39A PRIORY TERRACE LONDON NW6 4DG

STRUCTURAL ENGINEER'S STATEMENT

This report was written/compiled by Brett Scott BE(Hons) and reviewed by Simon Robinson CEng MIStructE of engineersHRW

100 Date .. 07/05/2020 Signed .

Job Number: 2015

STRUCTURAL ENGINEER'S STATEMENT

This Structural Engineer's Statement has been prepared for and on behalf of our client, Old West Hampstead Estates Ltd, based on the planning proposals by SHH Architects (drawing references listed in section 8.3.2). It is for the use of the client, the client's professional advisers and London Borough of Camden and is for their use only. The report should not be used for any purposes other than for which it was considered. The report should be read in conjunction with Engineers HRW Structural drawings (drawing references listed in 8.3.1), Desk Study and Site Investigation Report including BIA by GEA.

1.0 Introduction

- **1.1** Engineers HRW have been asked to consider the engineering issues surrounding the proposed construction works to support the planning application.
- **1.2** The proposals comprise the construction of new house with a basement on a grassed area adjacent 39 Priory Terrace. It incorporates one half of an existing garage.
- **1.3** This report has been prepared in compliance with Camden's CPG Basements 2018 requirements for basement extensions. It is the equivalent of Appendix 5 of the Camden BIA proforma and signed off by a Chartered Structural Engineer (MIStructE) and includes proposals for a sequence of construction. A desk study and site-specific soils investigation have been carried out by GEA and signed off by a Chartered Geologist and Hydrologist.

2.0 Site Information

The site is located within the London Borough of Camden, approximately 375 m southwest of Kilburn High Road London Underground Station and 775 m south of West Hampstead London Underground Station. It fronts onto Abbey Road to the north and is bounded by Priory Terrace to the east, by No 39 Priory Terrace, a four-storey end of terrace house with a lower ground floor level and rear and front gardens, to the south and by a single storey garage to the west.

The site is in the Priory Road Conservation area. It consists of a grassed area and one half of an existing double garage.

Figure 1 - Extract from Camden Conservation Areas Map

2.1 Existing Building

The existing garage building is of uncertain date however a driveway is indicated on the historic maps from the 1950s and garages from the 1970s. The structure is load-bearing masonry and a timber roof. The foundation and ground floor slab details are assumed these a ground bearing slab and mass concrete strips that are not of significant depths.

The adjacent structure at No 39 Priory Terrace appears to be traditionally constructed, with loadbearing external solid brickwork walls, with assumed timber floors and timber roof.

A newer building, Priory Lodge, on Abbey Road is on the far side of the garage to be retained. It is assumed to be a loadbearing masonry structure with timber floors.

2.2 Geotechnical Ground Conditions

2.2.1 Geology

A detailed Geotechnical Site Investigation has been carried out. Refer to GEA Desk Study and Ground Investigation Report dated April 2020. The British Geological Survey indicates that the site is directly underlain by the London Clay Formation.

The exploratory borehole and trial pits revealed that ground conditions were generally consistent with the geological records and known history of the area and comprised Made Ground up to a depth of 1.0m underlain by the London Clay Formation. The London Clay initially comprised firm becoming stiff fissured brown clay, extending to a depth of 8.50 m. Below this depth, stiff fissured bluish grey clay was encountered and extended to the full depth of the investigation, of 15.00 m.

The results of laboratory plasticity index tests indicate the clay to be of high-volume change potential and the results of triaxial undrained compressive strength tests indicate the clay to be of moderate becoming high and very high strength.

2.2.2 Groundwater

Groundwater was not encountered during drilling. Groundwater has subsequently been measured within the standpipe at depths of 2.50 m and 2.60 m during two monitoring visits carried out three weeks and four weeks after installation.

3.3.3 Monitoring of the borehole showed depth to ground water of 2.5m however this is likely to be caused by seepages in the made ground.

Significant groundwater inflows are not likely to be encountered in construction of the basement extension however perched water will be encountered in the made ground. The deepest excavation will be 4.5m.

2.2.3 Contamination

The results of the contamination testing have indicated the presence of no elevated concentrations of contaminants within the single sample of made ground tested with all concentrations recorded as being below the screening value. As a result, the made ground is considered to be free from contamination that could cause a risk to any potential receptors and as such a requirement for remedial measures is not envisaged. However it would be prudent for a watching brief to be maintained during the ground works and for additional sampling and contamination testing to be carried out in proposed areas of soft landscaping to confirm the absence of contamination in these areas.

2.3 Trees

There are no trees affected by the development or influence the design of the foundations.

Any shallow foundations design will assume a high volume change potential clay with allowance for restricted planting as the NHBC guidance.

2.4 Flood Risk

A site-specific Flood Risk assessment has been carried out, see Infrastruct CS Report dated 12th February.

2.4.1 Fluvial Flood Risk

The proposed development site lies entirely within flood zone 1 which is classified as land assessed as having a less than 1 in 1000 annual probability of river or sea flooding and is appropriate to all uses of land.

2.4.2 Surface Water Flood Risk

The risk of flooding due to overland flood flows is considered low by the Environment Agency. The surface water flood data for the site, shown below, indicates that there is medium flood risk immediately to the north of the site, near the garages and along Abbey Road, but very low risk within the site itself. There is currently a wall protection to the site from water runoff which will be maintained.

2.4.3 Design Implications

Based on the above there is a low risk of flooding at this site. Therefore no special measures are required apart from a non-return valve to the drainage as detailed in the FRA.

3.0 Proposed Structural Works

3.1 Introduction

The proposed development of the site involves removing one half of the existing garage and constructing a new house with a basement. The basement will involve excavation within a significant portion of the site to a maximum depth of 4.5m. The excavation will be formed within a reinforced underpinned existing wall, piled retaining walls and reinforced walls constructed in hit and miss sequence.

The new structure will a concrete frame throughout to provide a robust flexible layout.

3.2 Demolition Works

It is proposed that all demolition works will be carried out in accordance with BS 6187 'Code of practice for demolition' and an appropriately skilled and experienced contractor is to be appointed. The works are to be carefully sequenced and undertaken and the contractor is to provide full temporary works and supervision to ensure that the stability of the remaining structure and surrounding structures are maintained at all times.

3.3 New Basement Structure

- **3.3.1** The new basement structure is to consist of an underpinned existing wall, new reinforced concrete retaining walls and contiguous piled walls. This variation in construction types is in response to the particular requirements at each boundary. The floors will be reinforced concrete slabs supported by the walls and internal columns. The structure will be fully suspended on piles to allow for the impact of heave and water uplift.
- **3.3.2** Half of the existing garage will be removed, and the existing internal wall will be supported by the new basement. No support will be taken from this wall for the new structure.
- **3.3.4** Due to the depth of excavation there will be minor heave due to the unloading of the London Clay. Compressible material below the basement slab will allow for this heave to be unrestrained and place no load on the structure.
- **3.3.5** The presence of ground water was established during the excavation of borehole 1 (see section 2.2.2). Monitoring showed water at a depth of 2.5m below ground however this is likely to be caused by seepages in the made ground. Therefore the need to control significant amounts of water during the construction period is unlikely given the proposed depth of excavation.
- **3.3.6** The concrete structure will be designed to BS8110 with full top and bottom reinforcement to all sections. The concrete in itself is not a watertight / waterproof construction and in order to achieve a Grade 3 'habitable' basement in accordance with BS8102 a combination of tanking with an internal drained cavity system will be provided. However the final waterproofing system is yet to be agreed with the architect.
- **3.3.7** The proposed reinforced concrete basement form is classified as a "robust" structure and will be designed to accommodate any lateral loading that will develop.

4.0 Control of Movement

The proposed basement scheme and method of construction are of a typical form for which we are confident that resulting ground movements can be controlled in both the temporary and permanent condition. Top down construction has been adopted to limit the need for temporary propping, see the construction sequence drawings.

4.1 Vertical Movement

Vertical movement resulting from heave of the clay strata below the basement slab following excavation will be in the order of 9mm at the centre of the basement reducing to 3 to 7mm at the edges. Compressible material below the basement slab will allow for this heave to be unrestrained and place no load on the structure.

4.2 Horizontal Movement

Horizontal deflection to the perimeter of the basement will be limited by casting the underpins and retaining walls in short sections. Where possible a contiguous piled wall has been adopted. This is designed to be propped by the ground floor and basement slabs. Total horizontal movement of 10mm is anticipated due to installation of pins and excavation.

4.3 Ground Movement Analysis

A ground movement analysis has been carried out by GEA. Based on this analysis 39 Priory Terrace and Priory Lodge are expected suffer damage from Category 0(Negligible) to Category 1(Slight). This is below the limit required by the Camden CPG. The adjacent garage will suffer damage slightly higher than this. This assessment is however conservative and repair works are assumed to be required during the works to separate the garages.

5.0 Superstructure

5.1 The superstructure is a concrete frame of flat slabs supported by reinforced concrete columns. This allows for a roof garden and flexible room layouts at each floor.

6.0 SUDs and Drainage

6.1.1 In accordance with the London Plan surface water run-off should be managed as close to its source as possible. The London Plan states that all new developments should aim to reduce run-off to Greenfield rates "utilising SUDS unless there are practical reasons for not doing so". A Flood Risk Assessment has been carried out by Infrastruct CS and a preliminary drainage scheme produced.

The following drainage hierarchy was used to assess the possibility of implementing SUDS at the site:

- 1. Store rainwater for later use.
- 2. Use infiltration techniques, such as porous surfaces in no-clay areas.
- 3. Attenuate rainwater in ponds or open water features for gradual release.
- 4. Attenuate rainwater in tanks or sealed water features for gradual release.
- 5. Discharge rainwater direct to a watercourse.
- 6. Discharge rainwater to a surface water sewer/drain.
- 7. Discharge rainwater to a combined sewer.

6.1.2 Rainwater Harvesting and Green roofs

The capacity of rainwater harvesting systems to attenuate rainwater depends on the water use within the building. If there is no activity in the building and the harvester is full, no attenuation will be provided during a subsequent storm event. In the worst-case scenario, the rainwater harvester will provide no attenuation.

6.1.3 Infiltration techniques

The site investigation shows that the site is underlain by London Clay which is unsuitable for the use of infiltration techniques.

6.1.4 Attenuation techniques In accordance with the London Plan, surface water should be attenuated to Greenfield run-off rates before draining to the public sewers. In this case tanked attenuation is provided within the garden. In addition a small amount of green roof is also adopted.

6.1.5 Discharge to watercourse This solution would not be feasible as there are no watercourses near the site.

6.1.6 Discharge to surface water sewer/drain This solution would not be feasible as the public sewer running in Priory Terrace is combined.

6.1.7 Discharge to a combined sewer

The site will be discharged via a new connection to the combined sewer in Priory Terrace. The surface water will be attenuated to a green field rate of 2l/s.

6.2.1 Drainage

The development proposals will seek to discharge foul water from the development site into the existing combined drainage network running along Priory Terrace, to the east of the property. This will be subject to a Section 106 consents from Local Water Authority, Thames Water. Flows into this system will be via a gravity fed connection.

A pre-development enquiry has been made to Thames Water although at the time of writing no response has been received. No capacity issues are envisaged as it is the head of the line.

7.0 Temporary Works

7.0.1 Temporary Works

The contractor will be responsible for the design, erection, and maintenance of all temporary works in accordance with all relevant British Standards. The contractor will be contractually obligated to appoint a qualified temporary works engineer to provide adequate temporary works and supervision to ensure that the stability of the existing structure, excavations and surrounding structures are maintained at all times. The proposed scheme requires limited temporary works.

