# GEO-ENVIRONMENTAL AND GEOTECHNICAL GROUND INVESTIGATION

FOR

254 KILBURN HIGH ROAD, LONDON NW6 2BS



Specialists in the investigation & reclamation of brownfield sites



| Report Title       : Geo-environmental and Geotechnical Ground Investigation for         254 Kilburn High Road, London                       |                      |               |           |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|-----------|--|--|
| Report Status                                                                                                                                | : Final v2.1         |               |           |  |  |
| Job No                                                                                                                                       | : P8591J338          |               |           |  |  |
| Date                                                                                                                                         | : 08 May 2019        |               |           |  |  |
| Quality Contro                                                                                                                               | ol: Previous Release |               |           |  |  |
| Version                                                                                                                                      |                      | Date          | Issued By |  |  |
| V2.0                                                                                                                                         |                      | May 2019      | SL        |  |  |
| V1.0                                                                                                                                         |                      | November 2014 | RS        |  |  |
|                                                                                                                                              |                      |               |           |  |  |
| <b>Prepared by: JOMAS ASSOCIATES LTD For: 254 KILBURN HR LLP</b><br>Prepared by Marc Williams BSc (Hons), AIEMA, FGS<br>Principal Consultant |                      |               |           |  |  |
| Checked by Andrew Garnham BSc (Hons) MSc FGS<br>Senior Engineer                                                                              |                      |               |           |  |  |
| Approved by Roni Savage BEng (hons), MSc, SiLC, CGeol, MCIWM, FGS                                                                            |                      |               |           |  |  |
| Technical Director                                                                                                                           |                      |               |           |  |  |

# Should you have any queries relating to this report, please contact

# Roni Savage

# Jomas Associates Ltd

# www.jomasassociates.com

# 0843 289 2187

### ⊠info@jomasassociates.com



# CONTENTS

# Page

| EX  | ECUTIVE SUMMARY1                                   |
|-----|----------------------------------------------------|
| 1   | INTRODUCTION                                       |
| 1.1 | Terms of Reference5                                |
| 1.2 | Objectives5                                        |
| 1.3 | Scope of Works5                                    |
| 1.4 | Limitations5                                       |
| 2   | SITE SETTING                                       |
| 2.1 | Site Information7                                  |
| 2.2 | Desk Study Overview7                               |
| 3   | GROUND INVESTIGATION                               |
| 3.1 | Rationale for Ground Investigation9                |
| 3.2 | Scope of Ground Investigation9                     |
| 3.3 | Standard Penetration Tests (SPTs)10                |
| 3.4 | In Situ CBR Measurements10                         |
| 3.5 | Sampling Rationale10                               |
| 3.6 | Laboratory Analysis11                              |
| 4   | GROUND CONDITIONS                                  |
| 4.1 | Soil13                                             |
| 4.2 | Hydrogeology13                                     |
| 4.3 | Physical and Olfactory Evidence of Contamination13 |
| 5   | RISK ASSESSMENT – ANALYTICAL FRAMEWORK             |
| 5.1 | Context and Objectives14                           |
| 5.2 | Analytical Framework – Soils14                     |



| 5.3 | Analytical Framework – Groundwater and Leachate15                             |
|-----|-------------------------------------------------------------------------------|
| 6   | GENERIC QUANTITATIVE RISK ASSESSMENT18                                        |
| 6.1 | Screening of Soil Chemical Analysis Results – Human Health Risk Assessment18  |
| 6.2 | Statistical Analysis19                                                        |
| 6.3 | Asbestos in Soil20                                                            |
| 6.4 | Screening of Soil Chemical Analysis Results – Potential Risks to Plant Growth |
| 6.5 | Waste Disposal21                                                              |
| 7   | SOIL GAS RISK ASSESSMENT                                                      |
| 7.1 | Soil Gas Results23                                                            |
| 7.2 | Screening of Results23                                                        |
| 8   | SUMMARY OF RESULTS                                                            |
| 8.1 | Risk Assessment - Land Quality Impact Summary25                               |
| 8.2 | Review of Pollutant Linkages Following Site Investigation26                   |
| 9   | GEOTECHNICAL ENGINEERING RECOMMENDATIONS                                      |
| 9.1 | Ground Investigation Summary28                                                |
| 9.2 | Hand Excavated Trial Pits31                                                   |
| 9.3 | Foundations                                                                   |
| 9.4 | In Situ CBR Measurements                                                      |
| 9.5 | Concrete in the Ground                                                        |
| 9.6 | Ground Bearing Slabs                                                          |
| 9.7 | Excavations32                                                                 |
| 9.8 | Groundwater Control                                                           |
| 10  | REFERENCES                                                                    |
| AP  | PENDICES                                                                      |



| APPENDIX 1 – FIGURES                              |
|---------------------------------------------------|
| APPENDIX 2 – EXPLORATORY HOLE RECORDS             |
| APPENDIX 3 – CHEMICAL LABORATORY TEST RESULTS     |
| APPENDIX 4 – GEOTECHNICAL LABORATORY TEST RESULTS |
| APPENDIX 5 – STATISTICAL ANALYSIS RESULTS         |
| APPENDIX 6 – SOIL GAS MONITORING RECORDS          |
| APPENDIX 7 – IN SITU CBR RESULTS                  |



# **EXECUTIVE SUMMARY**

254 Kilburn HR LLP (the client) commissioned Jomas Associates Ltd ('JAL') to undertake a Geoenvironmental and Geotechnical ground investigation at a site on site 254 Kilburn High Road, London.

The principle objectives of the study were as follows:

- To present a description of the present site status, based upon the published geology, hydrogeology and hydrology of the site and surrounding area;;
- To provide an assessment of the environmental sensitivity at the site and the surrounding area, in relation to any suspected or known contamination which may significantly affect the site and the proposed development;
- To conduct an intrusive investigation, to determine the nature and extent of contaminants potentially present at the site;
- To establish the presence of significant pollutant linkages, in accordance with the procedures set out within Part IIA of the Environmental Protection Act 1990, associated statutory guidance and current best practice including the EA report R&D CLR 11; and,
- To obtain geotechnical parameters to inform preliminary foundation design.

It should be noted that the table below is an executive summary of the findings of this report and is for briefing purposes only. Reference should be made to the main report for detailed information and analysis.



| Site History and Ground Investigation |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Site History<br>Overview              | A Desk Study report produced for the site has been issued separately.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                       | A review of historical maps indicates that the site was originally (1866) occupied by gardens to the rear of a row of properties on Edgware Road, with a building noted as Stanmore terrace encroaching on the south-eastern edge of the site. A further building is present in the north-eastern part of the site in 1866. Further buildings are constructed on site by 1893. The structures on site are subsequently modified over the years, with the site appearing similar to the present day by 1995. The site is labelled as a Timber yard in 1935, a Motor Units Factory in 1953, and a Warehouse from 1976. |  |  |  |
|                                       | Historically, the surrounding area has been utilised for a variety of uses, with several industrial uses noted from 1871. Notable industrial uses within the surrounding area include railway lines, garage (60m SE and 220m NW), engineering works (150m N, 175m E), gas works (125m NW).                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                       | Information provided by the British Geological Survey indicates that the site is directly underlain by solid deposits of the London Clay Formation. No artificial or superficial deposits are reported within the site.                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                       | The deposits directly underlying the site are identified as Unproductive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                       | There is no groundwater abstraction license within 500m. The nearest borehole is reported 1794m east of the site for spray irrigation sourced from Thames Groundwater. There are no surface water abstractions reported within 2km of the site.                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                       | The site is not reported to lie within a Zone 2 or 3 floodplain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Intrusive<br>Investigation            | The ground investigation was undertaken on 09 - 16 October 2014, and consisted of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                       | • 5No. window sampling boreholes, drilled up to 4.45m below ground level (bgl), with associated in situ testing and sampling;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                                       | • 2No. cable percussive boreholes, drilled up to 25m bgl with associated in situ testing and sampling;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                       | • 7No. hand excavated trial pits, excavated up to 1.7m bgl, with associated in situ testing and sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                       | • 3No. in situ CBR measurements undertaken to depths of up to 0.9m bgl;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                       | Laboratory analysis for chemical and geotechnical purposes,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Ground<br>Conditions                  | The results of the ground investigation indicated a ground profile comprising a variable thickness of Made Ground (1.3m to 4.3m bgl depth), overlying an orange brown patched blue grey silty clay (considered to represent the London Clay Formation), encountered to the base of the boreholes at up to 25m bgl.                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                       | No obvious evidence of contamination was observed during the investigation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                       | Groundwater was reported during intrusive works as standing at a depth of 1.3m bgl within trial pit TP1. Groundwater was not reported within the remaining exploratory holes. Groundwater was not recorded during return monitoring.                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |



| Environmental<br>Considerations | Following generic risk assessments and statistical analysis, the upper ninety fifth percentile values for lead were found to exceed their respective criteria. No other contaminants were reported above their respective criteria and no asbestos fibres were detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | Naphthalene was found to exceed the generic assessment criteria for human health within one sample (WS1 @ 1.0m bgl). In all the other 9No. samples which were tested for naphthalene, the detected concentration did not exceed the limit of detection of 0.5mg/kg. It is therefore considered that the made ground in WS1 comprises an isolated hotspot of naphthalene contamination, and therefore statistical assessment is not appropriate for naphthalene. Given the low PID readings recorded during headspace monitoring of the wells, and the absence of any recorded hydrocarbon odours or staining within the soils encountered on site, a potential pollutant linkage via vapour inhalation is not considered to exist. |
|                                 | Where the site is to be overlain by either proposed building footprint or areas of hardstanding, these concentrations are no considered to pose a significant risk to human health, as the building / surfacing will provide a suitable barrier to potential receptors. Where areas of soft landscaping are proposed, the risks to end users will be controlled by use of a capping layer. This should comprise a minimum 600mm thickness of imported clean topsoil.                                                                                                                                                                                                                                                               |
|                                 | The desk study identified the site to be directly underlain by unproductive deposits (London Clay Formation), with no significant controlled water receptors identified. Groundwater was not encountered during the investigation. Therefore a pollutant linkage is not considered to pose a potential risk to controlled waters.                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                 | The results of waste acceptance criteria testing indicated the Made Ground to be acceptable for disposal as a non-hazardous material, with the underlying natural ground suitable for disposal as inert material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                 | The results of soil gas monitoring undertaken to date indicate the site to be classified as Characteristic Situation 2, where basic gas protection measures are required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                 | Barrier pipe may be required for the proposed development. The water supply pipe requirements for this site should be discussed at an early stage with the relevant utility provider.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                 | A remedial strategy will be required for the proposed development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                 | As with any ground investigation, the presence of further hotspots between sampling<br>points cannot be ruled out, and caution must be exercised during construction works.<br>Should any contamination be encountered, a suitably qualified environmental<br>consultant should be informed immediately, so that adequate measures may be<br>recommended.                                                                                                                                                                                                                                                                                                                                                                          |
| Geotechnical<br>Considerations  | The desk study report indicates that the site is directly underlain by solid deposits of the London Clay Formation. The results of the ground investigation indicated a ground profile comprising a variable thickness of Made Ground (1.3m to 4.3m bgl depth), overlying an orange brown patched blue grey silty clay (considered to represent the London Clay), encountered to the base of the boreholes at up to 25m bgl.                                                                                                                                                                                                                                                                                                       |
|                                 | Based upon the information obtained to date, it is considered that deep trench fill foundations, constructed at a depth of 3.0m bgl within the underlying London Clay may be designed with an allowable bearing capacity of 120kPa. Alternatively a piled foundation solution within the underlying London Clay should be devised for the proposed development.                                                                                                                                                                                                                                                                                                                                                                    |



The London Clay deposits have been identified as being of moderate to high volume change potential, and this will require consideration when designing foundations for the proposed development, in conjunction with the presence of any existing or proposed trees. Potential for heave should be considered.

The results of in situ CBR testing provided indicative measurements of between 1.2% and 28.4%.

Based on the results the required concrete class for the site is DS-2 assuming an Aggressive Chemical Environment for Concrete classification of AC-2 in accordance with the procedures outlined in BRE Special Digest 1.

To allow for potential volume change within the underlying London Clay, and due to the thickness of Made Ground deposits encountered, all floor slabs should be designed as suspended floors.

Deep excavations will be required at the site during the construction works. These are anticipated to remain stable for the short term only. It is recommended that the stability of all excavations should be assessed during construction. The sides of any excavations into which personnel are required to enter, should be assessed and where necessary fully supported or battered back to a safe angle.

Groundwater was reported during intrusive works as standing at a depth of 1.3m bgl within trial pit TP1. Groundwater was not reported within the remaining exploratory holes. Groundwater was note recorded during return monitoring. Any groundwater encountered should be readily dealt with by conventional pumping from a sump or other suitable method. A combination of the Cordek Cellvent panels below the ground floor slab, air brick ventilations and gas resistant membrane on top of the slab is proposed.

The above comments are indicative only based on limited ground investigation data. Foundations should be designed by a suitably qualified Engineer.

4



#### 1 INTRODUCTION

#### 1.1 **Terms of Reference**

- 254 Kilburn HR LLP ("The Client") has commissioned Jomas Associates Ltd ('JAL'), to 1.1.1 assess the risk of contamination posed by the ground conditions at a site on 254 Kilburn High Road, London, and to provide indicative recommendations for foundation design prior to the redevelopment of the site. It is understood that the redevelopment of the site is to comprise construction of a new mixed use development, with ground floor commercial units and residential apartments on upper floors. Minor areas of soft landscaping are anticipated.
- To this end a Desk Study has been produced for the site and issued separately, 1.1.2 followed by an intrusive investigation (detailed in this report). The scope of works is defined in Jomas' fee proposal dated 09 October 2014.

#### 1.2 **Objectives**

- 1.2.1 The objectives of JAL's investigation were as follows:
  - To present a description of the present site status, based upon the published geology, hydrogeology and hydrology of the site and surrounding area;
  - To provide an assessment of the environmental sensitivity at the site and the surrounding area, in relation to any suspected or known contamination which may significantly affect the site and the proposed development;
  - To conduct an intrusive investigation, to determine the nature and extent of contaminants potentially present at the site;
  - To establish the presence of significant pollutant linkages, in accordance with the procedures set out within Part IIA of the Environmental Protection Act 1990, associated statutory guidance and current best practice including the EA report R&D CLR 11; and,
  - To obtain geotechnical parameters to inform preliminary foundation design.

#### 1.3 Scope of Works

- 1.3.1 The following tasks were undertaken to achieve the objectives listed above:
  - Intrusive ground investigation to determine shallow ground conditions, and potential for contamination at the site;
  - Undertaking of laboratory chemical and geotechnical testing upon samples obtained:
  - The compilation of this report, which collects and discusses the above data, and presents an assessment of the site conditions, conclusions and recommendations.

#### 1.4 Limitations

1.4.1 Jomas Associates Ltd ('JAL') has prepared this report for the sole use of 254 Kilburn HR LLP in accordance with the generally accepted consulting practices and for the intended purposes as stated in the agreement under which this work was completed. This report may not be relied upon by any other party without the explicit written agreement of JAL. No other third party warranty, expressed or implied, is made as to the professional advice included in this report. This report must be used in its entirety.



- 1.4.2 The records search was limited to information available from public sources; this information is changing continually and frequently incomplete. Unless JAL has actual knowledge to the contrary, information obtained from public sources or provided to JAL by site personnel and other information sources, have been assumed to be correct. JAL does not assume any liability for the misinterpretation of information or for items not visible, accessible or present on the subject property at the time of this study.
- 1.4.3 Whilst every effort has been made to ensure the accuracy of the data supplied, and any analysis derived from it, there may be conditions at the site that have not been disclosed by the investigation, and could not therefore be taken into account. As with any site, there may be differences in soil conditions between exploratory hole positions. Furthermore, it should be noted that groundwater conditions may vary due to seasonal and other effects and may at times be significantly different from those measured by the investigation. No liability can be accepted for any such variations in these conditions.
- 1.4.4 This report is not an engineering design and the figures and calculations contained in the report should be used by the Structural Engineer, taking note that variations may apply, depending on variations in design loading, in techniques used, and in site conditions. Our recommendations should therefore not supersede the Engineer's design.



# 2 SITE SETTING

# 2.1 Site Information

2.1.1 The site location plan is appended to this report as Figure 1.

| Table 2.1: Site Information                            |                                                                                                                                                   |  |  |  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Name of Site                                           | -                                                                                                                                                 |  |  |  |
| Address of Site 254 Kilburn High Road, London, NW6 2BS |                                                                                                                                                   |  |  |  |
| Approx. National Grid<br>Ref. 524975, 184276           |                                                                                                                                                   |  |  |  |
| Site Ownership                                         | Unknown                                                                                                                                           |  |  |  |
| Site Occupation                                        | Office accommodation with associated warehouse and vehicle parking                                                                                |  |  |  |
| Local Authority                                        | London Borough of Camden                                                                                                                          |  |  |  |
| Proposed Site Use                                      | Mixed use development with commercial ground floor<br>units and residential apartments. Minor areas of soft<br>landscaping areas are anticipated. |  |  |  |

| Table | 2.1: | Site | Inforr | nation |
|-------|------|------|--------|--------|

### 2.2 Desk Study Overview

- 2.2.1 A Desk Study report has been produced for the site and issued separately. A brief overview of the desk study findings is presented below. Reference should be made to the full report for detailed information.
- 2.2.2 A review of historical maps indicates that the site was originally (1866) occupied by gardens to the rear of a row of properties on Edgware Road, with a building noted as Stanmore Terrace encroaching on the south-eastern edge of the site. A further building is present in the north-eastern part of the site. Further buildings are constructed on site by 1893. The structures on site are subsequently modified over the years, with the site appearing similar to the present day by 1995. The site is labelled as a Timber yard in 1935, a Motor Units Factory in 1953, and a Warehouse from 1976.
- 2.2.3 Historically, the surrounding area has been utilised for a variety of uses, with several industrial uses noted from 1871. Notable industrial uses within the surrounding area include railway lines, garage (60m SE and 220m NW), engineering works (150m N, 175m E), gas works (125m NW), etc.
- 2.2.4 Information provided by the British Geological Survey indicates that the site is directly underlain by solid deposits of the London Clay Formation. No artificial or superficial deposits are reported within the site.
- 2.2.5 The deposits directly underlying the site are identified as Unproductive.
- 2.2.6 There is no groundwater abstraction license within 500m. The nearest borehole is reported 1794m east of the site for spray irrigation sourced from Thames Groundwater. There are no surface water abstractions reported within 2km of the site.
- 2.2.7 The site is not reported to lie within a Zone 2 or 3 floodplain.



- 2.2.8 The conceptual site model provided within the report identifies the following potential sources, pathways and receptors. The report indicates the following potential sources of contamination:
  - Potential Made Ground associated with previous developments on and off • site
  - Potential for asbestos in soil from demolition of previous buildings on site (S2)
  - Former Timber Yard on site (S3) •
  - Former Motor Units Factory on site (S4) •
  - Current industrial use on site (S5)
  - Current and previous industrial sites and consents/depots/works off site (S6)
- The conceptual site model identifies the following potential pathways: 2.2.9
  - Ingestion and dermal contact with contaminated soil (P1)
  - Inhalation or contact with potentially contaminated dust and vapours (P2)
  - Leaching through permeable soils, migration within the vadose zone (i.e., unsaturated soil above the water table) and/or lateral migration within surface water, as a result of cracked hardstanding or via service pipe/corridors and surface water runoff. (P3)
  - Horizontal and vertical migration of contaminants within groundwater (P4) •
  - Accumulation and Migration of Soil Gases (P5)
- 2.2.10 The conceptual site model identifies the following potential receptors:
  - Construction workers (R1)
  - Maintenance workers (R2)
  - Neighbouring site users (R3)
  - Future site users (R4)
  - Building foundations and on site buried services (water mains, electricity and sewer) (R5)
  - On site vegetation (R6)
- 2.2.11 Depending on ground conditions encountered i.e., thickness of made ground and depth to London clay deposits, a programme of soil gas monitoring may be required in accordance with CIRIA C665:2007.



# 3 **GROUND INVESTIGATION**

### 3.1 Rationale for Ground Investigation

- 3.1.1 The site investigation has been undertaken generally in accordance with Contaminated Land Report 11, BS10175, NHBC Standards Chapter 4.1, and other associated Statutory Guidance. If required, further targeted investigations and remedial option appraisal would be dependent on the findings of this site investigation.
- 3.1.2 The soil sampling rationale for the site investigation was developed with reference to EA guidance 'Secondary Model Procedure for the Development of Appropriate Soil Sampling Strategies for Land Contamination' (Technical Report P5-066/TR).
- 3.1.3 The sampling proposal was designed in order to gather data representative of the site conditions.

### 3.2 Scope of Ground Investigation

- 3.2.1 The ground investigation was undertaken on 09 16 October 2014.
- 3.2.2 The work was undertaken in accordance with BS5930 'Code of Practice for Site Investigation' and BS10175 'Investigation of Potentially Contaminated Sites'. All works were completed without incident.
- 3.2.3 The investigation focused on collecting data on the following:
  - Quality of Made Ground/ natural ground within the site boundaries;
  - Presence of groundwater beneath the site (if any), perched or otherwise;
- 3.2.4 A summary of the fieldwork carried out at the site, with justifications for exploratory hole positions, are offered in Table 3.1 below.

| Investigation Type                                                     | Number of<br>Exploratory<br>Holes<br>Achieved | Exploratory<br>Hole<br>Designation | Depth<br>Achieved<br>(m BGL) | Justification                                                                                    |
|------------------------------------------------------------------------|-----------------------------------------------|------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------|
| Window Sample<br>Boreholes                                             | 5                                             | WS1 - 5                            | Up to 4.45m<br>bgl           | Assess ground conditions and obtain samples for contamination testing and geotechnical analysis. |
| Cable Percussive boreholes                                             | 2                                             | BH1 - 2                            | Up to 25m<br>bgl             | Obtain deeper ground profile and samples for geotechnical analysis                               |
| Hand Excavated trial pits                                              | 7                                             | TP1 - 7                            | Up to 1.7m<br>bgl            | Obtain shallow samples from<br>areas of restricted access                                        |
| In Situ CBR<br>Measurements                                            | 3                                             | CBR1 - 3                           | Up to 0.9m<br>bgl            | Provide initial value for road<br>pavement design                                                |
| Installation of<br>combined gas and<br>groundwater<br>monitoring wells | 2                                             | BH2, WS3                           | Up to 20m<br>bgl             | Permit return visits to site to monitor soil gas and groundwater levels.                         |

### Table 3.1 – Scope of Intrusive Investigation



- 3.2.5 The exploratory holes were completed to allow soil samples to be taken in the areas of interest identified in Table 3.1 above. In all cases, all holes were logged in accordance with BS5930:1999.
- 3.2.6 Exploratory hole positions were measured in using tape and reel, as shown in the exploratory hole location plan presented in Appendix 1. The exploratory hole records are included in Appendix 2.
- 3.2.7 Where no monitoring wells were installed, the exploratory holes were backfilled with the arisings (in the reverse order in which they were drilled) and the ground surface was reinstated so that no depression was left.

# 3.3 Standard Penetration Tests (SPTs)

- 3.3.1 In-situ standard/cone penetration tests were undertaken in the boreholes in accordance with BS EN ISO 22476-2 'Methods of Test on Soils for Engineering Purposes (Part 9)'; to determine the relative density of the underlying soil, and therefore give an indication of soil 'strength'.
- 3.3.2 The results are presented on the individual exploratory hole records in Appendix 2.

# 3.4 In Situ CBR Measurements

- 3.4.1 A total of 3No. in situ CBR measurements were undertaken to provide indicative CBR values for pavement design.
- 3.4.2 The results are presented as Appendix 7, and discussed in Section 9 of this report.

# 3.5 Sampling Rationale

- 3.5.1 Our soil sampling rationale for the site investigation was developed with reference to EA guidance 'Secondary Model Procedure for the Development of Appropriate Soil Sampling Strategies for Land Contamination' (Technical Report P5-066/TR).
- 3.5.2 The exploratory holes were positioned by applying a combined non-targeted sampling strategy, as well as sample locations positioned with reference to sources identified from the desk study.
- 3.5.3 Soil samples were taken from across the site at various depths as shown in the exploratory hole logs.
- 3.5.4 JAL's engineers normally collect samples at appropriate depths based on field observations such as:
  - appearance, colour and odour of the strata and other materials, and changes in these;
  - the presence or otherwise of sub-surface features such as pipework, tanks, foundations and walls; and,
  - areas of obvious damage, e.g. to the building fabric.
- 3.5.5 A number of the samples were taken from the top 0-1m to aid in the assessment of the pollutant linkages identified at the site. In addition, some deeper samples were taken to aid in the interpretation of fate and transport of any contamination identified.



- 3.5.6 Samples were stored in cool boxes (<4°C) and preserved in accordance with laboratory guidance.
- 3.5.7 Bulk samples were collected for geotechnical analysis.
- 3.5.8 Groundwater strikes noted during drilling, are recorded within the exploratory hole records in Appendix 2.

### 3.6 Laboratory Analysis

3.6.1 A programme of chemical laboratory testing, scheduled by JAL, was carried out on selected samples of Made Ground and natural strata.

### Chemical Testing

- 3.6.2 Soil samples were submitted to The Environmental Laboratory Ltd, East Sussex (a UKAS and MCerts accredited laboratory), for analysis.
- 3.6.3 The samples were analysed for a wide range of contaminants as shown in Table 3.2 below:

| Test Suite No. of tests |             |         |  |  |
|-------------------------|-------------|---------|--|--|
|                         | Made Ground | Natural |  |  |
| Basic Suite 2           | 9           | 1       |  |  |
| Total Organic Carbon    | 4           | 2       |  |  |
| Water Soluble Sulphate  | 9           | 9       |  |  |
| Asbestos Screen         | 4           | -       |  |  |

Table 3.2: Chemical Tests Scheduled

3.6.4 The determinands contained in the basic suite are as detailed in Table 3.3 below:



| Table 3.3: Basic Suite of Determinands   |                                  |                       |                    |  |  |
|------------------------------------------|----------------------------------|-----------------------|--------------------|--|--|
| DETERMINAND                              | LIMIT OF<br>DETECTION<br>(mg/kg) | UKAS<br>ACCREDITATION | TECHNIQUE          |  |  |
| Arsenic                                  | 5                                | Y (MCERTS)            | ICPMS              |  |  |
| Cadmium                                  | 0.5                              | Y                     | ICPMS              |  |  |
| Chromium                                 | 1                                | Y (MCERTS)            | ICPMS              |  |  |
| Chromium (Hexavalent)                    | 2                                | Ν                     | Colorimetry        |  |  |
| Lead                                     | 1                                | Y (MCERTS)            | ICPMS              |  |  |
| Mercury                                  | 0.5                              | Y                     | ICPMS              |  |  |
| Nickel                                   | 1                                | Y (MCERTS)            | ICPMS              |  |  |
| Selenium                                 | 1                                | PENDING               | ICPMS              |  |  |
| Copper                                   | 1                                | Y (MCERTS)            | ICPMS              |  |  |
| Zinc                                     | 1                                | Y (MCERTS)            | ICPMS              |  |  |
| Boron (Water Soluble)                    | 0.5                              | PENDING               | ICPMS              |  |  |
| pH Value                                 | 0.1 units                        | Y (MCERTS)            | Electrometric      |  |  |
| Sulphate (Water Soluble)                 | 0.01ug/l                         | Y                     | Ion Chromatography |  |  |
| Total Cyanide                            | 1                                | Y (MCERTS)            | Colorimetry        |  |  |
| Speciated PAH                            | 0.5                              | Y (MCERTS)            | GCFID              |  |  |
| Phenols                                  | 1                                | Y (MCERTS)            | HPLC               |  |  |
| Total Petroleum<br>Hydrocarbons (banded) | 5                                | Y (MCERTS)            | Gas Chromatography |  |  |

- 3.6.5 To support the derivation of appropriate tier 1 screening values, 6 No. samples were also analysed for total organic carbon.
- 3.6.6 Laboratory test results are summarised in Section 6, with raw laboratory data included in Appendix 3.

### Geotechnical Laboratory Testing

- 3.6.7 In addition to the contamination assessment, soil samples were submitted to the UKAS Accredited laboratory of PSL for the following assessment.
  - 5No. samples for Moisture Content and Atterberg Limit Determination in accordance with BS 1377
  - 11No. sample for Quick Undrained Triaxial Compression Tests in accordance with BS 1377
- 3.6.8 The results of the geotechnical laboratory testing are presented as Appendix 4 and discussed in Section 9 of this report.



#### 4 **GROUND CONDITIONS**

#### 4.1 Soil

Ground conditions were logged in accordance with the requirements of BS5930:1999. 4.1.1 Detailed exploratory hole logs are provided in Appendix 2. The ground conditions encountered are summarised in Table 4.1 below, based on the strata observed during the investigation.

| Stratum and Description                                                                                                                                                                                       | Encountered<br>from (m bgl) | Base of strata<br>(m bgl) | Thickness<br>range (m) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|------------------------|
| TARMAC and CONCRETE over<br>MADE GROUND –<br>Brown/black/orange sandy gravelly<br>clay to clayey gravelly sand. Gravel<br>is of brick, concrete, flint, mortar,<br>ash and glass.                             | 0.0                         | 0.7 – 2.1                 | 0.7 – 2.1              |
| Orange brown sandy to silty<br>patched blue grey CLAY with<br>occasional flints, becoming<br>predominantly blue grey with depth<br>Encountered to base of window<br>sample and cable percussive<br>boreholes. | 0.7 – 2.1                   | >25.0                     | >24.3                  |

| Table 4 1  | Ground | Conditions | Encountered   |
|------------|--------|------------|---------------|
| 1 abie 4.1 | Ground | Conditions | LIICOUIIIEIEU |

#### 4.2 Hydrogeology

4.2.1 Groundwater was reported during intrusive works as standing at a depth of 1.3m bgl within trial pit TP1. Groundwater was not reported within the remaining exploratory holes. Groundwater was not recorded during return monitoring.

#### 4.3 Physical and Olfactory Evidence of Contamination

No visual or olfactory evidence of potential contamination was reported during the 4.3.1 course of the investigation.



#### 5 **RISK ASSESSMENT – ANALYTICAL FRAMEWORK**

#### 5.1 **Context and Objectives**

- 5.1.1 This section seeks to evaluate the level of risk pertaining to human health and the environment which may result from both the existing use and proposed future use of the site. It makes use of the site investigation findings, as described in the previous sections, to evaluate further the potential pollutant linkages identified in the desk study. A combination of qualitative and quantitative techniques is used, as described below.
- 5.1.2 The purpose of generic quantitative risk assessment is to compare concentrations of contaminants found on site against screening level generic assessment criteria (GAC) to establish whether there are actual or potential unacceptable risks. It also determines whether further detailed assessment is required. The approaches detailed all broadly fit within a tiered assessment structure in line with the framework set out in the Department of Environment, Food and Rural Affairs (DEFRA), EA and Institute for Environment and Health Publication, Guidelines for Environmental Risk Assessment and Management.
- 5.1.3 It should be noted that the statistical tests carried out in this report in accordance with CL:AIRE and CIEH (2008) recommendations, are for guidance purposes only and the conclusions of this report should be approved by the local authority prior to any redevelopment works being undertaken.

#### 5.2 **Analytical Framework – Soils**

- 5.2.1 There is no single methodology that covers all the various aspects of the assessment of potentially contaminated land and groundwater. Therefore, the analytical framework adopted for this investigation is made up of a number of procedures, which are outlined below. All of these are based on a Risk Assessment methodology centred on the identification and analysis of Source – Pathway – Receptor linkages.
- 5.2.2 The CLEA model provides a methodology for quantitative assessment of the long term risks posed to human health by exposure to contaminated soils. Toxicological data have been used to calculate Soil Guideline Values (SGV) for individual contaminants, based on the proposed site use; these represent minimal risk concentrations and may be used as screening values.
- 5.2.3 In the absence of any published SGVs for certain substances, or where the assumptions made in generating the SGVs do not apply to the site, JAL have derived Tier 1 screening values for initial assessment of the soil, based on available current UK guidance including the LQM/CIEH generic assessment criteria. Site-specific assessments are undertaken wherever possible and/or applicable. All assessments are carried out in accordance with the CLEA protocol.
- 5.2.4 CLEA requires a statistical treatment of the test results to take into account the normal variations in concentration of potential contaminants in the soil and allow comparisons to be made with published guidance.
- 5.2.5 The assessment criteria used for the screening of determinands within soils are identified within Table 5.1.



| Substance Group                              | Determinand(s)                                                                                                                                                                                                                                                                    | Assessment Criteria          |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|                                              |                                                                                                                                                                                                                                                                                   | Selected                     |
| Organic Substances                           |                                                                                                                                                                                                                                                                                   |                              |
| Non-halogenated<br>Hydrocarbons              | Total Petroleum Hydrocarbons (TPHCWG banded)                                                                                                                                                                                                                                      | LQM/CIEH                     |
|                                              | Total Phenols                                                                                                                                                                                                                                                                     | CLEA v1.06                   |
| Polycyclic Aromatic<br>Hydrocarbons (PAH-16) | Naphthalene, Acenaphthylene,<br>Acenaphthene, Fluorene, Phenanthrene,<br>Anthracene, Fluoranthene, Pyrene,<br>Benz(a)anthracene, Chrysene,<br>Benzo(b)fluoranthene, Benzo(k)fluoranthene,<br>Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene,<br>Dibenz(a,h)anthracene, Benzo(ghi)perylene | LQM/CIEH                     |
| Volatile Organic Compounds (VOCs/sVOCs).     | Toluene, Ethylbenzene                                                                                                                                                                                                                                                             | CLEA v1.06                   |
| (**************************************      | Benzene, Xylenes                                                                                                                                                                                                                                                                  | CLEA v1.06                   |
| Inorganic Substances                         |                                                                                                                                                                                                                                                                                   | '                            |
| Heavy Metals and Metalloids                  | Arsenic, Cadmium, Chromium, Lead,<br>Mercury, Nickel, Selenium                                                                                                                                                                                                                    | CLEA v1.06                   |
|                                              | Copper, Zinc                                                                                                                                                                                                                                                                      | LQM/CIEH                     |
| Cyanides                                     | Free Cyanide                                                                                                                                                                                                                                                                      | CLEA v1.06                   |
| Sulphates                                    | Water Soluble Sulphate                                                                                                                                                                                                                                                            | BRE Special Digest<br>1:2005 |

| Table 5.1: Selected Assessment Criteria – Contaminants in Soils |
|-----------------------------------------------------------------|
|-----------------------------------------------------------------|

# BRE

The BRE Special Digest 1:2005, 'Concrete in Aggressive Ground' is used with soluble 5.2.6 sulphate and pH results to assess the aggressive chemical environment of future underground concrete structures at the site.

#### 5.3 Analytical Framework – Groundwater and Leachate

- 5.3.1 The groundwater quality assessment is undertaken in accordance with the EA P20 Document.
- 5.3.2 The criteria used by JAL in the assessment of groundwater and leachate quality are shown in Table 5.2.



| Substance Group                 | Determinand(s)                                                                                                                                                                                                                                                                                            | Assessment Criteria<br>Selected                                   |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Metals                          | Arsenic, Copper, Cyanide, Mercury, Nickel, Lead, Zinc, Chromium                                                                                                                                                                                                                                           | EQS/DWS                                                           |
|                                 | Selenium                                                                                                                                                                                                                                                                                                  | DWS/WHO                                                           |
| PAHs                            | (Sum of Four – benzo(b)fluoranthene,<br>benzo(ghi)perylene,<br>benzo(k)fluoranthene, indeno(1,2,3-<br>c,d)pyrene)                                                                                                                                                                                         | DWS                                                               |
| PAHs                            | Anthracene, Benzo(a)pyrene,<br>Fluoranthene, Naphthalene                                                                                                                                                                                                                                                  | EQS                                                               |
| Total Petroleum<br>Hydrocarbons | Aliphatic C5-C6,<br>Aliphatic >C6-C8,<br>Aliphatic >C8-C10.<br>Aliphatic >C10-C12,<br>Aliphatic >C12-C16,<br>Aliphatic >C16-C21,<br>Aromatic C5-C7,<br>Aromatic >C7-C8,<br>Aromatic >C8-C10,<br>Aromatic >C10-C12,<br>Aromatic >C12-C16,<br>Aromatic >C16-C21,<br>Aromatic >C16-C21,<br>Aromatic >C21-C35 | Dutch Intervention<br>Values/DWS/WHO                              |
| Benzene                         | Benzene                                                                                                                                                                                                                                                                                                   | DWS                                                               |
| Toluene                         | Toluene                                                                                                                                                                                                                                                                                                   | EQS                                                               |
| Ethylbenzene                    | Ethylbenzene                                                                                                                                                                                                                                                                                              | EQS                                                               |
| Xylene                          | Xylene                                                                                                                                                                                                                                                                                                    | EQS                                                               |
| Oxygen Demand                   | Chemical Oxygen Demand and<br>Biological Oxygen Demand                                                                                                                                                                                                                                                    | Urban Waste Water<br>Treatment (England and<br>Wales) Regulations |

#### Table 5.2: Selected Assessment Criteria – Contaminants in Water

### Environmental Quality Standards EQS

Environmental Quality Standards (EQS) have been released by the EA for dangerous substances, as identified by the EC Dangerous Substances Directive. EQS can vary for each substance, for the hardness of the water and can be different for fresh, estuarine or coastal waters.

#### Lowest Effect Concentration (LEC)

These criteria relate to the concentration of PAHs in groundwater. They are taken from the EA R&D Technical Report P45 – Polycyclic Aromatic Hydrocarbons (PAH): Priorities for Environmental Quality Standard Development (2001).

### WHO Health

These screening criteria have been taken from the World Health Organisation Guidelines for Drinking Water Quality (1984). The health value is a guideline value representing the concentration of a contaminant that does not result in any significant risk to the receptor over a lifetime of exposure.

Further criteria have been obtained from 'Petroleum Products in Drinking-water' -Background document for development of WHO Guidelines for Drinking-water Quality (2005).



### UK Drinking Water Standards (DWS)

These comprise screening criteria provided by the Drinking Water Inspectorate (DWI) in the Water Supply (Water Quality) Regulations 2006,

### Dutch Intervention Values (DIV)

The Dutch Institute and Human Toxicology data are used for speciated TPH. Whilst they do not have force of law in the UK, they are recognised as a valid source of information by the EA. For example, they are recommended in the EA document 'Biological Test Methods for Assessing Contaminated Land'.

Urban Waste Water Treatment (England and Wales) Regulations - UWWT Regs The Urban Waste Water Treatment (England and Wales) Regulations SI/1994/2841 as amended by SI/2003/1788 sets down minimum standards for the discharge of treated effluent from wastewater treatment works to inland surface waters, groundwater, estuaries or coastal waters. Standards of (125mg/L) COD and (25mg/L) BOD have been set.

### Generic Assessment Criteria

5.3.3 The criteria adopted in the selection of correct screening criteria from published reports as previously described, are provided within Tables 5.3.

| Table 5.3: Site Specific Data |                               |  |  |  |  |
|-------------------------------|-------------------------------|--|--|--|--|
| Input Details                 | Value                         |  |  |  |  |
| Land Use                      | Residential with plant uptake |  |  |  |  |
| Soil Organic Matter           | 2.5%                          |  |  |  |  |

#### -----

- 5.3.4 As the published reports only offer the option of selecting an SOM value of 1%, 2.5% or 6%, an SOM value of 2.5% has been used for the generation of generic assessment criteria, as 2.09% was the mean value obtained from laboratory analysis.
- It is understood that the redevelopment of the site is to comprise a multi-storey mixed 5.3.5 use development, with commercial ground floor units and residential apartments on upper floors. Minor areas of soft landscaping are anticipated. Consequently, the site has been assessed as Residential with Plant Uptake.



# 6 GENERIC QUANTITATIVE RISK ASSESSMENT

### 6.1 Screening of Soil Chemical Analysis Results – Human Health Risk Assessment

- 6.1.1 To focus on the contaminants of potential concern (COPC), the results have been compared with the respective SGV/GAC. Those contaminants which exceed the SGV/GAC are considered to be the COPC. Those which do not exceed the respective SGV/GAC are not considered to be COPC and as such do not require further assessment in relation to the proposed development of the site.
- 6.1.2 Laboratory analysis for soils are summarised in Tables 6.1 to 6.3. Raw laboratory data is included in Appendix 3.

| Determinand                | Unit  | No.<br>samples<br>tested | Screening<br>Criteria |                | Min  | Мах  | No of<br>Exceedences                                                                                  |
|----------------------------|-------|--------------------------|-----------------------|----------------|------|------|-------------------------------------------------------------------------------------------------------|
| Arsenic                    | mg/kg | 10                       | 37                    | S4UL           | 10.6 | 33.7 | 0                                                                                                     |
| Cadmium                    | mg/kg | 10                       | 11                    | S4UL           | <0.5 | 1.3  | 0                                                                                                     |
| Chromium                   | mg/kg | 10                       | 910                   | S4UL           | 15.9 | 48.4 | 0                                                                                                     |
| Lead                       | mg/kg | 10                       | 200                   | C4SL           | 38.4 | 2530 | 7No<br>WS1 @ 1.00<br>WS2 @ 2.00<br>WS3 @ 1.50<br>WS4 @ 0.50<br>WS4 @ 1.00<br>WS5 @ 0.30<br>WS5 @ 1.00 |
| Mercury                    | mg/kg | 10                       | 40                    | S4UL           | <0.5 | 2.3  | 0                                                                                                     |
| Nickel                     | mg/kg | 10                       | 180                   | S4UL           | 15.7 | 36   | 0                                                                                                     |
| Copper                     | mg/kg | 10                       | 2400                  | S4UL           | 21.2 | 204  | 0                                                                                                     |
| Zinc                       | mg/kg | 10                       | 3700                  | S4UL           | 54.5 | 837  | 0                                                                                                     |
| Total Cyanide <sup>A</sup> | mg/kg | 10                       | 33                    | CLEA v<br>1.06 | <1   | <1   | 0                                                                                                     |
| Selenium                   | mg/kg | 10                       | 250                   | S4UL           | <1   | 2.2  | 0                                                                                                     |
| Boron Water<br>Soluble     | mg/kg | 10                       | 290                   | S4UL           | 1.4  | 5.1  | 0                                                                                                     |
| Phenols                    | mg/kg | 10                       | 120                   | S4UL           | <5   | <5   | 0                                                                                                     |

#### Table 6.1: Soil Laboratory Analysis Results – Metals, Metalloids, TPH

**Notes:** <sup>A</sup> Generic assessment criteria derived for free inorganic cyanide.



| Determinand          | Unit  | No.<br>Samples<br>Tested | Screening Criteria |      | Min  | Max  | No. Exceeded       |
|----------------------|-------|--------------------------|--------------------|------|------|------|--------------------|
| Naphthalene          | mg/kg | 10                       | S4UL               | 5.6  | <0.5 | 10.7 | 1No.<br>WS1 @ 1.0m |
| Acenaphthylene       | mg/kg | 10                       | S4UL               | 420  | <0.5 | <0.5 | 0                  |
| Acenaphthene         | mg/kg | 10                       | S4UL               | 510  | <0.5 | 1.9  | 0                  |
| Fluorene             | mg/kg | 10                       | S4UL               | 400  | <0.5 | 0.6  | 0                  |
| Phenanthrene         | mg/kg | 10                       | S4UL               | 220  | <0.5 | 2.2  | 0                  |
| Anthracene           | mg/kg | 10                       | S4UL               | 5400 | <0.5 | 1.6  | 0                  |
| Fluoranthene         | mg/kg | 10                       | S4UL               | 560  | <0.5 | 2.5  | 0                  |
| Pyrene               | mg/kg | 10                       | S4UL               | 1200 | <0.5 | 2.2  | 0                  |
| Benzo(a)anthracene   | mg/kg | 10                       | S4UL               | 11   | <0.5 | 1.7  | 0                  |
| Chrysene             | mg/kg | 10                       | S4UL               | 22   | <0.5 | 1.9  | 0                  |
| Benzo(b)fluoranthene | mg/kg | 10                       | S4UL               | 3.3  | <0.5 | 1.1  | 0                  |
| Benzo(k)fluoranthene | mg/kg | 10                       | S4UL               | 93   | <0.5 | 1.8  | 0                  |
| Benzo(a)pyrene       | mg/kg | 10                       | S4UL               | 2.7  | <0.5 | 1.7  | 0                  |
| Indeno(123-cd)pyrene | mg/kg | 10                       | S4UL               | 36   | <0.5 | 0.9  | 0                  |
| Dibenz(ah)anthracene | mg/kg | 10                       | S4UL               | 0.28 | <0.5 | <0.5 | 0                  |
| Benzo(ghi)perylene   | mg/kg | 10                       | S4UL               | 340  | <0.5 | 0.8  | 0                  |
| Total PAH            | mg/kg | 10                       | -                  |      | <2.0 | 18.0 |                    |

# Table 6.2: Soil Laboratory Analysis Results – Polycyclic Aromatic Hydrocarbons (PAHs)

### Table 6.3: Soil Laboratory Analysis- Total Petroleum Hydrocarbons (TPH)

| TPH Band                          | Unit                                                                           | No.<br>Samples<br>Tested | Screening Criteria |      | Min  | Мах  | No. Exceeded |  |
|-----------------------------------|--------------------------------------------------------------------------------|--------------------------|--------------------|------|------|------|--------------|--|
| C <sub>8</sub> -C <sub>10</sub>   | mg/kg                                                                          | 10                       | S4UL               | 65   | <1.0 | 8.1  | 0            |  |
| >C <sub>10</sub> -C <sub>12</sub> | mg/kg                                                                          | 10                       | S4UL               | 180  | <1.0 | 55.6 | 0            |  |
| >C <sub>12</sub> -C <sub>16</sub> | mg/kg                                                                          | 10                       | S4UL               | 330  | <1.0 | 135  | 0            |  |
| >C <sub>16</sub> -C <sub>21</sub> | mg/kg                                                                          | 10                       | S4UL               | 540  | <1.0 | 77.8 | 0            |  |
| >C <sub>21</sub> -C <sub>35</sub> | mg/kg                                                                          | 10                       | S4UL               | 1500 | 2.1  | 32.8 | 0            |  |
| Total TPH                         | mg/kg                                                                          | 10                       | -                  | -    | 2.1  | 314  | -            |  |
| Note: *The lowe                   | Note: *The lower value of guidelines for Aromatic/Aliphatics has been selected |                          |                    |      |      |      |              |  |

### 6.2 Statistical Analysis

6.2.1 Where samples tested exceeded the selected screening criteria, and the minimum numbers of samples were more than six, statistical analyses of the dataset are undertaken.



- 6.2.2 The CL:AIRE/CIEH Guidance 'Guidance on Comparing Soil Contamination Data with a Critical Concentration' (2008) describes the new approach to statistical analysis of datasets generated through the investigation of contaminated land. This includes differing statistical methodologies for the analysis of normally and non-normally distributed data. Different approaches to datasets being analysed under Part IIA and under the planning regime are also presented.
- 6.2.3 Chemical data from the laboratory testing has been assessed in accordance with the CL:AIRE/CIEH Guidance under a planning scenario. The purpose of the assessment is to determine if the land is suitable for the proposed development. Under the planning scenario, the key question is 'is there sufficient evidence that the true mean concentration of the contaminant within the data set  $(\mu)$  is less than the critical concentration (Cc, in this instance the derived GAC). This is assessed by calculation of the upper confidence limit (UCL). The statistical test assesses the 95<sup>th</sup> percentile of contaminant populations across a site, and compares this value against the relevant GAC. Furthermore, the test determines statistically whether contaminants exceeding the soil guideline value could be regarded as outliers. Outliers are contaminant values which indicate a localised area of contamination or error in sampling, and may not be a member of the underlying population.
- 6.2.4 The statistical tests were run for:
  - Lead
- 6.2.5 Statistical assessment has not been undertaken for naphthalene, as exceedance of the limit of detection was detected in one sample only WS1 @ 1.0m bgl. In all the other 9No. samples which were tested for naphthalene, the detected concentration did not exceed the limit of detection of 0.5mg/kg. It is therefore considered that the made ground in WS1 comprises an isolated hotspot of naphthalene contamination, and therefore statistical assessment is not appropriate.
- 6.2.6 6.2.7 The results of statistical tests are presented in Appendix 5. Table 6.4 below provides the summary of statistical tests.

| Table: 6.4: Statistical Test Results |         |        |                 |  |  |
|--------------------------------------|---------|--------|-----------------|--|--|
| Determinand                          | 95% UCL | Cc/GAC | GAC<br>Exceeded |  |  |
| Lead                                 | 1561    | 200    | Y               |  |  |

#### - . . . C. A. Statistical Test D

#### 6.3 Asbestos in Soil

- 6.3.1 4No. random samples of the made ground were screened in the laboratory for the presence of asbestos. These comprised samples taken from;
  - WS1 0.50m bgl
  - WS3 0.50m bgl •
  - WS3 1.50m bgl
  - WS4 0.50m bgl

#### 6.3.2 No asbestos fibres were detected.

#### 6.4 Screening of Soil Chemical Analysis Results - Potential Risks to Plant Growth



- 6.4.1 Zinc, copper and nickel are phytotoxins and could therefore inhibit plant growth in soft landscaped areas. Concentrations measured in soil for these determinands have been compared with the pH dependent values given in BS3882:2007.
- 6.4.2 Adopting a pH value of greater than 7, as indicated by the results of the laboratory analysis, the following is noted;
  - Zinc concentrations revealed by this investigation ranged from 54.5mg/kg to • 837mg/kg, with 3No. samples exceeding the threshold of 300mg/kg.
  - Copper concentrations revealed by this investigation ranged from 21.2mg/kg • to 204mg/kg, with 1No. sample (WS1 @0.5m bgl) exceeding the threshold of 200mg/kg.
  - Nickel concentrations revealed by this investigation ranged from 15.7mg/kg to • 36mg/kg, below the threshold of 110mg/kg.

#### Screening for Water Pipes 6.5

6.5.1 The results of the analysis have been assessed for potential impact upon water supply pipes. Table 6.5 below summarises the findings of the assessment:

|             | No. of | Threshold                 | Value for sit | te data (mg/kg) |                      |
|-------------|--------|---------------------------|---------------|-----------------|----------------------|
| Determinand | tests  | adopted for PE<br>(mg/kg) | Min           | Мах             | No of<br>Exceedances |
| Total VOCs  | -      | 0.5                       | N/A           | N/A             | -                    |
| BTEX        | 2      | 0.1                       | <0.01         | <0.01           | -                    |
| MTBE        | -      | 0.1                       | N/A           | N/A             | -                    |
| EC5-EC10    | 10     | 1                         | <0.1*         | 8.1             | 1No.<br>WS1 @1.0m    |
| EC10-EC16   | 10     | 10                        | <2.0*         | 190.6           | 1No.<br>WS1 @1.0m    |
| EC16-EC40   | 10     | 500                       | 3.5           | 115.1           | -                    |
| Naphthalene | 10     | 5                         | <0.05         | 10.7            | 1No.<br>WS1 @1.0m    |
| Phenols     | 10     | 2                         | <5*           | <5*             | -                    |

### Table 6.5: Screening Guide for Water Pines

\*Laboratory detection limit

- Determinands marked "N/A" were not analysed for as no evidence of their presence 6.5.3 was obtained from the Desk Study.
- 6.5.4 The above suggests that upgraded pipe work may be required.
- 6.5.5 Alternatively, it may be possible to utilise other protection methods including (but not limited to):
  - diversion of the pipe,
  - localised remediation
- 6.5.6 The water supply pipe requirements for this site should be discussed at an early stage with the relevant utility provider.



### 6.6 Waste Disposal

- 6.6.1 In order to provide an assessment of likely disposal requirements for site spoil, 1No. sample of the Made Ground and 1No. sample of the underlying natural ground were submitted for Waste Acceptance Criteria testing.
- 6.6.2 The results of the testing would indicate the underlying natural ground to be classified as Inert for the purposes of disposal, with the Made Ground classified as Non-hazardous.



