how to include them into the development. - d) The dwellings emissions have been estimated using the Standard Assessment Procedure. A second set of SAP calculations have been undertaken to demonstrate an improvement in the carbon dioxide emissions by incorporating better fabric constructions, better windows and doors, improved ventilation systems and enhanced air tightness. #### 3.2 Baseline Carbon Dioxide Emissions - a) In order to assess the carbon dioxide emissions of the development, the delivered energy demand needs to be estimated. At this stage in the design of the dwellings, the detailed construction drawings have not been prepared and therefore detailed carbon emission calculations cannot be undertaken to produce the carbon dioxide emissions. - b) However, the dwellings carbon dioxide emission estimates can be based on initial stage SAP calculations. - c) Table 1 below summarises the results from the Full SAP Worksheets that can be found in Appendix A. | Dwelling | Floor
Area
(m²) | Heating
(kg/yr) | Water
Heating
(kg/yr) | g & Fans | Electricity
for
Lighting
(kg/yr) | Total
Emissions
(kg/yr) | Dwelling CO ₂ Emission Rate | | |---|-----------------------|--------------------|-----------------------------|----------|---|-------------------------------|--|--| | 1 | 89 | 761.76 | 531.65 | 38.93 | 193.83 | 1526.16 | 17.15 | | | 2 | 99 | 753.21 | 545.91 | 38.93 | 214.79 | 1552.84 | 15.69 | | | 3 | 50 | 353.63 | 416.35 | 38.93 | 120.92 | 929.82 | 18.60 | | | 4 | 73 | 524.83 | 497.71 | 38.93 | 169.10 | 1230.57 | 16.86 | | | 5 | 50 | 393.91 | 415.11 | 38.93 | 125.18 | 973.13 | 19.46 | | | 6 | 118 | 970.60 | 558.07 | 38.93 | 230.91 | 1798.51 | 15.24 | | | Dwelling | g | TER (kg/m²/ | /yr) | Area | (m²) | Total Emi | ssions (kg/yr) | | | 1 | | 17.15 | | 89 | | 1, | 526.4 | | | 2 | | 15.69 | 99 | | 1, | 553.3 | | | | 3 | | 18.6 | 50 | | 930.0 | | | | | 4 | | 16.86 | | 73 | 73 | | 1,230.8 | | | 5 | | 19.46 | | 50 | | 973.0 | | | | 6 | | 15.24 | | 11 | 8 | 1,798.3 | | | | Baseline Carbon Dioxide Emissions (kg/yr) 8,012.8 | | | | | | | | | Table 1 - Baseline Carbon Dioxide Emissions #### 3.3 Improved Baseline Carbon Dioxide Emissions – BE LEAN - a) Following the principles set out in the "Energy Hierarchy", the design has been improved to use less energy BE LEAN. - b) This has been achieved by improving the thermal performance of the various constructions, like the walls, roof, floors, windows, doors etc and incorporating mechanical ventilation heat recovery and improving the air tightness of the dwelling. - c) The floor U Values can be improved by incorporating insulation under the screed, or by using insulation blocks instead of concrete blocks between the beams. For the purposes of these calculations, the U Values of the current floor constructions have been calculated as 0.12 W/m²K. - d) The wall U Values can be improved by improving the thermal performance of the insulation, either by increased thickness or lower thermal conductivity. For the purposes of these calculations, the U Values of the current wall constructions have been calculated as 0.16 W/m²K. - e) The roof areas offer excellent opportunity to enhance the insulation levels and for the purposes of these calculations, the U Values of 0.09 W/m²K and 0.12W/m²K have been used. - f) The thermal performance of the windows can be improved by adding coatings to the panes or adding an inert gas to the cavities. For the purposes of these calculations, a U Value for the windows of 1.2 W/m²K has been used, which uses triple glazed planitherm glass, argon gas and warm edge spacer bars. - g) A composite front door can be used instead of a timber door. Modern composite doors have good thermal, fire, acoustic and security properties. These types of door can have U Values as low as 0.55 W/m²K. - h) The air leakage rate for the dwellings can be improved. The maximum allowed under the current Building Regulations Approved Document L1A:2013 is 10 m³/hr/m² at 50 Pascal's. With carful detailing, this can be easily improved to 3 m³/hr/m² at 50 Pascal's. - i) The use of Accredited Construction Details in the development means that the thermal bridging coefficient can be greatly improved thus a lower γ Value can be used. - j) With regard to the heating, a highly efficient gas fired combi boilers shall be provided in the dwellings to provide the heating and hot water. Due to the size and layout of the development, it is more suited to individual heating systems instead of a communal heating system. This would provide better individual control of the systems and reduce distribution losses. - k) More efficient controls can be installed to control the heating, which can include weather compensation on the boiler controls and the use of time and temperature zone control all improve the efficiency of the heating system. - Instead of simply installing 75% of the light fittings as low energy efficient light fittings, as required by the current Building Regulations, 100% of the light fitting could be low energy fittings. - m) The use of natural lighting has been considered and although its use is not measured in the SAP calculations, it can help lower the energy use and therefore carbon dioxide emissions of the development. This has to be carefully assessed against any unwanted solar overheating. Whilst a degree of solar gain can be beneficial for the occupants and helps lower the carbon dioxide emissions, it must be controlled to minimise the risk of solar overheating. The calculations show that there is only a slight to medium risk of overheating. - n) Mechanical ventilation heat recovery systems work by removing the warm moist air from kitchens and bathrooms and passing it through a heat exchanger to recover waste heat. This waste heat can then be used to warm the fresh air that is brought into the living areas of the dwelling, therefore reducing the heating load. - The development shall be designed to ensure that the Dwelling Emission Rates are better than the Target Emission Rates and the Fabric Energy Efficiency is better than the Target Fabric Energy Efficiency. These are the requirements from Criterion 1 of the current Building Regulations Approved Document L (2013). - p) By incorporating items like those stated above, the SAP calculations have been updated to demonstrate the effect of these improvements and the results are listed in Table 2 below. - q) Full details of the SAP calculations can be found in the SAP Worksheets in Appendix A. | Dwelling | Floor
Area
(m²) | Heating
(kg/yr) | Water
Heating
(kg/yr) | Pumps
& Fans
(kg/yr) | Electricity
for
Lighting
(kg/yr) | Total
Emissions
(kg/yr) | Dwelling CO ₂ Emission Rate | |----------|-----------------------|--------------------|-----------------------------|----------------------------|---|-------------------------------|--| | 1 | 89 | 489.54 | 536.68 | 183.36 | 193.84 | 1403.42 | 15.77 | | 2 | 99 | 466.36 | 551.34 | 197.79 | 214.79 | 1430.28 | 14.45 | | 3 | 50 | 215.40 | 420.36 | 101.61 | 120.33 | 857.71 | 17.15 | | 4 | 73 | 287.61 | 503.73 | 151.24 | 167.76 | 1110.34 | 15.21 | | 5 | 50 | 232.48 | 419.68 | 101.61 | 120.66 | 874.43 | 17.49 | | 6 | 118 | 624.92 | 563.05 | 226.25 | 230.91 | 1645.13 | 13.94 | | | | | | | | | | | Dwelling | DER (kg/m²/yr) | Area (m²) | Total Emissions (kg/yr) | |----------|----------------|-----------|-------------------------| | 1 | 15.77 | 89 | 1,403.5 | | 2 | 14.45 | 99 | 1,430.6 | | 3 | 17.15 | 50 | 857.5 | | 4 | 15.21 | 73 | 1,110.3 | |
5 | 17.49 | 50 | 874.5 | | 6 | 13.94 | 118 | 1,644.9 | | Baseline Carbon Dioxide Emissions (kg/yr) | 7,321.3 | |--|---------| | Precentage improvement over the Building Regulations | 8.62% | Table 2 - Actual Carbon Dioxide Emissions r) As demonstrated in Table 2 above, it can be seen that the improvements in the thermal performance and fixed building services, a reduction of 8.62% can be achieved in the carbon dioxide emissions of the development. #### 3.4 Supplying Energy Efficiently – BE CLEAN Following the principles set out in the Energy Hierarchy, the next step is to reduce the carbon dioxide emissions by supplying energy efficiently - BE CLEAN. #### 3.5 District Heat Network a) Although Camden have identified possible areas for district heat networks, unfortunately, the development site is outside these future areas so there are no district heating systems in this location at this time. #### 3.6 Combined Heat and Power - a) Combined Heat and Power typically generates electricity on site as a byproduct of generating heat. It uses fuel efficient energy technology that, unlike traditional forms of power generation, uses the by-product of the heat generation required for the development. Normally during power generation, the heat is discharged or wasted to atmosphere. A typical CHP plant can increase the overall efficiency of the fuel use to more than 75%, compared to the traditional power supplies of 40%, which uses inefficient power stations and takes into account transmission and distribution losses. - b) The use of this development is residential and it will be built to exceed the current Building Regulations. The aim of these regulations is to minimise the base heating load and electrical loads. The site base heating and electrical loads is key to the sizing and operation of any CHP system. - c) Due to the high levels of insulation and energy efficiency measures that will be incorporated into this development, there is no year round heat load for the CHP plant and therefore, a CHP system would be considered not viable on this development. As such, if a CHP system were to be incorporated, it would not operate efficiently and therefore NOT BE CLEAN. ### 3.7 Renewable Technologies Considered – BE GREEN - a) Taking into account the requirements of planning policy set out by London Borough of Camden, the developments annual carbon dioxide emission reduction target of carbon neutral, based on the Building Regulations 2013, from energy efficiencies and renewable technology has been calculated as 7,321 kgCO₂/year. - b) The final step in the "Energy Hierarchy" is to reduce the carbon dioxide emissions by the use of renewable technologies BE GREEN. - c) In accordance with the toolkit the following renewable energy resources have been assessed for availability and appropriateness in relation to the site location, building occupancy and design. - Combined Heat and Power - Biomass Heating - Biomass CHP - Heat Pumps - Solar Photovoltaics - Domestic Solar Hot Water Systems - Wind Power - d) A preliminary assessment has been carried out for each renewable energy technology and for those appearing viable a further detailed appraisal has been undertaken. - e) The preliminary study considered the site location and the type of building in the development and surroundings and produced a shortlist of renewable energy technologies that will be the subject of a further feasibility study. - f) Table 3 below provides a summary of the assessment. ### 3.8 Renewables Toolkit Assessment | Energy
System | Description | Comment | |--|--|--| | Combined
Heat and
Power
(CHP) | Combined Heat and Power systems use the waste heat from an engine to provide heating and hot water, while the engine drives an electricity generator. These systems uses gas or oil as the main fuel and therefore can not truly be considered as renewable technology however, it is recognised that they have a significant reduced impact on the environment compared to conventional fossil fueled systems. | As CHP systems produce roughly twice as much heat as they generate electricity, they are usually sized according to the base load heat demand of a building, to minimise heat that is wasted during part-load operations. Therefore, to be viable economically they require a large and constant demand for heat, which make their use in new energy efficient housing, with high insulation, not really suitable. The efficiency of small scale CHP is relatively low and is unlikely to result in CO ₂ emission savings. Economic viability relies on 4000 hours running time, which is unlikely to be achieved in this scheme. As policy requires a reduction in carbon dioxide emissions via true renewable sources this would not assist in achieving the policy objectives. | | Combined F | leat and Power | Feasible – NO | | Biomass
Heating | Solid, liquid or gaseous fuels derived from plant material can provide boiler heat for space and water heating. Biomass can be burnt | Wood pellet or wood chip fired or dual biodiesel/gas-fired boilers could be considered. As this development consists of a new building, it offers the opportunity to accommodate such a system. The flues would have to be discharged to | | | directly to provide heat in buildings. Wood from forests, urban tree pruning, farmed coppices or farm and factory waste, is the most common fuel and is used commercially | atmosphere above roof level and concerns raised by Environmental Health regarding the pollutants and particles, which would have to be addressed. Care need to be taken with the design of the flue to ensure particle discharge is not a concern to residents. | | | in the form of wood chips or pellets, although traditional logs are also used. Other forms of Biomass can be used, e.g. bio-diesel. | The fuel storage silo/tank would have to be located external to the building, which is not available on this site. A suitable local fuel supplier is required to supply the site. | | Biomass He | | Feasible - NO | | Energy
System | Description | Comment | |---|---|--| | Biomass CHP | CHP as above, but with biomass as the fuel. | Biomass CHP overcomes the issue of the reduction in carbon dioxide emissions via true renewable sources, however, the lack of a year round base load is still a problem and therefore Biomass CHP is not feasible for this development. | | Biomass CHP | | Feasible - NO | | Ground/Air
Source Heat
Pumps
(GSHP /
ASHP) -
heating | The ground collector can be installed, either as a loop of pipe, in the piles or using a borehole and a compressor offer efficient heating of a space in winter, as the temperature of the ground (below approx 2m) remains almost constant all year. For air source, the external condensing unit can be located adjacent to the dwelling in a | There is little or no available area around the development for the installation of ground heat collectors so the use of a ground source heat pump for this development would not be feasible. Air source heat pumps are not considered feasible due to the size of the dwellings and their close proximity to each other, which may cause issues with noise. Heat pumps are most efficient when supplying heat continuously and in areas where a mains gas supply is not available. In dwellings, GSHP and ASHP are capable of supplying the majority of the total space heating and pre heat for the hot water demand. | | Ground/Air So | discreet location. ource Heat Pumps | Feasible – NO | | Glound/All St | ource fleat rullips | i easible – NO | | Solar
Photovoltaics
(PV) | Building Integrated
Photovoltaics (BIPV) or
Roof mounted collectors
provide noiseless, low
maintenance, carbon
free electricity. | There appears to be
a reasonable amount of roof area that can be utilitised to install PV panels onto the scheme. These could be integrated into the roof finishes or mounted on frames on the roof and orientated south for optimal performance. Careful consideration must be given to the chosen roof finish to ensure compatibility. | | Solar PhotoVo | oltaics | Feasible - YES | | Solar Thermal
Hot Water | Solar collectors for low temperature hot water systems require direct isolation, so the chosen location, orientation and tilt are critical. | This solution could be utilised to generate hot water using the energy from the sun. The area of roof could be used for the installation of solar thermal collectors. These could be mounted on frames and orientated south for optimal performance. These would have to be installed at a pitch of 30-40 degrees and ideally as close to the dwelling served as possible. In this case, the distance from the available roof to the dwellings would reduce the efficiency of the systems. | | Solar Therma | i Hot Water | Feasible – NO | | Energy
System | Description | Comment | |------------------|---|---| | Wind Power | Most small (1-25kW) wind turbines can be mounted on buildings, but larger machines require foundations at ground level and suitable site location | It could be viable to install some form of wind turbines on this site, however due to surrounding buildings and the visual impact it is not considered to be the most sensitive system of providing energy via renewable resources in this built up location. There are also concerns that the wind across the site would be turbulent because of the surrounding buildings. | | Wind Power | • | Feasible - NO | Table 3 - Renewable Technology Feasibility Assessment - a) From the above it has been established that there are one potential ways of providing energy via renewable sources appropriate for inclusion in this scheme, these being the use of a photovoltaic system to generate electricity. - b) CHP and Micro CHP are considered not feasible as the economic viability relies on at least 4,000 hours runtime which is unlikely to be achieved in this development. - c) Biomass systems have been considered unfeasible for this site due to particle discharge in a built up area, fuel handling and storage on a site with limited open space, required plant areas and the on going maintenance of the system. - d) There is insufficient ground area for the installation of ground source heat pumps and air source heat pumps not being considered for this development due to the size of the dwellings and their close proximity to each other. - e) Wind has been considered not viable for this site as there are a lot of the buildings and trees in the surrounding area which are likely to cause disruption to air flows. #### 3.9 Solar Photovoltaics - a) Photovoltaics (PV) is a technology that allows the production of electricity directly from sunlight. The term originates from "Photo" referring to light and "voltaic" referring to voltage. This type of technology has been developed for incorporation within building design to produce electricity for either direct consumption or re-sale to the National Grid. - b) PV panels come in modular panels which can be fitted on the top of roofs or incorporated in the finishes like slates or shingles to form integral part of the roof covering. PV cells can be incorporated into glass for atria walls and roofs or used in the cladding or rain screen on a building wall. - c) When planning to install PV panels, it is important to consider the inherent cost of installation in comparison to possible alternatives. The aesthetic impact of the PV panels also requires careful consideration. - d) Roof mounted PV panels should ideally face south-east to south-west at an elevation of about 30-40°. However, in the UK even if installed flat on a roof, they receive 90% of the energy of an optimum system. - e) PV installations are expressed in terms of the electrical output of the system, i.e. kilowatt peak (kWp). The Department of Trade and Industry estimate that an installation of 1kWp could produce approximately 700-850 kWh/yr, which would require an area of between 8-20m², depending on the efficiencies and type of PV panel used. - f) It is also estimated that a gas heated, well insulated typical dwelling would use approximately 1,500kWh/year electricity for the lights and appliances, therefore the 1kWp system could save approximately 45% of a single dwellings electrical energy requirements. - g) Although often not unattractive, and possible to integrate into the building or roof cladding system PV systems are still considered likely to have visual implications, therefore careful sighting of the panels is required. As this installation will be contained on the roof of the proposed dwellings, it involves no additional land use. - h) With regard to noise and vibration, a PV system is completely silent in operation. - i) Care must be taken with the design and installation of PV systems as they need to meet standards for electrical safety. - j) Space has been identified on the proposed roof of the bike store for the installation of a photovoltaic system. This area is south facing and has a good aspect. The area available has been calculated to allow the installation of a photovoltaic system with a total output of 3.5 kWp. | Development incorporating
Energy
Efficiency Measures | Total Carbon
Dioxide Emissions
(kgCO₂/yr) | Percentage Reduction (%) | | |--|---|--------------------------|--| | No Renewables | 7,321.3 | - | | | Reduction by including
3.5 kWp PV system | 1,568.8 | 21.4% | | | Final Carbon Dioxide emissions | 5,752.6 kgCO ₂ /yr | | | | Total Reduction over baseline emissions | 28.2% | | | Table 4 – Photovoltaic Carbon Dioxide Emissions - k) As can be seen from Table 4 above, the incorporation of photovoltaic systems, with a total output of 3.5 kWp, on the roof of the cycle store, the development could reduce the carbon dioxide emissions by a further 21.4% and when combined with the fabric energy efficiency measures from in Table 2 above, a total reduction of 28.2% could be achieved. - From the above calculations, based on 250 watt panels, orientated towards the south and mounted on the roof finishes at a 10 degree pitch, it is calculated that 14-No. panels are required on the each of the proposed roof. - m) It is estimated that a system of this size would generate 3,024 kWh of electricity per year and could reduce the carbon emissions of the development by a further 21.4%. This, combined with the carbon dioxide emissions from Table 2 above, would result in a total reduction of 28.2% other Approved Document L1A:2013 of the Building Regulations. #### 5.0 Annual Carbon Dioxide Emission Reduction - a) From the above, it can be seen that a Photovoltaic system, together with the outlined fabric and energy efficiency measures, could be used in the developments to achieve a total reduction in carbon dioxide emissions in line with the requirements of Planning Policy. - b) In accordance with the Planning Policies set out by London Borough of Camden and the London Plan, this report has demonstrated a 28.5% improvement in carbon dioxide emissions by fabric and energy efficiencies and the use of low or zero carbon technologies. - c) A number of options have been considered and the potential carbon dioxide reductions calculated using the SAP calculations and a summary of the results is provided in Table 5 below. | | Total Carbon Dioxide Emissions (kgCO ₂ /yr) | Reduction in Carbon
Dioxide Emissions
(%) | | | |---|--|---|--|--| | Building Regulations Compliant
Development | 8,011.8 | - | | | | Development incorporating Energy
Efficiency Measures | 7,321.3 | 8.6% | | | | Further Reduction in Carbon Dioxide Emissions by incorporating a Renewable Technology | | | | | | PV (3.5 kWp) | 1,568.8 | 21.4% | | | | Total Carbon Dioxide Emission | 28.2% | | | | Table 5 – Summary of Reduction in Carbon Dioxide Emissions d) As can be seen from Table 5 above, the incorporation of 3.5 kWp photovoltaic systems on the roof of the cycle store, it is possible to achieve a 28.2% reduction in carbon dioxide emissions over and above the 2013 Building Regulations by improving the energy efficiency of the development and its building services efficiencies and including low or zero carbon technology. - e) CHP and Biomass CHP have been analysed but are considered not feasible for this development as the heating and electrical load profiles would not provide a good clean efficient system for the development. - f) Biomass heating has been analysed but is considered not feasible for this development due to particle discharge in the built up area, space requirements and the cost and the reliability of a biomass fuel source. - g) Wind power is considered not feasible for this development due to the turbulence caused by the surrounding buildings and trees etc. - h) It is considered that the use of solar hot water would be inefficient due to the distance from the south facing roof and the dwelling. In addition, the proposed method of heating is by use of combi boilers. Whilst technically feasible to
use solar hot water with combi boilers, the introduction of additional storage cylinders would impact the layout of the dwellings. - Detailed calculations of the total carbon dioxide emissions compared to the estimated carbon dioxide reduction for the development can be undertaken once the detailed design has progressed to construction drawing stage. - j) For the purpose of planning and based on the figures provided by initial SAP calculations, this report has demonstrated that it is feasible, with the improvement of the building fabric and the introduction of energy efficient controls and systems, a reduction in excess of 28.2% of the developments carbon dioxide emissions could be achieved. This complies with the requirements of the planning policies set out by London Borough of Camden and in the London Plan. #### 3.10 Energy Hierarchy Carbon Dioxide Emissions Summary - a) The concept of applying the energy hierarchy in relation to Approved Document L of the Building Regulations 2013, the Energy Planning, Greater London Authority Guidance on Preparing Energy Assessments (March 2016) document provides further guidance on how the carbon dioxide emission figures can be presented. - b) The regulated carbon dioxide emissions reduction target for the development would be to achieve zero carbon as assessed under the Approved Document L 2013 of the Building Regulations. - c) These figures are based on the current design information and are subject to change when the detailed construction information is produced. - d) Table 6 provides Carbon Dioxide Emissions after each stage of the Energy Hierarchy for domestic buildings. | | | Tonnes CO ₂ /yr | |---|---|----------------------------| | Baseline: Part L 2013 of the Building Regulations Compliant Development | а | 8.0 | | After energy demand reduction | b | 7.3 | | After heat network / CHP | С | 7.3 | | After renewable energy | d | 5.8 | Table 6 – Carbon Dioxide Emissions after each stage of the Energy Hierarchy e) Table 7 provides Regulated carbon dioxide savings from each stage of the Energy Hierarchy for domestic buildings | | | Tonnes CO ₂ /yr | | % | |--|--------|----------------------------|-------------|-------| | Savings from energy demand reduction | a-b | 0.7 | (a-b)/a*100 | 8.6% | | Savings from heat network / CHP | b-c | 0.0 | (b-c)/a*100 | 0.0% | | Savings from renewable energy | c-d | 1.6 | (c-d)/a*100 | 19.6% | | Cumulative on site savings | a-d=e | 2.3 | (a-d)/a*100 | 28.2% | | Annual Savings from off-set payment | a-e=f | 5.8 | | | | Cumulative savings for off-set payment | f*30=g | 172.6 | | | Table 7 – Regulated carbon dioxide savings from each stage of the Energy Hierarchy f) The calculations contained within this Energy Statement are based on the current design information and are subject to change when the detailed design is undertaken and the construction information is produced. #### 4.0 OVERHEATING - a) It is important to consider the internal comfort conditions for the occupants of the dwelling. At design stage, this can be met through the cooling hierarchy. - b) The cooling hierarchy seeks to reduce any potential overheating and also the need to cool a building through active cooling measures. Air conditioning systems are a very resource intensive form of active cooling, increasing carbon dioxide emissions, and also emitting large amounts of heat into the surrounding area. By incorporating the cooling hierarchy into the design process buildings will be better equipped to manage their cooling needs and to adapt to the changing climate they will experience over their lifetime. - c) The development shall reduce the potential for overheating and reliance on air conditioning systems and demonstrate this in accordance with the following cooling hierarchy: - i) minimise internal heat generation through energy efficient design - ii) reduce the amount of heat entering a building in summer through orientation, shading, albedo, fenestration, insulation and green roofs and walls - iii) manage the heat within the building through exposed internal thermal mass and high ceilings - iv) passive ventilation - v) mechanical ventilation - vi) active cooling systems (ensuring they are the lowest carbon options). - d) During the initial design, the initial SAP Assessment was carried out for the dwelling to help assess the energy demand and carbon emissions of the development. The SAP Assessment included an overheating assessment in line with the requirements of the Building Regulations. - e) Based on this SAP Assessment, the dwellings have a medium risk of solar overheating. This is acceptable under the requirements of the Building Regulations. - f) The internal heat generation has been minimised through energy efficient design. All of the luminaires shall be low energy which will also remove an internal heat generating load. - g) The heat entering the building in summer is reduced through the optimisation of glazing area, the use of shading via building form and other protruding edges, together with the inclusion of very high performance façade materials and improved air tightness. The use of a solar control glazing, which has a coating applied to lower the G Value of the glass, can be applied. This acts in the same way that the low e coating lowers the U Value which helps reduce heat losses through the windows. - h) The dwellings will have a mechanical ventilation system installed, which provides filtered fresh air to the dwellings. This is tempered by the crossover heat exchanger, which recovers waste heat from the extract air from the dwellings. These ventilation systems shall be individual systems installed in the dwelling so it is controlled locally by the occupants. - Low energy lamps shall be used in the luminaires to reduce heat gain. These lamps do not emit heat like traditional GLS lamps. - j) If required, during the detailed design phase of this project, dynamic thermal modelling, using IES software to produce an SBEM model, in accordance with CIBSE Guide A, TM52 and TM49, can be used to ensure that the finding of the initial overheating assessment are still valid and provide a more detailed assessment and prediction of the overheating risk for the development. #### 5.0 WATER CALCULATIONS - a) In the London Borough of Camden's Local Plan Policy CC3 Water and flooding, there is a requirement to limit the water use in new dwellings to be under 110 litres/person/day, including 5 litres for external use. - b) Low water usage fitting, or flow restrictors can be fitted in the dwellings. Efficient white goods that are not only energy efficient but also water efficient can also be installed. - c) At this stage in the design, the final selection of the water fittings and appliance has not been made, but this calculation shows the design intent for these fittings and appliances. - d) Dual flush toilets can be installed to reduce the water consumption of the dwellings, with full flush capacity of 6 litres and part flush capacity of 3 litres. - e) Flow restrictors shall be installed to limit the flow rates of the tap to 3 litres / minute. Flow restrictors shall also be installed in the kitchen taps and the showers to restrict their flow to 8 litres / minute. The showers shall be restricted to 8 litres / minute. - f) The capacity of the baths to the over flow shall be 175 litres. - g) No Appliances have been selected at this time, so the default Best Practise values have been used. The washing machine shall have a water consumption of 8.17 litres / kg of dry load. The dishwasher shall have a water consumption of 1.25 litres / place setting. - h) No water softeners are being installed. - Using the Building Regulations Approved Document G Calculator, the water consumption has been calculated as 108.5 litres / person / day. - j) The calculated water consumption for the dwellings complies with the requirements of the Planning Policy as set out in the London Borough of Camden's Local Plan. Details of the calculations can be found in Appendix B. #### 6.0 CONCLUSION - a) The London Borough of Camden's Local Plan and the London Plan require new residential developments to minimise and exhibit the highest standards of sustainable design and construction. The development should achieve a minimum of 8.6% over the Target Emission Rate, as defined by the Building Regulations 2013, with low or zero carbon technologies providing a further 21.4% carbon dioxide reduction, resulting in a total reduction of 28.2%. - b) This development is for the erection of six residential units in a single block at Land between Gondar House and South Mansions, West Hampstead NW6 1QD. - c) At planning stage it is not possible to produce final reports on the energy demand, carbon dioxide emissions or financial appraisals of the appropriate systems, based on the initial construction information. - d) However, this Energy Statement has demonstrated using initial SAP calculations that it is possible to achieve an 8.6% reduction in carbon dioxide emissions by making improvements in fabric and energy efficiency measures, with a further 21.4% reduction by incorporating photovoltaic and solar hot water systems, resulting in a total reduction of 28.2% carbon dioxide emissions. It is envisaged during detailed design, these figures can be improved. - e) This Energy Statement demonstrates that the proposed development follows the principles of the planning policy requirements with regard to carbon dioxide reduction and incorporation of low and zero carbon technologies. It identifies how the development can achieve zero carbon emissions and it is for these reasons it is considered that this application should be viewed favorably by London Borough of Camden. ### Appendix A – SAP Worksheets | Property Reference | E909-01 | | | Issued on Date | 11/05/2020 | | | | | | |---------------------------
--|--|--|----------------|------------|-------|--|--|--|--| | Assessment | E909-01 | | | Prop Type Ref | | | | | | | | Reference | | | | | | | | | | | | Property | Flat 1, 1 Hillfield Road, N\ | W6 1QD | | | | | | | | | | SAP Rating | | 84 B | DER | 15.77 | TER | 17.15 | | | | | | Environmental | | 87 B | % DER <ter< th=""><th></th><th colspan="4">8.04</th></ter<> | | 8.04 | | | | | | | CO₂ Emissions (t/ye | ear) | 1.20 | DFEE | 41.82 | TFEE | 48.67 | | | | | | General Requireme | nts Compliance | Pass | % DFEE <tfe< th=""><th>E</th><th colspan="4">14.07</th></tfe<> | E | 14.07 | | | | | | | Assessor Details | Mr. Jason Doherty, Doherty E
jason@doherty-energy.co.uk | lr. Jason Doherty, Doherty Energy Limited, Tel: 01480451569,
son@doherty-energy.co.uk | | | | | | | | | | Client | | | | | | | | | | | #### REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England | REGULATIONS COMPLIANCE REPORT - Approve | | | | | | | | | | | | |---|--|---------------------------|-------|--|--|--|--|--|--|--|--| | | ed Document L1A, 2013 Editi | on, England | | | | | | | | | | | DWELLING AS DESIGNED | | | | | | | | | | | | | Semi-Detached Maisonette, total floor area 89 m^2 | | | | | | | | | | | | | This report covers items included within It is not a complete report of regulati | | | | | | | | | | | | | la TER and DER
Fuel for main heating:Mains gas
Fuel factor:1.00 (mains gas)
Target Carbon Dioxide Emission Rate (TE
Dwelling Carbon Dioxide Emission Rate | | | | | | | | | | | | | 1b TFEE and DFEE Target Fabric Energy Efficiency (TFEE) 4 | | | | | | | | | | | | | Dwelling Fabric Energy Efficiency (DFEE | :)41.8 kWh/m²/yrOK | | | | | | | | | | | | 2 Fabric U-values
Element Average | Highest | | | | | | | | | | | | External wall 0.16 (max. 0.30) | | OK | | | | | | | | | | | Party wall 0.00 (max. 0.20) | - | OK | | | | | | | | | | | Floor 0.12 (max. 0.25)
Roof 0.09 (max. 0.20) | 0.12 (max. 0.70)
0.09 (max. 0.35) | OK
OK | | | | | | | | | | | | | OK | 2a Thermal bridging Thermal bridging calculated using user- | | | | | | | | | | | | | 3 Air permeability | | | | | | | | | | | | | Air permeability at 50 pascals:
Maximum | 3.00 (design value)
10.0 | | OK | 4 Heating efficiency Main heating system: Data from database | Boiler system with radiat | ors or underfloor - Mains | gas | | | | | | | | | | Vaillant ecoTEC pro 24 VUW 246/5-3 (H-G | GB) R6 | | | | | | | | | | | | Combi boiler
Efficiency: 89.5% SEDBUK2009 | | | | | | | | | | | | | Minimum: 88.0% | OK | Secondary heating system: | None | 5 Cylinder insulation
Hot water storage | No cylinder | | | | | | | | | | | | Hot water storage | No cylinder Time and temperature zone | control | ок | | | | | | | | | | Hot water storage 6 Controls | | control | ОК | | | | | | | | | | Hot water storage | Time and temperature zone No cylinder Yes | | ok | | | | | | | | | | Hot water storage 6 Controls Space heating controls: Hot water controls: Boiler interlock | Time and temperature zone No cylinder Yes | | | | | | | | | | | | Hot water storage 6 Controls Space heating controls: Hot water controls: Boiler interlock 7 Low energy lights Percentage of fixed lights with low-ene Minimum | Time and temperature zone No cylinder Yes ergy fittings:100% | | | | | | | | | | | | Hot water storage 6 Controls Space heating controls: Hot water controls: Boiler interlock 7 Low energy lights Percentage of fixed lights with low-ene Minimum | Time and temperature zone No cylinder Yes ergy fittings:100% | | OK | | | | | | | | | | Hot water storage 6 Controls Space heating controls: Hot water controls: Boiler interlock 7 Low energy lights Percentage of fixed lights with low-ene Minimum | Time and temperature zone No cylinder Yes ergy fittings:100% | | OK | | | | | | | | | | Hot water storage 6 Controls Space heating controls: Hot water controls: Boiler interlock 7 Low energy lights Percentage of fixed lights with low-ene Minimum 8 Mechanical ventilation Continuous supply and extract system Specific fan power: | Time and temperature zone No cylinder Yes ergy fittings:100% 75% | | OK OK | | | | | | | | | | Hot water storage | Time and temperature zone No cylinder Yes ergy fittings:100% 75% | | OK | | | | | | | | | | Hot water storage 6 Controls Space heating controls: Hot water controls: Boiler interlock 7 Low energy lights Percentage of fixed lights with low-ene Minimum 8 Mechanical ventilation Continuous supply and extract system Specific fan power: Maximum MVHR efficiency: | Time and temperature zone No cylinder Yes ergy fittings:100% 75% | | OK OK | | | | | | | | | | Hot water storage 6 Controls Space heating controls: Hot water controls: Boiler interlock 7 Low energy lights Percentage of fixed lights with low-ene Minimum 8 Mechanical ventilation Continuous supply and extract system Specific fan power: Maximum MVHR efficiency: Minimum: | Time and temperature zone No cylinder Yes ergy fittings:100% 75% | | OK | | | | | | | | | | Hot water storage | Time and temperature zone No cylinder Yes ergy fittings:100% 75% | | OK | | | | | | | | | | Hot water storage | Time and temperature zone No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% Medium Average | | OK OK | | | | | | | | | | Hot water storage | Time and temperature zone No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% Medium Average 8.97 m², No overhang | | OK OK | | | | | | | | | | Hot water storage 6 Controls Space heating controls: Hot water controls: Boiler interlock 7 Low energy lights Percentage of fixed lights with low-ene Minimum 8 Mechanical ventilation Continuous supply and extract system Specific fan power: Maximum MVHR efficiency: Minimum: 9 Summertime temperature Overheating risk (Thames Valley): Based on: Overshading: Windows facing North: Windows facing East: | Time and temperature zone No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% Medium Average 8.97 m², No overhang 14.43 m², No overhang | | OK OK | | | | | | | | | | Hot water storage 6 Controls Space heating controls: Hot water controls: Boiler interlock 7 Low energy lights Percentage of fixed lights with low-ene Minimum 8 Mechanical ventilation Continuous supply and extract system Specific fan power: Maximum MVHR efficiency: Minimum: 9 Summertime temperature Overheating risk (Thames Valley): Based on: Overshading: Windows facing North: Windows facing Fast: Air change rate: Blinds/curtains: | Time and temperature zone No cylinder Yes Programmer Times:100% 75% 0.81 1.5 89% 70% Medium Average Average 8.97 m², No overhang 14.43 m², No overhang 4.00 ach None | | OK OK | | | | | | | | | | Hot water storage 6 Controls Space heating controls: Hot water controls: Boiler interlock 7 Low energy lights Percentage of fixed lights with low-ene Minimum 8 Mechanical ventilation Continuous supply and extract system Specific fan power: Maximum MVHR efficiency: Minimum: 9 Summertime temperature Overheating risk (Thames Valley): Based on: Overshading: Windows facing North: Windows facing East: Air change rate: Blinds/curtains: | Time and temperature zone No cylinder Yes Programmer Times:100% 75% 0.81 1.5 89% 70% Medium Average Average 8.97 m², No overhang 14.43 m², No overhang 4.00 ach None | | OK OK | | | | | | | | | | Hot water storage | Time and temperature zone No cylinder Yes Programmer Times:100% 75% 0.81 1.5 89% 70% Medium Average Average 8.97 m², No overhang 14.43 m², No overhang 4.00 ach None | | OK OK | | | | | | | | | | Hot water storage 6 Controls Space heating controls: Hot water controls: Boiler interlock 7 Low energy lights Percentage of fixed lights with low-ene Minimum 8 Mechanical ventilation Continuous supply and extract system Specific fan power: Maximum MVHR efficiency: Minimum: 9 Summertime temperature Overheating risk (Thames Valley): Based on: Overshading: Windows facing North: Windows facing East: Air change rate: Blinds/curtains: | Time and temperature zone No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% Medium Average 8.97 m², No overhang 14.43 m², No overhang 4.00 ach None | | OK OK | | | | | | | | | | Hot water storage 6 Controls Space heating controls: Hot water controls: Boiler interlock 7 Low energy lights Percentage of fixed lights with low-ene Minimum 8 Mechanical ventilation Continuous supply and extract system Specific fan power: Maximum MYHR efficiency: Minimum: 9 Summertime temperature Overheating risk (Thames Valley): Based on: Overshading: Windows facing North: Windows facing Fast: Air change rate: Blinds/curtains: 10 Key features Party wall U-value Roof U-value Floor U-value | Time and temperature zone No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% Medium Average 8.97 m², No overhang 14.43 m², No overhang 4.00 ach None 0.00 W/m²K 0.09 W/m²K 0.09 W/m²K | | OK OK | | | | | | | | | | Hot water storage 6 Controls Space heating controls: Hot water
controls: Boiler interlock 7 Low energy lights Percentage of fixed lights with low-ene Minimum 8 Mechanical ventilation Continuous supply and extract system Specific fan power: Maximum MVHR efficiency: Minimum: 9 Summertime temperature Overheating risk (Thames Valley): Based on: Overshading: Windows facing North: Windows facing Fast: Air change rate: Blinds/curtains: 10 Key features Party wall U-value Roof U-value Floor U-value Floor U-value Floor U-value | Time and temperature zone No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% Medium Average 8.97 m², No overhang 14.43 m², No overhang 4.00 ach None 0.00 W/m²K 0.09 W/m²K 0.12 W/m²K 0.12 W/m²K | | OK OK | | | | | | | | | | Hot water storage | Time and temperature zone No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% Medium Average 8.97 m², No overhang 14.43 m², No overhang 4.00 ach None 0.00 W/m²K 0.12 W/m²K 0.12 W/m²K 0.12 W/m²K 0.12 W/m²K | | OK OK | | | | | | | | | | Hot water storage 6 Controls Space heating controls: Hot water controls: Boiler interlock 7 Low energy lights Percentage of fixed lights with low-ene Minimum 8 Mechanical ventilation Continuous supply and extract system Specific fan power: Maximum MVHR efficiency: Minimum: 9 Summertime temperature Overheating risk (Thames Valley): Based on: Overshading: Windows facing North: Windows facing Fast: Air change rate: Blinds/curtains: 10 Key features Party wall U-value Roof U-value Floor U-value Floor U-value Floor U-value | Time and temperature zone No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% Medium Average 8.97 m², No overhang 14.43 m², No overhang 4.00 ach None 0.00 W/m²K 0.09 W/m²K 0.12 W/m²K 0.12 W/m²K | | OK OK | | | | | | | | | | CALCULATI | ON OF D | WELLING | G EMISSI | ONS FOR | REGULAT | rions co | OMPLIAN | ICE 09 | Jan 2014 | | | | | |--|----------------------------|------------------|------------------|--------------------|-------------------|----------------|-------------------------|----------------------------|--------------------------|-------------------------|-------------------------|-------------------------------|------------------------| | SAP 2012 WORKS | HEET FOR Ne | w Build (As | s Designed) | (Version | 9.92, Janua |
ry 2014) | | | | | | | | | ALCULATION OF | | | | | | Jan 2014 | . Overall dwel |
lling dimen | sions | Area | Store | ey height | | Volume | | | round floor
irst floor | | | | | | | | (m2)
50.0000
39.0000 | | (m)
2.4000
2.7000 | | (m3)
120.0000
105.3000 | | | otal floor are
welling volume | | a) + (1b) + (1d | c) + (1d) + (1e) |)(1n) | | 89.0000 | | | 3a) + (3b) + (3c) | | | 225.3000 | (4) | | | | | | | | | | | | | | | | | . Ventilation | main | | econdary | | other | tot | al m | 3 per hour | | | umber of chimnumber of open | | | | | heating
0
0 | + | heating
0
0 | + | 0 = 0 | | 0 * 40 =
0 * 20 = | 0.0000 | | | umber of open
umber of inter
umber of passi | rmittent fa | ns | | | Ü | T | Ü | , | 0 - | | 0 * 10 =
0 * 10 = | 0.0000 | (7a)
(7b) | | umber of flue | less gas fi | res | | | | | | | | | 0 * 40 = | 0.0000 | (7c) | | nfiltration du
ressure test | ue to chimn | eys, flues | and fans | = (6a) + (6b) |)+(7a)+(7b)+ | (7c) = | | | | 0.000 | Air change
) / (5) = | 0.0000
Yes | (8) | | easured/design
nfiltration ra
umber of sides | ate | | | | | | | | | | | 3.0000
0.1500 | (18)
(19) | | helter factor | | 1 | | | | | | | (20) = 1 - | [0.075] | (19)] = | 0.9250 | | | nfiltration ra | ate adjuste | d to includ | de shelter i | factor | | | | | (2: | 1) = (18) | x (20) = | 0.1388 | (21) | | ind speed | Jan
5.1000 | Feb
5.0000 | Mar
4.9000 | Apr
4.4000 | May
4.3000 | Jun
3.8000 | Jul
3.8000 | Aug
3.7000 | | Oct
4.3000 | Nov
4.5000 | Dec
4.7000 | | | ind factor
dj infilt rate | 1.2750
e
0.1769 | 1.2500
0.1734 | 1.2250
0.1700 | 1.1000
0.1526 | 1.0750
0.1492 | 0.9500 | 0.9500 | 0.9250 | | 1.0750
0.1492 | 1.1250
0.1561 | 1.1750
0.1630 | | | Balanced mecha
E mechanical v | anical vent
ventilation | ilation wit | th heat reco | overy | | | | | | ****** | ****** | 0.5000 | (23a) | | f balanced wit
ffective ac | th heat rec
0.2987 | 0.2952 | iciency in 9 | 8 allowing : | for in-use f | actor (from | n Table 4h) | 0.2501 | 0.2605 | 0.2709 | 0.2778 | 75.6500
0.2848 | . Heat losses

lement | | | | Gross | Openings | | tArea | U-value | Ax | J I | (-value | АхК | | | oor | | | | m2 | m2 | 2. | m2
.3000 | W/m2K
0.5500 | W/1
1.265 | K
D | kJ/m2K | kJ/K | (26) | | indow (Uw = 1.
eat Loss Floor
eat Loss Floor | r 1 | | | | | 50. | .4000
.0000
.2000 | 1.1450
0.1200
0.1200 | 26.793
6.000
0.744 |) | | | (27)
(28a)
(28a) | | xternal Wall 1
xternal Roof 1 | 1
1 | | | 100.5000
5.6000 | 25.7000 | 74.