7.0.2 Submissions

The contractor will be required to submit full proposals, method statements and calculations to the engineer and all appropriate parties (party wall surveyors, AIP etc.) for approval prior to the start of any works on site.

The contractor will also be required to appoint a Temporary Works Co-ordinator for the duration of the contract in accordance with the specification and BS 5975.

7.0.3 Monitoring

All items of temporary works and surrounding structures should be monitored in a manner and frequency commensurate with the construction activity taking place. As a minimum the monitoring should include a daily full visual survey of all temporary works and surrounding structures and a weekly measured survey using fixed survey points during the main basement works, subject to proposed construction sequence, party wall agreement, etc.

8.0 Method Statement / Sequence of Works – Basement Construction

Construction methodology and temporary works assumed in the design as described below and on drawing 2015-HRW-XX-ZZ-DR-S-900. These will be superseded by the contractor's proposals.

- 1. Install piles, contiguous piles at perimeter together with internal plunge columns.
- 2. Construct reinforced concrete underpins beneath the existing garage.
- 3. Construct reinforced concrete retaining wall adjacent the footpath in underpinning sequence.
- 4. Construct the ground floor together with the capping beam therefore providing restraint to the top of the retaining walls.
- 5. Excavate to formation level.
- 6. Cast basement slab on compressible material.
- 7. Basement structure complete for construction of superstructure and fit out.

9.0 Design Criteria

9.1 Code of Practice

Structural use of Concrete BS 8110-1:1997 Structural use of Concrete BS 8110-3:1985 Code of practice for foundations BS 8004 Structural use of Steel BS 5950-1:2000 Structural use of Timber BS 5628-2:2002 Structural Use of Masonry BS 5628-1:2005 Loading for Buildings BS 6399: Part 1:1996, Part 2:1997

9.2 Loading – Imposed loadings to BS 6399

Domestic areas = 1.5 kN/m2Roof (flat with no access) = 0.75 kN/m2Roof (pitched) = 0.6 kN/m2

9.3 List of relevant drawings and reports

9.3.1 eHRW Drawings:

2015-HRW-XX-00-DR-S-102 2015-HRW-XX-01-DR-S-103 2015-HRW-XX-B1-DR-S-101 2015-HRW-XX-RF-DR-S-104 2015-HRW-XX-XX-DR-S-200 2015-HRW-XX-XX-DR-S-201 2015-HRW-XX-ZZ-DR-S-900 2015-HRW-XX-ZZ-DR-S-901

9.3.2 Architects Drawings (not included in SES)

(919)000_ P01 (919)001_ P01 (919)020_ P01 (919)210_ P01 (919)211_ P01 (919)310_ P01

9.3.3 GEA Report (not included in SES)

Desk Study and Ground Investigation Report J20012 dated April 2020

9.3.4 Infrastruct CE Report & Drawing (not included in SES)

3832-39PR-ICS-XX-RP-C-07.001 Flood Risk Assessment and Drainage Strategy 2015-XX-XXX-DR-C-0500 Drainage Design Drawing

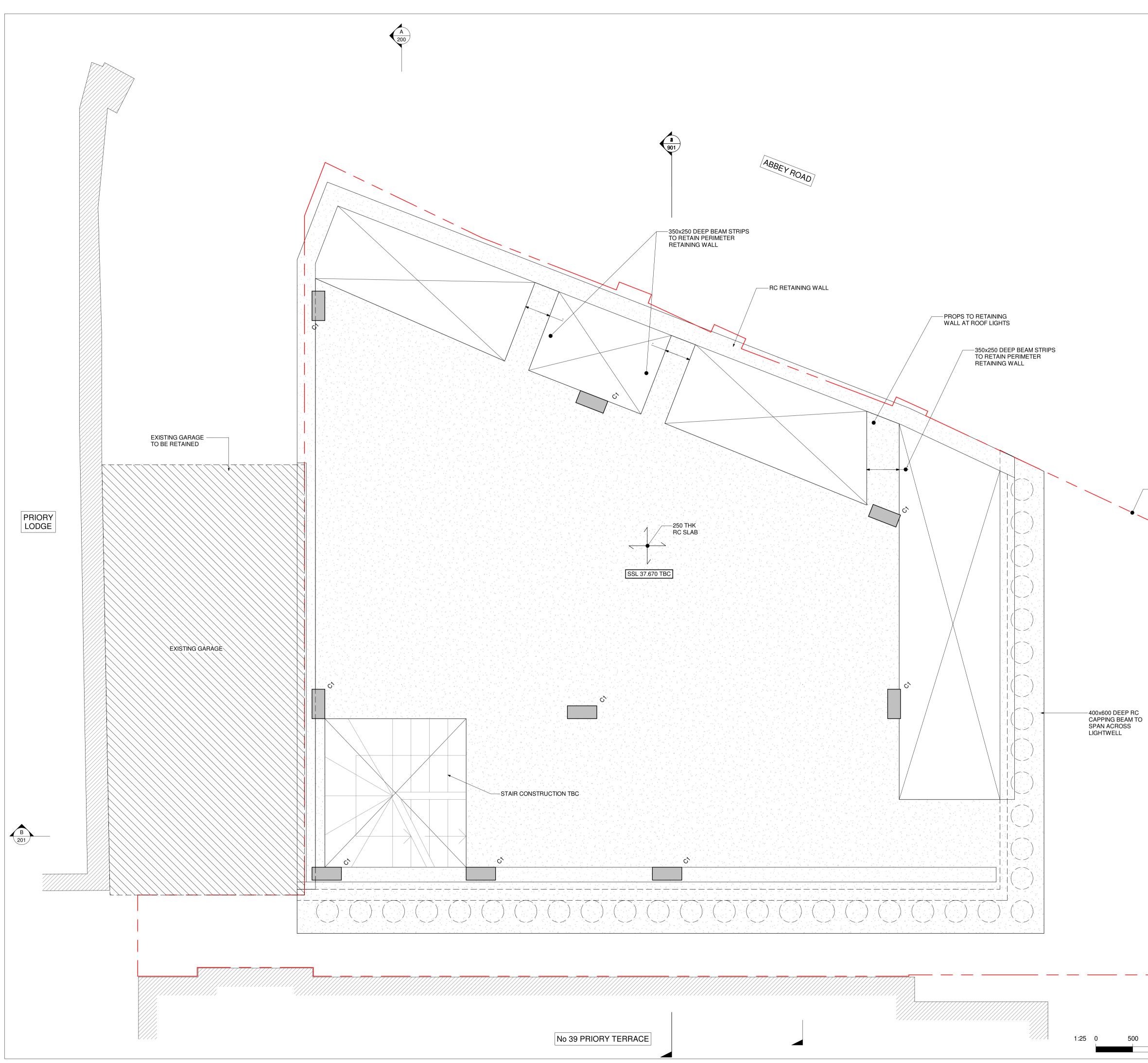
9.3.5 Preliminary Calculations

10.0 Conclusion

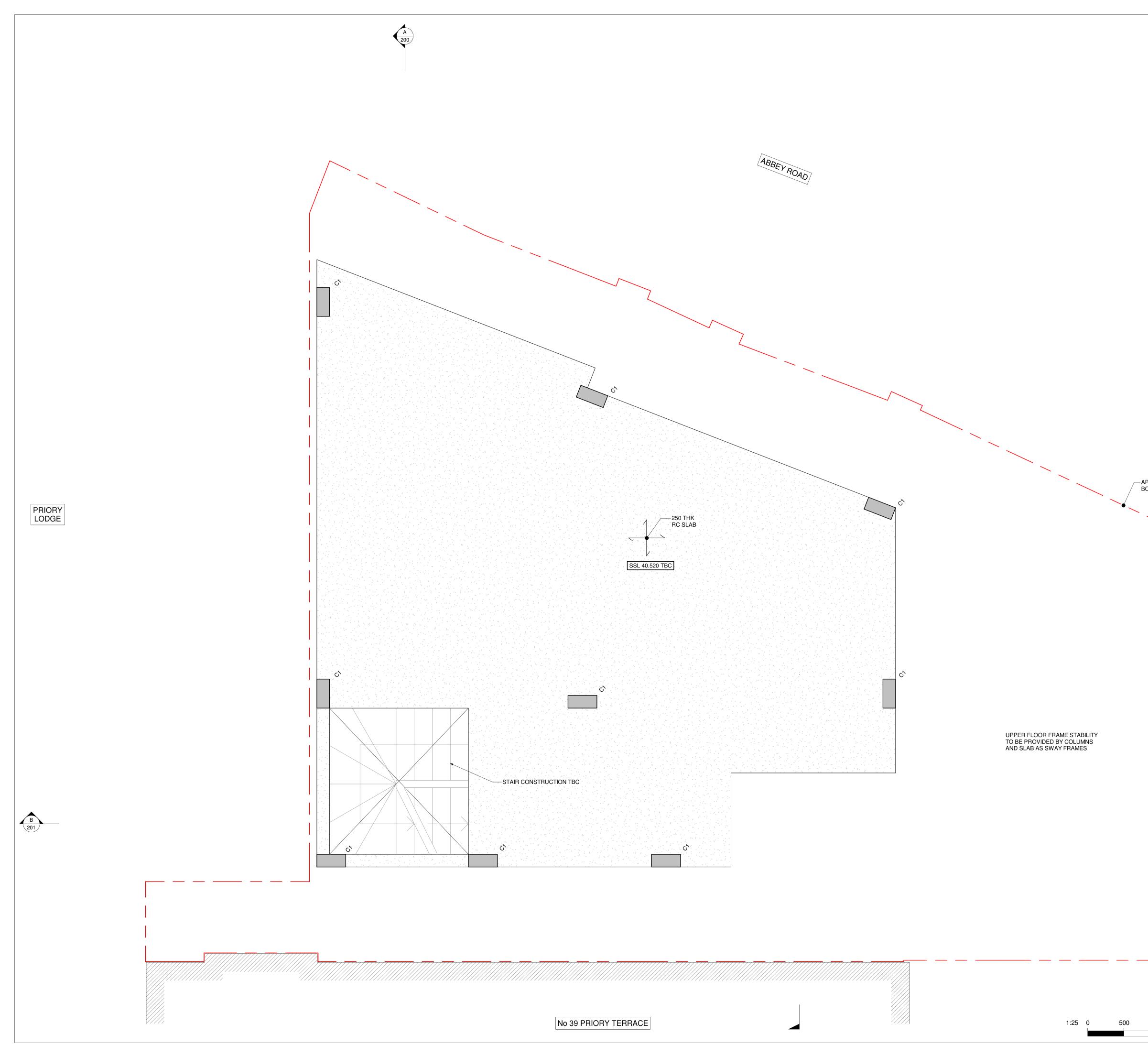
The following has been carried out in preparing this Structural Engineers Statement: -

- A desk study followed by a full site investigation were undertaken to establish ground conditions and groundwater levels.
- A full engineering scheme design was developed considering the surrounding structures and site constraints. This includes a sequence of construction.