# 7 SOIL GAS RISK ASSESSMENT

# 7.1 Soil Gas Results

- 7.1.1 A total of 3No. return monitoring visits to site have been undertaken to the site.
- 7.1.2 The results of the monitoring undertaken to date are summarised in Table 7.1 below, with the monitoring records presented in Appendix 6.

| Hole<br>Nr. | CH4 (%) | CO2 (%)   | O2(%)       | H2S<br>(ppm) | Atmospheric<br>Pressure (mb) | VOCs          | Flow<br>Rate<br>(I/hr) | Depth to water | Depth of<br>hole |
|-------------|---------|-----------|-------------|--------------|------------------------------|---------------|------------------------|----------------|------------------|
| WS3         | <0.1    | 8.4 - 9.4 | 9.9 – 11.0  | <0.1         | 983 - 1009                   | <0.1 –<br>0.3 | 0.2 –<br>0.8           | Dry            | 2.54             |
| BH2         | <0.1    | 0.5 – 0.7 | 20.0 - 20.5 | <0.1         | 983 - 1009                   | <0.1 –<br>0.3 | 0.2 –<br>0.4           | Dry            | 18.54            |

#### Table 7.1 : Summary of Gas Monitoring Data

### 7.2 Screening of Results

- 7.2.1 As shown in Table 7.1, no methane has been recorded to date. Carbon dioxide has been reported to a maximum concentration of 9.4% v/v. Oxygen concentrations varied between 9.9% and 20.5%, with volatile organic compounds reported to a maximum concentration of 0.3ppm. A maximum flow rate of 0.8l/hr has been reported.
- 7.2.2 In the assessment of risks posed by hazardous ground gases and selection of appropriate mitigation measures, BS8485 (2015) identifies four types of development, termed Type A to Type D.
- 7.2.3 Type B buildings are defined as
- 7.2.4 " private or commercial property with central building management control of any alterations to the building or its uses but limited or no central building management control of the maintenance of the building, including the gas protection measures. Multiple occupancy. Small to medium size rooms with passive ventilation of rooms and other internal spaces throughout ground floor and basement areas. May be conventional building or civil engineering construction. Examples include managed apartments, multiple occupancy offices, some retail premises and parts of some public buildings (such as schools, hospitals, leisure centres) and parts of hotels."
- 7.2.5 Type B has been adopted as the relevant category for the proposed development.
- 7.2.6 The soil gas assessment method is based on that proposed by Wilson & Card (1999), which was a development of a method proposed in CIRIA publication R149 (CIRIA, 1995). The method uses both gas concentrations and borehole flow rates to define a characteristic situation based on the limiting borehole gas volume flow for methane and carbon dioxide. In both these methods, the limiting borehole gas volume flow is renamed as the Gas Screening Value (GSV).
- 7.2.7 The Gas Screening Value (litres of gas per hour) is calculated by using the following equation

# GSV = (Concentration/100) X Flow rate



Where concentration is measured in percent (%) and flow rate is measured in litres per hour (I/hr)

- 7.2.8 The Characteristic Situation is then determined from Table 8.5 of CIRIA C665.
- 7.2.9 To accord with C665, worst case conditions are used in the calculation of GSVs for the site.
- 7.2.10 A worst case flow rate of 0.8l/hr (maximum reported) will be used in the calculation of GSVs for the site.

For carbon dioxide and methane, the worst-case conditions and the corresponding GSV is presented below.

| • | Conservative flow rate:                  | 0.8 I/hr flow rate              |
|---|------------------------------------------|---------------------------------|
| • | Highest CO₂ concentration:<br>GSV Value: | 9.4% v/v<br>0.0752l/hr i.e. CS2 |
| • | Highest CH₄ concentration:<br>GSV Value: | 0.1% v/v<br>0.0008l/hr i.e. CS1 |

- 7.2.11 The result of the calculation would indicate that the site may be classified as Characteristic Situation 2, where basic gas protection measures are required.
- 7.2.12 For a Type B development with a Characteristic Situation 2 classification, ground gas protection measures should be installed with a minimum gas protection score of 3.5 points in accordance with BS8485:2015.
- 7.2.13 With respect to the exceedance of naphthalene in WS1, given the low PID readings recorded during headspace monitoring of the wells, and the absence of any recorded hydrocarbon odours or staining within the soils encountered on site, a potential pollutant linkage via vapour inhalation is not considered to exist.



# 8 SUMMARY OF RESULTS

### 8.1 Risk Assessment - Land Quality Impact Summary

- 8.1.1 Following the quantitative risk assessments, the following is noted:
  - It is understood that the proposed development comprises demolition of the existing building and construction of a new multistorey mixed use development, with commercial ground floor units and residential apartments. Minor areas of soft landscaping areas are anticipated.
  - Following generic risk assessments and statistical analysis, the upper ninety fifth percentile values for lead were found to exceed their respective criteria. No other contaminants were reported above their respective criteria and no asbestos fibres were detected.
  - Naphthalene was found to exceed the generic assessment criteria for human health within one sample (WS1 @ 1.0m bgl). In all the other 9No. samples which were tested for naphthalene, the detected concentration did not exceed the limit of detection of 0.5mg/kg. It is therefore considered that the made ground in WS1 comprises an isolated hotspot of naphthalene contamination, and therefore statistical assessment is not appropriate for naphthalene. Given the low PID readings recorded during headspace monitoring of the wells, and the absence of any recorded hydrocarbon odours or staining within the soils encountered on site, a potential pollutant linkage via vapour inhalation is not considered to exist.
  - Where the site is to be overlain by either proposed building footprint or areas of hardstanding, these concentrations are no considered to pose a significant risk to human health, as the building / surfacing will provide a suitable barrier to potential receptors. Where areas of soft landscaping are proposed, the risks to end users will be controlled by use of a capping layer. This should comprise a minimum 600mm thickness of imported clean topsoil.
  - The desk study identified the site to be directly underlain by unproductive deposits (London Clay Formation), with no significant controlled water receptors identified. Groundwater was not encountered during the



investigation. Therefore a pollutant linkage is not considered to pose a potential risk to controlled waters.

- The results of waste acceptance criteria testing indicated the Made Ground to be acceptable for disposal as a non-hazardous material, with the underlying natural ground suitable for disposal as inert material.
- The results of soil gas monitoring undertaken to date indicate the site to be classified as Characteristic Situation 2, where basic gas protection measures are required.
- Barrier pipe may be required for the proposed development. The water supply pipe material requirements for this site should be discussed at an early stage with the relevant utility provider.
- A remedial strategy will be required for the proposed development.
- As with any ground investigation, the presence of further hotspots between sampling points cannot be ruled out, and caution must be exercised during construction works. Should any contamination be encountered, a suitably qualified environmental consultant should be informed immediately, so that adequate measures may be recommended.
- 8.1.2 The above conclusions are made subject to approval by the statutory regulatory bodies.

# 8.2 Review of Pollutant Linkages Following Site Investigation

8.2.1 The site CSM has been revised and updated from that suggested in the desk study in view of the ground investigation data, including soil laboratory analysis results. Table 8.1 highlights whether pollutant linkages identified in the original CSM are still relevant following the risk assessment, or whether pollutant linkages, not previously identified, exist.



| Table 8.1: Plausible Pollutants Linkages Summary (Pre Remediation) |
|--------------------------------------------------------------------|
|--------------------------------------------------------------------|

| Potential Source<br>(from desk study)                                                                                                                                                                                                                                                                                    | Pathway                                                                                                                                                                                                                                                                  | Receptor                                                                                                                                                                                                                                                                                              | Relevant<br>Pollutant<br>Linkage? | Comment                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Potential Made Ground<br/>associated with previous<br/>developments – on and off<br/>site</li> <li>Potential for asbestos in soil<br/>from demolition of previous<br/>buildings – on site (S2)</li> <li>Former Timber Yard – on site<br/>(S3)</li> <li>Former Motor Units Factory –<br/>on site (S4)</li> </ul> | <ul> <li>Ingestion and dermal contact with contaminated soil (P1)</li> <li>Inhalation or contact with potentially contaminated dust and vapours (P2)</li> <li>Permeation of water pipes and attack on concrete foundations by aggressive soil conditions (P6)</li> </ul> | <ul> <li>Construction workers (R1)</li> <li>Maintenance workers (R2)</li> <li>Neighbouring site users (R3)</li> <li>Future site users (R4)</li> <li>Building foundations and on site buried services (water mains, electricity and sewer) (R5)</li> <li>Bioaccumulation within plants (R6)</li> </ul> | Y                                 | see 9.1 above for remedial measures.<br>The findings of this report should be included in the construction health<br>and safety file, with adequate measures put in place for the protection<br>of construction and maintenance workers. |
| <ul> <li>Current industrial use – on site (S5)</li> <li>Current and previous</li> </ul>                                                                                                                                                                                                                                  | e (S5) migration of soil gases<br>(P5) Leaching through<br>permeable soils,                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                       | Y                                 | Gas Protection measures required                                                                                                                                                                                                         |
| industrial sites and<br>consents/depots/works – off<br>site (S6)                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                          | <ul> <li>Neighbouring site users (R3)</li> <li>Building foundations and on site buried services (water mains, electricity and sewer) (R5)</li> </ul>                                                                                                                                                  | Y                                 | Remedial measures required and set out in Section 9.1.<br>Contact should be made with relevant utility providers to confirm if<br>upgraded materials are required.                                                                       |



# 9 **GEOTECHNICAL ENGINEERING RECOMMENDATIONS**

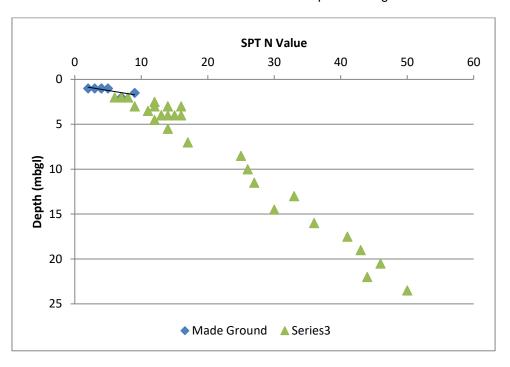
### 9.1 Ground Investigation Summary

- 9.1.1 No detailed structural engineering design information, with respect to the type of construction and associated structural loadings, was provided at the time of preparing this report.
- 9.1.2 Consequently, a detailed discussion of all the problems that may arise during the proposed redevelopment scheme is beyond the scope of this report. Practical solutions to the difficulties encountered, both prior to, and during construction, are frequently decided by structural constraints or economical factors. For these reasons, this discussion is predominantly confined to remarks of a general nature, which are based on site conditions encountered during the intrusive investigations.
- 9.1.3 It is understood that the proposed development comprises demolition of the existing building and construction of a new multistorey mixed use development, with commercial ground floor units and residential apartments. Minor areas of soft landscaping areas are anticipated.
- 9.1.4 The desk study report indicates that the site is directly underlain by solid deposits of the London Clay Formation. The results of the ground investigation indicated a ground profile comprising a variable thickness of Made Ground (1.3m to 4.3m bgl depth), overlying an orange brown patched blue grey silty clay (considered to represent the London Clay Formation), encountered to the base of the boreholes at up to 25m bgl.
- 9.1.5 A summary of ground conditions obtained from the ground investigation and subsequent laboratory testing, is provided in Table 9.1 and 9.2 overleaf.

| Stratum and Description                                                                                                                                                                                 | Encountered<br>from (m bgl) | Base of strata<br>(m bgl) | Thickness<br>range (m) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|------------------------|
| TARMAC and CONCRETE over MADE GROUND<br>– Brown/black/orange sandy gravelly clay to<br>clayey gravelly sand. Gravel is of brick, concrete,<br>flint, mortar, ash and glass.                             | 0.0                         | 0.7 – 2.1                 | 0.7 – 2.1              |
| Orange brown sandy to silty patched blue grey<br>CLAY with occasional flints, becoming<br>predominantly blue grey with depth<br>Encountered to base of window sample and cable<br>percussive boreholes. | 0.7 – 2.1                   | >25.0                     | >24.3                  |

### Table 9.1 : Ground Conditions Encountered




# Table 9.2 – Preliminary Geotechnical Parameters

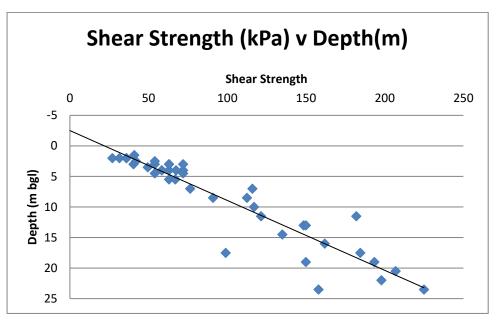
| Strata                                                                                                                                                                                                  | SPT 'N'<br>Value | Shear<br>Strength<br>(kPa) | Moisture<br>content<br>(%) | Liquid<br>Limit (%) | Plastic<br>Limit (%) | Plasticity<br>Index<br>(plasticity<br>term) | Particle<br>Size<br>Distribution<br>(% passing<br>0.425mm) | NHBC<br>Volume<br>Change<br>Classification |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------|----------------------------|---------------------|----------------------|---------------------------------------------|------------------------------------------------------------|--------------------------------------------|
| TARMAC and CONCRETE over MADE GROUND<br>– Brown/black/orange sandy gravelly clay to<br>clayey gravelly sand. Gravel is of brick, concrete,<br>flint, mortar, ash and glass.                             | 2 - 9            | -                          | -                          | -                   | -                    | -                                           | -                                                          | -                                          |
| Orange brown sandy to silty patched blue grey<br>CLAY with occasional flints, becoming<br>predominantly blue grey with depth<br>Encountered to base of window sample and cable<br>percussive boreholes. | 6 - >50          | 27 - 225                   | 26 - 31                    | 54 - 77             | 25 - 30              | 29 - 47                                     | 100                                                        | Moderate - High                            |

### **SECTION 9 GEOTECHNICAL ENGINEERING** RECOMMENDATIONS



9.1.6 The results of the ground investigation indicated a ground profile comprising a variable thickness of Made Ground (1.3m to 4.3m bgl depth), overlying an orange brown patched blue grey silty clay (considered to represent the London Clay Formation), encountered to the base of the boreholes at up to 25m bgl.




9.1.7 The shear strength of the London Clay Formation varies with depth, and is shown in Figure below. This shows the results of the triaxial testing and the undrained shear strength inferred by the correlation suggested by Stroud (1974),

 $c_u = f1 \times N$  can be applied,

in which c<sub>u</sub>= mass shear strength (kN) f1 = constant (use value of 4.5 for London Clay Formation) N = SPT Value achieved during boring operations

9.1.8 The graph below shows the shear strength profile of the London Clay Formation encountered at the site, based on the SPT to shear strength correlation described above, as well as the results of undrained triaxial tests on undisturbed samples taken from the boreholes.





# 9.2 Hand Excavated Trial Pits

9.2.1 Hand pits excavated to expose the existing foundations of the building on site, revealed traditional foundations extending up to 1.6mbgl.

### 9.3 Foundations

- 9.3.1 Based upon the information obtained to date, an allowable bearing capacity in the order of 120kPa has been calculated for foundations constructed at a depth of 3.0m bgl within the underlying London Clay Formation. A piled foundation end bearing in the Clay is anticipated for the proposed development.
- 9.3.2 The piled foundations will carry their working load in a combination of skin friction along the sides of the pile and end bearing at the base of the pile, with the former likely to provide the greater part of the allowable load. The piles should be designed by a specialist piling contractor using a factor of safety of 3.0 and with the settlement at working load specified to meet any structural requirements. Table 11.3 below provides some indicative capacities for a single pile for the diameter and depths shown.

| Pile diameter (m) | 0.45 | 0.6  | 0.9  |
|-------------------|------|------|------|
| Pile length (m)   |      |      |      |
| 15m               | 330  | 470  | 800  |
| 20m               | 530  | 760  | 1260 |
| 25m               | 760  | 1070 | 1750 |

#### Table 11.3 – Indicative Piles Capacities (kN)

9.3.3 Should any loading be placed directly on the ground which cause the ground to settle relative to the piles then additional negative skin friction loads could be imposed on the piles.



- 9.3.4 The London Clay Formation have been identified as being of moderate to high volume change potential, and this will require consideration when designing foundations for the proposed development, in conjunction with the presence of any existing or proposed trees. The potential for heave should be considered.
- 9.3.5 The above comments are indicative only based on limited ground investigation data. Foundations should be designed by a suitably gualified Engineer.

#### 9.4 In Situ CBR Measurements

- 9.4.1 In order to provide indicative CBR measurements for road pavement design, a total of 3No. in situ CBR measurements were taken across the site at depths of up to 0.9m bgl.
- 9.4.2 The results of the testing provided indicative measurements of between 1.2% and 28.4%.

#### 9.5 Concrete in the Ground

- 9.5.1 Sulphate attack on building foundations occurs where sulphate solutions react with the various products of hydration in Ordinary Portland Cement (OPC) or converted High-Alumina Cement (HAC). The reaction is expansive, and therefore disruptive, not only due to the formation of minute cracks, but also due to loss of cohesion in the matrix.
- 9.5.2 In accordance with BRE Special Digest 1, in a data set where there are more than 10No. results available, assessment should be made against the mean value of the maximum 20% of concentrations obtained.
- 9.5.3 18No. samples were analysed for water soluble sulphate concentration, with a mean 20% concentration of 537.5mg/l calculated. Associated pH concentrations ranged from 7.1 to 11.1.
- 9.5.4 Based on the results the required concrete class for the site is DS-2 assuming an Aggressive Chemical Environment for Concrete classification of AC-2 in accordance with the procedures outlined in BRE Special Digest 1.

### 9.6 **Ground Bearing Slabs**

- 9.6.1 Formations of the structures should be inspected by a competent person. Any loose or soft material should be removed and replaced with well-graded, properly compacted granular fill or lean mix concrete. The formation should be blinded if left exposed for more than a few hours or if inclement weather is experienced.
- 9.6.2 To allow for potential volume change within the underlying London Clay Formation, and due to the thickness of Made Ground deposits encountered, suspended floor slabs are recommended.

### 9.7 **Excavations**

- 9.7.1 Deep excavations will be required at the site during the construction works. These are anticipated to remain stable for the short term. It is recommended that the stability of all excavations should be assessed during construction.
- 9.7.2 The sides of any excavations into which personnel are required to enter, should be assessed and where necessary fully supported or battered back to a safe angle.



### 9.8 **Groundwater Control**

- 9.8.1 Groundwater was reported during intrusive works as standing at a depth of 1.3m bgl within trial pit TP1. Groundwater was not reported within the remaining exploratory holes. Groundwater was not recorded during return monitoring.
- 9.8.2 Any groundwater encountered should be readily dealt with by conventional pumping from a sump.



### 10 REFERENCES

BRE Report BR211 ;Radon: Protective measures for new dwellings, 2007

BRE Special Digest 1: Concrete in Aggressive Ground, 2005

British Standards Institution (2011) BS 10175:2011 Code of practice for the investigation of potentially contaminated sites. Milton Keynes: BSI

British Standards Institution (1999) BS 5930:1999 Code of practice for site investigations. Milton Keynes: BSI

CIEH & CL:AIRE (2008) *Guidance on comparing soil contamination data with a critical concentration*. London: Chartered Institute of Environmental Health (CIEH) and CL:AIRE

Environment Agency (2004) *Model procedures for the management of land contamination*. CLR11. Bristol: Environment Agency

Environment Agency, NHBC & CIEH (2008) *Guidance for the safe development of housing on land affected by contamination*. R & D Publication 66. London: Environment Agency

Jeffries, J. (2009) *CLEA Software (Version 1.05) handbook.* Science report: SC050021/SR4. Bristol: Environment Agency

Jeffries, J. & Martin, I. (2009) *Updated Technical Background to the CLEA Model*. Science Report No. SC050021/SR3. Bristol: Environment Agency.

Environment Agency Technical Report P45 "Polycyclic Aromatic Hydrocarbons (PAH): Priorities for Environment Quality Standard Development

Gething, J. Tetramethyl lead absorption: a report of human exposure to a high level of tetramethyl lead.1: Br J Ind Med. 1975 Nov; 32(4): 329-33

Grubb, F. E. et al, Extension of Samples Sizes and Percentage Points for Significance Tests of Outlying Observation. Technometrics, Vol 14, No. 4, November 1972

<u>http://risk.lsd.ornl.gov/cgi-bin/tox/TOX\_9801</u> - USEPA online toxicity and chemical parameters database

LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment 2<sup>nd</sup> Edition. LQM, 2009

National Planning Policy Framework. Department for Communities and Local Government, March 2012



## **APPENDICES**



**APPENDIX 1 – FIGURES** 



| Project Name | Kilburn High Road, London | Client  | 254 Kilburn HR LLP       |
|--------------|---------------------------|---------|--------------------------|
| Title        | Exploratory Holes         | Dwg No. | P8591J338 - October 2014 |
|              |                           |         |                          |



### JOMAS ASSOCIATES LTD

| Project Name | 254 Kilburn High Road | Client  | 254 Kilburn HR LLP |
|--------------|-----------------------|---------|--------------------|
| Title        | TP & WS Photo log     | Dwg No. | P8591J338          |

# Photo 1: TP1



Photo 3: TP2



Photo 2 TP2



Photo 4: TP3





### JOMAS ASSOCIATES LTD

| Project Name | 254 Kilburn High Road | Client  | 254 Kilburn HR LLP |
|--------------|-----------------------|---------|--------------------|
| Title        | TP & WS Photo log     | Dwg No. | P8591J338          |

## Photo 5: TP4



Photo 7: TP6



Photo 6: TP6



Photo 8: TP7





JOMAS ASSOCIATES LTD

| Project Name | 254 Kilburn High Road | Client  | 254 Kilburn HR LLP |
|--------------|-----------------------|---------|--------------------|
| Title        | TP & WS Photo log     | Dwg No. | P8591J338          |

## Photo 9: WS1



Photo 11: WS3



Photo 10: WS2



Photo 12: WS4





| Project Name | 254 Kilburn High Road | Client  | 254 Kilburn HR LLP |
|--------------|-----------------------|---------|--------------------|
| Title        | TP & WS Photo log     | Dwg No. | P8591J338          |

# Photo 13: WS5





**APPENDIX 2 – EXPLORATORY HOLE RECORDS** 

|          | Specia       | alists | in the | )<br>inve | stigati | ion & | reclar | Exploratory Hole No WS1 |               |             |                         |                                  |                                                                                                   |                           |  |  |
|----------|--------------|--------|--------|-----------|---------|-------|--------|-------------------------|---------------|-------------|-------------------------|----------------------------------|---------------------------------------------------------------------------------------------------|---------------------------|--|--|
| Site A   | ddress       |        |        |           |         |       |        |                         | -             |             | oad, London             | Project No                       |                                                                                                   | P8592J338                 |  |  |
| Client   |              |        |        |           |         |       |        |                         | 254 Kilbur    |             |                         | Ground Level                     |                                                                                                   | 105525550                 |  |  |
|          | -<br>ersonne | 1      |        |           |         |       |        |                         | TC, LP        |             | ·                       | Commenced                        |                                                                                                   | 13.10.14                  |  |  |
|          |              |        |        |           |         |       |        |                         | -,            |             |                         | Completed                        |                                                                                                   | 13.10.14                  |  |  |
| Type an  | d diame      | ter o  | fequ   | uipm      | ent:    |       |        |                         |               |             | Premier 110             | 0                                |                                                                                                   |                           |  |  |
|          | evels rec    |        |        |           |         | ng, m | 1      |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
| Date     |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
| Hole De  |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
| Casing [ |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          | evel on s    |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
| Remark   | evel afte    | er 201 | nins   |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
| 1.       | 3            |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
| 2.       |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
| 2.<br>3. |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
| 4        |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          | 9            | Samp   | oles d | or Te     | sts     |       |        |                         |               |             | Strata                  |                                  |                                                                                                   |                           |  |  |
|          |              |        |        | R         | lesul   | ts    |        |                         |               |             |                         |                                  | Strata Descrip                                                                                    | tion                      |  |  |
| Туре     | Depth        |        |        |           |         |       |        |                         | Depth         |             |                         |                                  | 2                                                                                                 |                           |  |  |
|          | (m)          | 75     | 75     | 75        | 75      | 75    | 75     | Ν                       | (m)           |             | Legend                  | CONCRETE                         |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         | 0.15          |             |                         | CONCRETE<br>Black fine to medium | ashy SAND (MADE)                                                                                  | GROUND)                   |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
| Р        | 0.5          |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
| Р        | 1.0          |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
| SPT      | 1.0          | 1      | 1      | 1         | 2       | 1     | 1      | 5                       | 1.00          |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         | Dark brown/black car             | adv CLAX with from                                                                                | ont find to modium flints |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  | Ink brown/black sandy CLAY with frequent fine to medium flints<br>d brick fragments (MADE GROUND) |                           |  |  |
|          |              |        |        |           |         |       |        |                         | 1.10          |             |                         |                                  |                                                                                                   |                           |  |  |
| D        | 1.5          |        |        |           |         |       |        |                         | 1.40          | -           |                         | Firm orange brown p              | atched blue grev sil                                                                              | ty CLAV                   |  |  |
| U        | 1.5          |        |        |           |         |       |        |                         |               |             |                         | Finite orange brown p            | Jatened blue grey si                                                                              | LY CLAT                   |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
| D        | 2.0          |        |        |           |         |       |        | _                       |               |             |                         |                                  |                                                                                                   |                           |  |  |
| SPT      | 2.0          | 1      | 2      | 2         | 2       | 1     | 2      | 7                       |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               | <u> </u>    |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
| D        | 3.0          |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
| SPT      | 3.0          | 2      | 1      | 2         | 3       | 2     | 2      | 9                       |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               | $\parallel$ |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
| D        | 4.0          |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
| SPT      | 4.0          | 1      | 3      | 3         | 2       | 4     | 4      | 13                      | 4.00          |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         |       |        |                         |               |             |                         |                                  |                                                                                                   |                           |  |  |
|          | Sampli       | ng Co  | de: U  | - Undi    | sturb   |       |        |                         |               | -           |                         |                                  | (U*) Non recovery                                                                                 | of Sample                 |  |  |
|          |              |        |        |           |         |       |        |                         |               |             | use, 1 Furzeground Way, |                                  |                                                                                                   |                           |  |  |
|          |              |        |        |           |         | T:    | 0189   | 5 77 2                  | 187 E: info@j | oma         | sassociates.com W: www  | .jomasassociates.com             | n                                                                                                 |                           |  |  |

|                     | Speci      | alists       | in the |        | stigati          | ion & | reclar | nation       | 5<br>of brownfie | ld sit      | 95                                            | Exploratory Hole No                                | WS2                                |
|---------------------|------------|--------------|--------|--------|------------------|-------|--------|--------------|------------------|-------------|-----------------------------------------------|----------------------------------------------------|------------------------------------|
| Site A              | ddress     |              |        |        |                  |       |        |              | 254 Kilbur       | n Ro        | ad, London                                    | Project No                                         | P8592J338                          |
| Client              |            |              |        |        |                  |       |        |              | 254 Kilbur       | n Hl        | R LLP                                         | Ground Level                                       |                                    |
| Site P              | ersonne    | el           |        |        |                  |       |        |              | TC, LP           |             |                                               | Commenced                                          | 13.10.14<br>13.10.14               |
| īvne an             | d diame    | ter o        | fea    | linm   | ent <sup>.</sup> |       |        |              |                  |             | Premier 11                                    | Completed<br>0                                     | 13.10.14                           |
|                     | evels rec  |              |        |        |                  |       | ı      |              |                  |             |                                               | -                                                  |                                    |
| Date                |            |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
| Hole De             |            |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
| Casing D<br>Nater L | evel on :  | strike       | 2      |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
|                     | evel afte  |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
| Remark              | s          |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
| L.<br>2.            |            |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
| <br>3.              |            |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
| 1                   |            |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
|                     | :          | Samp         | oles d | or Te  | sts              |       |        |              |                  |             | Strata                                        | -                                                  |                                    |
| Туре                | Depth      |              |        | F      | Resul            | ts    |        |              |                  | Strata D    | escription                                    |                                                    |                                    |
| 11                  | (m)        | 75           | 75     | 75     | 75               | 75    | 75     | N            | Depth<br>(m)     |             |                                               |                                                    |                                    |
|                     |            |              |        |        |                  |       |        |              | 0.20             |             |                                               |                                                    |                                    |
|                     |            | -            |        |        | -                | -     |        |              | 0.20             | ╟┤          |                                               | Fine to coarse GRAVEL comprising                   | g of flint brick and concrete (MAD |
| Р                   | 0.4        |              |        |        |                  |       |        |              |                  |             |                                               | GROUND)                                            |                                    |
|                     |            |              |        |        |                  |       |        |              | 0.50             | ╟┥          |                                               | Soft dark brown/black sandy CLA                    | with froquest fine to modify       |
|                     |            |              |        |        |                  |       |        |              |                  |             |                                               | flints and brick fragments (MADE                   |                                    |
| _                   |            |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
| P<br>SPT            | 1.0<br>1.0 | 1            | 0      | 1      | 0                | 1     | 2      | 4            |                  |             |                                               |                                                    |                                    |
| 51.1                | 1.0        | Ĺ            | ľ      | 1      | ľ                | Ĺ     |        | <sup>-</sup> |                  |             |                                               |                                                    |                                    |
|                     |            |              |        |        |                  |       |        |              | 1.20             |             |                                               |                                                    | Y.                                 |
|                     |            |              |        |        |                  |       |        |              |                  |             |                                               | Soft orange brown fine sandy CLA                   | ΥY                                 |
| D                   | 1.5        |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
|                     |            |              |        |        |                  |       |        |              |                  | $\square$   |                                               |                                                    |                                    |
|                     |            |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
| D                   | 2.0        |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
| SPT                 | 2.0        | 1            | 2      | 2      | 3                | 2     | 1      | 8            |                  | $\parallel$ |                                               |                                                    |                                    |
|                     |            |              |        |        |                  |       |        |              | 2.20             |             |                                               |                                                    |                                    |
|                     |            |              |        |        |                  |       |        |              |                  |             |                                               | Firm becoming stiff orange browr                   | n patched blue grey silty CLAY     |
|                     |            |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
|                     |            |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
|                     |            |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
| D                   | 3.0        |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
| SPT                 | 3.0        | 2            | 2      | 3      | 4                | 3     | 4      | 14           |                  |             |                                               |                                                    |                                    |
|                     |            |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
|                     |            |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
|                     |            |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
|                     |            |              |        |        |                  |       |        |              |                  | $\parallel$ |                                               |                                                    |                                    |
|                     |            |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
| _                   |            |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
| D<br>SPT            | 4.0<br>4.0 | 2            | 4      | 4      | 5                | 3     | 4      | 16           |                  |             |                                               |                                                    |                                    |
| 511                 | 4.0        | <sup>-</sup> | "      | 1      |                  | ]     | -      |              |                  |             |                                               |                                                    |                                    |
|                     |            |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
|                     |            |              |        |        |                  |       |        |              | 4.45             |             |                                               |                                                    |                                    |
|                     |            |              |        | -      |                  |       |        |              | 4.43             | ╟┤          |                                               |                                                    |                                    |
|                     |            |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
|                     |            |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
|                     |            |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
|                     |            |              |        |        |                  |       |        |              |                  |             |                                               |                                                    |                                    |
|                     | 6-0-1      | inc C        | de: 11 | 114.25 |                  | od P  | Larr : | Diet         | shod             |             | D. Small Diate at 12                          | Weter (119) bi                                     | anyony of County                   |
|                     | Sampl      | ing Co       | ae: U  | - Undi |                  |       |        |              |                  | le Hr       | D - Small Disturbed<br>use. 1 Furzeground Way | W - Water (U*) Non re<br>. Stockley Park, UB11 1BD | covery of Sample                   |
|                     |            |              |        |        |                  |       |        |              |                  |             | sassociates.com W: www                        |                                                    |                                    |

|          | Speci                  | alists | in the |        | stigati | ion &  | reclar | matio  | <b>S</b><br>n of brownfiel                                                                              | ld sit      | tes                      | Exploratory Ho                               | ble No               | WS3                            |
|----------|------------------------|--------|--------|--------|---------|--------|--------|--------|---------------------------------------------------------------------------------------------------------|-------------|--------------------------|----------------------------------------------|----------------------|--------------------------------|
| Site A   | ddress                 |        |        |        |         |        |        |        | 254 Kilbur                                                                                              | n R         | oad, London              | Project No                                   |                      | P8591J338                      |
| Client   |                        |        |        |        |         |        |        |        | 254 Kilbur                                                                                              | n H         | R LLP                    | Ground Level                                 |                      |                                |
| Site P   | ersonne                | el –   |        |        |         |        |        |        | TC, LP                                                                                                  |             |                          | Commenced                                    |                      | 13.10.14                       |
| Tuno an  | d diame                | toro   | for    | uinm   | ont     |        |        |        |                                                                                                         |             | Premier 11               | Completed                                    |                      | 13.10.14                       |
|          | evels red              |        |        |        |         | ng. m  | 1      |        |                                                                                                         |             | Trefiner 11              | 0                                            |                      |                                |
| Date     |                        |        |        |        |         | .0,    | -      |        |                                                                                                         |             |                          |                                              |                      |                                |
| Hole De  |                        |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
| Casing D | Depth<br>evel on :     |        | _      |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
|          | evel on :<br>evel afte |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
| Remark   |                        |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
| 1.       |                        | In     | stall  | ed 50  | Omm     | pipe   | to 2   | .50m   | า                                                                                                       |             |                          |                                              |                      |                                |
| 2.       |                        |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
| 3.<br>4  |                        |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
| +        |                        | Samp   | oles   | or Te  | sts     |        |        |        |                                                                                                         |             | Strata                   |                                              |                      |                                |
|          |                        |        |        |        | Resul   | ts     |        |        |                                                                                                         |             |                          |                                              | Strata Descrip       | otion                          |
| Туре     | Depth                  | 75     |        |        |         |        |        |        | Depth                                                                                                   |             | Lesson 1                 |                                              | 2                    |                                |
|          | (m)                    | 75     | 75     | 75     | 75      | 75     | 75     | N      | (m)         Legend           0.15         CONCRETE           Light brown slightly claves fine to medium |             |                          |                                              |                      |                                |
| Р        | 0.2                    |        |        |        |         |        |        |        | 0.10                                                                                                    | ╟─          |                          | Light brown slightly o                       |                      | m SAND with frequent fine      |
|          |                        |        |        |        |         |        |        |        | 0.30                                                                                                    | ∥           |                          | to medium angular fl                         | ints (MADE GROUN     | D)                             |
| Р        | 0.5                    |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      | nix concrete, brick, flint and |
|          |                        |        |        |        |         |        |        |        |                                                                                                         |             |                          | ash in a fine sand (M                        | ADE GROUND)          |                                |
|          |                        |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
| Р        | 1.0                    |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
| SPT      | 1.0                    | 1      | 1      | 1      | 0       | 1      | 0      | 2      |                                                                                                         |             |                          |                                              |                      |                                |
|          |                        |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
|          |                        |        |        |        | -       |        |        |        | 1.20                                                                                                    | ╟─          |                          |                                              |                      |                                |
|          |                        |        |        |        |         |        |        |        |                                                                                                         |             |                          | Dark brown fine sand<br>brick fragments (MAI |                      | nt fine to medium flints and   |
| Р        | 1.5                    |        |        |        |         |        |        |        |                                                                                                         |             |                          | STICK TRABILIERIUS (IVIAI                    |                      |                                |
|          |                        |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
|          |                        |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
| Р        | 2.0                    |        |        |        | _       |        | _      |        |                                                                                                         |             |                          |                                              |                      |                                |
| SPT      | 2.0                    | 1      | 2      | 1      | 2       | 2      | 2      | 7      | 2.10                                                                                                    | ┣—          |                          |                                              |                      |                                |
|          |                        |        |        |        |         |        |        |        | 2.10                                                                                                    | ╟─          |                          | Firm orange brown p                          | atched blue grey sil | ty CLAY                        |
|          |                        |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
| D        | 2.5                    |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
|          | 2.3                    |        |        |        |         |        |        |        |                                                                                                         | ⊫           |                          |                                              |                      |                                |
|          |                        |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
|          | 2.0                    |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
| D<br>SPT | 3.0<br>3.0             | 2      | 3      | 4      | 4       | 3      | 5      | 16     |                                                                                                         |             |                          |                                              |                      |                                |
|          |                        |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
|          |                        |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
|          |                        |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
|          |                        |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
|          |                        |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
|          |                        |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
| D        | 4.0                    |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
| SPT      | 4.0                    | 2      | 2      | 4      | 3       | 3      | 4      | 14     |                                                                                                         |             |                          |                                              |                      |                                |
|          |                        |        |        |        |         |        |        |        |                                                                                                         | $\parallel$ |                          |                                              |                      |                                |
|          |                        |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
|          |                        |        |        |        |         |        |        |        | 4.45                                                                                                    |             |                          |                                              |                      |                                |
|          |                        |        |        |        |         |        |        |        |                                                                                                         | ⊩           |                          |                                              |                      |                                |
|          |                        |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
|          |                        |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
|          |                        |        |        |        |         |        |        |        |                                                                                                         |             |                          |                                              |                      |                                |
|          |                        |        |        |        |         |        |        |        |                                                                                                         | ⊩           |                          |                                              |                      |                                |
|          | Sampl                  | ing Co | de: U  | - Undi | isturb  | ed B - | Large  | Distu  | rbed                                                                                                    | 4           | D - Small Disturbed      | W - Water                                    | (U*) Non recovery    | of Sample                      |
|          |                        |        |        |        |         |        |        |        |                                                                                                         |             | ouse, 1 Furzeground Way, |                                              |                      |                                |
|          |                        |        |        |        |         | T:     | 0189   | 5 77 2 | 187 E: info@j                                                                                           | joma        | asassociates.com W: www  | v.jomasassociates.cor                        | n                    |                                |

|                   | -          | /              | 6      |        |         |       |        |                      |                          |                       |                                                | Exploratory Ho             | ole No                | WS4       |
|-------------------|------------|----------------|--------|--------|---------|-------|--------|----------------------|--------------------------|-----------------------|------------------------------------------------|----------------------------|-----------------------|-----------|
| Cite              |            | alists         | in the | e inve | stigati | ion & | reclar | natio                |                          |                       |                                                | Desired No.                |                       | 505021220 |
| Client            | ddress     |                |        |        |         |       |        |                      | 254 Kilbur<br>254 Kilbur |                       | d, London                                      | Project No<br>Ground Level |                       | P8592J338 |
|                   | ersonne    |                |        |        |         |       |        |                      | TC, LP                   |                       |                                                | Commenced                  |                       | 13.10.14  |
|                   |            |                |        |        |         |       |        |                      | ,                        |                       |                                                | Completed                  |                       | 13.10.14  |
| Type an           |            |                |        |        |         |       |        |                      |                          |                       | Premier 11                                     | .0                         |                       |           |
| Water l           | evels rec  | orde           | ed du  | iring  | boriı   | ng, m | 1      |                      | [                        |                       |                                                |                            |                       |           |
| Date<br>Hole De   | nth        |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
| Casing E          |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
| Water L           |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
| Water L<br>Remark |            | er 201         | mins   |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
| 1.                | 5          |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
| 2.                |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
| 3.                |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
| 4                 |            | Samr           | oles   | or Te  | sts     |       |        |                      |                          | _                     | trata                                          |                            |                       |           |
|                   |            | Strata Docaria | tion   |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
| Туре              | Depth      |                |        |        | lesul   |       |        |                      | Strata Descrip           | uon                   |                                                |                            |                       |           |
|                   | (m)        | 75             | 75     | 75     | 75      | 75    | 75     | N                    | (m)                      |                       | Legend                                         | CONCRETE                   |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                | CONCILIE                   |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
| Р                 | 0.5        |                |        |        |         |       |        | Soft dark brown/blac | ck sandy CLAY with fr    | equent fine to medium |                                                |                            |                       |           |
|                   | 0.0        |                |        |        |         |       |        |                      |                          |                       |                                                | flints and brick fragm     |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
| Р                 | 1.0        |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
| SPT               | 1.0        | 1              | 0      | 1      | 1       | 1     | 0      | 3                    |                          |                       |                                                |                            |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
| D                 | 1.5        |                |        |        |         |       |        |                      | 1.50                     | -                     |                                                | Firm orange brown p        | atched blue grev silt | V CLAY    |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                | in the orange brown p      | atched blue grey sht  |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
| D<br>SPT          | 2.0<br>2.0 | 1              | 2      | 2      | 1       | 2     | 1      | 6                    |                          |                       |                                                |                            |                       |           |
| -                 |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
| D                 | 3.0        |                |        |        |         | 2     | 2      | 12                   |                          |                       |                                                |                            |                       |           |
| SPT               | 3.0        | 2              | 3      | 3      | 4       | 2     | 3      | 12                   |                          |                       |                                                |                            |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
| D                 | 4.0        |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
| SPT               | 4.0        | 1              | 3      | 3      | 4       | 4     | 4      | 15                   |                          |                       |                                                |                            |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
|                   |            |                |        |        |         |       |        |                      | 4.45                     |                       |                                                |                            |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                |                            |                       |           |
|                   | Sampli     | ng Co          | de: U  | - Undi | sturb   |       |        |                      |                          |                       | D - Small Disturbed                            |                            | (U*) Non recovery     | of Sample |
|                   |            |                |        |        |         |       |        |                      |                          |                       | se, 1 Furzeground Way<br>issociates.com W: www |                            |                       |           |
|                   |            |                |        |        |         |       |        |                      |                          |                       |                                                | ,                          |                       |           |

|          | Speci              | alists | in the  |        | stigati  | ion &  | reclar | nation | 5<br>n of brownfie | ld si | 5                   | Exploratory Hole No           |                  | WS5                   |
|----------|--------------------|--------|---------|--------|----------|--------|--------|--------|--------------------|-------|---------------------|-------------------------------|------------------|-----------------------|
| Site A   | ddress             |        |         |        |          |        |        |        | 254 Kilbur         | n R   | ad, London          | Project No                    |                  | P8592J338             |
| Client   |                    |        |         |        |          |        |        |        | 254 Kilbur         |       |                     | Ground Level                  |                  |                       |
| Site P   | ersonne            | l      |         |        |          |        |        |        | TC, LP             |       |                     | Commenced                     |                  | 13.10.14              |
| Type an  | d diame            | ter o  | feni    | linm   | ent:     |        |        |        |                    |       | Premier 11          | Completed                     |                  | 13.10.14              |
|          | evels rec          |        |         |        |          | ng, m  | 1      |        |                    |       |                     |                               |                  |                       |
| Date     |                    |        |         | 0      |          | 0,     |        |        |                    |       |                     |                               |                  |                       |
| Hole De  |                    |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
| Casing D | Depth<br>evel on s | trike  |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
|          | evel offs          |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
| Remark   |                    |        |         |        | 1        |        |        |        | 1                  |       |                     | I                             |                  |                       |
| 1.       |                    |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
| 2.       |                    |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
| 3.<br>1  |                    |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
| T        | :                  | Samp   | oles d  | or Te  | sts      |        |        |        |                    |       | Strata              |                               |                  |                       |
|          |                    |        |         |        | lesul    | te     |        |        |                    |       |                     | Stra                          | ta Descrinti     | ion                   |
| Туре     | Depth              |        |         |        |          |        |        |        | Depth              |       | Strata Description  |                               |                  |                       |
|          | (m)                | 75     | 75      | 75     | 75       | 75     | 75     | N      | (m)<br>0.05        | ľ     | Legend              | BLACKTOP                      |                  |                       |
|          |                    |        |         |        |          |        |        |        | 0.05               | ╟─    |                     | CONCRETE                      |                  |                       |
| Р        | 0.3                |        |         |        |          |        |        |        |                    |       |                     | Soft dark brown/black sandy   | CLAY with fre    | quent fine to medium  |
| Р        | 0.5                |        |         |        |          |        |        |        |                    |       |                     | flints and brick fragments (N |                  | •                     |
| r        | 0.5                |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
| P<br>SPT | 1.0<br>1.0         | 1      | 0       | 0      | 1        | 2      | 1      | 4      |                    |       |                     |                               |                  |                       |
|          | 1.0                |        |         | ľ      | -        | -      |        | Ĺ      |                    |       |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        | 1.20               |       |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        |                    |       |                     | Firm orange brown silty CLA   | Y with find to . | medium angular flints |
| D        | 1.5                |        |         |        |          |        |        |        |                    | ╟─    |                     |                               | with the to f    |                       |
| -        |                    |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
| D        | 2.0                |        |         |        |          |        |        |        |                    | -     |                     |                               |                  |                       |
| SPT      | 2.0                | 1      | 1       | 2      | 3        | 1      | 2      | 8      |                    |       |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        |                    | -     |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        | 2.40               |       |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        |                    |       |                     | Firm orange brown patched     | blue grey silty  | CLAY                  |
|          |                    |        |         |        |          |        |        |        |                    | ╟─    |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
| D        | 3.0                |        |         | _      | <u>,</u> |        | -      | 14     |                    |       |                     |                               |                  |                       |
| SPT      | 3.0                | 2      | 2       | 3      | 2        | 4      | 5      | 14     |                    | ⊩     |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        |                    | ┢     |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
|          | 4.0                |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
| D<br>SPT | 4.0<br>4.0         | 2      | 3       | 3      | 3        | 3      | 4      | 13     |                    |       |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        | 4.45               |       |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        | 4.43               | ╟─    |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
|          |                    |        |         |        |          |        |        |        |                    |       |                     |                               |                  |                       |
|          |                    |        | الا بما | - Undi | sturb    | ed B - | Large  | Distu  | rhed               |       | D - Small Disturbed | 14/ 14/stan (11%) N           | on recovery o    | f Commile             |
|          | Sampli             | ng Co  | ue. 0   | •      |          |        |        |        |                    |       |                     | , Stockley Park, UB11 1BD     | on recovery o    | r Sample              |

|          |                         |        | C      |        |        |        | Exploratory Hole No TP1 |            |        |           |                    |                                                |                      |                      |
|----------|-------------------------|--------|--------|--------|--------|--------|-------------------------|------------|--------|-----------|--------------------|------------------------------------------------|----------------------|----------------------|
|          | Speci                   | alists | in the | inve:  | stigat | ion &  |                         |            |        |           |                    |                                                |                      |                      |
|          | Address                 |        |        |        |        |        |                         | Project No |        | P8591J338 |                    |                                                |                      |                      |
| Client   |                         |        |        |        |        |        | Ground Level            |            |        |           |                    |                                                |                      |                      |
| Site P   | Personne                | el 👘   |        |        |        |        |                         |            | TC, LP |           |                    | Commenced                                      |                      | 09/10/2014           |
|          |                         |        |        |        |        |        |                         |            |        |           |                    | Completed                                      |                      | 10/10/2014           |
|          | d diame                 |        |        |        |        |        |                         |            |        |           | Hand Digg          | ging                                           |                      |                      |
|          | evels red               | corde  | ed du  | iring  | bori   | ng, m  | 1                       |            | 1      |           |                    | 1                                              |                      |                      |
| Date     |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
| Hole De  |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
| Casing [ | evel on :               | -+rike |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          | evel afte               |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
| Remark   |                         | .1 20  |        |        |        |        |                         |            |        |           |                    | 1                                              |                      |                      |
| 1.       | SWL                     | - 1.3  | m      |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
| 2.       | • • • •                 |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
| 3.       |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
| 4        |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          | Samples or Tests Strata |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        | R      | lesul  | ts     |                         |            |        |           |                    |                                                | Strata Descriptio    | on                   |
| Туре     | Depth                   |        |        |        |        |        |                         |            | Depth  |           |                    |                                                | 2 00011010           |                      |
|          | (m)                     | 75     | 75     | 75     | 75     | 75     | 75                      | N          | (m)    |           | Legend             | Acabalt to 0.02                                | CONCRETE             |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    | Asphalt to 0.03m ove                           |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            | 0.30   | ╟─        |                    | Dark brown / black a                           | shy, very sandy CLAY | with frequent brick. |
| р        | 0.5                     |        |        |        |        |        | [MADE GROUND]           |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            | 1.00   |           |                    |                                                |                      |                      |
| Р        | 1                       |        |        |        |        |        |                         |            | 1.00   | ╟─        |                    | Orange brown silty C                           | I AV with occasional | hrick fragments      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    | [MADE GROUND]                                  | Ert with occusional  | brick nuginents.     |
|          |                         |        |        |        |        |        |                         |            | 1.30   |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    | Orange brown silty C                           | LAY.                 |                      |
| Р        | 1.5                     |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            | 1.60   | ╟─        |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        | ┢─        |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          |                         |        |        |        |        |        |                         |            |        |           |                    |                                                |                      |                      |
|          | Sampl                   | ing Co | de: U  | - Undi | sturb  | ed B - | Large                   | Distu      | rbed   |           | D - Small Disturbe | ed W - Water                                   | (U*) Non recovery    | of Sample            |
|          |                         |        |        |        |        |        |                         |            |        |           |                    | , Stockley Park, UB11<br>v.jomasassociates.cor |                      |                      |

|                     | Speci     | alists | in the |        | stigati | ion & | reclan  | natio  | 5<br>n of brownfiel | d sit        | es        | Exploratory Ho                                                | ole No            | TP2                |
|---------------------|-----------|--------|--------|--------|---------|-------|---------|--------|---------------------|--------------|-----------|---------------------------------------------------------------|-------------------|--------------------|
| Site A              | ddress    |        |        |        |         |       |         |        | 254 Kilbur          |              |           | Project No                                                    |                   | P8591J338          |
| Client              |           |        |        |        |         |       |         |        | 254 Kilbur          |              |           | Ground Level                                                  |                   |                    |
|                     | ersonne   | 1      |        |        |         |       |         |        | TC, LP              |              |           | Commenced                                                     |                   | 09/10/2014         |
|                     |           |        |        |        |         |       |         |        |                     |              |           | Completed                                                     |                   | 10/10/2014         |
|                     | d diame   |        |        |        |         |       |         |        |                     |              | Hand Digg |                                                               |                   |                    |
|                     | evels rec | orde   | d du   | ring   | borir   | ng, m |         |        |                     |              |           |                                                               |                   |                    |
| Date                |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
| Hole De             |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
| Casing E<br>Water I | evel on s | strike | 2      |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
| Water L             |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
| Remark              |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
| 1.                  |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
| 2.                  |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
| 3.                  |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
| 4                   |           | Samr   | oles c | or Te  | sts     |       |         |        |                     | SI           | trata     |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               | Strata Deserie ti |                    |
| Туре                | Depth     |        |        | R      | lesul   | ts    |         |        | Depth               |              |           |                                                               | Strata Descriptio | on                 |
|                     | (m)       | 75     | 75     | 75     | 75      | 75    | 75      | Ν      | (m)                 |              | Legend    |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        | 0.15                | ╟╢           |           | CONCRETE<br>Limestone (MADE G                                 |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           | Limestone (MADE G                                             | ROUND)            |                    |
|                     |           |        |        |        |         |       |         |        | 0.40                |              |           |                                                               |                   |                    |
| р                   | 0.5       |        |        |        |         |       |         |        |                     |              |           | Dark brown / black v                                          |                   | frequent brick and |
|                     |           |        |        |        |         |       |         |        |                     |              |           | concrete fragments.                                           | [MADE GROUND]     |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
| Р                   | 1         |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        | 1.10                |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     | $\vdash$     |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     | H            |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     | $\mathbb{H}$ |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     | $\mathbb{H}$ |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     | Ш            |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        |                     |              |           |                                                               |                   |                    |
|                     |           |        |        |        |         |       |         |        | L                   |              |           |                                                               |                   |                    |
|                     | Sampli    | ng Co  | de: U- | - Undi | Jom     | as As | sociate | es Ltd | - Lakeside Ho       |              |           | d W - Water<br>, Stockley Park, UB11<br>v.jomasassociates.cor |                   | of Sample          |

|          | Speci     | alists | in the |        | stigati | ion & | reclan  | natior | 5<br>n of brownfield       | Exploratory H | ole No    | TP3                                                           |                                           |                               |
|----------|-----------|--------|--------|--------|---------|-------|---------|--------|----------------------------|---------------|-----------|---------------------------------------------------------------|-------------------------------------------|-------------------------------|
| Site 4   | ddress    |        |        |        |         |       |         |        | 254 Kilburi                |               |           | Project No                                                    |                                           | P8591J338                     |
| Clien    |           |        |        |        |         |       |         |        | 254 Kilburi<br>254 Kilburi |               |           | Ground Level                                                  |                                           | F83311338                     |
|          | ersonne   | 1      |        |        |         |       |         |        | TC, LP                     |               |           | Commenced                                                     |                                           | 09/10/2014                    |
| once i   |           |        |        |        |         |       |         |        | 10, 11                     |               |           | Completed                                                     |                                           | 10/10/2014                    |
| Type an  | d diame   | ter o  | of equ | uipm   | ent:    |       |         |        |                            |               | Hand Digg |                                                               |                                           | _,, _ <b>_</b> , _ <b>_</b> , |
|          | evels rec |        |        |        |         | ng, m | 1       |        |                            |               |           |                                                               |                                           |                               |
| Date     |           |        |        |        |         |       |         |        |                            |               |           |                                                               |                                           |                               |
| Hole De  | pth       |        |        |        |         |       |         |        |                            |               |           |                                                               |                                           |                               |
| Casing [ |           |        |        |        |         |       |         |        |                            |               |           |                                                               |                                           |                               |
|          | evel on s |        |        |        |         |       |         |        |                            |               |           |                                                               |                                           |                               |
|          | evel afte | er 20  | mins   |        |         |       |         |        |                            |               |           |                                                               |                                           |                               |
| Remark   | S         |        |        |        |         |       |         |        |                            |               |           |                                                               |                                           |                               |
| 1.<br>2. |           |        |        |        |         |       |         |        |                            |               |           |                                                               |                                           |                               |
| 2.<br>3. |           |        |        |        |         |       |         |        |                            |               |           |                                                               |                                           |                               |
| 5.<br>4  |           |        |        |        |         |       |         |        |                            |               |           |                                                               |                                           |                               |
|          | 1         | Sami   | oles d | or Te  | sts     |       |         |        |                            | S             | trata     |                                                               |                                           |                               |
|          |           |        |        |        |         |       |         |        |                            |               |           |                                                               | Strate Day 1                              |                               |
| Туре     | Depth     |        |        | R      | lesul   | LS    |         |        | Depth                      |               |           |                                                               | Strata Description                        |                               |
|          | (m)       | 75     | 75     | 75     | 75      | 75    | 75      | Ν      | (m)                        |               | Legend    |                                                               |                                           |                               |
|          |           |        |        |        |         |       |         |        | 0.05                       | $\square$     |           | Screed flooring over                                          |                                           |                               |
|          |           |        |        |        |         |       |         |        | 0.20                       | $\parallel$   |           | Concrete with 6mm                                             | -                                         | deat fine to a                |
| р        | 0.40      |        |        |        |         |       |         |        |                            |               |           | Dark brown / grey cl<br>concrete and brick g                  | ayey SAND with abur<br>ravel. [MADE GROUN |                               |
| Р Р      | 0.40      |        |        |        |         |       |         |        |                            |               |           |                                                               |                                           |                               |
|          |           |        |        |        |         |       |         |        |                            |               |           |                                                               |                                           |                               |
| Р        | 0.75      |        |        |        |         |       |         |        | 0.75                       |               |           |                                                               |                                           |                               |
|          |           |        |        |        |         |       |         |        |                            |               |           |                                                               |                                           |                               |
|          |           |        |        |        |         |       |         |        |                            |               |           |                                                               |                                           |                               |
|          | Sampli    | ing Co | de: U  | - Undi | Jom     | as As | sociate | es Ltd | - Lakeside Ho              |               |           | ed W - Water<br>, Stockley Park, UB11<br>v.jomasassociates.co |                                           | of Sample                     |

|          | Speci     | alists | in the | inves | stigati | ion &  | reclan  | natio  | 5<br>n of brownfiel | Exploratory Ho   | ole No               | TP4                                            |                     |                       |
|----------|-----------|--------|--------|-------|---------|--------|---------|--------|---------------------|------------------|----------------------|------------------------------------------------|---------------------|-----------------------|
| Site 4   | ddress    | _      | _      | _     | _       | _      |         |        | 254 Kilbur          |                  |                      | Project No                                     |                     | P8591J338             |
| Clien    |           |        |        |       |         |        |         |        | 254 Kilbur          |                  |                      | Ground Level                                   |                     | F03311330             |
|          | Personne  | 1      |        |       |         |        | _       |        | TC, LP              |                  |                      | Commenced                                      |                     | 09/10/2014            |
| Siler    | ersonne   |        |        |       |         |        |         |        | IC, LP              |                  |                      |                                                |                     | 10/10/2014            |
| Turne er | d diame   |        | f      |       |         |        |         |        |                     |                  | Hand Digg            | Completed                                      |                     | 10/10/2014            |
|          | evels rec |        |        |       |         | ng, m  | I       |        |                     |                  |                      | Sing                                           | •                   |                       |
| Date     |           |        |        |       |         |        |         |        |                     |                  |                      |                                                |                     |                       |
| Hole De  |           |        |        |       |         |        |         |        |                     |                  |                      |                                                |                     |                       |
| Casing [ |           |        |        |       |         |        |         |        |                     |                  |                      |                                                |                     |                       |
|          | evel on s |        |        |       |         |        |         |        |                     |                  |                      |                                                |                     |                       |
|          | evel afte | er 20  | mins   |       |         |        |         |        |                     |                  |                      |                                                |                     |                       |
| Remark   | S         |        |        |       |         |        |         |        |                     |                  |                      |                                                |                     |                       |
| 1.       |           |        |        |       |         |        |         |        |                     |                  |                      |                                                |                     |                       |
| 2.       |           |        |        |       |         |        |         |        |                     |                  |                      |                                                |                     |                       |
| 3.       |           |        |        |       |         |        |         |        |                     |                  |                      |                                                |                     |                       |
| 4        |           | Same   | oles d | n Te  | ste     |        |         | _      |                     | c                | trata                |                                                |                     |                       |
|          |           | Jainp  | JIES ( |       |         |        |         |        | 1                   |                  |                      |                                                |                     |                       |
| Туре     | Depth     |        |        | R     | esul    | ts     |         |        | Depth               |                  |                      |                                                | Strata Descriptio   | on                    |
|          | (m)       | 75     | 75     | 75    | 75      | 75     | 75      | Ν      |                     |                  |                      |                                                |                     |                       |
|          |           |        |        |       |         |        |         |        | Legend              | Screed flooring. |                      |                                                |                     |                       |
|          |           |        |        |       |         |        |         |        | 0.05                |                  |                      | Concrete with 6mm                              | reinforcing bar.    |                       |
|          |           |        |        |       |         |        |         |        | 0.30                |                  |                      |                                                |                     |                       |
|          |           |        |        |       |         |        |         |        |                     |                  |                      |                                                |                     | with abundant fine to |
| Р        | 0.5       |        |        |       |         |        |         |        |                     |                  | medium brick and fli | nt gravel. [MADE GR                            | OUND]               |                       |
|          |           |        |        |       |         |        |         |        |                     |                  |                      |                                                |                     |                       |
|          |           |        |        |       |         |        |         |        | 0.00                |                  |                      |                                                |                     |                       |
|          |           |        |        |       |         |        |         |        | 0.80                | ╟─               |                      | Dark brown / black v                           | erv sandy CLAY with | frequent fine to      |
| Р        | 1         |        |        |       |         |        |         |        | 1.00                | -                |                      | medium angular flint                           |                     |                       |
|          | -         |        |        |       |         |        |         |        | 1.00                | ⊩                |                      | fragments. [MADE G                             |                     |                       |
|          |           |        |        |       |         |        |         |        |                     |                  |                      |                                                |                     |                       |
|          | Sampli    | ng Co  | de: U  | Undi  | sturb   | ed B - | Large   | Distu  | rbed                |                  | D - Small Disturbe   | ed W - Water                                   | (U*) Non recovery   | of Sample             |
|          | 1         | 5      |        |       | Jom     | as As  | sociate | es Ltd | - Lakeside Ho       |                  | 1 Furzeground Way    | , Stockley Park, UB11<br>w.jomasassociates.cor | 1BD                 | -                     |