5. | .8000
.6000 | 0.1600 | 11.968 | | | | (29a)
(30) | | otal net area
abric heat los
arty Wall 1 | | | Aum(A, m2) | | | | .3000
(26)(
.3000 | 30) + (32)
0.0000 | = 47.274
0.000 | | | | (31)
(33)
(32) | | arty Ceilings | | | | | | | .0000 | 0.0000 | 0.000 | | | | (32b) | | hermal mass pa
hermal bridges
otal fabric he | s (User def | | | | area) | | | | | (33) | + (36) = | 150.0000
9.7380
57.0129 | (36) | | entilation hea | at loss cal | | | | | - | | _ | ~ | | | | | | 38)m
eat transfer o | Jan
22.2048
coeff | Feb
21.9469 | Mar
21.6890 | Apr
20.3995 | May
20.1416 | Jun
18.8521 | Jul
18.8521 | Aug
18.5942 | Sep
19.3679 | Oct
20.1416 | Nov
20.6574 | Dec
21.1732 | (38) | | verage = Sum(3 | 79.2177 | 78.9598 | 78.7019 | 77.4124 | 77.1545 | 75.8650 | 75.8650 | 75.6071 | 76.3808 | 77.1545 | 77.6703 | 78.1861
77.3479 | | | LP | Jan
0.8901 | Feb
0.8872 | Mar
0.8843 | Apr
0.8698 | May
0.8669 | Jun
0.8524 | Jul
0.8524 | Aug
0.8495 | Sep
0.8582 | Oct
0.8669 | Nov
0.8727 | Dec
0.8785 | (40) | | LP (average)
ays in month | | | | | | | | | | | | 0.8691 | (40) | | | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | (41) | | | | | | | | | | | | | | | | | . Water heatin | ng energy r | equirements | s (kWh/year) |) | | | | | | | | 0.6115 | /40: | | ssumed occupar | | ee (litree | /dav) | | | | | | | | | 2.6118
96.2299 | | | verage daily 1 | hot water u | .50 (110105) | ,, , | | | | | | | | | | | | Average daily h | Jan
r use | Feb 102.0037 | Mar
98.1545 | Apr
94.3053 | May
90.4561 | Jun
86.6069 | Jul
86.6069 | Aug
90.4561 | Sep
94.3053 | Oct
98.1545 | Nov
102.0037 | Dec
105.8529 | | | Part | CALCULAT | ION OF I | OWELLIN | IG EMISSI | ONS FOR | R REGULA | TIONS C | OMPLIAN | ICE 09 | Jan 2014 | 1 | | | | |--|---------------------------|---------------------|-----------------|--------------------|--------------------|--------------------|--------------------|----------------------|--------------------|--------------------|--------------------|-------------|--------------------|------| | March 1968
1968 | Energy content | (annual) | | | | | | | | | Total = Su | ım (45) m = | 1514.0705 | (45) | | Street | Water storage | 23.5465
loss: | | | 18.5272 | 17.7773 | 15.3405 | 14.2152 | 16.3121 | 16.5070 | 19.2373 | 20.9990 | 22.8035 | (46) | | Second S | - | 0.0000 | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (56) | | Part | - | 0.0000 | 0.0000 | 0.0000 | | | | | | | | | | | | Company Comp | | quired for | water heati | ing calculat | ed for each | n month | | | | | | | | | | Companies Comp | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | | | | | Second Companies | - | 207.9356 | | | 170.0215 | 164.6108 | 144.9800 | 138.9019 | | | | | | | | Control point Inter Table 1 | Heat gains fro | 64.9345 | 57.1567 | 59.6112 | 52.6953 | 50.9302 | 44.6822 | 42.5438 | 47.6824 | 48.2171 | 55.1472 | 58.8765 | 63.2876 | (65) | | Markabalic Mar | | | | | | | | | | | | | | | | California 130, 5857 130 | | | | | | | | | | | | | | | | Appliance quint (15:00) | (66)m | Jan
130.5892 | Feb
130.5892 | 130.5892 | 130.5892 | 130.5892 | 130.5892 | 130.5892 | | | | | | (66) | | Conting paties Cont | | 21.1489 | 18.7842 | 15.2764 | 11.5652 | 8.6451 | 7.2986 | 7.8864 | 10.2510 | 13.7589 | 17.4700 | 20.3901 | 21.7367 | (67) | | March Marc | | 237.2259 | 239.6876 | 233.4843 | 220.2782 | 203.6078 | 187.9400 | 177.4730 | 175.0113 | 181.2146 | 194.4208 | 211.0911 | 226.7589 | (68) | | Design Telephone Telepho | | 36.0589 | 36.0589 | 36.0589 | 36.0589 | 36.0589 | 36.0589 | 36.0589 | | | | | | | | Solar gains | Losses e.g. ev | /aporation | (negative v | values) (Tab | le 5) | | | | | | | | | | | A | | gains (Tab | le 5) | | | | | | | | | | | | | Color Colo | Total internal | | 408.7032 | 394.0600 | 370.2081 | 345.8843 | 322.4740 | 307.7187 | 314.5284 | 327.1185 | 351.1902 | 378.4309 | 398.7362 | (73) | | Campaign | | | | | | | | | | | | | | | | North | | | | | | | | | | | | | | | | No. 10.6334 | | | | | m2 | Table 6a
W/m2 | Speci
or | fic data
Table 6b | | | facto | or | | | | Total gains 543.1300 666.0074 821.1385 1009.0677 1149.9530 1156.5487 1097.1776 977.3112 828.0782 656.7442 542.9531 507.9105 (84) Temperature during heating periods in the living area from Table 9, Thi (C) Utilisation factor for gains for living area from Table 9, Thi (C) Utilisation factor for gains for living area from Table 9, Thi (C) Utilisation factor for gains for living area from Table 9, Thi (C) What is a second of the control o | North
East | | | 8.9
14.4 | 700
300 | 10.6334
19.6403 | | 0.7200
0.7200 | 0 | | | | | | | The presentative during heating periods in the living area from Table 9, Thi (C) T | | | | | | | | | | | | | | | | Reperature during heating periods in the living area from Table 9, Thi (C) Utilisation factor for gains for living area, nil,m (see Table 9) Thi (C) | 7. Mean intern | nal tempera | ture (heati | ing season) | | | | | | | | | | | | tau 46.8119 46.9648 47.1187 47.9036 48.0637 48.8807 49.0474 48.5506 48.0637 47.7445 47.4296 alpha 4.1208 4.1310 4.1412 4.1936 4.2042 4.2587 4.2587 4.2698 4.2678 4.2698 4.2367 4.2042 4.1830 4.1620 util living area 0.9848 0.9658 0.9120 0.7763 0.5886 0.4137 0.3029 0.3531 0.5988 0.8792 0.9711 0.9882 (86) MIT 19.6934 19.9579 20.3485 20.7442 20.9322 20.9882 20.9975 20.9954 20.9478 20.6245 20.0796 19.6498 (87) Th 2 20.1759 20.1784 20.1809 20.1932 20.1957 20.2081 20.2081 20.2086 20.2092 20.1957 20.1988 20.1858 (88) util rest of house 0.9819 0.9596 0.8972 0.7456 0.5456 0.3646 0.2490 0.2937 0.5403 0.8529 0.9649 0.9859 (89) MIT 2 18.4169 18.7997 19.3539 19.8955 20.1272 20.1988 20.2068 20.2079 20.1571 19.7552 18.9878 18.3606 (90) MIT 19.0609 19.3840 19.8557 20.3237 20.5333 20.5970 20.6057 20.6052 20.5560 20.1938 19.5386 19.0110 (92) Emperature adjustment adjustmen | Temperature du | ring heati | ng periods | in the livi | ng area fro | om Table 9, | | | | | | | 21.0000 | (85) | | MIT 19.6934 19.9579 20.3485 20.7442 20.9322 20.9862 20.9975 20.9954 20.9478 20.6245 20.0796 19.6498 (87) Th 2 20.1759 20.1784 20.1809 20.1932 20.1957 20.2081 20.2081 20.2016 20.2032 20.1957 20.1908 20.1886 (88) WIT 18.4169 18.7997 19.3539 19.8955 20.1272 20.1988 20.2068 20.2079 20.1571 19.7552 18.9878 18.9606 (90) Living area fraction MIT 19.0609 19.3840 19.8557 20.3237 20.5333 20.5970 20.6057 20.6052 20.5560 20.1938 19.5366 19.0100 (93) Temperature adjustment adjustment 19.0609 19.3840 19.8557 20.3237 20.5333 20.5970 20.6057 20.6052 20.5560 20.1938 19.5366 19.0110 (93) 8. Space heating requirement WIT 19.0609 19.3840 19.8557 20.3237 20.5333 20.5970 20.6057 20.6052 20.5560 20.1938 19.5366 19.0110 (93) 8. Space heating requirement WIT 19.0609 19.3840 19.8557 20.3237 20.5333 20.5970 20.6057 20.6052 20.5560 20.1938 19.5366 19.0110 (93) 8. Space heating requirement WIT 19.0609 19.3840 19.8557 20.3237 20.5333 20.5970 20.6057 20.6052 20.5560 20.1938 19.5366 19.0110 (93) 8. Space heating requirement WIT 19.0609 19.3840 19.8557 20.3237 20.5333 20.5970 20.6057 20.6052 20.5560 20.1938 19.5366 19.0110 (93) 8. Space heating requirement WIT 19.0609 19.3840 19.8557 20.3237 20.5333 20.5970 20.6057 20.6052 20.5560 20.1938 19.5366 19.0110 (93) | alpha | 46.8119
4.1208 | 46.9648 | 47.1187 | 47.9036 | 48.0637 | 48.8807 | 48.8807 | 49.0474 | 48.5506 | 48.0637 | 47.7445 | 47.4296 | | | The 2 | util living an | | 0.9658 | 0.9120 | 0.7763 | 0.5886 | 0.4137 | 0.3029 | 0.3531 | 0.5988 | 0.8792 | 0.9711 | 0.9882 | (86) | | Note Color | Th 2 | 20.1759 | | | | | | | | | | | | | | MIT 19.0609 19.3840 19.8557 20.3237 20.5333 20.5970 20.6057 20.6052 20.5560 20.1938 19.5386 19.0110 (92) Temperature adjustment adjustment 19.0609 19.3840 19.8557 20.3237 20.5333 20.5970 20.6057 20.6052 20.5560 20.1938 19.5386 19.0110 (93) 20.0000
20.0000 20.0000 20.000 | MIT 2 | 0.9819
18.4169 | | | | | | | | 20.1571 | 19.7552 | 18.9878 | 18.3606 | (90) | | 8. Space heating requirement Jan | MIT | 19.0609 | 19.3840 | 19.8557 | 20.3237 | 20.5333 | 20.5970 | 20.6057 | 20.6052 | | | | 19.0110 | (92) | | 8. Space heating requirement Space | adjusted MIT | 19.0609 | 19.3840 | 19.8557 | 20.3237 | 20.5333 | 20.5970 | 20.6057 | 20.6052 | 20.5560 | 20.1938 | 19.5386 | 19.0110 | (93) | | The color of | 8. Space heat: | ng require | ment | | | | | | | | | | | | | Useful gains 530.5416 634.2200 731.2656 757.6146 648.5855 449.7323 302.9645 316.1637 469.3561 560.1186 520.4694 498.5437 (95) Useful gains 530.5416 634.2200 731.2656 757.6146 648.5855 449.7323 302.9645 316.1637 469.3561 560.1186 520.4694 498.5437 (95) Ext temp. 4.3000 4.9000 6.5000 8.9000 11.7000 14.6000 16.6000 16.4000 14.1000 10.6000 7.1000 4.2000 (96) Heat loss rate W Month fracti 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 97a) Space heating kWh 475.2530 342.3376 237.9691 91.2391 24.5102 0.0000 0.0000 0.0000 133.9820 320.8637 490.6452 (98) Space heating | | | | Mar | | | | | | Sep | Oct | Nov | Dec | | | 169.3226 143.6510 1051.1165 884.3357 681.5293 454.9628 303.8933 317.9432 493.1171 740.2019 966.1133 1158.0130 (97) | Useful gains
Ext temp. | 530.5416
4.3000 | 634.2200 | 0.8906
731.2656 | 0.7508
757.6146 | 0.5640
648.5855 | 0.3889
449.7323 | 0.2761
302.9645 | 0.3235
316.1637 | 0.5668
469.3561 | 0.8529
560.1186 | 520.4694 | 0.9816
498.5437 | (95) | | 475.2530 342.3376 237.9691 91.2391 24.5102 0.0000 0.0000 0.0000 133.9820 320.8637 490.6452 (98) Space heating 24.5102 0.0000 0.0000 0.0000 0.0000 133.9820 2116.7998 (98) | Month fracti | 1169.3226
1.0000 | | | | | | | | | | | | | | | Space heating | 475.2530 | 342.3376 | 237.9691 | 91.2391 | 24.5102 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | 2116.7998 | (98) | Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.12r02 #### CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014 Not applicable 9a. Energy requirements - Individual heating systems, including micro-CHP Fraction of space heat from secondary/supplementary system (Table 11) Fraction of space heat from main system(s) Efficiency of main space heating system 1 (in %) Efficiency of secondary/supplementary heating system, % Space heating requirement 0.0000 (201) 1.0000 (202) 93.4000 (206) 0.0000 (208) 2266.3810 (211) Feb Mar Apr May Jun J111 Aug Sep Oct Nov Dec 91.2391 24.5102 0.0000 133.9820 320.8637 490.6452 (98) 93.4000 93.4000 93.4000 (210) 0.0000 0.0000 0.0000 0.0000 93.4000 93.4000 Space heating fuel (main heating system) 508.8362 366.5285 254.7849 26.2422 97.6864 0.0000 0.0000 0.0000 0.0000 143.4496 343.5371 525.3160 (211) Water heating requirement 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (215) 0.0000 Water heating Water heating requirement 207.9356 183.3202 191.6924 170.0215 164.6108 144.9800 138.9019 154.8430 156.5531 178.2669 189.3083 202.9825 (64) 80.3000 (216 Efficiency of water heater /217\m 87.0669 86.6013 85.5967 83.5603 81.4798 80.3000 (216) 87.1907 (217) Fuel for water heating, kWh/month 238.8228 211.6831 223.9483 203.4715 202.0265 Water heating fuel used 232.8029 (219) 2484.6165 (219) 180.5479 172.9787 192.8307 194.9603 211.3584 219.1856 Annual totals kWh/year Space heating fuel - main system Space heating fuel - secondary 2266.3810 (211) Electricity for pumps and fans: (BalancedWithHeatRecovery, Database: in-use factor = 1.2500, SFP = 1.0125) mechanical ventilation fans (SFP = 1.0125) central heating pump 278.3018 (230a) 278.3018 (230a) 30.0000 (230c) 45.0000 (230e) 353.3018 (231) 373.4955 (232) 5477.7949 (238) main heating flue fan Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L) Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Energy Emission factor Emissions kWh/year 2266.3810 kg CO2/kWh 0.2160 kg CO2/year 489.5383 (261) Space heating - main system 1 489.5383 (261) 0.0000 (263) 536.6772 (264) 1026.2155 (265) 183.3636 (267) 193.8442 (268) 1403.4233 (272) 15.7700 (273) Space heating - secondary Water heating (other fuel) 2484.6165 0.2160 Space and water heating Pumps and fans Energy for lighting Total CO2, kg/year Dwelling Carbon Dioxide Emission Rate (DER) 16 CO2 EMISSIONS ASSOCIATED WITH APPLIANCES AND COOKING AND SITE-WIDE ELECTRICITY GENERATION TECHNOLOGIES 15.7700 ZC1 15.7700 ZC1 89.0000 2.6118 0.5190 15.7950 ZC2 2.0414 ZC3 Total Floor Area TFA Total Fiber Area Assumed number of occupants CO2 emission factor in Table 12 for electricity displaced from grid CO2 emissions from appliances, equation (L14) CO2 emissions from cooking, equation (L16) Total CO2 emissions Residual CO2 emissions offset from biofuel CHP Additional allowable electricity generation, kWh/m²/year Resulting CO2 emissions offset from additional allowable electricity generation 33.6063 ZC4 0.0000 ZC5 0.0000 ZC6 0.0000 ZC7 Net CO2 emissions 33.6063 ZC8 #### **CALCULATION OF TARGET EMISSIONS** 09 Jan 2014 SAP 2012 WORKSHEET FOR New Build (As Designed) CALCULATION OF TARGET EMISSIONS 09 Jan 2014 (Version 9.92, January 2014) 1. Overall dwelling dimensions Volume (m3) 120.0000 (1b) - (3b) (m2) 50.0000 (1b) (m) 2.4000 (2b) First floor Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)...(1n) Dwelling volume 39.0000 (1c) 2.7000 (2c) 105.3000 (1c) - (3c) (4) 89.0000 2. Ventilation rate secondary other total m3 per hour heating 0 * 40 = 0 * 20 = 3 * 10 = 0 * 10 = Number of chimneys Number of open flues Number of intermittent fans Number of passive vents Number of flueless gas fires 0 0.0000 (6b) 30.0000 (7a) Air changes 30.0000 / (5) = Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = 0.1332 (8) Pressure test Measured/design AP50 0.3832 (18) Infiltration rate Number of sides sheltered - [0.075 x (19)] = (21) = (18) x (20) = 0.9250 (20) 0.3544 (21) (20) = 1 -Infiltration rate adjusted to include shelter factor Feb 5.0000 1.2500 Jul 3.8000 Aug 3.7000 0.9250 Dec 4.7000 (22) 1.1750 (22a) 5.1000 1.2750 4.9000 1.2250 Wind speed 1.1000 1.0750 1.1250 Wind factor 0.9500 0.9500 1.0000 1.0750 Adj infilt rate 3. Heat losses and heat loss parameter U-value W/m2K 1.0000 A x U W/K 2.3000 TER Opaque door TEK Opaque door TER Opening Type (Uw = 1.40) Heat Loss Floor 1 Heat Loss Floor 2 External Wall 1 External Poof 1 19.9500 1.3258 26.4489 (27)50.0000 0.1300 6.5000 (28a) External Roof 1 5.6000 5.6000 0.1300 0.7280 (30)Total net area of external elements Aum(A, m2) Fabric heat loss, $W/K = Sum (A \times U)$ 162.3000 (31) (26)...(30) + (32) =50.8679 (33) Thermal mass parameter (TMP = Cm / TFA) in kJ/m2KThermal bridges (Sum(L x Psi) calculated using Appendix K) 250.0000 (35) 0.0000 (36) Total fabric heat loss (33) + (36) =50.8679 (37) Ventilation heat loss calculated monthly $(38)m = 0.33 \times (25)m \times (5)$ Jan 44.7655 Feb 44.4707 Mar 44.1818 Apr 42.8247 May 42.5708 Jun Jul Aug 41.1699 Oct 42.5708 Dec 43.6215 (38) 43.0845 41.3888 41.3888 Heat transfer coeff 95.6334 Average = Sum(39)m / 12 = 95.3386 95 0497 93 6926 93.4387 92 2567 92 2567 92 0378 92 7120 93 4387 93.9523 94.4893 (39) 93.6914 (39) Feb Mar Jul 1.0499 1.0366 1.0499 1.0745 1.0712 1.0680 1.0527 1.0366 1.0341 1.0556 1.0617 (40) 1.0527 (40) Days in month 31 (41) 31 28 31 30 31 30 31 31 30 31 30 4. Water heating energy requirements (kWh/year) 2.6118 (42) 96.2299 (43) Assumed occupancy Average daily hot water use (litres/dav) Jul Aug Apr May Sep Daily hot water use 105.8529 Energy conte 156.9767 105.8529 (44) 152.0236 (45) 1514.0705 (45) 102.0037 137.2928 98.1545 94.3053 123.5148 90.4561 86.6069 86.6069 90.4561 102.0037 118.5154 141.6739 102.2697 94.7679 108.7476 110.0464 128.2485 139.9932 Energy content (annual) Distribution loss (46)m 23.5465 18.5272 15.3405 14.2152 16.3121 16.5070 19.2373 20.9990 22.8035 (46) 20.5939 Water storage loss: Water storage 1000. Total storage loss 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (56) Regs Region: England **Elmhurst Energy Systems** SAP2012 Calculator (Design System) version 4.12r02 0.0000 0.0000 0.0000 0.0000 | CALCULAT | ION OF 1 | TARGET I | EMISSION | NS 09. | Jan 2014 | | | | | | | | | |--|------------------------------|-------------------------------|------------------------|------------------------------|-------------------------------|-----------------------|----------------------|----------------------|----------------------|-----------------------------------|----------------------|------------------------------|------| | If cylinder co | ontains ded | icated sola | er storage | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (57) | | Combi loss
Total heat red | 50.9589 | 46.0274 | 50.0184 | 46.5067 | 46.0954 | 42.7102 | 44.1339 | 46.0954 | 46.5067 | 50.0184 | 49.3151 | 50.9589 | , | | Solar input | 207.9356
0.0000 | 183.3202 | 191.6924 | 170.0215
0.0000 | 164.6108
0.0000 | 144.9800
0.0000 | 138.9019 | 154.8430
0.0000 | 156.5531 | 178.2669
0.0000
months) = S | 189.3083 | 202.9825
0.0000
0.0000 | (63) | | Output from w | | 183.3202 | 191.6924 | 170.0215 | 164.6108 | 144.9800 | 138.9019 | - | 156.5531 | | 189.3083 | 202.9825 | | | Heat gains from | | | | 50 5050 | 50.000 | 44 5000 | 40 5400 | | | Th/year) = S | | 2083.4161 | | | | 64.9345 | 57.1567 | 59.6112 | 52.6953 | 50.9302 | 44.6822 | 42.5438 | 47.6824 | 48.2171 | 55.1472 | 58.8765 | 63.2876 | (65) | | 5. Internal ga | | | | | | | | | | | | | | | Metabolic gain | ns (Table 5 |), Watts | | | | | | | | | | | | | (66)m
Lighting gain: | | | | | May
130.5892
L9a), also | | Jul
130.5892 | Aug
130.5892 | Sep
130.5892 | Oct
130.5892 | Nov
130.5892 | Dec
130.5892 | (66) | | Appliances gas | 21.1469
ins (calcul | 18.7825
ated in App |
15.2750
endix L, eq | 11.5641
puation L13 | 8.6443
or L13a), a | 7.2979
lso see Tab | | 10.2500 | 13.7576 | 17.4684 | 20.3882 | 21.7346 | (67) | | Cooking gains | (calculate | d in Append | dix L, equat | ion L15 or | | see Table | | 175.0113 | 181.2146 | 194.4208 | 211.0911 | 226.7589 | | | Pumps, fans
Losses e.g. e | 36.0589
3.0000 | 36.0589
3.0000 | 36.0589
3.0000 | 36.0589 | 36.0589
3.0000 | | Water heating | -104.4714 | -104.4714 | | | -104.4714 | -104.4714 | -104.4714 | -104.4714 | -104.4714 | -104.4714 | -104.4714 | -104.4714 | (71) | | Total internal | 87.2775
gains | 85.0546 | 80.1226 | 73.1880 | 68.4546 | 62.0587 | 57.1826 | 64.0893 | 66.9682 | 74.1226 | 81.7729 | 85.0639 | | | | 410.8271 | 408.7015 | 394.0585 | 370.2070 | 345.8835 | 322.4734 | 307.7179 | 314.5274 | 327.1172 | 351.1885 | 378.4290 | 398.7342 | (73) | | 6. Solar gain: | 3 | | | | | | | | | | | | | | [Jan] | | | А | rea
m2 | Solar flux
Table 6a | | g
fic data | Specific | FF
data | Acce
fact | | Gains
W | | | | | | | | W/m2 | or ' | Table 6b | or Tab | | Table | | | | | North
East | | | 12.3 | | 19.6403 | | 0.6300
0.6300 | 0 | .7000
.7000 | 0.77
0.77 | | 24.8602
73.8285 | | | Solar gains
Total gains | 98.6888
509.5159 | 191.9334
600.6349 | 318.5759
712.6344 | 476.5571
846.7641 | 599.8008
945.6843 | 622.1870
944.6603 | 588.9041
896.6221 | 494.4046
808.9321 | 373.6882
700.8054 | 227.9250
579.1136 | 122.7238
501.1528 | 81.4377
480.1719 | | | 7. Mean inter | | | | | | | | | | | | | | | Temperature di | ring heati | ng periods | in the livi | ng area fr | om Table 9, | | | | | | | 21.0000 | (85) | | Utilisation fa | Jan
64.6276 | eins for li
Feb
64.8274 | Mar
65.0245 | nil,m (see
Apr
65.9663 | May | Jun
66.9930 | Jul
66.9930 | Aug
67.1524 | Sep
66.6641 | Oct
66.1456 | Nov
65.7840 | Dec
65.4101 | | | alpha
util living a: | 5.3085 | 5.3218 | 5.3350 | 5.3978 | | 5.4662 | 5.4662 | 5.4768 | 5.4443 | 5.4097 | 5.3856 | 5.3607 | | | - | 0.9984 | 0.9959 | 0.9855 | 0.9380 | 0.8062 | 0.6062 | 0.4495 | 0.5161 | 0.8039 | 0.9745 | 0.9964 | 0.9989 | | | MIT
Th 2
util rest of 1 | 19.8355 | 19.9971
20.0244 | 20.2759 20.0271 | 20.6354
20.0396 | 20.8855
20.0420 | 20.9808
20.0530 | 20.9968 | 20.9936
20.0550 | 20.9178
20.0487 | 20.5621 20.0420 | 20.1340
20.0372 | 19.8119
20.0323 | | | MIT 2 | 0.9979 | 0.9945
18.7000 | 0.9804
19.1060 | 0.9173
19.6195 | 0.7526
19.9353 | 0.5245
20.0409 | 0.3545
20.0518 | 0.4139
20.0524 | 0.7291
19.9848 | 0.9622
19.5303 | 0.9950
18.9100 | 0.9985
18.4354 | | | Living area f | | | | 20.1320 | | 20.5151 | 20.5286 | 20.5273 | fLA = | Living are 20.0509 | a / (4) = | 0.5045 | (91) | | Temperature adjusted MIT | ljustment
19.1551 | 19.3543 | 19.6962 | 20.1320 | 20.4146 | 20.5151 | 20.5286 | 20.5273 | 20.4555 | 20.0509 | 19.5275 | 0.0000
19.1299 | | | 8. Space heat: | ing require | ment | | | | | | | | | | | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Utilisation
Useful gains
Ext temp. | 0.9972
508.1004
4.3000 | 0.9932
596.5335 | 0.9782
697.1268 | 0.9195
778.6300 | 0.7747 | 0.5652
533.8857 | 0.4025 | 0.4656
376.6317 | 0.7634
534.9955 | 0.9624
557.3153 | 0.9940
498.1317 | 0.9980
479.1899 | (95) | | Heat loss rate
Month fracti | 1420.6413 | | | | 814.2838
1.0000 | | | 379.8643
0.0000 | | 883.0749
1.0000 | | | | | Space heating | kWh | | | | 60.7669 | 0.0000 | 0.0000 | | | 242.3651 | | 693.0526 | (98) | | Space heating
Space heating | per m2 | | | | | | | | | (98 |) / (4) = | 3293.9253
37.0104 | | | 8c. Space coo | ling require | ement | | | | | | | | | | | | | Not applicable | #### CALCULATION OF TARGET EMISSIONS 09 Jan 2014 | 9a. Energy requirements - Individual heating systems, including micro-CHP | | | | | | |---|---|--|----------|--|--| | Fraction of space heat from secondary/supplementary system (Table 11) Fraction of space heat from main system(s) Efficiency of main space heating system 1 (in %) Efficiency of secondary/supplementary heating system, % Space heating requirement | | | | 0.0000
1.0000
93.4000
0.0000
3526.6866 | (202)
(206)
(208) | | Jan Feb Mar Apr May Jun
Space heating requirement | Jul Aug | Sep Oct | Nov | Dec | | | 678.9304 525.1842 414.5319 197.0839 60.7669 0.0000 Space heating efficiency (main heating system 1) | 0.0000 0.0000 | 0.0000 242.3651 | 482.0102 | 693.0526 | (98) | | 93.4000 93.4000 93.4000 93.4000 0.0000 | 0.0000 0.0000 | 0.0000 93.4000 | 93.4000 | 93.4000 | (210) | | Space heating fuel (main heating system) 726.9062 562.2957 443.8243 211.0106 65.0610 0.0000 | 0.0000 0.0000 | 0.0000 259.4916 | 516.0709 | 742.0263 | (211) | | Water heating requirement 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating | | | | | | | | 38.9019 154.8430 | 156.5531 178.2669 | 189.3083 | 202.9825 | | | | 80.3000 80.3000 | 80.3000 85.8250 | 87.3034 | 80.3000
87.8956 | | | Water heating fuel used | 72.9787 192.8307 | 194.9603 207.7097 | 216.8394 | 230.9359
2461.3256 | | | Annual totals kWh/year Space heating fuel - main system Space heating fuel - secondary | | | | 3526.6866
0.0000 | | | Electricity for pumps and fans: central heating pump main heating flue fan Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L) Total delivered energy for all uses | | | | 30.0000
45.0000
75.0000
373.4610
6436.4732 | (230e)
(231)
(232) | | 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP | | | | | | | Space heating - main system 1 Space heating - secondary Water heating (other fuel) Space and water heating Pumps and fans Energy for lighting Total CO2, kg/m2/year Emissions per m2 for space and water heating Fuel factor (mains gas) Emissions per m2 for lighting Emissions per m2 for pumps and fans Target Carbon Dioxide Emission Rate (TER) = (14.5327 * 1.00) + 2.1778 + 0.4374, ro | Energy
kWh/year
3526.6866
0.0000
2461.3256
75.0000
373.4610 | kg CO2/kWh
0.2160
0.0000
0.2160 | 1 | Emissions to Co2/year 761.7643 0.0000 531.6463 1293.4106 38.9250 193.8262 1526.1619 14.5327 1.0000 2.1778 0.4374 17.1500 | (263)
(264)
(265)
(267)
(268)
(272)
(272a)
(272b)
(272c) | | Property Reference | E909-02 | | | | Issued on Date | 11/05/2020 | |----------------------------------|---|--------|---|---------------|----------------|------------| | Assessment | E909-02 | | | Prop Type Ref | | | | Reference | | | | | | | | Property | Flat 2, 1 Hillfield Road, N\ | W6 1QD | | | | | | SAP Rating | | 85 B | DER | 14.45 | TER | 15.69 | | Environmental | | 88 B | % DER <ter< th=""><th></th><th>7.88</th><th></th></ter<> | | 7.88 | | | CO ₂ Emissions (t/yea | r) | 1.22 | DFEE | 37.19 | TFEE | 43.53 | | General Requiremen | ts Compliance | Pass | % DFEE <tfe< th=""><th>E</th><th>14.57</th><th></th></tfe<> | E | 14.57 | | | | Mr. Jason Doherty, Doherty E
ason@doherty-energy.co.uk | 0, | l, Tel: 0148045 | 1569, | Assessor ID | L143-0001 | | Client | | | | | | | #### REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England | | | ed Document L1A, 2013 Edi | | |
--|--|--|------------|-----------| | DWELLING AS DES | IGNED | | | | | Semi-Detached M | aisonette, total floor a | area 99 m² | | | | This report covers It is not a company | ers items included with:
plete report of regulat: | in the SAP calculations. | | | | la TER and DER
Fuel for main he
Fuel factor:1.0
Target Carbon D | eating:Mains gas | ER) 15.69 kgCO□/m² | | | | | | | | | | Target Fabric E
Dwelling Fabric | nergy Efficiency (TFEE) | E) 37.2 kWh/m²/yrOK | | | | 2 Fabric U-value
Element | es | Highest | | | | External wall | 0.16 (max. 0.30) | 0.16 (max. 0.70) | OK | | | Floor | 0.00 (max. 0.20)
0.12 (max. 0.25) | -
0.12 (max. 0.70) | OK
OK | | | | (no roof)
1.12 (max. 2.00) | 1.20 (max. 3.30) | OK | | | | | | | | | | g calculated using user- | -specified y-value of 0.0 | 60 | | | 3 Air permeabil:
Air permeabilit | | 3.00 (design value) | | | | Maximum | | 10.0 | | OK | | 4 Heating effic
Main heating sy
Data from databa | iency
stem:
ase | Boiler system with radi | | Mains gas | | Vaillant ecoTEC
Combi boiler | pro 24 VUW 246/5-3 (H-0 | 3B) R6 | | | | Efficiency: 89.
Minimum: 88.0% | 5% SEDBUK2009 | OK | | | | Secondary heati | ng system: | | | | | 5 Cylinder insu | | | | | | | | | | | | Hot water stora | ge | No cylinder | | | | Hot water stora | ge
 | | ne control | ok | | Hot water storage 6 Controls | ge
ontrols: | No cylinder | ne control | OK | | Hot water storad | ge
ontrols:
pls: | No cylinder Time and temperature zo No cylinder Yes | | ok
Ok | | Hot water storad | ge

ontrols:
ols:
k | No cylinder Time and temperature zo No cylinder Yes | ne control | | | Hot water storading of the storage of f. Minimum | ontrols: pls: k phts ixed lights with low-ene | No cylinder Time and temperature zo No cylinder Yes | | | | Hot water storage of Controls Space heating of Hot water controls Space heating of Town water controls of | ontrols: pls: k phts ixed lights with low-ene | No cylinder Time and temperature zo No cylinder Yes ergy fittings:100% | | OK | | Hot water stora- 6 Controls Space heating of Hot water control Boiler interloc 7 Low energy lipercentage of fininum 8 Mechanical veron continuous supp Specific fan poo | ontrols: cols: k ghts ixed lights with low-ene intilation ly and extract system | No cylinder Time and temperature zo No cylinder Yes ergy fittings:100% 75% | | OK OK | | Hot water storading of Controls Space heating of Hot water control Boiler interlocity Low energy lipercentage of f. Minimum Semenators support ontinuous support ontinuous support of Semenators support support of | ontrols: bls: k phts ixed lights with low-end ntilation ly and extract system wer: | No cylinder Time and temperature zo No cylinder Yes ergy fittings:100% 75% | | OK | | Hot water storading of Controls Space heating of Hot water controls Town energy liver her centage of f. Minimum Section 1 | ontrols: bls: k phts ixed lights with low-end ntilation ly and extract system wer: | No cylinder Time and temperature zo No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% | | OK OK | | Hot water stora- 6 Controls Space heating of Hot water controls Boiler interloc- 7 Low energy lipercentage of f. Minimum 8 Mechanical verontinuous supp Specific fan por Maximum MYHR efficiency Minimum: 9 Summertime tee | ontrols: bls: k ghts ixed lights with low-encentilation ly and extract system wer: : | No cylinder Time and temperature zo No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% | | OK OK | | Hot water stora- 6 Controls Space heating of Hot water controls Boiler interloc 7 Low energy line Percentage of f. Minimum 8 Mechanical vec Continuous supp Specific fan por Maximum MVHR efficiency Minimum: 9 Summertime tee Overheating ris: Based on: Overshading: | ontrols: cols: k ghts ixed lights with low-ence intilation ly and
extract system weer: : mperature k (Thames Valley): | No cylinder Time and temperature zo No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% Medium Average | | OK OK | | Hot water stora- 6 Controls Space heating of Hot water controls Boiler interloc- 7 Low energy lipercentage of f. Minimum 8 Mechanical vec Continuous supp Specific fan poor Maximum MYHR efficiency Minimum: 9 Summertime tec Overheating ris Based on: Overshading: Windows facing ! Windows facing ! Windows facing ! | controls: | No cylinder Time and temperature zo No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% Medium Average 15.39 m², No overhang 1.38 m², No overhang | | OK OK | | Hot water stora- 6 Controls Space heating of Hot water controls Boiler interloc 7 Low energy li Percentage of f. Minimum 8 Mechanical vei Continuous supp Specific fan por Maximum MVHR efficiency Minimum: 9 Summertime tei Overheating ris Based on: Overshading: Windows facing ! Air change rate Blinds/curtains | controls: controls: controls: controls: k dynts ixed lights with low-ener itilation ly and extract system wer: : controls co | No cylinder Time and temperature zo No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% Medium Average 1.38 m², No overhang 1.38 m², No overhang 4.00 ach None | | OK OK | | Hot water storadice of Controls Space heating of Hot water controls Space heating of Hot water controls of Low energy lipercentage of finimum—————————————————————————————————— | controls: cols: k cols: k cols: | No cylinder Time and temperature zo No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% Medium Average 15.39 m², No overhang 1.38 m², No overhang 4.00 ach None | | OK OK | | Hot water stora- 6 Controls Space heating of Hot water controls Boiler interloc 7 Low energy lipercentage of fininum 8 Mechanical very continuous supp Specific fan por Maximum MYHR efficiency Minimum: 9 Summertime ter Overheating rise Based on: Overshading: Windows facing is Windows facing is Windows facing in Air change rate Blinds/curtains 10 Key features Party wall U-va. | controls: cols: k cols: k cols: | No cylinder Time and temperature zo No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% Medium Average 15.39 m², No overhang 1.38 m², No overhang 4.00 ach None 0.00 W/m²K | | OK OK | | Hot water stora- 6 Controls Space heating of Hot water controls Boiler interloc 7 Low energy li Percentage of f. Minimum 8 Mechanical vei Continuous supp Specific fan por Maximum MVHR efficiency Minimum: 9 Summertime tei Overheating ris Based on: Overshading: Windows facing ! Windows facing ! Windows facing ! Windows facing ! Air change rate Blinds/curtains 10 Key features Party wall U-va. Floor U-value Floor U-value | controls: cols: k cols: k cols: | No cylinder Time and temperature zo No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% Medium Average 1.38 m², No overhang 1.38 m², No overhang 4.00 ach None 0.00 W/m²K 0.12 W/m²K 0.12 W/m²K | | OK OK | | Hot water stora- 6 Controls Space heating of Hot water controls Boiler interloc 7 Low energy lirer percentage of fininum 8 Mechanical vec Continuous supp. Specific fan por Maximum MVHR efficiency Minimum: 9 Summertime tel Overheating ris Based on: overshading: Windows facing: Windows facing: Windows facing: Windows facing: Air change rate Blinds/curtains 10 Key features Party wall U-va Floor U-value | controls: | No cylinder Time and temperature zo No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% Medium Average 15.39 m², No overhang 1.38 m², No overhang 1.38 m², No overhang 1.38 m², No overhang 1.30 | | OK OK | | Hot water stora- 6 Controls Space heating of Hot water controls Boiler interloc | controls: | No cylinder Time and temperature zo No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% Medium Average 15.39 m², No overhang 1.38 m², No overhang 4.00 ach None 0.00 W/m²K 0.12 W/m²K 0.12 W/m²K 0.12 W/m²K | | OK OK | | CALCULATION | ON OF D | OWELLIN | G EMISSI | ONS FOR | REGULAT | IONS CO | OMPLIAN | CE 09 | Jan 2014 | | | | | |--|---|----------------------|-----------------------|---------------------|---------------------|---------------------|--------------------|----------------------------|-------------------------|-----------------------|-----------------------|----------------------|----------------| | SAP 2012 WORKSH | EET FOR N | ew Build (A: | s Designed) | (Version | 9.92, Janua | | | | | | | | | | ALCULATION OF | | | | | | Jan 2014 | . Overall dwel | ling dime | nsions | Area | Store | ey height | | Volume | | | round floor | | | | | | | | (m2)
65.0000 | | (m)
2.4000 | | (m3)
156.0000 | | | irst floor
otal floor are
welling volume | | la) + (1b) + (1 | c)+(1d)+(1e |)(ln) | | 99.0000 | | 34.0000 | (1c) x
3a)+(3b)+(3c) | 2.7000 | | 91.8000
247.8000 | (4) | | welling volume | | | | | | | | (. | 34) + (35) + (36) | r(3u) r(3e) | (311) - | 247.0000 | (5) | | . Ventilation | rate | | | | | | | | | | | | | | | | | | | main | se | econdary | | other | tot | al m | 3 per hour | | | umber of chimn | | | | | heating
0 | + | heating
0 | + | 0 = | | 0 * 40 = | 0.0000 | | | umber of open
umber of inter | mittent fa | ans | | | 0 | + | 0 | + | 0 = | | 0 * 20 =
0 * 10 = | 0.0000 | (7a) | | umber of passi
umber of fluel | | ires | | | | | | | | | 0 * 10 =
0 * 40 = | 0.0000 | | | nfiltration du | e to chim | neys, flues | and fans | = (6a) + (6b) | +(7a)+(7b)+ | (7c) = | | | | 0.0000 | Air change
/ (5) = | s per hour
0.0000 | (8) | | ressure test
easured/design | AP50 | - | | | . , | | | | | | | Yes
3.0000 | | | nfiltration ra
umber of sides | | i | | | | | | | | | | 0.1500 | (18)
(19) | | helter factor | + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | nd +a 4a-3 | do shalt | factor | | | | | (20) = 1 - | [0.075 x
1) = (18) | | 0.9250
0.1388 | | | nfiltration ra | te adjust | ed to inclu | de Sherter | Idctor | | | | | (2. | 1) - (10) | x (20) - | 0.1300 | (21) | | ind speed | Jan
5.1000 | Feb
5.0000 | Mar
4.9000 | Apr
4.4000 | May
4.3000 | Jun
3.8000 | Jul
3.8000 | Aug
3.7000 | Sep
4.0000 | Oct
4.3000 | Nov
4.5000 | Dec
4.7000 | (22) | | ind factor
dj infilt rate | 1.2750 | 1.2500 | 1.2250 | 1.1000 | 1.0750 | 0.9500 | 0.9500 | 0.9250 | 1.0000 | 1.0750 | 1.1250 | 1.1750 | | | Balanced mecha | | | 0.1700
th heat rec | 0.1526
overy | 0.1492 | 0.1318 | 0.1318 | 0.1283 | 0.1388 | 0.1492 | 0.1561 | 0.1630 | | | f mechanical v
f balanced wit | | | iciency in | % allowing : | For in-use fa | actor (from | m Table 4h) | = | | | | 0.5000
75.6500 | | | ffective ac | 0.2987 | 0.2952 | 0.2917 | 0.2744 | 0.2709 | 0.2536 | 0.2536 | 0.2501 | 0.2605 | 0.2709 | 0.2778 | 0.2848 | (25) | | | | | | | | | | | | | | | | | . Heat losses | | | | | | | | | | | | | | | lement | | | | Gross
m2 | Openings
m2 | | m2
.3000 | U-value
W/m2K
0.5500 | A x 1
W/1
1.265 | K | -value
kJ/m2K | A x K
kJ/K | | | indow (Uw = 1.