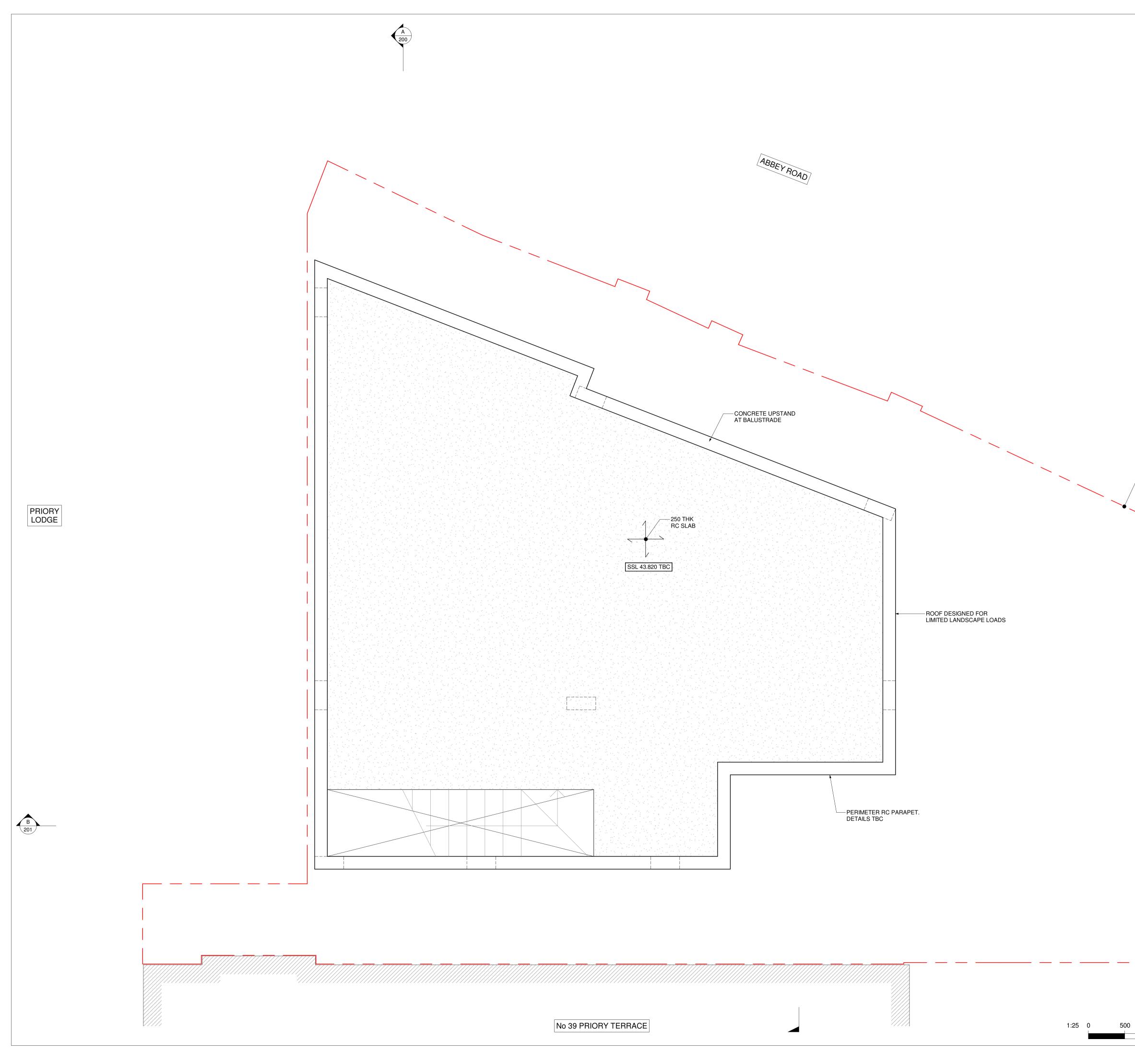
Based on the above we are satisfied that the scheme is viable and is designed and can be constructed in accordance with Camden Council's CPG Basements dated 2018. An AIP for the retaining wall supporting the pavement will be required following planning.

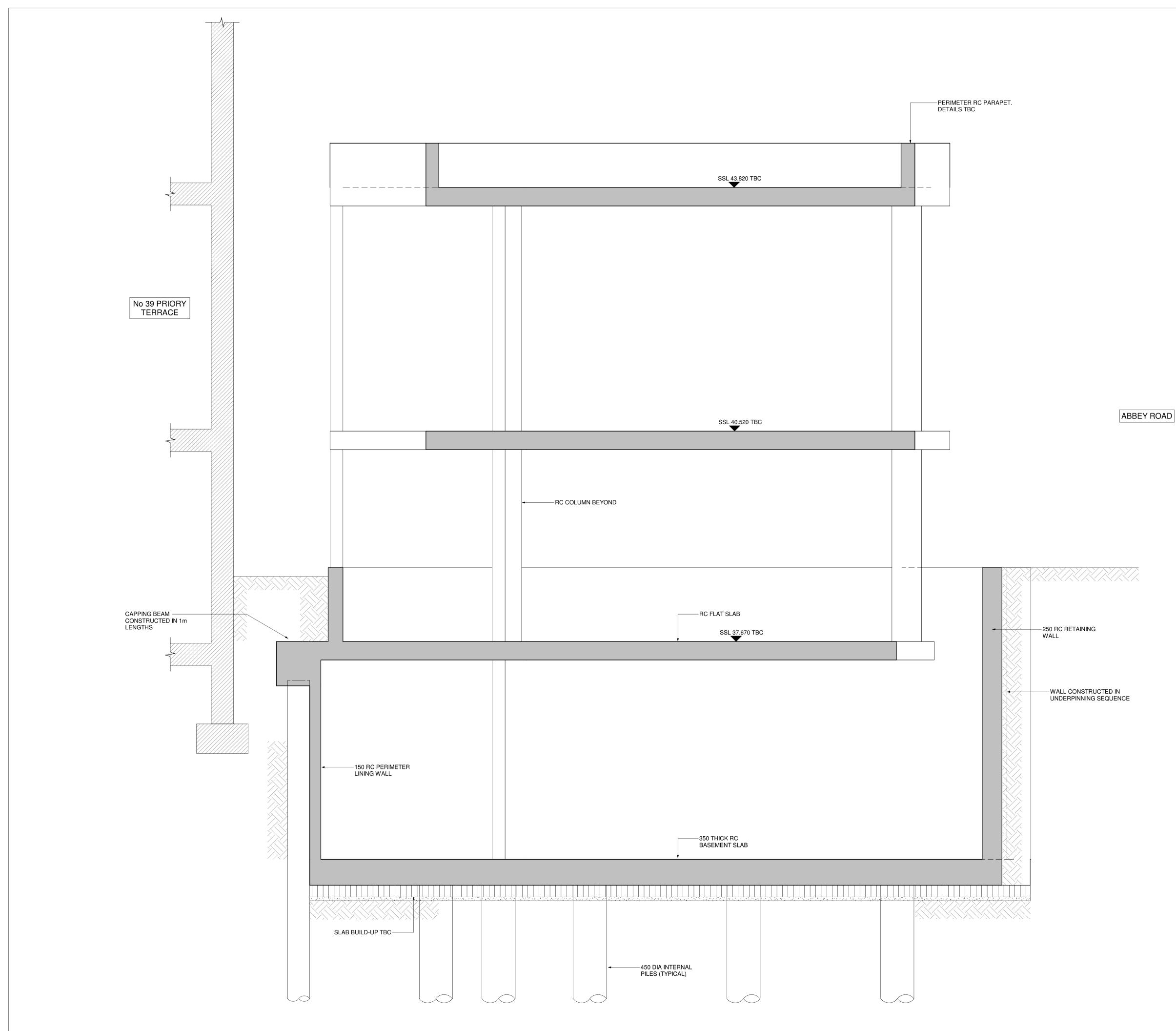

APPENDIX I

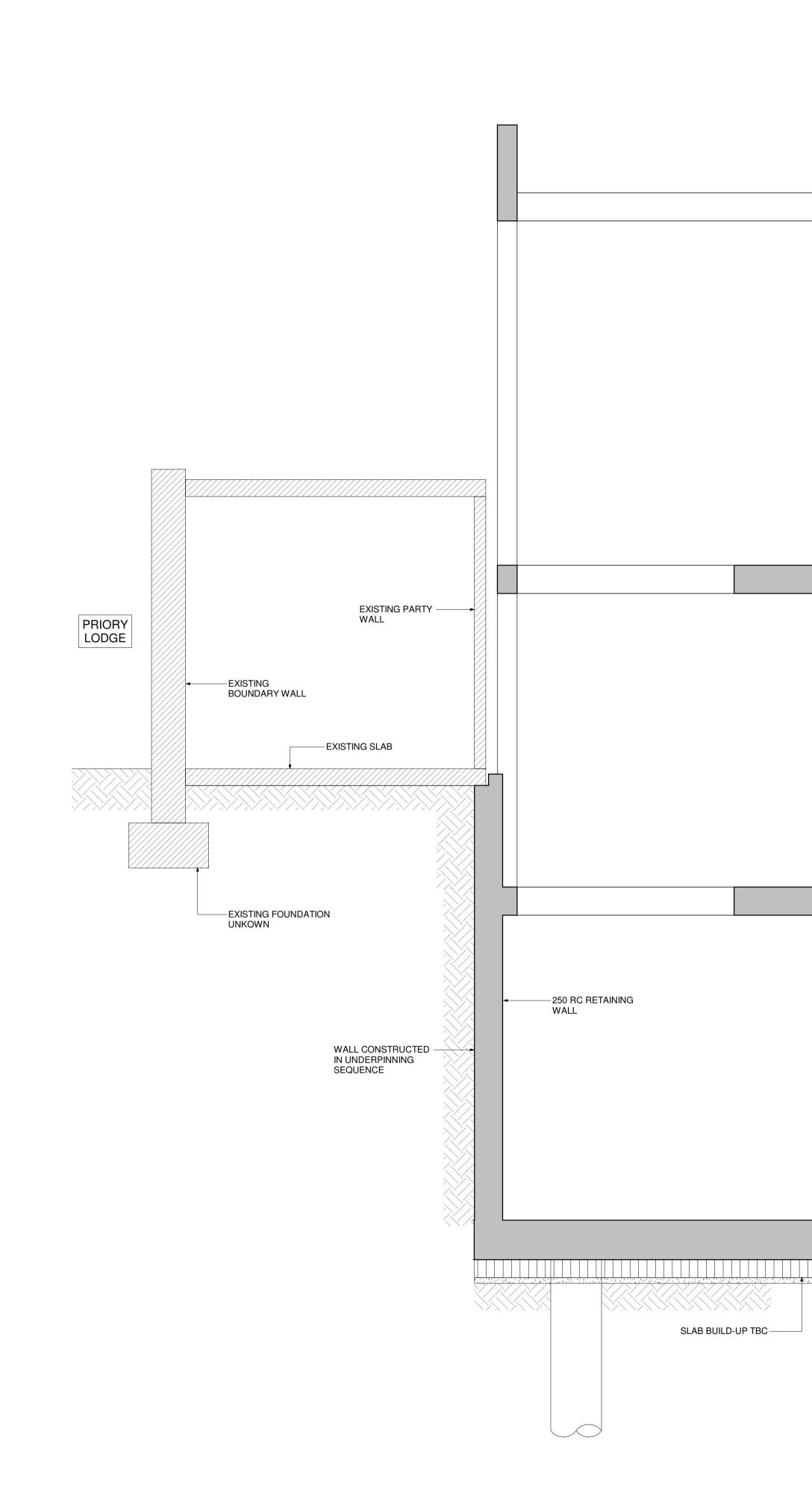
EngineersHRW Drawings



	NOTES 1. DO NOT SCALE	FROM THIS DRAV	VING	
	2. THESE DRAWIN	GS ARE TO BE RE		
	Legend			TION
		DENOTES EX		RY
			0 THK RC WALL	UNO.
		DENOTES ST	RUCTURE UND	ER
	Column Sched	ule		
	REF C1	SIZ 175 x 4		GRADE RC32/40
	P3 05.05.20 P2 17.03.20 P2 17.03.20 P1 06.03.20 Rev Date Condon 0207 407 Project: Abbey Ro Drawing title: Proposed Basement General A	9575 Oxford ad, Lond trangem	FORMATION FORMATION OIB65 957360 don, NW6	www.ehrw.co.uk
	1:25 Status: Purpose Fo	SL or Issue:	MAR 2020	BS
1500 0000 0755	S2 INFC	ORMATIC	DN	
1500 2000 2500	Drawing Number: 2015-HRW	/-XX-B1-	DR-S-101	Rev: P3