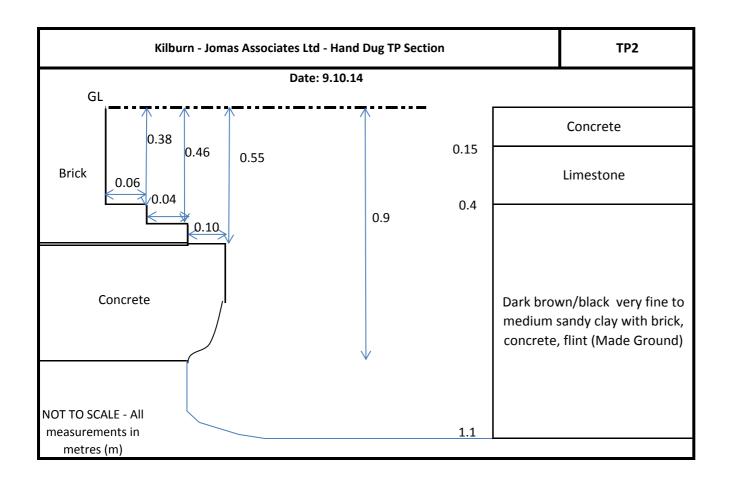
|          | Speci     | alists | in the |        | stigati | ion &    | reclar | natior        | 5<br>n of brownfie | Exploratory Ho | ole No               | TP5                                            |                       |                       |
|----------|-----------|--------|--------|--------|---------|----------|--------|---------------|--------------------|----------------|----------------------|------------------------------------------------|-----------------------|-----------------------|
| Site A   | ddress    |        |        |        |         |          |        |               | 254 Kilbur         | n Hi           | gh Road              | Project No                                     |                       | P8591J338             |
| Client   |           |        |        |        |         |          |        |               | 254 Kilbur         |                |                      | Ground Level                                   |                       |                       |
|          | ersonne   | el     |        |        |         |          |        |               | TC, LP             |                |                      | Commenced                                      |                       | 09/10/2014            |
|          |           |        |        |        |         |          |        |               | ,                  |                |                      | Completed                                      |                       | 10/10/2014            |
| Type an  | d diame   | ter o  | of equ | uipm   | ent:    |          |        |               |                    |                | Hand Dig             |                                                |                       | · · · · ·             |
|          | evels rec |        |        |        |         |          | 1      |               |                    |                |                      |                                                |                       |                       |
| Date     |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
| Hole De  |           |        |        |        |         |          |        |               |                    |                |                      | 1                                              |                       |                       |
| Casing D |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
|          | evel on s |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
| Water L  |           | er 20  | mins   |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
| Remark   | S         |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
| 1.<br>2. |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
| 2.<br>3. |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
| 3.<br>4  |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
|          |           | Samp   | oles d | or Te  | sts     |          |        |               |                    |                |                      |                                                |                       |                       |
|          |           |        |        |        | lesul   | ts       |        |               | Strata Descriptio  | n -            |                      |                                                |                       |                       |
| Туре     | Depth     |        |        |        |         |          |        |               | Strata Descriptio  |                |                      |                                                |                       |                       |
|          | (m)       | 75     | 75     | 75     | 75      | 75       | 75     | Ν             |                    |                |                      |                                                |                       |                       |
|          |           |        |        |        |         |          |        |               | Screed flooring.   |                |                      |                                                |                       |                       |
|          |           |        |        |        |         | <u> </u> |        |               | 0.25               |                | Concrete             | El of briels ar sussi                          | and mortages and      |                       |
|          |           |        |        |        |         |          |        |               | 0.40               |                |                      | Fine to coarse GRAVI<br>[MADE GROUND]          | L OI DIICK, CONCrete  | and mortar aggregate. |
|          |           |        |        |        |         |          |        |               | 0.40               |                | Dark brown ashy, ver | ry sandy CLAY with n                           | nuch brick and flint. |                       |
|          |           |        |        |        |         |          |        | [MADE GROUND] | , ,                |                |                      |                                                |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
| Р        | 1.0       |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
|          |           |        |        |        |         |          |        |               | 1.40               |                |                      |                                                |                       |                       |
|          |           |        |        |        |         | -        |        |               | 1.40               | ╟──            |                      | Firm orange brown C                            | CLAY.                 |                       |
|          |           |        |        |        |         |          |        |               |                    | ╟              |                      |                                                |                       |                       |
|          |           |        |        |        |         |          |        |               | 1.70               |                |                      |                                                |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      | 1                                              |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      | 1                                              |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      | 1                                              |                       |                       |
|          |           |        |        |        |         |          |        |               |                    | ⊩              |                      | 1                                              |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      | 1                                              |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      | 1                                              |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      | 1                                              |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      | 1                                              |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      | 1                                              |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      | 1                                              |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      | 1                                              |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      | 1                                              |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      | 1                                              |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      | 1                                              |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      | 1                                              |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      | 1                                              |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      | 1                                              |                       |                       |
|          |           |        |        |        |         |          |        |               |                    |                |                      |                                                |                       |                       |
|          |           |        |        |        |         | <u> </u> |        |               | L                  |                |                      | <u> </u>                                       | 4                     |                       |
|          | Sampli    | ing Co | de: U  | - Undi |         |          |        |               |                    |                | D - Small Disturbe   |                                                | (U*) Non recovery     | ot Sample             |
|          |           |        |        |        |         |          |        |               |                    |                |                      | , Stockley Park, UB11<br>w.jomasassociates.cor |                       |                       |

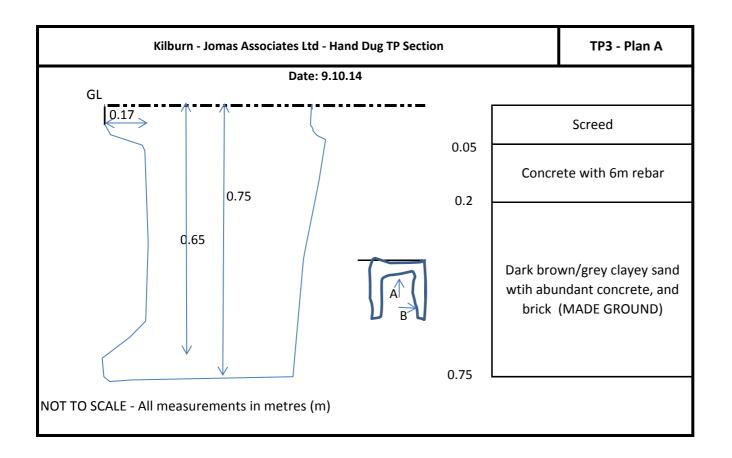
|          | Speci     | alists | in the |       | stigat | ion &                                   | reclar | natior | 5<br>n of brownfiel | d sit        | es                   | Exploratory H                                  | ole No               | TP6                     |
|----------|-----------|--------|--------|-------|--------|-----------------------------------------|--------|--------|---------------------|--------------|----------------------|------------------------------------------------|----------------------|-------------------------|
| Site A   | ddress    |        | _      | _     | _      | _                                       |        |        | 254 Kilbur          |              |                      | Project No                                     |                      | P8591J338               |
| Client   |           |        |        |       |        |                                         |        |        | 254 Kilbur          |              |                      | Ground Level                                   |                      | 103311330               |
|          | ersonne   | 1      | _      | _     | _      |                                         |        | _      | TC, LP              |              |                      | Commenced                                      |                      | 09/10/2014              |
| Siter    | croonine  |        |        |       |        |                                         |        |        | 10, 11              |              |                      | Completed                                      |                      | 10/10/2014              |
| Type an  | d diame   | ter o  | fear   | Jinm  | ent:   |                                         |        |        | I                   |              | Hand Digg            |                                                |                      | 10/ 10/ 2014            |
|          | evels rec |        |        |       |        |                                         | 1      |        |                     |              |                      |                                                |                      |                         |
| Date     |           |        |        | 0     |        | .0,                                     | -      |        |                     |              |                      |                                                | 1                    |                         |
| Hole De  | pth       |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
| Casing D |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          | evel on s | strike | 2      |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
| Water L  | evel afte | er 20ı | mins   |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
| Remark   | s         |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
| 1.       |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
| 2.       |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
| 3.       |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
| 4        |           | C      |        | T.    | ***    |                                         | _      |        |                     | <b>C</b> 4   | wete                 |                                                |                      |                         |
|          |           | Samp   | Jies ( | brie  | sts    |                                         |        |        |                     | <u> </u>     | trata                | -                                              |                      |                         |
| Туре     | Depth     |        |        | R     | lesul  | ts                                      |        |        | Depth               |              |                      |                                                | Strata Description   | on                      |
| Type     | (m)       | 75     | 75     | 75    | 75     | 75                                      | 75     | Ν      | (m)                 |              | Legend               |                                                |                      |                         |
|          | ()        | ,,,,,  | ,,,,,  | ,,,,, | ,,,,   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,,  |        | (,                  |              |                      | Concrete floor to 0.0                          | 2m then Marble, tile | , paper, general waste. |
|          |           |        |        |       |        |                                         |        |        | 0.20                |              |                      | [MADE GROUND]                                  |                      |                         |
|          |           |        |        |       |        |                                         |        |        | 0.35                |              |                      | CONCRETE                                       |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     | $\ $         |                      | Dark reddish brown                             |                      | h abundant fine to      |
| Р        | 0.5       |        |        |       |        |                                         |        |        |                     |              | medium brick and fli | nt gravel.                                     |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        | -                                       |        |        | 0.70                |              |                      | Dark brown / black s                           | andy CLAY with free  | uent fine to medium     |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      | brick and flint gravel                         |                      |                         |
| Р        | 1         |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        | 1.05                |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     | $\mathbb{H}$ |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      |                                                |                      |                         |
|          | Sampli    | ing Co | de: U  | Undi  |        |                                         |        |        |                     |              | D - Small Disturbe   |                                                | (U*) Non recovery    | of Sample               |
|          |           |        |        |       |        |                                         |        |        |                     |              |                      | , Stockley Park, UB11<br>v.jomasassociates.coi |                      |                         |

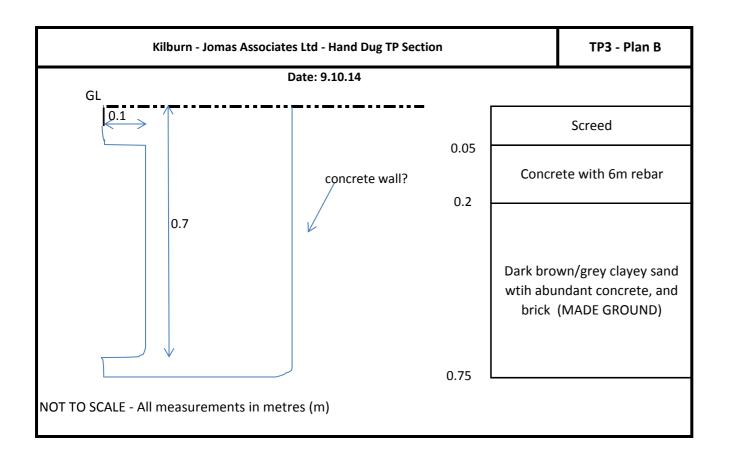
|          | Speci     | alists  | in the   | )<br>inve | stigat  | ion &    | reclar   | natio | 5<br>n of brownfiel | ld sit               | es                      | Exploratory H                                  | ole No                      | TP7                                     |
|----------|-----------|---------|----------|-----------|---------|----------|----------|-------|---------------------|----------------------|-------------------------|------------------------------------------------|-----------------------------|-----------------------------------------|
| Site A   | ddress    |         |          |           |         |          |          |       | 254 Kilbur          | n Hi                 | gh Road                 | Project No                                     |                             | P8591J338                               |
| Client   |           |         |          |           |         |          |          |       | 254 Kilbur          |                      |                         | Ground Level                                   |                             | 10331330                                |
|          | ersonne   | <u></u> |          |           |         |          |          |       | TC, LP              |                      |                         | Commenced                                      |                             | 09/10/2014                              |
| Siter    | cisonine  |         |          |           |         |          |          |       | , , , ,             |                      |                         | Completed                                      |                             | 10/10/2014                              |
| Tuno an  | d diame   | toro    | for      | uinm      | onti    |          |          |       |                     |                      | Hand Digg               |                                                |                             | 10/10/2014                              |
|          | evels rec |         |          |           |         |          |          |       |                     |                      |                         | 6,,,9                                          |                             |                                         |
| Date     | eveisiet  | Jorue   | uuu      | 1116      |         | 116, 11  | •        |       |                     |                      |                         |                                                |                             |                                         |
| Hole De  | nth       |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
| Casing [ |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          | evel on s | strike  | 2        |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          | evel afte |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
| Remark   |           |         | -        |           | <b></b> |          |          |       |                     |                      |                         |                                                |                             |                                         |
| 1.       |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
| 2.       |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
| 3.       |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
| 4        |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           | Samp    | oles d   | or Te     | sts     |          |          |       |                     | S                    | trata                   |                                                |                             |                                         |
|          |           |         |          | P         | lesul   | ts       |          |       |                     |                      |                         |                                                | Strata Descriptio           | n                                       |
| Туре     | Depth     |         |          |           |         |          |          |       | Depth               |                      |                         |                                                | strata bescriptit           |                                         |
|          | (m)       | 75      | 75       | 75        | 75      | 75       | 75       | Ν     | (m)                 |                      | Legend                  |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     | 2m then Marble, tile | , paper, general waste. |                                                |                             |                                         |
|          |           |         |          |           |         | -        | <u> </u> |       | 0.20                | ╟─                   |                         | [MADE GROUND]                                  |                             |                                         |
|          |           |         |          |           |         |          |          |       | 0.35                | ╟─                   |                         | CONCRETE<br>Dark reddish brown                 |                             | h abundant fina ta                      |
| Р        | 0.5       |         |          |           |         |          |          |       |                     |                      |                         | medium brick and fli                           |                             |                                         |
| ' '      | 0.5       |         |          |           |         |          |          |       |                     | ⊩                    |                         |                                                | in Braten (in in in 2 of it | , , , , , , , , , , , , , , , , , , , , |
|          |           |         |          |           |         |          |          |       | 0.70                |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         | Dark brown / black s                           | andy CLAY with frequ        | uent fine to medium                     |
|          |           |         |          |           |         |          |          |       |                     |                      |                         | brick and flint gravel                         | [MADE GROUND]               |                                         |
| Р        | 1         |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       | 1.10                |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          |           |         |          |           |         |          |          |       |                     |                      |                         |                                                |                             |                                         |
|          | _         |         | <u> </u> |           |         | <u> </u> |          |       | I                   |                      | l                       | I                                              | 4                           |                                         |
|          | Sampli    | ing Co  | de: U    | - Undi    |         |          |          |       |                     |                      | D - Small Disturbe      |                                                | (U*) Non recovery           | ot Sample                               |
|          |           |         |          |           |         |          |          |       |                     |                      |                         | , Stockley Park, UB11<br>v.jomasassociates.coi |                             |                                         |

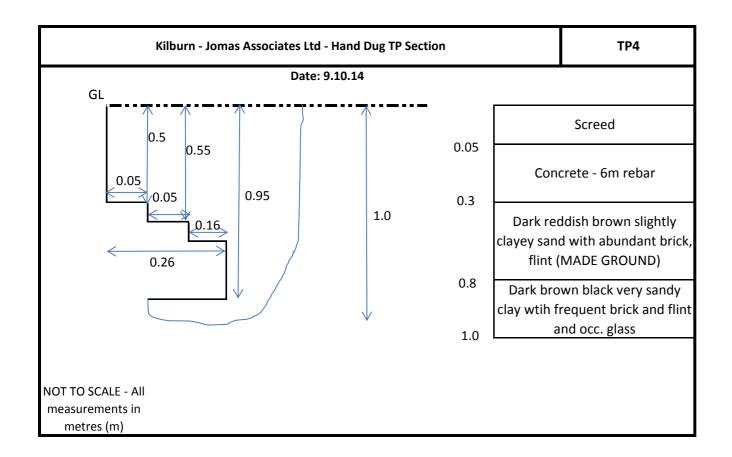
|          | Specia                                    | alists | in the   | )<br>inve | stigati | ion & | reclar | natio | 5<br>of brownfiel | Exploratory Ho       | ole No             | BH1                                            |                   |            |  |
|----------|-------------------------------------------|--------|----------|-----------|---------|-------|--------|-------|-------------------|----------------------|--------------------|------------------------------------------------|-------------------|------------|--|
| Site A   | Address                                   |        |          |           |         |       |        |       | Kilburn Hig       |                      |                    | Project No                                     |                   | P8591J338  |  |
| Clien    |                                           |        |          |           |         |       |        |       | 254 Kilbur        |                      |                    | Ground Level                                   |                   | 10001000   |  |
| Site F   | Personne                                  | 1      |          |           |         |       |        |       | SK BD             |                      |                    | Commenced                                      |                   | 15/10/2014 |  |
|          |                                           |        |          |           |         |       |        |       |                   |                      |                    | Completed                                      |                   | 16/10/2014 |  |
| Type an  | d diame                                   | ter o  | of eq    | uipm      | ent:    |       |        |       |                   |                      | DANDO 1            |                                                |                   |            |  |
| Water I  | evels rec                                 | orde   | ed du    | ring      | boriı   | ng, m | ı      |       |                   |                      |                    |                                                |                   |            |  |
| Date     |                                           |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
| Hole De  |                                           |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
| Casing I |                                           |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
|          | evel on s                                 |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
|          | evel afte                                 | er 20  | mins     |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
| Remark   |                                           |        |          |           |         |       | 25     | 1     |                   |                      |                    |                                                |                   |            |  |
| 1.<br>2. | 150m                                      | i diai | mete     | r boi     | renoi   | eto   | 25mi   | ogi   |                   |                      |                    |                                                |                   |            |  |
| 2.<br>3. |                                           |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
| 3.<br>4  |                                           |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
| •        |                                           | Samı   | ples     | or Te     | sts     |       |        |       |                   | St                   | rata               |                                                |                   |            |  |
|          |                                           |        |          |           |         | +0    |        |       |                   |                      |                    |                                                | Strata Decemini   |            |  |
| Туре     | Depth                                     |        |          | H         | Resul   | 15    |        |       | Depth             |                      |                    |                                                | Strata Descriptio |            |  |
|          | (m)                                       | 75     | 75       | 75        | 75      | 75    | 75     | Ν     | (m)               |                      | Legend             |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       | 0.20              | ⊫∣                   |                    | CONCRETE                                       |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   |                      |                    | MADE GROUND - Bri                              | ck                |            |  |
|          |                                           |        |          |           |         |       |        |       | 0.70              |                      |                    |                                                |                   |            |  |
|          |                                           |        | -        |           | -       | -     |        |       |                   | Firm brown grev CI A | Y                  |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
|          | U 1.5-1.95 35 0 0.70 Firm brown grey CLAY |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
| U        |                                           |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   | H                    |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
| s        | 2.5-2.95                                  | 2      | 3        | 3         | 3       | 3     | 3      | 12    |                   |                      |                    |                                                |                   |            |  |
|          | 2.5 2.55                                  |        |          |           |         | ľ     |        | 12    |                   |                      |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
| D        | 3.2                                       |        |          |           |         |       |        |       |                   | П                    |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
| U        | 3.5-3.95                                  | 40     |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   | H                    |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
| S        | 4.5-4.95                                  | 2      | 3        | 3         | 3       | 3     | 3      | 12    |                   |                      |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
| D        | 5.2                                       |        |          |           |         |       |        |       |                   | $\mathbb{H}$         |                    |                                                |                   |            |  |
| ľ        | 5.2                                       |        |          |           |         |       |        |       |                   | $\parallel$          |                    |                                                |                   |            |  |
| U        | 5.5-5.95                                  | 50     |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   | Ш                    |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   | $\parallel$          |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
| S        | 7-7.45                                    | 3      | 3        | 4         | 4       | 4     | 5      | 17    |                   | $\square$            |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   | $\parallel$          |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   | $\parallel$          |                    |                                                |                   |            |  |
| D        | 8.0                                       |        |          |           |         |       |        |       |                   | $\parallel$          |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   | H                    |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
| U        | 8.5-8.95                                  | 60     |          |           |         |       |        |       |                   |                      |                    | becoming stiff                                 |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   | ⊫∣                   |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   | $\parallel$          |                    |                                                |                   |            |  |
|          |                                           |        |          |           |         |       |        |       |                   |                      |                    |                                                |                   |            |  |
| S        | 10-10.45                                  | 4      | 5        | 6         | 6       | 7     | 7      | 26    |                   |                      |                    |                                                |                   |            |  |
|          | -                                         |        | <u> </u> | <u> </u>  |         |       |        |       | I                 |                      |                    |                                                | (                 |            |  |
|          | Sampli                                    | ng Co  | de: U    | - Undi    |         |       |        |       |                   |                      | D - Small Disturbe |                                                | (U*) Non recovery | of Sample  |  |
|          |                                           |        |          |           |         |       |        |       |                   |                      |                    | , Stockley Park, UB11<br>v.jomasassociates.cor |                   |            |  |
|          |                                           |        |          |           |         |       | 11     |       |                   |                      |                    |                                                |                   |            |  |

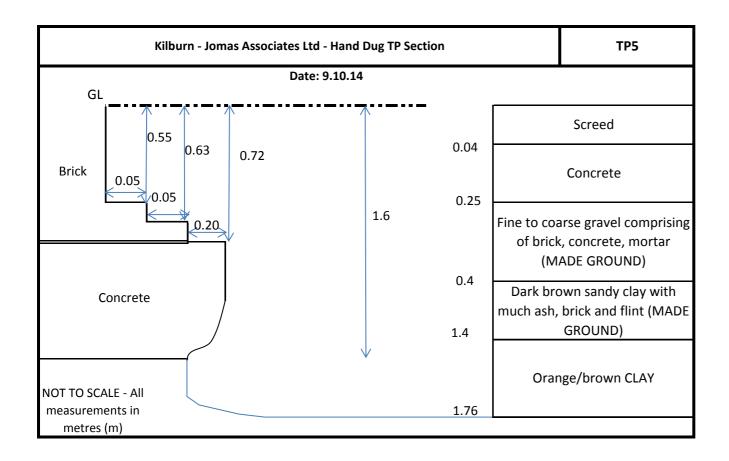

|                                         | Specia                 | alists | in the |        | stigati | ion & | reclar | natior | 5<br>of brownfield | Exploratory Hol                             | e No                                      | BH1                     |            |
|-----------------------------------------|------------------------|--------|--------|--------|---------|-------|--------|--------|--------------------|---------------------------------------------|-------------------------------------------|-------------------------|------------|
| Site A                                  | ddress                 |        |        |        |         |       |        |        | Kilburn Hig        |                                             | Project No                                |                         | P8591J338  |
| Client                                  |                        |        |        |        |         |       |        |        | 254 Kilburr        |                                             | Ground Level                              |                         |            |
|                                         | ersonne                |        |        |        |         |       |        |        | SK BD              |                                             | Commenced                                 |                         | 15/10/2014 |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             | Completed                                 |                         | 16/10/2014 |
| Type an                                 | d diame                | ter o  | of equ | uipm   | ent:    |       |        |        |                    | DANDO                                       |                                           |                         |            |
| Water l                                 | evels rec              | orde   | ed du  | ring   | borir   | ng, m | ı      |        |                    |                                             |                                           |                         |            |
| Date                                    |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
| Hole De                                 |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
| Casing [                                |                        |        | _      |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         | evel on s<br>evel afte |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
| Remark                                  |                        | 1 20   |        |        | I       |       |        |        |                    |                                             | 1 1                                       |                         |            |
| 1.                                      | -                      |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
| 2.                                      |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
| 3.                                      |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
| 4                                       |                        | •      |        |        |         |       |        | _      |                    | <b>C 1 1 1</b>                              |                                           |                         |            |
|                                         |                        | sam    | pies   | or Te  | sts     |       |        |        |                    | Strata                                      | -                                         |                         |            |
| Туре                                    | Depth                  |        |        | R      | lesul   | ts    |        |        | Depth              |                                             | S                                         | trata Descriptio        | on         |
| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (m)                    | 75     | 75     | 75     | 75      | 75    | 75     | Ν      | (m)                | Legend                                      |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             | Continued from previo                     | ous page                |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
| D                                       | 11.0                   |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        | 11.30              |                                             |                                           |                         |            |
| U                                       | 11.5-11.95             | 55     |        |        |         |       |        |        |                    |                                             | Stiff to very stiff blue g                | grey CLAY               |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
| s                                       | 13-13.95               | 5      | 7      | 8      | 8       | 8     | 9      | 33     |                    |                                             |                                           |                         |            |
| 5                                       | 15-15.55               | 5      | Ĺ      |        |         |       |        | 55     |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
| D                                       | 14                     |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
| U                                       | 14                     |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
| U                                       | 14.5-14.95             | 65     |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
| c l                                     | 10 10 15               | -      | _      |        |         |       | 10     | 20     |                    |                                             |                                           |                         |            |
| S                                       | 16-16.45               | 7      | 7      | 8      | 9       | 9     | 10     | 36     |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
| _                                       |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
| D                                       | 17                     |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
| U                                       | 17.5-17.95             | 85     |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
| S                                       | 19-19.45               | 8      | 9      | 10     | 10      | 11    | 12     | 43     |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         |                        |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
| D                                       | 20.0                   |        |        |        |         |       |        |        |                    |                                             |                                           |                         |            |
|                                         | C                      |        | do: L' | 11     | at wet  |       | Larer  | Dict   | rhod               | D. Grand Diate d                            | ad 14/ 14/at /                            | (11*) Non               | offormla   |
|                                         | Sampli                 | ng CO  | ue: U  | - υπαι |         |       |        |        |                    | D - Small Disturb<br>use. 1 Furzeground Way | ed W - Water (<br>, Stockley Park, UB11 1 | (U*) Non recovery<br>BD | or sample  |
|                                         |                        |        |        |        |         |       |        |        |                    | associates.com W: www                       |                                           |                         |            |

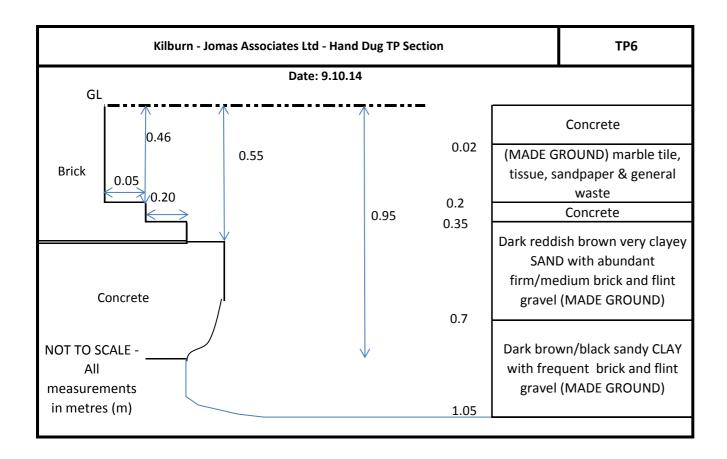

|                 |                                             |        |        |                                         |         |        |        |                     | 5            |      |                    | Exploratory H        | ole No             | BH1        |  |
|-----------------|---------------------------------------------|--------|--------|-----------------------------------------|---------|--------|--------|---------------------|--------------|------|--------------------|----------------------|--------------------|------------|--|
| - C'4           |                                             | alists | in the | inves                                   | stigati | ion &  | reclar | natio               |              |      |                    |                      |                    |            |  |
|                 | ddress                                      |        |        |                                         |         |        |        |                     | Kilburn Hi   |      |                    | Project No           |                    | P8591J338  |  |
| Clien           |                                             |        |        |                                         |         |        |        |                     | 254 Kilbur   | n H  | K LLP              | Ground Level         |                    |            |  |
| Site F          | Personne                                    | el     |        |                                         |         |        |        |                     | SK BD        |      |                    | Commenced            |                    | 15/10/2014 |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      | DAVIDO -           | Completed            |                    | 16/10/2014 |  |
|                 | d diame                                     |        |        |                                         |         |        |        |                     |              |      | DANDO 1            | ./5                  |                    |            |  |
|                 | evels red                                   | lorde  | a du   | ring                                    | porii   | ng, m  |        |                     | 1            |      |                    |                      |                    |            |  |
| Date<br>Hole De | nth                                         |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
| Casing [        |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
| Water I         | evel on                                     | strike | 2      |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 | evel afte                                   |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
| Remark          |                                             |        |        |                                         |         |        |        |                     | •            |      |                    | <b>.</b>             | <b>.</b>           |            |  |
| 1.              |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
| 2.              |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
| 3.              |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
| 4               | Samples or Tests Strata                     |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 | Type Depth Results Depth Strata Description |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
| Type            | Denth                                       |        |        | R                                       | lesul   | ts     |        |                     | Depth        |      |                    |                      | Strata Description | on         |  |
| .ype            | (m)                                         | 75     | 75     | 75                                      | 75      | 75     | 75     |                     |              |      |                    |                      |                    |            |  |
|                 | ()                                          | ,,,,   | ,,,,,  | , , , , , , , , , , , , , , , , , , , , | ,,,,,   | ,,,,,  | ,,,,,  | Continued from prev | vious page   |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
| U               | 20.5-20.95                                  | 120    | NR     |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
| S               | 22-22.45                                    | 10     | 10     | 10                                      | 11      | 11     | 12     | 44                  |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
| D               | 23.0                                        |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
| U               | 23.5-23.95                                  | 140    |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              | ⊢    |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
| D               | 25.0                                        |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              | ⊩    |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    |                      |                    |            |  |
|                 | Sampl                                       | ing Co | de: U  | - Undi                                  | sturb   | ed B - | Large  | Distu               | rbed         |      | D - Small Disturbe | d W - Water          | (U*) Non recovery  | of Sample  |  |
|                 |                                             |        |        |                                         |         |        |        |                     |              |      |                    | Stockley Park, UB11  |                    |            |  |
| 1               |                                             |        |        |                                         | 1       | T: 018 | 95 77  | 2187                | E: info@joma | sass | ociates.com W: www | v.jomasassociates.co | n                  |            |  |

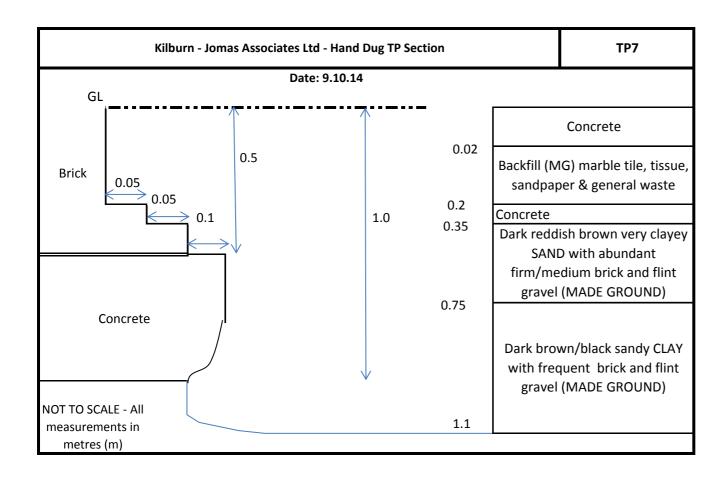

|          | Specia                               | alists | in the |        | stigati      | ion &         | reclar | matio      | 5<br>n of brownfield | sites                  | Exploratory Ho        | ole No            | BH2        |  |  |
|----------|--------------------------------------|--------|--------|--------|--------------|---------------|--------|------------|----------------------|------------------------|-----------------------|-------------------|------------|--|--|
| Site A   | ddress                               |        |        |        |              |               |        |            | Kilburn Hig          | Road                   | Project No            |                   | P8591J338  |  |  |
| Clien    | t                                    |        |        |        |              |               |        |            | 254 Kilburn          |                        | Ground Level          |                   |            |  |  |
| Site P   | ersonne                              | I      |        |        |              |               |        |            | SK BD                |                        | Commenced             |                   | 15/10/2014 |  |  |
|          | <u> </u>                             |        |        |        |              |               |        |            |                      |                        | Completed             |                   | 16/10/2014 |  |  |
|          | d diame<br>evels rec                 |        |        |        |              |               |        |            |                      | DANDO 1                | 1/5                   |                   |            |  |  |
| Date     |                                      | orue   | uuu    | iiig   |              | ig, iii       |        |            |                      |                        |                       |                   |            |  |  |
| Hole De  | pth                                  |        |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
| Casing [ |                                      |        |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
|          | evel on s<br>evel afte               |        |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
| Remark   |                                      | er 20  | mins   |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
| 1.       |                                      | ring v | well i | nstal  | led t        | o 20ı         | mbgl   | . Plai     | in with bent         | nite surround to 1     | mbgl, slotted to 2    | 0m with gravel s  | urround    |  |  |
| 2.       |                                      | -      |        |        |              |               | -      |            |                      |                        | -                     | -                 |            |  |  |
| 3.       |                                      |        |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
| 4        |                                      | Sami   | oles d | or Te  | sts          |               |        |            |                      | Strata                 |                       |                   |            |  |  |
|          |                                      |        |        |        | lesul        | te            |        |            |                      |                        |                       | Strata Descriptio | 20         |  |  |
| Туре     | Depth                                |        |        |        |              |               |        |            | Depth<br>(m)         | Legend                 |                       | Strata Descriptio |            |  |  |
|          | (m)                                  | 75     | 75     | 75     | 75           | 75            | 75     | N          | CONCRETE             |                        |                       |                   |            |  |  |
|          |                                      |        |        |        |              |               |        |            | 0.30                 |                        | CONCRETE              |                   |            |  |  |
|          |                                      |        |        |        |              |               |        |            |                      |                        | Sand, Gravel of brick | ( MADE GROUND)    |            |  |  |
|          |                                      |        |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
|          | Sand, Gravel of brick ( MADE GROUND) |        |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
| _        |                                      |        |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
| S        | 1.5-1.95                             | 2      | 3      | 2      | 2            | 3             | 2      | 9          |                      |                        |                       |                   |            |  |  |
| D        | 2-2.2                                |        |        |        |              |               |        |            | 2.00                 |                        |                       |                   |            |  |  |
|          |                                      |        |        |        |              |               |        |            |                      |                        | Firm brown grey CLA   | Y                 |            |  |  |
| U        | 2.5-2.95                             | 20     |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
| Ŭ        | 2.5-2.55                             | 30     |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
|          |                                      |        |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
|          |                                      |        |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
| S        | 3.5-3.95                             | 2      | 2      | 2      | 3            | 3             | 3      | 11         |                      |                        |                       |                   |            |  |  |
|          |                                      |        |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
| D        | 4.2                                  |        |        |        |              |               |        |            |                      | -                      |                       |                   |            |  |  |
| _        |                                      |        |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
| U        | 4.5-4.95                             | 35     |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
|          |                                      |        |        |        |              |               |        |            |                      | _                      |                       |                   |            |  |  |
|          |                                      |        |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
| s        | 5.5-5.95                             | 3      | 3      | 3      | 3            | 4             | 4      | 14         |                      |                        |                       |                   |            |  |  |
|          | 5.5-5.85                             | 5      | ľ      | _ ا    | <sup>-</sup> | ¯             | 1      | -4         |                      |                        |                       |                   |            |  |  |
|          |                                      |        |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
|          |                                      |        |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
| D        | 6.5                                  |        |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
| <b>I</b> |                                      | 45     |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
| U        | 7-7.45                               | 45     |        |        |              |               |        |            |                      |                        | becoming stiff        |                   |            |  |  |
|          |                                      |        |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
|          |                                      |        |        |        |              |               |        |            |                      | _                      |                       |                   |            |  |  |
|          |                                      |        |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
|          |                                      |        |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
| , I      | 0 5 0 05                             | ,      | 6      | 6      | 6            | 6             | _      | <u>-</u> - |                      | _                      |                       |                   |            |  |  |
| S        | 8.5-8.95                             | 4      | 6      | 6      | 6            | 6             | 7      | 25         |                      |                        |                       |                   |            |  |  |
|          |                                      |        |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
|          |                                      |        |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
| D        | 9.5                                  |        |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
|          |                                      |        |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
| U        | 10-10.45                             | 45     |        |        |              |               |        |            |                      |                        |                       |                   |            |  |  |
|          | Sampli                               | ng Co  | de: U  | - Undi | sturb        | ed B -        | Large  | Distu      | rbed                 | D - Small Disturbe     | ed W - Water          | (U*) Non recovery | of Sample  |  |  |
|          | 1                                    | 5      |        |        |              |               |        |            |                      | se, 1 Furzeground Way, |                       |                   | -          |  |  |
|          |                                      |        |        |        | ١            | Г: <b>018</b> | 95 77  | 2187       | E: info@jomas        | issociates.com W: www  | v.jomasassociates.cor | n                 |            |  |  |


|          | Specia                 | alists | in the | )<br>inve | stigati  | ion & | reclar | natio | 5<br>n of brownfiel | Exploratory H | ole No             | BH2                                            |                   |            |  |
|----------|------------------------|--------|--------|-----------|----------|-------|--------|-------|---------------------|---------------|--------------------|------------------------------------------------|-------------------|------------|--|
| Site 4   | ddress                 | _      |        |           |          |       | _      |       | Kilburn Hi          |               |                    | Project No                                     |                   | P8591J338  |  |
| Clien    |                        |        |        |           |          |       |        |       | 254 Kilbur          |               |                    | Ground Level                                   |                   | 10001000   |  |
| Site F   | ersonne                | 1      |        |           |          |       |        |       | SK BD               |               |                    | Commenced                                      |                   | 15/10/2014 |  |
|          |                        |        |        |           |          |       |        |       |                     |               |                    | Completed                                      |                   | 16/10/2014 |  |
| Type an  | d diame                | ter c  | of eq  | uipm      | ent:     |       |        |       |                     |               | DANDO 1            |                                                |                   | · · ·      |  |
| Water I  | evels rec              | orde   | ed du  | iring     | borir    | ng, m | 1      |       |                     |               |                    |                                                |                   |            |  |
| Date     |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
| Hole De  |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
| Casing I | Depth<br>.evel on s    |        | _      |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
|          | evel offs<br>evel afte |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
| Remark   |                        |        |        |           | <u> </u> |       |        |       |                     |               |                    |                                                |                   |            |  |
| 1.       | -                      |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
| 2.       |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
| 3.       |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
| 4        |                        | C      |        |           | -        | _     | _      | _     |                     | <b>C</b> 1    |                    |                                                |                   |            |  |
|          |                        | Sam    | ples   | or re     | sts      |       |        |       |                     | 50            | ata                | -                                              |                   |            |  |
| Туре     | Depth                  |        |        | R         | lesul    | ts    |        |       | Depth               |               |                    |                                                | Strata Descriptio | on         |  |
| 71       | (m)                    | 75     | 75     | 75        | 75       | 75    | 75     | N     |                     |               |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       | Continued from prev | rious sheet   |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
|          |                        |        |        |           | _        | _     | _      |       |                     |               |                    |                                                |                   |            |  |
| S        | 11.5-11.95             | 4      | 6      | 6         | 7        | 7     | 7      | 27    |                     |               |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       | 11.90               |               |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       | 11.90               | ╢┤            |                    | Very stiff blue grey C                         | LAY               |            |  |
|          |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
| D        | 125                    |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
| U        | 13-13.45               |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
| 0        | 13-13.45               | 65     |        |           |          |       |        |       |                     | $\mathbb{H}$  |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     | ⊢             |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
| S        | 14.50-14.5             | 4      | 5      | 8         | 7        | 7     | 8      | 30    |                     |               |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     | $\mathbb{H}$  |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
| D        | 15.5                   |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
| U        | 16-16.45               | 65     |        |           |          |       |        |       |                     | Щ             |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     | $\parallel$   |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     | Ш             |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     | $\parallel$   |                    |                                                |                   |            |  |
| s        | 17.5-17.95             | 7      | 10     | 10        | 10       | 10    | 11     | 41    |                     | $\parallel$   |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
| D        | 18.5                   |        |        |           |          |       |        |       |                     | $\parallel$   |                    |                                                |                   |            |  |
| Ī        |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
| U        | 19-19.45               | 80     |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     | ⊢∣            |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     | $\parallel$   |                    |                                                |                   |            |  |
| S        | 20.5-20.95             | 8      | 10     | 11        | 11       | 12    | 12     | 46    |                     |               |                    |                                                |                   |            |  |
|          |                        |        |        |           |          |       |        |       |                     |               |                    |                                                |                   |            |  |
|          | Sampli                 | ng Co  | de: U  | - Undi    |          |       |        |       |                     |               | D - Small Disturbe |                                                | (U*) Non recovery | of Sample  |  |
|          |                        |        |        |           |          |       |        |       |                     |               |                    | , Stockley Park, UB11<br>v.jomasassociates.coi |                   |            |  |
|          |                        |        |        |           |          | 010   | 11     | 07    |                     |               |                    |                                                |                   |            |  |


|                     |            |        |        |        |         |        |        |                     | 5                 |       |                    | Exploratory H        | ole No            | BH2        |
|---------------------|------------|--------|--------|--------|---------|--------|--------|---------------------|-------------------|-------|--------------------|----------------------|-------------------|------------|
| - C''               |            | alists | in the | inve:  | stigati | ion &  | reclar | natio               |                   |       |                    |                      |                   | DOFOLICE   |
|                     | ddress     |        |        |        |         |        |        |                     | Kilburn Hi        |       |                    | Project No           |                   | P8591J338  |
| Client              |            |        |        |        |         |        |        |                     | 254 Kilbur        | n H   | RLLP               | Ground Level         |                   |            |
| Site P              | Personne   | el 👘   |        |        |         |        |        |                     | SK BD             |       |                    | Commenced            |                   | 15/10/2014 |
| _                   |            |        |        |        |         |        |        |                     |                   |       |                    | Completed            |                   | 16/10/2014 |
|                     | d diame    |        |        |        |         |        |        |                     |                   |       | DANDO 1            | .75                  |                   |            |
|                     | evels rec  | corde  | ed du  | iring  | borii   | ng, m  | 1      |                     |                   |       |                    |                      |                   |            |
| Date                |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
| Hole De             |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
| Casing [<br>Water ] | evel on s  | ctrike | 2      |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     | evel afte  |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
| Remark              |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
| 1.                  |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
| 2.                  |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
| 3.                  |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
| 4                   |            | -      |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            | Sam    | ples   | or Te  | sts     |        |        |                     |                   | S     | trata              | -                    |                   |            |
| Turne               | Depth      |        |        | R      | lesul   | ts     |        |                     | Strata Descriptio | on    |                    |                      |                   |            |
| Туре                | (m)        | 75     | 75     | 75     | 75      | 75     | 75     |                     |                   |       |                    |                      |                   |            |
|                     | (11)       | /3     | /3     | /5     | /3      | /5     | /5     | continued from prev | ious page         |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
| D                   | 21.5       |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
| U                   | 22-22.45   | 85     |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
| S                   | 23.5-23.95 | 11     | 12     | 12     | 13      |        | 12     |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         | (      | 59mr   | n<br>I              |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   | ⊢     |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
| D                   | 25.0       |        |        |        |         |        |        |                     | 25.00             |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   | ⊩     |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    |                      |                   |            |
|                     |            |        |        |        |         |        |        |                     |                   | ⊩     |                    |                      |                   |            |
|                     | Sampli     | ing Co | de: U  | - Undi | sturb   | ed B - | Large  | Distu               | rbed              |       | D - Small Disturbe | d W - Water          | (U*) Non recovery | of Sample  |
|                     |            |        |        |        |         |        |        |                     |                   | ouse, |                    | Stockley Park, UB11  |                   | -          |
|                     |            |        |        |        |         |        |        |                     |                   |       |                    | v.jomasassociates.co |                   |            |
















**APPENDIX 3 – CHEMICAL LABORATORY TEST RESULTS** 



Unit A2 Windmill Road Ponswood Industrial Estate St Leonards on Sea East Sussex TN38 9BY Telephone: (01424) 718618 Facsimile: (01424) 729911 <u>info@elab-uk.co.uk</u>

#### THE ENVIRONMENTAL LABORATORY LTD

| Analytical Report Number: | 14-01039 |
|---------------------------|----------|
|---------------------------|----------|

- Issue:
- **Date of Issue:** 03/11/2014
- Contact: Roni Savage
- Customer Details: Jomas Associates Limited Lakeside House 1 Furzeground Way

1

- Quotation No: Q14-00127
- **Order No:** P8592
- Customer Reference: J338-08
- **Date Received:** 23/10/2014
- **Date Approved:** 03/11/2014
  - Kilbum High Road

Approved by:

**Details:** 

John Wilson, Operations Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683



#### Sample Summary

Report No.: 14-01039

| Elab No. | Client's Ref. | Date Sampled | Date Scheduled | Description       | Deviations |
|----------|---------------|--------------|----------------|-------------------|------------|
| 7108     | WS1 P 0.50    | 13/10/2014   | 24/10/2014     | Sandy silty loam  | cfg        |
| 7109     | WS1 P 1.00    | 13/10/2014   | 24/10/2014     | Silty loam        | cfg        |
| 7110     | WS2 P 1.00    | 13/10/2014   | 24/10/2014     | Silty clayey loam | cfg        |
| 7111     | WS2 D 1.50    | 13/10/2014   | 24/10/2014     | Silty clayey loam | cfg        |
| 7112     | WS3 P 0.50    | 13/10/2014   | 24/10/2014     | Stone/ Concrete   | cfg        |
| 7113     | WS3 P 1.00    | 13/10/2014   | 24/10/2014     | Sandy silty loam  | cfg        |
| 7114     | WS3 P 1.50    | 13/10/2014   | 24/10/2014     | Silty loam        | cfg        |
| 7115     | WS3 D 3.00    | 13/10/2014   | 24/10/2014     | Clayey loam       | cfg        |
| 7116     | WS4 P 0.50    | 13/10/2014   | 24/10/2014     | Silty loam        | cfg        |
| 7117     | WS4 P 1.00    | 13/10/2014   | 24/10/2014     | Silty loam        | cfg        |
| 7118     | WS5 P 0.30    | 13/10/2014   | 24/10/2014     | Silty loam        | cfg        |
| 7119     | WS5 P 1.00    | 13/10/2014   | 24/10/2014     | Silty loam        | cfg        |
| 7120     | BH1 D6 5.20   | 13/10/2014   | 24/10/2014     | Clay              |            |
| 7121     | BH1 D9 8.00   | 13/10/2014   | 24/10/2014     | Clayey loam       |            |
| 7122     | BH1 D15 14.00 | 13/10/2014   | 24/10/2014     | Clayey loam       |            |
| 7123     | BH1 D18 17.00 | 13/10/2014   | 24/10/2014     | Clay              |            |
| 7124     | BH2 D2 2.20   | 13/10/2014   | 24/10/2014     | Silty clayey loam |            |
| 7125     | BH2 D5 4.20   | 13/10/2014   | 24/10/2014     | Clayey loam       |            |
| 7126     | BH2 D14 12.50 | 13/10/2014   | 24/10/2014     | Clay              |            |
| 7127     | BH2 D26 25.00 | 13/10/2014   | 24/10/2014     | Clayey loam       |            |
| 7128     | WS1 1.50      | 13/10/2014   | 24/10/2014     |                   |            |
| 7129     | WS1 2.00      | 13/10/2014   | 24/10/2014     |                   |            |
| 7130     | WS1 3.00      | 13/10/2014   | 24/10/2014     |                   |            |
| 7131     | WS1 4.00      | 13/10/2014   | 24/10/2014     |                   |            |
| 7132     | WS2 0.40      | 13/10/2014   | 24/10/2014     |                   |            |
| 7133     | WS2 2.00      | 13/10/2014   | 24/10/2014     |                   |            |
| 7134     | WS2 3.00      | 13/10/2014   | 24/10/2014     |                   |            |
| 7135     | WS2 4.00      | 13/10/2014   | 24/10/2014     |                   |            |
| 7136     | WS3 0.20      | 13/10/2014   | 24/10/2014     |                   |            |
| 7137     | WS3 2.00      | 13/10/2014   | 24/10/2014     |                   |            |
| 7138     | WS3 2.50      | 13/10/2014   | 24/10/2014     |                   |            |
| 7139     | WS3 4.00      | 13/10/2014   | 24/10/2014     |                   |            |
| 7140     | WS4 1.50      | 13/10/2014   | 24/10/2014     |                   |            |
| 7141     | WS4 2.00      | 13/10/2014   | 24/10/2014     |                   |            |
| 7142     | WS4 3.00      | 13/10/2014   | 24/10/2014     |                   |            |
| 7143     | WS4 4.00      | 13/10/2014   | 24/10/2014     |                   |            |
| 7144     | WS5 0.50      | 13/10/2014   | 24/10/2014     |                   |            |
| 7145     | WS5 1.50      | 13/10/2014   | 24/10/2014     |                   |            |
| 7146     | WS5 2.00      | 13/10/2014   | 24/10/2014     |                   |            |
| 7147     | WS5 3.00      | 13/10/2014   | 24/10/2014     |                   |            |
| 7148     | WS5 4.00      | 13/10/2014   | 24/10/2014     |                   |            |



#### Results Summary Report No.: 14-01039

|                              |       | ELAB    | Reference  | 7108       | 7109       | 7110       | 7111       | 7112       | 7113       |
|------------------------------|-------|---------|------------|------------|------------|------------|------------|------------|------------|
|                              | Cu    | ustomer | Reference  | Р          | Р          | Р          | D          | Р          | Р          |
|                              |       |         | Sample ID  |            |            |            |            |            |            |
|                              |       |         | mple Type  | SOIL       | SOIL       | SOIL       | SOIL       | SOIL       | SOIL       |
|                              |       |         |            |            |            |            |            |            |            |
|                              |       |         | e Location | WS1        | WS1        | WS2        | WS2        | WS3        | WS3        |
|                              |       | •       | Depth (m)  | 0.50       | 1.00       | 1.00       | 1.50       | 0.50       | 1.00       |
|                              |       | Sam     | pling Date | 13/10/2014 | 13/10/2014 | 13/10/2014 | 13/10/2014 | 13/10/2014 | 13/10/2014 |
| Determinand                  | Codes | Units   | LOD        |            |            |            |            |            |            |
| Metals                       |       |         |            |            |            |            |            |            |            |
| Arsenic                      | M     | mg/kg   | 1          | 13.8       | 17.5       | 17.4       | 14.3       | ^ 10.6     | n/t        |
| Cadmium                      | M     | mg/kg   | 0.5        | < 0.5      | < 0.5      | < 0.5      | < 0.5      | ^ < 0.5    | n/t        |
| Chromium                     | M     | mg/kg   | 5          | 15.9       | 27.8       | 26.9       | 36.3       | ^ 18.6     | n/t        |
| Copper                       | M     | mg/kg   | 5          | 204        | 52.2       | 50.1       | 21.2       | ^ 57.9     | n/t        |
| Lead                         | M     | mg/kg   | 5          | 190        | 351        | 478        | 38.4       | ^ 110      | n/t        |
| Mercury                      | M     | mg/kg   | 0.5        | < 0.5      | 0.7        | 1.7        | < 0.5      | ^ < 0.5    | n/t        |
| Nickel                       | M     | mg/kg   | 5          | 33.7       | 19.7       | 17.2       | 15.7       | ^ 36.0     | n/t        |
| Selenium                     | M     | mg/kg   | 1          | 1.4        | < 1.0      | 1.3        | < 1.0      | ^ < 1.0    | n/t        |
| Zinc                         | M     | mg/kg   | 45         | 94.0       | 88.1       | 69.8       | 54.5       | ^ 67.6     | n/t        |
| Anions                       |       |         |            |            |            |            |            |            |            |
| Water Soluble Sulphate       | M     | g/l     | 0.01       | 0.23       | 0.06       | 0.04       | 0.02       | ^ 0.04     | n/t        |
| Inorganics                   |       |         |            |            |            |            |            |            |            |
| Hexavalent Chromium          | N     | mg/kg   | 0.8        | < 0.8      | < 0.8      | < 0.8      | < 0.8      | < 0.8      | n/t        |
| Total Cyanide                | M     | mg/kg   | 1          | < 1.0      | < 1.0      | < 1.0      | < 1.0      | ^ < 1.0    | n/t        |
| Acid Soluble Sulphate (SO4)  | U     | %SO4    | 0.02       | 0.22       | 0.09       | 0.06       | 0.04       | 0.84       | n/t        |
| Water Soluble Boron          | N     | mg/kg   | 0.5        | 1.6        | 2.5        | 2.1        | 1.7        | 1.4        | n/t        |
| Miscellaneous                |       |         |            |            |            |            |            |            |            |
| Acid Neutralisation Capacity | N     | mol/kg  | 0.1        | n/t        | n/t        | n/t        | n/t        | n/t        | < 0.1      |
| Loss Of Ignition (450°C)     | N     | %       | 0.01       | n/t        | n/t        | n/t        | n/t        | n/t        | 1.4        |
| pH                           | M     | units   | 0.1        | 9.6        | 7.6        | 7.1        | 7.4        | ^ 11.1     | 8.7        |
| Total Organic Carbon         | N     | %       | 0.01       | n/t        | 1.8        | n/t        | 0.39       | 5.2        | 3.0        |



# Results Summary Report No.: 14-01039

| Report No.: 14-01039           |       |         |            |            |            |            |            |            |            |
|--------------------------------|-------|---------|------------|------------|------------|------------|------------|------------|------------|
|                                |       | ELAB    | Reference  | 7108       | 7109       | 7110       | 7111       | 7112       | 7113       |
|                                | Cu    | ustomer | Reference  | Р          | Р          | Р          | D          | Р          | Р          |
|                                |       |         | Sample ID  |            |            |            |            |            |            |
|                                |       | Sa      | mple Type  | SOIL       | SOIL       | SOIL       | SOIL       | SOIL       | SOIL       |
|                                |       |         | e Location | WS1        | WS1        | WS2        | WS2        | WS3        | WS3        |
|                                |       | •       | Depth (m)  | 0.50       | 1.00       | 1.00       | 1.50       | 0.50       | 1.00       |
|                                |       |         |            | 13/10/2014 |            |            |            |            |            |
|                                | 0.1   | 1       | -          | 13/10/2014 | 13/10/2014 | 13/10/2014 | 13/10/2014 | 13/10/2014 | 13/10/2014 |
| Determinand                    | Codes | Units   | LOD        |            |            |            |            |            |            |
| Organics                       |       |         |            |            |            |            |            |            |            |
| >C8-C10 BCB                    | N     | mg/kg   | 1          | cfg < 1.0  | cfg 8.1    | cfg < 1.0  | cfg < 1.0  | cfg < 1.0  | n/t        |
| >C10-C12 BCB                   | N     | mg/kg   | 1          | cfg < 1.0  | cfg 55.6   | cfg < 1.0  | cfg < 1.0  | cfg < 1.0  | n/t        |
| >C12-C16 BCB                   | N     | mg/kg   | 1          | cfg < 1.0  | cfg 135    | cfg < 1.0  | cfg < 1.0  | cfg < 1.0  | n/t        |
| >C16-C21 BCB                   | N     | mg/kg   | 1          | cfg < 1.0  | cfg 77.8   | cfg < 1.0  | cfg < 1.0  | cfg < 1.0  | n/t        |
| >C21-C35 BCB                   | N     | mg/kg   | 1          | cfg 4.5    | cfg 32.8   | cfg 2.1    | cfg 2.2    | cfg 4.7    | n/t        |
| >C35-C40 BCB                   | N     | mg/kg   | 1          | cfg < 1.0  | cfg 4.5    | cfg < 1.0  | cfg < 1.0  | cfg < 1.0  | n/t        |
| Total (>C8-C40) BCB            | N     | mg/kg   | 1          | cfg 4.5    | cfg 314    | cfg 2.1    | cfg 2.2    | cfg 4.7    | n/t        |
| Phenols                        |       |         |            |            |            |            |            |            |            |
| Total Monohydric Phenols       | N     | mg/kg   | 5          | c < 5      | c < 5      | c < 5      | c < 5      | c < 5      | n/t        |
| Polyaromatic hydrocarbor       | าร    |         |            |            |            |            |            |            |            |
| Naphthalene                    | М     | mg/kg   | 0.5        | c < 0.5    | c 10.7     | c < 0.5    | c < 0.5    | c^ < 0.5   | n/t        |
| Acenaphthylene                 | M     | mg/kg   | 0.5        | c < 0.5    | c < 0.5    | c < 0.5    | c < 0.5    | c^ < 0.5   | n/t        |
| Acenaphthene                   | M     | mg/kg   | 0.5        | c < 0.5    | c 1.9      | c < 0.5    | c < 0.5    | c^ < 0.5   | n/t        |
| Fluorene                       | М     | mg/kg   | 0.5        | c < 0.5    | c 0.6      | c < 0.5    | c < 0.5    | c^ < 0.5   | n/t        |
| Phenanthrene                   | М     | mg/kg   | 0.5        | c 0.9      | c 2.2      | c < 0.5    | c < 0.5    | c^ < 0.5   | n/t        |
| Anthracene                     | М     | mg/kg   | 0.5        | c < 0.5    | c 1.6      | c < 0.5    | c < 0.5    | c^ < 0.5   | n/t        |
| Fluoranthene                   | М     | mg/kg   | 0.5        | c 1.6      | c < 0.5    | c < 0.5    | c < 0.5    | c^ < 0.5   | n/t        |
| Pyrene                         | M     | mg/kg   | 0.5        | c 1.3      | c < 0.5    | c < 0.5    | c < 0.5    | c^ < 0.5   | n/t        |
| Benzo (a) anthracene           | M     | mg/kg   | 0.5        | c 0.9      | c < 0.5    | c < 0.5    | c < 0.5    | c^ < 0.5   | n/t        |
| Chrysene                       | М     | mg/kg   | 0.5        | c 1.3      | c < 0.5    | c < 0.5    | c < 0.5    | c^ < 0.5   | n/t        |
| Benzo (b) fluoranthene         | М     | mg/kg   | 0.5        | c 0.9      | c < 0.5    | c < 0.5    | c < 0.5    | c^ < 0.5   | n/t        |
| Benzo (k) fluoranthene         | М     | mg/kg   | 0.5        | c 0.8      | c < 0.5    | c < 0.5    | c < 0.5    | c^ < 0.5   | n/t        |
| Benzo (a) pyrene               | М     | mg/kg   | 0.5        | c 0.7      | c < 0.5    | c < 0.5    | c < 0.5    | c^ < 0.5   | n/t        |
| Indeno (1,2,3-cd) pyrene       | М     | mg/kg   | 0.5        | c 0.6      | c < 0.5    | c < 0.5    | c < 0.5    | c^ < 0.5   | n/t        |
| Dibenzo(a,h)anthracene         | М     | mg/kg   | 0.5        | c < 0.5    | c < 0.5    | c < 0.5    | c < 0.5    | c^ < 0.5   | n/t        |
| Benzo(ghi)perylene             | M     | mg/kg   | 0.5        | c 0.6      | c < 0.5    | c < 0.5    | c < 0.5    | c^ < 0.5   | n/t        |
| Total PAH(16) Speciated        | M     | mg/kg   | 2          | c 11       | c 18       | c < 2      | c < 2      | c^ < 2     | n/t        |
| Total PAH (Including Coronene) | N     | mg/kg   | 2.1        | n/t        | n/t        | n/t        | n/t        | n/t        | c < 2      |
| BTEX                           |       |         |            |            |            |            |            |            |            |
| Total BTEX                     | M     | mg/kg   | 0.01       | n/t        | n/t        | n/t        | n/t        | n/t        | cfg < 0.01 |
| Total Petroleum Hydrocar       | bons  |         |            |            |            |            |            |            |            |
| Mineral Oil                    | U     | mg/kg   | 5          | n/t        | n/t        | n/t        | n/t        | n/t        | cfg < 5    |
| PCB (ICES 7 congeners)         | -     | 5.9     | -          |            |            |            |            |            | <u> </u>   |
| PCB (Total of 7 Congeners)     | M     | mg/kg   | 0.03       | n/t        | n/t        | n/t        | n/t        | n/t        | c < 0.03   |
| - (                            |       |         |            |            |            |            |            |            |            |



#### Results Summary Report No.: 14-01039

|                              |       | ELAB      | Reference  | 7114       | 7115       | 7116       | 7117       | 7118       | 7119       |
|------------------------------|-------|-----------|------------|------------|------------|------------|------------|------------|------------|
|                              | Cu    | ustomer   | Reference  | Р          | D          | Р          | Р          | Р          | Р          |
|                              |       |           | Sample ID  |            |            |            |            |            |            |
|                              |       |           | mple Type  | SOIL       | SOIL       | SOIL       | SOIL       | SOIL       | SOIL       |
|                              |       |           | e Location | WS3        | WS3        | WS4        | WS4        | WS5        | WS5        |
|                              |       |           |            |            |            | -          | -          |            |            |
|                              |       | •         | Depth (m)  |            | 3.00       | 0.50       | 1.00       | 0.30       | 1.00       |
|                              |       | Sam       | pling Date | 13/10/2014 | 13/10/2014 | 13/10/2014 | 13/10/2014 | 13/10/2014 | 13/10/2014 |
| Determinand                  | Codes | Units     | LOD        |            |            |            |            |            |            |
| Metals                       |       |           |            |            |            |            |            |            |            |
| Arsenic                      | M     | mg/kg     | 1          | 24.4       | n/t        | 23.3       | 33.7       | 21.1       | 22.4       |
| Cadmium                      | M     | mg/kg     | 0.5        | 0.7        | n/t        | < 0.5      | 0.8        | < 0.5      | 1.3        |
| Chromium                     | M     | mg/kg     | 5          | 27.7       | n/t        | 32.0       | 34.4       | 48.4       | 31.1       |
| Copper                       | M     | mg/kg     | 5          | 82.0       | n/t        | 91.2       | 111        | 63.2       | 90.9       |
| Lead                         | M     | mg/kg     | 5          | 848        | n/t        | 1900       | 2530       | 585        | 555        |
| Mercury                      | M     | mg/kg     | 0.5        | 2.3        | n/t        | 1.3        | 1.4        | 1.0        | 1.6        |
| Nickel                       | M     | mg/kg     | 5          | 26.7       | n/t        | 28.4       | 33.6       | 34.7       | 28.1       |
| Selenium                     | M     | mg/kg     | 1          | 1.8        | n/t        | 1.1        | 2.2        | < 1.0      | 1.1        |
| Zinc                         | M     | mg/kg     | 45         | 837        | n/t        | 413        | 593        | 277        | 119        |
| Anions                       |       |           |            |            |            |            |            |            |            |
| Water Soluble Sulphate       | M     | g/l       | 0.01       | 0.10       | n/t        | 0.22       | 0.12       | 0.59       | 0.20       |
| Inorganics                   |       |           |            |            |            |            |            |            |            |
| Hexavalent Chromium          | N     | mg/kg     | 0.8        | < 0.8      | n/t        | < 0.8      | < 0.8      | < 0.8      | < 0.8      |
| Total Cyanide                | M     | mg/kg     | 1          | < 1.0      | n/t        | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| Acid Soluble Sulphate (SO4)  | U     | %SO4      | 0.02       | 0.16       | n/t        | 0.22       | 0.16       | 0.20       | 0.33       |
| Water Soluble Boron          | N     | mg/kg     | 0.5        | 3.9        | n/t        | 5.1        | 4.7        | 3.6        | 2.9        |
| Miscellaneous                |       | · · · · · |            |            |            |            |            |            |            |
| Acid Neutralisation Capacity | N     | mol/kg    | 0.1        | n/t        | < 0.1      | n/t        | n/t        | n/t        | n/t        |
| Loss Of Ignition (450°C)     | N     | %         | 0.01       | n/t        | 1.2        | n/t        | n/t        | n/t        | n/t        |
| pH                           | M     | units     | 0.1        | 7.5        | 8.1        | 7.2        | 7.2        | 8.0        | 7.5        |
| Total Organic Carbon         | N     | %         | 0.01       | n/t        | 0.26       | n/t        | n/t        | 1.9        | n/t        |



# Results Summary Report No.: 14-01039

| Report No.: 14-01039           |       |         | 1          |            |            |            |            |            |            |
|--------------------------------|-------|---------|------------|------------|------------|------------|------------|------------|------------|
|                                |       | ELAB    | Reference  | 7114       | 7115       | 7116       | 7117       | 7118       | 7119       |
|                                | Cu    | ustomer | Reference  | Р          | D          | Р          | Р          | Р          | Р          |
|                                |       | :       | Sample ID  |            |            |            |            |            |            |
|                                |       | Sa      | mple Type  | SOIL       | SOIL       | SOIL       | SOIL       | SOIL       | SOIL       |
|                                |       |         | e Location | WS3        | WS3        | WS4        | WS4        | WS5        | WS5        |
|                                |       | •       | Depth (m)  | 1.50       | 3.00       | 0.50       | 1.00       | 0.30       | 1.00       |
|                                |       | •       | • • • •    | 13/10/2014 | 13/10/2014 |            | 13/10/2014 |            |            |
|                                | 0.1   |         |            | 13/10/2014 | 13/10/2014 | 13/10/2014 | 13/10/2014 | 13/10/2014 | 13/10/2014 |
| Determinand                    | Codes | Units   | LOD        |            |            |            |            |            |            |
| Organics                       |       |         |            |            |            |            |            |            |            |
| >C8-C10 BCB                    | N     | mg/kg   | 1          | cfg < 1.0  | n/t        | cfg < 1.0  | cfg < 1.0  | cfg < 1.0  | cfg < 1.0  |
| >C10-C12 BCB                   | N     | mg/kg   | 1          | cfg < 1.0  | n/t        | cfg < 1.0  | cfg < 1.0  | cfg < 1.0  | cfg < 1.0  |
| >C12-C16 BCB                   | N     | mg/kg   | 1          | cfg < 1.0  | n/t        | cfg < 1.0  | cfg < 1.0  | cfg < 1.0  | cfg < 1.0  |
| >C16-C21 BCB                   | N     | mg/kg   | 1          | cfg < 1.0  | n/t        | cfg < 1.0  | cfg < 1.0  | cfg < 1.0  | cfg < 1.0  |
| >C21-C35 BCB                   | N     | mg/kg   | 1          | cfg 2.4    | n/t        | cfg 4.1    | cfg 4.1    | cfg 5.0    | cfg 2.5    |
| >C35-C40 BCB                   | N     | mg/kg   | 1          | cfg < 1.0  | n/t        | cfg < 1.0  | cfg < 1.0  | cfg < 1.0  | cfg < 1.0  |
| Total (>C8-C40) BCB            | N     | mg/kg   | 1          | cfg 2.4    | n/t        | cfg 4.1    | cfg 4.1    | cfg 5.0    | cfg 2.5    |
| Phenols                        |       |         |            |            |            |            |            |            |            |
| Total Monohydric Phenols       | N     | mg/kg   | 5          | c < 5      | n/t        | c < 5      | c < 5      | c < 5      | c < 5      |
| Polyaromatic hydrocarbon       | S     |         |            |            |            |            |            |            |            |
| Naphthalene                    | M     | mg/kg   | 0.5        | c < 0.5    | n/t        | c < 0.5    | c < 0.5    | c < 0.5    | c < 0.5    |
| Acenaphthylene                 | M     | mg/kg   | 0.5        | c < 0.5    | n/t        | c < 0.5    | c < 0.5    | c < 0.5    | c < 0.5    |
| Acenaphthene                   | М     | mg/kg   | 0.5        | c < 0.5    | n/t        | c < 0.5    | c < 0.5    | c < 0.5    | c < 0.5    |
| Fluorene                       | М     | mg/kg   | 0.5        | c < 0.5    | n/t        | c < 0.5    | c < 0.5    | c < 0.5    | c < 0.5    |
| Phenanthrene                   | М     | mg/kg   | 0.5        | c < 0.5    | n/t        | c 0.5      | c 0.5      | c < 0.5    | c < 0.5    |
| Anthracene                     | М     | mg/kg   | 0.5        | c < 0.5    | n/t        | c < 0.5    | c < 0.5    | c < 0.5    | c < 0.5    |
| Fluoranthene                   | М     | mg/kg   | 0.5        | c < 0.5    | n/t        | c 1.5      | c 2.5      | c < 0.5    | c < 0.5    |
| Pyrene                         | М     | mg/kg   | 0.5        | c < 0.5    | n/t        | c 1.4      | c 2.2      | c < 0.5    | c < 0.5    |
| Benzo (a) anthracene           | M     | mg/kg   | 0.5        | c < 0.5    | n/t        | c 1.0      | c 1.7      | c < 0.5    | c < 0.5    |
| Chrysene                       | М     | mg/kg   | 0.5        | c < 0.5    | n/t        | c 1.2      | c 1.9      | c < 0.5    | c < 0.5    |
| Benzo (b) fluoranthene         | М     | mg/kg   | 0.5        | c < 0.5    | n/t        | c 0.7      | c 1.1      | c < 0.5    | c < 0.5    |
| Benzo (k) fluoranthene         | М     | mg/kg   | 0.5        | c < 0.5    | n/t        | c 1.1      | c 1.8      | c < 0.5    | c < 0.5    |
| Benzo (a) pyrene               | М     | mg/kg   | 0.5        | c < 0.5    | n/t        | c 1.0      | c 1.7      | c < 0.5    | c < 0.5    |
| Indeno (1,2,3-cd) pyrene       | M     | mg/kg   | 0.5        | c < 0.5    | n/t        | c 0.5      | c 0.9      | c < 0.5    | c < 0.5    |
| Dibenzo(a,h)anthracene         | M     | mg/kg   | 0.5        | c < 0.5    | n/t        | c < 0.5    | c < 0.5    | c < 0.5    | c < 0.5    |
| Benzo(ghi)perylene             | M     | mg/kg   | 0.5        | c < 0.5    | n/t        | c 0.5      | c 0.8      | c < 0.5    | c < 0.5    |
| Total PAH(16) Speciated        | М     | mg/kg   | 2          | c < 2      | n/t        | c 10       | c 16       | c < 2      | c < 2      |
| Total PAH (Including Coronene) | N     | mg/kg   | 2.1        | n/t        | c < 2      | n/t        | n/t        | n/t        | n/t        |
| BTEX                           |       |         |            |            |            |            |            |            |            |
| Total BTEX                     | M     | mg/kg   | 0.01       | n/t        | cfg < 0.01 | n/t        | n/t        | n/t        | n/t        |
| Total Petroleum Hydrocark      | ons   |         |            |            |            |            |            |            |            |
| Mineral Oil                    |       | mg/kg   | 5          | n/t        | cfg < 5    | n/t        | n/t        | n/t        | n/t        |
| PCB (ICES 7 congeners)         |       | J       | -          |            |            |            |            |            |            |
| PCB (Total of 7 Congeners)     | M     | mg/kg   | 0.03       | n/t        | c < 0.03   | n/t        | n/t        | n/t        | n/t        |
|                                | 101   | ing/itg | 0.00       | 14/1       | 0 0.00     | 11/ L      | 14/1       | 171        | · // t     |



#### Results Summary Report No.: 14-01039

| Report No.: 14-01035         |       |        |            |            |            |            |            |            |            |
|------------------------------|-------|--------|------------|------------|------------|------------|------------|------------|------------|
|                              |       | ELAB   | Reference  | 7120       | 7121       | 7122       | 7123       | 7124       | 7125       |
|                              | Cu    | stomer | Reference  | D6         | D9         | D15        | D18        | D2         | D5         |
|                              |       | :      | Sample ID  |            |            |            |            |            |            |
|                              |       |        | mple Type  | SOIL       | SOIL       | SOIL       | SOIL       | SOIL       | SOIL       |
|                              |       |        | e Location | BH1        | BH1        | BH1        | BH1        | BH2        | BH2        |
|                              |       |        |            |            |            |            |            |            |            |
|                              |       | •      | Depth (m)  |            | 8.00       | 14.00      | 17.00      | 2.20       | 4.20       |
|                              |       | Sam    | pling Date | 13/10/2014 | 13/10/2014 | 13/10/2014 | 13/10/2014 | 13/10/2014 | 13/10/2014 |
| Determinand                  | Codes | Units  | LOD        |            |            |            |            |            |            |
| Metals                       |       |        |            |            |            |            |            |            |            |
| Arsenic                      | M     | mg/kg  | 1          | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Cadmium                      | M     | mg/kg  | 0.5        | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Chromium                     | M     | mg/kg  | 5          | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Copper                       | M     | mg/kg  | 5          | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Lead                         | M     | mg/kg  | 5          | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Mercury                      | M     | mg/kg  | 0.5        | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Nickel                       | M     | mg/kg  | 5          | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Selenium                     | M     | mg/kg  | 1          | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Zinc                         | M     | mg/kg  | 45         | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Anions                       |       |        |            |            |            |            |            |            |            |
| Water Soluble Sulphate       | M     | g/l    | 0.01       | 0.17       | 0.98       | 0.33       | 0.25       | 0.07       | 0.03       |
| Inorganics                   |       |        |            |            |            |            |            |            |            |
| Hexavalent Chromium          | N     | mg/kg  | 0.8        | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Total Cyanide                | M     | mg/kg  | 1          | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Acid Soluble Sulphate (SO4)  | U     | %SO4   | 0.02       | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Water Soluble Boron          | N     | mg/kg  | 0.5        | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Miscellaneous                |       |        |            |            |            |            |            |            |            |
| Acid Neutralisation Capacity | N     | mol/kg | 0.1        | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Loss Of Ignition (450°C)     | N     | %      | 0.01       | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| pH                           | M     | units  | 0.1        | 8.1        | 7.8        | 8.2        | 8.3        | 7.8        | 8.3        |
| Total Organic Carbon         | N     | %      | 0.01       | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |



# Results Summary Report No.: 14-01039

| Report No.: 14-01039           |       |         |            |            |            |            |            | 1          |            |
|--------------------------------|-------|---------|------------|------------|------------|------------|------------|------------|------------|
|                                |       | ELAB    | Reference  | 7120       | 7121       | 7122       | 7123       | 7124       | 7125       |
|                                | Cu    | ustomer | Reference  | D6         | D9         | D15        | D18        | D2         | D5         |
|                                |       |         | Sample ID  |            |            |            |            |            |            |
|                                |       | Sa      | mple Type  | SOIL       | SOIL       | SOIL       | SOIL       | SOIL       | SOIL       |
|                                |       |         | e Location | BH1        | BH1        | BH1        | BH1        | BH2        | BH2        |
|                                |       | •       | Depth (m)  | 5.20       | 8.00       | 14.00      | 17.00      | 2.20       | 4.20       |
|                                |       | •       | pling Date |            | 13/10/2014 | 13/10/2014 |            |            | 13/10/2014 |
| Determinand                    | Codes | 1       |            | 13/10/2014 | 13/10/2014 | 13/10/2014 | 13/10/2014 | 13/10/2014 | 13/10/2014 |
|                                | Codes | Units   | LOD        |            |            |            |            |            |            |
| Organics                       |       |         |            |            |            |            |            |            |            |
| >C8-C10 BCB                    | N     | mg/kg   | 1          | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| >C10-C12 BCB                   | N     | mg/kg   | 1          | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| >C12-C16 BCB                   | N     | mg/kg   | 1          | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| >C16-C21 BCB                   | N     | mg/kg   | 1          | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| >C21-C35 BCB                   | N     | mg/kg   | 1          | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| >C35-C40 BCB                   | N     | mg/kg   | 1          | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Total (>C8-C40) BCB            | N     | mg/kg   | 1          | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Phenols                        |       |         |            |            |            |            |            |            |            |
| Total Monohydric Phenols       | N     | mg/kg   | 5          | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Polyaromatic hydrocarbon       | S     |         |            |            |            |            |            |            |            |
| Naphthalene                    | M     | mg/kg   | 0.5        | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Acenaphthylene                 | M     | mg/kg   | 0.5        | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Acenaphthene                   | М     | mg/kg   | 0.5        | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Fluorene                       | М     | mg/kg   | 0.5        | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Phenanthrene                   | M     | mg/kg   | 0.5        | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Anthracene                     | M     | mg/kg   | 0.5        | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Fluoranthene                   | М     | mg/kg   | 0.5        | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Pyrene                         | M     | mg/kg   | 0.5        | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Benzo (a) anthracene           | M     | mg/kg   | 0.5        | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Chrysene                       | М     | mg/kg   | 0.5        | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Benzo (b) fluoranthene         | М     | mg/kg   | 0.5        | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Benzo (k) fluoranthene         | M     | mg/kg   | 0.5        | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Benzo (a) pyrene               | М     | mg/kg   | 0.5        | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Indeno (1,2,3-cd) pyrene       | М     | mg/kg   | 0.5        | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Dibenzo(a,h)anthracene         | М     | mg/kg   | 0.5        | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Benzo(ghi)perylene             | М     | mg/kg   | 0.5        | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Total PAH(16) Speciated        | M     | mg/kg   | 2          | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Total PAH (Including Coronene) | N     | mg/kg   | 2.1        | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| BTEX                           |       |         |            |            |            |            |            |            |            |
| Total BTEX                     | М     | mg/kg   | 0.01       | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| Total Petroleum Hydrocark      | ons   |         |            |            |            |            |            |            |            |
| Mineral Oil                    |       | mg/kg   | 5          | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
| PCB (ICES 7 congeners)         |       |         |            |            |            |            |            |            |            |
| PCB (Total of 7 Congeners)     | M     | mg/kg   | 0.03       | n/t        | n/t        | n/t        | n/t        | n/t        | n/t        |
|                                |       |         | 0.00       | 140        | 140        | 140        |            |            |            |



#### Results Summary Report No.: 14-01039

| Report No.: 14-01039         |       |        |            |            |            |
|------------------------------|-------|--------|------------|------------|------------|
|                              |       | ELAB   | Reference  | 7126       | 7127       |
|                              | Cu    | stomer | Reference  | D14        | D26        |
|                              |       | :      | Sample ID  |            |            |
|                              |       |        | mple Type  | SOIL       | SOIL       |
|                              |       |        | e Location | BH2        | BH2        |
|                              |       | •      | Depth (m)  | 12.50      | 25.00      |
|                              |       | •      | • • • •    |            | 13/10/2014 |
|                              |       |        |            | 13/10/2014 | 13/10/2014 |
| Determinand                  | Codes | Units  | LOD        |            |            |
| Metals                       |       |        |            |            |            |
| Arsenic                      | M     | mg/kg  | 1          | n/t        | n/t        |
| Cadmium                      | M     | mg/kg  | 0.5        | n/t        | n/t        |
| Chromium                     | M     | mg/kg  | 5          | n/t        | n/t        |
| Copper                       | M     | mg/kg  | 5          | n/t        | n/t        |
| Lead                         | M     | mg/kg  | 5          | n/t        | n/t        |
| Mercury                      | M     | mg/kg  | 0.5        | n/t        | n/t        |
| Nickel                       | M     | mg/kg  | 5          | n/t        | n/t        |
| Selenium                     | M     | mg/kg  | 1          | n/t        | n/t        |
| Zinc                         | M     | mg/kg  | 45         | n/t        | n/t        |
| Anions                       |       |        |            |            |            |
| Water Soluble Sulphate       | M     | g/l    | 0.01       | 0.25       | 0.20       |
| Inorganics                   |       |        |            |            |            |
| Hexavalent Chromium          | N     | mg/kg  | 0.8        | n/t        | n/t        |
| Total Cyanide                | M     | mg/kg  | 1          | n/t        | n/t        |
| Acid Soluble Sulphate (SO4)  | U     | %SO4   | 0.02       | n/t        | n/t        |
| Water Soluble Boron          | N     | mg/kg  | 0.5        | n/t        | n/t        |
| Miscellaneous                |       |        |            |            |            |
| Acid Neutralisation Capacity | N     | mol/kg | 0.1        | n/t        | n/t        |
| Loss Of Ignition (450°C)     | N     | %      | 0.01       | n/t        | n/t        |
| рН                           | M     | units  | 0.1        | 8.3        | 8.4        |
| Total Organic Carbon         | N     | %      | 0.01       | n/t        | n/t        |



#### Results Summary Report No.: 14-01039

| Organics         >C8-C10 BCB         >C10-C12 BCB         >C12-C16 BCB         >C16-C21 BCB         >C21-C35 BCB         >C35-C40 BCB         Total (>C8-C40) BCB         Phenols         Total Monohydric Phenols         Polyaromatic hydrocarbons         Naphthalene         Acenaphthylene         Acenaphthene         Fluorene         Phenothrene         Fluorene         Phenothrene         Phenothrene         Phenothrene | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>M<br>M      | stomer<br>Sample<br>Sample<br>Sam<br><b>Units</b><br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | Reference<br>Reference<br>Sample ID<br>mple Type<br>e Location<br>Depth (m)<br>pling Date<br>LOD<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>5 | 7126<br>D14<br>SOIL<br>BH2<br>12.50<br>13/10/2014<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t | 7127<br>D26<br>SOIL<br>BH2<br>25.00<br>13/10/2014<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Organics         >C8-C10 BCB         >C10-C12 BCB         >C12-C16 BCB         >C16-C21 BCB         >C21-C35 BCB         >C35-C40 BCB         Total (>C8-C40) BCB         Phenols         Total Monohydric Phenols         Polyaromatic hydrocarbons         Naphthalene         Acenaphthylene         Acenaphthene         Fluorene         Phenothrene         Fluorene         Phenothrene         Phenothrene         Phenothrene | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>M<br>M      | Sample<br>Sample<br>Sample<br>Sam<br>Units<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg        | Sample ID<br>mple Type<br>e Location<br>Depth (m)<br>pling Date<br>LOD<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5                                     | SOIL<br>BH2<br>12.50<br>13/10/2014<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t         | SOIL<br>BH2<br>25.00<br>13/10/2014<br>                                                                           |
| Organics         >C8-C10 BCB         >C10-C12 BCB         >C12-C16 BCB         >C16-C21 BCB         >C21-C35 BCB         >C35-C40 BCB         Total (>C8-C40) BCB         Phenols         Total Monohydric Phenols         Polyaromatic hydrocarbons         Naphthalene         Acenaphthylene         Acenaphthene         Fluorene         Phenothrene         Fluorene         Phenothrene         Phenothrene         Phenothrene | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>M<br>M<br>M | Sample<br>Sample<br>Sample<br>Sam<br>Units<br>Mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg        | mple Type<br>e Location<br>Depth (m)<br>pling Date<br>LOD<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5                                                  | BH2<br>12.50<br>13/10/2014<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t                        | BH2<br>25.00<br>13/10/2014<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t                                             |
| Organics         >C8-C10 BCB         >C10-C12 BCB         >C12-C16 BCB         >C16-C21 BCB         >C21-C35 BCB         >C35-C40 BCB         Total (>C8-C40) BCB         Phenols         Total Monohydric Phenols         Polyaromatic hydrocarbons         Naphthalene         Acenaphthylene         Acenaphthene         Fluorene         Phenothrene         Fluorene         Phenothrene         Phenothrene         Phenothrene | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>M<br>M<br>M | Sample<br>Sample<br>Sam<br>Units<br>Mg/kg<br>Mg/kg<br>Mg/kg<br>Mg/kg<br>Mg/kg<br>Mg/kg<br>Mg/kg         | e Location<br>Depth (m)<br>pling Date<br>LOD<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5                                                               | BH2<br>12.50<br>13/10/2014<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t                        | BH2<br>25.00<br>13/10/2014<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t                                             |
| Organics         >C8-C10 BCB         >C10-C12 BCB         >C12-C16 BCB         >C16-C21 BCB         >C21-C35 BCB         >C35-C40 BCB         Total (>C8-C40) BCB         Phenols         Total Monohydric Phenols         Polyaromatic hydrocarbons         Naphthalene         Acenaphthylene         Acenaphthene         Fluorene         Phenothrene         Fluorene         Phenothrene         Phenothrene         Phenothrene | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>M<br>M<br>M | Sample<br>Sample<br>Sam<br>Units<br>Mg/kg<br>Mg/kg<br>Mg/kg<br>Mg/kg<br>Mg/kg<br>Mg/kg<br>Mg/kg         | e Location<br>Depth (m)<br>pling Date<br>LOD<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5                                                               | 12.50<br>13/10/2014<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t                                      | 25.00<br>13/10/2014<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t                                             |
| Organics         >C8-C10 BCB         >C10-C12 BCB         >C12-C16 BCB         >C16-C21 BCB         >C21-C35 BCB         >C35-C40 BCB         Total (>C8-C40) BCB         Phenols         Total Monohydric Phenols         Polyaromatic hydrocarbons         Naphthalene         Acenaphthylene         Acenaphthene         Fluorene         Phenothrene         Fluorene         Phenothrene         Phenothrene         Phenothrene | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>M<br>M<br>M | Sample<br>Sam<br>Units<br>Mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                   | Depth (m)<br>pling Date<br>LOD<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5                                                                             | 12.50<br>13/10/2014<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t                               | 25.00<br>13/10/2014<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t                                             |
| Organics         >C8-C10 BCB         >C10-C12 BCB         >C12-C16 BCB         >C16-C21 BCB         >C21-C35 BCB         >C35-C40 BCB         Total (>C8-C40) BCB         Phenols         Total Monohydric Phenols         Polyaromatic hydrocarbons         Naphthalene         Acenaphthylene         Acenaphthene         Fluorene         Phenothrene         Fluorene         Phenothrene         Phenothrene                     | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>M<br>M<br>M | Sam<br>Units<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                             | pling Date<br>LOD<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5                                                                                          | 13/10/2014<br>                                                                                     | 13/10/2014<br>                                                                                                   |
| Organics         >C8-C10 BCB         >C10-C12 BCB         >C12-C16 BCB         >C16-C21 BCB         >C21-C35 BCB         >C35-C40 BCB         Total (>C8-C40) BCB         Phenols         Total Monohydric Phenols         Polyaromatic hydrocarbons         Naphthalene         Acenaphthylene         Acenaphthene         Fluorene         Phenothrene         Fluorene         Phenothrene         Phenothrene                     | N<br>N<br>N<br>N<br>N<br>N<br>N<br>M<br>M                | Units<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                    | LOD<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5                                                                                                   | n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t                                                             | n/t<br>n/t<br>n/t<br>n/t<br>n/t<br>n/t                                                                           |
| Organics         >C8-C10 BCB         >C10-C12 BCB         >C12-C16 BCB         >C16-C21 BCB         >C21-C35 BCB         >C35-C40 BCB         Total (>C8-C40) BCB         Phenols         Total Monohydric Phenols         Polyaromatic hydrocarbons         Naphthalene         Acenaphthylene         Acenaphthene         Fluorene         Phenothrene         Fluorene         Phenothrene         Phenothrene                     | N<br>N<br>N<br>N<br>N<br>N<br>N<br>M<br>M                | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                             | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>5                                                                                                               | n/t<br>n/t<br>n/t<br>n/t<br>n/t                                                                    | n/t<br>n/t<br>n/t<br>n/t<br>n/t                                                                                  |
| >C8-C10 BCB         >C10-C12 BCB         >C12-C16 BCB         >C16-C21 BCB         >C21-C35 BCB         >C35-C40 BCB         Total (>C8-C40) BCB         Phenols         Total Monohydric Phenols         Polyaromatic hydrocarbons         Naphthalene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Fluoranthene         Fluoranthene         Pluoranthene                               | N<br>N<br>N<br>N<br>N<br>N<br>M<br>M                     | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                             | 1<br>1<br>1<br>1<br>1<br>1<br>5                                                                                                                    | n/t<br>n/t<br>n/t<br>n/t<br>n/t                                                                    | n/t<br>n/t<br>n/t<br>n/t<br>n/t                                                                                  |
| >C10-C12 BCB         >C12-C16 BCB         >C16-C21 BCB         >C21-C35 BCB         >C35-C40 BCB         Total (>C8-C40) BCB         Phenols         Total Monohydric Phenols         Polyaromatic hydrocarbons         Naphthalene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Fluoranthene         Fluoranthene         Pluoranthene                                                   | N<br>N<br>N<br>N<br>N<br>N<br>M<br>M                     | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                             | 1<br>1<br>1<br>1<br>1<br>1<br>5                                                                                                                    | n/t<br>n/t<br>n/t<br>n/t<br>n/t                                                                    | n/t<br>n/t<br>n/t<br>n/t<br>n/t                                                                                  |
| >C12-C16 BCB         >C16-C21 BCB         >C21-C35 BCB         >C35-C40 BCB         Total (>C8-C40) BCB         Phenols         Total Monohydric Phenols         Polyaromatic hydrocarbons         Naphthalene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Fluoranthene         Fluoranthene         Pyrene                                                                              | N<br>N<br>N<br>N<br>N<br>M<br>M                          | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                                      | 1<br>1<br>1<br>1<br>1<br>5                                                                                                                         | n/t<br>n/t<br>n/t<br>n/t<br>n/t                                                                    | n/t<br>n/t<br>n/t<br>n/t<br>n/t                                                                                  |
| >C16-C21 BCB         >C21-C35 BCB         >C35-C40 BCB         Total (>C8-C40) BCB         Phenols         Total Monohydric Phenols         Polyaromatic hydrocarbons         Naphthalene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Fluoranthene         Fluoranthene         Pyrene                                                                                                   | N<br>N<br>N<br>N<br>M<br>M                               | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                                               | 1<br>1<br>1<br>5                                                                                                                                   | n/t<br>n/t<br>n/t<br>n/t                                                                           | n/t<br>n/t<br>n/t<br>n/t                                                                                         |
| >C21-C35 BCB         >C35-C40 BCB         Total (>C8-C40) BCB         Phenols         Total Monohydric Phenols         Polyaromatic hydrocarbons         Naphthalene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Anthracene         Fluoranthene                                                                                                                                         | N<br>N<br>N<br>N<br>M<br>M                               | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                                               | 1<br>1<br>1<br>5                                                                                                                                   | n/t<br>n/t<br>n/t                                                                                  | n/t<br>n/t<br>n/t                                                                                                |
| >C35-C40 BCB         Total (>C8-C40) BCB         Phenols         Total Monohydric Phenols         Polyaromatic hydrocarbons         Naphthalene         Acenaphthylene         Acenaphthylene         Fluorene         Phenanthrene         Fluorene         Fluoranthene         Fluoranthene                                                                                                                                         | N<br>N<br>M<br>M                                         | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                                                        | 1<br>1<br>5                                                                                                                                        | n/t<br>n/t                                                                                         | n/t<br>n/t                                                                                                       |
| Total (>C8-C40) BCB         Phenols         Total Monohydric Phenols         Polyaromatic hydrocarbons         Naphthalene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Anthracene         Fluoranthene         Pyrene                                                                                                                                                                    | N<br>N<br>M<br>M                                         | mg/kg<br>mg/kg<br>mg/kg                                                                                 | 1<br>5                                                                                                                                             | n/t                                                                                                | n/t                                                                                                              |
| Phenols         Total Monohydric Phenols         Polyaromatic hydrocarbons         Naphthalene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Anthracene         Fluoranthene         Pyrene                                                                                                                                                                                                | N<br>M<br>M                                              | mg/kg<br>mg/kg                                                                                          | 5                                                                                                                                                  |                                                                                                    |                                                                                                                  |
| Total Monohydric Phenols         Polyaromatic hydrocarbons         Naphthalene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Anthracene         Fluoranthene         Pyrene                                                                                                                                                                                                                | M<br>M                                                   | mg/kg                                                                                                   |                                                                                                                                                    | n/t                                                                                                | n/t                                                                                                              |
| Polyaromatic hydrocarbons         Naphthalene       Acenaphthylene         Acenaphthylene       Fluorene         Phenanthrene       Phenanthrene         Anthracene       Fluoranthene         Pluoranthene       Phenanthrene                                                                                                                                                                                                         | M<br>M                                                   | mg/kg                                                                                                   |                                                                                                                                                    | n/t                                                                                                | n/t                                                                                                              |
| Naphthalene       Acenaphthylene         Acenaphthene       Fluorene         Phenanthrene       Anthracene         Fluoranthene       Pyrene                                                                                                                                                                                                                                                                                           | М                                                        |                                                                                                         | 0.5                                                                                                                                                |                                                                                                    |                                                                                                                  |
| Naphthalene       Acenaphthylene         Acenaphthene       Fluorene         Phenanthrene       Anthracene         Fluoranthene       Pyrene                                                                                                                                                                                                                                                                                           | М                                                        |                                                                                                         | 0.5                                                                                                                                                |                                                                                                    |                                                                                                                  |
| Acenaphthene     Fluorene       Fluorene     Phenanthrene       Anthracene     Fluoranthene       Pyrene     Pyrene                                                                                                                                                                                                                                                                                                                    |                                                          |                                                                                                         | 0.0                                                                                                                                                | n/t                                                                                                | n/t                                                                                                              |
| Fluorene       Phenanthrene       Anthracene       Fluoranthene       Pyrene                                                                                                                                                                                                                                                                                                                                                           |                                                          | mg/kg                                                                                                   | 0.5                                                                                                                                                | n/t                                                                                                | n/t                                                                                                              |
| Phenanthrene     Anthracene       Fluoranthene     Pyrene                                                                                                                                                                                                                                                                                                                                                                              | M                                                        | mg/kg                                                                                                   | 0.5                                                                                                                                                | n/t                                                                                                | n/t                                                                                                              |
| Anthracene Fluoranthene Pyrene                                                                                                                                                                                                                                                                                                                                                                                                         | М                                                        | mg/kg                                                                                                   | 0.5                                                                                                                                                | n/t                                                                                                | n/t                                                                                                              |
| Fluoranthene Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                    | М                                                        | mg/kg                                                                                                   | 0.5                                                                                                                                                | n/t                                                                                                | n/t                                                                                                              |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                 | М                                                        | mg/kg                                                                                                   | 0.5                                                                                                                                                | n/t                                                                                                | n/t                                                                                                              |
| · ·                                                                                                                                                                                                                                                                                                                                                                                                                                    | М                                                        | mg/kg                                                                                                   | 0.5                                                                                                                                                | n/t                                                                                                | n/t                                                                                                              |
| Benzo (a) anthracene                                                                                                                                                                                                                                                                                                                                                                                                                   | М                                                        | mg/kg                                                                                                   | 0.5                                                                                                                                                | n/t                                                                                                | n/t                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        | М                                                        | mg/kg                                                                                                   | 0.5                                                                                                                                                | n/t                                                                                                | n/t                                                                                                              |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                               | М                                                        | mg/kg                                                                                                   | 0.5                                                                                                                                                | n/t                                                                                                | n/t                                                                                                              |
| Benzo (b) fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                 | М                                                        | mg/kg                                                                                                   | 0.5                                                                                                                                                | n/t                                                                                                | n/t                                                                                                              |
| Benzo (k) fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                 | М                                                        | mg/kg                                                                                                   | 0.5                                                                                                                                                | n/t                                                                                                | n/t                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        | М                                                        | mg/kg                                                                                                   | 0.5                                                                                                                                                | n/t                                                                                                | n/t                                                                                                              |
| Indeno (1,2,3-cd) pyrene                                                                                                                                                                                                                                                                                                                                                                                                               | М                                                        | mg/kg                                                                                                   | 0.5                                                                                                                                                | n/t                                                                                                | n/t                                                                                                              |
| Dibenzo(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                 | М                                                        | mg/kg                                                                                                   | 0.5                                                                                                                                                | n/t                                                                                                | n/t                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        | M                                                        | mg/kg                                                                                                   | 0.5                                                                                                                                                | n/t                                                                                                | n/t                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        | М                                                        | mg/kg                                                                                                   | 2                                                                                                                                                  | n/t                                                                                                | n/t                                                                                                              |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                  | N                                                        | mg/kg                                                                                                   | 2.1                                                                                                                                                | n/t                                                                                                | n/t                                                                                                              |
| BTEX                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          |                                                                                                         |                                                                                                                                                    |                                                                                                    |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        | M                                                        | mg/kg                                                                                                   | 0.01                                                                                                                                               | n/t                                                                                                | n/t                                                                                                              |
| <b>Total Petroleum Hydrocarbor</b>                                                                                                                                                                                                                                                                                                                                                                                                     | าร                                                       |                                                                                                         |                                                                                                                                                    |                                                                                                    |                                                                                                                  |
| Mineral Oil                                                                                                                                                                                                                                                                                                                                                                                                                            | U                                                        | mg/kg                                                                                                   | 5                                                                                                                                                  | n/t                                                                                                | n/t                                                                                                              |
| PCB (ICES 7 congeners)                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |                                                                                                         |                                                                                                                                                    |                                                                                                    |                                                                                                                  |
| PCB (Total of 7 Congeners)                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          | mg/kg                                                                                                   | 0.03                                                                                                                                               | n/t                                                                                                | n/t                                                                                                              |