eat Loss Floor | | | | | | 16 | .7700
.0000 | 1.1450 | 19.202 | 3 | | | (27)
(28a) | | eat Loss Floor
xternal Wall 1 | 2 | | | 97.0000 | 19.0700 | 15. | .0000 | 0.1200 | 1.800 | D | | | (28a)
(29a) | | otal net area
abric heat los | | | Aum(A, m2) | | | 177 | .0000
(26)(3 | 30) + (32) | = 42.536 | 1 | | | (31)
(33) | | arty Wall 1
arty Ceilings | 1 | | | | | | .8000
.0000 | 0.0000 | 0.000 | D | | | (32)
(32b) | | hermal mass pa
hermal bridges | | | | | | | | | | | | 150.0000
10.6200 | | | otal fabric he | | rineu value | 0.000 - 20 | car exposed | area) | | | | | (33) | + (36) = | 53.1561 | | | entilation hea | t loss cai | lculated mon | Mar | = 0.33 x (2 | 25)m x (5)
May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | 38)m
eat transfer c | | 24.1387 | 23.8550 | 22.4367 | 22.1531 | 20.7348 | 20.7348 | 20.4512 | 21.3021 | 22.1531 | 22.7204 | 23.2877 | | | verage = Sum(3 | 77.5784
9)m / 12 = | 77.2948
= | 77.0111 | 75.5928 | 75.3092 | 73.8909 | 73.8909 | 73.6073 | 74.4582 | 75.3092 | 75.8765 | 76.4438
75.5219 | | | LP | Jan
0.7836 | Feb
0.7808 | Mar
0.7779 | Apr
0.7636 | May
0.7607 | Jun
0.7464 | Jul
0.7464 | Aug
0.7435 | Sep
0.7521 | Oct
0.7607 | Nov
0.7664 | Dec
0.7722 | (40) | | LP (average)
ays in month | 0.7030 | 5.7000 | 3.1113 | 3.7030 | 0.7007 | V./104 | 0.7404 | 0.7433 | 0.7321 | 5.7007 | 0.7004 | 0.7722 | | | | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | (41) | | . Water heating | | | | | | | | | | | | | | | ssumed occupan |
су | | | , | | | | | | | | 2.7301 | (42) | | verage daily h | | use (litres | /day) | | | | | | | | | 99.0393 | | | aily hot water | | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Energy conte | 108.9432
161.5596 | 104.9816
141.3010 | 101.0200
145.8100 | 97.0585
127.1207 | 93.0969
121.9753 | 89.1353
105.2555 | 89.1353
97.5346 | 93.0969
111.9224 | | | 144.0803 | | (45) | | nergy content | | | | | | | | | | | um (45) m = | | | | GALCOLAT | ION OF E | OWELLIN | IG EMISSI | ONS FOR | R REGULA | TIONS CO | OMPLIAN | ICE 09 | Jan 2014 | ļ. | | | | |---|-------------------------------------|---------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------| | Distribution 1 | | | (45)m
21.8715 | 19.0681 | 18.2963 | 15.7883 | 14.6302 | 16.7884 | 16.9889 | 19.7989 | 21.6120 | 23.4693 | (46) | | Water storage
Fotal storage | loss:
loss | | | | |
| | | | | | | | | If cylinder co | 0.0000
ntains ded:
0.0000 | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Combi loss
Cotal heat req | 50.9589 | 46.0274 | 50.9589 | 47.8644 | 47.4412 | 43.9571 | 45.4224 | 47.4412 | 47.8644 | 50.9589 | 49.3151 | 50.9589 | | | Solar input | 212.5185 | 187.3284
0.0000 | 196.7689 | 174.9852
0.0000 | 169.4165
0.0000 | 149.2126
0.0000 | 142.9570
0.0000 | 0.0000 | 161.1236 | 182.9515 | 193.3953 | 207.4207 | (63) | | Output from w/ | | 187.3284 | 196.7689 | 174.9852 | 169.4165 | 149.2126 | 142.9570 | | | months) = Su
182.9515 | | 0.0000 | | | Heat gains fro | | | | F4 0007 | EQ 4171 | 45 0067 | 43.7859 | Total p | er year (kW
49.6248 | h/year) = Su | | | | | | 66.4383 | 58.4894 | 61.2216 | 54.2337 | 52.4171 | 45.9867 | 43.7859 | 49.0745 | 49.6248 | 56.6273 | 60.2355 | 64.7633 | (63) | | . Internal ga | ins (see Ta | able 5 and | 5a) | | | | | | | | | | | | Metabolic gain | s (Table 5) |), Watts | | | | | | | 0 | 0-1 | | D | | | (66) m | | 136.5037 | | | May
136.5037 | | | Aug
136.5037 | Sep
136.5037 | Oct
136.5037 | Nov
136.5037 | Dec
136.5037 | (66) | | Lighting gains
Appliances gai | 23.4342 | 20.8140 | 16.9271 | 12.8149 | 9.5793 | 8.0872 | 8.7385 | 11.3587 | 15.2456 | 19.3578 | 22.5934 | 24.0855 | (67) | | | 254.7009 | 257.3439 | 250.6836 | 236.5047 | 218.6064 | 201.7844 | 190.5464 | 187.9034 | 194.5636 | 208.7426 | 226.6409 | 243.4628 | (68) | | Cooking gains Pumps, fans | 36.6504
3.0000 | 36.6504
3.0000 | 36.6504
3.0000 | | | | 36.6504
3.0000 | 36.6504
3.0000 | 36.6504
3.0000 | 36.6504
3.0000 | 36.6504
3.0000 | 36.6504
3.0000 | | | Losses e.g. ev | aporation | (negative v | values) (Tab | le 5) | -109.2030 | | | | | | | -109.2030 | | | Water heating | gains (Tab | le 5) | 82.2870 | 75.3247 | 70.4531 | 63.8705 | 58.8520 | 65.9603 | 68.9233 | 76.1119 | 83.6604 | 87.0474 | | | Total internal | gains | | | 391.5954 | 365.5898 | 340.6932 | 325.0880 | 332.1735 | 345.6837 | 371.1634 | 399.8458 | 421.5468 | | | | | | | | | | | | | | | | | | 6. Solar gains | | | | | | | | | | | | | | | [Jan] | | | | rea
m2 | W/m2 | Speci
or | Table 6b | Specific
or Tab | FF
data
le 6c | Acces
facto
Table 6 | r | Gains
W | | | East
West | | | 15.3
1.3 | 900
800 | 19.6403
19.6403 | | 0.7200
0.7200 | 0 | .7000
.7000 | 0.770
0.770 | | 105.5722
9.4665 | | | Solar gains
Total gains | | | | | 662.4169
1028.0068 | | | | | 267.0292
638.1926 | | 94.6023
516.1491 | | | 7. Mean intern | | | | | | | | | | | | | | | Temperature du
Utilisation fa | ring heatin
ctor for ga | ng periods
ains for li | in the livi | ng area fro
nil,m (see | om Table 9, 'Table 9a) | Th1 (C) | | | | | | 21.0000 | (85) | | tau
alpha | Jan
53.1720
4.5448 | 53.3671 | | 54.5687 | May
54.7742
4.6516 | Jun
55.8255
4.7217 | Jul
55.8255
4.7217 | Aug
56.0407
4.7360 | Sep
55.4002
4.6933 | Oct
54.7742
4.6516 | Nov
54.3647
4.6243 | Dec
53.9612
4.5974 | | | atil living ar | | 0.9735 | 0.9303 | 0.8148 | 0.6402 | 0.4575 | 0.3337 | 0.3794 | 0.6259 | 0.8958 | 0.9769 | 0.9909 | (86) | | MIT | 19.8430 | 20.0696 | 20.4085 | 20.7600 | 20.9346 | 20.9894 | 20.9981 | 20.9966 | 20.9571 | 20.6726 | 20.1904 | 19.8079 | (87) | | Th 2
util rest of h | 20.2676
louse
0.9860 | 20.2700 | 20.2725
0.9185 | 20.2850 | 20.2875 | 20.3000 | 20.3000 | 20.3026 | 20.2950 | 20.2875 | 20.2825 | 20.2775
0.9892 | | | MIT 2
Living area fr | 18.6982 | | | 20.0000 | 20.2196 | 20.2913 | 20.2989 | 20.3004 | 20.2561 | 19.8971
Living area | 19.2138 | | (90) | | MIT
Temperature ad | 19.0913
ljustment | 19.3854 | 19.8196 | 20.2610 | 20.4651 | 20.5310 | 20.5390 | 20.5395 | 20.4969 | 20.1634 | 19.5492 | 19.0504
0.0000 | | | adjusted MIT | 19.0913 | 19.3854 | 19.8196 | 20.2610 | 20.4651 | 20.5310 | 20.5390 | 20.5395 | 20.4969 | 20.1634 | 19.5492 | 19.0504 | (93) | | 3. Space heati | ng require | ment | ~ | <u> </u> | | _ | | | T+ilicoti:- | Jan
0.9813
539.1994
4.3000 | | Mar
0.9100
716.5674
6.5000 | Apr
0.7874
733.9082
8.9000 | May
0.6102
627.3244
11.7000 | Jun
0.4256
433.5610
14.6000 | Jul
0.2991
290.3675
16.6000 | Aug
0.3422
303.4250
16.4000 | Sep
0.5878
456.5189
14.1000 | Oct
0.8689
554.5364
10.6000 | Nov
0.9656
524.5698
7.1000 | Dec
0.9853
508.5456
4.2000 | (95) | | Useful gains
Ext temp. | | | 1005 7570 | 858.8091 | | 438.2502 | 291.0589 | 304.6981 | 476.3001
0.0000 | 720.2150
1.0000 | 944.6014 | 1135.2237 | | | Useful gains
Ext temp.
Heat loss rate
Month fracti | W
1147.4884
1.0000 | 1119.6443 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | | | | | | | (3,4) | | Heat loss rate | W 1147.4884 1.0000 kWh | 1.0000 | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 123.2648 | 302.4228 | 466.2485
2016.5844 | (98) | #### CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014 Not applicable | 9a. Energy requirement | s - Individua | al heating s | ystems, inc | luding micr | o-CHP | | | | | | | | |--|---|--|---------------------------|-------------|-------------|----------|--|----------|--|----------------|--|---| | Fraction of space heat
Fraction of space heat
Efficiency of main spa
Efficiency of secondar
Space heating requirem | from seconda
from main sy
ce heating sy
y/supplementa | ary/suppleme
ystem(s)
ystem 1 (in | ntary syste
%) | | | | | | | | 0.0000
1.0000
93.4000
0.0000
2159.0839 | (202)
(206)
(208) | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating requirem 452.567 | ent
0 327.7339 | 230.0371 | 89.9286 | 24.3817 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 123.2648 | 302.4228 | 466.2485 | (98) | | Space heating efficien
93.400 | | | | 93.4000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 93.4000 | 93.4000 | 93.4000 | (210) | | Space heating fuel (ma | | ystem) | 96.2833 | 26.1046 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 131.9752 | 323.7931 | 499.1954 | | | Water heating requirem | ent | | | | | | | | | | | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating
Water heating requirem | ent | | | | | | | | | | | | | 212.518
Efficiency of water he | 5 187.3284
ater | 196.7689 | 174.9852 | 169.4165 | 149.2126 | 142.9570 | 159.3636 | 161.1236 | 182.9515 | 193.3953 | 207.4207
80.3000 | , | | (217)m 86.907
Fuel for water heating | 1 86.4455 | 85.4453 | 83.4656 | 81.4448 | 80.3000 | 80.3000 | 80.3000 | 80.3000 | 84.0815 | 86.1724 | 87.0296 | | | | 1 216.7012
d | 230.2865 | 209.6495 | 208.0139 | 185.8189 | 178.0287 | 198.4603 | 200.6520 | 217.5883 | 224.4285 | 238.3335
2552.4964 | | | Space heating fuel - m
Space heating fuel - s | ain system | | | | | | | | | | 2159.0839
0.0000 | | | (BalancedWithHeatR
mechanical ventilat
central heating pum
main heating flue f
Total electricity for
Electricity for lighti
Total delivered energy | ion fans (SF) p an the above, ki ng (calculate | P = 1.
Wh/year
ed in Append | 0125) | 1.2500, SFP | > = 1.0125) | | | | | | 306.0950
30.0000
45.0000
381.0950
413.8547
5506.5300 | (230c)
(230e)
(231)
(232) | | 12a. Carbon dioxide em | issions - Ind | dividual hea | ting system | s including | micro-CHP | | | | | | | | | Space heating - main s
Space heating - second
Water heating (other f
Space and water heatin
Pumps and fans
Energy for lighting
Total CO2, kg/year
Dwelling Carbon Dioxid | ary
uel)
g | ate (DER) | | | | | Energy
kWh/year
2159.0839
0.0000
2552.4964
381.0950
413.8547 | | ion factor
kg CO2/kWh
0.2160
0.0000
0.2160
0.5190
0.5190 | | Emissions
g CO2/year
466.3621
0.0000
551.3392
1017.7013
197.7883
214.7906
1430.2802
14.4500 | (261)
(263)
(264)
(265)
(267)
(268)
(272) | | DER Total Floor Area Assumed number of occu CO2 emission factor in CO2 emissions from app CO2 emissions from occu Total CO2 emissions Residual CO2 emissions Residual CO2 emissions Resulting CO2 emission Net CO2 emissions | pants Table 12 for liances, equation king, equation offset from lectricity ge | r electricit
ation (L14)
on (L16)
biofuel CHP
eneration, k | y displaced
Wh/m²/year | from grid | | | ON TECHNOLO | GIES | | TFA
N
EF | 14.4500
99.0000
2.7301
0.5190
15.2455
1.8639
31.5594
0.0000
0.0000
0.0000
31.5594 | ZC2
ZC3
ZC4
ZC5
ZC6
ZC7 | #### CALCULATION OF TARGET EMISSIONS 09 Jan 2014 SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF TARGET EMISSIONS 09 Jan 2014 1. Overall dwelling dimensions Volume (m3) 156.0000 (1b) - (3b) (m2) 65.0000 (1b) (m) 2.4000 (2b) First floor Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)...(1n) Dwelling volume 34.0000 (1c) 2.7000 (2c) 91.8000 (1c) - (3c) 99.0000 2. Ventilation rate secondarv other total m3 per hour 0 * 40 = 0 * 20 = 3 * 10 = 0 * 10 = Number of chimneys Number of open flues Number of
intermittent fans Number of passive vents Number of flueless gas fires 0 0 0.0000 (6b) 30.0000 (7a) Air changes 30.0000 / (5) = Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = 0.1211 (8) Pressure test Measured/design AP50 5.0000 0.3711 (18) Infiltration rate Number of sides sheltered - [0.075 x (19)] = (21) = (18) x (20) = 0.9250 (20) 0.3432 (21) (20) = 1 -Infiltration rate adjusted to include shelter factor Feb 5.0000 1.2500 Jul 3.8000 Aug 3.7000 0.9250 Dec 4.7000 (22) 1.1750 (22a) 5.1000 1.2750 4.9000 1.2250 Wind speed 1.1000 1.0750 1.0750 1.1250 Wind factor 0.9500 0.9500 1.0000 Adj infilt rate 3. Heat losses and heat loss parameter NetArea m2 2.3000 U-value W/m2K 1.0000 A x U W/K 2.3000 TER Opaque door TEK Opaque door TER Opening Type (Uw = 1.40) Heat Loss Floor 1 Heat Loss Floor 2 External Wall 1 Total not and 1 16.7700 1.3258 22.2330 (27)65.0000 0.1300 8.4500 (28a) Total net area of external elements Aum(A, m2) 177.0000 (31)48.9604 Fabric heat loss, $W/K = Sum (A \times U)$ (26)...(30) + (32) =(33) Thermal mass parameter (TMP = Cm / TFA) in kJ/m2K Thermal bridges (Sum(L x Psi) calculated using Appendix K) Total fabric heat loss 250.0000 (35) 0.0000 (36) (33) + (36) = 48.9604 (37) Ventilation heat loss calculated monthly (38)m = 0.33 x (25)m x (5) Jan Feb Mar Apr May May 46.4536 Apr 46.7155 Aug 45.0085 Sep 45.7039 Dec 47.5374 (38) (38)m 48.7175 Heat transfer coeff 48.4134 46.9834 48.1154 45.2343 45.2343 46.4536 97.6779 Average = Sum(39)m / 12 97 3738 97 0757 95 6758 95 4139 94 1946 94 1946 93 9688 94 6643 95 4139 95.9438 96.4977 (39) 95.6746 (39) Feb Apr 0.9664 May 0.9638 Jun 0.9515 Aug 0.9492 Sep 0.9562 0.9866 0.9836 0.9806 0.9515 0.9638 0.9691 0.9747 (40) HLP (average) Days in month 0.9664 (40) 31 (41) 4. Water heating energy requirements (kWh/year) 2.7301 (42) 99.0393 (43) Assumed occupancy Average daily hot water use (litres/day) May Jan Feb Apr Jun Jul Aug Sep Nov Daily hot water use 108.9432 101.0200 97.0585 89.1353 97.0585 104.9816 141.3010 145.8100 127.1207 121.9753 105.2555 97.5346 111.9224 113.2591 131.9926 144.0803 156.4618 (45) 1558.2731 (45) Total = Sum (45) m = Total storage loss 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (56) If cylinder contains dedicated solar storage | CALCULAT | ION OF | TARGET I | EMISSION | IS 09. | lan 2014 | | | | | | | | | |--|-----------------------|-------------------------|-------------------------|-------------------------|--------------------------------|--------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|----------------------|-------| | Combi loss | 0.0000
50.9589 | 0.0000
46.0274 | 0.0000
50.9589 | 0.0000
47.8644 | 0.0000
47.4412 | 0.0000
43.9571 | 0.0000
45.4224 | 0.0000
47.4412 | 0.0000
47.8644 | 0.0000
50.9589 | 0.0000
49.3151 | 0.0000
50.9589 | | | Total heat rec | uired for
212.5185 | water heati
187.3284 | ng calculat
196.7689 | ed for each
174.9852 | n month
169.4165 | 149.2126 | 142.9570 | 159.3636 | 161.1236 | 182.9515 | 193.3953 | 207.4207 | (62) | | Solar input Output from w/ | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000
ut (sum of | 0.0000
months) = S | | 0.0000 | , | | output Irom w/ | | 187.3284 | 196.7689 | 174.9852 | 169.4165 | 149.2126 | 142.9570 | | | 182.9515
h/year) = S | | | | | Heat gains fro | m water he
66.4583 | | month
61.2216 | 54.2337 | 52.4171 | 45.9867 | 43.7859 | 49.0745 | 49.6248 | 56.6273 | 60.2355 | 64.7633 | | | 5. Internal ga | ins (see T | able 5 and | 5a) | | | | | | | | | | | | Metabolic gair | |), Watts | | | | | Jul | | Con | Oct | Nov | Dec | | | (66)m
Lighting gains | 136.5037 | 136.5037 | | | May
136.5037
L9a), also | | 136.5037 | Aug
136.5037 | Sep
136.5037 | 136.5037 | 136.5037 | 136.5037 | (66) | | Appliances gai | ns (calcul | ated in App | endix L, eq | uation L13 | | lso see Tab | | 11.3587 | 15.2456 | 19.3578 | 22.5934 | 24.0855 | | | Cooking gains | (calculate | d in Append | lix L, equat | ion L15 or | 218.6064
L15a), also | see Table | 5 | | | | | 243.4628 | | | Pumps, fans
Losses e.g. ev | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 36.6504
3.0000 | 36.6504 | 36.6504
3.0000 | 36.6504
3.0000 | 36.6504
3.0000 | 36.6504
3.0000 | 36.6504
3.0000 | 36.6504
3.0000 | | | | -109.2030 | -109.2030 | | | -109.2030 | -109.2030 | -109.2030 | -109.2030 | -109.2030 | -109.2030 | -109.2030 | -109.2030 | (71) | | Total internal | 89.3257 | | 82.2870 | 75.3247 | 70.4531 | 63.8705 | 58.8520 | 65.9603 | 68.9233 | 76.1119 | 83.6604 | 87.0474 | (72) | | 10001 1110011101 | | 432.1469 | 416.8489 | 391.5954 | 365.5898 | 340.6932 | 325.0880 | 332.1735 | 345.6837 | 371.1634 | 399.8458 | 421.5468 | (73) | | 6. Solar gains | | | | | | | | | | | | | | | [Jan] | | | A | | Solar flux
Table 6a
W/m2 | | | | FF
data | Acce
fact | or | Gains
W | | | | | | | | | | | | le 6c
.7000 | Table | | 00 2757 | (76) | | East
West
 | | | 1.3 | 800 | 19.6403
19.6403 | | 0.6300
0.6300 | 0 | .7000 | 0.77
0.77 | | 92.3757
8.2832 | | | Solar gains
Total gains | | | | | | | | | | 233.6505
604.8139 | 7. Mean interr | | | | | | | | | | | | 21 0000 | (0.5) | | Temperature du
Utilisation fa | | | | | Table 9a) | Jun | Jul | Aug | Sep | Oct | Nov | 21.0000
Dec | (85) | | tau
alpha | 70.3844 | | 70.8210
5.7214 | 71.8572 | 72.0545
5.8036 | 72.9872
5.8658 | 72.9872
5.8658 | | 72.6251
5.8417 | 72.0545
5.8036 | 71.6566
5.7771 | 71.2452
5.7497 | | | util living ar | | 0.9967 | 0.9878 | 0.9459 | 0.8248 | 0.6270 | 0.4629 | 0.5229 | 0.8073 | 0.9771 | 0.9972 | 0.9992 | (86) | | MIT
Th 2 | 19.9276
20.0945 | 20.0797 | 20.3388 | 20.6664 | 20.8942
20.1136 | 20.9830 | 20.9975 | 20.9952
20.1259 | 20.9315 | 20.6059 | 20.2057 | 19.9052
20.1044 | | | atil rest of h | ouse
0.9984 | 0.9956 | 0.9835 | 0.9276 | 0.7754 | 0.5490 | 0.3723 | 0.4266 | 0.7366 | 0.9662 | 0.9961 | 0.9989 | (89) | | MIT 2
Living area fr | | 18.8741 | 19.2519 | 19.7223 | 20.0131 | 20.1130 | 20.1231 | 20.1239 | | 19.6486
Living are | | 18.6247
0.3434 | (91) | | MIT
Pemperature ac | | 19.2881 | 19.6252 | 20.0465 | 20.3157 | 20.4118 | 20.4234 | 20.4231 | 20.3633 | | | 19.0645 | | | adjusted MIT | 19.0889 | 19.2881 | 19.6252 | 20.0465 | 20.3157 | 20.4118 | 20.4234 | 20.4231 | 20.3633 | 19.9774 | 19.4585 | 19.0645 | (93) | | 3. Space heati | ng require | ment | | | | | | | | | | | | | Utilisation
Useful gains
Ext temp. | | | | | 744.3626 | | Jul
0.4035
359.0765
16.6000 | Aug
0.4598
375.8532
16.4000 | Sep
0.7578
547.7843
14.1000 | Oct
0.9641
583.1107
10.6000 | Nov
0.9949
522.6911
7.1000 | 503.5206 | (95) | | Heat loss rate | 1444.5498 | 1401.0286 | 1274.1344 | 1066.4523 | | 547.4428
0.0000 | 360.1417
0.0000 | 378.0501
0.0000 | 592.9113
0.0000 | 894.7330
1.0000 | 1185.7235
1.0000 | 1434.3878
1.0000 | | | Space heating | kWh | | 407.2236 | | 57.8054 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | 692.5652 | (98) | | Space heating
Space heating | per m2 | | | | | | | | | (98 |) / (4) = | 3256.9406
32.8984 | | | 8c. Space cool | ing requir | ement | | | | | | | | | | | | | Not applicable | 9a. Energy rec | | | | | cluding micr | | | | | | | | | Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.12r02 #### CALCULATION OF TARGET EMISSIONS 09 Jan 2014 | Fraction of space heat from sec
Fraction of space heat from main
Efficiency of main space heating
Efficiency of secondary/supplement
Space heating requirement | system(s)
system 1 (in | %) | m (Table 11 |) | | | | | | 0.0000
1.0000
93.4000
0.0000
3487.0884 | (202)
(206)
(208) | |---|---------------------------|-------------|-------------|---------------------|------------|--|----------|--|----------|--|--| | Jan Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating requirement 677.5323 521.18 Space heating efficiency (main h | | 191.3945 | 57.8054 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 231.8469 | 477.3834 | 692.5652 | (98) | | 93.4000 93.40
Space heating fuel (main heating | 93.4000 | 93.4000 | 93.4000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 93.4000 | 93.4000 | 93.4000 | (210) | | 725.4093 558.03 | | 204.9192 | 61.8901 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 248.2301 | 511.1171 | 741.5045 | (211) | | 0.0000 0.00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating | | | | | | | | | | | | | Water heating requirement 212.5185 187.32 | 196.7689 | 174.9852 | 169.4165 | 149.2126 | 142.9570 | 159.3636 | 161.1236 | 182.9515 | 193.3953 | 207.4207 | | | Efficiency of water heater (217)m 87.7642 87.49 | | 85.2772 | 82.6491 | 80.3000 | 80.3000 | 80.3000 | 80.3000 | 85.6486 | 87.2365 | 80.3000
87.8533 | | | Fuel for water heating, kWh/mont
242.1470 214.13
Water heating fuel used | | 205.1957 | 204.9828 | 185.8189 | 178.0287 | 198.4603 | 200.6520 | 213.6072 | 221.6909 | 236.0990
2527.3793 | | | Annual totals kWh/year
Space heating fuel - main system
Space heating fuel - secondary | n | | | | | | | | |
3487.0884
0.0000 | | | Electricity for pumps and fans:
central heating pump
main heating flue fan
Total electricity for the above,
Electricity for lighting (calculated)
Total delivered energy for all u | ated in Append | lix L) | | | | | | | | 30.0000
45.0000
75.0000
413.8547
6503.3224 | (230e)
(231)
(232) | | 12a. Carbon dioxide emissions - | Individual hea | ting system | s including | micro-CHP | | | | | | | | | Space heating - main system 1
Space heating - secondary
Water heating (other fuel)
Space and water heating | | | | | | Energy
kWh/year
3487.0884
0.0000
2527.3793 | | ion factor
kg CO2/kWh
0.2160
0.0000
0.2160 | ļ | Emissions cg CO2/year 753.2111 0.0000 545.9139 1299.1250 | (263)
(264)
(265) | | Pumps and fans Energy for lighting Total CO2, kg/m2/year Emissions per m2 for space and v Fuel factor (mains gas) Emissions per m2 for lighting Emissions per m2 for pumps and : Target Carbon Dioxide Emission I | ans | 3.1225 * 1. | 00) + 2.169 | 6 + 0.3932 , | rounded to | 75.0000
413.8547 | | 0.5190
0.5190 | | 38.9250
214.7906
1552.8406
13.1225
1.0000
2.1696
0.3932
15.6900 | (268)
(272)
(272a)
(272b)
(272c) | | Property Reference | E909-03 | | | | Issued on Date | 11/05/2020 | |---------------------------|---|--------|---|---------------|----------------|------------| | Assessment | E909-03 | | | Prop Type Ref | | | | Reference | | | | | | | | Property | Flat 3, 1 Hillfield Road, N\ | W6 1QD | | | | | | SAP Rating | | 83 B | DER | 17.15 | TER | 18.60 | | Environmental | | 89 B | % DER <ter< th=""><th></th><th>7.78</th><th></th></ter<> | | 7.78 | | | CO₂ Emissions (t/yea | r) | 0.76 | DFEE | 36.57 | TFEE | 42.32 | | General Requiremen | ts Compliance | Pass | % DFEE <tfe< th=""><th>E</th><th>13.60</th><th></th></tfe<> | E | 13.60 | | | | Mr. Jason Doherty, Doherty E
ason@doherty-energy.co.uk | 0, | l, Tel: 0148045 | 1569, | Assessor ID | L143-0001 | | Client | | | | | | | ### REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England | REGULATIONS COM | PLIANCE REPORT - Approve | ed Document L1A, 2013 Edi | ition, England | | |---|---|--|--------------------|-------------------------------| | DWELLING AS DES | IGNED | | | | | Ground-floor fl | at, total floor area 50 | m² | | | | It is not a com | ers items included with | ons compliance. | | | | 1a TER and DER | | | | | | Fuel factor:1.0
Target Carbon D | eating:Mains gas
0 (mains gas)
Dioxide Emission Rate (TR
Dioxide Emission Rate | | | | | | | | | | | Target Fabric E
Dwelling Fabric | nergy Efficiency (TFEE) | E)36.6 kWh/m²/yrOK | | | | 2 Fabric U-valu | es | | | | | Enternal mall | 0 16 (mass 0 30) | Highest
0.16 (max. 0.70) | OK | | | Party wall | | - | OK | | | Floor | 0.13 (max. 0.25) | 0.13 (max. 0.70) | OK
OK | | | Openings | 0.09 (max. 0.20)
1.09 (max. 2.00) | 1.20 (max. 3.30) | OK | | | 2a Thermal brid | ging | -specified y-value of 0.0 | | | | | | | | | | 3 Air permeabil
Air permeabilit | ity
y at 50 pascals: | 3.00 (design value) | | | | Maximum | | 10.0 | | OK | | 4 Heating effic
Main heating sy
Data from datab | iency
stem: | Boiler system with radi | iators or underflo | or - Mains gas | | Vaillant ecoTEC
Combi boiler | pro 24 VUW 246/5-3 (H-0 | GB) R6 | | | | Efficiency: 89.
Minimum: 88.0% | 5% SEDBUK2009 | OK | | | | Secondary heati | ng system: | None | | | | 5 Cylinder insu
Hot water stora | lation
ge | No cylinder | | | | 6 Controls | | | | | | Space heating c | controls: | Time and temperature zo | one control | OK | | Hot water contr | ols: | No cylinder | | | | Boiler interloc | k | Yes | | OK | | 7 Low energy li | | | | | | | ixed lights with low-end | ergy fittings:100%
75% | | OK | | | | | | | | 8 Mechanical ve
Continuous supp
Specific fan po | ly and extract system | 0.66 | | | | Maximum | wer. | 0.66
1.5 | | OK | | MVHR efficiency
Minimum: | : | 90%
70% | | OK | | | | Medium | | 0к | | Based on:
Overshading: | | Average | | | | Windows facing | | 2.88 m², No overhang | | | | Windows facing
Windows facing | | 4.65 m ² , No overhang
3.52 m ² , No overhang | | | | Air change rate | | 4.00 ach | | | | Blinds/curtains | : | | | closed 100% of daylight hours | | 10 Key features | | | | | | Party wall U-va | lue | 0.00 W/m²K | | | | Roof U-value
Door U-value | | 0.09 W/m ² K
0.55 W/m ² K | | | | Air permeabilit | У | 3.0 m ³ /m ² h | | | | | | | | | | CALCULATION C | F DWELLIN | IG EMISSI | ONS FOR | REGULAT | IONS CC | MPLIAN | ICE 09 | Jan 2014 | | | | | |---|-----------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------------|-----------------------|-------------------------|----------------------------------|----------------------------|----------------------| | SAP 2012 WORKSHEET FO | OP New Build (Z | ue Designed) | (Version | 9.92, Januar | | | | | | | | | | CALCULATION OF DWELL | NG EMISSIONS E | FOR REGULATION | ONS COMPLIAN | ICE 09 J | an 2014) | 1. Overall dwelling o | | | | | | | Area | Stor | ey height | | Volume | | | Ground floor | | | | | | | (m2)
50.0000 | | (m)
2.4000 | (2b) = | (m3) | (1b) - (3b | | Total floor area TFA
Dwelling volume | = (1a)+(1b)+(1 | .c) + (1d) + (1e) |)(1n) | 5 | 0.000 | | (| 3a)+(3b)+(3c) | +(3d)+(3e) | (3n) = | 120.0000 | (4)
(5) | | | | | | | | | | | | | | | | 2. Ventilation rate | | | | | | | | | | | | | | | | | | main
heating | | econdary
heating | | other | tota | al m | n3 per hour | | | Number of chimneys
Number of open flues | | | | 0 0 | ++ | 0 | ++ | 0 = | | 0 * 40 =
0 * 20 = | 0.0000 | | | Number of intermitter
Number of passive ver
Number of flueless ga | nts | | | | | | | | | 0 * 10 =
0 * 10 =
0 * 40 = | 0.0000
0.0000
0.0000 | (7b) | | Number of fideress ga | is illes | | | | | | | | | | es per hour | (70) | | Infiltration due to o
Pressure test
Measured/design AP50 | chimneys, flues | and fans | = (6a)+(6b) | +(7a)+(7b)+(| (7c) = | | | | 0.0000 | / (5) = | 0.0000
Yes
3.0000 | | | Infiltration rate
Number of sides shelt | ered | | | | | | | | | | 0.1500 | | | Shelter factor
Infiltration rate ad- | insted to incl | ide shelter | factor | | | | | (20) = 1 - | [0.075 x
1) = (18) : | | 0.9250
0.1388 | | | | | | | | | | | | | | | \ / | | Wind speed 5.10
Wind factor 1.2 | | Mar
4.9000
1.2250 | Apr
4.4000
1.1000 | May
4.3000
1.0750 | Jun
3.8000
0.9500 | Jul
3.8000
0.9500 | Aug
3.7000
0.9250 | | 0ct
4.3000
1.0750 | Nov
4.5000
1.1250 | Dec
4.7000
1.1750 | | | Adj infilt rate 0.17 | 769 0.1734 | 0.1700 | 0.1526 | 0.1492 | 0.1318 | 0.1318 | 0.1283 | | 0.1492 | 0.1561 | 0.1630 | | | Balanced mechanical
If mechanical ventila
If balanced with heat | ation: | | - | or in-use fa | ctor (from | n Table 4h) | = | | | | 0.5000
76.5000 | | | Effective ac 0.29 | | 0.2875 | 0.2701 | 0.2667 | 0.2493 | 0.2493 | 0.2458 | 0.2563 | 0.2667 | 0.2736 | 0.2805 | | | | | | | | | | | | | | | | | 3. Heat losses and he | | | | | | | | | | | | | | Element | | | Gross | Openings | Net | Area | U-value | Ах | | -value | AxK | | | Door
Window (Uw = 1.20) | | | m2 | m2 | 2. | m2
.3000
.0500 | W/m2K
0.5500
1.1450 | W/
1.265
12.652 | 0 | kJ/m2K | kJ/K | (26)
(27) | | Heat Loss Floor 1
External Wall 1 | | | 74.0000 | 13.3500 | 19.