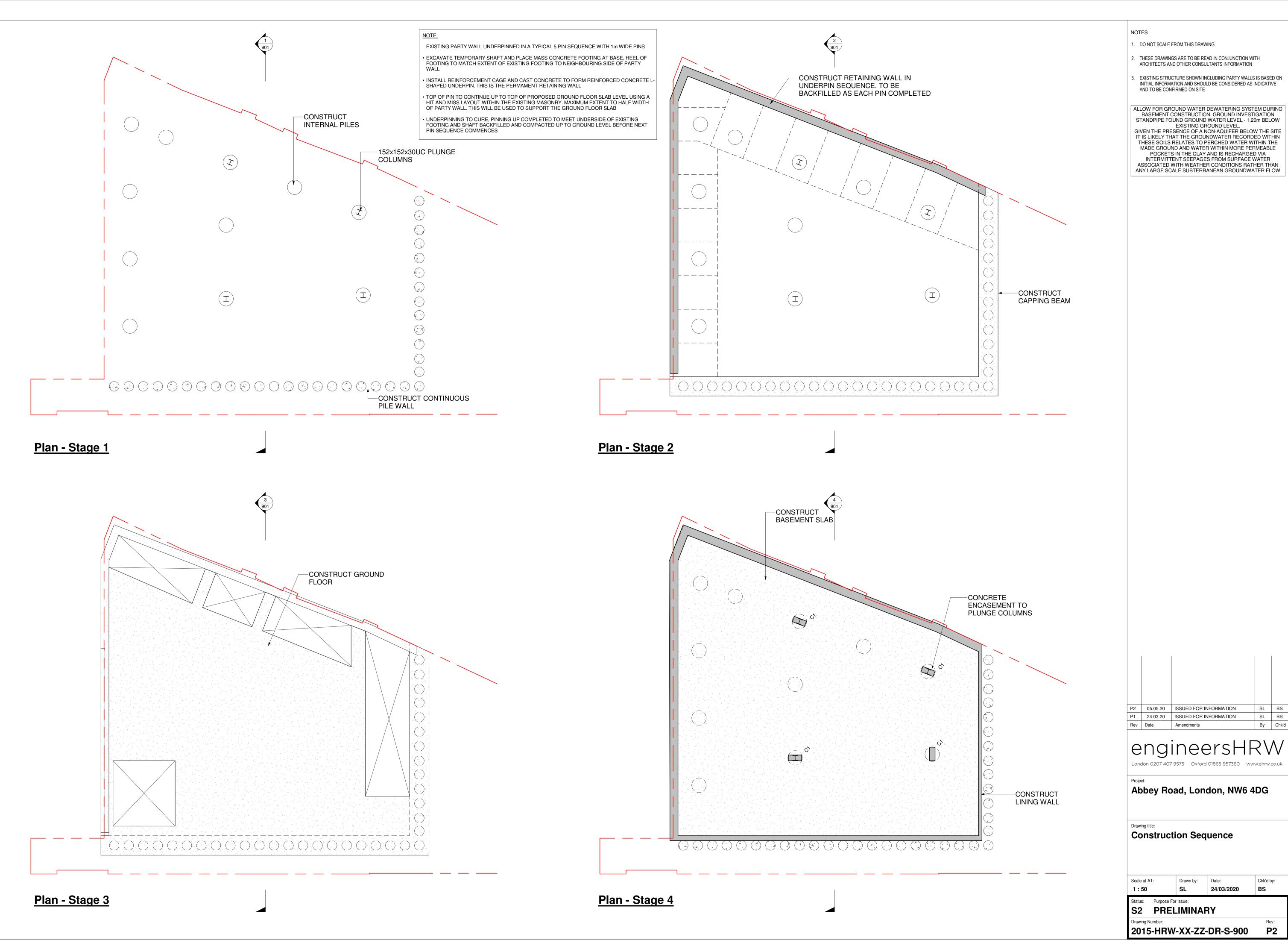

— APPROX SITE BOUNDARY LINE


P2 17.03.20 ISSUED FOR INFORMATION SL B3 P1 06.03.20 ISSUED FOR INFORMATION SL B3 Rev Date Amendments By Ch CongineersHRW London 0207 407 9575 Oxford 01865 957360 www.ehrw.co.ul Project: Abbey Road, London, NW6 4DG Drawing title: Proposed Ground Floor General Arrangement Scale at A1: Draw by: Date: Chk/d by: 1 : 25 SL MAR 2020 BS Status: Purpose For Issue: S2 INFORMATION					TES DO NOT SCALE	FROM THIS DRA	WING		
				Leg	jend				
						DENOTES E TO BE RETA	XISTING MASON	RY	
PAPPOCESTIF CT 178 × 600mm 1002240						DENOTES 2	00 THK RC WALL	UNO.	
POPPEOX STEL Source of the second state of the second sta						DENOTES S	TRUCTURE UND	ER	
C1 U25 + 446mm (402040) PERCENSIFIE SERIED DON INFORMATION 4 5 PERCENSIFIE SERIED DON INFORMATION 5 5				Colu	umn Schec	lule			
P3 05.05.20 ISSUED FOR INFORMATION SL P P3 05.05.20 ISSUED FOR INFORMATION SL P P4 05.03.20 ISSUED FOR INFORMATION SL P P4 05.03 ISSUED FOR INFORMATION SL P P4 05.03 ISSUED FOR INFORMATION SL P P4 05.03 ISSUED FOR INFORMATION SL P P4									E
P2 17.03.20 ISSUED FOR INFORMATION SL B3 P1 06.03.20 ISSUED FOR INFORMATION SL B4 Rev Date Amendments By Ch CONSTRUE FOR INFORMATION SL B4 Rev Date Amendments By Ch Construction O207 407 9575 Oxford 01865 957360 www.ehrw.co.ul Project: Abbey Road, London, NW6 4DG Drawing title: Proposed Ground Floor General Arrangement Scale at A1: 1: 25 SL MAR 2020 BS Status: Purpose For Issue: S2 INFORMATION									
P2 17.03.20 ISSUED FOR INFORMATION SL B3 P1 06.03.20 ISSUED FOR INFORMATION SL B4 Rev Date Amendments By Ch CONSTRUE FOR INFORMATION SL B4 Rev Date Amendments By Ch Construction O207 407 9575 Oxford 01865 957360 www.ehrw.co.ul Project: Abbey Road, London, NW6 4DG Drawing title: Proposed Ground Floor General Arrangement Scale at A1: 1: 25 SL Mar 2020 BS Status: Purpose For Issue: S2 INFORMATION									
P2 17.03.20 ISSUED FOR INFORMATION SL B3 P1 06.03.20 ISSUED FOR INFORMATION SL B4 Rev Date Amendments By Ch CONSTRUE FOR INFORMATION SL B4 Rev Date Amendments By Ch Construction O207 407 9575 Oxford 01865 957360 www.ehrw.co.ul Project: Abbey Road, London, NW6 4DG Drawing title: Proposed Ground Floor General Arrangement Scale at A1: 1: 25 SL MAR 2020 BS Status: Purpose For Issue: S2 INFORMATION				P3	05.05.20	ISSUED FOR	NFORMATION	SL	BS
Condon 0207 407 9575 Oxford 01865 957360 www.ehrw.co.ul Project: Abbbey Road, London, NW6 4DG Drawing title: Proposed Ground Floor General Arrangement Scale at A1: Drawn by: Date: Chk'd by: 1 : 25 SL MAR 2020 BS Status: Purpose For Issue: S2 INFORMATION				P2	17.03.20	ISSUED FOR I	NFORMATION	SL	BS BS
London 0207 407 9575 Oxford 01865 957360 www.ehrw.co.ul Project: Abbey Road, London, NW6 4DG Drawing title: Proposed Ground Floor General Arrangement Scale at A1: Drawn by: Date: Chk/d by: 1 : 25 SL MAR 2020 BS Status: Purgose For Issue: S2 INFORMATION									Chk'd
Abbey Road, London, NW6 4DG Drawing title: Proposed Ground Floor General Arrangement Scale at A1: 1:25 SL MAR 2020 BS Status: Purpose For Issue: S2 INFORMATION					· ·				
1:25 SL MAR 2020 BS Status: Purpose For Issue: S2 INFORMATION For Issue:				Ak Draw Pr Gi	ing title: oposed round F	l loor		4DG	
Status: Purpose For Issue: S2 INFORMATION									:
							WAR 2020	B2	
2000 2300 2300 Drawing Number: Prev: 2015-HRW-XX-00-DR-S-102 P3	1000	1500	2000 2500) Draw	ing Number:			Rev P	


	 DO NOT SCALE FROM THIS DRAWING THESE DRAWINGS ARE TO BE READ IN CONJUNCTION WITH
	ARCHITECTS AND OTHER CONSULTANTS INFORMATION
	Legend DENOTES EXISTING MASONRY
	TO BE RETAINED
	DENOTES 200 THK RC WALL UNO.
	DENOTES STRUCTURE UNDER
	Column Schedule REF SIZE GRADE
	C1 175 x 400mm RC32/40
— APPROX SITE BOUNDARY LINE	
 	
	P305.05.20ISSUED FOR INFORMATIONSLBSP217.03.20ISSUED FOR INFORMATIONSLBS
	P106.03.20ISSUED FOR INFORMATIONSLBSRevDateAmendmentsByChk'd
	ongingere UD\A/
	London 0207 407 9575 Oxford 01865 957360 www.ehrw.co.uk
	Project:
	Abbey Road, London, NW6 4DG
	Drawing title:
	Proposed First Floor
	General Arrangement
	Scale at A1: Drawn by: Date: Chk'd by:
	1:25 SL MAR 2020 BS Status: Purpose For Issue:
	S2 INFORMATION
1000 1500 2000 2500	Drawing Number: Rev: 2015-HRW-XX-01-DR-S-103 P3