# MCERTS

#### **Results Summary** Report No.: 14-01039

| Elab Ref:                    | 7115      |      |             |         |         |          | I Waste Ac<br>Criteria Lim | •           |
|------------------------------|-----------|------|-------------|---------|---------|----------|----------------------------|-------------|
| Sample Date:                 | 13/10/201 | 4    |             |         |         |          | Stable Non-                |             |
| Sample ID:                   | WS3 D     |      |             |         |         |          | reactive                   |             |
| Depth:                       | 3         |      |             |         |         | Inert    | Hazardous                  | Hazardous   |
| Site:                        | -         |      | Kilbum High | Road    |         | Waste    | waste in                   | Waste       |
|                              |           |      | 0           |         |         | Landfill | non-<br>hazardous          | Landfill    |
| Determinand                  |           | Code | Units       |         |         |          | Landfill                   |             |
| Total Organic Carbon         |           | N    | %           |         | 0.3     | 3        | 5                          | 6           |
| Loss on Ignition             |           | М    | %           |         | 1.2     |          |                            | 10          |
| Total BTEX                   |           | М    | mg/kg       |         | < 0.01  | 6        |                            |             |
| Total PCBs (7 congeners)     |           | М    | mg/kg       |         | < 0.03  | 1        |                            |             |
| TPH Total WAC                |           | М    | mg/kg       |         | < 5     | 500      |                            |             |
| Total (of 17) PAHs           |           | Ν    | mg/kg       |         | < 2     | 100      |                            |             |
| pH                           |           | М    | 5.5         |         | 8.1     |          | >6                         |             |
| Acid Neutralisation Capacity |           | N    | mol/kg      |         | < 0.1   |          | To evaluate                | To evaluate |
| Eluate Analysis              |           |      | 2:1         | 8:1     | 10:1    | Limit    | values for cor             |             |
| Liuale Analysis              |           |      |             | -       |         |          | est using BS I             |             |
|                              |           |      | mg/l        | mg/l    | mg/kg   | -        | L/S 10 l/kg                |             |
| Arsenic                      |           | Ν    | < 0.005     | < 0.005 | < 0.05  | 0.5      | 2                          | 25          |
| Barium                       |           | Ν    | < 0.005     | < 0.005 | < 0.05  | 20       | 100                        | 300         |
| Cadmium                      |           | Ν    | < 0.001     | < 0.001 | < 0.01  | 0.04     | 1                          | 5           |
| Chromium                     |           | Ν    | < 0.005     | < 0.005 | < 0.05  | 0.5      | 10                         | 70          |
| Copper                       |           | Ν    | < 0.005     | < 0.005 | < 0.05  | 2        | 50                         | 100         |
| Mercury                      |           | Ν    | < 0.005     | < 0.005 | < 0.01  | 0.01     | 0.2                        | 2           |
| Molybdenum                   |           | Ν    | < 0.005     | < 0.005 | < 0.05  | 0.5      | 10                         | 30          |
| Nickel                       |           | Ν    | < 0.001     | < 0.001 | < 0.05  | 0.4      | 10                         | 40          |
| Lead                         |           | N    | < 0.001     | < 0.001 | < 0.05  | 0.5      | 10                         | 50          |
| Antimony                     |           | Ν    | < 0.005     | < 0.005 | < 0.05  | 0.06     | 0.7                        | 5           |
| Selenium                     |           | Ν    | < 0.005     | < 0.005 | < 0.05  | 0.1      | 0.5                        | 7           |
| Zinc                         |           | Ν    | < 0.005     | < 0.005 | < 0.05  | 4        | 50                         | 200         |
| Chloride                     |           | Ν    | 28.000      | 8.000   | 104.00  | 800      | 15000                      | 25000       |
| Fluoride                     |           | Ν    | < 1         | < 1     | < 10    | 10       | 150                        | 500         |
| Sulphate                     |           | N    | 98.000      | 8.000   | 183.00  | 1000     | 20000                      | 50000       |
| Total Dissolved Solids       |           | N    | 290.000     | 140.000 | 1570.00 | 4000     | 60000                      | 100000      |
| Phenol Index                 |           | N    | < 0.01      | < 0.01  | < 0.10  | 1        | -                          | -           |
| Dissolved Organic Carbon     |           | N    | 15.300      | 9.430   | 101.00  | 500      | 800                        | 1000        |
| Leach Test Informatio        | n         |      |             |         |         |          |                            |             |
| Eluent Volume (ml)           |           | N    | 195         | 1400    |         |          |                            |             |
| pH                           |           | N    | 7.9         | 7.6     |         |          |                            |             |
| Conductivity (uS/cm)         |           | N    | 500         | 149     |         |          |                            |             |
| Temperature (°C)             |           | N    | 18          | 19      |         |          |                            |             |
| Solid Information            |           |      | -           |         |         |          |                            |             |
| Dry mass of test portion (g) |           |      | 175         |         |         |          |                            |             |
| Moisture (%)                 |           |      | 30          |         |         |          |                            |             |

Results are expressed on a dry weight basis, after correction for moisture content where applicable

Stated limits are for guidance only and ELAB cannot be held responsible for any discrepencies with current legislation



# MCERTS

#### **Results Summary** Report No.: 14-01039

| WAC Analysis<br>Elab Ref:    | 7113      |      |               |         |         |            | I Waste Ac<br>Criteria Lim       | •           |
|------------------------------|-----------|------|---------------|---------|---------|------------|----------------------------------|-------------|
| Sample Date:                 | 13/10/201 | 4    |               |         |         |            | Stable Non-                      |             |
| Sample ID:                   | WS3 P     |      |               |         |         |            | reactive                         |             |
| Depth:                       | 1         |      |               |         |         | Inert      | Hazardous                        | Hazardous   |
| Site:                        |           |      | Kilbum High l | Road    |         | Waste      | waste in                         | Waste       |
|                              |           |      | 5             |         |         | Landfill   | non-<br>hazardous                | Landfill    |
| Determinand                  |           | Code | Units         |         |         |            | Landfill                         |             |
| Total Organic Carbon         |           | N    | %             |         | 3.0     | 3          | 5                                | 6           |
| Loss on Ignition             |           | M    | %             |         | 1.4     |            |                                  | 10          |
| Total BTEX                   |           | М    | mg/kg         |         | < 0.01  | 6          |                                  |             |
| Total PCBs (7 congeners)     |           | M    | mg/kg         |         | < 0.03  | 1          |                                  |             |
| TPH Total WAC                |           | M    | mg/kg         |         | < 5     | 500        |                                  |             |
| Total (of 17) PAHs           |           | N    | mg/kg         |         | < 2     | 100        |                                  |             |
| pH                           |           | M    |               |         | 8.7     |            | >6                               |             |
| Acid Neutralisation Capacity |           | N    | mol/kg        |         | < 0.1   |            | To evaluate                      | To evaluate |
| . ,                          |           | IN   | -             | 0.4     |         |            |                                  |             |
| Eluate Analysis              |           |      | 2:1           | 8:1     | 10:1    |            | values for cor<br>est using BS I |             |
|                              |           |      | mg/l          | mg/l    | mg/kg   | louoning t | L/S 10 l/kg                      |             |
| Arsenic                      |           | N    | < 0.005       | < 0.005 | < 0.05  | 0.5        | 2                                | 25          |
| Barium                       |           | N    | 0.027         | 0.008   | 0.10    | 20         | 100                              | 300         |
| Cadmium                      |           | N    | < 0.001       | < 0.001 | < 0.01  | 0.04       | 1                                | 5           |
| Chromium                     |           | N    | < 0.005       | < 0.005 | < 0.05  | 0.5        | 10                               | 70          |
| Copper                       |           | N    | < 0.005       | < 0.005 | < 0.05  | 2          | 50                               | 100         |
| Mercury                      |           | N    | < 0.005       | < 0.005 | < 0.01  | 0.01       | 0.2                              | 2           |
| Molybdenum                   |           | N    | 0.029         | 0.007   | 0.10    | 0.5        | 10                               | 30          |
| Nickel                       |           | N    | 0.001         | < 0.001 | < 0.05  | 0.4        | 10                               | 40          |
| Lead                         |           | N    | < 0.001       | < 0.001 | < 0.05  | 0.5        | 10                               | 50          |
| Antimony                     |           | N    | < 0.005       | < 0.005 | < 0.05  | 0.06       | 0.7                              | 5           |
| Selenium                     |           | N    | < 0.005       | < 0.005 | < 0.05  | 0.1        | 0.5                              | 7           |
| Zinc                         |           | N    | 0.006         | < 0.005 | < 0.05  | 4          | 50                               | 200         |
| Chloride                     |           | N    | 16.000        | 7.000   | 80.00   | 800        | 15000                            | 25000       |
| Fluoride                     |           | N    | < 1           | < 1     | < 10    | 10         | 150                              | 500         |
| Sulphate                     |           | N    | 637.000       | 63.000  | 1450.00 | 1000       | 20000                            | 50000       |
| Total Dissolved Solids       |           | N    | 1110.000      | 170.000 | 3040.00 | 4000       | 60000                            | 100000      |
| Phenol Index                 |           | N    | < 0.01        | < 0.01  | < 0.10  | 1          | -                                | -           |
| Dissolved Organic Carbon     |           | N    | 11.400        | 6.120   | 69.00   | 500        | 800                              | 1000        |
| Leach Test Informatio        | n         |      |               |         |         |            |                                  |             |
| Eluent Volume (ml)           |           | N    | 250           | 1400    |         |            |                                  |             |
| pH                           |           | N    | 7.5           | 7.7     |         |            |                                  |             |
| Conductivity (uS/cm)         |           | N    | 1350          | 250     |         |            |                                  |             |
| Temperature (°C)             |           | N    | 18            | 19      |         |            |                                  |             |
| Solid Information            |           |      | -             |         |         |            |                                  |             |
| Dry mass of test portion (g) |           |      | 176           |         |         |            |                                  |             |
| Moisture (%)                 |           |      | 22.7          |         |         |            |                                  |             |

Results are expressed on a dry weight basis, after correction for moisture content where applicable

Stated limits are for guidance only and ELAB cannot be held responsible for any discrepencies with current legislation



Unit A2, Windmill Road, Ponswood Industrial Estate, St Leonards on Sea, East Sussex, TN38 9BY Tel: +44 (0)1424 718618, Email: info@elab-uk.co.uk, Web: www.elab-uk.co.uk

#### **Results Summary**

Report No.: 14-01039

#### **Asbestos Qualitative Results**

Analytical result only applies to the sample as submitted by the client. Any comments, opinions or interpretations (marked #) in this report are outside UKAS accreditation (Accreditation No2683). They are subjective comments only which must be verified by the client.

| Elab No | Depth (m) | <b>Clients Reference</b> | Description of Sample Matrix # | Result               |
|---------|-----------|--------------------------|--------------------------------|----------------------|
| 7108    | 0.50      | WS1 P                    | Sandy silty loam               | No asbestos detected |
| 7112    | 0.50      | WS3 P                    | Stone/ Concrete                | No asbestos detected |
| 7114    | 1.50      | WS3 P                    | Silty loam                     | No asbestos detected |
| 7116    | 0.50      | WS4 P                    | Silty loam                     | No asbestos detected |



# Method Summary Report No.: 14-01039

| Parameter                            | Analysis Undertaken<br>On | Date<br>Tested | Method<br>Number | Technique          |
|--------------------------------------|---------------------------|----------------|------------------|--------------------|
| Soil                                 |                           |                |                  |                    |
| Hexavalent chromium                  | As submitted sample       | 28/10/2014     | 110              | Colorimetry        |
| Acid Soluble Sulphate                | Air dried sample          | 03/11/2014     | 115              | Ion Chromatography |
| Aqua regia extractable metals        | Air dried sample          | 29/10/2014     | 118              | ICPMS              |
| Phenols in solids                    | As submitted sample       | 28/10/2014     | 121              | HPLC               |
| Polyaromatic hydrocarbons (GC-FID)   | As submitted sample       | 28/10/2014     | 133              | GC-FID             |
| Water soluble anions                 | Air dried sample          | 29/10/2014     | 172              | Ion Chromatography |
| Water soluble boron                  | Air dried sample          | 29/10/2014     | 202              | Colorimetry        |
| Total cyanide                        | As submitted sample       | 30/10/2014     | 204              | Colorimetry        |
| Basic carbon banding in soil         | As submitted sample       | 28/10/2014     | 218              | GC-FID             |
| Asbestos identification              | As submitted sample       | 29/10/2014     | PMAN             | Microscopy         |
| Leachate                             |                           |                |                  |                    |
| Arsenic*                             |                           | 29/10/2014     | 101              | ICPMS              |
| Cadmium*                             |                           | 29/10/2014     | 101              | ICPMS              |
| Chromium*                            |                           | 29/10/2014     | 101              | ICPMS              |
| Lead*                                |                           | 29/10/2014     | 101              | ICPMS              |
| Nickel*                              |                           | 29/10/2014     | 101              | ICPMS              |
| Copper*                              |                           | 29/10/2014     | 101              | ICPMS              |
| Zinc*                                |                           | 29/10/2014     | 101              | ICPMS              |
| Mercury*                             |                           | 29/10/2014     | 101              | ICPMS              |
| Selenium*                            |                           | 29/10/2014     | 101              | ICPMS              |
| Antimony                             |                           | 29/10/2014     | 101              | ICPMS              |
| Barium*                              |                           | 29/10/2014     | 101              | ICPMS              |
| Molybdenum*                          |                           | 29/10/2014     | 101              | ICPMS              |
| pH Value*                            |                           | 29/10/2014     | 113              | Electrometric      |
| Electrical Conductivity*             |                           | 29/10/2014     | 136              | Probe              |
| Dissolved Organic Carbon             |                           | 29/10/2014     | 102              | TOC analyser       |
| Chloride*                            |                           | 29/10/2014     | 131              | Ion Chromatography |
| Fluoride*                            |                           | 29/10/2014     | 131              | Ion Chromatography |
| Sulphate*                            |                           | 29/10/2014     | 131              | Ion Chromatography |
| Total Dissolved Solids               |                           | 29/10/2014     | 144              | Gravimetric        |
| Phenol index                         |                           | 29/10/2014     | 121              | HPLC               |
| WAC Solids analysis                  |                           |                |                  |                    |
| pH Value**                           | Air dried sample          | 29/10/2014     | 113              | Electrometric      |
| Total Organic Carbon                 | Air dried sample          | 29/10/2014     | 210              | IR                 |
| Loss on Ignition**                   | Air dried sample          | 29/10/2014     | 129              | Gravimetric        |
| Acid Neutralization Capacity to pH 7 | Air dried sample          | 29/10/2014     | NEN 737          | Electrometric      |
| Total BTEX**                         | As submitted sample       | 29/10/2014     | 181              | GCMS               |
| Mineral Oil**                        | As submitted sample       | 29/10/2014     | 117              | GCFID              |
| Total PCBs (7 congeners)             | Air dried sample          | 29/10/2014     | 120              | GCMS               |
| Total PAH (17)**                     | As submitted sample       | 29/10/2014     | 133              | GCFID              |



#### **Report Information**

Report No.: 14-01039

Key

| Ney |                                                                                   |
|-----|-----------------------------------------------------------------------------------|
| U   | hold UKAS accreditation                                                           |
| М   | hold MCERTS and UKAS accreditation                                                |
| Ν   | do not currently hold UKAS accreditation                                          |
| Λ   | MCERTS accreditation not applicable for sample matrix                             |
| S   | Subcontracted to approved laboratory UKAS Accredited for the test                 |
| SM  | Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test          |
| I/S | Insufficient Sample                                                               |
| U/S | Unsuitable sample                                                                 |
| n/t | Not tested                                                                        |
| <   | means "less than"                                                                 |
| >   | means "greater than"                                                              |
|     |                                                                                   |
|     | Comments or interpretations are beyond the scope of UKAS accreditation            |
|     | The results relate only to the items tested                                       |
|     | Uncertainty of measurement for the determinands tested are available upon request |
|     |                                                                                   |

#### **Deviation Codes**

- a No date of sampling supplied
- b No time of sampling supplied (Waters Only)
- c Sample not received in appropriate containers
- d Sample not received in cooled condition
- e The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- g Sample age exceeds stability time (sampling to analysis)

Where a sample has a deviation code, the applicable test result may be invalid.

#### Sample Retention and Disposal

All soil samples will be retained for a period of one month All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage



#### **APPENDIX 4 – GEOTECHNICAL LABORATORY TEST RESULTS**



## LABORATORY REPORT



4043

#### Contract Number: PSL14/5410

Client's Reference:

Report Date: 31 October 2014

Client Name: Jomas Associates Ltd Associates Ltd Associates Ltd 1 Furzeground Way Lakeside House Stockley Park UB11 1BD

For the attention of: Roni Savage

Contract Title: Kilburn High Road

 Date Received:
 22/10/2014

 Date Commenced:
 22/10/2014

 Date Completed:
 31/10/2014

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

Mburs

M Beastall (Laboratory Manager)

Page 1 of

D Lambe (Senior Technician)

R Gunson

(Director)

S Royle

(Senior Technician)

A Watkins

(Director)

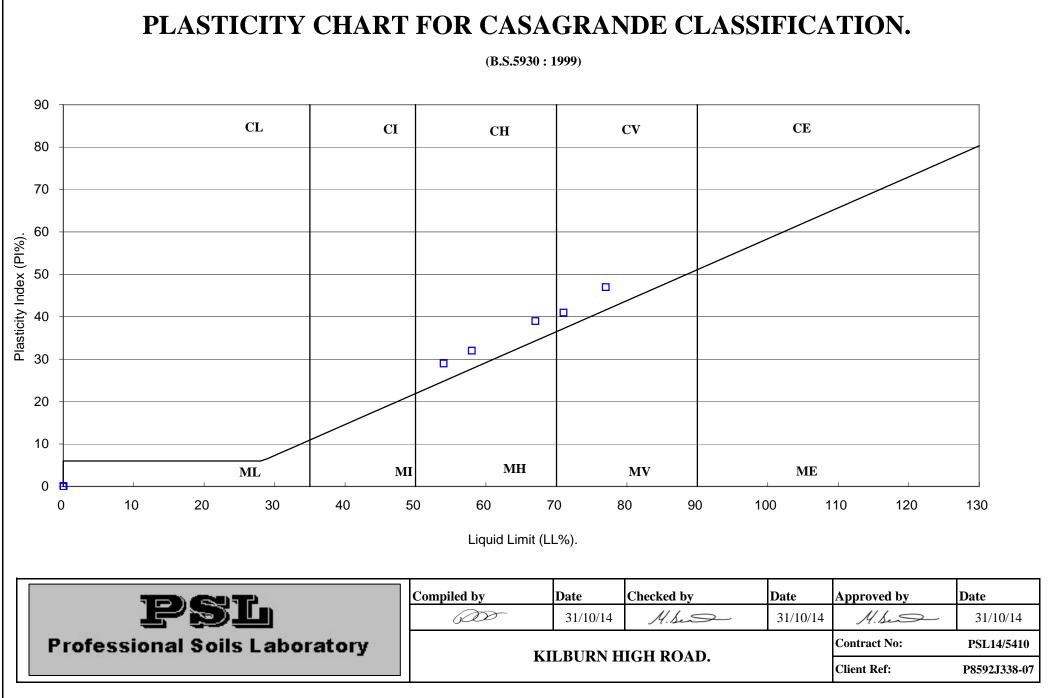
5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk

## SUMMARY OF LABORATORY SOIL DESCRIPTIONS

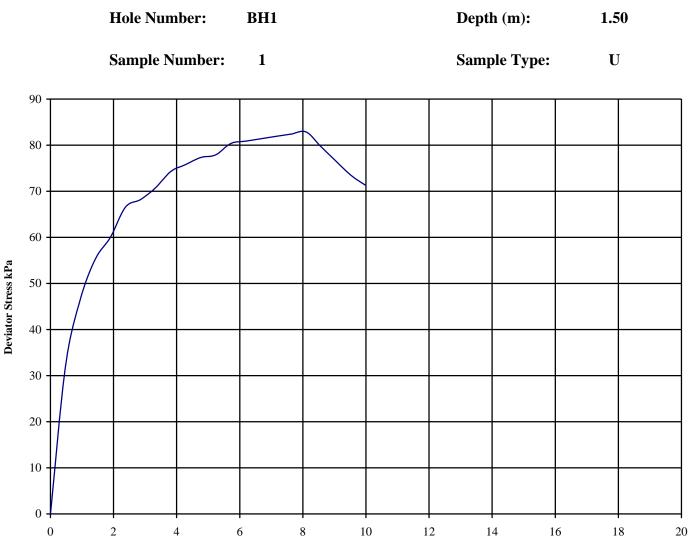
| Hole<br>Number | Sample<br>Number | Sample<br>Type | Depth<br>m | Description of Sample                                          |
|----------------|------------------|----------------|------------|----------------------------------------------------------------|
| BH1            | 1                | U              | 1.50       | Firm grey mottled brown slightly gravelly slightly sandy CLAY. |
| BH1            | 7                | U              | 5.50       | Firm brown mottled grey slightly sandy CLAY.                   |
| BH1            | 10               | U              | 8.50       | Stiff brown slightly sandy CLAY.                               |
| BH1            | 13               | U              | 11.50      | Very stiff brown slightly sandy CLAY.                          |
| BH1            | 19               | U              | 17.50      | Stiff brown slightly sandy CLAY.                               |
| BH1            | 25               | U              | 23.50      | Very stiff brown slightly sandy CLAY.                          |
| BH2            | 3                | U              | 2.50       | Firm brown slightly sandy CLAY.                                |
| BH2            | 6                | U              | 4.50       | Firm brown mottled grey slightly sandy CLAY.                   |
| BH2            | 9                | U              | 7.00       | Stiff brown slightly sandy CLAY.                               |
| BH2            | 15               | U              | 13.00      | Very stiff brown slightly sandy CLAY.                          |
| BH2            | 21               | U              | 19.00      | Very stiff brown slightly sandy CLAY.                          |
|                |                  |                |            |                                                                |
|                |                  |                |            |                                                                |
|                |                  |                |            |                                                                |
|                |                  |                |            |                                                                |
|                |                  |                |            |                                                                |
|                |                  |                |            |                                                                |
|                |                  |                |            |                                                                |
|                |                  |                |            |                                                                |

|                               | Compiled by                         | Date     | Checked by   | Date        | Approved by  | Date     |
|-------------------------------|-------------------------------------|----------|--------------|-------------|--------------|----------|
| e pe                          | $\mathcal{O}\mathcal{O}\mathcal{O}$ | 31/10/14 | M.S.         | 31/10/14    | M.S.         | 31/10/14 |
| Professional Soils Laboratory | V                                   | ILBURN H | Contract No: | PSL14/5410  |              |          |
|                               | ĸ                                   |          |              | Client Ref: | P8592J338-07 |          |

## SUMMARY OF SOIL CLASSIFICATION TESTS


(B.S. 1377 : PART 2 : 1990)

| Hole<br>Number | Sample<br>Number | Sample<br>Type | Depth<br>m | Moisture<br>Content<br>% | Bulk<br>Density<br>Mg/m <sup>3</sup> | Dry<br>Density<br>Mg/m <sup>3</sup> | Particle<br>Density<br>Mg/m <sup>3</sup> | Liquid<br>Limit<br>% | Plastic<br>Limit<br>% | Plasticity<br>Index<br>% | %<br>Passing<br>.425mm | Remarks                  |
|----------------|------------------|----------------|------------|--------------------------|--------------------------------------|-------------------------------------|------------------------------------------|----------------------|-----------------------|--------------------------|------------------------|--------------------------|
|                |                  |                |            | Clause 3.2               | Clause 7.2                           | Clause 7.2                          | Clause 8.2                               | Clause 4.3/4.4       | Clause 5.3            | Clause 5.4               |                        |                          |
| BH1            | 1                | U              | 1.50       | 30                       |                                      |                                     |                                          | 58                   | 26                    | 32                       | 100                    | High plasticity CH.      |
| BH1            | 13               | U              | 11.50      | 30                       |                                      |                                     |                                          | 77                   | 30                    | 47                       | 100                    | Very high plasticity CV. |
| BH2            | 6                | U              | 4.50       | 31                       |                                      |                                     |                                          | 67                   | 28                    | 39                       | 100                    | High plasticity CH.      |
| BH2            | 9                | U              | 7.00       | 29                       |                                      |                                     |                                          | 71                   | 30                    | 41                       | 100                    | Very high plasticity CV. |
| BH2            | 21               | U              | 19.00      | 26                       |                                      |                                     |                                          | 54                   | 25                    | 29                       | 100                    | High plasticity CH.      |
|                |                  |                |            |                          |                                      |                                     |                                          |                      |                       |                          |                        |                          |
|                |                  |                |            |                          |                                      |                                     |                                          |                      |                       |                          |                        |                          |
|                |                  |                |            |                          |                                      |                                     |                                          |                      |                       |                          |                        |                          |
|                |                  |                |            |                          |                                      |                                     |                                          |                      |                       |                          |                        |                          |
|                |                  |                |            |                          |                                      |                                     |                                          |                      |                       |                          |                        |                          |
|                |                  |                |            |                          |                                      |                                     |                                          |                      |                       |                          |                        |                          |
|                |                  |                |            |                          |                                      |                                     |                                          |                      |                       |                          |                        |                          |
|                |                  |                |            |                          |                                      |                                     |                                          |                      |                       |                          |                        |                          |
|                |                  |                |            |                          |                                      |                                     |                                          |                      |                       |                          |                        |                          |
|                |                  |                |            |                          |                                      |                                     |                                          |                      |                       |                          |                        |                          |
|                |                  |                |            |                          |                                      |                                     |                                          |                      |                       |                          |                        |                          |
|                |                  |                |            |                          |                                      |                                     |                                          |                      |                       |                          |                        |                          |
|                |                  |                |            |                          |                                      |                                     |                                          |                      |                       |                          |                        |                          |
|                |                  |                |            |                          |                                      |                                     |                                          |                      |                       |                          |                        |                          |


SYMBOLS : NP : Non Plastic

\* : Liquid Limit and Plastic Limit Wet Sieved.

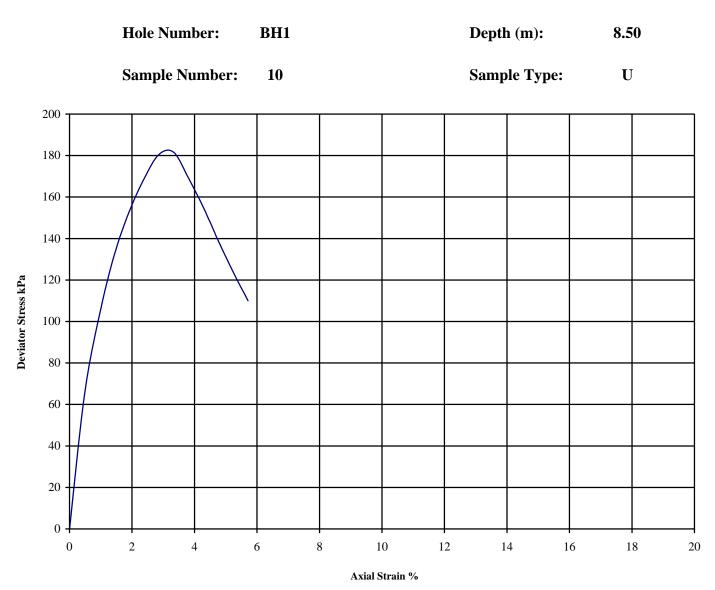
|                               | Compiled by                         | Date     | Checked by  | Date         | Approved by | Date     |
|-------------------------------|-------------------------------------|----------|-------------|--------------|-------------|----------|
| Pol                           | $\mathcal{O}\mathcal{D}\mathcal{D}$ | 31/10/14 | M. Sent     | 31/10/14     | M. Sun      | 31/10/14 |
| Professional Soils Laboratory | V                                   | LBURN H  |             | Contract No: | PSL14/5410  |          |
|                               | K                                   |          | Client Ref: | P8592J338-07 |             |          |



without measurement of Pore Pressure B.S. 1377 : Part7 : Clause 8 : 1990

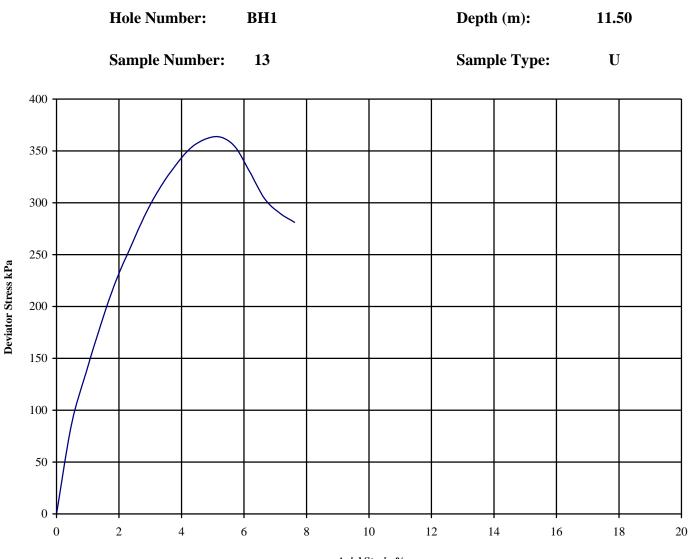


Axial Strain %


| Diamete  | er (mm):                                                                                                                      | 102.0                   | Height ( | mm):     | 210.0      | Test:    | 100 n             | nm Single | Stage.                            | Undistu                       | bed         |           |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|----------|------------|----------|-------------------|-----------|-----------------------------------|-------------------------------|-------------|-----------|--|
| Specimen | Moisture                                                                                                                      | Bulk                    | Dry      | Cell     | Corr. Max. | Shear    | Failure           | Mode      |                                   | Remarks                       |             |           |  |
|          | Content                                                                                                                       | Density                 | Density  | Pressure | Deviator   | Strength | Strain            | of        | Sample tak                        | Sample taken from top of tube |             |           |  |
|          | (%)                                                                                                                           | (Mg/m3)                 | (Mg/m3)  | (kPa)    | Stress     | Cu       | (%)               | Failure   | Rate of stra                      | ain = 1.9 %                   | %/min       |           |  |
|          |                                                                                                                               |                         |          |          | (kPa)      | (kPa)    |                   |           | Latex Men                         | nbrane use                    | ed 0.2 mm t | hickness, |  |
|          | $\theta_3 \qquad (\theta_1 - \theta_3)_f \qquad \frac{1}{2}(\theta_1 - \theta_3)_f \qquad \text{Correction applied} \qquad 0$ |                         |          |          |            |          |                   | 0.36      | kPa                               |                               |             |           |  |
| А        | 30                                                                                                                            | 1.81                    | 1.40     | 30       | 83         | 41       | 8.1               | Brittle   | See summary of soil descriptions. |                               |             |           |  |
|          |                                                                                                                               |                         |          |          |            |          |                   |           |                                   |                               |             |           |  |
|          |                                                                                                                               |                         |          |          |            |          |                   |           | Checked                           | Date                          | Approved    | Date      |  |
|          |                                                                                                                               |                         |          |          |            |          |                   |           | N.b.S                             | 31/10/14                      | M.b.S       | 31/10/14  |  |
| Profes   | <b>P</b> S<br>ssional S                                                                                                       | <b>SL</b><br>ioils Labo | oratory  |          |            |          | act No:<br>4/5410 |           |                                   |                               |             |           |  |

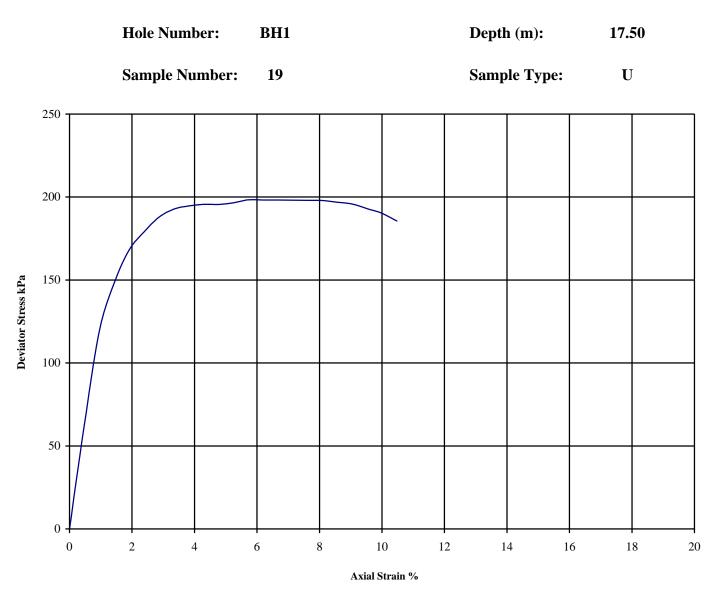
without measurement of Pore Pressure B.S. 1377 : Part7 : Clause 8 : 1990



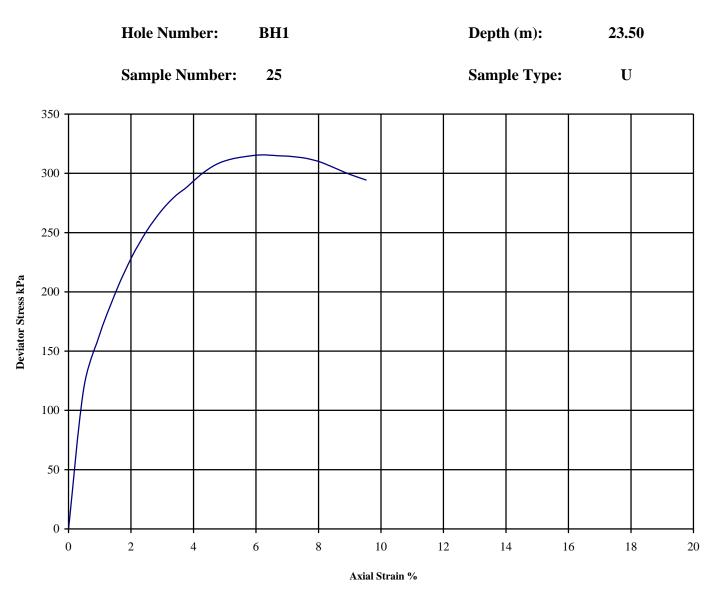

Axial Strain %

| Diamete                                                                       | er (mm): | 102.0                  | Height ( | mm):               | 210.0      | Test:    | 100 n   | nm Single                         | Stage.                     | Undistu     | bed         |           |  |
|-------------------------------------------------------------------------------|----------|------------------------|----------|--------------------|------------|----------|---------|-----------------------------------|----------------------------|-------------|-------------|-----------|--|
| Specimen                                                                      | Moisture | Bulk                   | Dry      | Cell               | Corr. Max. | Shear    | Failure | Mode                              |                            | Remarks     |             |           |  |
|                                                                               | Content  | Density                | Density  | Pressure           | Deviator   | Strength | Strain  | of                                | Sample tak                 | ten from t  | op of tube  |           |  |
|                                                                               | (%)      | (Mg/m3)                | (Mg/m3)  | (kPa)              | Stress     | Cu       | (%)     | Failure                           | Rate of stra               | ain = 1.9 % | %/min       |           |  |
|                                                                               |          |                        |          |                    | (kPa)      | (kPa)    |         |                                   | Latex Men                  | nbrane use  | ed 0.2 mm t | hickness, |  |
| $\theta_3 \qquad (\theta_1 - \theta_3)_f  \frac{1}{2}(\theta_1 - \theta_3)_f$ |          |                        |          |                    |            |          |         | Correction                        | applied                    | 0.36        | kPa         |           |  |
| A 32 1.90 1.44 110 134 67 5.2 Bri                                             |          |                        |          |                    |            |          | Brittle | See summary of soil descriptions. |                            |             |             |           |  |
|                                                                               |          |                        |          |                    |            |          |         |                                   |                            |             |             |           |  |
|                                                                               |          |                        |          |                    |            |          |         |                                   | Checked                    | Date        | Approved    | Date      |  |
|                                                                               |          |                        |          |                    |            |          |         |                                   | M.b.D                      | 31/10/14    | M.b.D       | 31/10/14  |  |
| Profes                                                                        |          | <b>SL</b><br>oils Labo | pratory  | KILBURN HIGH ROAD. |            |          |         |                                   | Contract No:<br>PSL14/5410 |             |             |           |  |

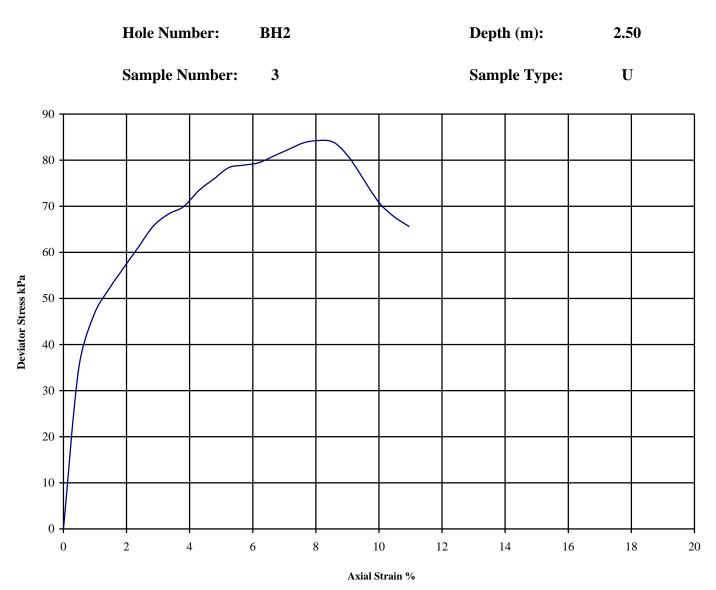



| Diamete  | er (mm):              | 102.0                   | Height ( | mm):               | 210.0                     | Test:                                  | 100 m   | nm Single | Stage.                            | Undistu     | rbed        |           |  |  |
|----------|-----------------------|-------------------------|----------|--------------------|---------------------------|----------------------------------------|---------|-----------|-----------------------------------|-------------|-------------|-----------|--|--|
| Specimen | Moisture              | Bulk                    | Dry      | Cell               | Corr. Max.                | Shear                                  | Failure | Mode      | Remarks                           |             |             |           |  |  |
|          | Content               | Density                 | Density  | Pressure           | Deviator                  | Strength                               | Strain  | of        | Sample tak                        | ken from t  | op of tube  |           |  |  |
|          | (%)                   | (Mg/m3)                 | (Mg/m3)  | (kPa)              | Stress                    | Cu                                     | (%)     | Failure   | Rate of str                       | ain = 1.9 9 | %/min       |           |  |  |
|          |                       |                         |          |                    | (kPa)                     | (kPa)                                  |         |           | Latex Men                         | nbrane use  | ed 0.2 mm t | hickness, |  |  |
|          |                       |                         |          | $\theta_3$         | $(\theta_1 - \theta_3)_f$ | $^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$ |         |           | Correction applied 0.37 kPa       |             |             |           |  |  |
| А        | 31                    | 1.94                    | 1.48     | 170                | 182                       | 91                                     | 3.3     | Brittle   | See summary of soil descriptions. |             |             |           |  |  |
|          |                       |                         |          |                    |                           |                                        |         |           |                                   |             |             |           |  |  |
|          |                       |                         |          |                    |                           |                                        |         |           | Checked                           | Date        | Approved    | Date      |  |  |
|          |                       |                         |          |                    |                           |                                        |         |           | M.b.D                             | 31/10/14    | M.b.D       | 31/10/14  |  |  |
| Profes   | <b>P</b><br>ssional S | <b>SL</b><br>ioils Labo | oratory  | KILBURN HIGH ROAD. |                           |                                        |         |           | Contract No:<br>PSL14/5410        |             |             |           |  |  |

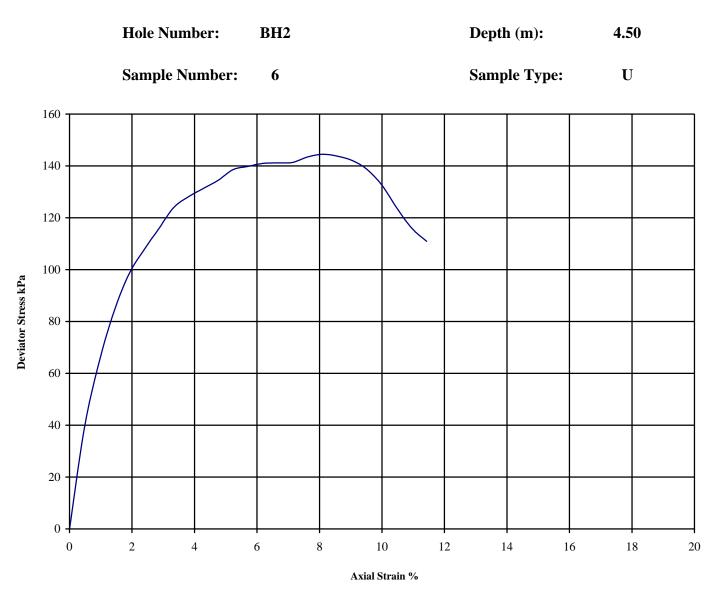
without measurement of Pore Pressure B.S. 1377 : Part7 : Clause 8 : 1990



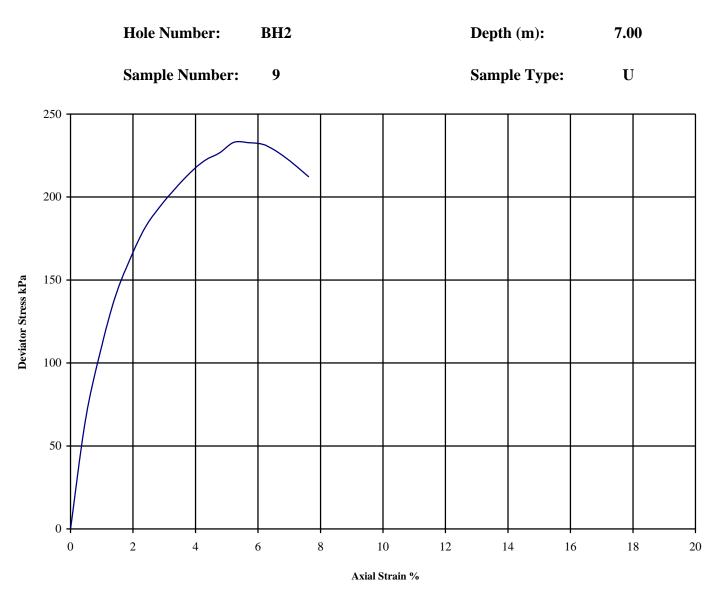

Axial Strain %


| Diamete  | er (mm):              | 102.0                   | Height ( | mm):               | 210.0                     | Test:                                  | 100 n   | nm Single | Stage.                            | Undistur    | rbed              |           |  |
|----------|-----------------------|-------------------------|----------|--------------------|---------------------------|----------------------------------------|---------|-----------|-----------------------------------|-------------|-------------------|-----------|--|
| Specimen | Moisture              | Bulk                    | Dry      | Cell               | Corr. Max.                | Shear                                  | Failure | Mode      | Remarks                           |             |                   |           |  |
|          | Content               | Density                 | Density  | Pressure           | Deviator                  | Strength                               | Strain  | of        | Sample tak                        | ten from to | op of tube        |           |  |
|          | (%)                   | (Mg/m3)                 | (Mg/m3)  | (kPa)              | Stress                    | Cu                                     | (%)     | Failure   | Rate of str                       | ain = 1.9 % | %/min             |           |  |
|          |                       |                         |          |                    | (kPa)                     | (kPa)                                  |         |           | Latex Men                         | nbrane use  | ed 0.2 mm ti      | hickness, |  |
|          |                       |                         |          | $\theta_3$         | $(\theta_1 - \theta_3)_f$ | $^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$ |         |           | Correction applied 0.36 k         |             |                   |           |  |
| А        | 30                    | 1.96                    | 1.51     | 230                | 363                       | 182                                    | 5.2     | Brittle   | See summary of soil descriptions. |             |                   |           |  |
|          |                       |                         |          |                    |                           |                                        |         |           |                                   |             |                   |           |  |
|          |                       |                         |          |                    |                           |                                        |         |           | Checked                           | Date        | Approved          | Date      |  |
|          |                       |                         |          |                    |                           |                                        |         |           | M.b.S                             | 31/10/14    | M.b.D             | 31/10/14  |  |
| Profes   | <b>P</b><br>ssional S | <b>SL</b><br>ioils Labo | pratory  | KILBURN HIGH ROAD. |                           |                                        |         |           |                                   |             | act No:<br>4/5410 |           |  |

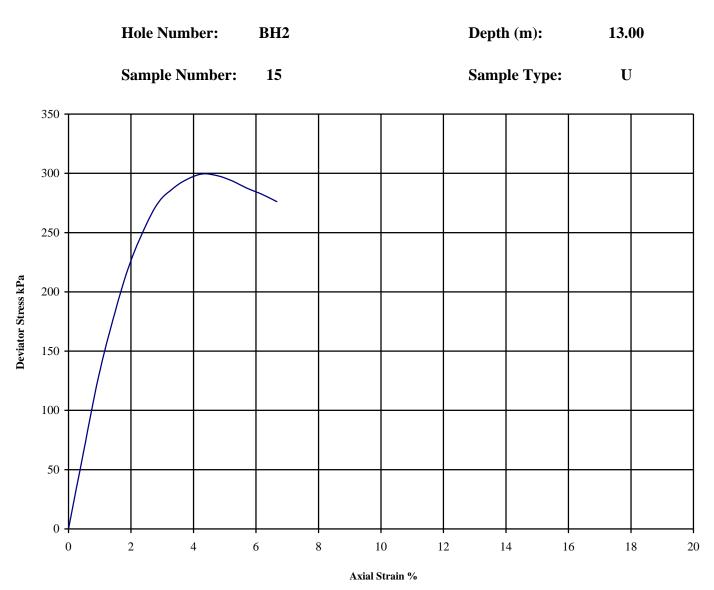



| Diamete  | er (mm): | 102.0                   | Height ( | mm):       | 210.0                     | Test:                                  | 100 m   | m Single | Stage.                            | Undistur    | bed               |           |  |
|----------|----------|-------------------------|----------|------------|---------------------------|----------------------------------------|---------|----------|-----------------------------------|-------------|-------------------|-----------|--|
| Specimen | Moisture | Bulk                    | Dry      | Cell       | Corr. Max.                | Shear                                  | Failure | Mode     |                                   | Remarks     |                   |           |  |
|          | Content  | Density                 | Density  | Pressure   | Deviator                  | Strength                               | Strain  | of       | Sample tak                        | ten from to | op of tube        |           |  |
|          | (%)      | (Mg/m3)                 | (Mg/m3)  | (kPa)      | Stress                    | Cu                                     | (%)     | Failure  | Rate of str                       | ain = 1.9 % | %/min             |           |  |
|          |          |                         |          |            | (kPa)                     | (kPa)                                  |         |          | Latex Men                         | nbrane use  | ed 0.2 mm ti      | hickness, |  |
|          |          |                         |          | $\theta_3$ | $(\theta_1 - \theta_3)_f$ | $^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$ |         |          | Correction applied 0.36 kPa       |             |                   |           |  |
| А        | 28       | 1.96                    | 1.54     | 350        | 198                       | 99                                     | 5.7     | Brittle  | See summary of soil descriptions. |             |                   |           |  |
|          |          |                         |          |            |                           |                                        |         |          |                                   |             |                   |           |  |
|          |          |                         |          |            |                           |                                        |         |          | Checked                           | Date        | Approved          | Date      |  |
|          |          |                         |          |            |                           |                                        |         |          | M.b.D                             | 31/10/14    | M.b.D             | 31/10/14  |  |
| Profes   |          | <b>SL</b><br>ioils Labo | oratory  |            | KILBUF                    | RN HIGH                                | I ROAD  | ).       |                                   |             | act No:<br>4/5410 |           |  |