60. | .3000
.6500 | 0.1300
0.1600 | 2.509
9.704 | 0 | | | (28a)
(29a) | | External Roof 1
Total net area of ext
Fabric heat loss, W/F | | | 4.0000 | | | .0000
.3000
(26)(| 0.0900 | 0.360 | | | | (30)
(31)
(33) | | Party Wall 1
Party Floor 1 | | | | | 30. | .2000
.7000 | 0.0000 | 0.000 | 0 | | | (32)
(32d) | | Party Ceilings 1 Thermal mass parameter | er (TMP = Cm / | TFA) in kJ/r | n2K | | 40. | .0000 | | | | | 125.0000 | (32b)
(35) | | Thermal bridges (User
Total fabric heat los | | e 0.060 * tot | tal exposed | area) | | | | | (33) | + (36) = | 5.8380
32.3287 | | | Ventilation heat loss
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | (38)m 11.65
Heat transfer coeff
43.98 | | 11.3838 | 10.6970
43.0256 | 10.5596 | 9.8728 | 9.8728 | 9.7354
42.0641 | 10.1475
42.4762 | 10.5596 | 10.8343 | 11.1090
43.4377 | | | Average = Sum(39)m / | | W | 2 | Maria | · · · · | 71 | | 0 | 0-4 | N | 42.9913 | (39) | | HLP (average) | Feb
0.8770 | Mar
0.8742 | Apr
0.8605 | May
0.8578 | Jun
0.8440 | Jul
0.8440 | Aug
0.8413 | Sep
0.8495 | Oct
0.8578 | Nov
0.8633 | Dec
0.8688
0.8598 | | | Days in month | 31 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | | (41) | | | | | | | | | | | | | | | | 4. Water heating ener | ray requirement | | | | | | | | | | | | | Assumed occupancy | | | | | | | | | | | 1.6901 | | | Average daily hot wat | er use (litres
Feb | s/day)
Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | 74.3399
Dec | (43) | | Daily hot water use 81.77 | 739 78.8003 | 75.8267 | 72.8531 | 69.8795 | 66.9059 | 66.9059 | 69.8795 | 72.8531 | 75.8267 | 78.8003 | 81.7739 | | | Energy content (annual | | 109.4465 | 95.4181 | 91.5560 | 79.0058 | 73.2105 | 84.0101 | 85.0135 | | | 117.4419
1169.6560 | | | | ION OF L | OWELLIN | G EMISSI | ONS FOR | R REGULA | TIONS CO | OMPLIAN | ICE 09 | Jan 2014 | ļ | | | |
--|--|--|--|---|--|---|---|--|--|---|--|--|--| | istribution : | loss (46)m
18.1902 | | 45)m
16.4170 | 14.3127 | 13.7334 | 11.8509 | 10.9816 | 12.6015 | 12.7520 | 14.8613 | 16.2222 | 17.6163 | (46) | | ater storage
stal storage | loss:
loss | | | | | | | | | | | | , ., | | f cylinder co | 0.0000
ontains dedi
0.0000 | 0.0000
icated sola
0.0000 | 0.0000
r storage
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | ombi loss
otal heat red | 41.6711 | 36.2697 | 38.6405 | 35.9276 | 35.6098 | 32.9947 | 34.0945 | 35.6098 | 35.9276 | 38.6405 | 38.8604 | 41.6711 | | | olar input | | | 148.0870
0.0000 | | | 112.0005 | 107.3050 | 119.6200
0.0000 | 0.0000 | 0.0000 | 147.0086 | 159.1130 | (63) | | utput from w | | 142.3318 | 148.0870 | 131.3457 | 127.1658 | 112.0005 | 107.3050 | 119.6200 | 120.9410 | months) = S | 147.0086 | | (64) | | eat gains fro | | ating, kWh/:
44.3331 | | 40.7084 | 39.3448 | 34.5181 | 32.8661 | Total po | er year (kW
37.2489 | h/year) = S
42.6026 | um (64) m = 45.6744 | 1615.5732
49.4672 | | | | | | | | | | | | | | | | | | . Internal ga | | | | | | | | | | | | | | | etabolic gair | ns (Table 5)
Jan | , Watts
Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | 56)m
ighting gains | 84.5050 | | 84.5050 | 84.5050 | 84.5050 | 84.5050 | 84.5050 | 84.5050 | 84.5050 | 84.5050 | 84.5050 | 84.5050 | (66 | | opliances ga: | 13.1288 | 11.6608 | 9.4832 | 7.1794 | 5.3667 | 4.5308 | | 6.3636 | 8.5412 | 10.8450 | 12.6577 | 13.4936 | (67 | | ooking gains | 147.2339
(calculated | 148.7618
d in Append | 144.9117
lix L, equat: | 136.7153
ion L15 or | 126.3689
L15a), also | 116.6447
see Table | 110.1484
5 | 108.6205 | 112.4706 | 120.6670 | 131.0134 | 140.7376 | | | umps, fans | 31.4505
3.0000 | 31.4505
3.0000 | 3.0000 | 3.0000 | 31.4505
3.0000 | | osses e.g. e | -67.6040 | -67.6040 | -67.6040 | | -67.6040 | -67.6040 | -67.6040 | -67.6040 | -67.6040 | -67.6040 | -67.6040 | -67.6040 | (71 | | ater heating | 68.1982 | le 5)
65.9718 | 61.8966 | 56.5395 | 52.8828 | 47.9418 | 44.1749 | 49.5105 | 51.7345 | 57.2615 | 63.4366 | 66.4882 | (72 |
 otal internal | | 277.7459 | 267.6431 | 251.7857 | 235.9699 | 220.4689 | 210.5705 | 215.8462 | 224.0979 | 240.1250 | 258.4593 | 272.0709 | (73 | | . Solar gains | S | | | | | | | | | | | | | | Jan] | | | A: | rea
m2 | Solar flux
Table 6a | | g | Specific | FF | Acce | | Gains
W | | | | | | | | W/m2 | or ' | Table 6b | or Tab | | fact
Table | | | | | ast
outh
est | | | |
800
500 | W/m2 | or ' | Table 6b | or Tab:
0
0 | | | 00
00 | 19.7562
75.9307
24.1465 | (76
(78 | | ast
outh | | 210.2379 | 2.8 | 800
500
200
385.3108 | W/m2
19.6403
46.7521
19.6403 | or ' | Table 6b
0.7200
0.7200
0.7200
0.7200
421.7991 | or Tab. | le 6c
.7000
.7000 | Table
0.77
0.77
0.77 | 00
00 | 19.7562
75.9307 | (76)
(78)
(80) | | ast outh est olar gains otal gains . Mean intern | 119.8334
399.7458 | 210.2379
487.9839 | 2.8
4.6
3.5
299.8432
567.4862 | 385.3108
637.0965 | W/m2
19.6403
46.7521
19.6403
439.3646
675.3345 | 438.3288
658.7977 | 0.7200
0.7200
0.7200
0.7200
0.7200
421.7991
632.3696 | or Tab. | le 6c
.7000
.7000
.7000
.7000 | Table
0.77
0.77
0.77 | 6d
00
00
00
144.7453 | 19.7562
75.9307
24.1465 | (76)
(78)
(80) | | ast outh est olar gains otal gains . Mean inter emperature di | 119.8334
399.7458
anal temperat | 210.2379
487.9839
Lure (heati | 2.8
4.6
3.5
299.8432
567.4862 | 385.3108
637.0965 | W/m2 19.6403 46.7521 19.6403 439.3646 675.3345 | 438.3288
658.7977 | 0.7200
0.7200
0.7200
0.7200
0.7200
421.7991
632.3696 | or Tab. | le 6c
.7000
.7000
.7000
.7000 | Table
0.77
0.77
0.77 | 6d
00
00
00
144.7453 | 19.7562
75.9307
24.1465 | (76
(78
(80
(83
(84 | | outh outh est clar gains otal gains . Mean inter emperature di tilisation fe | 119.8334
399.7458
anal temperat | 210.2379
487.9839
Lure (heati | 2.8
4.6
3.5
299.8432
567.4862 | 385.3108
637.0965 | W/m2 19.6403 46.7521 19.6403 439.3646 675.3345 om Table 9, 1 Table 9a) May | 438.3288
658.7977 | 0.7200
0.7200
0.7200
0.7200
421.7991
632.3696 | or Tab. | le 6c
.7000
.7000
.7000
.7000 | Table
0.77
0.77
0.77 | 6d
00
00
00
144.7453 | 19.7562
75.9307
24.1465
101.7146
373.7855 | (76
(78
(80
(83
(84 | | ast outh est olar gains otal gains . Mean inter emperature di tilisation fa au lipha | 119.8334
399.7458
all temperaturing heating
actor for general Jan
39.4686
3.6312 | 210.2379
487.9839
 | 2.8
4.6
3.5
299.8432
567.4862
in the living area, 19 Mar
39.7166
3.6478 | 385.3108
637.0965
ang area fro
nil, m (see
Apr
40.3506
3.6900 | W/m2 19.6403 46.7521 19.6403 439.3646 675.3345 om Table 9, 7 Table 9a) May 40.4799 3.6987 | 438.3288
658.7977
Chl (C)
Jun
41.1387
3.7426 | Jul
41.1387
3.7426 | or Tab. 0 0 0 381.9935 597.8397 Aug 41.2730 3.7515 | Sep
40.87248 | Table 0.77 0.77 0.77 236.0359 476.1609 | Nov
40.2222
3.6815 | 19.7562
75.9307
24.1465
101.7146
373.7855
21.0000
Dec
39.9678
3.6645 | (76
(78
(80
(83
(84 | | outh outh est clar gains otal gains . Mean inter emperature ditilisation fe au lpha til living an | 119.8334
399.7458
al temperaturing heating
actor for ga
Jan
39.4686
3.6312
rea
0.9468 | 210.2379
487.9839
ure (heati
ng periods
ains for li
Feb
39.5922
3.6395
0.9018 | 2.8
4.6
3.5
299.8432
567.4862
 | 385.3108
637.0965
ag area fro
nil, m (see
Apr
40.3506
3.6900
0.7013 | W/m2 19.6403 46.7521 19.6403 439.3646 675.3345 om Table 9, 1 Table 9a) May 40.4799 3.6987 0.5530 | 438.3288
658.7977
Ph1 (C)
Jun
41.1387
3.7426
0.4012 | Jul
41.1387
3.7426
0.2915 | or Tab. 0 0 0 381.9935 597.8397 Aug 41.2730 3.7515 0.3205 | Sep
40.8726
3.7248
0.5045 | Table 0.77 0.77 0.77 236.0359 476.1609 Oct 40.4799 3.6987 0.7607 | Nov
40.2222
3.6815
0.900 | 19.7562
75.9307
24.1465
101.7146
373.7855
21.0000
Dec
39.9678
3.6645
0.9560 | (766
(78
(800
(833
(844
(855 | | ast outh cest out of the control | 119.8334
399.7458
anal temperat
ruring heatir
actor for garactor g | 210.2379
487.9839
 | 2.8
4.6
3.5
299.8432
567.4862
in the living area, 19 Mar
39.7166
3.6478 | 385.3108
637.0965
ag area fr
nil,m (see
Apr
40.3506
3.6900
0.7013 | W/m2 19.6403 46.7521 19.6403 439.3646 675.3345 m Table 9, 1 Table 9a) May 40.4799 3.6987 0.5530 20.9134 | 438.3288
658.7977
Chl (C)
Jun
41.1387
3.7426 | Jul
41.1387
3.7426 | or Tab. 0 0 0 381.9935 597.8397 Aug 41.2730 3.7515 0.3205 20.9935 | Sep
40.87248 | Table 0.77 0.77 0.77 236.0359 476.1609 Oct 40.4799 3.6987 0.7607 20.7146 | Nov
40.222
3.6815
0.9101
20.2078 | 19.7562
75.9307
24.1465
101.7146
373.7855
21.0000
Dec
39.9678
3.6645
0.9560
19.7363 | (76
(78
(80
(84
(85 | | ast outh esst outh esst olar gains otal gains otal gains . Mean intermemperature ditilisation for au lpha till living an IT h 2 till rest of h | 119.8334
399.7458
al temperat-
uring heating
actor for ga
Jan
39.4686
3.6312
rea
0.9468
19.7959
20.1848
house
0.9391 | 210.2379
487.9839
2000 (heating periods aims for life periods aims for life periods aims for life periods and are life periods and life periods and life periods are life periods and life periods and life periods are life periods are life periods are life periods and life periods are ar | 2.8
4.6
3.5
299.8432
567.4862
ng season) in the livir
ving area, 1
Mar
39.7166
3.6478
0.8260
20.4407
20.1894
0.8052 | 385.3108
637.0965
ang area fromil,m (see Apr 40.3506 3.6900 0.7013 20.7488 20.2012 0.6704 | W/m2 19.6403 46.7521 19.6403 439.3646 675.3345 mm Table 9, 1 Table 9a) May 40.4799 3.6987 0.5530 20.9134 20.2035 0.5131 | 438.3288
658.7977
Th1 (C)
Jun
41.1387
3.7426
0.4012
20.9803
20.2153
0.3547 | Jul
41.1387
3.7426
0.2915
20.9954
20.2153 | or Tab. 0 0 0 381.9935 597.8397 Aug 41.2730 3.7515 0.3205 20.9935 20.2177 0.2672 | Sep 40.8726 3.7248 0.5045 20.9537 20.2106 0.4533 | Table 0.77 0.77 0.77 236.0359 476.1609 Oct 40.4799 3.6987 0.7607 20.7146 20.2035 0.7268 | Nov
40.2222
3.6815
0.2078
20.2078
20.1988
0.8960 | 19.7562
75.9307
24.1465
101.7146
373.7855
21.0000
Dec
39.9678
3.6645
0.9560
19.7363
20.1941
0.9495 | (76
(78
(80
(83
(84
(85
(86
(87
(88
(89 | | ast outh esst olar gains otal gains . Mean intern emperature ditilisation fa au lpha til living an IT h 2 til rest of h IT 2 iving area fi | 119.8334
399.7458
anal temperaturing heating and an | 210.2379
487.9839
487.9839
20.200
20.1000
20.1871
0.8889
19.0144 | 2.8i 4.6i 3.5i 299.8432 567.4862 ng season) in the livin ving area, 1 Mar 39.7166 3.6478 0.8260 20.4407 20.1894 0.8052 19.4875 | 385.3108
637.0965
ag area frc
nil,m (see
Apr
40.3506
3.6900
0.7013
20.7488
20.2012
0.6704
19.9065 | W/m2 19.6403 46.7521 19.6403 439.3646 675.3345 om Table 9, 7 Table 9a) May 40.4799 3.6987 0.5530 20.9134 20.2035 0.5131 20.1128 | 438.3288
658.7977
2h1 (C)
Jun
41.1387
3.7426
0.4012
20.9803
20.2153
0.3547
20.1986 | Jul
41.1387
3.7426
0.2915
20.9954
20.2125 | aug 41.2730 3.7515 0.3205 20.9935 20.2177 0.2672 20.2134 | Sep 40.8726 3.7248 0.5045 20.9537 20.2106 0.4533 20.1685 fla | Table 0.77 0.77 0.77 0.77 236.0359 476.1609 Oct 40.4799 3.6987 0.7607 20.7146 20.2035 0.7268 19.8752: Living are | Nov
40.2222
3.6815
0.9101
20.2078
20.1988
0.8960
19.1825
a / (4) = | 19.7562
75.9307
24.1465
101.7146
373.7855
21.0000
Dec
39.9678
3.6645
0.9560
19.7363
20.1941
0.9495
18.5051
0.5580 | (76
(78
(80
(83
(84
(85
(85
(86
(87
(88
(89
(90) | | ast
outh
est
olar
olar gains | 119.8334
399.7458
al temperat
uring heatin
actor for ge
Jan
39.4686
3.6312
rea
0.9468
19.7959
20.1848
house
0.9391
18.5835
raction
19.2600
djustment | 210.2379
487.9839
2000 (heating periods aims for life periods aims for life periods aims for life periods and are life periods and life periods and life periods are life periods and life periods and life periods are life periods are life periods are life periods and life periods are ar | 2.8
4.6
3.5
299.8432
567.4862
ng season) in the livir
ving area, 1
Mar
39.7166
3.6478
0.8260
20.4407
20.1894
0.8052 | 385.3108
637.0965
ang area fromil,m (see Apr 40.3506 3.6900 0.7013 20.7488 20.2012 0.6704 | W/m2 19.6403 46.7521 19.6403 439.3646 675.3345 mm Table 9, 1 Table 9a) May 40.4799 3.6987 0.5530 20.9134 20.2035 0.5131 | 438.3288
658.7977
Th1 (C)
Jun
41.1387
3.7426
0.4012
20.9803
20.2153
0.3547 | Jul
41.1387
3.7426
0.2915
20.9954
20.2153 | or Tab. 0 0 0 381.9935 597.8397 Aug 41.2730 3.7515 0.3205 20.9935 20.2177 0.2672 | Sep 40.8726 3.7248 0.5045 20.9537 20.2106 0.4533 20.1685 | Table 0.77 0.77 0.77 236.0359 476.1609 Oct 40.4799 3.6987 0.7607 20.7146 20.2035 0.7646 20.2035 1.8752 2.Living are 20.3436 | Nov
40.2222
3.6815
0.9101
20.2078
20.1988
0.8960
19.1825 | 19.7562
75.9307
24.1465
101.7146
373.7855
21.0000
Dec
39.9678
3.6645
0.9560
19.7363
20.1941
0.9495
18.5051
0.5580
19.1921
0.0000 | (76
(78
(80)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(91)
(92) | | olar gains stal |
119.8334
399.7458
anal temperat
uring heating
actor for ga
Jan
39.4686
3.6312
rea
0.9468
19.7959
20.1848
house
0.9391
18.5835
raction
19.2600
djustment
19.2600 | 210.2379 487.9839 Lure (heati | 2.8i 4.6i 3.5: 299.8432 567.4862 ng season) in the livinying area, 1 Mar 39.7166 3.6478 0.8260 20.4407 20.1894 20.0194 20.0194 | 385.3108
637.0965
area fromil,m (see Apr 40.3506 3.6900 0.7013 20.7488 20.2012 0.6704 19.9065 20.3765 | W/m2 19.6403 46.7521 19.6403 439.3646 675.3345 Table 9, 1 Table 9a) May 40.4799 3.6987 0.5530 20.9134 20.2035 0.5131 20.1128 20.5596 | 438.3288
658.7977
Ch1 (C)
Jun
41.1387
3.7426
0.4012
20.9803
20.2153
0.3547
20.1986
20.6348
20.6348 | Jul 41.1387 3.7426 0.2915 20.9494 20.2125 20.6494 20.6494 | or Tab 0 0 0 381.9935 597.8397 Aug 41.2730 3.7515 0.3205 20.9935 20.2177 0.2672 20.2134 20.6487 | Sep 40.8726 3.7248 0.5045 20.9537 20.2106 0.4533 20.1685 fLA = 20.6067 | Table 0.77 0.77 0.77 236.0359 476.1609 Oct 40.4799 3.6987 0.7607 20.7146 20.2035 0.7646 20.2035 1.8752 2.Living are 20.3436 | Nov
40.2222
3.6815
0.9101
20.2078
20.1988
0.8960
19.1825
a / (4) =
19.7546 | 19.7562
75.9307
24.1465
101.7146
373.7855
21.0000
Dec
39.9678
3.6645
0.9560
19.7363
20.1941
0.9495
18.5051
0.5580
19.1921
0.0000 | (76
(78
(80)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(91)
(92) | | obth sest colar gains gai | 119.8334 399.7458 nal temperat uring heatir actor for ga Jan 39.4686 3.6312 rea 0.9468 19.7959 20.1848 house 0.9391 8.5835 raction 19.2600 djustment 19.2600 | 210.2379
487.9839
200.000
200.1871
0.8889
19.6202
19.6202 | 2.8i 4.6i 3.5: 299.8432 567.4862 ing season) in the livin ving area, 1 Mar 39.7166 3.6478 0.8260 20.4407 20.1894 0.8052 19.4875 20.0194 20.0194 | 385.3108
637.0965
385.3108
637.0965
ang area frc
nil,m (see
Apr
40.3506
3.6900
0.7013
20.7488
20.2012
0.6704
19.9065
20.3765 | W/m2 19.6403 46.7521 19.6403 439.3646 675.3345 m Table 9a) May 40.4799 3.6987 0.5530 20.9134 20.2035 0.5131 20.1128 20.5596 20.5596 | 438.3288
658.7977
201.1387
3.7426
0.4012
20.9803
20.2153
0.3547
20.1986
20.6348
20.6348 | Jul
41.1387
3.7426
0.2915
20.9954
20.2125
20.6494
20.6494 | or Tab. 0 0 0 0 381.9935 597.8397 Aug 41.2730 3.7515 0.3205 20.9935 20.2177 0.2672 20.2134 20.6487 20.6487 | Sep 40.8726 3.7248 0.5045 20.9537 20.2106 0.4533 20.1685 fLA = 20.6067 | Table 0.77 0.77 0.77 236.0359 476.1609 Oct 40.4799 3.6987 0.7607 20.7146 20.2035 0.7646 20.2035 1.8752 2.Living are 20.3436 | Nov
40.2222
3.6815
0.9101
20.2078
20.1988
0.8960
19.1825
a / (4) =
19.7546 | 19.7562
75.9307
24.1465
101.7146
373.7855
21.0000
Dec
39.9678
3.6645
0.9560
19.7363
20.1941
0.9495
18.5051
0.5580
19.1921
0.0000 | (76
(78
(80)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(91)
(92) | | ast outh session of a sest outh session of a sest out of a session of a sest out out out out out out out out out ou | 119.8334
399.7458
anal temperat
uring heatir
actor for gard
Jan
39.4686
3.6312
rea
0.9468
19.7959
20.1848
house
0.9391
18.5835
raction
19.2600
djustment
19.2600 | 210.2379
487.9839
ure (heati
ng periods
sins for li
Feb
39.5922
3.6395
0.9018
20.1801
0.8889
19.0144
19.6202
19.6202 | 2.8i 4.6i 3.5: 299.8432 567.4862 ng season) in the livinying area, 1847 39.7166 3.6478 0.8260 20.4407 20.1894 20.0194 Mar | 385.3108
637.0965
area fromil,m (see Apr 40.3506 3.6900 0.7013 20.7488 20.2012 0.6704 19.9065 20.3765 | W/m2 19.6403 46.7521 19.6403 439.3646 675.3345 Table 9, 7 Table 9a) May 40.4799 3.6987 0.5530 20.9134 20.2035 0.5131 20.1128 20.5596 | 438.3288
658.7977
Ch1 (C)
Jun
41.1387
3.7426
0.4012
20.9803
20.2153
0.3547
20.1986
20.6348
20.6348 | Jul 41.1387 3.7426 0.2915 20.9494 20.2125 20.6494 Jul Jul | Or Tab O 0 O 0 381.9935 597.8397 Aug 41.2730 3.7515 0.3205 20.9177 0.2672 20.2134 20.6487 Aug Aug | Sep 40.8726 3.7248 0.5045 20.9537 20.2106 0.4533 20.1685 fLA = 20.6067 | Table 0.77 0.77 0.77 0.77 0.77 236.0359 476.1609 Oct 40.4799 3.6987 0.7607 20.7146 20.2035 0.7268 19.8752 Living are 20.3436 20.3436 | Nov
40.2222
3.6815
0.9101
20.2078
20.1988
0.8960
19.1825
a / (4) = 19.7546 | 19.7562 75.9307 24.1465 101.7146 373.7855 21.0000 Dec 39.9678 3.6645 0.9560 19.7363 20.1941 0.9495 18.5051 0.0580 19.1921 0.0000 19.1921 | (76
(78
(80
(83
(84
(85
(86
(87
(88
(89
(90
(91
(92
(93 | | ast buth sest outh sest outh sest of a gains otal gains of a gains of a gains out gain of a gains out gain of a gains out gain of a gains out | 119.8334
399.7458
al temperat
uring heatin
actor for ge
Jan
39.4686
33.6312
rea
0.9468
19.7959
20.1848
house
0.9391
18.5835
raction
19.2600
dijustment
19.2600
ing requirem
Jan
0.9287
371.2316 | 210.2379
487.9839
20.204
20.1000
20.1871
0.8889
19.0444
19.6202
19.6202 | 2.8i 4.6i 3.5i 299.8432 567.4862 ng season) in the livin ving area, 1 Mar 39.7166 3.6478 0.8260 20.4407 20.1894 0.8052 19.4875 20.0194 20.0194 | 385.3108
637.0965
385.3108
637.0965
385.3108
637.0965
20.3765
20.3765
20.3765
20.3765 | W/m2 19.6403 46.7521 19.6403 439.3646 675.3345 om Table 9, 1 Table 9a) May 40.4799 3.6987 0.5530 20.9134 20.2035 0.5131 20.1128 20.5596 20.5596 | 438.3288
658.7977
2th1 (C)
Jun
41.1387
3.7426
0.4012
20.9803
20.2153
0.3547
20.1986
20.6348
20.6348 | Jul
41.1387
3.7426
0.2915
20.9954
20.2125
20.6494
20.6494
Jul
0.2688
169.9557 | or Tab. 0 0 0 381.9935 597.8397 Aug 41.2730 3.7515 0.3205 20.9935 20.2177 0.2672 20.2134 20.6487 20.6487 | Sep 40.8726 3.7248 0.5045 20.9537 20.2106 0.4533 20.1685 20.6067 20.6067 | Table 0.77 0.77 0.77 0.77 236.0359 476.1609 Oct 40.4799 3.6987 0.7607 20.7146 20.2035 0.7268 19.8752 Living are 20.3436 20.3436 | Nov
40.2222
3.6815
0.9101
20.2078
20.1988
0.8960
19.1825
a/(4) = 19.7546
19.7546 | 19.7562 75.9307 24.1465 101.7146 373.7855 21.0000 Dec 39.9678 3.6645 0.9560 19.7363 20.1941 0.9495 18.5051 0.5580 19.1921 0.0000 19.1921 | (76
(78
(80
(83
(84
(85
(86
(87
(88
(89
(90
(91
(92
(93 | | ast buth the polar gains stal gains stal gains stal gains stal gains. Mean intermediate stal gains and place stal gains are stal gains at temp. | 119.8334
399.7458
al temperat
uring heatin
actor for ge
Jan
39.4686
19.7959
20.1848
house
0.9391
18.5835
raction
19.2600
dijustment
19.2600
ing requirem
Jan
0.9287
371.2316
4.3000
e W | 210.2379 487.9839 Lure (heati ag periods ains for li Feb 39.5922 3.6395 0.9018 20.1000 20.1871 0.8889 19.0144 19.6202 19.6202 Peb 0.8787 428.7947 4.9000 | 2.8i 4.6i 3.5: 299.8432 567.4862 ng season) in the livin ving area, 1 Mar 39.7166 3.6478 0.8260 20.4407 20.1894 0.8052 19.4875 20.0194 20.0194 Mar 0.8005 454.2503 6.5000 | 385.3108
637.0965
ang area from fil, m (see Apr 40.3506 3.6900 0.7013 20.7488 20.2012 0.6704 19.9065 20.3765 20.3765 20.3765 | W/m2 19.6403 46.7521 19.6403 439.3646 675.3345 m Table 9, 7 Table 9a) May 40.4799 3.6987 0.5530 20.9134 20.2035 0.5131 20.1128 20.5596 May 0.5312 358.7422 11.7000 | 438.3288
658.7977
Ch1 (C)
Jun
41.1387
3.7426
0.4012
20.9803
20.2153
0.3547
20.1986
20.6348
20.6348 | Jul
421.7991
632.3696
Jul
41.1387
3.7426
0.2915
20.9954
20.2125
20.6494
20.6494
Jul
0.2688
169.9557
16.6000 | or Tab. 0 0 0 381.9935 597.8397 Aug 41.2730 3.7515 0.3205 20.9935 20.2177 0.2672 20.2134 20.6487 20.6487 Aug 0.2967 177.3622 16.4000 | Sep 40.8726 3.7248 0.5045 20.9537 20.2106 0.4533 20.1685 fLA = 20.6067 20.6067 | Table 0.77 0.77 0.77 0.77 236.0359 476.1609 Oct 40.4799 3.6987 0.7607 20.7146 20.2035 0.7868 19.8752 Living are 20.3436 20.3436 Oct 0.7331 349.0592 10.6000 | Nov
40.2222
3.6815
0.9101
20.2078
20.1988
0.8960
19.1825
a / (4) =
19.7546
19.7546 | 19.7562 75.9307 24.1465 101.7146 373.7855 21.0000 Dec 39.9678 3.6645 0.9560 19.7363 20.1941 0.9495 18.5051 0.5580 19.1921 0.0000 19.1921 | (76
(78
(80
(83
(84
(85
(85
(87
(88
(89
(90
(91
(92
(93
(94
(95
(96 | | ast outh eset outh eset outh eset outh eset out and gains otal gains out all gains emperature dutilisation for all gains are fill gains emperature and gusted MIT emperature and gusted MIT out out and gains with temp. eat loss rate est out to the gains with temp. eat loss rate est out to the gains with temp. eat loss rate est out to the gains with temp. eat loss rate | 119.8334
399.7458
 | 210.2379 487.9839 Lure (heati ag periods ains for li Feb 39.5922 3.6395 0.9018 20.1000 20.1871 0.8889 19.0144 19.6202 19.6202 Peb 0.8787 428.7947 4.9000 | 2.8i 4.6i 3.5i 299.8432 567.4862 ng season) in the livin ving area, 1 Mar 39.7166 3.6478 0.8260 20.4407 20.1894 0.8052 19.4875 20.0194 20.0194 | 385.3108
637.0965
385.3108
637.0965
area frc
nil,m (see
Apr
40.3506
3.6900
0.7013
20.7488
20.2012
0.6704
19.9065
20.3765
20.3765 | W/m2 19.6403 46.7521 19.6403 439.3646 675.3345 m Table 9, 7 Table 9a) May 40.4799 3.6987 0.5530 20.9134 20.2035 0.5131 20.1128 20.5596 May 0.5312 358.7422 11.7000 379.9708 | 438.3288
658.7977
Ch1 (C)
Jun
41.1387
3.7426
0.4012
20.9803
20.2153
0.3547
20.1986
20.6348
20.6348 | Jul
41.1387
3.7426
0.2915
20.9954
20.2125
20.6494
20.6494
Jul
0.2688
169.9557 | or Tab. 0 0 0 381.9935
597.8397 Aug 41.2730 3.7515 0.3205 20.9935 20.2177 0.2672 20.2134 20.6487 20.6487 Aug 0.2967 177.3622 16.4000 | Sep 40.8726 3.7248 0.5045 20.9537 20.2106 0.4533 20.1685 20.6067 20.6067 | Table 0.77 0.77 0.77 0.77 236.0359 476.1609 Oct 40.4799 3.6987 0.7607 20.7146 20.2035 0.7868 19.8752 Living are 20.3436 20.3436 Oct 0.7331 349.0592 10.6000 | Nov
40.2222
3.6815
0.9101
20.2078
20.1988
0.8960
19.1825
a/(4) = 19.7546
19.7546 | 19.7562 75.9307 24.1465 101.7146 373.7855 21.0000 Dec 39.9678 3.6645 0.9560 19.7363 20.1941 0.9495 18.5051 0.5580 19.1921 0.0000 19.1921 | (766
(788
(800)
(833)
(844)
(85)
(864)
(877)
(88)
(901)
(91)
(92)
(93)
(94)
(95)
(96)
(97) | 8c. Space cooling requirement Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.12r02 #### CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014 Not applicable 9a. Energy requirements - Individual heating systems, including micro-CHP Fraction of space heat from secondary/supplementary system (Table 11) Fraction of space heat from main system(s) Efficiency of main space heating system 1 (in %) Efficiency of secondary/supplementary heating system, % Space heating requirement 0.0000 (201) 1.0000 (202) 93.4000 (206) Feb Mar Apr May Jun J111 Aug Sep Oct Nov Dec 44.7855 15.7941 0.0000 51.2067 135.7383 223.1612 (98) 93.4000 93.4000 0.0000 93.4000 (210) 0.0000 0.0000 0.0000 93.4000 93.4000 Space heating fuel (main heating system) 228.4712 155.8990 108 108.9040 47.9502 16.9102 0.0000 0.0000 0.0000 0.0000 54.8251 145.3301 238.9307 (211) Water heating requirement 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (215) 0.0000 Water heating Water heating requirement 162.9394 142.3318 148.0870 131.3457 127.1658 112.0005 107.3050 119.6200 120.9410 137.7155 147.0086 159.1130 (64) 80.3000 (216) 80.3000 (216) Efficiency of water heater (217)m 85.7313 85.1085 84.1272 82.6479 81.3036 80.3000 (216) 85.9028 (217) Fuel for water heating, kWh/month 190.0583 167.2356 176.0274 158.9219 156.4086 Water heating fuel used 185.2244 (219) 1946.1245 (219) 139.4776 133.6302 148.9663 150.6115 166.3077 173.2548 Annual totals kWh/year Space heating fuel - main system Space heating fuel - secondary 997 2205 (211) Electricity for pumps and fans: (BalancedWithHeatRecovery, Database: in-use factor = 1.2500, SFP = 0.8250) mechanical ventilation fans (SFP = 0.8250) central heating pump 120.7800 (230a) 120.7800 (230a) 30.0000 (230c) 45.0000 (230e) 195.7800 (231) 231.8580 (232) 3370.9830 (238) main heating flue fan Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L) Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Energy Emission factor Emissions kWh/year 997.2205 kg CO2/kWh 0.2160 CO2/year 215.3996 (261) Space heating - main system 1 0.0000 (263) 420.3629 (264) 635.7625 (265) 101.6098 (267) 120.3343 (268) Space heating - secondary Water heating (other fuel) 1946.1245 0.2160 Space and water heating Pumps and fans Energy for lighting Total CO2, kg/year Dwelling Carbon Dioxide Emission Rate (DER) 857.7066 (272) 17.1500 (273) 16 CO2 EMISSIONS ASSOCIATED WITH APPLIANCES AND COOKING AND SITE-WIDE ELECTRICITY GENERATION TECHNOLOGIES 17.1500 ZC1 Total Floor Area 50.0000 1.6901 0.5190 17.4495 ZC2 TFA Total Fiber hied Assumed number of occupants CO2 emission factor in Table 12 for electricity displaced from grid CO2 emissions from appliances, equation (L14) CO2 emissions from cooking, equation (L16) 3.1912 ZC3 Total CO2 emissions Residual CO2 emissions offset from biofuel CHP Additional allowable electricity generation, kWh/m²/year Resulting CO2 emissions offset from additional allowable electricity generation 37.7908 ZC4 0.0000 ZC5 0.0000 ZC6 0.0000 ZC7 37.7908 ZC8 Net CO2 emissions | CALCULATION OF TARGET EMISSIONS 09 | Jan 2 | 014 | |------------------------------------|-------|-----| |------------------------------------|-------|-----| SAP 2012 WORKSHEET FOR New Build (As Designed) CALCULATION OF TARGET EMISSIONS 09 Jan 2014 (Version 9.92, January 2014) 1. Overall dwelling dimensions Volume (m3) 120.0000 (1b) - (3b) (m) 2.4000 (2b) 50.0000 (1b) Ground floor Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)...(1n)Dwelling volume 50.0000 $(3a) + (3b) + (3c) + (3d) + (3e) \dots (3n) =$ 120.0000 (5) main secondary total m3 per hour heating 0 0 Number of chimneys Number of open flues 0 * 40 = 0 * 20 = 2 * 10 = 0.0000 (6a) 0.0000 (6b) Number of intermittent fans Number of passive vents Number of flueless gas fires 20.0000 (7a) 0.0000 0 * 40 = Air changes per hour Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = 20.0000 / (5) = 0.1667 (8) Pressure test Measured/design AP50 0.4167 (18) Infiltration rate Number of sides sheltered 1 (19) - [0.075 x (19)] (21) = (18) x (20) Shelter factor Infiltration rate adjusted to include shelter factor May 4.3000 1.0750 Aug 3.7000 0.9250 Sep 4.0000 1.0000 5.1000 1.2750 5.0000 1.2500 4.9000 1.2250 4.4000 1.1000 4.3000 4.5000 1.1250 4.7000 (22) 1.1750 (22a) Wind speed Wind factor Adj infilt rate 0.4914 0.4818 0.4721 0.4240 0.4143 0.3661 0.3661 0.3565 0.3854 0.4143 0.4336 0.4529 (22b) Effective ac 0.6025 (25) 3. Heat losses and heat loss parameter A x U W/K 2.3000 13.5227 2.5090 Openings Element Gross NetArea U-value K-value W/m2K 1.0000 1.3258 m2 2.3000 (26) TER Opaque door TER Opening Type (Uw = 1.40) Heat Loss Floor 1 10.2000 19.3000 (27) (28a) 0.1300 Reat Book Floor F External Wall 1 External Roof 1 Total net area of external elements Aum(A, m2) Fabric heat loss, W/K = Sum (A x U) 61.5000 4.0000 97.3000 12.5000 0.1800 (29a) (26) . . . (30) + (32) = 29.9217 Thermal mass parameter (TMP = Cm / TFA) in $k_{\rm J}/m_{\rm 2}K$ Thermal bridges (Sum(L x Psi) calculated using Appendix K) Total fabric heat loss 250.0000 (35) 0.0000 (36) 29.9217 (37) (33) + (36) = Dec 23.8607 (38) Heat transfer coeff 54.5030 54.3174 54.1354 53.2806 53.1207 52.3762 52.3762 52.2383 52.6629 53.1207 53.4442 53.7824 (39) Average = Sum(39)m / 12 = Mar May 1.0624 Aug Sep 1.0533 1.0475 1.0756 (40) 1.0656 (40) 1.0901 1.0863 1.0827 1.0656 1.0475 1.0448 1.0624 1.0689 HLP (average) 4. Water heating energy requirements (kWh/year) Assumed occupancy Average daily hot water use (litres/day) 1.6901 (42) 74.3399 (43) Feb Jul Apr Мау Jun Aug Sep Oct Nov Dec Daily hot water use 81.7739 Energy conte 121.2683 78.8003 106.0620 81.7739 (44) 117.4419 (45) 1169.6560 (45) Energy content (annual) Distribution loss (46) Total = Sum(45)m = $(46) m = 0.15 \times (45) m$ 18.1902 15.9093 16.4170 14.3127 13.7334 11.8509 10.9816 12.6015 12.7520 14.8613 16.2222 17.6163 (46) Water storage loss: Total storage loss 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (56) If cylinder contains dedicated solar storage 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (57) 0.0000 Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.12r02 | CALCULAT | ION OF 1 | TARGET E | MISSION | IS 09 J | lan 2014 | | | | | | | | | |---|--------------------|------------------------|------------------------------|--------------------|-----------------------------------|--------------------|-------------------------------|---------------------------------|-------------------------|------------------------------------|------------------------------|----------------------------------|--------------| | Combi loss
Total heat req | 41.6711 | 36.2697 | 38.6405 | 35.9276 | 35.6098 | 32.9947 | 34.0945 | 35.6098 | 35.9276 | 38.6405 | 38.8604 | 41.6711 | (61) | | Solar input | | | 148.0870
0.0000 | | | 112.0005
0.0000 | 107.3050
0.0000 | 119.6200
0.0000
Solar inp | 120.9410
0.0000 | 137.7155
0.0000
months) = Su | 0.0000 | 159.1130
0.0000
0.0000 | (63) | | Output from w/ | | 142.3318 | 148.0870 | 131.3457 | 127.1658 | 112.0005 | 107.3050 | 119.6200 | 120.9410 | 137.7155
h/year) = Su | 147.0086 | 159.1130 | (64) | | Heat gains fro | m water hea | ating, kWh/
44.3331 | month
46.0511 | 40.7084 | 39.3448 | 34.5181 | 32.8661 | 36.8358 | 37.2489 | 42.6026 | 45.6744 | 49.4672 | | | | | | | | | | | | | | | | | | 5. Internal ga | ins (see Ta | able 5 and | 5a) | | | | | | | | | | | | Metabolic gain | s (Table 5)
Jan |), Watts
Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | (66)m
Lighting gains | (calculate | ed in Appen | dix L, equa | tion L9 or | | see Table 5 | | 84.5050 | 84.5050 | 84.5050 | 84.5050 | 84.5050 | | | Appliances gai | ns (calcula | ated in App | endix L, eq | uation L13 | 5.3929
or L13a), a
126.3689 | lso see Tab | | 6.3947 | 8.5829
112.4706 | 10.8980 | 12.7196
131.0134 | 13.5596
140.7376 | | | Cooking gains | (calculated | | ix L, equat | | | | | 31.4505 | 31.4505 | 31.4505 | 31.4505 | 31.4505 | | | Pumps, fans
Losses e.g. ev | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | | | Water heating | -67.6040 | -67.6040 | | | -67.6040 | -67.6040 | -67.6040 | -67.6040 | -67.6040 | -67.6040 | -67.6040 | -67.6040 | (71) | | Total internal | | 65.9718 | 61.8966 | 56.5395 | 52.8828 | 47.9418 | 44.1749 | 49.5105 | 51.7345 | 57.2615 | 63.4366 | 66.4882 | | | | 279.9766 | 277.8029 | 267.6894 | 251.8208 | 235.9962 | 220.4910 | 210.5944 | 215.8773 | 224.1396 | 240.1780 | 258.5211 | 272.1368 | (73) | | 6. Solar gains | | | | | | | | | | | | | | | [Tom] | | | | | Colon fluu | | | | P.P. | Acces | | Coina | | | [Jan] | | | | rea
m2 | Table 6a
W/m2 | Speci
or | g
fic data
Table 6b | Specific
or Tab | FF
data
le 6c | facto
Table 6 | r | Gains
W | | | East
South
West | | | 2.6
4.2
3.2 | 900
500 | 19.6403
46.7521
19.6403 | | 0.6300
0.6300
0.6300 | 0 | .7000
.7000
.7000 |
0.770
0.770
0.770 | 10 | 15.9662
61.2957
19.5075 | (78) | | Solar gains
Total gains | | | | | | | | | | 190.6183
430.7963 | | | , | | | | | | | | | | | | | | | | | 7. Mean intern Temperature du | | | | | | | | | | | | 21.0000 | (85) | | Utilisation fa | | | | | Table 9a)
May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | , , | | tau
alpha | 63.7070
5.2471 | 63.9247
5.2616 | 64.1396
5.2760 | 65.1686
5.3446 | 65.3648
5.3577 | 66.2939
5.4196 | 66.2939
5.4196 | 66.4689
5.4313 | 65.9329
5.3955 | 65.3648
5.3577 | 64.9691
5.3313 | 64.5605
5.3040 | | | util living ar | ea
0.9943 | 0.9854 | 0.9615 | 0.8935 | 0.7588 | 0.5699 | 0.4159 | 0.4546 | 0.6961 | 0.9269 | 0.9868 | 0.9958 | (86) | | MIT
Th 2 | 19.9828
20.0090 | 20.1763
20.0120 | 20.4395
20.0150 | 20.7298 | 20.9128 | 20.9851
20.0439 | 20.9977 | 20.9964 | 20.9582 | 20.7076
20.0316 | 20.2900 | 19.9513
20.0208 | | | util rest of h | ouse
0.9924 | 0.9809 | 0.9497 | 0.8634 | 0.7015 | 0.4906 | 0.3267 | 0.3623 | 0.6159 | 0.8989 | 0.9819 | 0.9944 | (89) | | MIT 2
Living area fr | 18.6675
action | 18.9493 | 19.3258 | 19.7304 | 19.9531 | 20.0348 | 20.0431 | 20.0448 | 20.0095
fLA = | 19.7135
Living area | 19.1266 | 18.6303
0.5580 | (90)
(91) | | MIT
Temperature ad | | | | 20.2881 | | 20.5651 | 20.5758 | 20.5758 | | 20.2683 | | 19.3674 | | | adjusted MIT | 19.4014 | 19.6339 | 19.9472 | 20.2881 | 20.4886 | 20.5651 | 20.5758 | 20.5758 | 20.5389 | 20.2683 | 19.7758 | 19.3674 | (93) | | 8. Space heati | ng require | ment | | | | | | | | | | | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Useful gains
Ext temp. | 373.3361
4.3000 | 438.0629 | 0.9488
483.7184
6.5000 | | | 307.0712 | 0.3765
207.5729
16.6000 | 217.0450 | 0.6590 | 0.9066
390.5556
10.6000 | 0.9804
368.0405
7.1000 | 351.8583 | (95) | | Heat loss rate
Month fracti | 823.0744
1.0000 | 800.3080
1.0000 | 727.9710
1.0000 | 606.7630
1.0000 | | 312.4275 | 208.2364 | | 339.0916
0.0000 | 513.5839
1.0000 | 677.4471 | 815.7387
1.0000 | | | Space heating
Space heating
Space heating | 334.6053 | 243.4288 | 181.7240 | 83.3327 | 26.5800 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 91.5330 | 222.7728 | 345.1270
1529.1036
30.5821 | (98) | | - | | | | | | | | | | | | | | | 8c. Space cool | ing require | ement | | | | | | | | | | | | | Not applicable | ind | | | | | | | | | | 9a. Energy requirements - Individual heating systems, including micro-CHP #### CALCULATION OF TARGET EMISSIONS 09 Jan 2014 | Fraction of space heat from second
Fraction of space heat from main s
Efficiency of main space heating s
Efficiency of secondary/supplement
Space heating requirement | system(s)
system 1 (in | %) | m (Table 11 |) | | | | | | 0.0000
1.0000
93.4000
0.0000
1637.1559 | (202)
(206)
(208) | |--|---------------------------|--------------|-------------|------------|------------|---------------------|----------|------------------|----------|--|--------------------------| | Jan Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating requirement 334.6053 243.4288 | | 83.3327 | 26.5800 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 91.5330 | 222.7728 | 345.1270 | (98) | | Space heating efficiency (main heat 93.4000 93.4000 | 93.4000 | 93.4000 | 93.4000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 93.4000 | 93.4000 | 93.4000 | (210) | | Space heating fuel (main heating s
358.2498 260.6304 | | 89.2213 | 28.4583 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 98.0011 | 238.5147 | 369.5150 | (211) | | Water heating requirement 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating | | | | | | | | | | | | | Water heating requirement 162.9394 142.3318 | 148.0870 | 131.3457 | 127.1658 | 112.0005 | 107.3050 | 119.6200 | 120.9410 | 137.7155 | 147.0086 | 159.1130 | | | Efficiency of water heater (217)m 86.8237 86.3908 | 85.5676 | 83.9404 | 81.8816 | 80.3000 | 80.3000 | 80.3000 | 80.3000 | 84.0494 | 86.0949 | 80.3000
86.9490 | | | Fuel for water heating, kWh/month
187.6670 164.7534
Water heating fuel used
Annual totals kWh/year | 173.0644 | 156.4749 | 155.3045 | 139.4776 | 133.6302 | 148.9663 | 150.6115 | 163.8507 | 170.7517 | 182.9956
1927.5479 | | | Space heating fuel - main system Space heating fuel - secondary | | | | | | | | | | 1637.1559
0.0000 | | | Electricity for pumps and fans:
central heating pump
main heating flue fan
Total electricity for the above, B
Electricity for lighting (calculat
Total delivered energy for all use | ed in Append | ix L) | | | | | | | | 30.0000
45.0000
75.0000
232.9906
3872.6945 | (230e)
(231)
(232) | | 12a. Carbon dioxide emissions - Ir | dividual hea | ting system: | s including | micro-CHP | | | | | | | | | | | | | | | Energy
kWh/year | | ion factor | k | Emissions
g CO2/year | | | Space heating - main system 1
Space heating - secondary | | | | | | 1637.1559
0.0000 | | 0.2160
0.0000 | | 353.6257
0.0000 | | | Water heating (other fuel)
Space and water heating | | | | | | 1927.5479 | | 0.2160 | | 416.3504
769.9760 | | | Pumps and fans | | | | | | 75.0000 | | 0.5190 | | 38.9250 | (267) | | Energy for lighting
Total CO2, kg/m2/year | | | | | | 232.9906 | | 0.5190 | | 120.9221
929.8232 | | | Emissions per m2 for space and wat | er heating | | | | | | | | | 15.3995 | | | Fuel factor (mains gas) Emissions per m2 for lighting | | | | | | | | | | 1.0000
2.4184 | (272h) | | Emissions per m2 for pumps and far
Target Carbon Dioxide Emission Rat | | 5 2005 * 1 | nn) ± 2 410 | 4 ± 0 7705 | rounded to | 2 d n | | | | 0.7785
18.6000 | (272c) | | rargee carbon browing Emrasion Rat | · (TEK) = (I | J.JJJJ 1. | UU, T 2.410 | 0.//00, | rounded to | . 2 u.p. | | | | 10.0000 | (2/2) | | Property Reference | E909-04 | | | | Issued on Date | 11/05/2020 | | | | |---------------------------------|--|-----------------------------------|--|---------------|----------------------|------------|--|--|--| | Assessment | E909-04 | | | Prop Type Ref | | | | | | | Reference | | | | | | | | | | | Property | Flat 4, 1 Hillfield Road, N | Flat 4, 1 Hillfield Road, NW6 1QD | | | | | | | | | SAP Rating | | 84 B | DER | 15.21 | TER | 16.86 | | | | | Environmental | | 88 B | % DER <ter< th=""><th></th><th colspan="4">9.77</th></ter<> | | 9.77 | | | | | | CO ₂ Emissions (t/ye | ear) | 0.98 | DFEE | 34.45 | TFEE | 42.30 | | | | | General Requireme | nts Compliance | Pass | % DFEE <tfe< th=""><th>E</th><th colspan="4">18.56</th></tfe<> | E | 18.56 | | | | | | Assessor Details | Mr. Jason Doherty, Doherty E
jason@doherty-energy.co.uk | 0. | l, Tel: 0148045 | 1569, | Assessor ID L143-000 | | | | | | Client | | | | | | | | | | ### REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England | REGULATIONS COMPLIANCE REPORT - Approve | | | |---|---|--------------------------------------| | DWELLING AS DESIGNED | | | | Ground-floor flat, total floor area 73 | m² | | | This report covers items included within It is not a complete report of regulation. | ons compliance. | | | la TER and DER Fuel for main heating:Mains gas Fuel factor:1.00 (mains gas) Target Carbon Dioxide Emission Rate (TE Dwelling Carbon Dioxide Emission Rate (| R) 16.86 kgCO□/m²
DER) 15.21 kgCO□/m²OK | | | 1b TFEE and DFEE
Target Fabric Energy Efficiency (TFEE)4
Dwelling Fabric Energy Efficiency (DFEE | 2.3 kWh/m²/yr
)34.4 kWh/m²/yrOK | | | 2 Fabric U-values Element Average External wall 0.16 (max. 0.30) | Highest 0.16 (max. 0.70) OK - OK | | | Openings 1.05 (max. 2.00) | 0.09 (max. 0.35) OK
1.20 (max. 3.30) OK | | | 2a Thermal bridging
Thermal bridging calculated using user- | specified y-value of 0.060 | | | 3 Air permeability
Air permeability at 50 pascals: | 3.00 (design value)
10.0 | ok | | 4 Heating efficiency | Boiler system with radiators or | | | Secondary heating system: | None | | | 5 Cylinder insulation
Hot water storage | No cylinder | | | 6 Controls
Space heating controls: | Time and temperature zone contro | | | Hot water controls: | No cylinder | | | Boiler interlock | Yes | ok | | 7 Low energy lights
Percentage of fixed lights with low-ene
Minimum | 75% | ok | | 8 Mechanical ventilation Continuous supply and extract system Specific fan power: Maximum MVHR efficiency: | 0.81
1.5
89%
70% | ok
ok | | Minimum: | | | | 9 Summertime temperature
Overheating risk (Thames Valley):
Based on: | Medium | OK | | Overshading: Windows facing East: Windows facing South: Windows facing West: Air change rate: | Average
5.41 m², No overhang
2.53 m², No overhang
6.90 m², No overhang
4.00 ach | | | | | blind, closed 100% of daylight hours | | 10 Key features Party wall U-value Roof U-value Door U-value Air permeability | 0.00 W/m ² K
0.09 W/m ² K
0.55 W/m ² K
3.0 m ³ /m ² h | | | | | | | CALCULATIO | N OF D | WELLING | S EMISSI | ONS FOR | REGULAT | IONS CO | OMPLIAN | ICE 09 | Jan 2014 | | | | | |---
---------------------------|-------------------------|-------------------------|-----------------------------------|------------------------------|---------------------------------|---|---|--|--|--|--|----------------------| | SAP 2012 WORKSHEE | | | | | 9.92, Januar
NCE 09 J | ry 2014)
Jan 2014 | . Overall dwelli | ng dimens | sions | | | | | | | | | | | | | round floor
otal floor area
welling volume | TFA = (1a | a)+(1b)+(1c | :)+(1d)+(1e) |)(1n) | 7 | 73.0000 | | Area
(m2)
73.0000 | | ey height
(m)
2.4000
+(3d)+(3e) | | Volume
(m3)
175.2000
175.2000 | (4) | | . Ventilation ra | main
heating | se | econdary
heating | | other | tota | al m | 13 per hour | | | umber of chimney
umber of open fl
umber of intermi
umber of passive
umber of flueles | ues
ttent far
vents | | | | ō
0 | + + | 0
0 | + + | 0 = 0 = | | 0 * 40 =
0 * 20 =
0 * 10 =
0 * 10 =
0 * 40 = | 0.0000
0.0000
0.0000
0.0000
0.0000 | (6b)
(7a)
(7b) | | nfiltration due
ressure test
easured/design A
nfiltration rate | .P50 | eys, flues | and fans | = (6a)+(6b) |)+(7a)+(7b)+(| (7c) = | | | | 0.0000 | Air change
/ (5) = | 0.0000
Yes
3.0000
0.1500 | | | umber of sides s
helter factor
nfiltration rate | | to includ | io choltor : | factor | | | | | (20) = 1 - | [0.075 x
1) = (18) | | | (19) | | | aujubccc | | 0.001001 | 240002 | | | | | (2 | 1, (10, 1 | (20) | 0.1000 | (21) | | ind speed | Jan
5.1000
1.2750 | Feb
5.0000
1.2500 | Mar
4.9000
1.2250 | Apr
4.4000
1.1000 | May
4.3000
1.0750 | Jun
3.8000
0.9500 | Jul
3.8000
0.9500 | Aug
3.7000
0.9250 | | Oct
4.3000
1.0750 | Nov
4.5000
1.1250 | Dec
4.7000
1.1750 | | | Balanced mechani
f mechanical ven
f balanced with | tilation: | | | - | 0.1492
for in-use fa | 0.1318 | 0.1318
n Table 4h) | 0.1283 | 0.1388 | 0.1492 | 0.1561 | 0.1630
0.5000
75.6500 | (23a) | | | 0.2987 | 0.2952 | 0.2917 | 0.2744 | 0.2709 | 0.2536 | 0.2536 | 0.2501 | 0.2605 | 0.2709 | 0.2778 | 0.2848 | | | . Heat losses an | d heat lo | ss paramet | er | | | | | | | | | | | | lement oor indow (Uw = 1.20 xternal Wall 1 xternal Roof 1 otal net area of abric heat loss, arty Wall 1 arty Floor 1 arty Ceilings 1 | external | | | Gross
m2
83.0000
36.6000 | Openings
m2
19.2400 | 4.