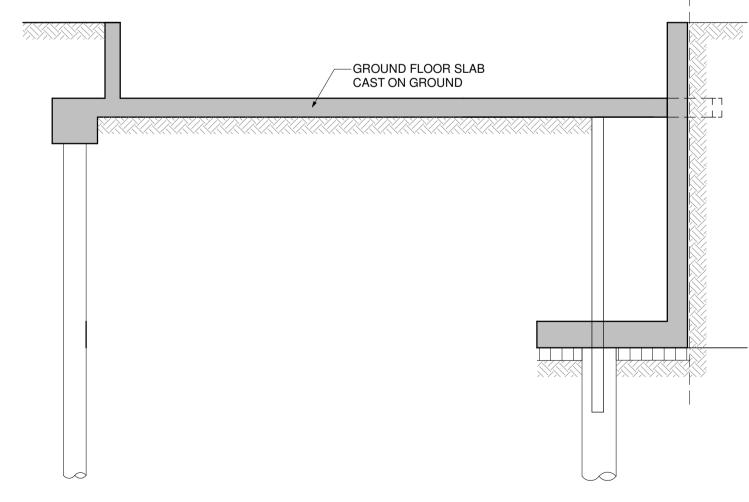
	NOTES		/NO	
	1. DO NOT SCALE 2. THESE DRAWIN			ON WITH
			JLTANTS INFORMAT	
	Legend			BY
		TO BE RETAI	NED	
			0 THK RC WALL	
			RUCTURE UND	ER
	Column Scheo	lule sız	2E	GRADE
	C1	175 x 4		RC32/40
-APPROX SITE BOUNDARY LINE				
	P3 05.05.20 P2 17.03.20 P1 06.03.20 Rev Date	ISSUED FOR IN ISSUED FOR IN ISSUED FOR IN Amendments	FORMATION	SL BS SL BS SL BS SL BS By Chk'd
	London 0207 407 Project: Abbey Rc	9575 Oxford (01865 957360	www.ehrw.co.uk
	Drawing title: Proposed Roof General A Scale at A1: 1 : 25		Dent Date: MAR 2020	Chk'd by: BS
	Status: Purpose F	or Issue:		
1000 1500 2000 2500	S2 INFC	ORMATIC)N	Rev:
	2015-HRV	V-XX-RF-	DR-S-104	P3

		AND OTHER CONS	READ IN CONJUNCTI SULTANTS INFORMA	
P3 P2	05.05.20		NFORMATION	SL BS
P2 P1	17.03.20 06.03.20	ISSUED FOR I		SL BS
P2 P1 Rev	17.03.20 06.03.20 Date	ISSUED FOR I ISSUED FOR I Amendments	NFORMATION NFORMATION	SL BS SL BS By Chk
P2 P1 Rev	17.03.20 06.03.20 Date	ISSUED FOR I ISSUED FOR I Amendments	NFORMATION	SL BS SL BS By Chi
P2 P1 Rev	17.03.20 06.03.20 Date	ISSUED FOR I ISSUED FOR I Amendments	NFORMATION NFORMATION ETSH 01865 957360	SL BS SL BS By Chi RWW www.ehrw.co.uk
P2 P1 Rev	17.03.20 06.03.20 Date	ISSUED FOR I ISSUED FOR I Amendments		SL BS SL BS By Chi RWW www.ehrw.co.uk
P2 P1 Rev Loi	17.03.20 06.03.20 Date	ISSUED FOR I ISSUED FOR I Amendments	NFORMATION NFORMATION ETSH 01865 957360	SL BS SL BS By Chi RWW www.ehrw.co.uk
P2 P1 Rev Loi Pro A	17.03.20 06.03.20 Date	ISSUED FOR I ISSUED FOR I Amendments	NFORMATION NFORMATION ETSH 01865 957360	SL BS SL BS By Chi RWW www.ehrw.co.uk
P2 P1 Rev Loi Pro A	17.03.20 06.03.20 Date	ISSUED FOR I ISSUED FOR I Amendments	NFORMATION NFORMATION ETSH 01865 957360	SL BS SL BS By Chi RWW www.ehrw.co.uk
P2 P1 Rev Loi Pro A	17.03.20 06.03.20 Date	ISSUED FOR I ISSUED FOR I Amendments	NFORMATION NFORMATION OTROS 957360	SL BS SL BS By Chi Www.ehrw.co.uk
P2 P1 Rev Loi Pro A Dra Dra Sca 1	17.03.20 06.03.20 Date	ISSUED FOR I ISSUED FOR I Amendments	NFORMATION NFORMATION ETSH 01865 957360	SL BS SL BS By Chi RWW www.ehrw.co.uk

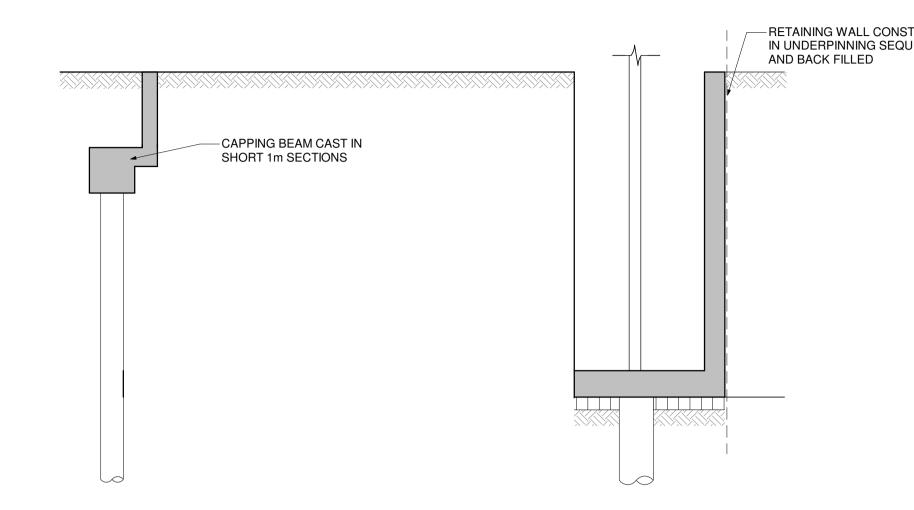

			-	
		2	PERIMETER RC P. DETAILS TBC	ARAPET.
	SSL 43.820 TBC	550	DETAILS THE	
		•		
	SSL 40.520 TBC	520		
		•		
	- RC COLUMN BEYOND			
				RC RI
	RC FLAT SLAB	250		
		•		
				600x6 CAPP
			150 RC LINING WALL	
				300 D PILED
	350 RC BASEMENT SLAB			

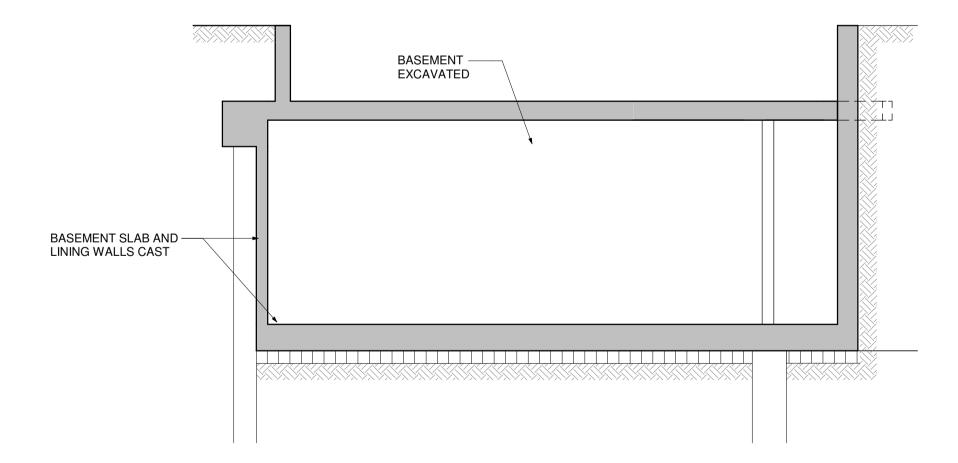
	NOTES 1. DO NOT SCALE FROM THIS DRAWING
	 2. THESE DRAWINGS ARE TO BE READ IN CONJUNCTION WITH ARCHITECTS AND OTHER CONSULTANTS INFORMATION
	P3 05.05.20 ISSUED FOR INFORMATION SL BS
	P217.03.20ISSUED FOR INFORMATIONSLBSP106.03.20ISSUED FOR INFORMATIONSLBSRevDateAmendmentsByChk'd
	engineersHRW
	London 0207 407 9575 Oxford 01865 957360 www.ehrw.co.uk
	Project: Abbey Road, London, NW6 4DG
	Drawing title: Proposed Section B-B
	Scale at A1: Drawn by: Date: Chk'd by: 1:25 SL MAR 2020 BS
	Status: Purpose For Issue: S2 INFORMATION
2000 2500	Drawing Number: Rev: 2015-HRW-XX-XX-DR-S-201 P3