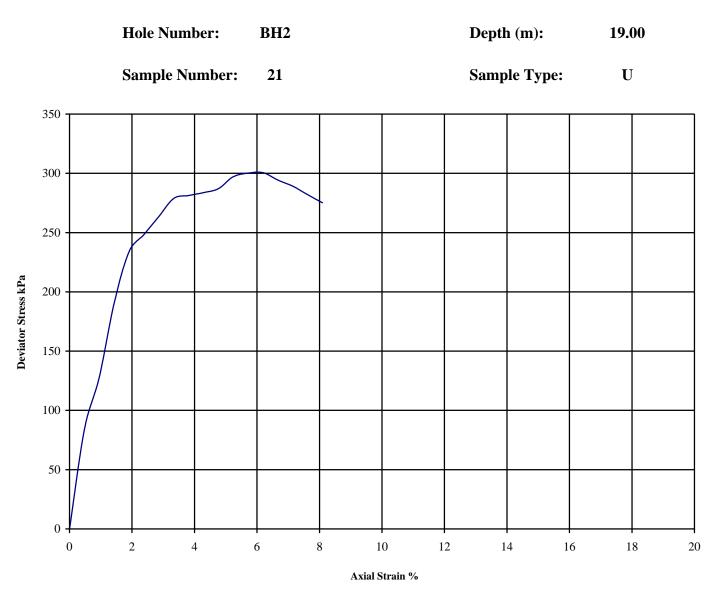



| Diamete  | er (mm):                | 102.0           | Height ( | mm):       | 210.0                     | Test:                                  | 100 m   | nm Single | Stage.       | Undistur    | bed          |           |
|----------|-------------------------|-----------------|----------|------------|---------------------------|----------------------------------------|---------|-----------|--------------|-------------|--------------|-----------|
| Specimen | Moisture                | Bulk            | Dry      | Cell       | Corr. Max.                | Shear                                  | Failure | Mode      |              | Ren         | narks        |           |
|          | Content                 | Density         | Density  | Pressure   | Deviator                  | Strength                               | Strain  | of        | Sample tak   | ten from to | op of tube   |           |
|          | (%)                     | (Mg/m3)         | (Mg/m3)  | (kPa)      | Stress                    | Cu                                     | (%)     | Failure   | Rate of stra | ain = 1.9 % | %/min        |           |
|          |                         |                 |          |            | (kPa)                     | (kPa)                                  |         |           | Latex Men    | nbrane use  | ed 0.2 mm ti | hickness, |
|          |                         |                 |          | $\theta_3$ | $(\theta_1 - \theta_3)_f$ | $^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$ |         |           | Correction   | applied     | 0.36         | kPa       |
| А        | 30                      | 1.95            | 1.50     | 470        | 316                       | 158                                    | 6.2     | Brittle   | See summa    | ary of soil | description  | s.        |
|          |                         |                 |          |            |                           |                                        |         |           |              |             |              |           |
|          |                         |                 |          |            |                           |                                        |         |           | Checked      | Date        | Approved     | Date      |
|          |                         |                 |          |            |                           |                                        |         |           | M.b.D        | 31/10/14    | M.b.D        | 31/10/14  |
| Profes   | <b>P</b> S<br>ssional S | SL<br>oils Labo | oratory  |            | KILBUF                    | RN HIGH                                | I ROAD  | ).        | FF           |             |              |           |




| Diamete                                     | er (mm): | 102.0   | Height ( | mm):       | 210.0                     | Test:                                  | 100 n   | nm Single | Stage.                     | Undistur    | bed               |           |
|---------------------------------------------|----------|---------|----------|------------|---------------------------|----------------------------------------|---------|-----------|----------------------------|-------------|-------------------|-----------|
| Specimen                                    | Moisture | Bulk    | Dry      | Cell       | Corr. Max.                | Shear                                  | Failure | Mode      |                            | Ren         | narks             |           |
|                                             | Content  | Density | Density  | Pressure   | Deviator                  | Strength                               | Strain  | of        | Sample tak                 | ken from to | op of tube        |           |
|                                             | (%)      | (Mg/m3) | (Mg/m3)  | (kPa)      | Stress                    | Cu                                     | (%)     | Failure   | Rate of stra               | ain = 1.9 % | 6/min             |           |
|                                             |          |         |          |            | (kPa)                     | (kPa)                                  |         |           | Latex Men                  | nbrane use  | d 0.2 mm t        | hickness, |
|                                             |          |         |          | $\theta_3$ | $(\theta_1 - \theta_3)_f$ | $^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$ |         |           | Correction applied 0.36 kl |             |                   | kPa       |
| A 30 1.96 1.51                              |          |         |          | 50         | 84                        | 42                                     | 8.1     | Brittle   | See summa                  | ary of soil | description       | s.        |
|                                             |          |         |          |            |                           |                                        |         |           |                            |             |                   |           |
|                                             |          |         |          |            |                           |                                        |         |           | Checked                    | Date        | Approved          | Date      |
|                                             |          |         |          |            |                           |                                        |         |           | M.b.S.                     | 31/10/14    | M.b.S             | 31/10/14  |
| <b>PSL</b><br>Professional Soils Laboratory |          |         |          |            | KILBUF                    | RN HIGH                                | I ROAI  | ).        |                            |             | act No:<br>4/5410 |           |




| Diamete  | er (mm):              | 102.0                   | Height ( | mm):       | 210.0                     | Test:                                  | 100 m   | nm Single | Stage. Undisturbed         |             |             |           |  |
|----------|-----------------------|-------------------------|----------|------------|---------------------------|----------------------------------------|---------|-----------|----------------------------|-------------|-------------|-----------|--|
| Specimen | Moisture              | Bulk                    | Dry      | Cell       | Corr. Max.                | Shear                                  | Failure | Mode      |                            | Ren         | narks       |           |  |
|          | Content               | Density                 | Density  | Pressure   | Deviator                  | Strength                               | Strain  | of        | Sample tak                 | ten from t  | op of tube  |           |  |
|          | (%)                   | (Mg/m3)                 | (Mg/m3)  | (kPa)      | Stress                    | Cu                                     | (%)     | Failure   | Rate of str                | ain = 1.9 % | %/min       |           |  |
|          |                       |                         |          |            | (kPa)                     | (kPa)                                  |         |           | Latex Men                  | nbrane use  | ed 0.2 mm t | hickness, |  |
|          |                       |                         |          | $\theta_3$ | $(\theta_1 - \theta_3)_f$ | $^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$ |         |           | Correction                 | applied     | 0.36        | kPa       |  |
| А        | 31                    | 1.93                    | 1.48     | 90         | 145                       | 72                                     | 8.1     | Brittle   | See summa                  | ary of soil | description | IS.       |  |
|          |                       |                         |          |            |                           |                                        |         |           |                            |             |             |           |  |
|          |                       |                         |          |            |                           |                                        |         |           | Checked                    | Date        | Approved    | Date      |  |
|          |                       |                         |          |            |                           |                                        |         |           | M.b.D                      | 31/10/14    | M.b.S.      | 31/10/14  |  |
| Profes   | <b>P</b><br>ssional S | <b>SL</b><br>ioils Labo | oratory  |            | KILBUF                    | RN HIGH                                | I ROAD  | ).        | Contract No:<br>PSL14/5410 |             |             |           |  |



| Diamete  | er (mm):              | 102.0                   | Height ( | mm):       | 210.0                     | Test:                                  | 100 m   | m Single              | Stage.                      | Undistur    | bed         |           |
|----------|-----------------------|-------------------------|----------|------------|---------------------------|----------------------------------------|---------|-----------------------|-----------------------------|-------------|-------------|-----------|
| Specimen | Moisture              | Bulk                    | Dry      | Cell       | Corr. Max.                | Shear                                  | Failure | Mode                  | Remarks                     |             |             |           |
|          | Content               | Density                 | Density  | Pressure   | Deviator                  | Strength                               | Strain  | of                    | Sample tak                  | ten from to | op of tube  |           |
|          | (%)                   | (Mg/m3)                 | (Mg/m3)  | (kPa)      | Stress                    | Cu                                     | (%)     | Failure               | Rate of stra                | ain = 1.9 % | %/min       |           |
|          |                       |                         |          |            | (kPa)                     | (kPa)                                  |         |                       | Latex Men                   | nbrane use  | ed 0.2 mm t | hickness, |
|          |                       |                         |          | $\theta_3$ | $(\theta_1 - \theta_3)_f$ | $^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$ |         |                       | Correction applied 0.36 kPa |             |             | kPa       |
| А        | 29                    | 1.76                    | 1.36     | 140        | 233                       | 116                                    | 5.2     | Brittle               | See summa                   | ary of soil | description | s.        |
|          |                       |                         |          |            |                           |                                        |         |                       |                             |             |             |           |
|          |                       |                         |          |            |                           |                                        |         | Checked Date Approved |                             |             |             | Date      |
|          |                       |                         |          |            |                           |                                        |         |                       | M.b.S                       | 31/10/14    | M.b.S       | 31/10/14  |
| Profes   | <b>P</b><br>ssional S | <b>SL</b><br>ioils Labo | oratory  |            | KILBUF                    | RN HIGH                                | I ROAD  | ).                    | Contract No:<br>PSL14/5410  |             |             |           |



| Diamete  | er (mm):              | 102.0                   | Height ( | mm):       | 210.0                     | Test:                                  | 100 m   | nm Single | Stage. Undisturbed          |             |             |           |
|----------|-----------------------|-------------------------|----------|------------|---------------------------|----------------------------------------|---------|-----------|-----------------------------|-------------|-------------|-----------|
| Specimen | Moisture              | Bulk                    | Dry      | Cell       | Corr. Max.                | Shear                                  | Failure | Mode      |                             | Ren         | narks       |           |
|          | Content               | Density                 | Density  | Pressure   | Deviator                  | Strength                               | Strain  | of        | Sample tal                  | ten from t  | op of tube  |           |
|          | (%)                   | (Mg/m3)                 | (Mg/m3)  | (kPa)      | Stress                    | Cu                                     | (%)     | Failure   | Rate of str                 | ain = 1.9 % | %/min       |           |
|          |                       |                         |          |            | (kPa)                     | (kPa)                                  |         |           | Latex Mer                   | nbrane use  | ed 0.2 mm t | hickness, |
|          |                       |                         |          | $\theta_3$ | $(\theta_1 - \theta_3)_f$ | $^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$ |         |           | Correction applied 0.36 kPa |             |             | kPa       |
| А        | 28                    | 1.99                    | 1.56     | 260        | 300                       | 150                                    | 4.3     | Brittle   | See summ                    | ary of soil | description | s.        |
|          |                       |                         |          |            |                           |                                        |         |           |                             |             |             |           |
|          |                       |                         |          |            |                           |                                        |         |           | Checked                     | Date        | Approved    | Date      |
|          |                       |                         |          |            |                           |                                        |         |           | M.b.D                       | 31/10/14    | M.b.D       | 31/10/14  |
| Profes   | <b>P</b><br>ssional S | <b>SL</b><br>ioils Labo | oratory  |            | KILBUF                    | RN HIGH                                | I ROAD  | ).        | Contract No:<br>PSL14/5410  |             |             |           |



| Diamete  | er (mm):              | 102.0           | Height ( | mm):       | 210.0                     | Test:                                  | 100 m   | nm Single | Stage. Undisturbed          |             |             |           |  |
|----------|-----------------------|-----------------|----------|------------|---------------------------|----------------------------------------|---------|-----------|-----------------------------|-------------|-------------|-----------|--|
| Specimen | Moisture              | Bulk            | Dry      | Cell       | Corr. Max.                | Shear                                  | Failure | Mode      |                             | Ren         | narks       |           |  |
|          | Content               | Density         | Density  | Pressure   | Deviator                  | Strength                               | Strain  | of        | Sample tal                  | ten from t  | op of tube  |           |  |
|          | (%)                   | (Mg/m3)         | (Mg/m3)  | (kPa)      | Stress                    | Cu                                     | (%)     | Failure   | Rate of str                 | ain = 1.9 % | %/min       |           |  |
|          |                       |                 |          |            | (kPa)                     | (kPa)                                  |         |           | Latex Mer                   | nbrane use  | ed 0.2 mm t | hickness, |  |
|          |                       |                 |          | $\theta_3$ | $(\theta_1 - \theta_3)_f$ | $^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$ |         |           | Correction applied 0.36 kPa |             |             | kPa       |  |
| А        | 26                    | 2.02            | 1.60     | 380        | 301                       | 150                                    | 6.2     | Brittle   | See summ                    | ary of soil | description | s.        |  |
|          |                       |                 |          |            |                           |                                        |         |           |                             |             |             |           |  |
|          |                       |                 |          |            |                           |                                        |         |           | Checked                     | Date        | Approved    | Date      |  |
|          |                       |                 |          |            |                           |                                        |         |           | M.b.S.                      | 31/10/14    | M.b.S       | 31/10/14  |  |
| Profes   | <b>P</b><br>ssional S | SL<br>oils Labo | oratory  |            | KILBUF                    | RN HIGH                                | I ROAD  | ).        | Contract No:<br>PSL14/5410  |             |             |           |  |



#### **APPENDIX 5 – STATISTICAL ANALYSIS RESULTS**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ervations       | 10    |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|--|--|--|--|--|--|--|
| 3     From File     WorkSheet.wst       4     Full Precision     OFF       5     Confidence Coefficient     95%       6     Number of Bootstrap Operations     2000       7     2000       7     Arsenic       10     General Statistics       11     General Statistics       12     Number of Valid Observations     10       13     Interview     Log-transformed Statistics       14     Raw Statistics     Log-transformed Statistics       15     Minimum     10.6       16     Maximum     33.7       17     Mean of                                                                                                                     | ervations       | 10    |  |  |  |  |  |  |  |
| 4     Full Precision     OFF       5     Confidence Coefficient     95%       6     Number of Bootstrap Operations     2000       7     2000       7     Arsenic       9     Arsenic       10     General Statistics       11     General Statistics       12     Number of Valid Observations     10       13     It       14     Raw Statistics       15     Minimum     10.6       16     Maximum     33.7       17     Mean of                                                                                                                                                                                                              | ervations       | 10    |  |  |  |  |  |  |  |
| 5         Confidence Coefficient         95%           6         Number of Bootstrap Operations         2000           7         2000           8         2000           9         Arsenic           10         General Statistics           11         General Statistics           12         Number of Valid Observations         10           13         Number of Distinct Obs           14         Raw Statistics         Log-transformed Statistics           15         Minimum         10.6         Minimum of           16         Maximum         33.7         Maximum of           17         Mean of         19.85         Mean of | ervations       | 10    |  |  |  |  |  |  |  |
| 6         Number of Bootstrap Operations         2000           7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ervations       | 10    |  |  |  |  |  |  |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ervations       | 10    |  |  |  |  |  |  |  |
| 8         9       Arsenic         10       Image: General Statistics         11       General Statistics         12       Number of Valid Observations         13       Image: General Statistics         14       Raw Statistics         15       Minimum         16       Maximum         17       Mean of                                                                                                                                                                                                                                                                                                                                    | ervations       | 10    |  |  |  |  |  |  |  |
| 9       Arsenic         10       Image: Ceneral Statistics         11       General Statistics         12       Number of Valid Observations         13       Image: Ceneral Statistics         14       Raw Statistics         15       Minimum         16       Maximum         17       Mean of                                                                                                                                                                                                                                                                                                                                              | ervations       | 10    |  |  |  |  |  |  |  |
| ID       General Statistics         I1       General Statistics         I2       Number of Valid Observations       I0       Number of Distinct Obs         I3       Image: Statistics         I4       Raw Statistics         I5       Minimum       10.6       Minimum of         I6       Mean of         I7       Mean of                                                                                                                                                                                                                                                                                                                   | ervations       | 10    |  |  |  |  |  |  |  |
| Interference     General Statistics       12     Number of Valid Observations     10     Number of Distinct Obs       13     Interference     Interference     Interference       14     Raw Statistics     Log-transformed Statistics       15     Minimum     10.6     Minimum of       16     Maximum     33.7     Maximum of       17     Mean     19.85     Mean of                                                                                                                                                                                                                                                                        | ervations       | 10    |  |  |  |  |  |  |  |
| 12Number of Valid Observations10Number of Distinct Obs131414Raw Statistics15161717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ervations       | 10    |  |  |  |  |  |  |  |
| I3       Log-transformed Statistics         14       Raw Statistics         15       Minimum 10.6         16       Maximum 33.7         17       Mean 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |       |  |  |  |  |  |  |  |
| 14Raw StatisticsLog-transformed Statistics15Minimum10.6Minimum of16Maximum33.7Maximum of17Mean19.85Mean of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |       |  |  |  |  |  |  |  |
| 15Minimum10.6Minimum of16Maximum33.7Maximum of17Mean19.85Mean of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |       |  |  |  |  |  |  |  |
| 16         Maximum         33.7         Maximum of           17         Mean         19.85         Mean of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Log Data        | 2.361 |  |  |  |  |  |  |  |
| 17 Mean 19.85 Mean of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Log Data        | 3.517 |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | f log Data      | 2.938 |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | f log Data      |       |  |  |  |  |  |  |  |
| 19 Median 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |       |  |  |  |  |  |  |  |
| 20 SD 6.641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |       |  |  |  |  |  |  |  |
| 21 Std. Error of Mean 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |       |  |  |  |  |  |  |  |
| 22 Coefficient of Variation 0.335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |  |  |  |  |  |  |  |
| 23 Skewness 0.758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |  |  |  |  |  |  |  |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |       |  |  |  |  |  |  |  |
| 25 Relevant UCL Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |       |  |  |  |  |  |  |  |
| 26     Normal Distribution Test     Lognormal Distribution Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |       |  |  |  |  |  |  |  |
| 27   Shapiro Wilk Test Statistic   0.951   Shapiro Wilk Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t Statistic     | 0.98  |  |  |  |  |  |  |  |
| 28     Shapiro Wilk Critical Value     0.842     Shapiro Wilk Critical Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cal Value       | 0.842 |  |  |  |  |  |  |  |
| 29         Data appear Normal at 5% Significance Level         Data appear Lognormal at 5% Significance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ce Level        |       |  |  |  |  |  |  |  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |       |  |  |  |  |  |  |  |
| 31         Assuming Normal Distribution         Assuming Lognormal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n               |       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95% H-UCL 25.01 |       |  |  |  |  |  |  |  |
| 33     95% UCLs (Adjusted for Skewness)     95% Chebyshev (MV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UE) UCL         | 29.1  |  |  |  |  |  |  |  |
| 34         95% Adjusted-CLT UCL (Chen-1995)         23.84         97.5% Chebyshev (MV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UE) UCL         | 33.1  |  |  |  |  |  |  |  |
| 35 95% Modified-t UCL (Johnson-1978) 23.78 99% Chebyshev (MV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UE) UCL         | 40.95 |  |  |  |  |  |  |  |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 1     |  |  |  |  |  |  |  |
| 37 Gamma Distribution Test Data Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |       |  |  |  |  |  |  |  |
| 38 k star (bias corrected) 7.199 Data appear Normal at 5% Significance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a Level         |       |  |  |  |  |  |  |  |
| 39 Theta Star 2.757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |       |  |  |  |  |  |  |  |
| 40 MLE of Mean 19.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |       |  |  |  |  |  |  |  |
| 41 MLE of Standard Deviation 7.398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |       |  |  |  |  |  |  |  |
| 42 nu star 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |       |  |  |  |  |  |  |  |
| 43         Approximate Chi Square Value (.05)         117.3         Nonparametric Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |       |  |  |  |  |  |  |  |
| 44 Adjusted Level of Significance 0.0267 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CLT UCL         |       |  |  |  |  |  |  |  |
| 45 Adjusted Chi Square Value 113.1 95% Jackk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nife UCL        | 23.7  |  |  |  |  |  |  |  |
| 46 95% Standard Boots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | trap UCL        | 23.19 |  |  |  |  |  |  |  |
| 47         Anderson-Darling Test Statistic         0.198         95% Bootstr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ap-t UCL        | 24.57 |  |  |  |  |  |  |  |
| 48 Anderson-Darling 5% Critical Value 0.725 95% Hall's Boots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | trap UCL        | 24.99 |  |  |  |  |  |  |  |
| 49         Kolmogorov-Smirnov Test Statistic         0.118         95% Percentile Boots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | trap UCL        | 23.16 |  |  |  |  |  |  |  |
| 50 Kolmogorov-Smirnov 5% Critical Value 0.267 95% BCA Boots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •               |       |  |  |  |  |  |  |  |
| 51Data appear Gamma Distributed at 5% Significance Level95% Chebyshev(Mean,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,               |       |  |  |  |  |  |  |  |
| 52 97.5% Chebyshev(Mean,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,               |       |  |  |  |  |  |  |  |
| 53Assuming Gamma Distribution99% Chebyshev(Mean,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sd) UCL         | 40.75 |  |  |  |  |  |  |  |
| 54 95% Approximate Gamma UCL (Use when n >= 40) 24.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |       |  |  |  |  |  |  |  |
| 55 95% Adjusted Gamma UCL (Use when n < 40) 25.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |  |  |  |  |  |  |  |

|    | А                                                                                                                            | В | С           | D          | E | F | G | Н            | I    | J | K | L |  |
|----|------------------------------------------------------------------------------------------------------------------------------|---|-------------|------------|---|---|---|--------------|------|---|---|---|--|
| 56 |                                                                                                                              |   |             |            |   |   |   |              |      |   |   |   |  |
| 57 |                                                                                                                              |   | Potential U | JCL to Use |   |   |   | dent's-t UCL | 23.7 |   |   |   |  |
| 58 |                                                                                                                              |   |             |            |   |   |   |              |      |   |   |   |  |
| 59 | Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. |   |             |            |   |   |   |              |      |   |   |   |  |
| 60 | These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002)       |   |             |            |   |   |   |              |      |   |   |   |  |
| 61 | and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.                             |   |             |            |   |   |   |              |      |   |   |   |  |
| 62 |                                                                                                                              |   |             |            |   |   |   |              |      |   |   |   |  |

|    | A             | В              | С               | D              | E            | F              | G           | Н | J    | K | L |
|----|---------------|----------------|-----------------|----------------|--------------|----------------|-------------|---|------|---|---|
| 1  |               |                |                 |                | Outlier Test | ts for Selecte | d Variables |   |      |   |   |
| 2  |               |                | User Selec      | ted Options    |              |                |             |   | <br> |   |   |
| 3  |               |                |                 | From File      | WorkSheet    | .wst           |             |   | <br> |   |   |
| 4  |               |                |                 | Il Precision   | OFF          |                |             |   | <br> |   |   |
| 5  |               |                | Outliers with   |                | 1            |                |             |   |      |   |   |
| 6  | Test for S    | Suspected C    | Outliers with F | Rosner test    | 1            |                |             |   |      |   |   |
| 7  |               |                |                 |                |              |                |             |   |      |   |   |
| 8  |               |                |                 |                |              |                |             |   |      |   |   |
| 9  |               | Dixon's C      | Dutlier Test fo | or Arsenic     |              |                |             |   |      |   |   |
| 10 |               |                |                 |                |              |                |             |   |      |   |   |
| 11 | Number of a   | data = 10      |                 |                |              |                |             |   |      |   |   |
| 12 | 10% critical  | value: 0.409   | 9               |                |              |                |             |   |      |   |   |
| 13 | 5% critical v | value: 0.477   |                 |                |              |                |             |   |      |   |   |
| 14 | 1% critical v | alue: 0.597    |                 |                |              |                |             |   |      |   |   |
| 15 |               |                |                 |                |              |                |             |   |      |   |   |
| 16 | 1. Data Val   | ue 33.7 is a   | Potential Out   | tlier (Upper T | 'ail)?       |                |             |   |      |   |   |
| 17 |               |                |                 |                |              |                |             |   |      |   |   |
| 18 | Test Statisti | c: 0.467       |                 |                |              |                |             |   |      |   |   |
| 19 |               |                |                 |                |              |                |             |   |      |   |   |
| 20 | For 10% sig   | inificance lev | vel, 33.7 is ar | n outlier.     |              |                |             |   |      |   |   |
| 21 | For 5% sign   | ificance leve  | el, 33.7 is not | an outlier.    |              |                |             |   |      |   |   |
| 22 | For 1% sign   | ificance leve  | el, 33.7 is not | an outlier.    |              |                |             |   |      |   |   |
| 23 |               |                |                 |                |              |                |             |   |      |   |   |
| 24 | 2. Data Valu  | ue 10.6 is a l | Potential Out   | lier (Lower T  | ail)?        |                |             |   |      |   |   |
| 25 |               |                |                 |                |              |                |             |   |      |   |   |
| 26 | Test Statisti | c: 0.232       |                 |                |              |                |             |   |      |   |   |
| 27 |               |                |                 |                |              |                |             |   |      |   |   |
| 28 | For 10% sig   | Inificance lev | vel, 10.6 is no | ot an outlier. |              |                |             |   |      |   |   |
| 29 | For 5% sign   | ificance leve  | el, 10.6 is not | an outlier.    |              |                |             |   |      |   |   |
| 30 | For 1% sign   | ificance leve  | el, 10.6 is not | an outlier.    |              |                |             |   |      |   |   |
| 31 |               |                |                 |                |              |                |             |   |      |   |   |

| 4                                                                                                                                                                                                                                                                                                                                                    | A            | В                     | С                                                                                                                                                                         | D<br>General UCL S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E<br>tatistics f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F<br>Full Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | G<br>Sets                                                                                  | Н                                                                                                                            | I                                                                                                                                                                               | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                           | K                                                                                    | L                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------|
| 1                                                                                                                                                                                                                                                                                                                                                    |              | User Selec            | ted Options                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                      |                                           |
| 2                                                                                                                                                                                                                                                                                                                                                    |              |                       | From File                                                                                                                                                                 | WorkSheet.wst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                      |                                           |
| 4                                                                                                                                                                                                                                                                                                                                                    |              | Ful                   | II Precision                                                                                                                                                              | OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                      |                                           |
| 5                                                                                                                                                                                                                                                                                                                                                    | (            | Confidence            | Coefficient                                                                                                                                                               | 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                      |                                           |
| 6                                                                                                                                                                                                                                                                                                                                                    | Number of    | Bootstrap             | Operations                                                                                                                                                                | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                      |                                           |
| 7                                                                                                                                                                                                                                                                                                                                                    |              |                       |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                      |                                           |
| 8                                                                                                                                                                                                                                                                                                                                                    |              |                       |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                      |                                           |
|                                                                                                                                                                                                                                                                                                                                                      | Benzo(a)pyre | ene                   |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                      |                                           |
| 10                                                                                                                                                                                                                                                                                                                                                   |              |                       |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                      |                                           |
| 11                                                                                                                                                                                                                                                                                                                                                   |              |                       |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I Statistics                                                                               |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                      |                                           |
| 12                                                                                                                                                                                                                                                                                                                                                   |              |                       | Num                                                                                                                                                                       | per of Valid Obse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ervations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |                                                                                                                              | Numb                                                                                                                                                                            | er of Disti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nct Obse                                                                                                                                                  | rvations                                                                             | 4                                         |
| 13                                                                                                                                                                                                                                                                                                                                                   |              |                       |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                      |                                           |
| 14                                                                                                                                                                                                                                                                                                                                                   |              |                       | Raw St                                                                                                                                                                    | tatistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            | L                                                                                                                            | _og-transfo                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                      |                                           |
| 15                                                                                                                                                                                                                                                                                                                                                   |              |                       |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mum of L                                                                                                                                                  | -                                                                                    |                                           |
| 16                                                                                                                                                                                                                                                                                                                                                   |              |                       |                                                                                                                                                                           | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | laximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mum of L                                                                                                                                                  | -                                                                                    |                                           |
| 17                                                                                                                                                                                                                                                                                                                                                   |              |                       |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mean of I                                                                                                                                                 | -                                                                                    |                                           |
| 18                                                                                                                                                                                                                                                                                                                                                   |              |                       |                                                                                                                                                                           | Geomet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ric Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SD of I                                                                                                                                                   | og Data                                                                              | 0.419                                     |
| 19                                                                                                                                                                                                                                                                                                                                                   |              |                       |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                      |                                           |
| 20                                                                                                                                                                                                                                                                                                                                                   |              |                       |                                                                                                                                                                           | 0.1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                      |                                           |
| 21                                                                                                                                                                                                                                                                                                                                                   |              |                       |                                                                                                                                                                           | Std. Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                      |                                           |
| 22                                                                                                                                                                                                                                                                                                                                                   |              |                       |                                                                                                                                                                           | Coefficient of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                      |                                           |
| 23                                                                                                                                                                                                                                                                                                                                                   |              |                       |                                                                                                                                                                           | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kewness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                      |                                           |
| 24                                                                                                                                                                                                                                                                                                                                                   |              |                       |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                      |                                           |
|                                                                                                                                                                                                                                                                                                                                                      |              |                       |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                      |                                           |
| 25                                                                                                                                                                                                                                                                                                                                                   |              |                       |                                                                                                                                                                           | Warni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | na: Ther                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e are only 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 Distinct Valu                                                                            | es in this dat                                                                                                               | ta                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                      |                                           |
| 26                                                                                                                                                                                                                                                                                                                                                   |              |                       | There a                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 Distinct Valu                                                                            |                                                                                                                              |                                                                                                                                                                                 | ethods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                           |                                                                                      |                                           |
| 26<br>27                                                                                                                                                                                                                                                                                                                                             |              |                       | There a                                                                                                                                                                   | re insufficient Di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | stinct Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lues to perfo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | orm some GO                                                                                | F tests and b                                                                                                                | ootstrap m                                                                                                                                                                      | ethods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                           |                                                                                      |                                           |
| 26<br>27<br>28                                                                                                                                                                                                                                                                                                                                       |              |                       | There a                                                                                                                                                                   | re insufficient Di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | stinct Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lues to perfo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            | F tests and b                                                                                                                | ootstrap m                                                                                                                                                                      | ethods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                           |                                                                                      |                                           |
| 26<br>27<br>28<br>29                                                                                                                                                                                                                                                                                                                                 |              |                       |                                                                                                                                                                           | re insufficient Dia<br>Those met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | stinct Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lues to perfo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | orm some GO<br>/A' value on yo                                                             | F tests and t<br>our output di                                                                                               | pootstrap m<br>splay!                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                      |                                           |
| 26<br>27<br>28<br>29<br>30                                                                                                                                                                                                                                                                                                                           |              |                       | lt is                                                                                                                                                                     | re insufficient Dia<br>Those met<br>necessary to ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | stinct Val<br>thods will<br>ave 4 or r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lues to perfo<br>l return a 'N/<br>more Distinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | orm some GO<br>/A' value on yo<br>ct Values to co                                          | F tests and to<br>our output dia<br>ompute boots                                                                             | pootstrap m<br>splay!<br>strap metho                                                                                                                                            | ds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                           |                                                                                      |                                           |
| 26<br>27<br>28<br>29<br>30<br>31                                                                                                                                                                                                                                                                                                                     |              | lt                    | lt is                                                                                                                                                                     | re insufficient Dia<br>Those met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lues to perfo<br>l return a 'N/<br>more Distinc<br>d using 4 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | orm some GO<br>/A' value on yo<br>ct Values to cc<br>o 9 distinct valu                     | F tests and b<br>our output dia<br>ompute boots<br>ues may not                                                               | bootstrap m<br>splay!<br>strap metho<br>be reliable.                                                                                                                            | ds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sults.                                                                                                                                                    |                                                                                      |                                           |
| 26<br>27<br>28<br>29<br>30<br>31<br>32                                                                                                                                                                                                                                                                                                               |              | lt                    | lt is                                                                                                                                                                     | re insufficient Di<br>Those met<br>necessary to ha<br>However, results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lues to perfo<br>l return a 'N/<br>more Distinc<br>d using 4 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | orm some GO<br>/A' value on yo<br>ct Values to cc<br>o 9 distinct valu                     | F tests and b<br>our output dia<br>ompute boots<br>ues may not                                                               | bootstrap m<br>splay!<br>strap metho<br>be reliable.                                                                                                                            | ds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sults.                                                                                                                                                    |                                                                                      |                                           |
| 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33                                                                                                                                                                                                                                                                                                         |              | lt                    | lt is                                                                                                                                                                     | re insufficient Di<br>Those met<br>necessary to ha<br>However, results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lues to perfo<br>l return a 'N/<br>more Distinc<br>d using 4 to<br>pre observat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | orm some GO<br>/A' value on yo<br>ct Values to cc<br>o 9 distinct valu                     | F tests and b<br>our output dia<br>ompute boots<br>ues may not                                                               | bootstrap m<br>splay!<br>strap metho<br>be reliable.                                                                                                                            | ds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sults.                                                                                                                                                    |                                                                                      |                                           |
| 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34                                                                                                                                                                                                                                                                                                   |              | lt                    | It is<br>is recommer                                                                                                                                                      | re insufficient Di<br>Those met<br>necessary to ha<br>However, results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lues to perfo<br>l return a 'N/<br>more Distinc<br>d using 4 to<br>pre observat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | orm some GO<br>/A' value on yo<br>ct Values to cc<br>o 9 distinct valu<br>tions for accur  | F tests and t<br>our output dis<br>ompute boots<br>ues may not<br>ate and mea                                                | bootstrap m<br>splay!<br>strap metho<br>be reliable.                                                                                                                            | ds.<br>tstrap res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                           |                                                                                      |                                           |
| 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35                                                                                                                                                                                                                                                                                             |              | It                    | It is<br>is recommer<br>Normal Dist                                                                                                                                       | re insufficient Di<br>Those met<br>necessary to ha<br>However, results<br>nded to have 10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine<br>15 or mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lues to perfo<br>I return a 'N/<br>more Distinc<br>d using 4 to<br>pre observat<br>Relevant U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | orm some GO<br>/A' value on yo<br>ct Values to cc<br>o 9 distinct valu<br>tions for accur  | F tests and t<br>our output dis<br>ompute boots<br>ues may not<br>ate and mea                                                | pootstrap m<br>splay!<br>strap metho<br>be reliable.<br>ningful boo<br>ognormal D                                                                                               | ds.<br>tstrap res<br>Distributio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                           | Statistic                                                                            | 0.635                                     |
| 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36                                                                                                                                                                                                                                                                                       |              | It                    | It is<br>is recommer<br>Normal Dist                                                                                                                                       | re insufficient Di<br>Those met<br>a necessary to ha<br>However, results<br>Inded to have 10-<br>ribution Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine<br>15 or mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lues to perfo<br>I return a 'N/<br>more Distinc<br>d using 4 to<br>ore observat<br>Relevant U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | orm some GO<br>/A' value on yo<br>ct Values to cc<br>o 9 distinct valu<br>tions for accur  | F tests and t<br>our output dis<br>ompute boots<br>ues may not<br>ate and mea                                                | oootstrap m<br>splay!<br>strap metho<br>be reliable.<br>ningful boo<br>ognormal D                                                                                               | ids.<br>tstrap res<br>Distributio<br>Shapiro V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n Test                                                                                                                                                    |                                                                                      |                                           |
| 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35                                                                                                                                                                                                                                                                                             |              |                       | It is<br>is recommer<br>Normal Dist                                                                                                                                       | re insufficient Dia<br>Those met<br>necessary to ha<br>However, results<br>nded to have 10-<br>ribution Test<br>hapiro Wilk Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine<br>15 or mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lues to perfo<br>I return a 'N/<br>more Distinc<br>d using 4 to<br>ore observat<br>Relevant U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | orm some GO<br>/A' value on yo<br>ct Values to cc<br>o 9 distinct valu<br>tions for accur  | F tests and b<br>our output dis<br>ompute boots<br>ues may not<br>ate and mea                                                | oootstrap m<br>splay!<br>strap metho<br>be reliable.<br>ningful boo<br>ognormal D                                                                                               | ids.<br>Itstrap res<br>Distributio<br>Shapiro V<br>Shapiro V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>n Test</b><br>Vilk Test<br>Vilk Critica                                                                                                                | al Value                                                                             |                                           |
| 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37                                                                                                                                                                                                                                                                                 |              |                       | It is<br>is recommer<br>Normal Dist                                                                                                                                       | re insufficient Di<br>Those met<br>e necessary to ha<br>However, results<br>nded to have 10-<br>ribution Test<br>hapiro Wilk Test<br>hapiro Wilk Critic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine<br>15 or mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lues to perfo<br>I return a 'N/<br>more Distinc<br>d using 4 to<br>ore observat<br>Relevant U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | orm some GO<br>/A' value on yo<br>ct Values to cc<br>o 9 distinct valu<br>tions for accur  | F tests and b<br>our output dis<br>ompute boots<br>ues may not<br>ate and mea                                                | pootstrap m<br>splay!<br>strap metho<br>be reliable.<br>ningful boo<br>ognormal D                                                                                               | ids.<br>Itstrap res<br>Distributio<br>Shapiro V<br>Shapiro V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>n Test</b><br>Vilk Test<br>Vilk Critica                                                                                                                | al Value                                                                             |                                           |
| 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38                                                                                                                                                                                                                                                                           |              | Data not              | It is<br>is recommer<br>Normal Dist<br>Si<br>Normal at 5                                                                                                                  | re insufficient Di<br>Those met<br>e necessary to ha<br>However, results<br>nded to have 10-<br>ribution Test<br>hapiro Wilk Test<br>hapiro Wilk Critic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine<br>15 or mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lues to perfo<br>I return a 'N/<br>more Distinc<br>d using 4 to<br>ore observat<br>Relevant U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | orm some GO<br>/A' value on yo<br>ct Values to cc<br>o 9 distinct valu<br>tions for accur  | F tests and to<br>our output dis<br>ompute boots<br>ues may not<br>ate and mea<br>L<br>Data not L                            | pootstrap m<br>splay!<br>strap metho<br>be reliable.<br>ningful boo<br>ognormal D                                                                                               | ods.<br>Itstrap res<br>Distributio<br>Shapiro V<br>Shapiro V<br>Shapiro V<br>at 5% Sig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n Test<br>Vilk Test<br>Vilk Critica<br>nificance<br>stribution                                                                                            | al Value<br><b>Level</b>                                                             | 0.842                                     |
| 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39                                                                                                                                                                                                                                                                     |              | Data not              | It is<br>is recommer<br>Normal Dist<br>Si<br>Normal at 5<br>esuming Norr                                                                                                  | re insufficient Di<br>Those met<br>necessary to ha<br>However, results<br>need to have 10-<br>ribution Test<br>hapiro Wilk Test<br>hapiro Wilk Critic<br>% Significance L<br>nal Distribution<br>95% Studen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine<br>15 or mo<br>: Statistic<br>cal Value<br>.evel<br>t's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lues to perfo<br>return a 'N/<br>more Distinc<br>d using 4 to<br>ore observat<br>Relevant U<br>0.586<br>0.842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | orm some GO<br>/A' value on yo<br>ct Values to cc<br>o 9 distinct valu<br>tions for accur  | F tests and to<br>our output dis<br>ompute boots<br>ues may not<br>ate and mea<br>L<br>Data not L                            | oootstrap m<br>splay!<br>strap metho<br>be reliable.<br>ningful boo<br>ognormal D                                                                                               | ods.<br>Itstrap res<br>Distributio<br>Shapiro V<br>Shapiro V<br>Shapiro V<br>at 5% Sig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n Test<br>Vilk Test<br>Vilk Critica<br>nificance<br>stribution                                                                                            | al Value                                                                             | 0.842                                     |
| 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40                                                                                                                                                                                                                                                               |              | Data not<br>As<br>95% | It is<br>is recommer<br>Normal Dist<br>S<br>S<br>Normal at 5<br>ssuming Norr<br>UCLs (Adjus                                                                               | re insufficient Di<br>Those met<br>necessary to ha<br>However, results<br>added to have 10-<br>ribution Test<br>hapiro Wilk Test<br>hapiro Wilk Critic<br>% Significance L<br>mal Distribution<br>95% Studen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine<br>15 or mo<br>Statistic<br>cal Value<br>.evel<br>t's-t UCL<br>ss)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lues to perfo<br>return a 'N/<br>more Distinc<br>d using 4 to<br>ore observat<br>Relevant U<br>0.586<br>0.842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | orm some GO<br>/A' value on yo<br>ct Values to cc<br>o 9 distinct valu<br>tions for accur  | F tests and to<br>our output dis<br>ompute boots<br>ues may not<br>ate and mea<br>L<br>Data not L                            | bootstrap m<br>splay!<br>strap metho<br>be reliable.<br>ningful boo<br>ognormal D<br>ognormal a<br>uming Logr<br>95%                                                            | ods.<br>Itstrap res<br>Distributio<br>Shapiro V<br>Shapiro V<br>It 5% Sign<br>Itormal Dis<br>G Chebys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n Test<br>Vilk Test<br>Vilk Critica<br>nificance<br>stribution<br>95%<br>hev (MVL                                                                         | al Value<br>Level                                                                    | 0.842                                     |
| 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41                                                                                                                                                                                                                                                         |              | Data not<br>As<br>95% | It is<br>is recommer<br>Normal Dist<br>Si<br>Normal at 5<br>ssuming Norr<br>UCLs (Adjust<br>95% Adjuste                                                                   | re insufficient Di<br>Those met<br>necessary to ha<br>However, results<br>aded to have 10-<br>ribution Test<br>hapiro Wilk Test<br>hapiro Wilk Critic<br>% Significance L<br>nal Distribution<br>95% Studen<br>sted for Skewnes<br>d-CLT UCL (Che                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine<br>15 or mo<br>:<br>Statistic<br>cal Value<br>t's-t UCL<br>ss)<br>en-1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lues to perfo<br>return a 'N/<br>more Distinc<br>d using 4 to<br>re observat<br>Relevant U<br>0.586<br>0.842<br>0.916<br>0.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | orm some GO<br>/A' value on yo<br>ct Values to cc<br>o 9 distinct valu<br>tions for accur  | F tests and to<br>our output dis<br>ompute boots<br>ues may not<br>ate and mea<br>L<br>Data not L                            | bootstrap m<br>splay!<br>strap metho<br>be reliable.<br>ningful boo<br>ognormal c                                                                                               | ids.<br>itstrap res<br>Distributio<br>Shapiro V<br>Shapiro V<br>Shapiro V<br>it 5% Sign<br>iormal Dis<br>G Chebys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n Test<br>Vilk Test<br>Vilk Critica<br>nificance<br>stribution<br>95%<br>hev (MVL                                                                         | al Value<br>Level<br>6 H-UCL<br>JE) UCL<br>JE) UCL                                   | 0.842<br>0.919<br>1.075<br>1.246          |
| 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42                                                                                                                                                                                                                                                   |              | Data not<br>As<br>95% | It is<br>is recommer<br>Normal Dist<br>Si<br>Normal at 5<br>ssuming Norr<br>UCLs (Adjust<br>95% Adjuste                                                                   | re insufficient Di<br>Those met<br>necessary to ha<br>However, results<br>added to have 10-<br>ribution Test<br>hapiro Wilk Test<br>hapiro Wilk Critic<br>% Significance L<br>mal Distribution<br>95% Studen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine<br>15 or mo<br>:<br>Statistic<br>cal Value<br>t's-t UCL<br>ss)<br>en-1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lues to perfo<br>return a 'N/<br>more Distinc<br>d using 4 to<br>re observat<br>Relevant U<br>0.586<br>0.842<br>0.916<br>0.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | orm some GO<br>/A' value on yo<br>ct Values to cc<br>o 9 distinct valu<br>tions for accur  | F tests and to<br>our output dis<br>ompute boots<br>ues may not<br>ate and mea<br>L<br>Data not L                            | bootstrap m<br>splay!<br>strap metho<br>be reliable.<br>ningful boo<br>ognormal c                                                                                               | ids.<br>itstrap res<br>Distributio<br>Shapiro V<br>Shapiro V<br>Shapiro V<br>it 5% Sign<br>iormal Dis<br>G Chebys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n Test<br>Vilk Test<br>Vilk Critica<br>nificance<br>stribution<br>95%<br>hev (MVL                                                                         | al Value<br>Level<br>6 H-UCL<br>JE) UCL<br>JE) UCL                                   | 0.842<br>0.919<br>1.075<br>1.246          |
| 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43                                                                                                                                                                                                                                             |              | Data not<br>As<br>95% | It is<br>is recommer<br>Normal Dist<br>S<br>Normal at 5<br>suming Norr<br>UCLs (Adjust<br>95% Adjuste<br>95% Modifie                                                      | re insufficient Di<br>Those met<br>necessary to ha<br>However, results<br>added to have 10-<br>ribution Test<br>hapiro Wilk Test<br>hapiro Wilk Critic<br>% Significance L<br>nal Distribution<br>95% Studen<br>sted for Skewnes<br>d-CLT UCL (Chreat<br>ed-t UCL (Johnson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine<br>15 or mo<br>:<br>Statistic<br>cal Value<br>t's-t UCL<br>ss)<br>en-1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lues to perfo<br>return a 'N/<br>more Distinc<br>d using 4 to<br>re observat<br>Relevant U<br>0.586<br>0.842<br>0.916<br>0.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | orm some GO<br>/A' value on yo<br>ct Values to cc<br>o 9 distinct valu<br>tions for accur  | F tests and to<br>our output dis<br>ompute boots<br>ues may not<br>ate and mea<br>L<br>Data not L                            | bootstrap m<br>splay!<br>strap metho<br>be reliable.<br>iningful boo<br>ognormal D<br>ognormal a<br>uming Logr<br>95%<br>97.5%<br>99%                                           | ds.<br>Itstrap res<br>Distributio<br>Shapiro V<br>Shapiro V<br>Shapiro V<br>It 5% Sign<br>iormal Dis<br>Chebys<br>Chebys<br>Chebys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n Test<br>Vilk Test<br>Vilk Critica<br>nificance<br>stribution<br>95%<br>hev (MVL<br>hev (MVL<br>hev (MVL                                                 | al Value<br>Level<br>6 H-UCL<br>JE) UCL<br>JE) UCL                                   | 0.842<br>0.919<br>1.075<br>1.246          |
| 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44                                                                                                                                                                                                                                       |              | Data not<br>As<br>95% | It is<br>is recommer<br>Normal Dist<br>S<br>Normal at 5<br>suming Norr<br>UCLs (Adjust<br>95% Adjuste<br>95% Modifie                                                      | re insufficient Di<br>Those met<br>necessary to ha<br>However, results<br>need to have 10-<br>ribution Test<br>hapiro Wilk Test<br>hapiro Wilk Critic<br>% Significance L<br>nal Distribution<br>95% Studen<br>sted for Skewnes<br>d-CLT UCL (Che<br>ed-t UCL (Johnson<br>ribution Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine<br>15 or mo<br>Statistic<br>cal Value<br>evel<br>t's-t UCL<br>ss)<br>en-1995)<br>on-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lues to performed a local second seco | orm some GO<br>/A' value on yout<br>ct Values to cco<br>9 distinct value<br>JCL Statistics | F tests and b<br>our output dis<br>ompute boots<br>ues may not<br>ate and mea<br>L<br>Data not L<br>Assu                     | bootstrap m<br>splay!<br>strap metho<br>be reliable.<br>ningful boo<br>ognormal D<br>ognormal a<br>uming Logr<br>95%<br>97.5%<br>99%<br>Data D                                  | itstrap res<br>Distributio<br>Shapiro V<br>Shapiro V<br>Shapiro V<br>tormal Dis<br>Chebys<br>Chebys<br>Chebys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n Test<br>Wilk Test &<br>Vilk Critica<br>nificance<br>stribution<br>95%<br>hev (MVL<br>hev (MVL<br>hev (MVL                                               | al Value<br>Level<br>H-UCL<br>JE) UCL<br>JE) UCL<br>JE) UCL                          | 0.842<br>0.919<br>1.075<br>1.246<br>1.584 |
| 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45                                                                                                                                                                                                                                 |              | Data not<br>As<br>95% | It is<br>is recommer<br>Normal Dist<br>S<br>Normal at 5<br>suming Norr<br>UCLs (Adjust<br>95% Adjuste<br>95% Modifie                                                      | re insufficient Dis<br>Those met<br>a necessary to ha<br>However, results<br>added to have 10-<br>ribution Test<br>hapiro Wilk Test<br>hapiro Wilk Critic<br>% Significance L<br>nal Distribution<br>95% Studen<br>sted for Skewnes<br>d-CLT UCL (Chast<br>ed-t UCL (Johnson<br>ribution Test<br>k star (bias co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine<br>15 or mo<br>: Statistic<br>cal Value<br>t's-t UCL<br>ss)<br>en-1995)<br>on-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lues to performed a line of the line of th | orm some GO<br>/A' value on yout<br>ct Values to cco<br>9 distinct value<br>JCL Statistics | F tests and to<br>our output dis<br>ompute boots<br>ues may not<br>ate and mea<br>L<br>Data not L                            | bootstrap m<br>splay!<br>strap metho<br>be reliable.<br>ningful boo<br>ognormal D<br>ognormal a<br>uming Logr<br>95%<br>97.5%<br>99%<br>Data D                                  | itstrap res<br>Distributio<br>Shapiro V<br>Shapiro V<br>Shapiro V<br>tormal Dis<br>Chebys<br>Chebys<br>Chebys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n Test<br>Wilk Test &<br>Vilk Critica<br>nificance<br>stribution<br>95%<br>hev (MVL<br>hev (MVL<br>hev (MVL                                               | al Value<br>Level<br>H-UCL<br>JE) UCL<br>JE) UCL<br>JE) UCL                          | 0.842<br>0.919<br>1.075<br>1.246<br>1.584 |
| 26           27           28           29           30           31           32           33           34           35           36           37           38           39           40           41           42           43           44           45           46                                                                               |              | Data not<br>As<br>95% | It is<br>is recommer<br>Normal Dist<br>S<br>Normal at 5<br>suming Norr<br>UCLs (Adjust<br>95% Adjuste<br>95% Modifie                                                      | re insufficient Di<br>Those met<br>necessary to ha<br>However, results<br>need to have 10-<br>ribution Test<br>hapiro Wilk Test<br>hapiro Wilk Critic<br>% Significance L<br>nal Distribution<br>95% Studen<br>sted for Skewnes<br>ed-CLT UCL (Chu<br>ed-t UCL (Johnson<br>ribution Test<br>k star (bias co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine<br>15 or mo<br>: Statistic<br>cal Value<br>.evel<br>t's-t UCL<br>ss)<br>en-1995)<br>on-1978)<br>on-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Iues to perform           I return a 'N/           more Distinct           d using 4 to           ore observat           Relevant U           0.586           0.842           0.916           0.992           0.931           3.797           0.182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | orm some GO<br>/A' value on yout<br>ct Values to cco<br>9 distinct value<br>JCL Statistics | F tests and b<br>our output dis<br>ompute boots<br>ues may not<br>ate and mea<br>L<br>Data not L<br>Assu                     | bootstrap m<br>splay!<br>strap metho<br>be reliable.<br>ningful boo<br>ognormal D<br>ognormal a<br>uming Logr<br>95%<br>97.5%<br>99%<br>Data D                                  | itstrap res<br>Distributio<br>Shapiro V<br>Shapiro V<br>Shapiro V<br>tormal Dis<br>Chebys<br>Chebys<br>Chebys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n Test<br>Wilk Test &<br>Vilk Critica<br>nificance<br>stribution<br>95%<br>hev (MVL<br>hev (MVL<br>hev (MVL                                               | al Value<br>Level<br>H-UCL<br>JE) UCL<br>JE) UCL<br>JE) UCL                          | 0.842<br>0.919<br>1.075<br>1.246<br>1.584 |
| 26           27           28           29           30           31           32           33           34           35           36           37           38           39           40           41           42           43           44           45           46           47           48           49                                        |              | Data not<br>As<br>95% | It is<br>is recommer<br>Normal Dist<br>S<br>Normal at 5<br>ssuming Norr<br>UCLs (Adjus<br>95% Adjuste<br>95% Adjuste<br>95% Modifie                                       | re insufficient Di<br>Those met<br>necessary to ha<br>However, results<br>added to have 10-<br>ribution Test<br>hapiro Wilk Test<br>hapiro Wilk Critic<br>% Significance L<br>nal Distribution<br>95% Studen<br>sted for Skewnes<br>d-CLT UCL (Chast<br>ed-t UCL (Johnson<br>k star (bias co<br>Th<br>k star (bias co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine<br>15 or mo<br>: Statistic<br>cal Value<br>t's-t UCL<br>ss)<br>en-1995)<br>on-1978)<br>on-1978)<br>orrected)<br>neta Star<br>of Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lues to perfo<br>return a 'N/<br>more Distinc<br>d using 4 to<br>ore observat<br>0.586<br>0.842<br>0.916<br>0.992<br>0.931<br>3.797<br>0.182<br>0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | orm some GO<br>/A' value on yout<br>ct Values to cco<br>9 distinct value<br>JCL Statistics | F tests and b<br>our output dis<br>ompute boots<br>ues may not<br>ate and mea<br>L<br>Data not L<br>Assu                     | bootstrap m<br>splay!<br>strap metho<br>be reliable.<br>ningful boo<br>ognormal D<br>ognormal a<br>uming Logr<br>95%<br>97.5%<br>99%<br>Data D                                  | itstrap res<br>Distributio<br>Shapiro V<br>Shapiro V<br>Shapiro V<br>tormal Dis<br>Chebys<br>Chebys<br>Chebys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n Test<br>Wilk Test &<br>Vilk Critica<br>nificance<br>stribution<br>95%<br>hev (MVL<br>hev (MVL<br>hev (MVL                                               | al Value<br>Level<br>H-UCL<br>JE) UCL<br>JE) UCL<br>JE) UCL                          | 0.842<br>0.919<br>1.075<br>1.246<br>1.584 |
| 26           27           28           29           30           31           32           33           34           35           36           37           38           39           40           41           42           43           44           45           46           47           48                                                     |              | Data not<br>As<br>95% | It is<br>is recommer<br>Normal Dist<br>S<br>Normal at 5<br>ssuming Norr<br>UCLs (Adjus<br>95% Adjuste<br>95% Adjuste<br>95% Modifie                                       | re insufficient Di<br>Those met<br>necessary to ha<br>However, results<br>need to have 10-<br>ribution Test<br>hapiro Wilk Test<br>hapiro Wilk Critic<br>% Significance L<br>nal Distribution<br>95% Studen<br>sted for Skewnes<br>ed-CLT UCL (Chu<br>ed-t UCL (Johnson<br>ribution Test<br>k star (bias co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine<br>15 or mo<br>: Statistic<br>cal Value<br>.evel<br>t's-t UCL<br>ss)<br>en-1995)<br>on-1978)<br>on-1978)<br>orrected)<br>neta Star<br>of Mean<br>Deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Iues to perform           I return a 'N/           more Distinct           d using 4 to           ore observat           Relevant U           0.586           0.842           0.916           0.992           0.931           3.797           0.182           0.69           0.354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | orm some GO<br>/A' value on yout<br>ct Values to cco<br>9 distinct value<br>JCL Statistics | F tests and b<br>our output dis<br>ompute boots<br>ues may not<br>ate and mea<br>L<br>Data not L<br>Assu                     | bootstrap m<br>splay!<br>strap metho<br>be reliable.<br>ningful boo<br>ognormal D<br>ognormal a<br>uming Logr<br>95%<br>97.5%<br>99%<br>Data D                                  | itstrap res<br>Distributio<br>Shapiro V<br>Shapiro V<br>Shapiro V<br>tormal Dis<br>Chebys<br>Chebys<br>Chebys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n Test<br>Wilk Test &<br>Vilk Critica<br>nificance<br>stribution<br>95%<br>hev (MVL<br>hev (MVL<br>hev (MVL                                               | al Value<br>Level<br>H-UCL<br>JE) UCL<br>JE) UCL<br>JE) UCL                          | 0.842<br>0.919<br>1.075<br>1.246<br>1.584 |
| 26           27           28           29           30           31           32           33           34           35           36           37           38           39           40           41           42           43           44           45           46           47           48           49                                        |              | Data not<br>As<br>95% | It is<br>is recommer<br>Normal Dist<br>S<br>Normal at 5<br>Suming Norr<br>UCLs (Adjus<br>95% Adjuste<br>95% Modifie<br>Gamma Dist                                         | re insufficient Dia<br>Those met<br>necessary to ha<br>However, results<br>need to have 10-<br>ribution Test<br>hapiro Wilk Test<br>hapiro Wilk Critic<br>% Significance L<br>nal Distribution<br>95% Studen<br>sted for Skewnes<br>d-CLT UCL (Che<br>ed-t UCL (Johnse<br>d-CLT UCL (Johnse<br>d-CLT UCL (Johnse<br>d-CLT UCL (Johnse<br>d-CLT UCL (Johnse d-CLT UCL (Joh                                                                                                    | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine<br>15 or mo<br>:<br>Statistic<br>cal Value<br>.evel<br>t's-t UCL<br>ss)<br>en-1995)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>orrected)<br>heta Star<br>of Mean<br>Deviation<br>nu star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Iues to perform           return a 'N/           more Distinct           d using 4 to           ore observat           Relevant U           0.586           0.842           0.916           0.992           0.931           3.797           0.182           0.69           0.354           75.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | orm some GO<br>/A' value on yout<br>ct Values to cco<br>9 distinct value<br>JCL Statistics | F tests and to<br>pur output dis<br>perpute boots<br>les may not<br>ate and mea<br>L<br>Data not L<br>Assu<br>Data do not fo | bootstrap m<br>splay!<br>strap metho<br>be reliable.<br>iningful boo<br>ognormal D<br>ognormal a<br>uming Logr<br>95%<br>97.5%<br>99%<br>Data D<br>bollow a Diso                | ods.<br>Itstrap res<br>Distributio<br>Shapiro V<br>Shapiro V<br>Shapiro V<br>It 5% Sign<br>istribution<br>Chebysi<br>Chebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n Test<br>Vilk Test i<br>Vilk Critica<br>nificance<br>stribution<br>95%<br>hev (MVL<br>hev (MVL<br>hev (MVL                                               | al Value<br>Level<br>H-UCL<br>JE) UCL<br>JE) UCL<br>JE) UCL                          | 0.842<br>0.919<br>1.075<br>1.246<br>1.584 |
| 26         27           28         29         30           31         32         33           34         35         36           37         38         39           40         41         42           43         44         45           46         47         48           49         50         51           51         52                        |              | Data not<br>As<br>95% | It is<br>is recommer<br>Normal Dist<br>S<br>Normal Dist<br>S<br>Normal at 5<br>S<br>Suming Norr<br>UCLs (Adjus<br>95% Adjuste<br>95% Adjuste<br>95% Modifie<br>Gamma Dist | re insufficient Di<br>Those met<br>a necessary to ha<br>However, results<br>inded to have 10-<br>ribution Test<br>hapiro Wilk Test<br>hapiro Wilk Critic<br>% Significance L<br>nal Distribution<br>95% Studen<br>sted for Skewnes<br>d-CLT UCL (Chr<br>ed-t UCL (Johnson<br>ribution Test<br>k star (bias co<br>Th<br>MLE<br>LE of Standard I<br>e Chi Square Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine<br>15 or mo<br>: Statistic<br>cal Value<br>.evel<br>t's-t UCL<br>ss)<br>en-1995)<br>on-1978)<br>on-1978)<br>on-1978)<br>orrected)<br>neta Star<br>of Mean<br>Deviation<br>nu star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Iues to perform           I return a 'N/           more Distinct           d using 4 to           ore observat           Relevant U           0.586           0.842           0.916           0.992           0.931           3.797           0.182           0.69           0.354           75.94           56.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | orm some GO<br>/A' value on yout<br>ct Values to cco<br>9 distinct value<br>JCL Statistics | F tests and to<br>pur output dis<br>permute boots<br>les may not<br>ate and mea<br>L<br>Data not L<br>Assu<br>Data do not fo | bootstrap m<br>splay!<br>strap metho<br>be reliable.<br>ningful boo<br>ognormal D<br>ognormal a<br>uming Logr<br>95%<br>97.5%<br>99%<br>Data D                                  | ods.<br>Itstrap res<br>Distributio<br>Shapiro V<br>Shapiro V<br>Shapiro V<br>It 5% Sign<br>istribution<br>Chebysi<br>Chebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n Test<br>Vilk Test<br>Vilk Critica<br>nificance<br>stribution<br>95%<br>hev (MVL<br>hev (MVL<br>hev (MVL<br>hev (MVL<br>hev (MVL                         | al Value<br>Level<br>5 H-UCL<br>JE) UCL<br>JE) UCL<br>JE) UCL<br>Don (0.05)          | 0.842                                     |
| 26         27           28         29           30         31           32         33           34         35           36         37           38         39           40         41           42         43           44         45           46         47           48         49           50         51           52         53                |              | Data not<br>As<br>95% | It is<br>is recommer<br>Normal Dist<br>S<br>Normal Dist<br>Suming Norr<br>UCLs (Adjus<br>95% Adjuste<br>95% Adjuste<br>95% Modifie<br>Gamma Dist<br>Gamma Dist<br>Adjus   | re insufficient Di<br>Those met<br>a necessary to ha<br>However, results<br>inded to have 10-<br>ribution Test<br>hapiro Wilk Test<br>hapiro Wilk Critic<br>% Significance L<br>mal Distribution<br>95% Studen<br>sted for Skewnes<br>d-CLT UCL (Cha<br>ed-t UCL (Johnson<br>sted for Skewnes<br>d-CLT UCL (Johnson<br>sted for Sk | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine<br>15 or mo<br>: Statistic<br>cal Value<br>.evel<br>t's-t UCL<br>ss)<br>en-1995)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978) | Iues to perform           return a 'N/           more Distinct           d using 4 to           ore observat           Relevant U           0.586           0.842           0.916           0.992           0.931           3.797           0.182           0.69           0.354           75.94           56.87           0.0267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | orm some GO<br>/A' value on yout<br>ct Values to cco<br>9 distinct value<br>JCL Statistics | F tests and to<br>pur output dis<br>permute boots<br>les may not<br>ate and mea<br>L<br>Data not L<br>Assu<br>Data do not fo | bootstrap m<br>splay!<br>strap metho<br>be reliable.<br>iningful boo<br>ognormal D<br>ognormal a<br>uming Logr<br>95%<br>97.5%<br>99%<br>Data D<br>bollow a Diso                | ods.<br>Itstrap res<br>Distributio<br>Shapiro V<br>Shapiro V<br>Shapiro V<br>It 5% Sign<br>Itstribution<br>Chebysi<br>Chebysi<br>Chebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi<br>Schebysi                                               | n Test<br>Vilk Test<br>Vilk Critica<br>nificance<br>stribution<br>95%<br>hev (MVL<br>hev (MVL<br>hev (MVL<br>hev (MVL<br>hev (MVL<br>hev (MVL<br>hev (MVL | al Value<br>Level<br>H-UCL<br>JE) UCL<br>JE) UCL<br>JE) UCL<br>Don (0.05)<br>CLT UCL | 0.842                                     |
| 26           27           28           29           30           31           32           33           34           35           36           37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52 |              | Data not<br>As<br>95% | It is<br>is recommer<br>Normal Dist<br>S<br>Normal Dist<br>Suming Norr<br>UCLs (Adjus<br>95% Adjuste<br>95% Adjuste<br>95% Modifie<br>Gamma Dist<br>Gamma Dist<br>Adjus   | re insufficient Di<br>Those met<br>a necessary to ha<br>However, results<br>inded to have 10-<br>ribution Test<br>hapiro Wilk Test<br>hapiro Wilk Critic<br>% Significance L<br>nal Distribution<br>95% Studen<br>sted for Skewnes<br>d-CLT UCL (Chr<br>ed-t UCL (Johnson<br>ribution Test<br>k star (bias co<br>Th<br>MLE<br>LE of Standard I<br>e Chi Square Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | stinct Val<br>thods will<br>ave 4 or r<br>s obtaine<br>15 or mo<br>: Statistic<br>cal Value<br>.evel<br>t's-t UCL<br>ss)<br>en-1995)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978)<br>on-1978) | Iues to perform           return a 'N/           more Distinct           d using 4 to           ore observat           Relevant U           0.586           0.842           0.916           0.992           0.931           3.797           0.182           0.69           0.354           75.94           56.87           0.0267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | orm some GO<br>/A' value on yout<br>ct Values to cco<br>9 distinct value<br>JCL Statistics | F tests and to<br>pur output dis<br>permute boots<br>les may not<br>ate and mea<br>L<br>Data not L<br>Assu<br>Data do not fo | bootstrap m<br>splay!<br>strap metho<br>be reliable.<br>iningful boo<br>ognormal D<br>ognormal a<br>uming Logr<br>95%<br>97.5%<br>99%<br>Data D<br>bollow a Disc<br>Dlow a Disc | ds.<br>tstrap res<br>Distributio<br>Shapiro V<br>Shapiro V<br>t 5% Sigu<br>tormal Dis<br>Chebys<br>Chebys<br>Chebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Schebys<br>Sch | n Test<br>Vilk Test<br>Vilk Critica<br>nificance<br>stribution<br>95%<br>hev (MVL<br>hev (MVL<br>hev (MVL<br>hev (MVL<br>hev (MVL                         | al Value<br>Level<br>JE) UCL<br>JE) UCL<br>JE) UCL<br>JE) UCL<br>Son (0.05)          | 0.842                                     |