14.
63.
36.
119. | EArea
m2
.4000
.8400
.7600
.6000
(26)(
.6000
.0000
.4000 | U-value W/m2K 0.5500 1.1450 0.1600 0.0900 30) + (32) 0.0000 | A x
W/
2.420
16.992
10.201
3.294
= 32.908
0.000 | K 1
0
4
6
0 | -value
kJ/m2K | A x K
kJ/K | | | nermal mass para
nermal bridges (| | | | | area) | | | | | | | 125.0000
7.1760 | | | otal fabric heat | | | +bl. (20) m | - 0 33 / | 25) /5) | | | | | (33) | + (36) = | 40.0840 | (37) | | | Jan
.7.2671 | Feb
17.0666 | Mar
16.8660 | Apr
15.8633 | 25)m x (5)
May
15.6627 | Jun
14.6600 | Jul
14.6600 | Aug
14.4594 | Sep
15.0611 | Oct
15.6627 | Nov
16.0638 | Dec
16.4649 | (38) | | eat transfer coe | ff
7.3511 | 57.1505 | 56.9500 | 55.9472 | 55.7467 | 54.7439 | 54.7439 | 54.5434 | | 55.7467 | 56.1478 | 56.5489
55.8971 | (39) | | | Jan
0.7856 | Feb
0.7829 | Mar
0.7801 | Apr
0.7664 | May
0.7637 | Jun
0.7499 | Jul
0.7499 | Aug
0.7472 | Sep
0.7554 | Oct
0.7637 | Nov
0.7691 | Dec
0.7746
0.7657 | | | | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | (41) | | . Water heating | energy re | quirements | (kWh/year) |) | | | | | | | | | | | ssumed occupancy
verage daily hot | , | | | | | | | - | | | | 2.3167
89.2216 | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | aily hot water u
9
nergy conte 14 | 8.1438 | 94.5749 | 91.0061 | 87.4372
114.5194 | 83.8683
109.8841 | 80.2995
94.8216 | 80.2995
87.8662 | 83.8683
100.8277 | | 91.0061
118.9084 | 94.5749 | 98.1438 | | | | ION OF L | JVVELLIIV | G EMISSI | ONS FO | R REGULA | TIONS CO | MPLIAN | ICE 09 | Jan 2014 | 4 | | | | |--|---|---|---|---|--|--|--|--|---
--|---|---|--| | later storage | 21.8317 | 19.0941 | 19.7034 | 17.1779 | 16.4826 | 14.2232 | 13.1799 | 15.1242 | 15.3048 | 17.8363 | 19.4697 | 21.1428 | (46) | | otal storage | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (56) | | f cylinder co
ombi loss | 0.0000
50.0130 | icated sola:
0.0000
43.5304 | r storage
0.0000
46.3757 | 0.0000
43.1197 | | 0.0000
39.5997 | 0.0000
40.9197 | 0.0000
42.7384 | 0.0000
43.1197 | 0.0000
46.3757 | 0.0000
46.6397 | 0.0000 | | | otal heat red | quired for v
195.5574 | water heatin
170.8244 | ng calculate
177.7318 | ed for each
157.6391 | h month
152.6225 | 134.4214 | 128.7859 | 143.5661 | 145.1516 | 165.2841 | 176.4375 | 190.9650 | (62) | | olar input
utput from w | 0.0000
/h | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Solar inpu | 0.0000
ut (sum of | 0.0000
months) = S | 0.0000
Sum(63)m = | 0.0000 | | | | 195.5574 | 170.8244 | 177.7318 | 157.6391 | 152.6225 | 134.4214 | 128.7859 | 143.5661
Total pe | 145.1516
er year (kW | 165.2841
Wh/year) = 8 | 176.4375
Sum (64) m = | 190.9650
1938.9868 | | | eat gains fro | om water hea
60.8968 | ating, kWh/r
53.2079 | month
55.2698 | 48.8576 | 47.2211 | 41.4281 | 39.4454 | 44.2098 | 44.7055 | 51.1310 | 54.8177 | 59.3698 | (65) | | | | | | | | | | | | | | | | | . Internal ga | ains (see Ta | able 5 and 5 | 5a) | | | | | | | | | | | | etabolic gair
56)m | Jan | Feb | Mar
115 8350 | Apr
115 8350 | May
115.8350 | Jun
115 8350 | Jul
115 8350 | Aug
115.8350 | Sep
115.8350 | Oct
115.8350 | Nov
115.8350 | Dec
115.8350 | (66) | | | | ed in Append | | tion L9 or | L9a), also s | | 6.8251 | 8.8715 | 11.9073 | 15.1191 | 17.6462 | 18.8115 | | | | 204.1952 | 206.3141 | 200.9745 | 189.6072 | or L13a), a | 161.7717 | 152.7621 | 150.6432 | 155.9828 | 167.3501 | 181.6993 | 195.1856 | (68) | | ooking gains
umps, fans | 34.5835
3.0000 | d in Append:
34.5835
3.0000 | 34.5835
3.0000 | ion L15 or
34.5835
3.0000 | | see Table 5
34.5835
3.0000 | 34.5835
3.0000 | 34.5835
3.0000 | 34.5835
3.0000 | 34.5835
3.0000 | 34.5835
3.0000 | 34.5835
3.0000 | | | osses e.g. e | aporation (| (negative va | | le 5) | | -92.6680 | -92.6680 | -92.6680 | -92.6680 | -92.6680 | -92.6680 | -92.6680 | | | ater heating | 81.8505 | le 5)
79.1784 | 74.2874 | 67.8578 | 63.4692 | 57.5391 | 53.0181 | 59.4218 | 62.0910 | 68.7244 | 76.1357 | 79.7981 | (72) | | otal internal | 365.0990 | 362.4994 | 349.2330 | 328.2244 | 306.9594 | 286.3777 | 273.3558 | 279.6870 | 290.7316 | 311.9441 | 336.2317 | 354.5457 | (73) | | | | | | | | | | | | | | | | | . Solar gains | | | | | | | | | | | | | | | Jan] | | | | rea
m2 | | Specif
or T | able 6b | Specific
or Tab | FF
data
le 6c | Acce
fact
Table | or | Gains
W | | | ast | | | 5.4 | 100 | 19.6403 | | 0.7200 | | .7000 | 0.77 | 700 | 37.1115 | (76) | | | | | 2.5 | 300 | 46.7521 | | 0.7200 | 0 | .7000 | 0.77 | 00 | 41.3128 | (78) | | | | | 6.9 | 000 | 19.6403 | | 0.7200 | 0 | | 0.77
0.77 | | 41.3128
47.3326 | | | olar gains | 125.7569
490.8559 | | 358.2318 | 494.1713 | 19.6403
587.7532 | | 0.7200

569.3332 | 499.7533 | .7000
.7000 | 0.77 | | | (83) | | olar gains
otal gains | 125.7569
490.8559 | 232.8503
595.3497 | 358.2318
707.4648 | 494.1713
822.3957 | 19.6403
587.7532 | 595.4462
881.8239 | 0.7200

569.3332
842.6889 | 499.7533
779.4403 | .7000
.7000
406.4319 | 0.77 | 154.2616 | 47.3326
105.1408 | (80) | | olar gains otal gains . Mean inter | 125.7569
490.8559 | 232.8503
595.3497
ture (heating | 358.2318
707.4648
ng season) | 494.1713
822.3957 | 19.6403
587.7532
894.7126 | 595.4462
881.8239 | 0.7200

569.3332
842.6889 | 499.7533
779.4403 | .7000
.7000
406.4319 | 0.77 | 154.2616 | 47.3326
105.1408 | (80)
(83)
(84) | | olar gains otal gains . Mean intern emperature di | 125.7569
490.8559
mal temperaturing heating heating for ga | 232.8503
595.3497
ture (heating periods ains for liver Feb | 358.2318
707.4648
ng season)
in the livir | 494.1713
822.3957
ang area fr
nil,m (see
Apr | 19.6403
587.7532
894.7126
om Table 9, 12
Table 9a)
May | 595.4462
881.8239
Ph1 (C)
Jun | 0.7200
569.3332
842.6889 | 499.7533
779.4403 | .7000
.7000
406.4319
697.1635 | 0.77
268.9899
580.9340 | 154.2616
490.4933
Nov | 47.3326
105.1408
459.6865
21.0000 | (83)
(84) | | olar gains otal gains . Mean inter emperature du tilisation fa | 125.7569
490.8559
all temperaturing heating for garanting for garanting 44.1966
3.9464 | 232.8503
595.3497
ture (heating periods: ains for ling Feb 44.3517 | 358.2318
707.4648
ng season)
in the livin | 494.1713
822.3957 | 19.6403 587.7532 894.7126 om Table 9, 1 Table 9a) May 45.4686 | 595.4462
881.8239 | 0.7200
569.3332
842.6889 | 499.7533
779.4403 | .7000
.7000
406.4319
697.1635 | 0.77
268.9899
580.9340 | 154.2616
490.4933 | 47.3326
105.1408
459.6865 | (83)
(84) | | olar gains otal gains . Mean inter | 125.7569
490.8559
anal temperaturing heating detor for garder 44.1966
3.9464 | 232.8503
595.3497
ture (heating periods: a sins for live Feb 44.3517
3.9568
0.9287 | 358.2318
707.4648
ng season)
in the livir
ving area, 1
Mar
44.5079
3.9672
0.8553 | 494.1713
822.3957
ng area free
nil,m (see
Apr
45.3056
4.0204
0.7164 | 19.6403
587.7532
894.7126
m Table 9, 5
Table 9a)
May
45.4686
4.0312
0.5506 | 595.4462
881.8239
Ph1 (C)
Jun
46.3014
4.0868
0.3918 | Jul
46.3014
4.0868
0.2846 | Aug 46.4717 4.0981 0.3198 | .7000
.7000
406.4319
697.1635
Sep
45.9647
4.0643
0.5236 | 0.77
268.9899
580.9340
Oct
45.4686
4.0312
0.8004 | Nov
45.1438
4.0096
0.9361 | 47.3326
105.1408
459.6865
21.0000
Dec
44.8236
3.9882
0.9707 | (80)
(83)
(84)
(85) | | olar gains otal gains . Mean interremperature ditilisation for au lpha til living au | 125.7569
490.8559
490.8559
anal temperatarring heating actor for garding Jan
44.1966
3.9464
rea 0.9638
19.8418
20.2658 | 232.8503
595.3497
ture (heating periods: ains for live Feb 44.3517 3.9568 | 358.2318
707.4648
ng season)
in the livin
ving area, 1
Mar
44.5079
3.9672 | 494.1713
822.3957
ang area franti,m (see
Apr
45.3056
4.0204 | 19.6403 587.7532 894.7126 om Table 9, 17 Table 9a) May 45.4686 4.0312 0.5506 20.9378 | 595.4462
881.8239
Th1 (C)
Jun
46.3014
4.0868 | 0.7200
569.3332
842.6889
Jul
46.3014
4.0868 | 499.7533 779.4403 Aug 46.4717 4.0981 | .7000
.7000
406.4319
697.1635
Sep
45.9647
4.0643 | 0.77
268.9899
580.9340
Oct
45.4686
4.0312
0.8004
20.7237 | Nov
45.1438
4.0096
0.9361
20.2278 | 47.3326
105.1408
459.6865
21.0000
Dec
44.8236
3.9882
0.9707
19.7916 | (80)
(83)
(84)
(85)
(86)
(87) | | olar gains otal gains . Mean intern- emperature di tilisation fa au lpha til living an IT h 2 til rest of l | 125.7569
490.8559
490.8559
anal temperatarring heating actor for garding Jan
44.1966
3.9464
rea 0.9638
19.8418
20.2658 | 232.8503 595.3497 ture (heating periods: ains for liv Feb 44.3517 3.9568 0.9287 20.1217 20.2682 0.9191 | 358.2318
707.4648
ng season)
in the livin
ving area, 1
Mar
44.5079
3.9672
0.8553
20.4717 | 494.1713
822.3957
ang area franti,m (see
Apr
45.3056
4.0204
0.7164
20.7888 | 19.6403 587.7532 894.7126 om Table 9, Table 9a) May 45.4686 4.0312 0.5506 20.9378 20.2849 0.5140 | 595.4462
881.8239
Th1 (C)
Jun
46.3014
4.0868
0.3918
20.9881 | 0.7200
569.3332
842.6889
Jul
46.3014
4.0868
0.2846
20.9975 | 499.7533 779.4403 Aug 46.4717 4.0981 0.3198 20.9960 | .7000
.7000
406.4319
697.1635
Sep
45.9647
4.0643
0.5236
20.9626 | 0.77
268.9899
580.9340
Oct
45.4686
4.0312
0.8004
20.7237
20.2849 | Nov
45.1438
4.0096
0.9361
20.2278
20.2802
0.9257 | 47.3326
105.1408
459.6865
21.0000
Dec
44.8236
3.9882
0.9707
19.7916 | (85)
(85)
(86)
(87)
(88) | | olar gains otal gains . Mean intern emperature ditilisation fa au lpha til living an IT h 2 til rest of h IT 2 iving area for | 125.7569
490.8559
490.8559
anal temperaturing heating actor for general section of the o | 232.8503 595.3497 ture (heating periods: ains for liv Feb 44.3517 3.9568 0.9287 20.1217 20.2682 0.9191 | 358.2318 707.4648 707.4648 ng season) in the livin ving area, 144.5079 3.9672 0.8553 20.4717 20.2706 0.8376 | 494.1713
822.3957
ang area fr
nil,m (see
Apr
45.3056
4.0204
0.7164
20.7888
20.2825
0.6879 | 19.6403
587.7532
894.7126
om Table 9, 1
Table 9a)
May
45.4686
4.0312
0.5506
20.9378
20.2849
0.5140
20.2191 | 595.4462
881.8239
Ph1 (C)
Jun
46.3014
4.0868
0.3918
20.9881
20.2969
0.3504 | Jul
46.3014
4.0868
0.2846
20.9975
20.2969 | 499.7533 779.4403
Aug 46.4717 4.0981 0.3198 20.9960 20.2994 0.2719 | .7000
.7000
406.4319
697.1635
Sep
45.9647
4.0643
0.5236
20.9626
20.2921
0.4757
20.2573 | 0.77 268.9899 580.9340 Oct 45.4686 4.0312 0.8004 20.7237 20.2849 0.7709 19.9602 = Living are | Nov
45.1438
4.0096
0.9361
20.2278
20.2802
0.9257
19.2736
24 / (4) = | 47.3326
105.1408
459.6865
21.0000
Dec
44.8236
3.9882
0.9707
19.7916
20.2754
0.9663
18.6423
0.4233
19.1288 | (80)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(90)
(91)
(92) | | olar gains otal gains otal gains . Mean internmemperature dutilisation for au lpha til living au lit living au til rest of lit li | 125.7569 490.8559 anal temperat actor for ga Jan 44.1966 3.9464 rea 0.9638 19.8418 20.2658 nouse 0.9585 18.7077 raction 19.1877 | 232.8503 595.3497 ture (heating periods sains for live Feb 44.3517 3.9568 0.9287 20.1217 20.2682 0.9191 19.1081 | 358.2318
707.4648
707.4648
ng season)
in the livin
ving area, 1
Mar
44.5079
3.9672
0.8553
20.4717
20.2706
0.8376
19.5985 | 494.1713
822.3957
ag area fr
nil,m (see
Apr
45.3056
4.0204
0.7164
20.7888
20.2825
0.6879
20.0321 | 19.6403 587.7532 894.7126 m Table 9, 5 Table 9a) May 45.4686 4.0312 0.5506 20.9378 20.2849 0.5140 20.2191 20.5233 | 595.4462
881.8239
Ph1 (C) Jun 46.3014 4.0868 0.3918 20.9881 20.2969 0.3504 20.2867 | Jul
46.3014
4.0868
0.2846
20.9975
20.2969
0.2396
20.2953 | Aug 46.4717 4.0981 0.3198 20.9960 20.2994 0.2719 20.2967 | .7000
.7000
406.4319
697.1635
Sep
45.9647
4.0643
0.5236
20.9626
20.2921
0.4757
20.2573
fLA = | 0.77
268.9899
580.9340
Oct
45.4686
4.0312
0.8004
20.7237
20.2849
0.7709
19.9602
= Living are
20.2834 | Nov
45.1438
4.0096
0.9361
20.2278
20.2802
19.2736
2a / (4) =
19.6775 | 105.1408
459.6865
21.0000
Dec
44.8236
3.9882
0.9707
19.7916
20.2754
0.9663
18.6423
0.4233
19.1288
0.0000 | (86)
(83)
(84)
(85)
(86)
(87)
(88)
(90)
(91)
(92) | | olar gains otal gains otal gains . Mean inter | 125.7569
490.8559
490.8559
anal temperation of the control for graduate for for graduate for the control t | 232.8503 595.3497 ture (heating periods: Feb 44.3517 3.9568 0.9287 20.1217 20.2682 0.9191 19.1081 19.5371 | 358.2318 707.4648 ng season) in the livin ving area, 1 44.5079 3.9672 0.8553 20.4717 20.2706 0.8376 19.5985 19.9681 | 494.1713
822.3957
ang area frinii,m (see
Apr
45.3056
4.0204
0.7164
20.7888
20.2825
0.6879
20.0321
20.3524 | 19.6403 587.7532 894.7126 om Table 9, 17 Table 9a) May 45.4686 4.0312 0.5506 20.9378 20.2849 0.5140 20.2191 20.5233 20.5233 | 595.4462
881.8239
Ph1 (C)
Jun
46.3014
4.0868
0.3918
20.9881
20.2969
0.3504
20.2867
20.5836 | Jul 46.3014 4.0868 0.2846 20.9975 20.2969 20.5926 | Aug
46.4717
4.0981
0.3198
20.9960
20.2994
0.2719
20.2967
20.5927 | Sep
45.9647
4.0643
0.5236
20.9626
20.2921
0.4757
20.2573
fLA =
20.5559 | 0.77
268.9899
580.9340
Oct
45.4686
4.0312
0.8004
20.7237
20.2849
0.7709
19.9602
= Living are
20.2834 | Nov
45.1438
4.0096
0.9361
20.2278
20.2802
19.2736
2a / (4) =
19.6775 | 105.1408
459.6865
21.0000
Dec
44.8236
3.9882
0.9707
19.7916
20.2754
0.9663
18.6423
0.4233
19.1288
0.0000 | (86)
(83)
(84)
(85)
(86)
(87)
(88)
(90)
(91)
(92) | | olar gains otal gains otal gains . Mean intermemperature ditilisation for au lpha till living an au lpha till rest of lill lil | 125.7569 490.8559 490.8559 all temperate raining heating tector for get and 44.1966 3.9464 rea 0.9638 19.8418 20.2658 house 0.9585 18.7077 raction 19.1877 dijustment 19.1877 | 232.8503 595.3497 ture (heating periods : ains for liv Feb 44.3517 3.9568 0.9287 20.1217 20.2682 0.9191 19.1081 19.5371 19.5371 | 358.2318 707.4648 707.4648 ng season) in the living area, 19 44.5079 3.9672 0.8553 20.4717 20.2706 0.8376 19.5985 19.9681 | 494.1713
822.3957
ang area fr
nil,m (see
Apr
45.3056
4.0204
0.7164
20.7888
20.2825
0.6879
20.0321
20.3524 | 19.6403 587.7532 894.7126 om Table 9, Table 9a) May 45.4686 4.0312 0.5506 20.9378 20.2849 0.5140 20.2191 20.5233 20.5233 | 595.4462
881.8239
Th1 (C)
Jun
46.3014
4.0868
0.3918
20.9881
20.2969
0.3504
20.2867
20.5836
20.5836 | Jul
46.3014
4.0868
0.2846
20.9975
20.2969
0.2396
20.2953
20.5926 | Aug
46.4717
4.0981
0.3198
20.9960
20.2994
0.2719
20.2967
20.5927 | Sep
45.9647
4.0643
0.5236
20.9626
20.2921
0.4757
20.2573
fLA =
20.5559 | 0.77
268.9899
580.9340
Oct
45.4686
4.0312
0.8004
20.7237
20.2849
0.7709
19.9602
= Living are
20.2834 | Nov
45.1438
4.0096
0.9361
20.2278
20.2802
19.2736
2a / (4) =
19.6775 | 105.1408
459.6865
21.0000
Dec
44.8236
3.9882
0.9707
19.7916
20.2754
0.9663
18.6423
0.4233
19.1288
0.0000 | (86)
(83)
(84)
(85)
(86)
(87)
(88)
(90)
(91)
(92) | | olar gains otal gains otal gains . Mean inter | 125.7569 490.8559 490.8559 al temperatarring heating | 232.8503 595.3497 ture (heating periods: Feb 44.3517 3.9568 0.9287 20.1217 20.2682 0.9191 19.5371 19.5371 | 358.2318 707.4648 ng season) in the livinying area, Mar 44.5079 3.9672 0.8553 20.4717 20.2706 0.8376 19.5985 19.9681 19.9681 | 494.1713 822.3957 494.1713 822.3957 ang area fr. nil,m (see Apr 45.3056 4.0204 0.7164 20.7888 20.2825 0.6879 20.0321 20.3524 20.3524 | 19.6403 587.7532 894.7126 om Table 9, Table 9a) May 45.4686 4.0312 0.5506 20.9378 20.2849 0.5140 20.2191 20.5233 20.5233 | 595.4462
881.8239
Th1 (C)
Jun
46.3014
4.0868
0.3918
20.9881
20.2969
0.3504
20.2867
20.5836
20.5836 | Jul
46.3014
4.0968
0.2846
20.9975
20.2969
0.2396
20.2953
20.5926 | Aug 46.4717 4.0981 0.3198 20.9960 20.2994 0.2719 20.2967 20.5927 Aug 0.2920 | Sep
45.9647
4.0643
0.5236
20.9626
20.2921
0.4757
20.2573
fLA =
20.5559 | 0.77 268.9899 580.9340 Oct 45.4686 4.0312 0.8004 20.7237 20.2849 0.7709 19.9602 Eliving are 20.2834 20.2834 | Nov
45.1438
4.0096
0.9361
20.2278
20.2802
0.9257
19.2736
20 / (4) = 19.6775 | 47.3326
105.1408
459.6865
21.0000
Dec
44.8236
3.9882
0.9707
19.7916
20.2754
0.9663
18.6423
0.4233
19.1288
0.0000
19.1288 | (85)
(86)
(87)
(88)
(89)
(90)
(91)
(92)
(93) | | olar gains otal gains otal gains otal gains . Mean inter | 125.7569 490.8559 490.8559 all temperat raring heatin actor for ge Jan 44.1966 3.9464 rea 0.9638 19.8418 20.2658 nouse 0.9585 18.7077 reaction 19.1877 djustment 19.1877 djustment 19.1877 Jan 0.9489 465.7538 4.3000 EW 853.8272 | 232.8503 595.3497 ture (heating periods: ains for liv Feb 44.3517 3.9568 0.9287 20.1217 20.2682 0.9191 19.1081 19.5371 19.5371 19.5371 ment Feb 0.9079 540.4985 4.9000 836.5201 | 358.2318 707.4648 707.4648 707.4648 707.4648 707.4648 707.4648 70.8296 70.8296 70.8296 70.8296 70.8296 70.8296 70.8296 | 494.1713 822.3957 ang area frinil,m (see Apr 45.3056 4.0204 0.7164 20.7888 20.2825 0.6879 20.0321 20.3524 20.3524 Apr 0.6908 568.1040 8.9000 640.7311 | 19.6403 587.7532 894.7126 om Table 9, 17 Table 9a) May 45.4686 4.0312 0.5506 20.9378 20.2849 0.5140 20.2191 20.5233 20.5233 | 595.4462
881.8239
Th1 (C)
Jun
46.3014
4.0868
0.3918
20.9881
20.2969
0.3504
20.2867
20.5836
20.5836 | Jul
46.3014
4.0868
0.2846
20.9975
20.2969
0.2396
20.2953
20.5926
Jul
0.2586
217.9161
16.6000 | Aug
46.4717
4.0981
0.3198
20.9960
20.2994
0.2719
20.2967
20.5927
20.5927
20.5927 | .7000
.7000
406.4319
697.1635
Sep
45.9647
4.0643
0.5236
20.9626
20.2921
0.4757
20.5559
20.5559 | 0.77 268.9899 580.9340 Oct 45.4686 4.0312 0.8004 20.7237 20.2849 0.7709 19.9602 Living are 20.2834 20.2834 Oct 0.7708 447.7839 10.6000 | Nov
45.1438
4.0096
0.9361
20.2278
20.2802
0.9257
19.2736
2a / (4) =
19.6775
19.6775 | 47.3326 105.1408 459.6865 21.0000 Dec 44.8236 3.9882 0.9707 19.7916 20.2754 0.9663 18.6423 0.4233 19.1288 0.0000 19.1288 | (85)
(86)
(87)
(88)
(89)
(90)
(91)
(92)
(93)
(94)
(95)
(96) | | otal gains | 125.7569 490.8559 490.8559 all temperates aring heating tector for get and temperates are seen as a a | 232.8503 595.3497 ture (heating periods: ains for liv Feb 44.3517 3.9568 0.9287 20.1217 20.2682 0.9191 19.1081 19.5371 19.5371 19.5371 19.5371 Feb 0.9079 540.4985 4.9000 836.5201 1.0000 | 358.2318 707.4648 707.4648 10 | 494.1713 822.3957 ang area from 11,m (see Apr 45.3056 4.0204 0.7164 20.7888 20.2825 0.6879 20.0321 20.3524 20.3524 Apr 0.6908 568.1040 8.9000 640.7311 1.0000 | 19.6403 587.7532 894.7126 om Table 9, Table 9a) May 45.4686 4.0312 0.5506 20.9378 20.2849 0.5140 20.2191 20.5233 20.5233 May 49.45404 40.9878 11.7000 491.8715 | 595.4462
881.8239
Th1 (C)
Jun
46.3014
4.0868
0.3918
20.9881
20.2969
0.3504
20.2867
20.5836
20.5836 | Jul
46.3014
4.0868
0.2846
20.9975
20.2969
0.2396
20.2953
20.5926
Jul
0.2586
217.9161
16.6000
218.5685 | Aug 46.4717 4.0981 0.3198 20.9960 20.2994 20.5927 20.5927 20.5927 20.5927 20.6205 16.4000 228.6842 | .7000
.7000
406.4319
697.1635
Sep
45.9647
4.0643
0.5236
20.9626
20.2921
0.4757
20.5559
20.5559
20.5559 | 0.77 268.9899 580.9340 Oct 45.4686 4.0312 0.8004 20.7237 20.2849 0.7709 19.9602 Eliving are 20.2834 20.2834
Oct 0.7708 447.7839 10.6000 539.8176 1.0000 | Nov
45.1438
4.0096
0.9361
20.2278
20.2802
0.9257
19.2736
20 / (4) =
19.6775
19.6775 | 47.3326 105.1408 459.6865 21.0000 Dec 44.8236 3.9882 0.9707 19.7916 20.2754 0.9663 18.6423 3.94238 0.0000 19.1288 Dec 0.9576 440.2081 4.2000 844.2046 1.0000 | (80)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(90)
(91)
(92)
(93)
(93) | #### CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014 Not applicable | 9a. Energy requirements - | | | | | | | | | | | | | |--|---|--|---------------------------|-----------|----------|----------|--|----------|--|----------------|---|---| | Fraction of space heat fr
Fraction of space heat fr
Efficiency of main space
Efficiency of secondary/s
Space heating requirement | com seconda
com main sy
heating sy
supplementa | ry/suppleme
vstem(s)
vstem 1 (in | ntary syste
%) | | | | | | | | 0.0000
1.0000
93.4000
0.0000
1331.5291 | (202)
(206)
(208) | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | | 198.9265 | 133.9929 | 52.2915 | 15.5375 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 68.4731 | 185.1266 | 300.5734 | (98) | | Space heating efficiency 93.4000 | 93.4000 | 93.4000 | 93.4000 | 93.4000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 93.4000 | 93.4000 | 93.4000 | (210) | | | 212.9834 | rstem)
143.4614 | 55.9866 | 16.6354 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 73.3116 | 198.2083 | 321.8131 | (211) | | Water heating requirement 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating | | | | | | | | | | | | | | Water heating requirement
195.5574 | 170.8244 | 177.7318 | 157.6391 | 152.6225 | 134.4214 | 128.7859 | 143.5661 | 145.1516 | 165.2841 | 176.4375 | 190.9650 | | | Efficiency of water heate (217)m 86.0305 | 85.4354 | 84.3509 | 82.5987 | 81.1376 | 80.3000 | 80.3000 | 80.3000 | 80.3000 | 83.0169 | 85.1723 | 80.3000
86.1884 | | | Fuel for water heating, k 227.3117 Water heating fuel used | | 210.7052 | 190.8494 | 188.1033 | 167.3990 | 160.3810 | 178.7872 | 180.7617 | 199.0969 | 207.1536 | 221.5670
2332.0616 | | | Annual totals kWh/year
Space heating fuel - main
Space heating fuel - seco | | | | | | | | | | | 1331.5291 | | | mechanical ventilation
central heating pump
main heating flue fan
Total electricity for the
Electricity for lighting
Total delivered energy fo | e above, kW | Wh/year
ed in Append | | | | | | | | | 216.4158
30.0000
45.0000
291.4158
323.2335
4278.2399 | (230c)
(230e)
(231)
(232) | | 12a. Carbon dioxide emiss | Energy | Emiss | ion factor | | Emissions | | | Space heating - main syst
Space heating - secondary
Water heating (other fuel
Space and water heating
Pumps and fans | 7 | | | | | | kWh/year
1331.5291
0.0000
2332.0616
291.4158 | | kg CO2/kWh
0.2160
0.0000
0.2160 | k | cg CO2/year
287.6103
0.0000
503.7253
791.3356
151.2448 | (261)
(263)
(264)
(265)
(267) | | Energy for lighting
Total CO2, kg/year
Dwelling Carbon Dioxide E | Emission Ra | ate (DER) | | | | | 323.2335 | | 0.5190 | | 167.7582
1110.3385
15.2100 | (272) | | DER Total Floor Area Assumed number of occupan CO2 emissions from applia CO2 emissions from applia CO2 emissions from cookin Total CO2 emissions Residual CO2 emissions of Additional allowable elec Resulting CO2 emissions o Net CO2 emissions | nts hble 12 for ances, equa ng, equation ffset from ctricity ge | electricit
ation (L14)
on (L16)
biofuel CHP
eneration, k | y displaced
Wh/m²/year | from grid | | | ON TECHNOLO | GIES | | TFA
N
EF | 15.2100
73.0000
2.3167
0.5190
16.5756
2.3918
34.1774
0.0000
0.0000
0.0000
34.1774 | ZC2
ZC3
ZC4
ZC5
ZC6
ZC7 | _____ #### CALCULATION OF TARGET EMISSIONS 09 Jan 2014 SAP 2012 WORKSHEET FOR New Build (As Designed) CALCULATION OF TARGET EMISSIONS 09 Jan 2014 (Version 9.92, January 2014) 1. Overall dwelling dimensions Volume (m3) 175.2000 (1b) - (3b) (m) 2.4000 (2b) 73.0000 (1b) Ground floor Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)...(1n)Dwelling volume 73.0000 $(3a) + (3b) + (3c) + (3d) + (3e) \dots (3n) =$ 175.2000 (5) main secondary total m3 per hour heating 0 0 0 * 40 = 0 * 20 = 0.0000 (6a) 0.0000 (6b) Number of chimneys Number of open flues Number of intermittent fans Number of passive vents Number of flueless gas fires 3 * 10 = 30.0000 (7a) 0.0000 0 * 40 = Air changes per hour 30.0000 / (5) = Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = 0.1712 (8) Pressure test Measured/design AP50 5.0000 0.4212 (18) Infiltration rate Number of sides sheltered 1 (19) - [0.075 x (19)] (21) = (18) x (20) Shelter factor Infiltration rate adjusted to include shelter factor 0.9250 (20) May 4.3000 1.0750 Aug 3.7000 0.9250 Sep 4.0000 1.0000 5.1000 1.2750 5.0000 1.2500 4.9000 1.2250 4.4000 1.1000 3.8000 4.3000 4.5000 1.1250 4.7000 (22) 1.1750 (22a) Wind speed Wind factor Adj infilt rate 0.4968 0.4871 0.4773 0.4286 0.4189 0.3702 0.3702 0.3604 0.3896 0.4189 0.4383 0.4578 (22b) Effective ac 0.6048 (25) 3. Heat losses and heat loss parameter Openings A x U W/K 4.4000 Element Gross NetArea U-value K-value W/m2K 1.0000 1.3258 m2 4.4000 (26) TER Opaque door TER Opening Type (Uw = 1.40) External Wall 1 13.8500 64.7500 18.3617 (27) (29a) 83.0000 18.2500 0.1800 11.6550 External Mail I External Roof 1 Total net area of external elements Aum(A, m2) Fabric heat loss, W/K = Sum (A x U) 36.6000 0.1300 4.7580 (30) 39.1747 Thermal mass parameter (TMP = Cm / TFA) in kJ/m2K Thermal bridges (Sum(L x Psi) calculated using Appendix K) Total fabric heat loss 250.0000 (35) (33) + (36) = Ventilation heat loss calculated monthly $(38)m = 0.33 \times (25)m \times (5)$ Jan (38)m 36.0425 Heat transfer coeff Feb 35.7655 Apr 34.2185 Aug 32.6632 35.4939 32.8689 34.9673 (38) 74.9402 73.3932 73.1546 72.0436 72.0436 71.8379 73.1546 75.2173 Average = Sum(39)m / 12 74.6687 73.6373 74.1420 (39) 73.3921 (39) Aug 0.9841 Nov 1.0087 Jan 1.0304 Feb 1.0266 May 1.0021 Jun 0.9869 Dec 1.0156 (40) Sep 0.9928 0.9869 1.0229 1.0021 HLP (average) 1.0054 (40) Days in month 31 30 31 31 30 31 (41) 4. Water heating energy requirements (kWh/year) Assumed occupancy Average daily hot water use (litres/day) 2.3167 (42) 89.2216 (43) Jul Feb Jun Sep Oct Apr May Aug Nov Daily hot water use 98.1438 Energy conte 145.5444 Energy content (annual) 91.0061 87.4372 83.8683 80.2995 80.2995 87.4372 94.5749 98.1438 (44) 140.9520 (45) 1403.8037 (45) 118.9084 129.7978 Total = Sum (45) m = Distribution loss (46)m = 0.15 x (45)m 21.8317 19.0941 19.7034 Water storage loss: Total storage loss 0.0000 21.1428 (46) 17.1779 16.4826 14.2232 13.1799 15.1242 15.3048 17.8363 19.4697 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (56) If cylinder contains dedicated solar storage 0.0000 (57) 50.0130 (61) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Combi loss Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.12r02 | CALCULAT | ION OF | TARGET E | MISSION | IS 09. | Jan 2014 | | | | | | | | | |--|-----------------------|-----------------------------------|--------------------------|-----------------------------------|-------------------------------|-------------------------------|----------------------------|----------------------|----------------------------------|------------------------------------|---------------------------------|----------------------------------|------| | Total heat req | | water heati
170.8244
0.0000 | | ed for each
157.6391
0.0000 | n month
152.6225
0.0000 | 134.4214 | 128.7859 | 0.0000 | 145.1516
0.0000
ut (sum of | 165.2841
0.0000
months) = Su | 176.4375
0.0000
mm(63)m = | 190.9650
0.0000
0.0000 | (63) | | Output from w/ | | 170.8244 | 177.7318 | 157.6391 | 152.6225 | 134.4214 | 128.7859 | | | 165.2841
h/year) = Su | | 190.9650 | | | Heat gains fro | m water he
60.8968 | ating, kWh/
53.2079 | month
55.2698 | 48.8576 | 47.2211 | 41.4281 | 39.4454 | 44.2098 | 44.7055 | 51.1310 | 54.8177 | 59.3698 | | | | | | | | | | | | | | | | | | 5. Internal ga | | | | | | | | | | | | | | | Metabolic gain | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | (66)m
Lighting gains | (calculat | ed in Appen | 115.8350
dix L, equa | 115.8350
tion L9 or | 115.8350
L9a), also | 115.8350
see Table 5 | | 115.8350 | 115.8350 | 115.8350 | 115.8350 | 115.8350 | | | Appliances gai | ns (calcul | ated in App | endix L, eq | uation L13 | | lso see Tab | | 8.9423 | 12.0023 | 15.2397 | 17.7870 | 18.9617 | | | Cooking gains | | d in Append | ix L, equat | ion L15 or | | see Table | 5 | 150.6432 | 155.9828 | 167.3501 | 181.6993 | 195.1856 | | | Pumps, fans | 34.5835 | 34.5835
3.0000 | | Losses e.g. ev | | | alues) (Tab.