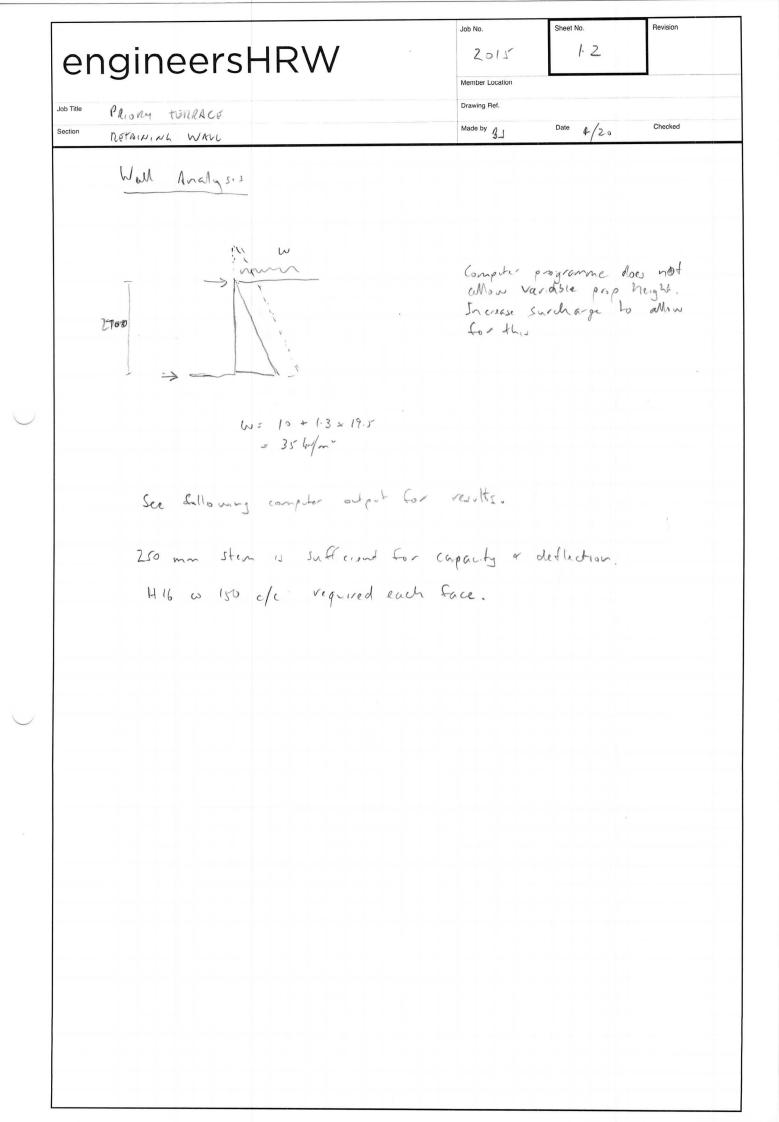
RETAINING WALL


0x600 DEEP RC PPING BEAM

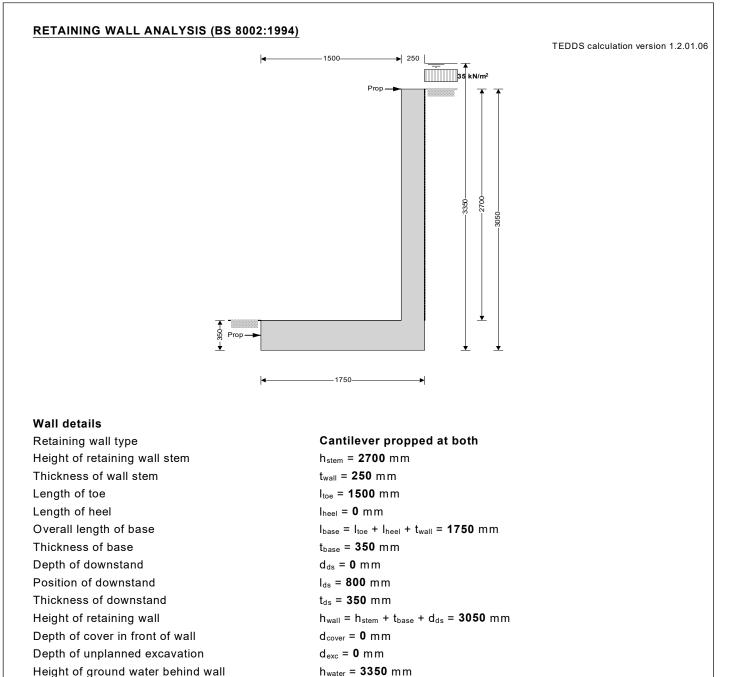
DIA CONTIGUOUS ED WALL







	T1
STRUCTED	
UENCE	
	P205.05.20ISSUED FOR INFORMATIONSLBSRevDateAmendmentsByChk'd
	$anainaarc UD \/$
	London 0207 407 9575 Oxford 01865 957360 www.ehrw.co.uk
	Project:
	Abbey Road, London, NW6 4DG
	Drawing title: Construction Sequence Sections
	Construction Sequence Sections
	Scale at A1: Drawn by: Date: Chk'd by: 1 + 50 SL 05/05/2020 BS
	1:50 SL 05/05/2020 BS Status: Purpose For Issue: <td< th=""></td<>
	S2 PRELIMINARY Drawing Number: Rev:
	2015-HRW-XX-ZZ-DR-S-901 P1


APPENDIX II

EngineersHRW Calculation

			Job No.	Sheet No.	Revision
eng	gineersHRW		2015	1.1	
	•		Member Location		
Cention	niony TERRALE		Made by	Date 4/20	Checked
	RETAINING WHILLS		دكا	4/20	CONTRACTOR OF THE OWNER OF
R	ETAINING WALLS				
	Preliminary design of bosoment at 39 a Prive Terra				The
	Site investigation report. by London Clay.	shows the s.	he to be	indedcin	
	Soil properties denily				
	Ø 23°				
<u> </u>					
	Loads - Retaining and on govern				-
	Design for a su	nrcharge of	10 hr/m2		
	Advice in site investor water level Im below	ground level.	ō desig-	for a	
	10 /00/002				
	The second	tour			
	SELTION				

Tekla Tedds	Project Priory Terrace				Job no. 2015	
EngineersHRW Unit 10 Blue Lion Place 237 Long Lane	Calcs for Retaining Wall				Start page no./Revision 1	
London SE1 4PU	Calcs by BDS	Calcs date 27/04/2020	Checked by	Checked date	Approved by	Approved date

 $\gamma_{wall} = 23.6 \text{ kN/m}^3$

 γ_{base} = 23.6 kN/m³ α = 90.0 deg

 $\beta = 0.0 \text{ deg}$

M = 1.5

 $h_{sat} = max(h_{water} - t_{base} - d_{ds}, 0 mm) = 3000 mm$

 $h_{eff} = h_{wall} + I_{heel} \times tan(\beta) = 3050 \text{ mm}$

Height of saturated fill above base

Density of wall construction

Density of base construction

Angle of soil surface behind wall

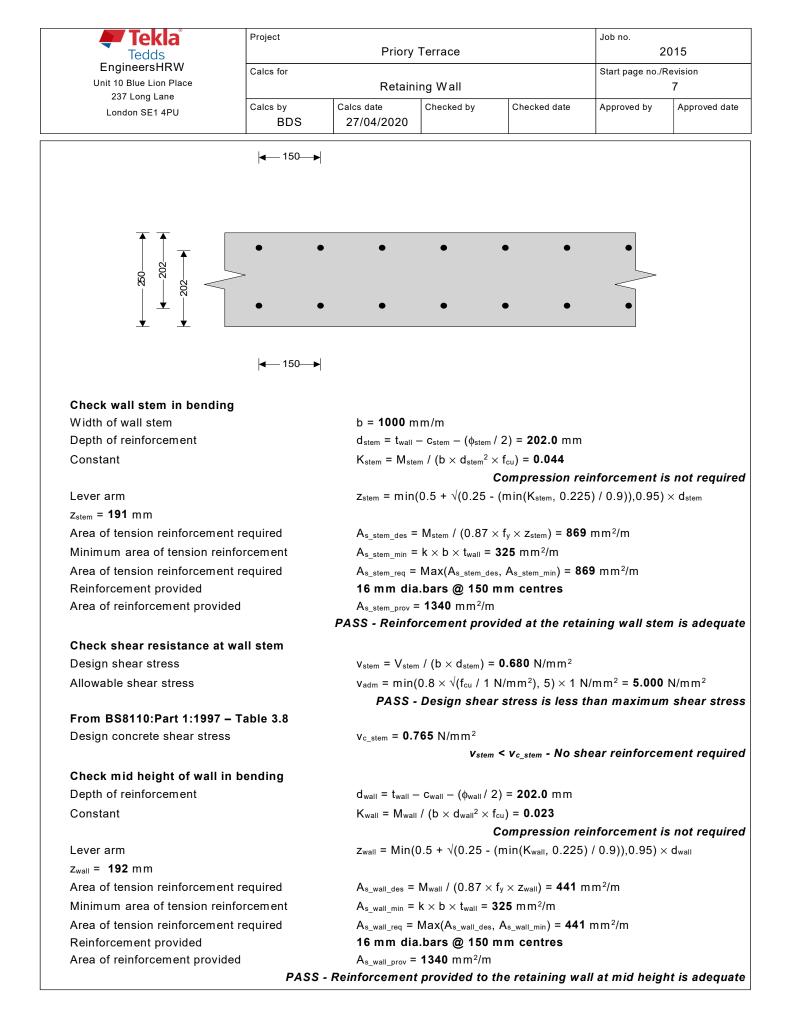
Effective height at virtual back of wall

Angle of rear face of wall

Retained material details

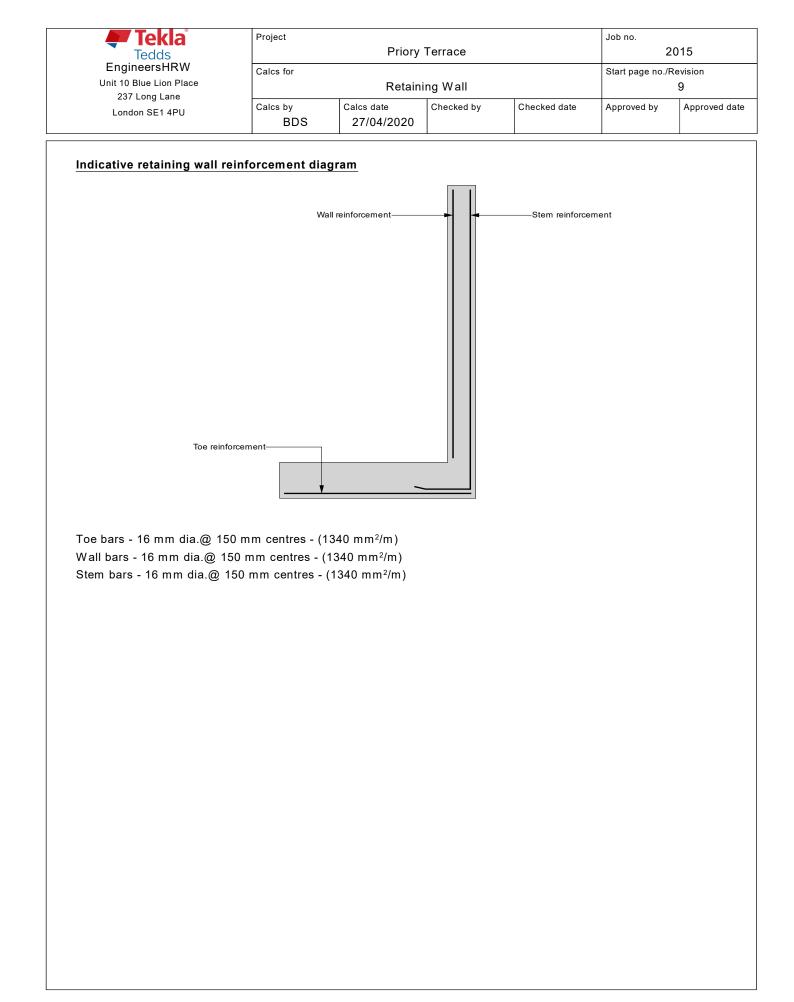
Mobilisation factor

Tekla Tedds	Project Priory Terrace			Priory Terrace Job no. 2015			
EngineersHRW Unit 10 Blue Lion Place	Calcs for			Start page no./F			
237 Long Lane		Retain	Retaining Wall			2	
London SE1 4PU	Calcs by BDS	Calcs date 27/04/2020	Checked by	Checked date	Approved by	Approved of	
Moist density of retained mat	erial	γm = 19.5 k	N/m³				
Saturated density of retained	material	γ _s = 21.0 kl	N/m³				
Design shear strength		φ' = 23.0 de	eg				
Angle of wall friction		δ = 0.0 deg	I				
Base material details							
Stiff clay							
Moist density		γ_{mb} = 18.0	kN/m³				
Design shear strength		φ' _b = 23.0 c	leg				
Design base friction		δ _b = 18.6 d	eg				
Allowable bearing pressure		P _{bearing} = 10	00 kN/m²				
Using Coulomb theory							
Active pressure coefficient fo							
		$\times \sin(\alpha - \delta) \times [1 +]$	$\sqrt{(\sin(\phi' + \delta) \times s)}$	sin(φ' - β) / (sin(c	$(\alpha - \delta) \times \sin(\alpha + \delta)$	$(\beta)))]^{2}) = 0.$	
Passive pressure coefficient							
	$K_p = sin(s)$	90 - φ' _b)² / (sin(90	- δ _b) × [1 - √(si	$n(\phi'_b + \delta_b) \times sin(\phi'_b + \delta_b)$	o' _b) / (sin(90 +	$\delta_{b})))]^{2}) = 3.$	
At-rest pressure							
At-rest pressure for retained	material	$K_0 = 1 - sir$	η(φ') = 0.609				
Loading details							
Surcharge load on plan		Surcharge	= 35.0 kN/m ²				
Applied vertical dead load on	wall	W _{dead} = 0.0	kN/m				
Applied vertical live load on v	vall	W _{live} = 0.0	kN/m				
Position of applied vertical lo	ad on wall	l _{load} = 0 mn	า				
Applied horizontal dead load	on wall	F _{dead} = 0.0	kN/m				
Applied horizontal live load o	n wall	F _{live} = 0.0 k	N/m				
Height of applied horizontal le	oad on wall	$h_{load} = 0 m_l$	m				
	u						
				Loads show	n in kN/m, pressur	es shown in k	
Vertical forces on wall							
Wall stem			$ imes$ t _{wall} $ imes$ γ _{wall} =				
Wall base		$w_{base} = I_{base}$	$\times \; t_{\text{base}} \times \gamma_{\text{base}}$	= 14.5 kN/m			
Total vertical load		$W_{total} = W_{wa}$	II + W _{base} = 30.4	4 kN/m			
Horizontal forces on wall							
Surcharge		$F_{sur} = K_a \times$	Surcharge $ imes$ h	_{eff} = 46.8 kN/m			
Moist backfill above water tal	ole	F _{m_a} = 0.5 :	$ imes$ K _a $ imes$ γ_{m} $ imes$ (h _{eff}	_f - h _{water}) ² = 0.4 k	N/m		
Saturated backfill		$F_s = 0.5 \times I$	$\zeta_{a} imes (\gamma_{s} - \gamma_{water})$ >	× h _{water} ² = 27.5 kl	N/m		
Water			$\times h_{water}^2 \times \gamma_{water}$				
Total horizontal load			-	water = 129.7 kN/	m		