|    | А  | В             | С             | D               | E             | F              | G               | Н             |                | J             | K             | L     |
|----|----|---------------|---------------|-----------------|---------------|----------------|-----------------|---------------|----------------|---------------|---------------|-------|
| 56 |    |               | Anders        | son-Darling T   | est Statistic | 1.838          |                 |               |                | 95% Boo       | otstrap-t UCL | 1.384 |
| 57 |    |               | Anderson-     | Darling 5% C    | ritical Value | 0.729          |                 |               | ç              | 5% Hall's Bo  | ootstrap UCL  | 1.534 |
| 58 |    |               | Kolmogor      | ov-Smirnov T    | est Statistic | 0.411          |                 |               | 95% I          | Percentile Bo | ootstrap UCL  | 0.91  |
| 59 |    | K             | olmogorov-S   | Smirnov 5% C    | ritical Value | 0.267          |                 |               |                | 95% BCA Bo    | ootstrap UCL  | 0.96  |
| 60 | Da | ata not Gamr  | na Distribute | ed at 5% Sign   | ificance Leve | el             |                 |               | 95% Ch         | ebyshev(Me    | an, Sd) UCL   | 1.228 |
| 61 |    |               |               |                 |               |                |                 |               | 97.5% Ch       | ebyshev(Me    | an, Sd) UCL   | 1.46  |
| 62 |    | As            | suming Gam    | nma Distributi  | on            |                |                 |               | 99% Ch         | ebyshev(Me    | an, Sd) UCL   | 1.917 |
| 63 | 95 | 5% Approxim   | ate Gamma     | UCL (Use wi     | nen n >= 40)  | 0.921          |                 |               |                |               |               |       |
| 64 |    | 95% Adju      | isted Gamma   | a UCL (Use v    | vhen n < 40)  | 0.97           |                 |               |                |               |               |       |
| 65 |    |               |               |                 |               |                |                 |               |                |               |               |       |
| 66 |    |               | Potential U   | JCL to Use      |               |                |                 |               | ι              | Jse 95% Stu   | ident's-t UCL | 0.916 |
| 67 |    |               |               |                 |               |                |                 |               | 7              | or 95% Mo     | odified-t UCL | 0.931 |
| 68 |    |               |               |                 |               |                |                 |               |                |               |               |       |
| 69 | No | ote: Suggesti | ons regardin  | g the selection | on of a 95% l | UCL are pro    | ovided to help  | the user to s | select the mo  | st appropria  | te 95% UCL.   |       |
| 70 |    | These recon   | nmendations   | are based u     | pon the resu  | Its of the sin | nulation studio | es summariz   | zed in Singh,  | Singh, and    | laci (2002)   |       |
| 71 |    |               | and Singh     | and Singh (2    | 003). For a   | dditional ins  | sight, the user | may want to   | o consult a si | atistician.   |               |       |
| 72 |    |               |               |                 |               |                |                 |               |                |               |               |       |

|    | A             | В              | С                | D             | Е            | F             | G           | Н | J    | K | L |
|----|---------------|----------------|------------------|---------------|--------------|---------------|-------------|---|------|---|---|
| 1  |               |                |                  |               | Outlier Test | s for Selecte | d Variables |   |      |   |   |
| 2  |               |                | User Selec       | ted Options   |              |               |             |   |      |   |   |
| 3  |               |                |                  | From File     | WorkSheet    | wst           |             |   | <br> |   |   |
| 4  |               |                |                  | Il Precision  | OFF          |               |             |   | <br> |   |   |
| 5  |               |                | Outliers with    |               | 1            |               |             |   |      |   |   |
| 6  | Test for      | Suspected C    | Outliers with F  | Rosner test   | 1            |               |             |   |      |   |   |
| 7  |               |                |                  |               |              |               |             |   |      |   |   |
| 8  |               |                |                  |               |              |               |             |   |      |   |   |
| 9  | C             | )ixon's Outlie | er Test for Be   | enzo(a)pyrene | e            |               |             |   |      |   |   |
| 10 |               |                |                  |               |              |               |             |   |      |   |   |
| 11 | Number of a   | data = 10      |                  |               |              |               |             |   |      |   |   |
| 12 | 10% critical  | value: 0.409   | )                |               |              |               |             |   |      |   |   |
| 13 | 5% critical v | value: 0.477   |                  |               |              |               |             |   |      |   |   |
| 14 | 1% critical v | alue: 0.597    |                  |               |              |               |             |   |      |   |   |
| 15 |               |                |                  |               |              |               |             |   |      |   |   |
| 16 | 1. Data Val   | ue 1.7 is a P  | otential Outli   | ier (Upper Ta | ail)?        |               |             |   |      |   |   |
| 17 |               |                |                  |               |              |               |             |   |      |   |   |
| 18 | Test Statisti | c: 0.583       |                  |               |              |               |             |   |      |   |   |
| 19 |               |                |                  |               |              |               |             |   |      |   |   |
| 20 | For 10% sig   | inificance lev | vel, 1.7 is an   | outlier.      |              |               |             |   |      |   |   |
| 21 | For 5% sigr   | ificance leve  | el, 1.7 is an o  | utlier.       |              |               |             |   |      |   |   |
| 22 | For 1% sigr   | ificance leve  | el, 1.7 is not a | an outlier.   |              |               |             |   |      |   |   |
| 23 |               |                |                  |               |              |               |             |   |      |   |   |
| 24 | 2. Data Valı  | ue 0.5 is a Po | otential Outlie  | er (Lower Ta  | il)?         |               |             |   |      |   |   |
| 25 |               |                |                  |               |              |               |             |   |      |   |   |
| 26 | Test Statisti | c: 0.000       |                  |               |              |               |             |   |      |   |   |
| 27 |               |                |                  |               |              |               |             |   |      |   |   |
| 28 | For 10% sig   | Inificance lev | vel, 0.5 is not  | an outlier.   |              |               |             |   |      |   |   |
| 29 | For 5% sigr   | ificance leve  | el, 0.5 is not a | an outlier.   |              |               |             |   |      |   |   |
| 30 | For 1% sigr   | ificance leve  | el, 0.5 is not a | an outlier.   |              |               |             |   |      |   |   |
| 31 |               |                |                  |               |              |               |             |   |      |   |   |

| - 1      | A         | В           | С            | D<br>General UC                       | E<br>L Statistics f | F<br>Full Data | G<br>A Sets    | Н           | I            | J                                | K             | L     |
|----------|-----------|-------------|--------------|---------------------------------------|---------------------|----------------|----------------|-------------|--------------|----------------------------------|---------------|-------|
| 1        |           | User Selec  | ted Options  |                                       |                     |                |                |             |              |                                  |               |       |
| 2        |           |             | From File    | WorkSheet.                            | wst                 |                |                |             |              |                                  |               |       |
| 4        |           | Ful         | II Precision | OFF                                   |                     |                |                |             |              |                                  |               |       |
| 5        | (         | Confidence  | Coefficient  | 95%                                   |                     |                |                |             |              |                                  |               |       |
| 6        | Number of | f Bootstrap | Operations   | 2000                                  |                     |                |                |             |              |                                  |               |       |
| 7        |           |             |              |                                       |                     |                |                |             |              |                                  |               |       |
| 8        |           |             |              |                                       |                     |                |                |             |              |                                  |               |       |
| 9        | Lead      |             |              |                                       |                     |                |                |             |              |                                  |               |       |
| 10       |           |             |              |                                       |                     |                |                |             |              |                                  |               |       |
| 11       |           |             |              |                                       |                     |                | I Statistics   |             |              |                                  |               |       |
| 12       |           |             | Num          | ber of Valid C                        | Observations        | 10             |                |             | Numbe        | r of Distinct C                  | bservations)  | 10    |
| 13       |           |             |              |                                       |                     |                |                |             |              |                                  |               |       |
| 14       |           |             | Raw S        | Statistics                            |                     |                |                | L           | og-transforr | ned Statistics                   |               |       |
| 15       |           |             |              |                                       | Minimum             |                |                |             |              |                                  | of Log Data   |       |
| 16       |           |             |              |                                       | Maximum             |                |                |             |              |                                  | of Log Data   |       |
| 17       |           |             |              |                                       |                     | 758.5          |                |             |              |                                  | n of log Data |       |
| 18       |           |             |              | Geo                                   | metric Mean         |                |                |             |              | SE                               | of log Data   | 1.264 |
| 19       |           |             |              |                                       | Median              |                |                |             |              |                                  |               |       |
| 20       |           |             |              |                                       |                     | 818.4          |                |             |              |                                  |               |       |
| 21       |           |             |              |                                       | rror of Mean        |                |                |             |              |                                  |               |       |
| 22       |           |             |              | Coefficient                           | t of Variation      |                |                |             |              |                                  |               |       |
| 23       |           |             |              |                                       | Skewness            | 1.549          |                |             |              |                                  |               |       |
| 24       |           |             |              |                                       |                     | Delevent       | IOI Chatiatian |             |              |                                  |               |       |
| 25       |           |             | Normal Die   | tribution Test                        |                     | Relevant       | JCL Statistics |             |              | stribution Tes                   |               |       |
| 26       |           |             |              | Shapiro Wilk                          |                     | 0 707          |                | L           |              | Stribution Tes<br>Shapiro Wilk T |               | 0.067 |
| 27       |           |             |              | Shapiro Wilk C                        |                     |                |                |             |              | hapiro Wilk C                    |               |       |
| 28       |           | Data not    |              | 5% Significan                         |                     | 0.042          |                | Data annear |              | at 5% Signific                   |               | 0.042 |
| 29       |           | Data not    |              |                                       |                     |                |                |             | Lognorman    | at 570 Olymin                    |               |       |
| 30       |           | As          | suming Nor   | mal Distributi                        | on                  |                |                | Assi        | imina Loanc  | ormal Distribu                   | tion          |       |
| 31       |           | ,           |              |                                       | dent's-t UCL        | 1233           |                | 7,000       |              |                                  | 95% H-UCL     | 4401  |
| 32       |           | 95%         | UCLs (Adiu   | isted for Skev                        |                     |                |                |             | 95%          | Chebyshev (                      |               |       |
| 33       |           |             |              | ed-CLT UCL                            |                     | 1320           |                |             |              | Chebyshev (                      | ,             |       |
| 34       |           |             | -            | ied-t UCL (Jo                         |                     |                |                |             |              | Chebyshev (                      |               |       |
| 35       |           |             |              | , , , , , , , , , , , , , , , , , , , | ,                   |                |                |             |              | , , ,                            | ,             |       |
| 36<br>37 |           |             | Gamma Dis    | tribution Test                        | :                   |                |                |             | Data Dis     | stribution                       |               |       |
| 38       |           |             |              | k star (bia                           | s corrected)        | 0.756          | Data           | appear Gan  | nma Distribu | ited at 5% Sig                   | gnificance Le | evel  |
| 39       |           |             |              |                                       | Theta Star          | 1003           |                |             |              |                                  |               |       |
| 40       |           |             |              | N                                     | ILE of Mean         | 758.5          |                |             |              |                                  |               |       |
| 41       |           |             | Μ            | ILE of Standa                         | rd Deviation        | 872.2          |                |             |              |                                  |               |       |
| 42       |           |             |              |                                       | nu star             | 15.13          |                |             |              |                                  |               |       |
| 43       |           |             | Approxima    | te Chi Square                         | e Value (.05)       | 7.35           |                |             | Nonparame    | tric Statistics                  |               |       |
| 44       |           |             |              | sted Level of                         | •                   |                |                |             |              |                                  | % CLT UCL     |       |
| 45       |           |             | A            | djusted Chi S                         | quare Value         | 6.43           |                |             |              |                                  | ckknife UCL   |       |
| 46       |           |             |              |                                       |                     |                |                |             | 95%          | Standard Bo                      |               |       |
| 47       |           |             |              | rson-Darling 7                        |                     |                |                |             |              |                                  | tstrap-t UCL  |       |
| 48       |           |             |              | -Darling 5% C                         |                     |                |                |             |              | 95% Hall's Bo                    | •             |       |
| 49       |           |             | -            | rov-Smirnov                           |                     |                |                |             |              | Percentile Bo                    | •             |       |
| 50       |           |             | •            | Smirnov 5% C                          |                     |                |                |             |              | 95% BCA Bo                       | •             |       |
| 51       | Data      | appear Gar  | mma Distribu | uted at 5% Si                         | gnificance Lo       | evel           |                |             |              | ebyshev(Me                       | ,             |       |
| 52       |           |             |              |                                       |                     |                |                |             |              | nebyshev(Me                      | ,             |       |
| 53       |           |             | -            | nma Distribut                         |                     | 4501           |                |             | 99% Ch       | ebyshev(Me                       | an, Sd) UCL   | 3334  |
| 54       | 95        |             |              | UCL (Use w                            | ,                   |                |                |             |              |                                  |               |       |
|          | 1         | 95% Adjı    | usted Gamm   | na UCL (Use v                         | when n < 40)        | 1784           |                |             |              |                                  |               |       |

|    | А  | В            | С            | D               | E             | F              | G             | Н             |                | J             | K          | L    |
|----|----|--------------|--------------|-----------------|---------------|----------------|---------------|---------------|----------------|---------------|------------|------|
| 56 |    |              |              |                 |               |                |               |               |                |               |            |      |
| 57 |    |              | Potential U  | JCL to Use      |               |                |               |               | Use 95% A      | pproximate (  | Gamma UCL  | 1561 |
| 58 |    |              |              |                 |               |                |               |               |                |               |            |      |
| 59 | No | te: Suggesti | ons regardin | g the selection | on of a 95% I | JCL are prov   | vided to help | the user to s | elect the mo   | st appropriat | e 95% UCL. |      |
| 60 | •  | These recom  | nmendations  | are based u     | pon the resu  | Its of the sim | ulation studi | es summariz   | ed in Singh,   | Singh, and I  | aci (2002) |      |
| 61 |    |              | and Singh    | and Singh (2    | 003). For a   | dditional insi | ght, the user | r may want to | o consult a st | atistician.   |            |      |
| 62 |    |              |              |                 |               |                |               |               |                |               |            |      |

|    | A             | В              | С               | D              | E            | F              | G           | Н | J | K | L |
|----|---------------|----------------|-----------------|----------------|--------------|----------------|-------------|---|---|---|---|
| 1  |               |                |                 |                | Outlier Test | ts for Selecte | d Variables |   |   |   |   |
| 2  |               |                | User Selec      | ted Options    |              |                |             |   |   |   |   |
| 3  |               |                |                 | From File      | WorkSheet    | .wst           |             |   |   |   |   |
| 4  |               |                |                 | II Precision   | OFF          |                |             |   |   |   |   |
| 5  | Test fo       | r Suspected    | Outliers with   | Dixon test     | 1            |                |             |   |   |   |   |
| 6  | Test for S    | Suspected C    | Outliers with F | Rosner test    | 1            |                |             |   |   |   |   |
| 7  |               |                |                 |                |              |                |             |   |   |   |   |
| 8  |               |                |                 |                |              |                |             |   |   |   |   |
| 9  |               | Dixon's        | Outlier Test    | for Lead       |              |                |             |   |   |   |   |
| 10 |               |                |                 |                |              |                |             |   |   |   |   |
| 11 | Number of c   | data = 10      |                 |                |              |                |             |   |   |   |   |
| 12 | 10% critical  | value: 0.409   | Э               |                |              |                |             |   |   |   |   |
| 13 | 5% critical v | value: 0.477   |                 |                |              |                |             |   |   |   |   |
| 14 | 1% critical v | alue: 0.597    |                 |                |              |                |             |   |   |   |   |
| 15 |               |                |                 |                |              |                |             |   |   |   |   |
| 16 | 1. Data Val   | ue 2530 is a   | Potential Ou    | utlier (Upper  | Tail)?       |                |             |   |   |   |   |
| 17 |               |                |                 |                |              |                |             |   |   |   |   |
| 18 | Test Statisti | c: 0.260       |                 |                |              |                |             |   |   |   |   |
| 19 |               |                |                 |                |              |                |             |   |   |   |   |
| 20 | For 10% sig   | inificance lev | vel, 2530 is n  | ot an outlier. |              |                |             |   |   |   |   |
| 21 | For 5% sign   | ificance leve  | el, 2530 is no  | t an outlier.  |              |                |             |   |   |   |   |
| 22 | For 1% sign   | ificance leve  | el, 2530 is no  | t an outlier.  |              |                |             |   |   |   |   |
| 23 |               |                |                 |                |              |                |             |   |   |   |   |
| 24 | 2. Data Valu  | ue 38.4 is a l | Potential Out   | lier (Lower T  | ail)?        |                |             |   |   |   |   |
| 25 |               |                |                 |                |              |                |             |   |   |   |   |
| 26 | Test Statisti | c: 0.038       |                 |                |              |                |             |   |   |   |   |
| 27 |               |                |                 |                |              |                |             |   |   |   |   |
| 28 | For 10% sig   | inificance lev | vel, 38.4 is no | ot an outlier. |              |                |             |   |   |   |   |
| 29 | For 5% sign   | ificance leve  | el, 38.4 is not | t an outlier.  |              |                |             |   |   |   |   |
| 30 | For 1% sign   | ificance leve  | el, 38.4 is not | t an outlier.  |              |                |             |   |   |   |   |
| 31 |               |                |                 |                |              |                |             |   |   |   |   |

| Image: Provide and  |    | A        | В             | С            | D              | E<br>L Statistics f | F<br>F     | G             | Н           |             | J                | K             | L      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|---------------|--------------|----------------|---------------------|------------|---------------|-------------|-------------|------------------|---------------|--------|
| 4         From File         WorkSheet wat           4         From File         OPF           5         Confinence Confidence if sis.         2000           7         2000         2000           7         2000         2000           8         Confinence Confidence if sis.         2000           9         Member of Desting Operations         2000           10         Confinence Confidence if Sis.         2000           11         Confinence Confidence if Sis.         2000           12         Number of Valid Observation 10         Number of Distinct Observations 8           13         Confirment Origination 10         2000           14         Reversation         10         Number of Distinct Observations 8           15         Memory 11         Memory 11         Memory 11           16         Confirment Origination 11         Statinct O         1000           17         Memory 11         Memory 11         Memory 11         1000           18         Confirment Origination 0.0000001         10000001         10000001         10000001           19         Memory 11         Memory 11         10000001         100000001         10000000000         1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |          | Liser Selec   | ted Ontions  |                |                     |            | 3613          |             |             |                  |               |        |
| 3         Full Processon         OFF           5         Confidence Cellicient         95%           7         Number of Toolstipp Designations         2000           7         Mercary           7         Image: Cellicient Statistics           7         Rew Statistics           7         Mercary           1         Rew Statistics           1         Rew Statistics           1         Maintum 0.5           2         Statt Error of Maintain 0.53           2         Confidence 0.153           2         Confidence 0.153 <t< td=""><td></td><td></td><td></td><td>•</td><td></td><td>wst</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |          |               | •            |                | wst                 |            |               |             |             |                  |               |        |
| S         Contribution Configuration of the state            |    |          | Ful           |              |                |                     |            |               |             |             |                  |               |        |
| Number of Bootstrap Operations         200           Number of Bootstrap Operations         200           Number of Soutstrap Operations         200           Number of Valid Observations         10         Number of Distinct Observations         30           Number of Valid Observations         10         Number of Distinct Observations         30           Image: Number of Valid Observations         10         Number of Distinct Observations         30           Image: Number of Valid Observations         10         Number of Distinct Observations         30           Image: Number of Valid Observations         13         Log-transformed Statistics         30           Image: Number of Valid Observations         13         Mean of log Date         30           Image: Number of Valid Observations         15         Mean of log Date         30           Image: Number of Mean         15         Mean of log Date         30           Image: Number of Mean         155         Mean of log Date         30           Image: Number of Mean         155         Log-transformed Statistics         30           Image: Number of Mean         155         Log-transformed Statistics         30           Image: Number of Mean         155         Log-transformed Statistics         30 <tr< td=""><td></td><td></td><td>Confidence</td><td>Coefficient</td><td>95%</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |          | Confidence    | Coefficient  | 95%            |                     |            |               |             |             |                  |               |        |
| Image: statistic stati  |    | Number o | f Bootstrap ( | Operations   | 2000           |                     |            |               |             |             |                  |               |        |
| B         B         B           9         Number of Valid Observations 10         Number of Dialinet Observations 8           11         Central Control 10         Number of Dialinet Observations 8           12         Number of Valid Observations 10         Number of Dialinet Observations 10         Number of Dialinet Observations 10           12         Central Control 10         Number of Dialinet Observations 10         Number of Dialinet Observations 10           14         Raw Statistics         Log-transformed Statistics         -000374           15         Control 10         Statistics         -000374           16         Geometric Mean 1.15         Mean 1.16         -000374           17         Geometric Mean 1.15         Statistics         -000374           18         Geometric Mean 1.15         Statistics         -000374           19         Observet Verstatistics         -         -           20         Statistics         0.525         -         -           21         Normal Distribution Test         Lognormal Distribution Test         -           22         Normal Distribution Test         Data septer Normal ATS Statistic         0.847           23         Observet Statistics         Statistic         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |          | •             |              |                |                     |            |               |             |             |                  |               |        |
| Network           Network         Second Statistics           1         Converted Statistics         8           12         Number of Vailed Observations         10         Number of Distinct Observations         8           13         Converted Statistics         8         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |          |               |              |                |                     |            |               |             |             |                  |               |        |
| International of the server of Valad Observations 10         Number of Valad Observations 10         Number of Valad Observations 10           Image: Provide the server of Valad Observations 10         Number of Valad Observations 10         Number of Valad Observations 10           Image: Provide the server of Valad Observations 10         Number of Valad Observations 10         Number of Valad Observations 10           Image: Provide the server of Valad Observations 10         Number of Valad Observations 10         Number of Valad Observations 10           Image: Provide the server of Valad Observations 10         Server of Valad Observations 10         Server of Valad Observations 10           Image: Provide the server of Valad Observations 10         Server of Valad Observations 10         Server of Valad Observations 10           Image: Provide the server of Valad Observations 10         Server of Valad Observations 10         Server of Valad Observations 10           Image: Provide the server of Valad Observations 10         Server of Valad Observations 10         Server of Valad Observations 10           Image: Provide the server of Valad Observations 10         Server of Valad Observations 10         Server of Valad Observations 10           Image: Provide the server of Valad Observations 10         Server of Valad Observations 10         Server of Valad Observations 10           Image: Provide the server of Valad Observations 10         Server of Valad Observations 10         Server of Valad Observations 10 <t< td=""><td></td><td>Mercury</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                      |    | Mercury  |               |              |                |                     |            |               |             |             |                  |               |        |
| International state         International state         International state           12         Number of Vaile Observations in a state         Number of Distinct Observations in a state           14         Rew Statistics         State           15         International state         International state           16         International state         International state           17         International state         International state         International state           18         International state         Internatistate         International state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |          |               |              |                |                     |            |               |             |             |                  |               |        |
| 12         Number of Valid Observations 10         Number of Distinct Observations 8           13         Cogstantionmed Statistics           14         Logstantionmed Statistics           15         Cogstantionmed Statistics           16         Cogstantionmed Statistics           17         Cogstantionmed Statistics         Advancement of Logstantion           18         Cogstantion         Statistics           19         Comment of Main         Statistics         Statistics           18         Comment of Main         Statistics         Statistics         Statistics           19         Comment of Main         Statistics         Statistics         Statistics           19         Comment of Main         Statistics         Statistics         Statistics           20         Comment of Main         Statistics         Statistics         Statistics           21         Comment of Main         Statistics         Statistics         Statistics           23         Normal Distribution Test         Lognormal at 5% Significance Level         Statistics         Statistics           23         Obstatistics         Statistics         Statistics         Statistics         Statistics           24         Mormal Distribution <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>General</td><td>Statistics</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |          |               |              |                |                     | General    | Statistics    |             |             |                  |               |        |
| 13         Rew Statistics         Log-transformed Statistics           14         Rew Statistics         Minimum 0.5         Minimum of Log Data         0.833           16         Maximum of Log Data         0.833         333           17         Maximum of Log Data         0.833           18         Geometric Mean         1.15         Mean of Iog Data         0.833           19         Geometric Mean         1.15         Mean of Iog Data         0.833           20         Geometric Mean         1.15         Control of Iog Data         0.833           21         Geometric Mean         0.155         Control of Iog Data         0.833           22         Coefficient of Variation         0.535         Control of Iog Data         0.833           23         Coefficient of Variation         0.535         Coefficient of Variation         Iog Pariation           24         Coefficient of Variation         0.535         Coefficient of Variation         Iog Pariation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |          |               | Num          | ber of Valid C | Observations        | 10         |               |             | Numbe       | er of Distinct ( | Observations  | 8      |
| Interface         Log-transformed Statistics           Interface         Log-transformed Statistics           Interface         Maximum of tog Data         0.000374           Interface         Maximum of tog Data         Maximum of tog Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |          |               |              |                |                     |            |               |             |             |                  |               |        |
| International of the second of the  |    |          |               | Raw S        | statistics     |                     |            |               | Lo          | og-transfoi | med Statistic    | s             |        |
| In         Maximum 2.3         Maximum 0.10g Data 0.833           17         Mean of log Data 0.000374         Mean of log Data 0.000374           18         Geometric Mean 1         SD of log Data 0.572           19         Median 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15 |          |               |              |                | Minimum             | 0.5        |               |             |             | Minimun          | n of Log Data | -0.693 |
| n         Geometric Mean         1         SD of log Data         0.572           19         Median         1.5             20         Geometric Mean         0.55             21         Std. Error of Mean         0.55              22         Coefficient of Variation         0.535              23         Coefficient of Variation         0.535              24         Coefficient of Variation         0.535              25         Coefficient of Variation         0.535              26         Coefficient of Variation         Coefficient of Variation              27         Normal Distribution Test         Edeaynet Cognormal Distribution Test         0.842         Shapiro Wilk Test Statistic         0.842           28         Osta appeer Normal Distribution         0.842         Shapiro Wilk Test Statistic         0.842           30         Pota appeer Normal Distribution         1.512         Data appeer Normal Distribution         2.843           31         Shapiro Wilk Fest Statisto         Coefficient of Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |          |               |              |                | Maximum             | 2.3        |               |             |             | Maximun          | n of Log Data | 0.833  |
| Image         Median 1.15         Median 1.15           19         0.0000         SD 0.615         0.0000           21         SKIE. Error of Mean 0.195         0.0000           22         0.000000.055         0.0000           23         Skewness 0.525         0.0000           24         0.000000.055         0.0000           25         0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |          |               |              |                |                     |            |               |             |             |                  | -             |        |
| In         Control (Main 0.195)         Control (Main 0.195)           21         Coefficient of Variation 0.535         Image: Control (Control (Contro) (Contro) (Control (Contro) (Control (Contro) (Control (Contro                                                               | 18 |          |               |              | Geo            |                     |            |               |             |             | S                | D of log Data | 0.572  |
| 20         Std. Error of Mean         0.195         Image: mean of the state of Variation         0.535           23         Coefficient of Variation         0.535         Image: mean of the state of Variation         0.535           24         Skewness         0.525         Image: mean of the state of Variation         0.535           24         Image: mean of the state of Variation         0.535         Image: mean of Variation         0.41           24         Image: mean of Variation         0.535         Image: mean of Variation         0.535           24         Image: mean of Variation         Image: mean of Variation         0.535         Image: mean of Variation         0.535           25         Image: mean of Variation         Image: mean of Variation         Image: mean of Variation         0.535         Image: mean of Variation         0.535           26         Image: mean of Variation         Image: mean of Variation         Image: mean of Variation         0.842         0.542         0.842         0.842         0.842         0.842         0.842         0.842         0.842         0.842         0.842         0.842         0.842         0.842         0.842         0.842         0.842         0.842         0.842         0.842         0.842         0.842         0.842         0.842 <td>19</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19 |          |               |              |                |                     |            |               |             |             |                  |               |        |
| 21         Coefficient of Variation         0.53         Instance           23         Coefficient of Variation         0.53         Instance         Instance           24         Skewness         0.525         Instance         Insta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 |          |               |              |                |                     |            |               |             |             |                  |               |        |
| 22         Skewness         0.525         Image: constraint of the second sec                             | 21 |          |               |              |                |                     |            |               |             |             |                  |               |        |
| 23         Relevant UCL Statistics           26         Relevant UCL Statistics           27         Normal Distribution Test         Lognormal Distribution Test           28         Shapiro Wilk Test Statistic         0.911         Shapiro Wilk Test Statistic         0.842           29         Data appeer Normal at 5% Significance Level         Data appeer Lognormal at 5% Significance Level         Data appeer Normal at 5% Significance Level         0.842           30         Data appeer Normal at 5% Significance Level         Data appeer Lognormal at 5% Significance Level         1.835           31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22 |          |               |              | Coefficient    |                     |            |               |             |             |                  |               |        |
| 26         Relevant UCL Statistics           27         Normal Distribution Test         Lognormal Distribution Test           28         Shapiro Wilk Test Statistic         0.911         Shapiro Wilk Test Statistic         0.842           29         Shapiro Wilk Critical Value         0.842         Shapiro Wilk Critical Value         0.842           30         Data appear Normal at 5% Significance Level         Data appear Lognormal at 5% Significance Level         0.842           31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23 |          |               |              |                | Skewness            | 0.525      |               |             |             |                  |               |        |
| 26         Relevant UCL Statistics           27         Normal Distribution Test         Lognormal Distribution Test           28         Shapiro Wilk Test Statistic         0.911         Shapiro Wilk Critical Value         0.842           29         Data appear Normal at 5% Significance Level         Data appear Lognormal at 5% Significance Level         0.842           30         Data appear Normal at 5% Significance Level         Data appear Lognormal at 5% Significance Level         0.842           31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24 |          |               |              |                |                     |            |               |             |             |                  |               |        |
| Image: state in the   | 25 |          |               |              |                |                     |            |               |             |             |                  |               |        |
| Description         Shapiro Wilk Test Statistic         0.911         Shapiro Wilk Test Statistic         0.842           28         Shapiro Wilk Certical Value         0.842         Shapiro Wilk Certical Value         0.842           30         Data appear Normal at 5% Significance Level         Data appear Lognormal at 5% Significance Level         0.842           31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26 |          |               |              |                |                     | Relevant U | CL Statistics |             |             |                  |               |        |
| 2a         Shapiro Wilk Critical Value         0.842         Shapiro Wilk Critical Value         0.842           30         Data appear Normal at 5% Significance Level         Data appear Lognormal at 5% Significance Level         0.842           31         Data appear Lognormal at 5% Significance Level         Data appear Lognormal Distribution         0.842           33         Osta appear Lognormal Distribution         Assuming Lognormal Distribution         0.842           34         95% WCLs (Adjusted for Skewness)         95% Chebyshev (MVUE) UCL         2.088           35         95% Adjusted-CLT UCL (Chen-1995)         1.504         97.5% Chebyshev (MVUE) UCL         2.088           37         0         0         2.492         2.492         2.492           36         Oata appear Normal at 5% Significance Level         2.492         2.492           37         0         0         2.492         2.492           38         Gamma Distribution Test         Data appear Normal at 5% Significance Level         2.492           40         Thata Star         0.43         0.43         0.43           41         MLE of Standard Deviation         0.703         0.703         0.267         95% CLT UCL         1.47           43         Andproximate Chi Square Value         0.267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27 |          |               |              |                |                     | 0.011      |               | Lo          |             |                  |               | 0.004  |
| 233         Data appear Normal at 5% Significance Level         Data appear Lognormal at 5% Significance Level           30         Assuming Normal Distribution         Assuming Lognormal Distribution           31         Assuming Normal Distribution         Assuming Lognormal Distribution           33         95% Kudent's-t UCL         1.507         95% Chebyshev (MVUE) UCL         2.088           34         95% Adjusted for Skewness)         95% Chebyshev (MVUE) UCL         2.088         2.082           35         95% Adjusted-CLT UCL (Chen-1995)         1.504         97.5% Chebyshev (MVUE) UCL         2.492           36         95% Modified-t UCL (Johnson-1978)         1.512         99% Chebyshev (MVUE) UCL         2.492           37           2.675         Data appear Normal at 5% Significance Level         2.492           39         K star (bias corrected)         2.675         Data appear Normal at 5% Significance Level         1.50           40         MLE of Standard Deviation         0.703         1.51         1.50         1.50           41         MLE of Standard Deviation         0.703         1.47         1.47         1.47           42         MLE of Standard Deviation         0.73         1.51         1.50         1.47           43 <t< td=""><td>28</td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28 |          |               |              | •              |                     |            |               |             |             | •                |               |        |
| Image: Section of the sectio | 29 |          | Data anna     |              | •              |                     | 0.842      |               | Data ann an |             | •                |               | 0.842  |
| 32         Assuming Normal Distribution         Assuming Lognormal Distribution         Image: State of the st                             |    |          | Data appe     | ar normai ai | t 5% Significa |                     |            |               | Data appear | Lognorma    | at 5% Signin     | icance Level  |        |
| 32         95% Student's-t UCL         1.507         95% H-UCL         1.835           33         95% UCLs (Adjusted for Skewness)         95% Chebyshev (MVUE) UCL         2.088           35         95% Adjusted-CLT UCL (Chen-1995)         1.504         97.5% Chebyshev (MVUE) UCL         2.492           36         95% Modified-t UCL (Johnson-1978)         1.512         99% Chebyshev (MVUE) UCL         3.284           37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |          | ٨٥            | eumina Nor   | mal Distributi | on                  |            |               | Δεευ        | mina Loan   | ormal Distrib    | ution         |        |
| 33         95% UCLs (Adjusted for Skewness)         95% Chebyshev (MVUE) UCL         2.088           35         95% Adjusted-CLT UCL (Chen-1995)         1.504         97.5% Chebyshev (MVUE) UCL         2.492           36         95% Modified-t UCL (Johnson-1978)         1.512         99% Chebyshev (MVUE) UCL         2.492           37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |          | 7.3           |              |                |                     | 1 507      |               |             |             |                  |               | 1 835  |
| 34         95% Adjusted-CLT UCL (Chen-1995)         1.504         97.5% Chebyshev (MVUE) UCL         2.492           36         95% Modified-t UCL (Johnson-1978)         1.512         99% Chebyshev (MVUE) UCL         3.284           37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |          | 95%           | UCLs (Adiu   |                |                     | 1.007      |               |             | 95%         | Chebvshev        |               |        |
| 33         33         34         35         35           36         95% Modified-t UCL (Johnson-1978)         1.512         99% Chebyshev (MVUE) UCL         3.284           37         33         Gamma Distribution Test         Data Distribution         3.284           39         K star (bias corrected)         2.675         Data appear Normal at 5% Significance Level         4.40           40         Theta Star         0.43         4.41         MLE of Mean         1.15         4.41         MLE of Standard Deviation         0.703         4.41         MLE of Standard Deviation         0.703         4.41         Approximate Chi Square Value (.05)         37.7         Nonparametric Statistics         4.41         4.41         Approximate Chi Square Value (.05)         37.7         Nonparametric Statistics         1.47         4.6         Adjusted Level of Significance         0.0267         95% LLT UCL         1.47         4.6         4.41         95% Bootstrap UCL         1.462         4.4         4.40         4.40         4.5         4.6         4.6         4.41         95% Standard Bootstrap UCL         1.462           44         Anderson-Darling Test Statistic         0.441         95% Percentile Bootstrap UCL         1.462           48         Anderson-Darling 5% Critical Value         0.268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |          |               | •••          |                | •                   | 1.504      |               |             |             | -                | . ,           |        |
| 30         33         33         Gamma Distribution Test         Data Distribution           39         K star (bias corrected)         2.675         Data appear Normal at 5% Significance Level         Image: Significance Level         Ima                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |          |               |              |                | · ,                 |            |               |             |             |                  | · /           |        |
| 38         Gamma Distribution Test         Data appear Normal at 5% Significance Level           39         k star (bias corrected)         2.675         Data appear Normal at 5% Significance Level           40         Theta Star         0.43           41         MLE of Mean         1.15           42         MLE of Standard Deviation         0.703           43         Approximate Chi Square Value (b)         37.7           44         Approximate Chi Square Value (b)         37.7           45         Adjusted Level of Significance         0.0267           46         Adjusted Level of Significance         0.0267           47         Standard Bootstrap UCL         1.47           48         Addjusted Chi Square Value         35.4           49         Addjusted Chi Square Value         0.2667         95% Standard Bootstrap UCL         1.47           48         Anderson-Darling Test Statistic         0.441         95% Bootstrap UCL         1.462           49         Anderson-Darling 5% Critical Value         0.73         95% Hall's Bootstrap UCL         1.51           50         Kolmogorov-Smirnov Test Statistic         0.411         95% Bootstrap UCL         1.462           49         Anderson-Darling 5% Critical Value         0.73 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td><td> <b>,</b></td><td>( - )</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |          |               |              |                | ,                   |            |               |             |             | <b>,</b>         | ( - )         |        |
| 39         k star (bias corrected)         2.675         Data appear Normal at 5% Significance Level           40         Theta Star         0.43           41         MLE of Mean         1.15           42         MLE of Standard Deviation         0.703           43         Approximate Chi Square Value (.05)         37.7           44         Approximate Chi Square Value (.05)         37.7           45         Adjusted Level of Significance         0.0267           46         Adjusted Chi Square Value         0.0267           47         Adjusted Chi Square Value         1.47           48         Anderson-Darling Test Statistic         1.462           49         Anderson-Darling Test Statistic         0.441         95% Standard Bootstrap UCL         1.564           49         Anderson-Darling S% Critical Value         0.73         95% Hall's Bootstrap UCL         1.51           50         Kolmogorov-Smirnov Test Statistic         0.191         95% Schadbotstrap UCL         1.47           51         Data appear Gamma Distributed at 5% Significance Level         95% Chebyshev(Mean, Sd) UCL         1.47           52         Data appear Gamma Distributed at 5% Significance Level         95% Chebyshev(Mean, Sd) UCL         1.48           52         Data appear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |          |               | Gamma Dis    | tribution Test |                     |            |               |             | Data D      | istribution      |               |        |
| 40         Theta Star         0.43           41         MLE of Mean         1.15           42         MLE of Standard Deviation         0.703           43         MLE of Standard Deviation         0.703           44         Approximate Chi Square Value (.05)         37.7         Nonparametric Statistics           45         Adjusted Level of Significance         0.0267         95% CLT UCL         1.47           46         Adjusted Chi Square Value         35.4         95% Standard Bootstrap UCL         1.507           47         Anderson-Darling Test Statistic         0.441         95% Bootstrap-UCL         1.564           48         Anderson-Darling 5% Critical Value         0.73         95% Hall's Bootstrap UCL         1.51           50         Kolmogorov-Smirnov Test Statistic         0.191         95% Decentile Bootstrap UCL         1.47           51         Kolmogorov-Smirnov 5% Critical Value         0.268         95% BCA Bootstrap UCL         1.48           52         Data appear Gamma Distributed at 5% Significance Level         95% Chebyshev(Mean, Sd) UCL         1.998           53         Cate Assuming Gamma Distribution         99% Chebyshev(Mean, Sd) UCL         3.085           54         Assuming Gamma Distribution         99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |          |               |              | k star (bia    | s corrected)        | 2.675      |               | Data appea  | r Normal a  | at 5% Signific   | ance Level    |        |
| 41       MLE of Mean       1.15         42       MLE of Standard Deviation       0.703         43       nu star       53.5         44       Approximate Chi Square Value (.05)       37.7         45       Adjusted Level of Significance       0.0267         46       Adjusted Chi Square Value       35.4         47       95% Standard Bootstrap UCL       1.47         48       Anderson-Darling Test Statistic       0.411       95% Bootstrap UCL       1.462         49       Anderson-Darling 5% Critical Value       0.73       95% Hall's Bootstrap UCL       1.51         50       Kolmogorov-Smirnov Test Statistic       0.191       95% BCA Bootstrap UCL       1.47         51       Kolmogorov-Smirnov 5% Critical Value       0.268       95% BCA Bootstrap UCL       1.47         51       Kolmogorov-Smirnov 5% Critical Value       0.268       95% Chebyshev(Mean, Sd) UCL       1.998         52       Data appear Gamma Distributed at 5% Significance Level       95% Chebyshev(Mean, Sd) UCL       2.365         53        97.5% Chebyshev(Mean, Sd) UCL       3.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |          |               |              |                | Theta Star          | 0.43       |               |             |             |                  |               |        |
| 42MLE of Standard Deviation0.70343nu star53.544Approximate Chi Square Value (.05)37.745Adjusted Level of Significance0.026746Adjusted Chi Square Value35.44795% Standard Bootstrap UCL1.46248Anderson-Darling Test Statistic0.44149Anderson-Darling 5% Critical Value0.7349Anderson-Darling 5% Critical Value0.734195% Bootstrap UCL1.4742Standard Bootstrap UCL1.5143Anderson-Darling 5% Critical Value0.7344Anderson-Darling 5% Critical Value0.7345Data appear Gamma Distributed at 5% Significance Level95% Chebyshev(Mean, Sd) UCL45Assuming Gamma Distribution99% Chebyshev(Mean, Sd) UCL3.08545Assuming Gamma Distribution0.70095% Chebyshev(Mean, Sd) UCL46Assuming Gamma Distribution0.26895% Chebyshev(Mean, Sd) UCL471.4795% Chebyshev(Mean, Sd) UCL3.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |          |               |              | N              | ILE of Mean         | 1.15       |               |             |             |                  |               |        |
| 43nu star53.544Approximate Chi Square Value (.05)37.7Nonparametric Statistics45Adjusted Level of Significance0.026795% CLT UCL1.4746Adjusted Chi Square Value35.495% Standard Bootstrap UCL1.5074748Anderson-Darling Test Statistic0.44195% Bootstrap UCL1.6449Anderson-Darling 5% Critical Value0.7395% Hall's Bootstrap UCL1.5150Kolmogorov-Smirnov Test Statistic0.19195% BCA Bootstrap UCL1.4751Kolmogorov-Smirnov 5% Critical Value0.26895% BCA Bootstrap UCL1.4852Data appear Gamma Distributed at 5% Significance Level95% Chebyshev(Mean, Sd) UCL1.9985360.00099% Chebyshev(Mean, Sd) UCL3.085540.56% A ssuming Gamma Distribution0.0000.0000.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |          |               | М            | ILE of Standa  | rd Deviation        | 0.703      |               |             |             |                  |               |        |
| 44Approximate Chi Square Value (.05)37.7Nonparametric Statistics45Adjusted Level of Significance0.026795% CLT UCL1.4746Adjusted Chi Square Value35.495% Jackknife UCL1.507474795% Standard Bootstrap UCL1.46248Anderson-Darling Test Statistic0.44195% Bootstrap-t UCL1.56449Anderson-Darling 5% Critical Value0.7395% Hall's Bootstrap UCL1.5150Kolmogorov-Smirnov Test Statistic0.19195% BCA Bootstrap UCL1.4751Kolmogorov-Smirnov 5% Critical Value0.26895% BCA Bootstrap UCL1.4852Data appear Gamma Distributed at 5% Significance Level95% Chebyshev(Mean, Sd) UCL1.9985365495% Chebyshev(Mean, Sd) UCL3.08554Assuming Gamma Distribution99% Chebyshev(Mean, Sd) UCL3.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |          |               |              |                | nu star             | 53.5       |               |             |             |                  |               |        |
| 45Adjusted Level of Significance0.026795% CLT UCL1.4746Adjusted Chi Square Value35.495% Jackknife UCL1.5074795% Standard Bootstrap UCL1.46248Anderson-Darling Test Statistic0.44195% Bootstrap-t UCL1.56449Anderson-Darling 5% Critical Value0.7395% Hall's Bootstrap UCL1.5150Kolmogorov-Smirnov Test Statistic0.19195% BCA Bootstrap UCL1.4751Kolmogorov-Smirnov 5% Critical Value0.26895% BCA Bootstrap UCL1.4852Data appear Gamma Distributed at 5% Significance Level95% Chebyshev(Mean, Sd) UCL2.3655397.5% Chebyshev(Mean, Sd) UCL2.30554Assuming Gamma Distribution99% Chebyshev(Mean, Sd) UCL3.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |          |               | Approxima    | te Chi Square  | e Value (.05)       | 37.7       |               | 1           | Nonparame   | etric Statistics | 5             |        |
| 46Adjusted Chi Square Value35.495% Jackknife UCL1.5074795% Standard Bootstrap UCL1.46248Anderson-Darling Test Statistic0.44195% Bootstrap-t UCL1.56449Anderson-Darling 5% Critical Value0.7395% Hall's Bootstrap UCL1.5150Kolmogorov-Smirnov Test Statistic0.19195% Percentile Bootstrap UCL1.4751Kolmogorov-Smirnov 5% Critical Value0.26895% BCA Bootstrap UCL1.4852Data appear Gamma Distributed at 5% Significance Level95% Chebyshev(Mean, Sd) UCL1.9985397.5% Chebyshev(Mean, Sd) UCL2.36554Assuming Gamma Distribution99% Chebyshev(Mean, Sd) UCL3.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |          |               | Adjus        | sted Level of  | Significance        | 0.0267     |               |             |             | 9                | 5% CLT UCL    | 1.47   |
| 4795% Standard Bootstrap UCL1.46248Anderson-Darling Test Statistic0.44195% Bootstrap-t UCL1.56449Anderson-Darling 5% Critical Value0.7395% Hall's Bootstrap UCL1.5150Kolmogorov-Smirnov Test Statistic0.19195% Percentile Bootstrap UCL1.4751Kolmogorov-Smirnov 5% Critical Value0.26895% BCA Bootstrap UCL1.4852Data appear Gamma Distributed at 5% Significance Level95% Chebyshev(Mean, Sd) UCL1.9985397.5% Chebyshev(Mean, Sd) UCL2.36554Assuming Gamma Distribution99% Chebyshev(Mean, Sd) UCL3.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |          |               | A            | djusted Chi S  | quare Value         | 35.4       |               |             |             | 95% Ja           | ackknife UCL  | 1.507  |
| 48Anderson-Darling Test Statistic0.44195% Bootstrap-t UCL1.56449Anderson-Darling 5% Critical Value0.7395% Hall's Bootstrap UCL1.5150Kolmogorov-Smirnov Test Statistic0.19195% Percentile Bootstrap UCL1.4751Kolmogorov-Smirnov 5% Critical Value0.26895% BCA Bootstrap UCL1.4852Data appear Gamma Distributed at 5% Significance Level95% Chebyshev(Mean, Sd) UCL1.9985397.5% Chebyshev(Mean, Sd) UCL2.36554Assuming Gamma Distribution99% Chebyshev(Mean, Sd) UCL3.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |          |               |              |                |                     |            |               |             | 95%         | 6 Standard B     | ootstrap UCL  | 1.462  |
| 49       Kolmogorov-Smirnov Test Statistic       0.191       95% Percentile Bootstrap UCL       1.47         50       Kolmogorov-Smirnov Test Statistic       0.191       95% Percentile Bootstrap UCL       1.47         51       Kolmogorov-Smirnov 5% Critical Value       0.268       95% BCA Bootstrap UCL       1.48         52       Data appear Gamma Distributed at 5% Significance Level       95% Chebyshev(Mean, Sd) UCL       1.998         53       97.5% Chebyshev(Mean, Sd) UCL       2.365         54       Assuming Gamma Distribution       99% Chebyshev(Mean, Sd) UCL       3.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48 |          |               |              | •              |                     |            |               |             |             |                  | •             |        |
| 50       Kolmogorov-Smirnov 5% Critical Value       0.268       95% BCA Bootstrap UCL       1.48         51       Data appear Gamma Distributed at 5% Significance Level       95% Chebyshev(Mean, Sd) UCL       1.998         53       97.5% Chebyshev(Mean, Sd) UCL       2.365         54       Assuming Gamma Distribution       99% Chebyshev(Mean, Sd) UCL       3.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49 |          |               |              | •              |                     |            |               |             |             |                  |               |        |
| S1     Data appear Gamma Distributed at 5% Significance Level     95% Chebyshev(Mean, Sd) UCL     1.998       53     97.5% Chebyshev(Mean, Sd) UCL     2.365       54     Assuming Gamma Distribution     99% Chebyshev(Mean, Sd) UCL     3.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50 |          |               | -            |                |                     |            |               |             | 95%         |                  | •             |        |
| S2         S2         S3         97.5% Chebyshev(Mean, Sd) UCL         2.365           54         Assuming Gamma Distribution         99% Chebyshev(Mean, Sd) UCL         3.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51 |          |               | -            |                |                     |            |               |             |             |                  |               |        |
| 53     Assuming Gamma Distribution     99% Chebyshev(Mean, Sd) UCL 3.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52 | Data     | appear Gar    | mma Distribu | uted at 5% Sig | gnificance Lo       | evel       |               |             |             | <b>,</b> (       | . ,           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53 |          |               |              |                |                     |            |               |             |             |                  | . ,           |        |
| 55     95% Approximate Gamma UCL (Use when n >= 40)     1.632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | -        |               | •            |                |                     | 1.000      |               |             | 99% C       | hebyshev(Me      | ean, Sd) UCL  | 3.085  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55 | 95       | % Approxim    | nate Gamma   | UCL (Use wl    | nen n >= 40)        | 1.632      |               |             |             |                  |               |        |