-92.6680 | | -92.6680 | -92.6680 | -92.6680 | -92.6680 | -92.6680 | -92.6680 | -92.6680 | -92.6680 | (71) | | Water heating | gains (Tab
81.8505 | | 74.2874 | 67.8578 | 63.4692 | 57.5391 | 53.0181 | 59.4218 | 62.0910 | 68.7244 | 76.1357 | 79.7981 | (72) | | Total internal | gains
365.2451 |
362.6291 | 349.3385 | 328.3042 | 307.0191 | 286.4281 | 273.4102 | 279.7578 | 290.8267 | 312.0648 | 336.3725 | 354.6958 | (73) | | 6. Solar gains | [Jan] | | | | rea
m2 | | Speci
or | g
fic data
Table 6b | or Tab | | Acces
facto
Table 6 | r | Gains
W | | | East
South
West | | | 5.00
2.3
6.4 | 500
600
400 | 19.6403
46.7521
19.6403 | | 0.6300
0.6300
0.6300 | 0
0
0 | .7000
.7000
.7000 | 0.770
0.770
0.770 | 10 | 30.3117
33.7198
38.6549 | (78) | | Solar gains
Total gains | 102.6864
467.9315 | 190.1377
552.7668 | 292.5291
641.8677 | 403.5471
731.8514 | 479.9747
786.9938 | 486.2596
772.6877 | 464.9339
738.3441 | 408.1084
687.8662 | 331.8929
622.7195 | 219.6507
531.7155 | 125.9627
462.3353 | 85.8518
440.5476 | | | | | | | | | | | | | | | | | | 7. Mean intern | | | | | | | | | | | | | | | Temperature du
Utilisation fa | | | | | | Th1 (C) | | | | | | 21.0000 | (85) | | tau | Jan
67.3973 | Feb
67.6465 | Mar
67.8925 | Apr
69.0724 | May
69.2977 | Jun
70.3663 | Jul
70.3663 | Aug
70.5678 | Sep
69.9508 | Oct
69.2977 | Nov
68.8434 | Dec
68.3748 | | | alpha
util living ar | 5.4932
ea | 5.5098 | 5.5262 | 5.6048 | 5.6198 | 5.6911 | 5.6911 | 5.7045 | 5.6634 | 5.6198 | 5.5896 | 5.5583 | | | | 0.9972 | 0.9926 | 0.9766 | 0.9175 | 0.7809 | 0.5836 | 0.4273 | 0.4766 | 0.7436 | 0.9557 | 0.9935 | 0.9980 | (86) | | MIT
Th 2 | 19.9617
20.0581 | 20.1342
20.0612 | 20.3996
20.0643 | 20.7139
20.0788 | 20.9131
20.0816 | 20.9865
20.0943 | 20.9980
20.0943 | 20.9965
20.0966 | 20.9510
20.0894 | 20.6659
20.0816 | 20.2549
20.0761 | 19.9372
20.0703 | | | util rest of h | 0.9963 | 0.9902 | 0.9690 | 0.8926 | 0.7268 | 0.5067 | 0.3405 | 0.3850 | 0.6670 | 0.9367 | 0.9910 | 0.9973 | | | MIT 2
Living area fr | 18.6730
action | 18.9262 | 19.3103 | 19.7553 | 20.0018 | 20.0858 | 20.0936 | 20.0952 | 20.0531
fLA = | 19.7029
Living area | 19.1142 | 18.6462
0.4233 | | | MIT
Temperature ad | 19.2185 | 19.4375 | 19.7714 | 20.1610 | 20.3875 | 20.4671 | 20.4764 | 20.4767 | 20.4331 | 20.1105 | 19.5970 | 19.1926
0.0000 | (92) | | adjusted MIT | | 19.4375 | 19.7714 | 20.1610 | 20.3875 | 20.4671 | 20.4764 | 20.4767 | 20.4331 | 20.1105 | 19.5970 | 19.1926 | (93) | | 8. Space heati | ng require | ment | | | | | | | | | | | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Utilisation
Useful gains
Ext temp. | 0.9952 | 0.9881 | 0.9660 | 0.8951
655.0762
8.9000 | 0.7458
586.9347 | 0.5389
416.3934
14.6000 | 0.3773 | 0.4239 | 0.6974 | 0.9374 | 0.9893 | 0.9965
438.9930 | (95) | | Heat loss rate | W | 1089.4458 | | 826.4827 | | 422.6862 | | 292.8634 | | 695.7382 | | 1111.5854 | | | | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | | | Space heating
Space heating | 488.3894 | 365.0555 | 275.9388 | 123.4126 | 36.1564 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 146.7914 | 333.2692 | 500.4088
2269.4222
31.0880 | (98) | | | | | | | | | | | | | | | | | 8c. Space cool | ing requir | ement | | | | | | | | | | | | | Not applicable | | | | | | | | | | | | | | | 9a. Energy req | 0.0000 (2
1.0000 (2
93.4000 (2
0.0000 (2
2429.7882 (2 | 202)
206)
208) | |---|---|---|---| | Aug | Sep Oct | Nov Dec | | | 0.0000 | 0.0000 146.7914 | 333.2692 500.4088 (9 | 98) | | 0.0000 | 0.0000 93.4000 | 93.4000 93.4000 (2 | 210) | | 0.0000 | 0.0000 157.1642 | 356.8193 535.7696 (2 | 211) | | 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 (2 | 215) | | | | | | | 9 143.5661 | 145.1516 165.2841 | 176.4375 190.9650 (6 | 64) | | 80.3000 | 80.3000 84.7540 | 80.3000 (2
86.6283 87.3648 (2 | | | 0 178.7872 | 180.7617 195.0161 | 203.6718 218.5834 (2 | 219) | | | | 2304.2197 (2 | 219) | | | | 2429.7882 (2
0.0000 (2 | | | | | 30.0000 (2
45.0000 (2
75.0003 (2
325.8135 (2
5134.8214 (2 | 230e)
231)
232) | | | | | | | Energy
kWh/year
2429.7882
0.0000
2304.2197
75.0000
325.8135 | Emission factor
kg CO2/kWh
0.2160
0.0000
0.2160
0.5190
0.5190 | Emissions
kg CO2/year
524.8342 (2
0.0000 (2
497.7115 (2
1022.5457 (2
38.9250 (2
169.0972 (2
1230.5679 (2
1.0000
2.3164 (2
0.5332 (2 | 263)
264)
265)
267)
268)
272)
272a)
272b)
272c) | | | 0 0.0000
0 0.0000
0 0.0000
0 0.0000
9 143.5661
0 80.3000
0 178.7872
Energy kWh/year 2429.7882 0.0000 2304.2197 | DO 0.0000 0.0000 146.7914 0 0.0000 0.0000 93.4000 0 0.0000 0.0000 157.1642 0 0.0000 0.0000 0.0000 9 143.5661 145.1516 165.2841 0 80.3000 80.3000 84.7540 0 178.7872 180.7617 195.0161 Energy kWh/year kg CO2/kWh 2429.7882 0.2160 0.0000 2304.2197 0.2160 75.0000 0.5190 325.8135 0.5190 | 1.0000 (93.4000 (0.0000) 2429.7882 (Aug Sep Oct Nov Dec 0 0.0000 0.0000 146.7914 333.2692 500.4088 (0 0.0000 0.0000 93.4000 93.4000 93.4000 (0 0.0000 0.0000 157.1642 356.8193 535.7696 (0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (9 143.5661 145.1516 165.2841 176.4375 190.9650 (80.3000 80.3000 84.7540 86.6283 87.3648 (0 178.7872 180.7617 195.0161 203.6718 218.5834 (2304.2197 (2429.7882 (0.0000 (325.8135 (314.8214 (2304.2197 0.2160 524.8342 (75.0000 0.0000 0.0000 0.0000 0.0000 (2304.2197 0.2160 497.7115 (75.0000 0.5190 38.9250 (1230.5679 (14.0075 (1.0000 2.3164 (0.05332 (0.05332 (0.05332 (0.05332 (0.05000 0.0000 0.0000 0.0000 0.0000 (0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 | | Property Reference | E909-05 | | | | Issued on Date | 11/05/2020 | | | | |---------------------------|--|-----------------------------------|--|-------------------|----------------|------------|--|--|--| | Assessment | E909-05 | | | Prop Type Ref | | | | | | | Reference | | | | | | | | | | | Property | Flat 5, 1
Hillfield Road, N | Flat 5, 1 Hillfield Road, NW6 1QD | | | | | | | | | SAP Rating | | 83 B | DER | 17.49 | TER | 19.46 | | | | | Environmental | | 89 B | % DER <ter< th=""><th></th><th colspan="4">10.14</th></ter<> | | 10.14 | | | | | | CO₂ Emissions (t/ye | ear) | 0.77 | DFEE | 38.22 | TFEE | 45.84 | | | | | General Requireme | nts Compliance | Pass | % DFEE <tfe< th=""><th>Е</th><th colspan="4">16.63</th></tfe<> | Е | 16.63 | | | | | | Assessor Details | Mr. Jason Doherty, Doherty E
jason@doherty-energy.co.uk | 0. | l, Tel: 0148045 | Assessor ID L143- | | | | | | | Client | ent | | | | | | | | | ### REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England | REGULATIONS COMPLIANCE REPORT - Approve | d Document L1A, 2013 Edition | on, England | | |---|--|-------------------------|----------------------| | DWELLING AS DESIGNED | | | | | Ground-floor flat, total floor area 50 | m ² | | | | This report covers items included withi | | | | | It is not a complete report of regulati | ons compliance. | | | | la TER and DER Fuel for main heating:Mains gas Fuel factor:1.00 (mains gas) Target Carbon Dioxide Emission Rate (TE Dwelling Carbon Dioxide Emission Rate (| DER) 17.49 kgCOU/m²OK
 | | | | 2 Fabric U-values | Highest | | | | External wall 0.16 (max. 0.30) Party wall 0.00 (max. 0.20) Floor (no floor) Roof 0.09 (max. 0.20) | 0.16 (max. 0.70) | OK | | | Roof 0.09 (max. 0.20) Openings 1.01 (max. 2.00) | 0.09 (max. 0.35)
1.20 (max. 3.30) | OK
OK | | | 2a Thermal bridging | | | | | Thermal bridging calculated using user- | | | | | Maximum | 3.00 (design value)
10.0 | | OK | | 4 Heating efficiency
Main heating system:
Data from database
Vaillant ecoTEC pro 24 VUW 246/5-3 (H-G
Combi boiler
Efficiency: 89.5% SEDBUK2009
Minimum: 88.0% | Boiler system with radiate | ors or underfloor - Mai | ns gas | | | None | | | | 5 Cylinder insulation | | | | | | No cylinder | | | | 6 Controls Space heating controls: | Time and temperature zone | control | OK | | Hot water controls: | No cylinder | | | | Boiler interlock | Yes | | OK | | 7 Low energy lights
Percentage of fixed lights with low-ene | ergy fittings:100% | | OK | | 8 Mechanical ventilation
Continuous supply and extract system
Specific fan power: | 0.66 | | | | Maximum
MVHR efficiency: | 1.5 | | OK | | Minimum: | 70% | | OK | | 9 Summertime temperature
Overheating risk (Thames Valley):
Based on: | Medium | | OK | | Overshading: Windows facing North: Windows facing East: Windows facing West: Air change rate: Blinds/curtains: | Average
2.53 m², No overhang
5.41 m², No overhang
2.53 m², No overhang
4.00 ach
Light-coloured curtain or | roller blind, closed 1 | 00% of daylight hour | | 10 Key features | | | | | Party wall U-value
Roof U-value | 0.00 W/m ² K
0.09 W/m ² K | | | | Door U-value | 0.55 W/m ² K
3.0 m ³ /m ² h | | | | Air permeability | m / m 11 | | | | CALCULATION OF I | DWELLING | G EMISSI | ONS FOR | REGULAT | IONS CC | OMPLIAN | CE 09 | Jan 2014 | | | | | |--|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|-----------------------------------|----------------------------|-----------------------|-------------------------|--|--------------------------------------|--------------------------------| | AP 2012 WORKSHEET FOR N | | | | 9.92, Januar |
ry 2014)
Jan 2014 | | | | | | | | | LCOLATION OF DWELLING | EMISSIONS FO | JR REGULATIO | ONS COMPLIAN | Overall dwelling dime | | | | | | | Area | Store | ey height | | Volume | | | round floor
otal floor area TFA = (
welling volume | la)+(lb)+(lc | c)+(1d)+(1e) | (1n) | 5 | 50.0000 | | (m2)
50.0000 | | (m)
2.4000 | | (m3)
120.0000
120.0000 | (4) | | . Ventilation rate | | | | | | | | | | | | | | | | | | main
heating | | econdary
heating | | other | tota | | 3 per hour | | | umber of chimneys
umber of open flues
umber of intermittent f
umber of passive vents
umber of flueless gas f | | | | 0 | + + | 0 | +
+ | 0 = 0 | | 0 * 40 =
0 * 20 =
0 * 10 =
0 * 10 =
0 * 40 = | 0.0000
0.0000
0.0000
0.0000 | (6b)
(7a)
(7b) | | nfiltration due to chim | neys, flues | and fans | = (6a)+(6b) | +(7a)+(7b)+(| (7c) = | | | | | Air change
/ (5) = | s per hour
0.0000 | (8) | | ressure test
easured/design AP50
nfiltration rate
umber of sides sheltere | d | | | | | | | | | | Yes
3.0000
0.1500 | | | helter factor
nfiltration rate adjust | ed to includ | de shelter f | actor | | | | | (20) = 1 - (2) | [0.075 x
1) = (18) > | | 0.9250
0.1388 | | | Jan ind speed 5.1000 ind factor 1.2750 | Feb
5.0000
1.2500 | Mar
4.9000
1.2250 | Apr
4.4000
1.1000 | May
4.3000
1.0750 | Jun
3.8000
0.9500 | Jul
3.8000
0.9500 | Aug
3.7000
0.9250 | | Oct
4.3000
1.0750 | Nov
4.5000
1.1250 | Dec
4.7000
1.1750 | | | lj infilt rate
0.1769 | 0.1734 | 0.1700 | 0.1526 | 0.1492 | 0.1318 | 0.1318 | 0.1283 | 0.1388 | 0.1492 | 0.1561 | 0.1630 | (22b) | | Balanced mechanical ven
f mechanical ventilatio
f balanced with heat re | n: | | - | for in-use fa | ictor (from | m Table 4h) | = | | | | 0.5000
76.5000 | | | ffective ac 0.2944 | 0.2909 | 0.2875 | 0.2701 | 0.2667 | 0.2493 | 0.2493 | 0.2458 | 0.2563 | 0.2667 | 0.2736 | 0.2805 | (25) | | . Heat losses and heat | loss paramet | ter | | | | | | | | | | | | Lement | | | Gross
m2 | Openings
m2 | Net | m2
.4000 | U-value
W/m2K
0.5500 | A x 1
W/1
2.420 | K k | -value
kJ/m2K | A x K
kJ/K | | | oor
indow (Uw = 1.20)
xternal Wall 1 | | | 74.6000 | 14.8700 | 10. | .4700
.4700
.7300 | 1.1450 | 11.988
9.556 | 5 | | | (26)
(27)
(29a) | | xternal Roof 1
otal net area of extern | | | 13.9000 | | | .9000
.5000 | 0.0900 | 1.251 | | | | (30) | | <pre>bric heat loss, W/K = rty Wall 1 rty Floor 1 rty Ceilings 1</pre> | Sum (A x U) | | | | 50. | (26)(3
.6000
.0000
.1000 | 30) + (32)
0.0000 | = 25.216
0.000 | | | | (33)
(32)
(32d)
(32b) | | mermal mass parameter (
mermal bridges (User de
otal fabric heat loss | | | | area) | | | | | (33) | + (36) = | 125.0000
5.3100
30.5263 | (36) | | entilation heat loss ca
Jan | lculated mor | nthly (38)m
Mar | = 0.33 x (2 | 25)m x (5)
May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | 38)m 11.6585
eat transfer coeff
42.1848 | 11.5211
42.0475 | 11.3838 | 10.6970
41.2233 | 10.5596
41.0859 | 9.8728
40.3991 | 9.8728
40.3991 | 9.7354
40.2618 | | 10.5596
41.0859 | 10.8343 | 11.1090
41.6354 | | | verage = Sum(39)m / 12 | = | | | | | | | | | | 41.1890 | | | Jan 0.8437 LP (average) ays in month | Feb
0.8409 | Mar
0.8382 | Apr
0.8245 | May
0.8217 | Jun
0.8080 | Jul
0.8080 | Aug
0.8052 | | Oct
0.8217 | Nov
0.8272 | Dec
0.8327
0.8238 | (40) | | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | (41) | | . Water heating energy | requirements | s (kWh/year) | | | | | | | | | | | | ssumed occupancy
verage daily hot water | use (litres/ | /day) | | | | | | | | | 1.6901
74.3399 | | | Jan
aily hot water use | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | 81.7739
nergy conte 121.2683 | 78.8003
106.0620 | 75.8267
109.4465 | 72.8531
95.4181 | 69.8795
91.5560 | 66.9059
79.0058 | 66.9059
73.2105 | 69.8795
84.0101 | | | 78.8003
108.1481
am(45)m = | 81.7739
117.4419 | (45) | | | ION OF E |)WELLIN | G EMISSI | ONS FO | R REGULA | TIONS CO | OMPLIAN | ICE 09 | Jan 2014 | l . | | | |
--|--|--|--|--|---|--|---|---|--|---|---|--|--| | later storage | 18.1902
loss: | 15.9093 | 16.4170 | 14.3127 | 13.7334 | 11.8509 | 10.9816 | 12.6015 | 12.7520 | 14.8613 | 16.2222 | 17.6163 | (46) | | otal storage | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (56) | | f cylinder co
ombi loss | 0.0000
41.6711 | 0.0000
36.2697 | 0.0000
38.6405 | 0.0000
35.9276 | 35.6098 | 0.0000
32.9947 | 0.0000
34.0945 | 0.0000
35.6098 | 0.0000
35.9276 | 0.0000
38.6405 | 0.0000
38.8604 | 0.0000
41.6711 | | | otal heat recolors | quired for w
162.9394
0.0000 | | ng calculat
148.0870
0.0000 | ed for eac
131.3457
0.0000 | 127.1658 | 112.0005 | 107.3050 | 119.6200
0.0000 | 120.9410 | 137.7155
0.0000 | 147.0086
0.0000 | 159.1130
0.0000 | | | itput from w | | 142.3318 | 148.0870 | 131.3457 | 127.1658 | 112.0005 | 107.3050 | Solar inpu | 120.9410 | months) = S
137.7155 | | 0.0000 | | | eat gains fro | | | | | | | | | | | um (64) m = | | , | | | 50.7395 | 44.3331 | 46.0511 | 40.7084 | 39.3448 | 34.5181 | 32.8661 | 36.8358 | 37.2489 | 42.6026 | 45.6744 | 49.4672 | (65) | | . Internal ga | ains (see Ta | able 5 and 5 | 5a) | | | | | | | | | | | | etabolic gain | | | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | 66)m
.ghting gain: | 84.5050 | 84.5050 | 84.5050 | 84.5050 | | 84.5050 | 84.5050 | 84.5050 | 84.5050 | 84.5050 | 84.5050 | 84.5050 | (66) | | pliances ga: | ins (calcula | | endix L, eq | uation L13 | or L13a), al | | | 6.3810 | 8.5646 | 10.8747 | 12.6924 | 13.5306 | , | | oking gains | (calculated | d in Append: | ix L, equat | ion L15 or | 126.3689
L15a), also | see Table 5 | 5 | 108.6205 | 112.4706 | 120.6670 | 131.0134 | 140.7376 | | | umps, fans | 31.4505 | 31.4505 | 31.4505
3.0000 | 31.4505 | | 31.4505
3.0000 | | osses e.g. e | -67.6040 | -67.6040 | -67.6040 | | -67.6040 | -67.6040 | -67.6040 | -67.6040 | -67.6040 | -67.6040 | -67.6040 | -67.6040 | (71) | | otal internal | 68.1982 | 65.9718 | 61.8966 | 56.5395 | 52.8828 | 47.9418 | 44.1749 | 49.5105 | 51.7345 | 57.2615 | 63.4366 | 66.4882 | (72) | | | 279.9484 | 277.7779 | 267.6690 | 251.8054 | 235.9846 | 220.4813 | 210.5839 | 215.8636 | 224.1213 | 240.1547 | 258.4939 | 272.1079 | (73) | | . Solar gain: | 3 | | | | | | | | | | | | | | Jan] | | | A | rea
m2 | Solar flux
Table 6a
W/m2 | Specif
or
5 | g
Fic data
Table 6b | Specific
or Tab | | Acce
fact
Table | or | Gains
W | | | orth | | | | 300 | 10.6334
19.6403 | | 0.7200
0.7200 | 0 | .7000
.7000 | 0.77 | | 9.3963
37.1115 | | | est | | | 2.5 | 300 | 19.6403 | | 0.7200 | 0 | .7000 | 0.77 | | 17.3553 | | | olar gains
otal gains | | 124.5053 | 205.9832 | | 379.6541 | 391.7368 | 371.6480 | 314.9104 | | 147.8040 | 79.5052 | 52.6240 | (83) | | | 343.8114 | 402.2832 | 473.6523 | 556.7300 | 615.6387 | | 582.2319 | 530.7740 | 464.8869 | 387.9587 | 337.9991 | 324.7319 | (84) | | | | | | | 615.6387 | 612.2181 | | | 464.8869 | 387.9587 | | 324.7319 | (84) | | . Mean intern | nal temperat | cure (heating | ng season) | ng area fr | om Table 9, 1 | 612.2181 | | | 464.8869 | 387.9587 | | 324.7319
21.0000 | | | . Mean internet of the control th | nal temperat
uring heatin
actor for ga | ure (heating periods : | ng season) in the livi | ng area fr
nil,m (see
Apr | om Table 9, 1
Table 9a)
May | 612.2181 | Jul | Aug | Sep | Oct | 337.9991
Nov | 21.0000
Dec | | | . Mean intern
emperature di
tilisation fa
au
lpha | nal temperat
 | ture (heating periods in the feb 41.2893 | ng season) in the livi | ng area fr | om Table 9, 1
Table 9a)
May
42.2556 | 612.2181 | | | | | 337.9991 | 21.0000 | | | . Mean internemperature ditilisation for au lpha til living as | al temperaturing heating actor for garan 41.1549 3.7437 rea 0.9639 | ure (heating periods: sins for liv Feb 41.2893 3.7526 0.9372 | in the livi
ving area,
Mar
41.4246
3.7616
0.8757 | ng area fr
nil,m (see
Apr
42.1148
3.8077 | Table 9, T
Table 9a)
May
42.2556
3.8170 | fh1 (C) Jun 42.9740 3.8649 0.4135 | Jul
42.9740
3.8649
0.3031 | Aug
43.1206
3.8747
0.3451 | Sep
42.6837
3.8456
0.5661 | Oct
42.2556
3.8170
0.8288 | Nov
41.9749
3.7983
0.9406 | 21.0000
Dec
41.6980
3.7799
0.9698 | (85) | | . Mean inter: | nal temperatiring heatir actor for ga Jan 41.1549 3.7437 area 0.9639 19.7234 20.2156 | ture (heating periods: ins for liv Feb 41.2893 3.7526 | ng season) in the livi ving area, Mar 41.4246 3.7616 | ng area fr
nil,m (see
Apr
42.1148
3.8077 | om Table 9, 1
Table 9a)
May
42.2556
3.8170
0.5783 | 612.2181 Ph1 (C) Jun 42.9740 3.8649 | Jul
42.9740
3.8649 | Aug
43.1206
3.8747 | Sep
42.6837
3.8456 | Oct
42.2556
3.8170
0.8288
20.6355 | Nov
41.9749
3.7983
0.9406
20.1158 | 21.0000
Dec
41.6980
3.7799 | (85)
(86)
(87) | | . Mean interneemperature dutilisation fa
au lpha
til living a:
IT
h 2
til rest of l | nal temperat
pring heatin
actor for ge
Jan
41.1549
3.7437
rea
0.9639
19.7234
20.2156
nouse
0.9584 | ng periods : ins for liv Feb 41.2893 3.7526 0.9372 19.9727 20.2180 0.9281 | ng season) in the livi ving area, Mar 41.4246 3.7616 0.8757 20.3386 20.2203 | ng area fr
nil,m (see
Apr
42.1148
3.8077
0.7464
20.7133
20.2322
0.7176 | om Table 9, 1 Table 9a) May 42.2556 3.8170 0.5783 20.9101 20.2345 0.5389 | 612.2181 Ph1 (C) Jun 42.9740 3.8649 0.4135 20.9812 20.2464 0.3674 | Jul
42.9740
3.8649
0.3031
20.9956
20.2464 | Aug
43.1206
3.8747
0.3451
20.9929
20.2488
0.2902 | Sep
42.6837
3.8456
0.5661
20.9396
20.2417 | Oct
42.2556
3.8170
0.8288
20.6355
20.2345
0.8003 | Nov
41,9749
3.7983
0.9406
20.1158
20.2298
0.9305 | 21.0000 Dec 41.6980 3.7799 0.9698 19.6793 20.2251 | (85)
(86)
(87)
(88)
(89) | | . Mean intern- emperature ditilisation for au lpha till living a: IT h 2 till rest of 1 IT 2 iving area f: | nal temperat
actor for ga
Jan
41.1549
3.7437
rea
0.9639
19.7234
20.2156
nouse
0.9584
18.5023
raction | rure (heating periods: ins for liver feb 41.2893 3.7526 0.9372 19.9727 20.2180 0.9281 18.8601 | ng season) in the livi ving area, Mar 41.4246 3.7616 0.8757 20.3386 20.2203 0.8590 19.3761 | ng area fri
nil,m (see
Apr
42.1148
3.8077
0.7464
20.7133
20.2322
0.7176
19.8910 | m Table 9, 1
Table 9a)
May
42.2556
3.8170
0.5783
20.9101
20.2345
0.5389
20.1393 | Th1 (C) Jun 42.9740 3.8649 0.4135 20.9812 20.2464 0.3674 20.2303 | Jul
42.9740
3.8649
0.3031
20.9956
20.2464
0.2521
20.2437 | Aug
43.1206
3.8747
0.3451
20.9929
20.2488
0.2902
20.2441 | Sep
42.6837
3.8456
0.5661
20.9396
20.2417
0.5134
20.1852
fLA = | Oct
42.2556
3.8170
0.8288
20.6355
20.2345
0.8003
19.8036 | Nov
41.9749
3.7983
0.9406
20.1158
20.2298
0.9305
19.0781
a / (4) = | 21.0000 Dec 41.6980 3.7799 0.9698 19.6793 20.2251 0.9651 18.4455 0.4880 | (85)
(86)
(87)
(88)
(89)
(90)
(91) | | Mean inter- lemperature distilisation for the second secon | nal temperat
ring heating
dator for gr
Jan
41.1549
3.7437
rea
0.9639
19.7234
20.2156
house
0.9584
18.5023
raction
19.0982 | rure (heating periods: 10 peri | ng season) in the livi ving area, Mar 41.4246 3.7616 0.8757 20.3386 20.2203 0.8590 19.3761 19.8458 | ng area fr
nil,m (see
Apr
42.1148
3.8077
0.7464
20.7133
20.2322
0.7176
19.8910 | m Table 9, 1
Table 9a)
May
42.2556
3.8170
0.5783
20.9101
20.2345
0.5389
20.1393
20.5155 | Th1 (C) Jun 42.9740 3.8649 0.4135 20.9812 20.2464 0.3674 20.2303 20.5968 | Jul
42.9740
3.8649
0.3031
20.9956
20.2464
0.2521
20.2437
20.6106 | Aug
43.1206
3.8747
0.3451
20.9929
20.2488
0.2902
20.2441
20.6095 | Sep
42.6837
3.8456
0.5661
20.9396
20.2417
0.5134
20.1852
fLA =
20.5533 | Oct
42.2556
3.8170
0.8288
20.6355
20.2345
0.8003
19.8036
Living are
20.2096 | Nov
41.9749
3.7983
0.9406
20.1158
20.2298
0.9305
19.0781
a / (4) =
19.5845 | 21.0000
Dec
41.6980
3.7799
0.9698
19.6793
20.2251
0.9651
18.4455
0.4880
19.0476
0.0000 | (85)
(86)
(87)
(88)
(89)
(90)
(91)
(92) | | . Mean inter- memperature di tilisation for au lpha til living a: IT h 2 til rest of l IT 2 iving area for IT IT Emperature de | nal temperat
ring heating
dator for gr
Jan
41.1549
3.7437
rea
0.9639
19.7234
20.2156
house
0.9584
18.5023
raction
19.0982 | rure (heating periods: ins for liver feb 41.2893 3.7526 0.9372 19.9727 20.2180 0.9281 18.8601 | ng season) in the livi ving area, Mar 41.4246 3.7616 0.8757 20.3386 20.2203 0.8590 19.3761 | ng area fri
nil,m (see
Apr
42.1148
3.8077
0.7464
20.7133
20.2322
0.7176
19.8910 | m Table 9, 1
Table 9a)
May
42.2556
3.8170
0.5783
20.9101
20.2345
0.5389
20.1393
20.5155 | Th1 (C) Jun 42.9740 3.8649 0.4135 20.9812 20.2464 0.3674 20.2303 | Jul
42.9740
3.8649
0.3031
20.9956
20.2464
0.2521
20.2437 | Aug
43.1206
3.8747
0.3451
20.9929
20.2488
0.2902
20.2441 | Sep
42.6837
3.8456
0.5661
20.9396
20.2417
0.5134
20.1852
fLA = | Oct
42.2556
3.8170
0.8288
20.6355
20.2345
0.8003
19.8036
Living are
20.2096 | Nov
41.9749
3.7983
0.9406
20.1158
20.2298
0.9305
19.0781
a / (4) =
19.5845 | 21.0000
Dec
41.6980
3.7799
0.9698
19.6793
20.2251
0.9651
18.4455
0.4880
19.0476
0.0000 | (85)
(86)
(87)
(88)
(89)
(90)
(91)
(92) | | . Mean intern- emperature di tilisation for au lpha til living a: IT h 2 til rest of l IT iving area for IT IT adjusted MIT . Space heat: | nal temperat
pring heating
actor for ge
Jan
41.1549
3.7437
rea
0.9639
19.7234
20.2156
nouse
0.9584
18.5023
raction
19.0982
dijustment
19.0982 | ng periods : ins for live Feb 41.2893 3.7526 0.9372 19.9727 20.2180 0.9281 18.8601 19.4030 19.4030 | ng season) in the livi ving area, Mar 41.4246 3.7616 0.8757 20.3386 20.2203 0.8590 19.3761 19.8458 | ng area fr
nil,m (see
Apr
42.1148
3.8077
0.7464
20.7133
20.2322
0.7176
19.8910
20.2923
20.2923 | om Table 9, 1 Table 9a) May 42.2556 3.8170 0.5783 20.9101 20.2345 0.5389 20.1393 20.5155 | 012.2181
Th1 (C)
Jun
42.9740
3.8649
0.4135
20.9812
20.2464
0.3674
20.2303
20.5968
20.5968 | Jul
42.9740
3.8649
0.3031
20.9956
20.2464
0.2521
20.2437
20.6106 | Aug
43.1206
3.8747
0.3451
20.9929
20.2488
0.2902
20.2441
20.6095
20.6095 | Sep
42.6837
3.8456
0.5661
20.9396
20.2417
0.5134
20.1852
fLA =
20.5533 | Oct
42.2556
3.8170
0.8288
20.6355
20.2345
0.8003
19.8036
Living are
20.2096 | Nov
41.9749
3.7983
0.9406
20.1158
20.2298
0.9305
19.0781
a / (4) =
19.5845 | 21.0000
Dec
41.6980
3.7799
0.9698
19.6793
20.2251
0.9651
18.4455
0.4880
19.0476
0.0000 | (85)
(86)
(87)
(88)
(89)
(90)
(91)
(92) | | . Mean internmemperature ditilisation for au lipha till living a: IT h 2 till rest of lill | nal temperat
arring heatin
actor for ge
Jan
41.1549
3.7437
rea
0.9639
19.7234
20.2156
nouse
0.9584
18.5023
reaction
19.0982
ijustment
19.0982 | nure (heating periods: sins for liv Feb 41.2893 3.7526 0.9372 19.9727 20.2180 0.9281 18.8601 19.4030 19.4030 | ng season) in the livi ving area, Mar 41,4246 3.7616 0.8757 20.3386 20.2203 0.8590 19.3761 19.8458 | ng area fr
nil,m (see
Apr
42.1148
3.8077
0.7464
20.7133
20.2322
0.7176
19.8910
20.2923
20.2923 | om Table 9, 1 Table 9a) May 42.2556 3.8170 0.5783 20.9101 20.2345 0.5389 20.1393 20.5155 20.5155 | 012.2181
Th1
(C)
Jun
42.9740
3.8649
0.4135
20.9812
20.2464
0.3674
20.2303
20.5968
20.5968 | Jul
42.9740
3.8649
0.3031
20.9956
20.2464
0.2521
20.2437
20.6106
20.6106 | Aug
43.1206
3.8747
0.3451
20.9929
20.2488
0.2902
20.2441
20.6095
20.6095 | Sep
42.6837
3.8456
0.5661
20.9396
20.2417
0.5134
20.1852
20.5533
20.5533 | Oct
42.2556
3.8170
0.8288
20.6355
20.2345
0.8003
19.8036
Living are
20.2096 | Nov
41.9749
3.7983
0.9406
20.1158
20.2298
0.9305
19.0781
a / (4) =
19.5845 | 21.0000 Dec 41.6980 3.7799 0.9698 19.6793 20.2251 0.9651 18.4455 0.4880 19.0476 0.0000 19.0476 | (85)
(86)
(87)
(88)
(90)
(91)
(92)
(93) | | . Mean internment per | nal temperataring heating factor for general fact | 19 Periods: 19 periods: 19 periods: 10 per | ng season) | ng area fr
nil,m (see
Apr
42.1148
3.8077
0.7464
20.7133
20.2322
0.7176
19.8910
20.2923
20.2923 | om Table 9, 1 Table 9a) May 42.2556 3.8170 0.5783 20.9101 20.2345 0.5389 20.1393 20.5155 20.5155 | Th1 (C) Jun 42.9740 3.8649 0.4135 20.9812 20.2464 0.3674 20.2303 20.5968 20.5968 | Jul
42.9740
3.8649
0.3031
20.9956
20.2464
0.2521
20.2437
20.6106
20.6106 | Aug
43.1206
3.8747
0.3451
20.9929
20.2488
0.2902
20.2441
20.6095
20.6095 | Sep
42.6837
3.8456
0.5661
20.9396
20.2417
0.5134
20.1852
fLA =
20.5533 | Oct
42.2556
3.8170
0.8288
20.6355
20.2345
0.8003
19.8036
Living are
20.2096
20.2096 | Nov
41.9749
3.7983
0.9406
20.1158
20.2298
0.9305
19.0781
a / (4) =
19.5845 | 21.0000 Dec 41.6980 3.7799 0.9698 19.6793 20.2251 0.9651 18.4455 0.4880 19.0476 0.0000 19.0476 | (85)
(86)
(87)
(88)
(89)
(90)
(91)
(92)
(93) | | . Mean internmemperature ditilisation for au lipha till living at till rest of lipha till rest of lipha au lipha till rest of lipha au lipha till rest of lipha au li | nal temperat
arring heatin
actor for ge
Jan
41.1549
3.7437
rea
0.9639
19.7234
20.2156
nouse
0.9584
18.5023
reaction
19.0982
dijustment
19.0982
digustment
19.0982 | rure (heating periods: sins for livered fo | ng season) in the livi ving area, Mar 41,4246 3.7616 0.8757 20.3386 20.2203 0.8590 19.3761 19.8458 19.8458 | ng area fr
nil,m (see
Apr
42.1148
3.8077
0.7464
20.7133
20.2322
0.7176
19.8910
20.2923
20.2923
Apr
0.7200
400.8217
8.9000 | Om Table 9, 1 Table 9a) May 42.2556 3.8170 0.5783 20.9101 20.2345 0.5389 20.1393 20.5155 20.5155 | 012.2181 Th1 (C) Jun 42.9740 3.8649 0.4135 20.9812 20.2464 0.3674 20.2303 20.5968 20.5968 Jun 0.3890 0.3890 0.381499 14.6000 242.2637 | Jul
42.9740
3.8649
0.3031
20.9956
20.2464
0.2521
20.2437
20.6106
20.6106 | Aug
43.1206
3.8747
0.3451
20.9929
20.2488
0.2902
20.2441
20.6095
20.6095
Aug
0.3167
168.0925
16.4000 | Sep 42.6837 3.8456 0.5661 20.9396 20.2417 0.5134 20.1852 20.5533 20.5533 | Oct
42.2556
3.8170
0.8288
20.6355
20.2345
0.8003
19.8036
Living are
20.2096
20.2096 | Nov
41.9749
3.7983
0.9406
20.1158
20.2298
0.9305
19.0781
a / (4) =
19.5845
19.5845
Nov
0.9205
311.1368
7.1000
516.3668 | 21.0000 Dec 41.6980 3.7799 0.9698 19.6793 20.2251 0.9651 18.4455 0.4880 19.0476 0.0000 19.0476 | (85)
(86)
(87)
(88)
(90)
(91)
(92)
(93)
(93) | | . Mean inter- emperature ditilisation for au lpha til living a: IIT h 2 til rest of l IIT 2 iving area for living l | al temperat aring heatin actor for ge Jan 41.1549 3.7437 rea 0.9639 19.7234 20.2156 nouse 0.9584 18.5023 raction 19.0982 dijustment 19.0982 dijustment 19.0982 action 20.9488 326.2134 4.3000 eW 624.2586 1.0000 kWh | nure (heating periods sins for live Feb 41.2893 3.7526 0.9372 19.9727 20.2180 0.9281 18.8601 19.4030 1 | ng season) in the livi ving area, Mar 41.4246 3.7616 0.8757 20.3386 20.2203 0.8590 19.3761 19.8458 19.8458 | ng area fr
nil,m (see
Apr
42.1148
3.8077
0.7464
20.7133
20.2322
0.7176
19.8910
20.2923
20.2923
Apr
0.7200
400.8217
8.9000
469.6283
1.0000 | om Table 9, 1 Table 9a) May 42.2556 3.8170 0.5783 20.9101 20.2345 0.5389 20.1393 20.5155 20.5155 | Th1 (C) Jun 42.9740 3.8649 0.4135 20.9812 20.2464 0.3674 20.2303 20.5968 20.5968 Jun 0.3890 238.1499 14.6000 | Jul 42.9740 3.8649 0.3031 20.9956 20.2464 0.2521 20.2437 20.6106 20.6106 | Aug
43.1206
3.8747
0.3451
20.9929
20.2488
0.2902
20.2441
20.6095
20.6095 | Sep
42.6837
3.8456
0.5661
20.9396
20.2417
0.5134
20.1852
fLA =
20.5533
20.5533 | Oct 42.2556 3.8170 0.8288 20.6355 20.2345 0.8003 10.917 10.6000 394.8187 1.0000 | Nov
41.9749
3.7983
0.9406
20.1158
20.2298
0.9305
19.0781
a / (4) =
19.5845
19.5845
Nov
0.9205
311.1368
7.1000 | 21.0000 Dec 41.6980 3.7799 0.9698 19.6793 20.2251 0.9651 18.4455 0.4880 19.0476 0.0000 19.0476 0.0000 19.0563 310.5540 4.2000 618.1853 1.0000 | (85)
(86)
(87)
(88)
(90)
(91)
(92)
(93)
(93)
(94)
(95)
(96)
(97)
(97a | #### CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014 Not applicable | 9a. Energy requirem | ments - Individu | al heating s | ystems, inc | luding micr | o-CHP | | | | | | | | |---|---|--|---------------------------|-------------|-----------|----------|----------------------|----------|--|----------------|---|--| | Fraction of space h
Fraction of space h
Efficiency of main
Efficiency of secon
Space heating requi | neat from second
neat from main s
space heating s
ndary/supplement | ary/suppleme
ystem(s)
ystem 1 (in | ntary syste
%) | | | | | | | | 0.0000
1.0000
93.4000
0.0000
1076.3039 | (202)
(206)
(208) | | Ja | an Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating requi | rement
.7456 161.8770 | 116.5469 | 49.5407 | 15.8775 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 63.0369 | 147.7656 | 228.8777 | (98) | | Space heating effic | | ting system | | 93.4000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 93.4000 | 93.4000 | 93.4000 | | | Space heating fuel | (main heating s
.4150 173.3158 | | 53.0415 | 16.9995 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 67.4913 | 158.2072 | 245.0510 | (211) | | Water heating requi | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Water heating | | | | | | | | | | | | | | Water heating requi | | 140 0070 | | 107 1650 | 110 0005 | 107 2050 | | | 100 0155 | | 150 1100 | | | 162.
Efficiency of water | .9394 142.3318
heater | 148.0870 | 131.3457 | 127.1658 | 112.0005 | 107.3050 | 119.6200 | 120.9410 | 137.7155 | 147.0086 | 159.1130
80.3000 | | | (217)m 85.
Fuel for water heat | | 84.4556 | 82.8347 | 81.3083 | 80.3000 | 80.3000 | 80.3000 | 80.3000 | 83.2195 | 85.0641 | 85.9658 | (217) | | 189.
Water heating fuel | .8452 166.7121
used | 175.3429 | 158.5637 | 156.3995 | 139.4776 | 133.6302 | 148.9663 | 150.6115 | 165.4846 | 172.8209 | 185.0887
1942.9432 | | | Annual totals kWh/y
Space heating fuel
Space heating fuel | - main system | | | | | | | | | | 1076.3039 | | | Electricity for pum (BalancedWithHe mechanical venti central heating
main heating flu Total electricity for lig Electricity for lig Total delivered ene | Patraction fans (SF pump are fan for the above, kynting (calculat | P = 0.