Tedds EngineersHRW Unit 10 Blue Lion Place 237 Long Lane	Calcs for	Priory			/	2015		
	Calus Iul				Start page no./			
		Retaining Wall				3		
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved dat		
	BDS	27/04/2020						
Calculate total propping for	ce							
Passive resistance of soil in f	ront of wall	$F_p = 0.5 \times I$	$K_{p} imes ext{cos}(\delta_{b}) imes$	$(d_{cover} + t_{base} + d_d)$	is - d _{exc}) ² $ imes$ γ_{mb}	= 4.1 kN/m		
Propping force		F _{prop} = max	(F _{total} - F _p - (W	$t_{\text{total}}) \times \tan(\delta_b), 0$	kN/m)			
F _{prop} = 115.4 kN/m								
Overturning moments								
Surcharge		$M_{sur} = F_{sur}$	$<$ (h _{eff} - 2 \times d _d	s) / 2 = 71.3 kNm	ı/m			
Moist backfill above water tab	le	$M_{m_a} = F_{m_a}$	$M_{m_a} = F_{m_a} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{ds}) / 3 = 1.2 \text{ kNm/m}$					
Saturated backfill		$M_s = F_s \times (I$	M_s = $F_s \times (h_{water} - 3 \times d_{ds}) / 3$ = 30.7 kNm/m					
Water		$M_{water} = F_{water}$	M_{water} = $F_{water} \times (h_{water} - 3 \times d_{ds}) / 3 = 61.5 \text{ kNm/m}$					
Total overturning moment		$M_{ot} = M_{sur} +$	$M_{ot} = M_{sur} + M_{m_a} + M_s + M_{water} = 164.8 \text{ kNm/m}$					
Restoring moments								
Wall stem		$M_{wall} = w_{wall}$	\times (I _toe + t _wall / 2	2) = 25.9 kNm/m	I			
Wall base		$M_{base} = w_{bas}$	$_{\rm se} imes {\sf I}_{ m base}$ / 2 = 1	l2.6 kNm/m				
Total restoring moment		M _{rest} = M _{wal}	+ Mbase = 38.	5 kNm/m				
Check bearing pressure								
Total vertical reaction		$R = W_{total} =$	30.4 kN/m					
Distance to reaction		$x_{bar} = I_{base} /$	x _{bar} = I _{base} / 2 = 875 mm					
Eccentricity of reaction		$e = abs((I_{ba}))$	_{se} / 2) - x _{bar}) =					
				Reaction acts		e third of ba		
Bearing pressure at toe				e / I _{base} ²) = 17.4				
Bearing pressure at heel			, ,	$\times e / I_{base}^2) = 17.4$				
	P	ASS - Maximum I	pearing press	ure is less than	allowable bea	aring pressu		

 $F_{prop_top} = (M_{ot} - M_{rest} + R \times I_{base} / 2 - F_{prop} \times t_{base} / 2) / (h_{stem} + t_{base} / 2) = 46.127 \text{ kN/m}$ Propping force to base of wall $F_{prop_base} = F_{prop} - F_{prop_top} = 69.243 \text{ kN/m}$

Tedds	Priory Terrace			Job no. 2015				
EngineersHRW Calcs for			-			Start page no./Revision		
Unit 10 Blue Lion Place 237 Long Lane		Retaining Wall				4		
London SE1 4PU	Calcs by BDS	Calcs date 27/04/2020	Checked by	Checked date	Approved by	Approved da		
	N (BC 2002-4004)	 	·					
RETAINING WALL DESIG	N (B3 6002.1994)	<u>l</u>			TEDDS calculatio	n version 1.2.01		
Ultimate limit state load fa	actors							
Dead load factor		$\gamma_{f_d} = 1.4$						
Live load factor		$\gamma_{f_{-}I} = 1.6$						
Earth and water pressure fa	ictor	$\gamma_{f_e} = 1.4$						
Factored vertical forces o	n wall							
Wall stem		$w_{wall_f} = \gamma_{f_d}$	$\times ~h_{\text{stem}} \times t_{\text{wall}} \times$	γ_{wall} = 22.3 kN/	m			
Wall base		$w_{base_f} = \gamma_{f_c}$	$_{ m J} imes {\sf I}_{ m base} imes {\sf t}_{ m base} imes$	γ _{base} = 20.2 kN	l/m			
Total vertical load		$W_{total_f} = w_w$	_{vall_f} + w _{base_f} = 4	42.5 kN/m				
Factored horizontal at-res	t forces on wall							
Surcharge		$F_{sur_f} = \gamma_{f_l}$	K₀ × Surchar	ge × h _{eff} = 104.1	kN/m			
Moist backfill above water ta	able		$F_{m a f} = \gamma_{f e} \times 0.5 \times K_0 \times \gamma_m \times (h_{eff} - h_{water})^2 = 0.7 \text{ kN/m}$					
Saturated backfill		$F_{s f} = \gamma_{f e} \times 0.5 \times K_0 \times (\gamma_{s} - \gamma_{water}) \times h_{water}^2 = 53.6 \text{ kN/m}$						
Water		$F_{water f} = \gamma_{f e} \times 0.5 \times h_{water}^2 \times \gamma_{water} = 77.1 \text{ kN/m}$						
Total horizontal load	$F_{total_f} = F_{sur_f} + F_{m_a_f} + F_{s_f} + F_{water_f} = 235.4 \text{ kN/m}$							
Calculate total propping f	orce							
Passive resistance of soil in		$F_{p f} = \gamma_{f e} \times$	$0.5 \times K_p \times cos$	$(\delta_b) \times (d_{cover} + t_b)$	_{ase} + d _{ds} - d _{exc}) ²	$2 \times \gamma_{\rm mb} = 5.8$		
kN/m		'- '-	·		,			
Propping force		$F_{prop_f} = ma$	x(F _{total_f} - F _{p_f} -	$(W_{total_f}) \times tan(\delta$	₅), 0 kN/m)			
F _{prop_f} = 215.4 kN/m								
Factored overturning mor	nents							
Surcharge		$M_{sur_f} = F_{sur_f} \times (h_{eff} - 2 \times d_{ds}) / 2 = 158.7 \text{ kNm/m}$						
Moist backfill above water to	able	$M_{m_a_f} = F_{m_a}$	$M_{m_a_f} = F_{m_a_f} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{ds}) / 3 = 2.4 \text{ kNm/m}$					
Saturated backfill		$M_{s_f} = F_{s_f} \times (h_{water} - 3 \times d_{ds}) / 3 = 59.8 \text{ kNm/m}$						
Water		$M_{water_f} = F_{water_f} \times (h_{water} - 3 \times d_{ds}) / 3 = 86.1 \text{ kNm/m}$						
Total overturning moment		$M_{ot_f} = M_{sur_f} + M_{m_a_f} + M_{s_f} + M_{water_f} = 307 \text{ kNm/m}$						
Restoring moments								
Wall stem		$M_{wall f} = W_{wall}$	all f × (I_{toe} + t_{wall}	/ 2) = 36.2 kNm	/m			
Wall base		$M_{base_f} = w_{base_f} \times I_{base} / 2 = 17.7 \text{ kNm/m}$						
Total restoring moment		$M_{rest_f} = M_{wall_f} + M_{base_f} = 53.9 \text{ kNm/m}$						
Factored bearing pressur	e							
Total vertical reaction		R _f = W _{total f}	= 42.5 kN/m					
Distance to reaction		x _{bar_f} = I _{base} / 2 = 875 mm						
Eccentricity of reaction		$e_f = abs((I_{ba}))$	_{ase} / 2) - x _{bar_f}) =	• 0 mm				
				Reaction acts	within middle	e third of ba		
Bearing pressure at toe		$p_{toe_f} = (R_f / I_{base}) - (6 \times R_f \times e_f / I_{base}^2) = 24.3 \text{ kN/m}^2$						
Bearing pressure at heel		p_{heel_f} = (R _f / I _{base}) + (6 × R _f × e _f / I _{base} ²) = 24.3 kN/m ²						
Rate of change of base reaction		rate = $(p_{toe_f} - p_{heel_f}) / I_{base} = 0.00 \text{ kN/m}^2/\text{m}$						
Bearing pressure at stem / f		$p_{stem_toe_f} = max(p_{toe_f} - (rate \times I_{toe}), 0 \text{ kN/m}^2) = 24.3 \text{ kN/m}^2$						
Bearing pressure at mid ste	m	$p_{stem_mid_f} = max(p_{toe_f} - (rate \times (I_{toe} + t_{wall} / 2)), 0 \text{ kN/m}^2) = 24.3 \text{ kN/m}^2$						
Bearing pressure at stem /	heel	p _{stem heel f} =	$p_{stem_heel_f} = max(p_{toe_f} - (rate \times (I_{toe} + t_{wall})), 0 \text{ kN/m}^2) = 24.3 \text{ kN/m}^2$					