Wh/year
ed in Append | 8250) | 1.2500, SFP | = 0.8250) | | | | | | 120.7800
30.0000
45.0000
195.7800
232.4927
3447.5198 | (230c)
(230e)
(231)
(232) | | 12a. Carbon dioxide Space heating - mai Space heating - sec | e emissions - In | dividual hea | ting system | s including | micro-CHP | | | | ion factor
kg CO2/kWh
0.2160
0.0000 | | Emissions
g CO2/year
232.4816
0.0000 | (261) | | Water heating (other | er fuel) | | | | | | 1942.9432 | | 0.2160 | | 419.6757 | (264) | | Space and water hear
Pumps and fans
Energy for lighting
Total CO2, kg/year
Dwelling Carbon Dic | _ | ate (DER) | | | | | 195.7800
232.4927 | | 0.5190
0.5190 | | 652.1574
101.6098
120.6637
874.4309
17.4900 | (267)
(268)
(272) | | DER Total Floor Area Assumed number of c CO2 emission factor CO2 emissions from Total CO2 emissions Residual CO2 emissions Residual CO2 emissions Resulting CO2 emiss Net CO2 emissions | occupants in Table 12 fo appliances, equ cooking, equati sons offset from the electricity g | r electricit
ation (L14)
on (L16)
biofuel CHP
eneration, k | y displaced
Wh/m²/year | from grid | | | ON TECHNOLO | GIES | | TFA
N
EF | 17.4900
50.0000
1.6901
0.5190
17.4495
3.1912
38.1308
0.0000
0.0000
0.0000
38.1308 | ZC2
ZC3
ZC4
ZC5
ZC6
ZC7 | | CALCULATION OF TARGET EMISSIONS | 09 Ian 2014 | |------------------------------------|-------------| | CALCULATION OF LARGET FIVILS SIGNS | U9 Ian 7014 | | | TARGET EM | ISSIONS | 09 Jan 20 | 14
 | 9.92, Januar | | | | | | | | | |--|---------------------------------|--------------------------------|-------------------------|-----------------------------------|------------------------------|-------------------------|--|--|---|---|--|---------------------------------------|---| | | | | | | | | | | | | | | | | 1. Overall dwel | | | | | | | | | | | | | | | Ground floor
Total floor are
Dwelling volume | | la)+(1b)+(1c | c) + (1d) + (1e |)(1n) | 5 | 50.0000 | | Area
(m2)
50.0000 | | rey height
(m)
2.4000
+(3d)+(3e) | | Volume (m3)
120.0000 | (1b) - (3b
(4)
(5) | | 2. Ventilation | main | se | econdary | | other | tot | al m | 3 per hour | | | Number of chimn
Number of open
Number of inter
Number of passi
Number of fluel | flues
mittent fa
ve vents | | | | heating
0
0 | + + | heating
0
0 | + + | 0 = | | 0 * 40 =
0 * 20 =
2 * 10 =
0 * 10 =
0 * 40 = | 0.0000
0.0000
20.0000
0.0000 | (6b)
(7a)
(7b) | | Infiltration du
Pressure test
Measured/design
Infiltration ra
Number of sides | AP50 | | and fans | = (6a)+(6b) | +(7a)+(7b)+(| (7c) = | | | | 20.0000 | Air change
/ (5) = | 0.1667
Yes
5.0000
0.4167 | | | Shelter factor
Infiltration ra | te adjuste | ed to includ | de shelter | factor | | | | | (20) = 1 - | [0.075 x
21) = (18) | (19)] =
x (20) = | 0.9250
0.3854 | | | Wind speed
Wind factor | Jan
5.1000
1.2750 | Feb
5.0000
1.2500 | Mar
4.9000
1.2250 | Apr
4.4000
1.1000 | May
4.3000
1.0750 | Jun
3.8000
0.9500 | Jul
3.8000
0.9500 | Aug
3.7000
0.9250 | Sep
4.0000
1.0000 | Oct
4.3000
1.0750 | Nov
4.5000
1.1250 | Dec
4.7000
1.1750 | | | Adj infilt rate
Effective ac | 0.4914
0.6207 | 0.4818
0.6161 | 0.4721
0.6115 | 0.4240
0.5899 | 0.4143
0.5858 | 0.3661
0.5670 | 0.3661
0.5670 | 0.3565
0.5635 | 0.3854
0.5743 | 0.4143
0.5858 | 0.4336
0.5940 | 0.4529
0.6025 | | | 3. Heat losses | e (Uw = 1 | .40) | | Gross
m2
74.6000
13.9000 | Openings
m2
12.5100 | 4.
8.
62.
13. | m2
.4000
.1100
.0900
.9000 | U-value
W/m2K
1.0000
1.3258
0.1800
0.1300
30) + (32) | A x
W/
4.400
10.751
11.176
1.807 | /K
00
19
52 | -value
kJ/m2K | A x K
kJ/K | (26)
(27)
(29a)
(30)
(31)
(33) | | Thermal mass pa
Thermal bridges
Total fabric he | (Sum(L x | | | | | | | | | (33) | + (36) = | 250.0000
0.0000
28.1351 | (36) | | Ventilation hea | Jan
24.5813 | lculated mor
Feb
24.3956 | Mar
24.2137 | Apr | 25)m x (5)
May
23.1989 | Jun
22.4544 | Jul
22.4544 | Aug
22.3166 | Sep
22.7412 | Oct
23.1989 | Nov
23.5225 | Dec
23.8607 | (38) | | Heat transfer c Average = Sum(3 | 52.7164 | 52.5307 | 52.3487 | 51.4940 | 51.3340 | 50.5895 | 50.5895 | 50.4517 | 50.8763 | 51.3340 | 51.6576 | 51.9958
51.4932 | | | HLP
HLP (average) | Jan
1.0543 | Feb
1.0506 | Mar
1.0470 | Apr
1.0299 | May
1.0267 | Jun
1.0118 | Jul
1.0118 | Aug
1.0090 | Sep
1.0175 | Oct
1.0267 | Nov
1.0332 | Dec
1.0399
1.0299 | | | Days in month | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | (41) | | 4. Water heatin | g energy : | requirements | (kWh/year |) | | | | | | | | | | | Assumed occupan
Average daily h | | use (litres/ | 'day) | | | | | | | | | 1.6901
74.3399 | | | Daily hot water | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Energy conte
Energy content | 81.7739
121.2683
(annual) | 78.8003
106.0620 | 75.8267
109.4465 | 72.8531
95.4181 | 69.8795
91.5560 | 66.9059
79.0058 | 66.9059
73.2105 | 69.8795
84.0101 | 72.8531
85.0135 | 75.8267
99.0750
Total = S | 78.8003
108.1481
um(45)m = | 81.7739
117.4419
1169.6560 | (45) | | Distribution lo Water storage 1 Total storage 1 | 18.1902
oss: | = 0.15 x (4
15.9093 | 16.4170 | 14.3127 | 13.7334 | 11.8509 | 10.9816 | 12.6015 | 12.7520 | 14.8613 | 16.2222 | 17.6163 | (46) | | If cylinder con | 0.0000
tains ded | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Combi loss | 0.0000
41.6711 | 0.0000
36.2697 | 0.0000
38.6405 | 0.0000
35.9276 | 0.0000
35.6098 | 0.0000
32.9947 | 0.0000
34.0945 | 0.0000
35.6098 | 0.0000
35.9276 | 0.0000
38.6405 | 0.0000
38.8604 | 0.0000
41.6711 | | | CALCULATION OF T | | | | | | | | | | | | | |--|----------------------------------|----------------------------------|----------------------------|--------------------------------|-------------------------------|-------------------------------|--------------------------|--------------------------|------------------------------------|--------------------------|------------------------------|------| | otal heat required for v | | | | | | | | | | | | | | 162.9394
Solar input 0.0000 | 142.3318
0.0000 | | | 127.1658
0.0000 | 112.0005
0.0000 | 107.3050
0.0000 | 0.0000 | 120.9410
0.0000 | 137.7155
0.0000
months) = Si | 0.0000 | 159.1130
0.0000
0.0000 | (63) | | Output from w/h
162.9394 | 142.3318 | 148.0870 | 131.3457 | 127.1658 | 112.0005 | 107.3050 | 119.6200 | 120.9410 | 137.7155 | 147.0086 | 159.1130 | (64) | | Heat gains from water hea | ting, kWh/r
44.3331 | month
46.0511 | 40.7084 | 39.3448 | 34.5181 | 32.8661 | 36.8358 | r year (kw.
37.2489 | 42.6026 | am (64) m = 45.6744 | 1615.5732
49.4672 | | | | | | | | | | | | | | | | | 5. Internal gains (see Ta | ble 5 and 5 | 5a) | | | | | | | | | | | | Metabolic gains (Table 5) | , Watts | | | | | | | Con | Oat | Non | Daa | | | Jan
(66)m 84.5050
Lighting gains (calculate | | Mar
84.5050
dix L, equa | | May
84.5050
L9a), also s | | Jul
84.5050 | Aug
84.5050 | Sep
84.5050 | Oct
84.5050 | Nov
84.5050 | Dec
84.5050 | (66) | | 13.6576
Appliances gains (calcula | | | | | | | 6.6199 | 8.8852 | 11.2818 | 13.1676 | 14.0371 | , , | | Cooking gains (calculated | l in Appendi | ix L, equat | ion L15 or | | see Table ! | 5 | 108.6205 | 112.4706 | 120.6670 | 131.0134 | 140.7376 | | | 31.4505
Pumps, fans 3.0000
Cosses e.g. evaporation | 31.4505
3.0000
negative va | 31.4505
3.0000
alues) (Tab | 31.4505
3.0000
le 5) | 31.4505
3.0000 | 31.4505
3.0000 | 31.4505
3.0000 | 31.4505
3.0000 | 31.4505
3.0000 | 31.4505
3.0000 | 31.4505 | 31.4505
3.0000 | | | | -67.6040 | | -67.6040 | -67.6040 | -67.6040 | -67.6040 | -67.6040 | -67.6040 | -67.6040 | -67.6040 | -67.6040 | (71) | | 68.1982
Total internal gains | 65.9718 | | 56.5395 | 52.8828 | 47.9418 | 44.1749 | 49.5105 | 51.7345 | 57.2615 | 63.4366 | 66.4882 | | | 280.4412 | 278.2156 | 268.0250 | 252.0749 | 236.1861 | 220.6514 | 210.7677 | 216.1025 | 224.4419 | 240.5618 | 258.9691 | 272.6144 | (73) | | 5. Solar gains | | | | | | | | | | | | | | [Jan] | | | rea
m2 | Solar flux
Table 6a | | g
fic data | Specific | FF
data | Acce: | | Gains
W | | | | | | | W/m2 | | | | .e 6c | Table | 5d | | | | North
East
West | | 1.9
4.1
1.9 | 900
600 | 10.6334
19.6403
19.6403 | | 0.6300
0.6300
0.6300 | 0. | 7000
7000
7000 | 0.77
0.77
0.77 | 00 | 6.3694
25.1497
11.7645 | (76) | | Solar gains 43.2837
Total gains 323.7249 | | 139.6068 | 206.6656 | 257.3148
493.5009 | | | 213.4338 | | 100.1753 | 53.8852
312.8544 | 35.6664
308.2808 | | | | | | | | | | | | | | | | | 7. Mean internal temperat | ure (heatir | ng season) | | | | | | | | | | | | Temperature during heatin
Utilisation factor for ga | ins for liv | ving area, | nil,m (see | Table 9a) | | | | | | | 21.0000 |
(85) | | Jan
65.8661
alpha 5.3911 | Feb
66.0989
5.4066 | Mar
66.3287
5.4219 | Apr
67.4297
5.4953 | May
67.6398
5.5093 | Jun
68.6352
5.5757 | Jul
68.6352
5.5757 | Aug
68.8227
5.5882 | Sep
68.2483
5.5499 | Oct
67.6398
5.5093 | Nov
67.2161
5.4811 | Dec
66.7789
5.4519 | | | util living area 0.9971 | 0.9941 | 0.9838 | 0.9432 | 0.8320 | 0.6412 | 0.4769 | 0.5322 | 0.8024 | 0.9678 | 0.9940 | 0.9978 | | | MIT 19.9341 | 20.0717 | 20.3146 | 20.6344 | 20.8716 | 20.9768 | 20.9962 | 20.9933 | 20.9230 | 20.6078 | 20.2188 | 19.9152 | (87) | | Th 2 20.0383
util rest of house
0.9962 | 20.0414 | 0.9782 | 20.0585 | 0.7817 | 20.0735 | 20.0735 | 0.4295 | 20.0688 | 20.0612
0.9530 | 20.0558 | 20.0502
0.9971 | | | MIT 2 18.6183
Living area fraction | 18.8208 | 19.1745 | 19.6344 | 19.9390 | 20.0586 | 20.0721 | 20.0731 | 20.0088 | 19.6082
Living area | 19.0467 | 18.5994 | (90) | | MIT 19.2604
Temperature adjustment | 19.4312 | 19.7309 | 20.1224 | 20.3941 | 20.5067 | 20.5231 | 20.5221 | 20.4549 | | | 19.2416
0.0000 | (92) | | adjusted MIT 19.2604 | 19.4312 | 19.7309 | 20.1224 | 20.3941 | 20.5067 | 20.5231 | 20.5221 | 20.4549 | 20.0960 | 19.6187 | 19.2416 | (93) | | 3. Space heating requirem | nent | | | | | | | | | | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | | 0.9905
359.1693
4.9000 | | | 395.2182 | 0.5983
290.8577
14.6000 | 0.4268
197.4514
16.6000 | 0.4798
206.0901 | 0.7614
295.1234 | 0.9536
324.9408
10.6000 | | | (95) | | | 763.3370
1.0000 | | | 446.3032 | 298.8153 | | | | 487.4671 | | 782.0977 | | | Space heating kWh | 1.0000 | | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | | | Space heating Space heating per m2 | | | | | | | | | | / (4) = | 1703.3014
34.0660 | (98) | | | | | | | | | | | | | | | | 'c Space conline rom-i | | | | | | | | | | | | | | 3c. Space cooling require | CALCULATION OF TARGET I | EMISSION | IS 09 J | an 2014 | | | | | | | | | |---|-------------------------|-------------|-------------|-------------|------------|--|----------|--|----------|--|--| | Fraction of space heat from seconda
Fraction of space heat from main sy
Efficiency of main space heating sy
Efficiency of secondary/supplementa
Space heating requirement | rstem(s)
rstem 1 (in | %) | m (Table 11 |) | | | | | | 0.0000
1.0000
93.4000
0.0000
1823.6632 | (202)
(206)
(208) | | Jan Feb
Space heating requirement | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | 347.0829 271.6007 | 219.3186 | 110.4326 | 38.0073 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 120.9196 | 242.5499 | 353.3900 | (98) | | Space heating efficiency (main heat 93.4000 93.4000 | 93.4000 | 93.4000 | 93.4000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 93.4000 | 93.4000 | 93.4000 | (210) | | Space heating fuel (main heating sy 371.6091 290.7930 | rstem)
234.8164 | 118.2362 | 40.6930 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 129.4642 | 259.6894 | 378.3619 | (211) | | Water heating requirement 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating | | | | | | | | | | | | | Water heating requirement 162.9394 142.3318 | 148.0870 | 131.3457 | 127.1658 | 112.0005 | 107.3050 | 119.6200 | 120.9410 | 137.7155 | 147.0086 | 159.1130 | (64) | | Efficiency of water heater (217) m 86.9078 86.6524 | 86.0382 | 84.6181 | 82.4189 | 80.3000 | 80.3000 | 80.3000 | 80.3000 | 84.7256 | 86.3036 | 80.3000
87.0026 | | | Fuel for water heating, kWh/month
187.4854 164.2561 | 172.1178 | 155.2217 | 154.2921 | 139.4776 | 133.6302 | 148.9663 | 150.6115 | 162.5428 | 170.3389 | 182.8830 | (219) | | Water heating fuel used
Annual totals kWh/year | | | | | | | | | | 1921.8234 | (219) | | Space heating fuel - main system Space heating fuel - secondary | | | | | | | | | | 1823.6632
0.0000 | | | | | | | | | | | | | 0.0000 | (213) | | Electricity for pumps and fans:
central heating pump
main heating flue fan
Total electricity for the above, kW
Electricity for lighting (calculate
Total delivered energy for all uses | d in Append | ix L) | | | | | | | | 30.0000
45.0000
75.0000
241.1968
4061.6833 | (230e)
(231)
(232) | | | | | | | | | | | | | | | 12a. Carbon dioxide emissions - Ind | | | | | | | | | | | | | Space heating - main system 1
Space heating - secondary
Water heating (other fuel)
Space and water heating | | | | | | Energy
kWh/year
1823.6632
0.0000
1921.8234 | | ion factor
kg CO2/kWh
0.2160
0.0000
0.2160 | ŀ | Emissions
cg CO2/year
393.9112
0.0000
415.1138
809.0251 | (263)
(264)
(265) | | Pumps and fans Energy for lighting Total CO2, kg/m2/year Emissions per m2 for space and wate Fuel factor (mains gas) Emissions per m2 for lighting Emissions per m2 for pumps and fans | | C 1005 + 1 | 00) + 0 503 | 6 1 0 7705 | | 75.0000
241.1968 | | 0.5190
0.5190 | | 38.9250
125.1811
973.1312
16.1805
1.0000
2.5036
0.7785 | (268)
(272)
(272a)
(272b)
(272c) | | Target Carbon Dioxide Emission Rate | (TEK) = (I | 0.1803 ^ 1. | 00) + 2.303 | o + U.//85, | rounaea to | ∠ a.p. | | | | 19.4600 | (2/3) | | Property Reference | E909-06 | | | | Issued on Date | 11/05/2020 | | | | |---------------------------|--|--------|---|---------------|----------------|------------|--|--|--| | Assessment | E909-06 | | | Prop Type Ref | | | | | | | Reference | | | | | | | | | | | Property | Flat 6, 1 Hillfield Road, N | N6 1QD | | | | | | | | | SAP Rating | | 85 B | DER | 13.94 | TER | 15.24 | | | | | Environmental | | 87 B | % DER <ter< th=""><th></th><th colspan="5">8.54</th></ter<> | | 8.54 | | | | | | CO₂ Emissions (t/ye | ear) | 1.43 | DFEE | 40.93 | TFEE | 47.07 | | | | | General Requireme | nts Compliance | Pass | % DFEE <tfe< th=""><th>E</th><th>13.04</th><th></th></tfe<> | E | 13.04 | | | | | | Assessor Details | Mr. Jason Doherty, Doherty E
jason@doherty-energy.co.uk | 0. | l, Tel: 0148045 | 1569, | Assessor ID | L143-0001 | | | | | Client | | | | | | | | | | ### REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England | REGULATIONS COMPLIANCE REPORT - Approve | ed Document L1A, 2013 Ed | ition, England | | |--|--|----------------------|--| | DWELLING AS DESIGNED | | | | | Top-floor flat, total floor area 118 m ² | 2 | | | | This report covers items included with:
It is not a complete report of regulat: | | | | | la TER and DER Fuel for main heating:Mains gas Fuel factor:1.00 (mains gas) Target Carbon Dioxide Emission Rate (Ti Dwelling Carbon Dioxide Emission Rate | ER) 15.24 kgCO□/m²
(DER) 13.94 kgCO□/m²OK | | | | 1b TFEE and DFEE
Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (DFEI | | | | | 2 Fabric U-values | | | | | Element Average External wall 0.16 (max. 0.30) Party wall 0.00 (max. 0.20) Floor (no floor) Roof 0.09 (max. 0.20) | Highest
0.16 (max. 0.70) | OK
OK | | | Roof 0.09 (max. 0.20) Openings 1.16 (max. 2.00) | 0.09 (max. 0.35)
1.20 (max. 3.30) | OK
OK | | | 2a Thermal bridging Thermal bridging calculated using user- | |
nen | | | | | | | | 3 Air permeability Air permeability at 50 pascals: Maximum | 3.00 (design value)
10.0 | | OK | | 4 Heating efficiency
Main heating system:
Data from database | Boiler system with rad | iators or underfloor | - Mains gas | | Vaillant ecoTEC pro 24 VUW 246/5-3 (H-C
Combi boiler
Efficiency: 89.5% SEDBUK2009
Minimum: 88.0% | OK | | | | | None | | | | | | | | | | No cylinder | | | | 5 Cylinder insulation | No cylinder | | OK | | 5 Cylinder insulation
Hot water storage
6 Controls | No cylinder | | | | 5 Cylinder insulation Hot water storage 6 Controls Space heating controls: Hot water controls: | No cylinder Time and temperature z No cylinder | one control | OK OK | | 5 Cylinder insulation Hot water storage 6 Controls Space heating controls: Hot water controls: Boiler interlock | No cylinder Time and temperature z No cylinder Yes ergy fittings:100% | one control | OK OK | | 5 Cylinder insulation Hot water storage 6 Controls Space heating controls: Hot water controls: Boiler interlock 7 Low energy lights Percentage of fixed lights with low-eneminimum 8 Mechanical ventilation Continuous supply and extract system | No cylinder Time and temperature z No cylinder Yes ergy fittings:100% | one control | OK OK | | 5 Cylinder insulation Hot water storage 6 Controls Space heating controls: Hot water controls: Boiler interlock 7 Low energy lights Percentage of fixed lights with low-eneminimum
8 Mechanical ventilation Continuous supply and extract system Specific fan power: Maximum Maximum | No cylinder Time and temperature z No cylinder Yes ergy fittings:100% 75% 0.81 1.5 | one control | OK OK | | 5 Cylinder insulation Hot water storage 6 Controls Space heating controls: Hot water controls: Boiler interlock 7 Low energy lights Percentage of fixed lights with low-eneminimum 8 Mechanical ventilation Continuous supply and extract system Specific fan power: Maximum MVHR efficiency: Moinimum: | No cylinder Time and temperature z No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% | one control | OK OK | | 5 Cylinder insulation Hot water storage | No cylinder Time and temperature z No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% | one control | OK OK | | 5 Cylinder insulation Hot water storage | No cylinder Time and temperature z No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% Medium Average | one control | OK OK OK | | 5 Cylinder insulation Hot water storage | No cylinder Time and temperature z No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% Medium Average 15.70 m², No overhang 23.73 m², No overhang | one control | OK OK OK | | 5 Cylinder insulation Hot water storage | No cylinder Time and temperature z No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% Medium Average 15.70 m², No overhang 23.73 m², No overhang 4.00 ach Light-coloured curtain | one control | OK | | 5 Cylinder insulation Hot water storage 6 Controls Space heating controls: Hot water controls: Boiler interlock 7 Low energy lights Percentage of fixed lights with low-eneminimum 8 Mechanical ventilation Continuous supply and extract system Specific fan power: Maximum MVHR efficiency: Minimum: 9 Summertime temperature Overheating risk (Thames Valley): Based on: Overshading: Windows facing South: Windows facing South: Windows facing West: Air change rate: Blinds/curtains: | No cylinder Time and temperature z No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% Medium Average 15.70 m², No overhang 23.73 m², No overhang 4.00 ach Light-coloured curtain | one control | OK | | S Cylinder insulation Hot water storage 6 Controls Space heating controls: Hot water controls: Boiler interlock 7 Low energy lights Percentage of fixed lights with low-ene Minimum 8 Mechanical ventilation Continuous supply and extract system Specific fan power: Maximum MVHR efficiency: Minimum: 9 Summertime temperature Overheating risk (Thames Valley): Based on: Overshading: Windows facing South: Windows facing South: Windows facing West: Air change rate: Blinds/curtains: | No cylinder Time and temperature z No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% Medium Average 15.70 m², No overhang 23.73 m², No overhang 4.00 ach Light-coloured curtain 0.00 W/m²K | one control | OK | | 5 Cylinder insulation Hot water storage | No cylinder Time and temperature z No cylinder Yes ergy fittings:100% 75% 0.81 1.5 89% 70% Medium Average 15.70 m², No overhang 23.73 m², No overhang 4.00 ach Light-coloured curtain | one control | OK | | CALCULATI | ON OF E | WELLIN | G EMISSI | ONS FOR | REGULAT | TIONS C | OMPLIAN | ICE 09 | 9 Jan 2014 | | | | | |--|-----------------------------------|------------------------------|--------------------------------|------------------------------------|------------------------------|-------------------------|-------------------------------|--|---|--|--|--|--| | SAP 2012 WORKS | | | | | 9.92, Janua
NCE 09 | ry 2014)
Jan 2014 | | | | | | | | | 1. Overall dwe | | | | | | | | | | | | | | | Ground floor
First floor
Total floor ar
Dwelling volume | ea TFA = (1 | | | | 1 | 18.0000 | | Area
(m2)
88.0000
30.0000 | (1b) x | rey height
(m)
2.4000
2.7000
1+(3d)+(3e) | (2c) = | | (1b) - (3b
(1c) - (3c
(4)
(5) | | 2. Ventilation | rate | | | | | | | | | | | | | | Number of chim
Number of open
Number of inte
Number of pass
Number of flue | flues
rmittent fa
ive vents | | | | main
heating
0
0 | | heating
0
0 | + + | other
0 =
0 = | tot
=
= | 0 * 40 =
0 * 20 =
0 * 10 =
0 * 10 =
0 * 40 = | 0.0000
0.0000
0.0000
0.0000
0.0000 | (6b)
(7a)
(7b) | | Infiltration de Pressure test Measured/design Infiltration r. Number of side: | ue to chimr
n AP50
ate | neys, flues | and fans | = (6a)+(6b |)+(7a)+(7b)+ | (7c) = | | | | 0.0000 | Air changes | 0.0000
Yes
3.0000
0.1500 | (8) | | Shelter factor
Infiltration ra | ate adjuste | ed to inclu | de shelter : | factor | | | | | (20) = 1 - | - [0.075 2
21) = (18) | | 0.9250
0.1388 | | | Wind speed
Wind factor | Jan
5.1000
1.2750 | Feb
5.0000
1.2500 | Mar
4.9000
1.2250 | Apr
4.4000
1.1000 | May
4.3000
1.0750 | Jun
3.8000
0.9500 | Jul
3.8000
0.9500 | Aug
3.7000
0.9250 | | Oct
4.3000
1.0750 | Nov
4.5000
1.1250 | Dec
4.7000
1.1750 | | | Adj infilt rate
Balanced mech
If mechanical | 0.1769
anical vent | | | 0.1526
overy | 0.1492 | 0.1318 | 0.1318 | 0.1283 | 0.1388 | 0.1492 | 0.1561 | 0.1630 | | | If balanced wi | 0.2987 | 0.2952 | iciency in 9 | % allowing
0.2744 | for in-use f
0.2709 | 0.2536 | om Table 4h) | 0.2501 | 0.2605 | 0.2709 | 0.2778 | 75.6500
0.2848 | | | | | | | | | | | | | | | | | | 3. Heat losses Element Door Window (Uw = 1 External Wall External Roof | .20) | | | Gross
m2
169.6000
88.0000 | Openings
m2
41.7300 | Ne
2
39
127 | m2
.3000
.4300
.8700 | U-value
W/m2K
0.5500
1.1450
0.1600
0.0900 | A x
W,
1.265
45.148
20.455
7.920 | /K
50
39
92 | K-value
kJ/m2K | A x K
kJ/K | (26)
(27)
(29a)
(30) | | Total net area
Fabric heat los
Party Floor 1 | of externa | | | 00.0000 | | 257 | .6000 | 30) + (32) | | | | | (31)
(33)
(32d) | | Thermal mass partnermal bridge:
Total fabric he | s (User dei | | | | area) | | | | | (33) | + (36) = | 125.0000
15.4560
90.2491 | (36) | | Ventilation head (38) m | at loss cal
Jan
28.7982 | culated mo
Feb
28.4637 | onthly (38)m
Mar
28.1293 | = 0.33 x (
Apr
26.4569 | 25)m x (5)
May
26.1224 | Jun
24.4500 | Jul
24.4500 | Aug
24.1155 | Sep
25.1190 | Oct
26.1224 | Nov
26.7914 | Dec
27.4603 | (38) | | Heat transfer Average = Sum (| 119.0473 | 118.7128 | 118.3783 | 116.7059 | 116.3715 | 114.6991 | 114.6991 | 114.3646 | 115.3680 | 116.3715 | 117.0404 | 117.7094
116.6223 | | | HLP
HLP (average) | Jan
1.0089 | Feb
1.0060 | Mar
1.0032 | Apr
0.9890 | May
0.9862 | Jun
0.9720 | Jul
0.9720 | Aug
0.9692 | Sep
0.9777 | Oct
0.9862 | Nov
0.9919 | Dec
0.9975
0.9883 | | | Days in month | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | (41) | | 4. Water heati | ng energy 1 | equirement | s (kWh/year) |) | | | | | | | | | | | Assumed occupations Average daily | ncy | | | | | | | | | | | 2.8552
102.0120 | | | Daily hot wate | | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Energy conte
Energy content | (annual) | 108.1328
145.5424 | 150.1867 | 99.9718
130.9364 | 95.8913
125.6366 | 91.8108
108.4148 | 91.8108
100.4623 | 95.8913
115.2819 | | 104.0523
135.9545
Total = 8 | 108.1328
148.4050
Sum(45)m = | 112.2133
161.1582
1605.0468 | (45) | | Distribution 1 | 24.9614 | = 0.15 x (
21.8314 | (45) m
22.5280 | 19.6405 | 18.8455 | 16.2622 | 15.0693 | 17.2923 | 17.4988 | 20.3932 | 22.2608 | 24.1737 | (46) | | CALCULAT | ION OF I | OWELLIN | G EMISSI | ONS FOR | R REGULA | TIONS C | OMPLIAN | ICE 09 | Jan 2014 | ! | | | | |--|--|------------------------|--------------------|---------------------|------------------------|--------------------|----------------------|---------------------|-----------------------|--------------------------|----------------------|----------------------------------|------| | later storage : | | | | | | | | | | | | | | | If cylinder co | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (56) | | ombi loss | 0.0000 | 0.0000
46.0274 | 0.0000 | 0.0000
49.3012 | 0.0000
48.8652 | 0.0000
45.2766 | 0.0000
46.7858 | 0.0000
48.8652 | 0.0000
49.3012 | 0.0000
50.9589 | 0.0000
49.3151 | 0.0000
50.9589 | | | otal heat req | uired for | water heati | | ed for each | month | 153.6914 | 147.2481 | 164.1471 | 165.9599 | 186.9135 | 197.7201 | 212.1171 | | | olar input | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Solar inp | 0.0000
out (sum of | 0.0000
months) = Si | 0.0000
am(63)m = | 0.0000 | | | utput from w/ | | 191.5698 | 201.1456 | 180.2376 | 174.5018 | 153.6914 | 147.2481 | | 165.9599 | | 197.7201 | 212.1171 | | | eat gains fro | m water he | ating, kWh/
59.8997 | month
62.6768 | 55.8616 | 53.9905 | 47.3671 | 45.1002 | 50.5475 | 51.1143 | 7h/year) = St
57.9446 | 61.6734 | 2192.6199 | | | | | | | | | | | | | | | | | | . Internal ga | ins (see T | able 5 and | 5a) | | | | | | | | | | | | etabolic gain | s (Table 5 |), Watts | | | | | | | _ | | | | | | 56) m | | | | | May
142.7622 | | | Aug
142.7622 | Sep
142.7622 | Oct
142.7622 | Nov
142.7622 | Dec
142.7622 | (66) | | ighting gains | 25.1928 | 22.3760 | 18.1974 | 13.7766 | 10.2982 | 8.6941 | 9.3943 | 12.2111 | 16.3897 | 20.8105 | 24.2889 | 25.8929 | (67) | | opliances gai | 282.5862 | 285.5185 | 278.1291 |
262.3978 | 242.5399 | 223.8763 | 211.4078 | 208.4755 | 215.8649 | 231.5962 | 251.4541 | 270.1177 | (68) | | ooking gains | 37.2762
3.0000 | 37.2762
3.0000 | 37.2762
3.0000 | | 37.2762
3.0000 | | mps, fans
osses e.g. ev | aporation | (negative v | ralues) (Tab | le 5) | -114.2098 | | | -114.2098 | | -114.2098 | | | | | ater heating | | | 84.2430 | 77.5856 | 72.5678 | 65.7876 | 60.6185 | 67.9402 | 70.9921 | 77.8825 | 85.6576 | 89.1463 | | | otal internal | gains | 465.8596 | 449.3981 | 422.5887 | 394.2345 | 367.1867 | 350.2493 | 357.4554 | 372.0754 | 399.1179 | 430.2292 | 453.9856 | | | | 400.1003 | 400.0000 | 440.0001 | 422.5007 | 334.2343 | 307.1007 | 330.2433 | 337.4334 | 372.0734 | 333.1173 | 430.2232 | 403.3030 | (75) | | Solar gains | | | | | | | | | | | | | | | Jan] | | | | rea | Solar flux | | g | | FF | Acces | ss | Gains | | | | | | | m2 | Table 6a
W/m2 | Speci
or | fic data
Table 6b | Specific
or Tab | data | facto
Table | or | W | | | outh
est | | | 15.7
23.7 | 300 | 46.7521
19.6403 | | 0.7200
0.7200 | C | .7000
.7000 | 0.770
0.770 | | 256.3682
162.7829 | | | olar gains
otal gains | | | | | 1567.2414
1961.4759 | | | | | 830.7173
1229.8352 | 506.8550
937.0842 | 355.3905
809.3761 | | | | | | | | | | | | | | | | | | . Mean intern | al tempera | ture (heati | ng season) | | | | | | | | | | | | emperature du
tilisation fa | | | | | | Th1 (C) | | | | | | 21.0000 | (85) | | au | Jan
34.4168 | Feb
34.5137 | Mar
34.6113 | Apr | May
35.2081 | Jun
35.7215 | Jul
35.7215 | Aug
35.8260 | Sep
35.5144 | Oct
35.2081 | Nov
35.0069 | Dec
34.8080 | | | lpha
til living ar | 3.2945 | 3.3009 | 3.3074 | | 3.3472 | 3.3814 | 3.3814 | 3.3884 | 3.3676 | 3.3472 | 3.3338 | 3.3205 | | | | 0.9599 | 0.9067 | 0.8147 | 0.6711 | 0.5152 | 0.3707 | 0.2695 | 0.3025 | 0.4881 | 0.7638 | 0.9258 | 0.9689 | (86) | | T 2 | 19.4380
20.0759 | 19.8726
20.0783 | 20.3289
20.0807 | 20.7101
20.0925 | 20.9008
20.0949 | 20.9757
20.1067 | 20.9937
20.1067 | 20.9907
20.1091 | 20.9388
20.1020 | 20.6249
20.0949 | 19.9507
20.0901 | 19.3539
20.0854 | | | il rest of h | 0.9535 | 0.8935 | 0.7916 | 0.6369 | 0.4726 | 0.3217 | 0.2157 | 0.2454 | 0.4322 | | 0.9129 | | | | IT 2
iving area fra
IT | action | 18.6155 | 19.2470
19.5642 | 19.7583 | | 20.0868 | 20.1031 | 20.1034 | | Living area | a / (4) = | 0.2932 | (91) | | emperature ad | | | | 20.0373 | 20.2595 | 20.3475 | 20.3642 | 20.3636 | 20.3091 | | 19.0980 | 0.0000 | | | djusted MIT | 18.4204 | 18.9841 | 19.5642 | 20.0373 | 20.2595 | 20.3475 | 20.3642 | 20.3636 | 20.3091 | 19.9484 | 19.0980 | 18.3148 | (93) | | . Space heati | ng require | ment | | | | | | | | | | | | | _ _ | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | | 0.9385
832.7071 | 1053.3855 | 0.7773 | 0.6347
1137.3486 | 0.4805 | 0.3351
647.6922 | | 0.2618
449.6234 | 0.4454 | 0.7207
886.3398 | | 0.9507
769.4833 | | | seful gains | 4.3000 | | 6.5000 | | 11.7000 | 14.6000 | 16.6000 | | | 10.6000 | 7.1000 | 4.2000 | | | seful gains
kt temp. | · VV | 1671 9620 | 1546.5200 | | 996.0860
1.0000 | 659.2288
0.0000 | 431.7529
0.0000 | 453.2913
0.0000 | 716.3330
0.0000 | 1087.8827
1.0000 | 1404.2517 | 1661.4397
1.0000 | | | seful gains
xt temp.
eat loss rate | | | 1.0000 | | | | | | | | | | | | seful gains ext temp. eat loss rate onth fracti pace heating | 1680.9911
1.0000
kWh | 1.0000 | 278.1763 | 116.9612 | 39.8476 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 149.9479 | 406.8518 | 663.6155 | | | seful gains
xt temp.