Tedds	Project Priory Terrace				Job no.	015		
EngineersHRW	Calcs for	Calcs for				Start page no./Revision		
Unit 10 Blue Lion Place 237 Long Lane		Retain	ing Wall		5			
London SE1 4PU	Calcs by BDS	Calcs date 27/04/2020	Checked by	Checked date	Approved by	Approved		
Calculate propping forces t	top and base	e of wall						
Propping force to top of wall								
	F _{prop_top_f} =	(Mot_f - Mrest_f + Rf	\times I _{base} / 2 - F _{pre}	$_{\rm op_f} imes t_{\rm base}$ / 2) / (h	_{stem} + t _{base} / 2) :	= 87.852 k		
Propping force to base of wal	I	F _{prop_base_f} =	= F _{prop_f} - F _{prop_}	_{top_f} = 127.514 kM	l/m			
Design of reinforced concre	ete retaining w	all toe (BS 8002:	1994)					
	<u>, , , , , , , , , , , , , , , , , , , </u>		1001)					
Material properties Characteristic strength of con	ocrete	f _{cu} = 40 N/r	mm ²					
Characteristic strength of rein		$f_y = 500 \text{ N/}$						
-	norcement	Iy – 000 IV/						
Base details Minimum area of reinforceme	ant	k = 0.13 %						
Cover to reinforcement in toe		c _{toe} = 40 m						
Calculate shear for toe desi	ign	\/ _ /	n 1 n		L k N l /m			
Shear from bearing pressure			$V_{toe_bear} = (p_{toe_f} + p_{stem_toe_f}) \times I_{toe} / 2 = 36.5 \text{ kN/m}$					
Shear from weight of base			$V_{toe_wt_base} = \gamma_{f_d} \times \gamma_{base} \times I_{toe} \times t_{base} = 17.3 \text{ kN/m}$					
Total shear for toe design		V _{toe} = V _{toe_bear} - V _{toe_wt_base} = 19.1 kN/m						
Calculate moment for toe d	-							
	Moment from bearing pressure		$\begin{split} M_{toe_bear} &= (2 \times p_{toe_f} + p_{stem_mid_f}) \times (I_{toe} + t_{wall} / 2)^2 / 6 = \textbf{32.1 kNm/m} \\ M_{toe_wt_base} &= (\gamma_{f_d} \times \gamma_{base} \times t_{base} \times (I_{toe} + t_{wall} / 2)^2 / 2) = \textbf{15.3 kNm/m} \end{split}$					
Moment from weight of base					$(2)^{2} (2) = 15.3$	3 kNm/m		
Total moment for toe design		$M_{toe} = M_{toe}$	_bear - Mtoe_wt_ba	_{se} = 16.8 kNm/m				
↑ ↑								
300								
350-	>							
	•	• •	•	• •	•			
	•	• •	•	• •	•			
¥	•	••	•	• •	•			
L L	● ∢ 150_→	••	•	•••	•			
Check toe in bending	● ←_ 150→	'	•	•••	•			
Width of toe	∢ — 150— →	b = 1000 n		• •	•			
Width of toe Depth of reinforcement	● 4 — 150— ●	b = 1000 n d _{toe} = t _{base} -	- c _{toe} - (φ _{toe} / 2	-	•			
Width of toe	● ← 150—●	b = 1000 n d _{toe} = t _{base} -	$- c_{toe} - (\phi_{toe} / 2)$ / (b × d _{toe} ² × f _{cl}	u) = 0.005	•	5 00 4 2000		
Width of toe Depth of reinforcement Constant	● ∢ 150	b = 1000 n d _{toe} = t _{base} - K _{toe} = M _{toe}	- c_{toe} - (ϕ_{toe} / 2 / (b × d _{toe} ² × f _{ct}) = 0.005 Compression re		-		
Width of toe Depth of reinforcement Constant Lever arm	● ←150—●	b = 1000 n d _{toe} = t _{base} - K _{toe} = M _{toe}	- c_{toe} - (ϕ_{toe} / 2 / (b × d _{toe} ² × f _{ct}	u) = 0.005		-		
Width of toe Depth of reinforcement Constant Lever arm z _{toe} = 287 mm		b = 1000 n d _{toe} = t _{base} - K _{toe} = M _{toe} z _{toe} = min(6	$- c_{toe} - (φ_{toe} / 2)/(b × d_{toe}^2 × f_{cl})$ / (b × d _{toe} ² × f _{cl}) 0.5 + √(0.25 -) = 0.005 <i>Compression re</i> (min(K _{toe} , 0.225)	/ 0.9)),0.95) ×	-		
Width of toe Depth of reinforcement Constant Lever arm z _{toe} = 287 mm Area of tension reinforcement	t required	b = 1000 n d _{toe} = t _{base} - K _{toe} = M _{toe} z _{toe} = min(0 A _{s_toe_des} =	$- c_{toe} - (\phi_{toe} / 2) / (b \times d_{toe}^2 \times f_{ci})$ $0.5 + \sqrt{0.25} - M_{toe} / (0.87 \times 1)$,) = 0.005 Compression re (min(K _{toe} , 0.225) y × z _{toe}) = 135 m	/ 0.9)),0.95) ×	-		
Width of toe Depth of reinforcement Constant Lever arm z _{toe} = 287 mm Area of tension reinforcement Minimum area of tension rein	t required forcement	$b = 1000 \text{ m}$ $d_{\text{toe}} = t_{\text{base}} - K_{\text{toe}} = M_{\text{toe}}$ $z_{\text{toe}} = \min(0)$ $A_{s_\text{toe_des}} = A_{s_\text{toe_min}} = 0$	$-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{ci})$ $0.5 + \sqrt{(0.25 - 1)}$ $M_{toe} / (0.87 \times 1)$ $k \times b \times t_{base} = 1$,) = 0.005 Compression re (min(K _{toe} , 0.225) 5 _y × z _{toe}) = 135 mi 455 mm²/m	/ 0.9)),0.95) × m²/m	-		
Width of toe Depth of reinforcement Constant Lever arm z _{toe} = 287 mm Area of tension reinforcement Minimum area of tension rein Area of tension reinforcement	t required forcement	$b = 1000 \text{ m}$ $d_{\text{toe}} = t_{\text{base}} - K_{\text{toe}} = M_{\text{toe}}$ $z_{\text{toe}} = m_{\text{toe}}$ $A_{\text{s}_\text{toe}_\text{des}} = A_{\text{s}_\text{toe}_\text{min}} = A_{\text{s}_\text{toe}_\text{req}} = 0$	$-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cl})$ $0.5 + \sqrt{(0.25 - 1)}$ $M_{toe} / (0.87 \times 1)$ $k \times b \times t_{base} = Max(A_{s_toe_des}, 1)$,) = 0.005 Compression re (min(K _{toe} , 0.225) ⁵ y × z _{toe}) = 135 mi 455 mm²/m A _{s_toe_min}) = 455 r	/ 0.9)),0.95) × m²/m	-		
Width of toe Depth of reinforcement Constant Lever arm z _{toe} = 287 mm Area of tension reinforcement Minimum area of tension rein	t required forcement t required	$b = 1000 \text{ m}$ $d_{toe} = t_{base} - K_{toe} = M_{toe}$ $Z_{toe} = min(0)$ $A_{s_toe_des} = A_{s_toe_min} = A_{s_toe_req} = 16 \text{ mm dia}$	$-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{ci})$ $0.5 + \sqrt{(0.25 - 1)}$ $M_{toe} / (0.87 \times 1)$ $k \times b \times t_{base} = 1$,) = 0.005 Compression re (min(K _{toe} , 0.225) ⁵ y × z _{toe}) = 135 mi 455 mm²/m A _{s_toe_min}) = 455 r	/ 0.9)),0.95) × m²/m	-		

Tedds	Priory Terrace			Job no. 2015				
EngineersHRW Unit 10 Blue Lion Place	Calcs for	Calcs for Retaining Wall				Start page no./Revision 6		
237 Long Lane London SE1 4PU	Calcs by BDS	Calcs date 27/04/2020	Checked by	Checked date	Approved by	Approved d		
Check shear resistance at	toe							
Design shear stress		$v_{toe} = V_{toe}$ /	$(b \times d_{toe}) = 0.0$)63 N/mm²				
Allowable shear stress	v _{adm} = min(0.8 × √(f _{cu} / 1	N/mm^{2}), 5) × 1 M	N/mm ² = 5.000	N/mm ²			
		PASS -	Design shea	r stress is less i	than maximur	n shear str		
From BS8110:Part 1:1997	– Table 3.8							
Design concrete shear stres	s	v _{c_toe} = 0.60	5 N/mm²					
			Vt	_{pe} < v _{c_toe} - No sl	hear reinforce	ment requi		
Design of reinforced conc	rete retaining w	all stem (BS 8002	:1994)					
	<u> </u>		<u> </u>					
Material properties Characteristic strength of co	ncrete	f _{cu} = 40 N/n	nm ²					
Characteristic strength of re		$f_v = 500 \text{ N/r}$						
-								
Wall details	ant	k = 0.13 %						
Minimum area of reinforcement Cover to reinforcement in stem		$c_{stem} = 40 \text{ mm}$						
Cover to reinforcement in w	$c_{\text{stem}} = 40 \text{ mm}$							
-			111					
Factored horizontal at-res	t forces on stem			· · · /b · · · · · · · · · · · · · · ·		NI /ma		
Surcharge		·-		arge × (h _{eff} - t _{base}	-			
Moist backfill above water table				$\gamma_m \times (h_{eff} - t_{base} - t_{base})$./ KN/M		
Saturated backfill				$\gamma_{\rm s}$ - $\gamma_{\rm water}$) × $h_{\rm sat}^2$ =				
Water		F _{s_water_f} = 0	$.5 imes \gamma_{f_e} imes \gamma_{wate}$	_{er} × h _{sat} ² = 61.8 k	N/m			
Calculate shear for stem of	design							
Surcharge		$V_{s_{s_{r}}} = 5 \times F_{s_{s_{r}}} / 8 = 57.6 \text{ kN/m}$						
Saturated backfill		$V_{s_s_f} = F_{s_s_f} \times (1 - (a_1^2 \times ((5 \times L) - a_1) / (20 \times L^3))) = 32.7 \text{ kN/m}$						
Water		$V_{s_water_f} = F_{s_water_f} \times (1 - (a_1^2 \times ((5 \times L) - a_1) / (20 \times L^3))) = 47.1 \text{ kN/m}$						
Total shear for stem design		$V_{stem} = V_{s_s}$	$ur_f + V_{s_s_f} + V$	′ _{s_water_f} = 137.4 k	N/m			
Calculate moment for ste	m design							
Surcharge		$M_{s_{sur}} = F_{s_{sur}f} \times L / 8 = 33.1 \text{ kNm/m}$						
Saturated backfill		$M_{s_s} = F_{s_s_f} \times a_i \times ((3 \times a_i^2) - (15 \times a_i \times L) + (20 \times L^2))/(60 \times L^2) = 16.1 \text{ kNm/m}$						
Water		$M_{s_water} = F_{s_water_f} \times a_i \times ((3 \times a_i^2) - (15 \times a_i \times L) + (20 \times L^2))/(60 \times L^2) = 23.2$						
kNm/m								
Total moment for stem desi	$M_{stem} = M_{s_sur} + M_{s_s} + M_{s_water} = 72.4 \text{ kNm/m}$							
Calculate moment for wal	l design							
Surcharge		M_{w_sur} = 9 × $F_{s_sur_f}$ × L / 128 = 18.6 kNm/m						
Saturated backfill		$M_{w_s} = F_{s_s_f} \times [a_1 \times x \times ((5 \times L) - a_i) / (20 \times L^3) - (x - b_i)^3 / (3 \times a_1^2)] = \textbf{7.5} \text{ kNm/m}$						
Water		$M_{w_water} = F_{s_water_f} \times [a_1^2 \times x \times ((5 \times L) - a_1)/(20 \times L^3) - (x - b_1)^3 / (3 \times a_1^2)] = 10.7$						
kNm/m			-					
	Total moment for wall design			$M_{wall} = M_{w_{sur}} + M_{w_{s}} + M_{w_{water}} = 36.8 \text{ kNm/m}$				

🗲 Tekla	Project					
Tedds	Priory Terrace				2015	
EngineersHRW Unit 10 Blue Lion Place	Calcs for Retaining Wall				Start page no./Revision 8	
237 Long Lane London SE1 4PU	Calcs by BDS	Calcs date 27/04/2020	Checked by	Checked date	Approved by	Approved date

Check retaining wall defle	ection	
Basic span/effective depth	ratio	ratio _{bas} = 20
Design service stress		$f_s = 2 \times f_y \times A_{s_stem_req} / (3 \times A_{s_stem_prov}) = 216.2 \text{ N/mm}^2$
Modification factor	factor _{tens} = min	$(0.55 + (477 \text{ N/mm}^2 - f_s)/(120 \times (0.9 \text{ N/mm}^2 + (M_{stem}/(b \times d_{stem}^2)))),2) = 1.36$
Maximum span/effective de	epth ratio	$ratio_{max} = ratio_{bas} \times factor_{tens} = 27.25$
Actual span/effective depth	ratio	ratio _{act} = h _{stem} / d _{stem} = 13.37
		PASS - Span to depth ratio is acceptable