eat loss rate | 1.0000
kWh
631.1233 | 1.0000 | | 116.9612 | 39.8476 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 406.8518 | 663.6155
2702.2070
22.9001 | (98) | | seful gains ext temp. eat loss rate onth fracti bace heating | 1680.9911
1.0000
kWh
631.1233
per m2 | 1.0000
415.6834 | 278.1763 | | | | | | 0.0000 | | | 2702.2070 | (98) | #### CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014 | 9a. Energy req | quirements - | Individua | l heating sy | stems, inc | luding micr | o-CHP | | | | | | | | |---|--|--|---|---------------------------|-------------|-----------|-------------|--|----------|--|----------------|--|---| | Fraction of sp
Fraction of sp
Efficiency of
Efficiency of
Space heating | pace heat from main space heat from main space heat from main space heat secondary/su | om seconda
om main sy
neating sy | ry/supplemen
stem(s)
stem 1 (in ^s | ntary syste | | | | | | | | 0.0000
1.0000
93.4000
0.0000
2893.1552 | (202)
(206)
(208) | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating | 631.1233 | 415.6834 | 278.1763 | | 39.8476 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 149.9479 | 406.8518 | 663.6155 | (98) | | Space heating | 93.4000 | 93.4000 | 93.4000 | 93.4000 | 93.4000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 93.4000 | 93.4000 | 93.4000 | (210) | | Space heating | 675.7209 | 445.0572 | stem)
297.8333 | 125.2262 | 42.6633 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 160.5438 | 435.6015 | 710.5091 | (211) | | Water heating | requirement 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating
Water heating | | | | | | | | | | | | | | | Efficiency of | | £ | | 180.2376 | 174.5018 | 153.6914 | 147.2481 | 164.1471 | | 186.9135 | 197.7201 | 212.1171
80.3000 | (216) | | Fuel for water | | ¶h/month | | 83.9931 | 82.0032 | 80.3000 | 80.3000 | 80.3000 | 80.3000 | 84.5025 | 86.8283 | 87.7273 | | | Water heating
Annual totals | | 220.3220 | 234.2506 | 214.5862 | 212.7988 | 191.3965 | 183.3725 | 204.4173 | 206.6749 | 221.1927 | 227.7138 | 241.7914
2606.7157 | | | Space heating
Space heating | | | | | | | | | | | | 2893.1552
0.0000 | | | | WithHeatRecover ventilation atting pump ag flue fan wity for the or lighting | fans (SFP
above, kW | = 1.0
h/year
d in Append: |)125) | 1.2500, SFP | = 1.0125) | | | | | | 360.9401
30.0000
45.0000
435.9401
444.9120
6380.7230 | (230c)
(230e)
(231)
(232) | | 12a. Carbon di | .oxide emissi | | | | | | | | | | | | | | Space heating
Space heating
Water heating
Space and wate
Pumps and fans
Energy for lig
Total CO2, kg/
Dwelling Carbo | - main syste
- secondary
(other fuel)
r heating
s
phting | em 1 | | | | | | Energy
kWh/year
2893.1552
0.0000
2606.7157
435.9401
444.9120 | | ion factor
kg CO2/kWh
0.2160
0.0000
0.2160
0.5190 | k | Emissions
g CO2/year
624.9215
0.0000
563.0506
1187.9721
226.2529
230.9093
1645.1344
13.9400 | (261)
(263)
(264)
(265)
(267)
(268)
(272) | | 16 CO2 EMISSIC
DER
Total Floor Ar
Assumed number
CO2 emission f
CO2 emissions
Total CO2 emis
Residual CO2 e
Additional all
Resulting CO2
Net CO2 emissi | ea cof occupant factor in Tak from appliar from cooking sions emissions off owable electemissions of | cs
ole 12 for
nces, equa
g, equatio | electricity
tion (L14)
n (L16)
biofuel CHP
neration, kN | y displaced
Wh/m²/year | from grid | | TY GENERATI | ON TECHNOLO | GIES | | TFA
N
EF | 13.9400
118.0000
2.8552
0.5190
14.1911
1.5892
29.7203
0.0000
0.0000
0.0000
29.7203 | ZC2
ZC3
ZC4
ZC5
ZC6
ZC7 | | OF TARGET EMISSIONS | 09 Jan 2014 | |---------------------|-------------| | | | | | | SAP 2012 WORKSHEET FOR New Build (As Designed) CALCULATION OF TARGET EMISSIONS 09 Jan 2014 (Version 9.92, January 2014) 1. Overall dwelling dimensions Volume (m3) 211.2000 (1b) - (3b) (m2) 88.0000 (1b) (m) 2.4000 (2b) First floor Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)...(1n) Dwelling volume 30.0000 (1c) 2.7000 (2c) 81.0000 (1c) - (3c) 118.0000 2. Ventilation rate secondary total other m3 per hour heating heating 0 * 40 = 0 * 20 = 4 * 10 = 0 * 10 = Number of chimneys Number of open flues Number of intermittent fans Number of passive vents Number of flueless gas fires 0 0 0.0000 (6b) 40.0000 (7a) Air changes 40.0000 / (5) = Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = 0.1369 (8) Pressure test Measured/design AP50 5.0000 0.3869 (18) Infiltration rate Number of sides sheltered - [0.075 x (19)] = (21) = (18) x (20) = (20) = 1 -0.9250 (20) 0.3579 (21) Infiltration rate adjusted to include shelter factor Jul 3.8000 Aug 3.7000 0.9250 Dec 4.7000 (22) 1.1750 (22a) 5.1000 1.2750 4.9000 1.2250 Wind speed 1.2500 1.1000 1.0750 1.1250 Wind factor 0.9500 0.9500 1.0000 1.0750 Adj infilt rate 3. Heat losses and heat loss parameter NetArea m2 2.3000 27.2000 U-value W/m2K 1.0000 A x U W/K 2.3000 TER Opaque door TER Opening Type (Uw = 1.40) External Wall 1 External Roof 1 Total net area of external elements Aum(A, m2) Fabric heat loss, W/K = Sum (A x U) (26) 1.3258 36.0606 (27) 140.1000 88.0000 257.6000 169.6000 29.5000 0.1800 (29a) (26) . . . (30) + (32) = 75.0186 Thermal mass parameter (TMP = Cm / TFA) in $k_{\rm J}/m_{\rm 2}K$ Thermal bridges (Sum(L x Psi) calculated using Appendix K) Total fabric heat loss 250.0000 (35) 0.0000 (36)
75.0186 (37) (33) + (36) = Jul 53.7858 Dec 56.7382 (38) Heat transfer coeff 133.2696 132.8799 132.4978 130.7032 130.3674 128.8044 128.8044 128.5150 129.4065 130.3674 131.0467 131.7568 (39) Average = Sum(39)m / 12 = May 1.1048 Aug 1.1077 1.0967 1.1166 (40) 1.1076 (40) 1.1294 1.1261 1.1229 1.0891 1.1048 1.1106 1.0916 1.0916 HLP (average) 4. Water heating energy requirements (kWh/year) Assumed occupancy Average daily hot water use (litres/day) 2.8552 (42) 102.0120 (43) Feb Jul Apr May Jun Aug Sep Oct Nov Daily hot water use 112.2133 Energy conte 166.4090 104.0523 150.1867 99.9718 116.6588 Energy content (annual) Distribution loss (46) Total = Sum(45)m = 1605.0468 (45) $(46)m = 0.15 \times (45)m$ 24.9614 21.8314 22.5280 19.6405 18 8455 16.2622 15.0693 17 2923 17.4988 20.3932 22.2608 24.1737 (46) Water storage loss: Total storage loss 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (56) If cylinder contains dedicated solar storage 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (57) Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.12r02 | CALCULAT | ION OF 1 | TARGET I | EMISSION | NS 09 J | lan 2014 | | | | | | | | | |--|------------------------------|--------------------|-------------------------------|--------------------|------------------------------------|--------------------|--------------------|--------------------|-------------------------------|-----------------------------------|---------------------------------|------------------------------|-------| | Combi loss | 50.9589 | 46.0274 | 50.9589 | 49.3012 | 48.8652 | 45.2766 | 46.7858 | 48.8652 | 49.3012 | 50.9589 | 49.3151 | 50.9589 | (61) | | Total heat rec | | 191.5698
0.0000 | 201.1456
0.0000 | 180.2376
0.0000 | | 153.6914
0.0000 | 147.2481
0.0000 | 0.0000 | 165.9599
0.0000 | 186.9135
0.0000
months) = S | 197.7201
0.0000
um(63)m = | 212.1171
0.0000
0.0000 | (63) | | Output from w/ | | 191.5698 | 201.1456 | 180.2376 | 174.5018 | 153.6914 | 147.2481 | 164.1471 | 165.9599 | 186.9135
Th/year) = S | 197.7201 | 212.1171 | (64) | | Heat gains fro | | | month
62.6768 | 55.8616 | 53.9905 | 47.3671 | 45.1002 | 50.5475 | 51.1143 | 57.9446 | 61.6734 | 66.3248 | (65) | | | | | | | | | | | | | | | | | 5. Internal ga | ins (see T | able 5 and | 5a) | | | | | | | | | | | | Metabolic gair | s (Table 5 | | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | (66)m
Lighting gains | (calculat | ed in Apper | ndix L, equa | tion L9 or | | see Table 5 | i | | 142.7622 | 142.7622 | 142.7622 | 142.7622 | | | Appliances gai | | | endix L, eq | uation L13 | 10.2982
or L13a), a
242.5399 | | | 12.2111 | 16.3897
215.8649 | 20.8105 | 24.2889
251.4541 | 25.8929
270.1177 | | | Cooking gains | (calculate | | | ion L15 or | | | | 37.2762 | 37.2762 | 37.2762 | 37.2762 | 37.2762 | | | Pumps, fans
Losses e.g. ev | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | | | Water heating | gains (Tab | le 5) | | | -114.2098 | | | | | | | | | | Total internal | gains | | 84.2430 | 77.5856 | 72.5678 | 65.7876 | 60.6185 | 67.9402 | 70.9921 | 77.8825 | 85.6576 | 89.1463 | | | | 468.1005 | 465.8596 | 449.3981 | 422.5887 | 394.2345 | 367.1867 | 350.2493 | 357.4554 | 372.0754 | 399.1179 | 430.2292 | 453.9856 | (73) | | 6. Solar gains | | | | | | | | | | | | | | | [Jan] | | | А | irea | Solar flux | | g | 0 | FF | Acce | | Gains | | | | | | | m2 | | or | | Specific
or Tab | le 6c | fact
Table | | W | | | South
West | | | | | 46.7521
19.6403 | | | | .7000
.7000 | 0.77
0.77 | | 154.7395
98.2580 | | | Solar gains
Total gains | | | | | 945.9888
1340.2233 | | | | | | 305.9352
736.1644 | | | | | | | | | | | | | | | | | | | 7. Mean intern | | | | | | | | | | | | | | | Temperature du | ring heati | ng periods | in the livi | ng area fro | om Table 9, | | | | | | | 21.0000 | (85) | | Utilisation fa | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct
62.8565 | Nov | Dec | | | tau
alpha
util living ar | 61.4877
5.0992 | 61.6681
5.1112 | 61.8459
5.1231 | 62.6951
5.1797 | 62.8565
5.1904 | 63.6193
5.2413 | 63.6193
5.2413 | 63.7626
5.2508 | 63.3233
5.2216 | 5.1904 | 62.5307
5.1687 | 62.1937
5.1462 | | | ucii iiving ai | 0.9978 | 0.9926 | 0.9756 | 0.9193 | 0.7937 | 0.6066 | 0.4463 | 0.4949 | 0.7515 | 0.9564 | 0.9945 | 0.9985 | (86) | | MIT
Th 2 | 19.7968
19.9769 | 20.0131
19.9796 | 20.3129
19.9822 | 20.6525
19.9946 | 20.8807
19.9969 | 20.9772
20.0077 | 20.9962
20.0077 | 20.9936
20.0097 | 20.9331
20.0036 | 20.6031
19.9969 | 20.1266
19.9922 | 19.7620
19.9873 | | | util rest of h | 0.9971 | 0.9902
18.6903 | 0.9675
19.1236 | 0.8937 | 0.7374 | 0.5216 | 0.3477 | 0.3919 | 0.6702 | 0.9370 | 0.9922 | 0.9980 | | | MIT 2
Living area fr
MIT | 18.3736
action
18.7909 | 19.0781 | 19.1236 | 19.6026
19.9104 | 19.8872
20.1785 | 19.9935 | 20.0064 | 20.0072 | | 19.5488
Living are
19.8579 | | 18.3302
0.2932
18.7500 | (91) | | Temperature ac
adjusted MIT | ljustment | | 19.4723 | | 20.1785 | 20.2820 | 20.2966 | 20.2965 | 20.2413 | | 19.2358 | 0.0000 | | | aajaocca 1111 | 10.7303 | 13.0701 | 13.1723 | 13.3101 | 2011700 | 20.2020 | 20.2300 | 20.2300 | 2012113 | 13.0073 | 13.2300 | 10.7000 | (33) | | 8. Space heati | ng require | ment | | | | | | | | | | | | | We (1) | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | /C *: | | Utilisation
Useful gains
Ext temp. | 718.1162 | | 0.9624
1047.7821
6.5000 | | | | | | 0.6911
744.6253
14.1000 | | 0.9899
728.7210
7.1000 | 666.5700 | (95) | | | 1931.1967 | | 1718.8017
1.0000 | | 1105.3189 | 731.8615
0.0000 | 476.1390
0.0000 | 500.7533 | 794.7267
0.0000 | 1206.9342 | 1590.3527
1.0000 | | | | Space heating | kWh | | 499.2386 | | | 0.0000 | 0.0000 | 0.0000 | | 272.4146 | | 930.3681 | (98) | | Space heating
Space heating | per m2 | | | | | | | | | (98 |) / (4) = | 4196.9518
35.5674 | | | | | | | | | | | | | | | | | | 8c. Space cool | | | | | | | | | | | | | | | Not applicable | 9a. Energy rec | uirements | – Individua | al heating s | vstems. inc | cludina micr | o-CHP | | | | | | | | CALCULATION OF TARGET EMISSIONS 09 Jan 2014 Emissions kg CO2/year 970.6013 (261) 0.0000 (263) 558.0734 (264) 1528.6747 (265) 38.9250 (267) 230.9093 (268) 1798.5090 (272) 12.9549 (272a) 1.0000 1.9569 (272b) 0.3299 (272c) 15.2400 (273) | Fraction of s
Fraction of s
Efficiency of
Efficiency of
Space heating | pace heat fr
main space
secondary/s | om main sys
heating sys
supplementa: | stem(s)
stem 1 (in | ₹) | (| | | | | | | 0.0000
1.0000
93.4000
0.0000
4493.5244 | (202)
(206)
(208) | |--|--|--|-----------------------|----------|----------|----------|----------|----------|----------|----------|----------|--|--------------------------| | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating | requirement
902.5319 | 661.3396 | 499.2386 | 234.5874 | 76.0968 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 272.4146 | 620.3748 | 930.3681 | (00) | | Space heating | | | | | 70.0300 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 272.4140 | 020.3740 | 930.3001 | (90) | | , | 93.4000 | 93.4000 | 93.4000 | 93.4000 | 93.4000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 93.4000 | 93.4000 | 93.4000 | (210) | | Space heating | | | | | | | | | | | | | | | Water heating | 966.3082 | 708.0724 | 534.5167 | 251.1643 | 81.4741 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 291.6645 | 664.2129 | 996.1114 | (211) | | water meating | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating
Water heating | requirement | | 201.1456 | 180.2376 | 174.5018 | 153.6914 | 147.2481 | 164.1471 | 165.9599 | 186.9135 | 197.7201 | 212.1171 | (64) | | Efficiency of | | | | | | | | | | | | 80.3000 | | | (217) m | 88.2457 | 87.9163 | 87.2484 | 85.7157 | 83.1200 | 80.3000 | 80.3000 | 80.3000 | 80.3000 | 85.9984 | 87.7330 | 88.3371 | (217) | | Fuel for wate
Water heating
Annual totals | 246.3214
fuel used | | 230.5437 | 210.2738 | 209.9396 | 191.3965 | 183.3725 | 204.4173 | 206.6749 | 217.3453 | 225.3656 | 240.1223
2583.6731 | | | Space heating
Space heating | fuel - mair | | | | | | | | | | | 4493.5244
0.0000 | | | Electricity f
central he
main heati
Total electri
Electricity f
Total deliver | ating pump
ng flue fan
city for the
or lighting | above, kWl | d in Append | ix L) | | | | | | | | 30.0000
45.0000
75.0000
444.9120
7597.1096 | (230e)
(231)
(232) | | | Energy
kWh/year | Emission factor
kg CO2/kWh | |--|---------------------------|-------------------------------| | pace heating - main system 1 | 4493.5244 | 0.2160 | | pace heating - secondary | 0.0000 | 0.0000 | | ater heating (other fuel) | 2583.6731 | 0.2160 | | pace and water heating | | | | umps and fans | 75.0000 | 0.5190 | | nergy for lighting | 444.9120 | 0.5190 | | otal CO2, kg/m2/year | | | | missions per m2 for space and water heating | | | | uel factor (mains gas) | | | | missions per m2 for lighting | | | | missions per m2 for pumps and fans | | | | arget Carbon Dioxide Emission Rate (TER) = (12.9549 * 1.00) + 1.9569 + | 0.3299, rounded to 2 d.p. | | ### **Appendix B – Water Calculations** | | | | | | 10) | | | |
--|--|---|---|---|---|--|---------------------------------------|-------------------------------| | Project Details | | | | | | | | | | Adress/Reference
Number of Bedrooms | Land Betwee | | use and South | h Mansions | Case Reference Occupancy for Calculati | E909
ion Purposes | | | | " | | • | | | | | | | | Appliance/Useage [
Faps (Excluding Kit | | ٠, | | | Showers | | | | | aps (Excluding Kil | Flow Rate | Quantity | Total per | | Shower fitting | Flow Rate | Quantity | Total per | | | Litres/Min | (No.) | Fitting type | | Туре | Litres/Min | (No.) | Fitting ty | | Mixer Tap | 3.00 | 2 | 6.00
0.00 | | Thermostatic Shower | 8.00 | 0 1 | 3 (| | | | | 0.00 | | | | | 1 6 | | | | | 0.00 | | | | | | | | | | 0.00 | | | | | (| | otal No. of Fittings (No | p.) | 2 | • | | Total No. of Fittings (N | lo.) | 1 | 4 | | otal Flow (I/s)
Maximum Flow (I/s) | | | 6.00
3.00 | | Total Flow (I/s) Maximum Flow (I/s) | | | 3 | | verage Flow (I/s) | | | 3.00 | | Average Flow (I/s) | | | 8 | | Veighted Average Flow | | | 2.10
3.00 | | Weighted Average Flo
Flow for Calculation (I | | | { | | low for Calculation (I/s | >) | | 3.00 | | | 15) | | • | | Baths | | • " | | | WCs | | | 0 | | ath Type | Capacity to
Overflow | (No.) | Total per
Fitting type | | WC Type | Full Flush
Volume | Part Flush
Volume | Quantity
(No) | | ath | 175.00 | | 175.00 | | Dual WC | 6.00 | | | | | | | 0.00 | | | | | | | | | | 0.00 | | | | | | | otal No. of Fittings (No | p.) | 1 | 475.00 | | Total number of fifth | | | | | otal Capacity (I)
Maximum Capacity (I) | | | 175.00
175.00 | | Total number of fitting
Average effective flush | | | | | Average Capacity (I) | | | 175.00 | | | • | | | | Veighted Average Capa
Capacity for Calculation | | | 122.50
175.00 | | | | | | | Dishwashers | 11 (1) | | 170.00 | | Washing Machine | | | | | | I Di | 0 | Tatalana | | Washing Machines | | 0 | T.4.1 | | ishwasher Type | L per Place
Setting | (No.) | Total per
Fitting type | | Washing Machine
Type | L per Kg
Dry Load | Quantity
(No.) | Total pe
Fitting t | | | | ì | 0.00 | | , | T . | T |] (| | | 1 | | | | | _ | | - | | Total No. of Fittings (No | 0.) | 0 | 0.00 | | Total No. of Fittings (N | lo.) | 0 | | | Fotal No. of Fittings (No
Fotal Consumption (I) | | 0 | 1.25 | | Total No. of Fittings (N
Total Consumption (I) | | 0 |] (| | Total Consumption (I) Maximum Consumption | n (l) | 0 | 1.25
1.25 | | Total Consumption (I) Maximum Consumption | on (I) | 0 | j (| | otal Consumption (i)
Maximum Consumption
Average Consumption (
Veighted Average Cons | n (I)
(I/s)
sumption (I) | 0 | 1.25
1.25
1.25
0.88 | | Total Consumption (I)
Maximum Consumption
Average Consumption
Weighted Average Con | on (I)
I (I/s)
Insumption (I) | 0 |] (
{
{
{
{
{ | | otal Consumption (i)
Maximum Consumption
Average Consumption (
Veighted Average Cons | n (I)
(I/s)
sumption (I) | 0 | 1.25
1.25
1.25 | | Total Consumption (I)
Maximum Consumption
Average Consumption | on
(I)
I (I/s)
Insumption (I) | 0 |] (| | otal Consumption (I) Maximum Consumption Average Consumption (Veighted Average Consumption for Calcu | n (I)
(I/s)
sumption (I)
lation (I/s) | 0 | 1.25
1.25
1.25
0.88 | | Total Consumption (I)
Maximum Consumption
Average Consumption
Weighted Average Con | on (I)
I (I/s)
Insumption (I) | 0 |] (
{
{
{
{
{ | | otal Consumption (I) flaximum Consumption (I) verage Consumption (Veighted Average Consumption for Calcu (I) | n (I)
(I/s)
sumption (I)
lation (I/s) | Quantity | 1.25
1.25
1.25
0.88
1.25 | | Total Consumption (I) Maximum Consumption Average Consumption Weighted Average Con Consumption for Calc Other Fittings Waste Disposal Y/N | on (I)
I (I/s)
Insumption (I) | 0
N |] (
{
{
{
{
{ | | Total Consumption (I) Maximum Consumption (Verage Consumption (Veighted Average Consumption for Calcu Citchen Taps Tap Fitting Type | n (I)
(I/s)
sumption (I)
lation (I/s) | Quantity
(No.) | 1.25
1.25
1.25
0.88
1.25 | | Total Consumption (I) Maximum Consumptic Average Consumption Weighted Average Con Consumption for Calc Other Fittings | on (I)
(I/s)
nsumption (I)
ulation (I/s) | |] (
{
{
{
{
{ | | Total Consumption (I) Maximum Consumption (Verage Consumption (Veighted Average Consumption for Calculation of | (I/s)
sumption (I)
lation (I/s)
Flow Rate
Litres/Min | Quantity
(No.) | 1.25
1.25
1.25
0.88
1.25
Total per
Fitting type
8.00 | | Total Consumption (I) Maximum Consumptic Average Consumption Weighted Average Cot Consumption for Calc Other Fittings Waste Disposal Y/N Water softner Consumption beyond | on (I) I (I/s) Insumption (I) I ulation (I/s) 4% I/p/d | N | | | Total Consumption (I) Maximum Consumption (I) Maximum Consumption (I) Weighted Average Consumption for Calcu Consumption for Calcu Kitchen Taps Tap Fitting Type Kitchen Tap | (I/s) sumption (I) lation (I/s) Flow Rate Litres/Min 8.00 | Quantity
(No.) | 1.25
1.25
1.25
0.88
1.25
Total per
Fitting type
8.00 | | Total Consumption (I) Maximum Consumption Average Consumption Weighted Average Con Consumption for Calc Other Fittings Waste Disposal Y/N Water softner | on (I) I (I/s) Insumption (I) I ulation (I/s) 4% I/p/d | N | | | Total Consumption (I) Ilaximum Consumption for Calcu | (I/s) sumption (I) lation (I/s) Flow Rate Litres/Min 8.00 | Quantity
(No.) | 1.25
1.25
1.25
0.88
1.25
Total per
Fitting type
8.00
0.00 | | Total Consumption (I) Maximum Consumptic Average Consumption Weighted Average Cot Consumption for Calc Other Fittings Waste Disposal Y/N Water softner Consumption beyond | on (I) on (I/s) ensumption (I) ulation (I/s) 4% I/p/d and harvest | N |] (| | Total Consumption (I) Aaximum Consumption (I) Aaximum Consumption (I) Average Consumption (I) Veighted Average Consumption for Calcu Kitchen Taps Tap Fitting Type Total No. of Fittings (Notational Flow (I/s) Maximum Flow (I/s) | (I/s) sumption (I) lation (I/s) Flow Rate Litres/Min 8.00 | Quantity
(No.) | 1.25
1.25
1.25
0.88
1.25
Total per
Fitting type
8.00
0.00
0.00
8.00
8.00 | | Total Consumption (I) Maximum Consumption Average Consumption Weighted Average Con Consumption for Calc Other Fittings Waste Disposal Y/N Water softner Consumption beyond Use of grey water Total Grey water from Total Availble Grey Wa | on (I) (I/s) nsumption (I) ulation (I/s) 4% I/p/d and harvest WHB taps (I) | ed rainwate |] | | Total Consumption (I) Asximum Consumption (I) Asximum Consumption (I) Veighted Average Consumption for Calcu Kitchen Taps Tap Fitting Type Total No. of Fittings (Nototal Flow (I/s) | (I/s) sumption (I) lation (I/s) Flow Rate Litres/Min 8.00 | Quantity
(No.) | 1.25
1.25
1.25
0.88
1.25
Total per
Fitting type
8.00
0.00
0.00 | | Total Consumption (I) Maximum Consumption Average Consumption Weighted Average Con Consumption for Calc Other Fittings Waste Disposal Y/N Water softner Consumption beyond Use of grey water a | on (I) on (I/s) nulation (I/s) ulation (I/s) 4% I/p/d and harvest WHB taps (I) ater Supply (I) | N ed rainwate |] | | otal Consumption (I) laximum Consumption (I) laximum Consumption (Verage Consumption (Verage Consumption for Calcu litchen Taps ap Fitting Type litchen Tap otal No. of Fittings (No otal Flow (I/s) laximum Flow (I/s) lyerage Flow (I/s) Veighted Average Flow | (l/s) sumption (l) lation (l/s) Flow Rate Litres/Min 8.00 | Quantity
(No.) | 1.25
1.25
1.25
0.88
1.25
Total per
Fitting type
8.00
0.00
0.00 | | Total Consumption (I) Maximum Consumptic Average Consumption Weighted Average Cor Consumption for Calc Other Fittings Waste Disposal Y/N Water softner Consumption beyond Use of grey water Total Grey water from Total Availble Grey Wa Possible Demand (I) | on (I) on (I/s) n (I/s) ulation (I/s) 4% I/p/d and harvest WHB taps (I) ater Supply (I) | 0 162.63 104.51 |] | | otal Consumption (I) laximum Consumption (I) laximum Consumption (I) laximum Consumption (I) legighted Average Consumption for Calcu litchen Taps laximum Tion (II) laximum Flow (II) laximum Flow (II) legighted Average Flow low for Calculation (II) | r (I) (I/Is) sumption (I) lation (I/s) Flow Rate Litres/Min 8.00 D.) | Quantity
(No.) | 1.25
1.25
1.25
0.88
1.25
Total per
Fitting type
8.00
0.00
0.00
8.00
8.00
8.00
8.00
5.60 | | Total Consumption (I) Maximum Consumption Average Consumption Weighted Average Cor Consumption for Calc Other Fittings Waste Disposal Y/N Water softner Consumption beyond Use of grey water Total Grey water from Total Availble Grey Wa Possible Demand (I) Grey/Rain Installed Ca | on (I) on (I/s) n (I/s) ulation (I/s) 4% I/p/d and harvest WHB taps (I) ater Supply (I) | 0 162.63 104.51 |] | | Total Consumption (I) Ilaximum For Calcu Ilaximum Flow (I/s) Ilaxi | r (I) (I/Is) sumption (I) lation (I/s) Flow Rate Litres/Min 8.00 D.) | Quantity
(No.) | 1.25
1.25
1.25
0.88
1.25
Total per
Fitting type
8.00
0.00
0.00
8.00
8.00
8.00
8.00
5.60 | | Total Consumption (I) Maximum Consumption Average Consumption Weighted Average Cor Consumption for Calc Other Fittings Waste Disposal Y/N Water softner Consumption beyond Use of grey water Total Grey water from Total Availble Grey Wa Possible Demand (I) Grey/Rain Installed Ca | on (I) on (I/s) n (I/s) ulation (I/s) 4% I/p/d and harvest WHB taps (I) ater Supply (I) | 0 162.63 104.51 |] | | Total Consumption (I) Ilaximum Consumption (I) Ilaximum Consumption (I) Verighted Average Consumption (I) Consumption for Calculation (III) Ilaximum Tiow (III) Ilaximum Flow (III) Verighted Average Flow (III) Verighted Average Flow (III) Vater Use Assessmentallation Type | Flow Rate Litres/Min 8.00 (I/s) (I/s) Flow Rate Litres/Min 8.00 Unit | Quantity (No.) 1 Capacity/ Flow Rate | 1.25 1.25 1.25 0.88 1.25 Total per Fitting type 8.00 0.00 8.00 8.00 8.00 8.00 8.00 8.0 | Fixed use
(l/p/day) | Total Consumption (I) Maximum Consumptic Average Consumption Weighted Average Cor Consumption for Calc Other Fittings Waste Disposal Y/N Water softner Consumption beyond Use of grey water Total Grey water from Total Availble Grey Wa Possible Demand (I) Grey/Rain Installed Ca Figure for Calculation Total Use (I/p/day) | on (I) on (I/s) on (I/s) ulation (I/s) 4% I/p/d and harvest WHB taps (I) ater Supply (I) upacity (I) lit/person/day | 0 162.63 104.51 |] | | Total Consumption (I) Ilaximum Taps Ilaximum Flow (I/s) | Flow Rate Litres/Min 8.00 (I/s) (I/s) Flow Rate Litres/Min 8.00 (I/s) (I/s) (I/s) (I/s) | Quantity (No.) 1 Capacity/ Flow Rate 0.00 | 1.25
1.25
1.25
0.88
1.25
Total per
Fitting type
8.00
0.00
0.00
8.00
8.00
8.00
8.00
8.0 | Fixed use | Total Consumption (I) Maximum Consumption Average Consumption Weighted Average Cor Consumption for Calc Other Fittings Waste Disposal Y/N Water softner Consumption beyond Use of grey water from Total Grey water from Total Availible Grey Wa Possible Demand (I) Grey/Rain Installed Ca Figure for Calculation Total Use (I/p/day) 0.0 0.0 | on (I) on (I/s) nulation (I/s) 4% I/p/d and harvest WHB taps (I) ater Supply (I) lit/person/day | 0 162.63 104.51 |] | | Total Consumption (I) Ilaximum Consumption (I) Ilaximum Consumption (I) Ilaximum Consumption (I) Veighted Average Consumption for Calcu Citchen Taps Ilaximum Flow (I/s) Ilaximum Flow (I/s) Veighted Average Flow Ilow for Calculation (I/s) Vater Use Assessm Installation Type IVC Single Flush IVC Dual Flush IVC Dual Flush | Flow Rate Litres/Min 8.00 (I/s) (I/s) Flow Rate Litres/Min 8.00 (I/s) Unit Volume (I) Full Flush (I) Pt Flush (I) | Quantity (No.) 1 Capacity/ Flow Rate 0.00 0.00 | Total per Fitting type 8.00 0.00 0.00 8.00 8.00 8.00 8.00 4.42 1.46 2.96 | Fixed use (I/p/day) 0.00 0.00 0.00 | Total Consumption (I) Maximum Consumption Average Consumption Weighted Average Cor Consumption for Calc Other Fittings Waste Disposal Y/N Water softner Consumption beyond Use of grey water from Total Grey water from Total Availble Grey Wa Possible Demand (I) Grey/Rain Installed Ca Figure for Calculation Total Use (I/p/day) 0.0 0.0 0.0 | on (I) on (I/s) ensumption (I) ulation (I/s) 4% I/p/d and harvest WHB taps (I) ater Supply (I) lit/person/day | 0 162.63 104.51 |] | | Total Consumption (I) Ilaximum Flow (II) | r (I) (I/Is) sumption (I) lation (I/Is) Flow Rate Litres/Min 8.00 (I/Is) s) nent Unit Volume (I) Pt Flush (I) Volume (I) Volume (I) Volume (I) | Capacity/Flow Rate 0.00 0.00 4.00 | 1.25 1.25 1.25 1.25 0.88 1.25 Total per Fitting type 8.00 0.00 8.00 8.00 8.00 8.00 8.00 4.42 1.46 2.96 4.42 | Fixed use (I/p/day) 0.00 0.00 0.00 0.00 | Total Consumption (I) Maximum Consumptic Average Consumption Weighted Average Cor Consumption for Calc Other Fittings Waste Disposal Y/N Water softner Consumption beyond Use of
grey water from Total Grey water from Total Availble Grey Water Possible Demand (I) Grey/Rain Installed Ca Figure for Calculation Total Use (I/p/day) 0.0 0.0 0.0 17.6 | on (I) on (I/s) on (I/s) on (I/s) ulation (I/s) 4% I/p/d and harvest WHB taps (I) ater Supply (I) inpacity (I) lit/person/day | 0 162.63 104.51 |] | | Total Consumption (I) Ilaximum Consumption (I) Ilaximum Consumption (I) Ilaximum Consumption (I) Ilaximum Consumption (I) Ilavimum Flow (III) Ilaximum (IIII) (IIIII) Ilaximum Flow (IIIII) Ilaximum Flow (IIIIII) Ilaximum Flow (IIIIIIII) Ilaximum Flow (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | In (I) (I/Is) sumption (I) lation (I/s) sumption (I) lation (I/s) Flow Rate Litres/Min 8.00 (I/Is) (I/Is) (I/Is) Hent Volume (I) Full Flush (I) Volume (I) Flow Rate (I/Is) | Capacity/
Flow Rate
0.00
0.00
4.00
3.00
175.00 | 1.25 1.25 1.25 1.25 0.88 1.25 Total per Fitting type 8.00 0.00 8.00 8.00 8.00 8.00 5.60 8.00 Use Factor 4.42 1.58 0.11 | Fixed use
(l/p/day)
0.00
0.00
0.00
0.00
1.58
0.00 | Total Consumption (I) Maximum Consumption Average Consumption Weighted Average Col Consumption for Calc Other Fittings Waste Disposal Y/N Water softner Consumption beyond Use of grey water and Color Total Grey water from Total Availble Grey Water and (I) Grey/Rain Installed Ca Figure for Calculation Total Use (I/p/day) 0.0 0.0 17.6 6.3 19.2 | on (I) on (I/s) n (I/s) n (I/s) ulation (I/s) 4% I/p/d and harvest WHB taps (I) ater Supply (I) lit/person/day | 0 162.63 104.51 |] | | otal Consumption (i) laximum Consumption (verage Consumption) leighted Average Consumption (veighted Average Consumption for Calcu litchen Taps ap Fitting Type litchen Tap otal No. of Fittings (Notal Flow (I/s) laximum Flow (I/s) leighted Average Flow low for Calculation (I/s) | In (I) (I/s) | Quantity (No.) 1 Capacity/ Flow Rate 0.00 0.00 4.00 3.00 175.00 8.00 | Total per Fitting type 8.00 0.00 0.00 8.00 8.00 8.00 8.00 4.42 1.46 2.96 4.42 1.58 0.11 4.37 | Fixed use
(l/p/day)
0.00
0.00
0.00
1.58
0.00
0.00 | Total Consumption (I) Maximum Consumption Average Consumption Weighted Average Col Consumption for Calc Other Fittings Waste Disposal Y/N Water softner Consumption beyond Use of grey water from Total Grey water from Total Availible Grey Wa Possible Demand (I) Grey/Rain Installed Ca Figure for Calculation Total Use (I/p/day) 0.0 0.0 17.6 6.3 19.2 34.9 | on (I) on (I/s) n (I/s) n (I/s) ulation (I/s) 4% I/p/d and harvest WHB taps (I) ater Supply (I) lit/person/day | 0 162.63 104.51 |] | | otal Consumption (I) laximum Flow (II) Flow (II) laximum Fl | In (I) (I/Is) sumption (I) lation (I/s) sumption (I) lation (I/s) Flow Rate Litres/Min 8.00 (I/Is) (I/Is) (I/Is) Hent Volume (I) Full Flush (I) Volume (I) Flow Rate (I/Is) | Capacity/
Flow Rate
0.00
0.00
4.00
3.00
175.00 | 1.25 1.25 1.25 1.25 0.88 1.25 Total per Fitting type 8.00 0.00 8.00 8.00 8.00 8.00 5.60 8.00 Use Factor 4.42 1.58 0.11 | Fixed use
(l/p/day)
0.00
0.00
0.00
0.00
1.58
0.00 | Total Consumption (I) Maximum Consumptic Average Consumption Weighted Average Cor Consumption for Calc Other Fittings Waste Disposal Y/N Water softner Consumption beyond Use of grey water rom Total Grey water from Total Availble Grey Wa Possible Demand (I) Grey/Rain Installed Ca Figure for Calculation Total Use (I/p/day) 0.0 0.0 17.6 6.3 19.2 34.9 0.0 | on (I) on (I/s) on (I/s) on (I/s) on (I/s) 4% I/p/d and harvest WHB taps (I) ater Supply (I) inpacity (I) lit/person/day | 0 162.63 104.51 |] | | otal Consumption (i) laximum Consumption (i) laximum Consumption (i) laximum Consumption (i) leighted Average Consideration for Calculation (IIII) laximum Flow (IIII) laximum Flow (IIII) laximum Flow (IIIII) laximum Flow (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | r (I)s (I/s) sumption (I) lation (I/s) sumption (I) lation (I/s) Flow Rate Litres/Min 8.00 7 (I/s) s) nent Unit Volume (I) Full Flush (I) Pt Flush (I) Flow Rate (I/s) (I/s) (I/s) (I/s) (I/s) | Capacity/ (No.) 1 Capacity/ Flow Rate 0.00 0.00 0.00 175.00 8.00 0.00 0.00 0.00 0.00 0.00 0.00 | 1.25 1.25 1.25 1.25 0.88 1.25 0.88 1.25 Total per Fitting type 8.00 0.00 8.00 8.00 8.00 8.00 4.42 1.46 2.96 4.42 1.58 0.11 4.37 0.50 5.60 0.44 | Fixed use
(I/p/day)
0.00
0.00
0.00
1.58
0.00
0.00
0.00
10.36 | Total Consumption (I) Maximum Consumptic Average Consumption Weighted Average Cor Consumption for Calc Other Fittings Waste Disposal Y/N Water softner Consumption beyond Use of grey water from Total Grey water from Total Grey water from Total Availble Grey Wa Possible Demand (I) Grey/Rain Installed Ca Figure for Calculation Total Use (I/p/day) 0.0 0.17.6 6.3 19.2 34.9 0.0 0.0 0.0 0.0 17.6 18.8 | on (I) on (I/s) n (I/s) n (I/s) ulation (I/s) 4% I/p/d and harvest WHB taps (I) ater Supply (I) npacity (I) lit/person/day | 0 162.63 104.51 0.00 |] | | otal Consumption (i) laximum Consumption (i) laximum Consumption (i) laximum Consumption (i) leighted Average Consumption (i) leighted Average Consumption for Calcu litchen Taps otal No. of Fittings (No otal Flow (I/s) laximum Flow (I/s) laximum Flow (I/s) laximum Flow (I/s) leighted Average Flow low for Calculation (I/s) f | In (I) (I/s) | Capacity/
Flow Rate
0.00
0.00
4.00
175.00
8.00
0.00
0.00
8.00 | Total per Fitting type 8.00 0.00 0.00 8.00 8.00 8.00 8.00 4.42 1.46 2.96 4.42 1.58 0.11 4.37 0.50 0.44 2.10 | Fixed use (l/p/day) 0.00 0.00 0.00 1.58 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.0 | Total Consumption (I) Maximum Consumption Average Consumption Weighted Average Cor Consumption for Calc Other Fittings Waste Disposal Y/N Water softner Consumption beyond Use of grey water from Total Grey water from Total Availble Grey Wa Possible Demand (I) Grey/Rain Installed Ca Figure for Calculation Total Use (I/p/day) 0.0 0.0 17.6 6.3 19.2 34.9 0.0 0.0 13.8 17.1 | on (I) on (I/s) n (I/s) n (I/s) ulation (I/s) 4% I/p/d and harvest WHB taps (I) ater Supply (I) lit/person/day | N ed rainwate 0 162.63 104.51 0.00 | fault value | | Total Consumption (I) Ilaximum Consumption (II Ilaximum Flow (III | r (I)s (I/s) sumption (I) lation (I/s) sumption (I) lation (I/s) Flow Rate Litres/Min 8.00 7 (I/s) s) nent Unit Volume (I) Full Flush (I) Pt Flush (I) Flow Rate (I/s) (I/s) (I/s) (I/s) (I/s) | Capacity/ (No.) 1 Capacity/ Flow Rate 0.00 0.00 0.00 175.00 8.00 0.00 0.00 0.00 0.00 0.00 0.00 | 1.25 1.25 1.25 1.25 0.88 1.25 0.88 1.25 Total per Fitting type 8.00 0.00 8.00 8.00 8.00 8.00 4.42 1.46 2.96 4.42 1.58 0.11 4.37 0.50 5.60 0.44 | Fixed use (I/p/day) 0.00 0.00 0.00 1.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 | Total Consumption (I) Maximum Consumptic Average Consumption Weighted Average Cor Consumption for Calc Other Fittings Waste Disposal Y/N Water softner Consumption beyond Use of grey water from Total Grey water from Total Availble Grey Wa Possible Demand (I) Grey/Rain Installed Ca Figure for Calculation Total Use (I/p/day) 0.0 0.0 17.6 6.3 19.2 34.9 0.0 0.0 13.8 17.1 4.5 | win (I) a (I/s) a (I/s) a (I/s) a (I/s) 4% I/p/d and harvest WHB taps (I) ater Supply (I) apacity (I) lit/person/day | N ed rainwate 0 162.63 104.51 0.00 | fault value y entering | | otal Consumption (i) laximum Consumption (i) laximum Consumption (i) laximum Consumption (i) leighted Average Consideration (i) leighted Average Consideration (ii) laximum Flow (ii) laximum Flow (ii) laximum Flow (ii) laximum Flow (iii) laxi | (l/s) sumption (l) lation (l/s) Flow Rate Litres/Min 8.00 (l/s) s) nent Unit Volume (l) Flull Flush (l) Pt Flush (l) Volume (l/s) | Capacity/ Flow Rate 0.00 0.00 4.00 3.00 175.00 8.00 0.00 0.00 8.17 1.25 0.00 0.00 | Total per Fitting type 8.00 0.00 8.00 8.00 8.00 8.00 4.42 1.46 2.96 4.42 1.58 0.11 4.37 0.50 5.60 0.44 2.10 3.60 3.08 | Fixed use (I/p/day) 0.00 0.00 0.00 1.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 | Total Consumption (I) Maximum Consumptic Average Consumption Weighted Average Cor Consumption for Calc Other Fittings Waste Disposal Y/N Water softner Consumption beyond Use of grey water from Total Grey water from Total Availble Grey Wa Possible Demand (I) Grey/Rain Installed Ca Figure for Calculation Total Use (I/p/day) 0.0 0.0 17.6 6.3 19.2 34.9 0.0 0.0 13.8 17.1 4.5 0.0 0.0 0.0 | with a control of the actual o | N ed rainwate 0 162.63 104.51 0.00 | fault value y entering in the | | otal Consumption (i) laximum Consumption (verage Consumption (verage Consumption (verage Consumption for Calculation Taps ap Fitting Type itchen Tap otal No. of Fittings (No otal Flow (I/s) laximum Flow (I/s) verage Flow (I/s) verage Flow (I/s) verage Flow (I/s) verage Flow (I/s) Vater Use Assessmantaliation Type // C Single Flush // C Dual Flush // C's (Multiple) aps Exc. Kitchen ath (shower present) hower (bath present) ath Only hower Only itchen Taps // aste Disposal // ater Softner otal Calculated Water | In (I) (I/s) | Capacity/ Flow Rate 0.00 0.00 4.00 3.00 175.00 8.00 0.00 0.00 8.17 1.25 0.00 0.00 | Total per Fitting type 8.00 0.00 8.00 8.00 8.00 8.00 4.42 1.46 2.96 4.42 1.58 0.11 4.37 0.50 5.60 0.44 2.10 3.60 3.08 | Fixed use (I/p/day) 0.00 0.00 0.00 1.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 | Total Consumption (I) Maximum Consumptic Average Consumption Weighted Average Col Consumption for Calc Other Fittings Waste Disposal Y/N Water softner Consumption beyond Use of grey water from Total Use (I/p/day) Column 10.0 0.0 17.6 6.3 19.2 34.9 0.0 13.8 17.1 4.5 0.0 0.0 0.0 0.0 0.0 13.8 | with the second | ed rainwate 0 162.63 104.51 0.00 | fault value y entering in the | | otal Consumption (i) laximum Consumption (i) laximum Consumption (i) laximum Consumption (i) legighted Average Consumption (i) legighted Average Consumption for Calcu litchen Taps otal No. of Fittings (No. otal Flow (I/s) laximum | r (I) (I/Is) sumption (I) lation (I/Is) Flow Rate Litres/Min 8.00 (I/Is) s) nent Unit Volume (I) Full Flush (I) Volume (I) Flow Rate (I/Is) (I/Is | Capacity/ Flow Rate 0.00 0.00 4.00 3.00 175.00 8.00 0.00 0.00 8.17 1.25 0.00
0.00 | Total per Fitting type 8.00 0.00 8.00 8.00 8.00 8.00 4.42 1.46 2.96 4.42 1.58 0.11 4.37 0.50 5.60 0.44 2.10 3.60 3.08 | Fixed use (I/p/day) 0.00 0.00 0.00 1.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 | Total Consumption (I) Maximum Consumptic Average Consumption Weighted Average Cor Consumption for Calc Other Fittings Waste Disposal Y/N Water softner Consumption beyond Use of grey water rom Total Grey water from Total Availble Grey Wa Possible Demand (I) Grey/Rain Installed Ca Figure for Calculation Total Use (I/p/day) 0.0 0.0 17.6 6.3 19.2 34.9 0.0 0.0 13.8 17.1 4.5 0.0 0.0 0.0 0.0 113.7 0.0 0.0 0.9 | when the actual of | ed rainwate 0 162.63 104.51 0.00 | fault value y entering in the | | otal Consumption (i) laximum Consumption (i) laximum Consumption (verage Consumption (verage Consumption for Calculation Calculation (itchen Taps) ap Fitting Type itchen Tap otal No. of Fittings (Nototal Flow (il/s) laximum Flow (il/s) verage vera | r (I) (I/Is) sumption (I) lation (I/Is) Flow Rate Litres/Min 8.00 (I/Is) s) nent Unit Volume (I) Full Flush (I) Volume (I) Flow Rate (I/Is) | Capacity/ Flow Rate 0.00 0.00 4.00 3.00 175.00 8.00 0.00 0.00 8.17 1.25 0.00 0.00 | Total per Fitting type 8.00 0.00 8.00 8.00 8.00 8.00 4.42 1.46 2.96 4.42 1.58 0.11 4.37 0.50 5.60 0.44 2.10 3.60 3.08 | Fixed use (I/p/day) 0.00 0.00 0.00 1.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 | Total Consumption (I) Maximum Consumptic Average Consumption Weighted Average Cor Consumption for Calc Other Fittings Waste Disposal Y/N Water softner Consumption beyond Use of grey water from Total Grey water from Total Availble Grey Wa Possible Demand (I) Grey/Rain Installed Ca Figure for Calculation Total Use (I/p/day) 0.0 0.0 17.6 6.3 19.2 34.9 0.0 0.0 13.8 17.1 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | with the actual of | ed rainwate 0 162.63 104.51 0.00 | fault value y entering in the | | otal Consumption (i) laximum Consumption (i) laximum Consumption (verage Consumption (leighted Average Consumption for Calcu- litchen Taps ap Fitting Type litchen Tap otal No. of Fittings (Notal Flow (I/s) laximum Flow (I/s) laximum Flow (I/s) verage v | r (I) (I/s) sumption (I) lation (I/s) Flow Rate Litres/Min 8.00 (I/s) s) nent Unit Volume (I) Flush (I) Pt Flush (I) Pt Flush (I) Flow Rate (I/s) (I/place) (I/s) | Capacity/ Flow Rate 0.00 0.00 4.00 3.00 175.00 8.00 0.00 0.00 8.17 1.25 0.00 0.00 | Total per Fitting type 8.00 0.00 8.00 8.00 8.00 8.00 4.42 1.46 2.96 4.42 1.58 0.11 4.37 0.50 5.60 0.44 2.10 3.60 3.08 | Fixed use (I/p/day) 0.00 0.00 0.00 1.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 | Total Consumption (I) Maximum Consumptic Average Consumption Weighted Average Cor Consumption for Calc Other Fittings Waste Disposal Y/N Water softner Consumption beyond Use of grey water rom Total Grey water from Total Availble Grey Wa Possible Demand (I) Grey/Rain Installed Ca Figure for Calculation Total Use (I/p/day) 0.0 0.0 17.6 6.3 19.2 34.9 0.0 0.0 13.8 17.1 4.5 0.0 0.0 0.0 0.0 113.7 0.0 0.0 0.9 | with a control of the actual o | ed rainwate 0 162.63 104.51 0.00 | fault value y entering in the |