|    | А  | В            | С            | D               | E            | F              | G              | Н             |                | J             | K            | L     |
|----|----|--------------|--------------|-----------------|--------------|----------------|----------------|---------------|----------------|---------------|--------------|-------|
| 56 |    | 95% Adju     | isted Gamma  | a UCL (Use v    | when n < 40) | 1.738          |                |               |                |               |              |       |
| 57 |    |              |              |                 |              |                |                |               |                |               |              |       |
| 58 |    |              | Potential L  | ICL to Use      |              |                |                |               | ι              | Jse 95% Stu   | dent's-t UCL | 1.507 |
| 59 |    |              |              |                 |              |                |                |               |                |               |              |       |
| 60 | No | te: Suggesti | ons regardin | g the selection | on of a 95%  | UCL are prov   | ided to help   | the user to s | elect the mo   | st appropriat | te 95% UCL.  |       |
| 61 | -  | These recon  | nmendations  | are based u     | pon the resu | Its of the sim | ulation studio | es summariz   | ed in Singh,   | Singh, and I  | aci (2002)   |       |
| 62 |    |              | and Singh    | and Singh (2    | 003). For a  | dditional insi | ght, the user  | may want to   | o consult a st | atistician.   |              |       |
| 63 |    |              |              |                 |              |                |                |               |                |               |              |       |

|    | A             | В              | С                | D             | E            | F             | G           | Н | I | J | K        | L |
|----|---------------|----------------|------------------|---------------|--------------|---------------|-------------|---|---|---|----------|---|
| 1  |               |                |                  |               | Outlier Test | s for Selecte | d Variables |   |   |   |          |   |
| 2  |               |                | User Selec       | ted Options   |              |               |             |   |   |   |          |   |
| 3  |               |                |                  | From File     | WorkSheet.   | wst           |             |   |   |   |          |   |
| 4  |               |                |                  | II Precision  | OFF          |               |             |   |   |   |          |   |
| 5  |               |                | Outliers with    |               | 1            |               |             |   |   |   |          |   |
| 6  | Test for S    | Suspected C    | Outliers with F  | Rosner test   | 1            |               |             |   |   |   |          |   |
| 7  |               |                |                  |               |              |               |             |   |   |   |          |   |
| 8  |               |                |                  |               |              |               |             |   |   |   |          |   |
| 9  | L             | Dixon's O      | outlier Test fo  | r Mercury     |              |               |             |   |   |   |          |   |
| 10 |               |                |                  |               |              |               |             |   |   |   |          |   |
|    | Number of d   |                |                  |               |              |               |             |   |   |   |          |   |
| 12 |               | value: 0.409   | )                |               |              |               |             |   |   |   |          |   |
| 13 | 5% critical v |                |                  |               |              |               |             |   |   |   |          |   |
| 14 | 1% critical v | alue: 0.597    |                  |               |              |               |             |   |   |   |          |   |
| 15 |               |                |                  |               |              |               |             |   |   |   |          |   |
| 16 | 1. Data Val   | ue 2.3 is a P  | otential Outli   | ier (Upper Ta | il)?         |               |             |   |   |   |          |   |
| 17 | -             |                |                  |               |              |               |             |   |   |   |          |   |
| 18 | Test Statisti | c: 0.333       |                  |               |              |               |             |   |   |   |          |   |
| 19 | -             |                |                  |               |              |               |             |   |   |   |          |   |
| 20 | -             |                | vel, 2.3 is not  |               |              |               |             |   |   |   |          |   |
| 21 | -             |                | el, 2.3 is not a |               |              |               |             |   |   |   |          |   |
| 22 | For 1% sign   | inficance leve | el, 2.3 is not a | an outlier.   |              |               |             |   |   |   |          |   |
| 23 |               |                |                  |               |              |               |             |   |   |   |          |   |
| 24 | 2. Data Valu  | ue 0.5 is a Po | stential Outlie  | er (Lower Tai | 1)?          |               |             |   |   |   |          |   |
| 25 | <b>T</b>      |                |                  |               |              |               |             |   |   |   |          |   |
| 26 | Test Statisti | c: 0.000       |                  |               |              |               |             |   |   |   | <u> </u> |   |
| 27 | E 100/        |                |                  |               |              |               |             |   |   |   | <u> </u> |   |
| 20 | _             |                | vel, 0.5 is not  |               |              |               |             |   |   |   | <u> </u> |   |
| 29 | -             |                | el, 0.5 is not a |               |              |               |             |   |   |   | <u> </u> |   |
| 30 | ⊢or 1% sign   | inficance leve | el, 0.5 is not a | an outlier.   |              |               |             |   |   |   | <u> </u> |   |
| 31 |               |                |                  |               |              |               |             |   |   |   |          |   |

|                                                                                                                                                                                                                                                                                     | A          | B C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D E<br>General UCL Statis                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F<br>or Full Data                                                                                                                                    | G<br>Sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                          |                                                                                                                               | J                                                                                                                                                                                                      | К                                                                                                                        | L                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 1                                                                                                                                                                                                                                                                                   |            | User Selected Option                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                          |                                                           |
| 2                                                                                                                                                                                                                                                                                   |            | From File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                          |                                                           |
| 4                                                                                                                                                                                                                                                                                   |            | Full Precisio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n OFF                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                          |                                                           |
| 5                                                                                                                                                                                                                                                                                   | С          | onfidence Coefficier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nt 95%                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                          |                                                           |
| 6                                                                                                                                                                                                                                                                                   | Number of  | Bootstrap Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s 2000                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                          |                                                           |
| 7                                                                                                                                                                                                                                                                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                          |                                                           |
| ,<br>8                                                                                                                                                                                                                                                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                          |                                                           |
| 9                                                                                                                                                                                                                                                                                   | Napthalene |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                          |                                                           |
| 10                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                          |                                                           |
| 11                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | General                                                                                                                                              | Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                          |                                                           |
| 12                                                                                                                                                                                                                                                                                  |            | Nu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Imber of Valid Observa                                                                                                                                                                                                                                                                                                                                                                        | ations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Numbe                                                                                                                         | er of Distinct O                                                                                                                                                                                       | bservations                                                                                                              | 2                                                         |
| 13                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                          | I                                                         |
| 14                                                                                                                                                                                                                                                                                  |            | Raw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | / Statistics                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                          | .og-transfor                                                                                                                  | med Statistics                                                                                                                                                                                         |                                                                                                                          |                                                           |
| 15                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                               | imum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                               |                                                                                                                                                                                                        | of Log Data                                                                                                              |                                                           |
| 16                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                               | imum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                               |                                                                                                                                                                                                        | of Log Data                                                                                                              |                                                           |
| 17                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                               | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                               |                                                                                                                                                                                                        | of log Data                                                                                                              |                                                           |
| 18                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Geometric N                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                               | SD                                                                                                                                                                                                     | of log Data                                                                                                              | 0.969                                                     |
| 19                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Me                                                                                                                                                                                                                                                                                                                                                                                            | edian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                          |                                                           |
| 20                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.226                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                          |                                                           |
| 21                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Std. Error of N                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                          |                                                           |
| 22                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Coefficient of Vari                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                          |                                                           |
| 23                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Skew                                                                                                                                                                                                                                                                                                                                                                                          | ness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.162                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                          |                                                           |
| 24                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                          |                                                           |
| 25                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      | <b>D</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                          |                                                           |
| 26                                                                                                                                                                                                                                                                                  |            | The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                    | Distinct Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                                                                                                               | ماه م ما ه                                                                                                                                                                                             |                                                                                                                          |                                                           |
| 27                                                                                                                                                                                                                                                                                  |            | Ther                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e are insufficient Distine<br>Those method                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | -                                                                                                                             | eurious.                                                                                                                                                                                               |                                                                                                                          |                                                           |
| 28                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mose memou                                                                                                                                                                                                                                                                                                                                                                                    | 12 MIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | spiay                                                                                                                         |                                                                                                                                                                                                        |                                                                                                                          |                                                           |
| 29                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                          |                                                           |
| ~ ~                                                                                                                                                                                                                                                                                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t is persent to have                                                                                                                                                                                                                                                                                                                                                                          | 1 or n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | noro Disting                                                                                                                                         | t Values to co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mnute boote                | tran metho                                                                                                                    | de                                                                                                                                                                                                     |                                                                                                                          |                                                           |
| 30                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t is necessary to have                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                          | •                                                                                                                             | ds.                                                                                                                                                                                                    |                                                                                                                          |                                                           |
| 31                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | However, results ob                                                                                                                                                                                                                                                                                                                                                                           | otaineo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d using 4 to                                                                                                                                         | 9 distinct valu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ies may not                | be reliable.                                                                                                                  |                                                                                                                                                                                                        |                                                                                                                          |                                                           |
| 31<br>32                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                             | otaineo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d using 4 to                                                                                                                                         | 9 distinct valu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ies may not                | be reliable.                                                                                                                  |                                                                                                                                                                                                        |                                                                                                                          |                                                           |
| 31<br>32<br>33                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | However, results ob                                                                                                                                                                                                                                                                                                                                                                           | otained<br>or mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d using 4 to<br>re observati                                                                                                                         | 9 distinct valu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ies may not                | be reliable.                                                                                                                  |                                                                                                                                                                                                        |                                                                                                                          |                                                           |
| 31<br>32<br>33<br>34                                                                                                                                                                                                                                                                |            | It is recomr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | However, results ob<br>nended to have 10-15 o                                                                                                                                                                                                                                                                                                                                                 | otained<br>or mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d using 4 to<br>re observati                                                                                                                         | 9 distinct valuons for accura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ies may not<br>ate and mea | be reliable.                                                                                                                  | strap results.                                                                                                                                                                                         | t                                                                                                                        |                                                           |
| 31<br>32<br>33<br>34<br>35                                                                                                                                                                                                                                                          |            | It is recomr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | However, results ob<br>nended to have 10-15 of<br>istribution Test                                                                                                                                                                                                                                                                                                                            | otained<br>or mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d using 4 to<br>re observati<br>Relevant U                                                                                                           | 9 distinct valuons for accura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ies may not<br>ate and mea | be reliable.<br>ningful boot                                                                                                  | tstrap results.<br>istribution Tes                                                                                                                                                                     |                                                                                                                          | 0.366                                                     |
| 31<br>32<br>33<br>34<br>35<br>36                                                                                                                                                                                                                                                    |            | It is recomr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | However, results ob<br>nended to have 10-15 o                                                                                                                                                                                                                                                                                                                                                 | otained<br>or mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d using 4 to<br>re observati<br>Relevant U<br>0.366                                                                                                  | 9 distinct valuons for accura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ies may not<br>ate and mea | be reliable.<br>ningful boot<br>ognormal D                                                                                    | strap results.                                                                                                                                                                                         | est Statistic                                                                                                            |                                                           |
| 31<br>32<br>33<br>34<br>35<br>36<br>37                                                                                                                                                                                                                                              |            | It is recomr<br>Normal D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | However, results ob<br>nended to have 10-15 of<br>Pistribution Test<br>Shapiro Wilk Test Sta                                                                                                                                                                                                                                                                                                  | or mo<br>atistic<br>Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d using 4 to<br>re observati<br>Relevant U<br>0.366                                                                                                  | 9 distinct valuons for accura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L                          | ognormal D                                                                                                                    | <b>istrap results.</b><br><b>istribution Tes</b><br>Shapiro Wilk T                                                                                                                                     | est Statistic<br>ritical Value                                                                                           |                                                           |
| 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38                                                                                                                                                                                                                                        |            | It is recomr<br>Normal D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | However, results ob<br>nended to have 10-15 of<br>istribution Test<br>Shapiro Wilk Test Sta<br>Shapiro Wilk Critical V                                                                                                                                                                                                                                                                        | or mo<br>atistic<br>Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d using 4 to<br>re observati<br>Relevant U<br>0.366                                                                                                  | 9 distinct valuons for accura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L                          | ognormal D                                                                                                                    | <b>istripution Tes</b><br>Shapiro Wilk T                                                                                                                                                               | est Statistic<br>ritical Value                                                                                           |                                                           |
| 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39                                                                                                                                                                                                                                  |            | It is recomm<br>Normal D<br>Data not Normal a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | However, results ob<br>nended to have 10-15 of<br>istribution Test<br>Shapiro Wilk Test Sta<br>Shapiro Wilk Critical V                                                                                                                                                                                                                                                                        | or mo<br>atistic<br>Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d using 4 to<br>re observati<br>Relevant U<br>0.366                                                                                                  | 9 distinct valuons for accura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Late and mea               | ognormal D                                                                                                                    | <b>istripution Tes</b><br>Shapiro Wilk T                                                                                                                                                               | est Statistic<br>ritical Value<br>nce Level                                                                              |                                                           |
| 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40                                                                                                                                                                                                                            |            | It is recomm<br>Normal D<br>Data not Normal a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | However, results ob<br>nended to have 10-15 of<br>istribution Test<br>Shapiro Wilk Test Sta<br>Shapiro Wilk Critical V<br>t 5% Significance Leve                                                                                                                                                                                                                                              | otained<br>or mod<br>atistic<br>Value<br>al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d using 4 to<br>re observati<br>Relevant U<br>0.366<br>0.842                                                                                         | 9 distinct valuons for accura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Late and mea               | ognormal D                                                                                                                    | istribution Tes<br>istribution Tes<br>Shapiro Wilk T<br>Shapiro Wilk C<br>t 5% Significar<br>ormal Distribut                                                                                           | est Statistic<br>ritical Value<br>nce Level                                                                              | 0.842                                                     |
| 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41                                                                                                                                                                                                                      |            | It is recomm<br>Normal D<br>Data not Normal a<br>Assuming N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | However, results ob<br>nended to have 10-15 of<br>pistribution Test<br>Shapiro Wilk Test Sta<br>Shapiro Wilk Critical V<br>t 5% Significance Leve<br>ormal Distribution                                                                                                                                                                                                                       | otained<br>or mod<br>atistic<br>Value<br>al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d using 4 to<br>re observati<br>Relevant U<br>0.366<br>0.842                                                                                         | 9 distinct valuons for accura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Late and mea               | be reliable.<br>ningful boot<br>ognormal D<br>S<br>ognormal a<br>uming Logno                                                  | istribution Tes<br>istribution Tes<br>Shapiro Wilk T<br>Shapiro Wilk C<br>t 5% Significar<br>ormal Distribut                                                                                           | ritical Value<br>nce Level<br>tion<br>95% H-UCL                                                                          | 0.842                                                     |
| 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42                                                                                                                                                                                                                |            | It is recomm<br>Normal D<br>Data not Normal a<br>Assuming N<br>95% UCLs (Ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | However, results ob<br>nended to have 10-15 of<br>istribution Test<br>Shapiro Wilk Test Sta<br>Shapiro Wilk Critical V<br>t 5% Significance Leve<br>ormal Distribution<br>95% Student's-t                                                                                                                                                                                                     | atistic<br>Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d using 4 to<br>re observati<br>Relevant U<br>0.366<br>0.842<br>3.39                                                                                 | 9 distinct valuons for accura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Late and mea               | ognormal D<br>s<br>ognormal D<br>s<br>ognormal a<br>uming Lognor<br>95%                                                       | istribution Tes<br>Shapiro Wilk T<br>Shapiro Wilk C<br>t 5% Significar<br>ormal Distribut                                                                                                              | est Statistic<br>ritical Value<br>nce Level<br>tion<br>95% H-UCL<br>MVUE) UCL                                            | 0.842<br>2.897<br>2.448                                   |
| 31           32           33           34           35           36           37           38           39           40           41           42           43                                                                                                                      |            | It is recomm<br>Normal D<br>Data not Normal a<br>Assuming N<br>95% UCLs (Ad<br>95% Adju                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | However, results ob<br>nended to have 10-15 of<br>istribution Test<br>Shapiro Wilk Test Sta<br>Shapiro Wilk Critical V<br>t 5% Significance Leve<br>ormal Distribution<br>95% Student's-t<br>djusted for Skewness)                                                                                                                                                                            | atistic<br>Value<br>1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d using 4 to<br>re observati<br>Relevant U<br>0.366<br>0.842<br>3.39<br>4.288                                                                        | 9 distinct valuons for accura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Late and mea               | ognormal D<br>ognormal D<br>s<br>ognormal a<br>uming Logn<br>95%<br>97.5%                                                     | istribution Tes<br>istribution Tes<br>Shapiro Wilk T<br>Shapiro Wilk C<br>t 5% Significar<br>ormal Distribut                                                                                           | est Statistic<br>ritical Value<br>nce Level<br>tion<br>95% H-UCL<br>MVUE) UCL<br>MVUE) UCL                               | 0.842<br>2.897<br>2.448<br>3.065                          |
| 31           32           33           34           35           36           37           38           39           40           41           42           43           44                                                                                                         |            | It is recomm<br>Normal D<br>Data not Normal a<br>Assuming N<br>95% UCLs (Ad<br>95% Adju                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | However, results ob<br>nended to have 10-15 of<br>pistribution Test<br>Shapiro Wilk Test Sta<br>Shapiro Wilk Critical V<br>t 5% Significance Leve<br>ormal Distribution<br>95% Student's-t<br>tjusted for Skewness)<br>sted-CLT UCL (Chen-1                                                                                                                                                   | atistic<br>Value<br>1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d using 4 to<br>re observati<br>Relevant U<br>0.366<br>0.842<br>3.39<br>4.288                                                                        | 9 distinct valuons for accura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Late and mea               | ognormal D<br>ognormal D<br>s<br>ognormal a<br>uming Logn<br>95%<br>97.5%                                                     | istribution Tes<br>Shapiro Wilk T<br>Shapiro Wilk C<br>t 5% Significar<br>ormal Distribut<br>Chebyshev (N<br>Chebyshev (N                                                                              | est Statistic<br>ritical Value<br>nce Level<br>tion<br>95% H-UCL<br>MVUE) UCL<br>MVUE) UCL                               | 0.842<br>2.897<br>2.448<br>3.065                          |
| 31           32           33           34           35           36           37           38           39           40           41           42           43           44           45                                                                                            |            | It is recommendation in the image of the ima | However, results ob<br>nended to have 10-15 of<br>pistribution Test<br>Shapiro Wilk Test Sta<br>Shapiro Wilk Critical V<br>t 5% Significance Leve<br>ormal Distribution<br>95% Student's-t<br>tjusted for Skewness)<br>sted-CLT UCL (Chen-1                                                                                                                                                   | atistic<br>Value<br>1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d using 4 to<br>re observati<br>Relevant U<br>0.366<br>0.842<br>3.39<br>4.288                                                                        | 9 distinct valuons for accura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Late and mea               | be reliable.<br>ningful boot<br>ognormal D<br>S<br>sognormal a<br>uming Logn<br>95%<br>97.5%<br>99%                           | istribution Tes<br>Shapiro Wilk T<br>Shapiro Wilk C<br>t 5% Significar<br>ormal Distribut<br>Chebyshev (N<br>Chebyshev (N                                                                              | est Statistic<br>ritical Value<br>nce Level<br>tion<br>95% H-UCL<br>MVUE) UCL<br>MVUE) UCL                               | 0.842<br>2.897<br>2.448<br>3.065                          |
| 31           32           33           34           35           36           37           38           39           40           41           42           43           44                                                                                                         |            | It is recommendation in the image of the ima | However, results ob<br>nended to have 10-15 of<br>Distribution Test<br>Shapiro Wilk Test Sta<br>Shapiro Wilk Critical V<br>t 5% Significance Leve<br>ormal Distribution<br>95% Student's-t<br>djusted for Skewness)<br>sted-CLT UCL (Chen-1<br>dified-t UCL (Johnson-1                                                                                                                        | atistic<br>Value<br>1995)<br>1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d using 4 to<br>re observati<br>Relevant U<br>0.366<br>0.842<br>3.39<br>4.288<br>3.56                                                                | 9 distinct valuons for accurate the second s | Late and mea               | be reliable.<br>ningful boot<br>ognormal D<br>c<br>c<br>cognormal a<br>uming Logno<br>95%<br>97.5%<br>99%<br>Data Di          | istribution Tes<br>Shapiro Wilk T<br>Shapiro Wilk C<br>t 5% Significar<br>ormal Distribut<br>Chebyshev (N<br>Chebyshev (N<br>Chebyshev (N                                                              | est Statistic<br>ritical Value<br>nce Level<br>tion<br>95% H-UCL<br>MVUE) UCL<br>MVUE) UCL                               | 0.842<br>2.897<br>2.448<br>3.065<br>4.278                 |
| 31           32           33           34           35           36           37           38           39           40           41           42           43           44           45           46                                                                               |            | It is recommendation in the image of the ima | However, results ob<br>nended to have 10-15 of<br>Distribution Test<br>Shapiro Wilk Test Sta<br>Shapiro Wilk Critical V<br>t 5% Significance Leve<br>ormal Distribution<br>95% Student's-t<br>Jjusted for Skewness)<br>sted-CLT UCL (Chen-1<br>dified-t UCL (Johnson-1<br>Distribution Test<br>k star (bias corre                                                                             | atistic<br>/alue<br>atistic<br>/alue<br>al<br>t UCL<br>1995)<br>1978)<br>acted)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d using 4 to<br>re observati<br>Relevant U<br>0.366<br>0.842<br>3.39<br>4.288<br>3.56                                                                | 9 distinct valuons for accurate the second s | Late and mea               | be reliable.<br>ningful boot<br>ognormal D<br>c<br>c<br>cognormal a<br>uming Logno<br>95%<br>97.5%<br>99%<br>Data Di          | istribution Tes<br>Shapiro Wilk T<br>Shapiro Wilk C<br>t 5% Significar<br>ormal Distribut<br>Chebyshev (N<br>Chebyshev (N<br>Chebyshev (N<br>Chebyshev (N                                              | est Statistic<br>ritical Value<br>nce Level<br>tion<br>95% H-UCL<br>MVUE) UCL<br>MVUE) UCL                               | 0.842<br>2.897<br>2.448<br>3.065<br>4.278                 |
| 31           32           33           34           35           36           37           38           39           40           41           42           43           44           45           46           47                                                                  |            | It is recommendation in the image of the ima | However, results ob<br>nended to have 10-15 of<br>Distribution Test<br>Shapiro Wilk Test Sta<br>Shapiro Wilk Critical V<br>t 5% Significance Leve<br>ormal Distribution<br>95% Student's-t<br>Jjusted for Skewness)<br>sted-CLT UCL (Chen-1<br>dified-t UCL (Johnson-1<br>Distribution Test<br>k star (bias corre                                                                             | atistic<br>Value<br>J<br>UCL<br>1995)<br>1978)<br>a Star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d using 4 to<br>re observati<br>Relevant U<br>0.366<br>0.842<br>3.39<br>4.288<br>3.56<br>0.587<br>2.587                                              | 9 distinct valuons for accurate the second s | Late and mea               | be reliable.<br>ningful boot<br>ognormal D<br>c<br>c<br>cognormal a<br>uming Logno<br>95%<br>97.5%<br>99%<br>Data Di          | istribution Tes<br>Shapiro Wilk T<br>Shapiro Wilk C<br>t 5% Significar<br>ormal Distribut<br>Chebyshev (N<br>Chebyshev (N<br>Chebyshev (N<br>Chebyshev (N                                              | est Statistic<br>ritical Value<br>nce Level<br>tion<br>95% H-UCL<br>MVUE) UCL<br>MVUE) UCL                               | 0.842<br>2.897<br>2.448<br>3.065<br>4.278                 |
| 31           32           33           34           35           36           37           38           39           40           41           42           43           44           45           46           47           48                                                     |            | It is recommendation in the image of the ima | However, results ob<br>mended to have 10-15 of<br>istribution Test<br>Shapiro Wilk Test Sta<br>Shapiro Wilk Critical V<br>t 5% Significance Leve<br>ormal Distribution<br>95% Student's-t<br>djusted for Skewness)<br>sted-CLT UCL (Chen-1<br>dified-t UCL (Johnson-1<br>Distribution Test<br>k star (bias corre<br>Theta                                                                     | atistic<br>/alue<br>al<br>UCL<br>1995)<br>1978)<br>a Star<br>Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d using 4 to<br>re observati<br>Relevant U<br>0.366<br>0.842<br>3.39<br>4.288<br>3.56<br>0.587<br>2.587<br>1.52                                      | 9 distinct valuons for accurate the second s | Late and mea               | be reliable.<br>ningful boot<br>ognormal D<br>c<br>c<br>cognormal a<br>uming Logno<br>95%<br>97.5%<br>99%<br>Data Di          | istribution Tes<br>Shapiro Wilk T<br>Shapiro Wilk C<br>t 5% Significar<br>ormal Distribut<br>Chebyshev (N<br>Chebyshev (N<br>Chebyshev (N<br>Chebyshev (N                                              | est Statistic<br>ritical Value<br>nce Level<br>tion<br>95% H-UCL<br>MVUE) UCL<br>MVUE) UCL                               | 0.842<br>2.897<br>2.448<br>3.065<br>4.278                 |
| 31           32           33           34           35           36           37           38           39           40           41           42           43           44           45           46           47           48           49                                        |            | It is recommendation in the image of the ima | However, results ob<br>nended to have 10-15 of<br>Distribution Test<br>Shapiro Wilk Test Sta<br>Shapiro Wilk Critical V<br>t 5% Significance Leve<br>ormal Distribution<br>95% Student's-t<br>dijusted for Skewness)<br>sted-CLT UCL (Chen-1<br>dified-t UCL (Johnson-1<br>Distribution Test<br>k star (bias corre<br>Theta<br>MLE of Standard Devi                                           | atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>value<br>atistic<br>atistic<br>value<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atistic<br>atis | d using 4 to<br>re observati<br>Relevant U<br>0.366<br>0.842<br>3.39<br>4.288<br>3.56<br>0.587<br>2.587<br>1.52                                      | 9 distinct valuons for accurate the second s | Late and mea               | be reliable.<br>ningful boot<br>ognormal D<br>c<br>c<br>cognormal a<br>uming Logno<br>95%<br>97.5%<br>99%<br>Data Di          | istribution Tes<br>Shapiro Wilk T<br>Shapiro Wilk C<br>t 5% Significar<br>ormal Distribut<br>Chebyshev (N<br>Chebyshev (N<br>Chebyshev (N<br>Chebyshev (N                                              | est Statistic<br>ritical Value<br>nce Level<br>tion<br>95% H-UCL<br>MVUE) UCL<br>MVUE) UCL                               | 0.842<br>2.897<br>2.448<br>3.065<br>4.278                 |
| 31           32           33           34           35           36           37           38           39           40           41           42           43           44           45           46           47           48           49           50                           |            | It is recommendation in the image of the ima | However, results ob<br>nended to have 10-15 of<br>Distribution Test<br>Shapiro Wilk Test Sta<br>Shapiro Wilk Critical V<br>t 5% Significance Leve<br>ormal Distribution<br>95% Student's-t<br>dijusted for Skewness)<br>sted-CLT UCL (Chen-1<br>dified-t UCL (Johnson-1<br>Distribution Test<br>k star (bias corre<br>Theta<br>MLE of Standard Devi                                           | atistic<br>/alue<br>al<br>UCL<br>1995)<br>1978)<br>a Star<br>Mean<br>iation<br>u star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d using 4 to<br>re observati<br>Relevant U<br>0.366<br>0.842<br>3.39<br>4.288<br>3.56<br>0.587<br>2.587<br>1.52<br>1.983<br>11.75                    | 9 distinct valuons for accurate the second s | Pata do not fo             | be reliable.<br>ningful boot<br>ognormal D<br>S<br>ognormal a<br>uming Logn<br>95%<br>97.5%<br>99%<br>Data Di<br>Dlow a Disc  | istribution Tes<br>Shapiro Wilk T<br>Shapiro Wilk C<br>t 5% Significar<br>ormal Distribut<br>Chebyshev (N<br>Chebyshev (N<br>Chebyshev (N<br>Chebyshev (N                                              | est Statistic<br>ritical Value<br>nce Level<br>tion<br>95% H-UCL<br>MVUE) UCL<br>MVUE) UCL                               | 0.842<br>2.897<br>2.448<br>3.065<br>4.278                 |
| 31           32           33           34           35           36           37           38           39           40           41           42           43           44           45           46           47           48           49           50           51              |            | It is recommendation in the image of the ima | However, results ob<br>nended to have 10-15 of<br>istribution Test<br>Shapiro Wilk Test Sta<br>Shapiro Wilk Critical V<br>t 5% Significance Leve<br>ormal Distribution<br>95% Student's-t<br>djusted for Skewness)<br>sted-CLT UCL (Chen-1<br>dified-t UCL (Johnson-1<br>Distribution Test<br>k star (bias corre<br>Theta<br>MLE of N<br>MLE of Standard Devi<br>nut<br>nate Chi Square Value | atistic<br>/alue<br>atistic<br>/alue<br>a<br>UCL<br>1995)<br>1978)<br>a Star<br>Mean<br>iation<br>u star<br>(.05)<br>cance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d using 4 to<br>re observati<br>Relevant U<br>0.366<br>0.842<br>3.39<br>4.288<br>3.56<br>0.587<br>2.587<br>1.52<br>1.983<br>11.75<br>5.062<br>0.0267 | 9 distinct valuons for accurate the second s | Pata do not fo             | be reliable.<br>ningful boot<br>ognormal D<br>S<br>ognormal a<br>uming Logn<br>95%<br>97.5%<br>99%<br>Data Di<br>Dlow a Disc  | Istribution Tes<br>Shapiro Wilk T<br>Shapiro Wilk C<br>It 5% Significar<br>ormal Distribut<br>Chebyshev (N<br>Chebyshev (N<br>Chebyshev (N<br>Estribution<br>ernable Distrit<br>etric Statistics<br>95 | est Statistic<br>ritical Value<br>nce Level<br>tion<br>95% H-UCL<br>MVUE) UCL<br>MVUE) UCL<br>MVUE) UCL<br>MVUE) UCL     | 0.842 2.897 2.448 3.065 4.278                             |
| 31           32           33           34           35           36           37           38           39           40           41           42           43           44           45           46           47           48           49           50           51           52 |            | It is recommendation in the image of the ima | However, results ob<br>nended to have 10-15 of<br>Distribution Test<br>Shapiro Wilk Test Stat<br>Shapiro Wilk Critical V<br>t 5% Significance Leve<br>ormal Distribution<br>95% Student's-t<br>dified-t UCL (Johnson-1<br>Distribution Test<br>k star (bias corre<br>Theta<br>MLE of N<br>MLE of N<br>MLE of Standard Devi<br>nu                                                              | atistic<br>/alue<br>atistic<br>/alue<br>a<br>UCL<br>1995)<br>1978)<br>a Star<br>Mean<br>iation<br>u star<br>(.05)<br>cance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d using 4 to<br>re observati<br>Relevant U<br>0.366<br>0.842<br>3.39<br>4.288<br>3.56<br>0.587<br>2.587<br>1.52<br>1.983<br>11.75<br>5.062<br>0.0267 | 9 distinct valuons for accurate the second s | Pata do not fo             | be reliable.<br>ningful boot<br>ognormal D<br>S<br>ognormal a<br>uming Logn<br>95%<br>97.5%<br>99%<br>Data Di<br>pllow a Disc | Istribution Tes<br>Shapiro Wilk T<br>Shapiro Wilk C<br>It 5% Significar<br>ormal Distribut<br>Chebyshev (N<br>Chebyshev (N<br>Chebyshev (N<br>Estribution<br>ernable Distrit<br>etric Statistics<br>95 | est Statistic<br>ritical Value<br>nce Level<br>tion<br>95% H-UCL<br>MVUE) UCL<br>MVUE) UCL<br>MVUE) UCL<br>oution (0.05) | 0.842<br>2.897<br>2.448<br>3.065<br>4.278<br>3.198<br>N/A |

|    | А  | В             | С             | D              | E             | F              | G               | Н             |                | J             | K             | L     |
|----|----|---------------|---------------|----------------|---------------|----------------|-----------------|---------------|----------------|---------------|---------------|-------|
| 56 |    |               | Anders        | son-Darling T  | est Statistic | 3.402          |                 |               |                | 95% Boo       | otstrap-t UCL | N/A   |
| 57 |    |               | Anderson-I    | Darling 5% C   | ritical Value | 0.757          |                 |               | 9              | 5% Hall's Bo  | ootstrap UCL  | N/A   |
| 58 |    |               | Kolmogoro     | ov-Smirnov T   | est Statistic | 0.555          |                 |               | 95% F          | Percentile Bo | ootstrap UCL  | N/A   |
| 59 |    | K             | olmogorov-S   | mirnov 5% C    | ritical Value | 0.276          |                 |               | !              | 95% BCA Bo    | ootstrap UCL  | N/A   |
| 60 | Da | ata not Gamn  | na Distribute | d at 5% Sign   | ificance Lev  | el             |                 |               | 95% Ch         | ebyshev(Me    | an, Sd) UCL   | 5.966 |
| 61 |    |               |               |                |               |                |                 |               | 97.5% Ch       | ebyshev(Me    | an, Sd) UCL   | 7.89  |
| 62 |    | As            | suming Gam    | ma Distributi  | on            |                |                 |               | 99% Ch         | ebyshev(Me    | an, Sd) UCL   | 11.67 |
| 63 | 95 | 5% Approxim   | ate Gamma     | UCL (Use wh    | nen n >= 40)  | 3.528          |                 |               |                |               |               |       |
| 64 |    | 95% Adju      | isted Gamma   | a UCL (Use v   | vhen n < 40)  | 4.13           |                 |               |                |               |               |       |
| 65 | L  |               |               |                |               |                |                 |               |                |               |               |       |
| 66 |    |               | Potential U   | ICL to Use     |               |                |                 |               | Use 95% Che    | ebyshev (Me   | an, Sd) UCL   | 5.966 |
| 67 | L  |               |               |                |               |                |                 |               |                |               |               |       |
| 68 | No | ote: Suggesti | ons regarding | g the selectic | on of a 95% l | UCL are prov   | vided to help   | the user to s | select the mo  | st appropriat | e 95% UCL.    |       |
| 69 |    | These recom   | mendations    | are based u    | pon the resu  | Its of the sim | nulation studie | es summariz   | zed in Singh,  | Singh, and I  | aci (2002)    |       |
| 70 |    |               | and Singh a   | and Singh (2   | 003). For a   | dditional insi | ight, the user  | may want to   | o consult a st | atistician.   |               |       |
| 71 |    |               |               |                |               |                |                 |               |                |               |               |       |
|    |    |               |               |                |               |                |                 |               |                |               |               |       |

|    | A                                             | В              | С               | D              | E            | F              | G           | Н |  | J | K | L |
|----|-----------------------------------------------|----------------|-----------------|----------------|--------------|----------------|-------------|---|--|---|---|---|
| 1  |                                               |                |                 |                | Outlier Test | ts for Selecte | d Variables |   |  |   |   |   |
| 2  |                                               |                | User Selec      | ted Options    |              |                |             |   |  |   |   |   |
| 3  | From File WorkSheet.wst                       |                |                 |                |              |                |             |   |  |   |   |   |
| 4  | Full Precision OFF                            |                |                 |                |              |                |             |   |  |   |   |   |
| 5  | Test for Suspected Outliers with Dixon test 1 |                |                 |                |              |                |             |   |  |   |   |   |
| 6  | Test for S                                    | Suspected C    | Outliers with F | Rosner test    | 1            |                |             |   |  |   |   |   |
| 7  |                                               |                |                 |                |              |                |             |   |  |   |   |   |
| 8  |                                               |                |                 |                |              |                |             |   |  |   |   |   |
| 9  |                                               | Dixon's Ou     | tlier Test for  | Napthalene     |              |                |             |   |  |   |   |   |
| 10 |                                               |                |                 |                |              |                |             |   |  |   |   |   |
| 11 | Number of c                                   | data = 10      |                 |                |              |                |             |   |  |   |   |   |
| 12 | 10% critical                                  | value: 0.409   | Э               |                |              |                |             |   |  |   |   |   |
| 13 | 5% critical v                                 | value: 0.477   |                 |                |              |                |             |   |  |   |   |   |
| 14 | 1% critical v                                 | alue: 0.597    |                 |                |              |                |             |   |  |   |   |   |
| 15 |                                               |                |                 |                |              |                |             |   |  |   |   |   |
| 16 | 1. Data Val                                   | ue 10.7 is a   | Potential Out   | tlier (Upper T | Tail)?       |                |             |   |  |   |   |   |
| 17 |                                               |                |                 |                |              |                |             |   |  |   |   |   |
| 18 | Test Statisti                                 | c: 1.000       |                 |                |              |                |             |   |  |   |   |   |
| 19 |                                               |                |                 |                |              |                |             |   |  |   |   |   |
| 20 | For 10% sig                                   | inificance lev | vel, 10.7 is ar | n outlier.     |              |                |             |   |  |   |   |   |
| 21 | For 5% sign                                   | ificance leve  | el, 10.7 is an  | outlier.       |              |                |             |   |  |   |   |   |
| 22 | For 1% sign                                   | ificance leve  | el, 10.7 is an  | outlier.       |              |                |             |   |  |   |   |   |
| 23 |                                               |                |                 |                |              |                |             |   |  |   |   |   |
| 24 | 2. Data Valu                                  | ue 0.5 is a Po | otential Outli  | er (Lower Ta   | il)?         |                |             |   |  |   |   |   |
| 25 |                                               |                |                 |                |              |                |             |   |  |   |   |   |
| 26 | Test Statisti                                 | c: NaN         |                 |                |              |                |             |   |  |   |   |   |
| 27 |                                               |                |                 |                |              |                |             |   |  |   |   |   |
| 28 | For 10% sig                                   | inificance lev | vel, 0.5 is an  | outlier.       |              |                |             |   |  |   |   |   |
| 29 | For 5% sign                                   | ificance leve  | el, 0.5 is an o | utlier.        |              |                |             |   |  |   |   |   |
| 30 | For 1% sign                                   | ificance leve  | el, 0.5 is an o | utlier.        |              |                |             |   |  |   |   |   |
| 31 |                                               |                |                 |                |              |                |             |   |  |   |   |   |



**APPENDIX 6 – SOIL GAS MONITORING RECORDS** 

|                           | GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET |                              |                       |                                                                              |                      |              |  |  |  |  |
|---------------------------|------------------------------------------------------|------------------------------|-----------------------|------------------------------------------------------------------------------|----------------------|--------------|--|--|--|--|
| Site: Kilburn high road   | Operative(s): GG                                     | Date: 29/10/14               | <b>Time:</b> 12:13 pm | <b>Time:</b> 12:13 pm                                                        |                      | Page: 1 of 3 |  |  |  |  |
|                           | MONITORING EQUIPMENT                                 |                              |                       |                                                                              |                      |              |  |  |  |  |
| Instrument Type           | Instrument Make                                      |                              | Serial No.            |                                                                              | Date Last Calibrated |              |  |  |  |  |
| Analox                    | GA5000                                               |                              |                       |                                                                              |                      |              |  |  |  |  |
| PID                       | Phochecker tiger                                     |                              |                       |                                                                              |                      |              |  |  |  |  |
| Dip Meter                 | GeoTech                                              |                              |                       |                                                                              |                      |              |  |  |  |  |
|                           | -                                                    | MONITORING                   | CONDITIONS            |                                                                              | •                    |              |  |  |  |  |
| Weather Conditions: Cloud | dy, heavy rain                                       | Ground Conditions: wet       |                       |                                                                              | Temperature: 16c     |              |  |  |  |  |
| Barometric Pressure (mba  | ar): 1009                                            | Barometric Pressure Trend (2 | 4hr): falling         | r): falling Ambient Concentration: 0%CH <sub>4</sub> , 0%CO <sub>2</sub> , 2 |                      |              |  |  |  |  |

|                   | MONITORING RESULTS |         |                    |         |         |           |        |           |         |                      |                   |                |                  |
|-------------------|--------------------|---------|--------------------|---------|---------|-----------|--------|-----------|---------|----------------------|-------------------|----------------|------------------|
| Monitoring        | Flow               |         | Atmospheric        | Methane | Methane | Carbon    | Oxygen | VOC (ppm) |         | Hydrogen<br>Sulphide | Carbon            | Depth<br>to    | Depth<br>to Base |
| Point<br>Location | Peak               | Average | Pressure<br>(mbar) | %       | % LEL   | Dioxide % | %      | Peak      | Average | (ppm)                | Monoxide<br>(ppm) | water<br>(bgl) | of well<br>(bgl) |
| WS3               | +0.2               | /       | 1009               | 0.0     | 0       | 8.4       | 11.0   | 0.0       | /       | 0                    | 0                 | Dry            | 2.54             |
| BH2               | +0.2               | /       | 1009               | 0.0     | 0       | 0.5       | 20.5   | 0.3       | /       | 0                    | 1                 | Dry            | 18.54            |
|                   |                    |         |                    |         |         |           |        |           |         |                      |                   |                |                  |
|                   |                    |         |                    |         |         |           |        |           |         |                      |                   |                |                  |
|                   |                    |         |                    |         |         |           |        |           |         |                      |                   |                |                  |
|                   |                    |         |                    |         |         |           |        |           |         |                      |                   |                |                  |
|                   |                    |         |                    |         |         |           |        |           |         |                      |                   |                |                  |

|                                                                                                                                                       | GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET |                        |                |  |                      |              |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------|----------------|--|----------------------|--------------|--|--|--|--|
| Site: Kilburn high road                                                                                                                               | Operative(s): GG                                     | Date: 05/11/14         | Time: 10:32 am |  | Round: 2             | Page: 2 of 3 |  |  |  |  |
|                                                                                                                                                       | MONITORING EQUIPMENT                                 |                        |                |  |                      |              |  |  |  |  |
| Instrument Type                                                                                                                                       | Instrument Make                                      |                        | Serial No.     |  | Date Last Calibrated |              |  |  |  |  |
| Analox                                                                                                                                                | GA5000                                               |                        |                |  |                      |              |  |  |  |  |
| PID                                                                                                                                                   | Phochecker tiger                                     |                        |                |  |                      |              |  |  |  |  |
| Dip Meter                                                                                                                                             | GeoTech                                              |                        |                |  |                      |              |  |  |  |  |
|                                                                                                                                                       | -                                                    | MONITORING CO          | NDITIONS       |  | -                    |              |  |  |  |  |
| Weather Conditions: Cloud                                                                                                                             | dy, heavy rain                                       | Ground Conditions: wet |                |  | Temperature: 12c     |              |  |  |  |  |
| Barometric Pressure (mbar):       0983       Barometric Pressure Trend (24hr):       falling       Ambient Concentration:       0%CH4, 0%CO2, 21.8%O2 |                                                      |                        |                |  |                      |              |  |  |  |  |

|                   | MONITORING RESULTS |         |                    |         |         |           |        |           |         |                   |                   |                |                  |
|-------------------|--------------------|---------|--------------------|---------|---------|-----------|--------|-----------|---------|-------------------|-------------------|----------------|------------------|
| Monitoring        | Flow               |         | Atmospheric        | Methane | Methane | Carbon    | Oxygen | VOC (ppm) |         | Hydrogen          | Carbon            | Depth<br>to    | Depth<br>to Base |
| Point<br>Location | Peak               | Average | Pressure<br>(mbar) | %       | % LEL   | Dioxide % | %      | Peak      | Average | Sulphide<br>(ppm) | Monoxide<br>(ppm) | water<br>(bgl) | of well<br>(bgl) |
| WS3               | +0.8               | /       | 0983               | 0.0     | 0       | 9.4       | 9.9    | 0.3       | /       | 0                 | 0                 | Dry            | 2.54             |
| BH2               | +0.2               | /       | 0983               | 0.0     | 0       | 0.6       | 20.0   | 0.3       | /       | 0                 | 0                 | Dry            | 18.54            |
|                   |                    |         |                    |         |         |           |        |           |         |                   |                   |                |                  |
|                   |                    |         |                    |         |         |           |        |           |         |                   |                   |                |                  |
|                   |                    |         |                    |         |         |           |        |           |         |                   |                   |                |                  |
|                   |                    |         |                    |         |         |           |        |           |         |                   |                   |                |                  |
|                   |                    |         |                    |         |         |           |        |           |         |                   |                   |                |                  |

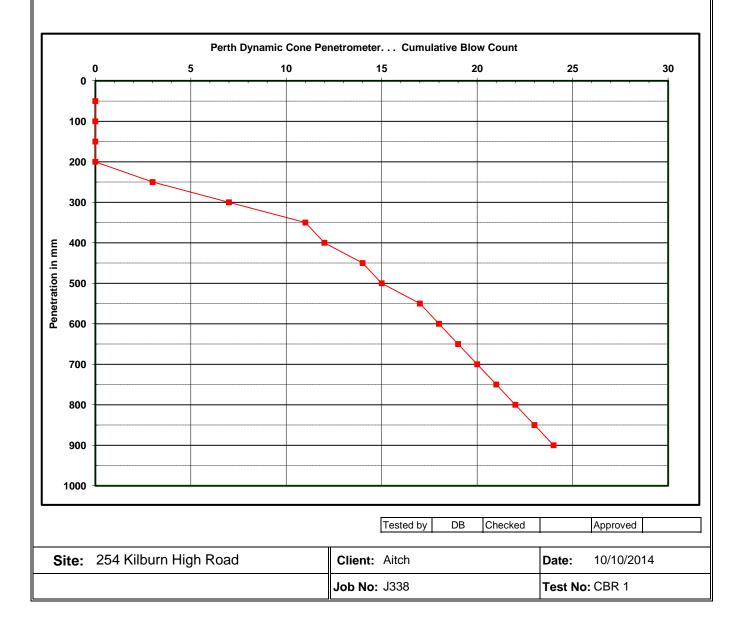
|                           | GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET |                                |                      |                                                                                    |                  |              |  |  |  |  |
|---------------------------|------------------------------------------------------|--------------------------------|----------------------|------------------------------------------------------------------------------------|------------------|--------------|--|--|--|--|
| Site: Kilburn high road   | Operative(s): GG                                     | Date: 13/11/14                 | <b>Time:</b> 4.08 pm | <b>Time:</b> 4.08 pm                                                               |                  | Page: 3 of 3 |  |  |  |  |
|                           | MONITORING EQUIPMENT                                 |                                |                      |                                                                                    |                  |              |  |  |  |  |
| Instrument Type           | Instrument Make                                      |                                | Serial No.           | Serial No.                                                                         |                  | ited         |  |  |  |  |
| Analox                    | GA5000                                               |                                |                      |                                                                                    |                  |              |  |  |  |  |
| PID                       | Phochecker tiger                                     |                                |                      |                                                                                    |                  |              |  |  |  |  |
| Dip Meter                 | GeoTech                                              |                                |                      |                                                                                    |                  |              |  |  |  |  |
|                           | -                                                    |                                | ONDITIONS            |                                                                                    | -                |              |  |  |  |  |
| Weather Conditions: Cloud | dy, heavy rain                                       | Ground Conditions: wet         |                      |                                                                                    | Temperature: 12c |              |  |  |  |  |
| Barometric Pressure (mba  | ar): 0983                                            | Barometric Pressure Trend (24h | r): falling          | Ambient Concentration: 0%CH <sub>4</sub> , 0%CO <sub>2</sub> , 21.8%O <sub>2</sub> |                  |              |  |  |  |  |

|                   | MONITORING RESULTS |         |                    |         |         |           |        |           |         |                      |                   |                |                  |
|-------------------|--------------------|---------|--------------------|---------|---------|-----------|--------|-----------|---------|----------------------|-------------------|----------------|------------------|
| Monitoring        | Flow               |         | Atmospheric        | Methane | Methane | Carbon    | Oxygen | VOC (ppm) |         | Hydrogen<br>Sulphide | Carbon            | Depth<br>to    | Depth<br>to Base |
| Point<br>Location | Peak               | Average | Pressure<br>(mbar) | %       | % LEL   | Dioxide % | %      | Peak      | Average | (ppm)                | Monoxide<br>(ppm) | water<br>(bgl) | of well<br>(bgl) |
| WS3               | +0.2               | /       | 0983               | 0.0     | 0       | 8.6       | 10.6   | 0.0       | /       | 0                    | 0                 | Dry            | 2.54             |
| BH2               | +0.4               | /       | 0983               | 0.0     | 0       | 0.7       | 20.0   | 0.0       | /       | 0                    | 0                 | Dry            | 18.54            |
|                   |                    |         |                    |         |         |           |        |           |         |                      |                   |                |                  |
|                   |                    |         |                    |         |         |           |        |           |         |                      |                   |                |                  |
|                   |                    |         |                    |         |         |           |        |           |         |                      |                   |                |                  |
|                   |                    |         |                    |         |         |           |        |           |         |                      |                   |                |                  |
|                   |                    |         |                    |         |         |           |        |           |         |                      |                   |                |                  |



**APPENDIX 7 – IN SITU CBR RESULTS** 

| Nr Blows  | S Blows | Penetration | S Pen. |  |  |
|-----------|---------|-------------|--------|--|--|
| INI DIOWS | 3 DIOWS | mm          | mm     |  |  |
| 0         | 0       | 50          | 50     |  |  |
| 0         | 0       | 50          | 100    |  |  |
| 0         | 0       | 50          | 150    |  |  |
| 0         | 0       | 50          | 200    |  |  |
| 3         | 3       | 50          | 250    |  |  |
| 4         | 7       | 50          | 300    |  |  |
| 4         | 11      | 50          | 350    |  |  |
| 1         | 12      | 50          | 400    |  |  |
| 2         | 14      | 50          | 450    |  |  |
| 1         | 15      | 50          | 500    |  |  |
| 2         | 17      | 50          | 550    |  |  |
| 1         | 18      | 50          | 600    |  |  |
| 1         | 19      | 50          | 650    |  |  |
| 1         | 20      | 50          | 700    |  |  |
| 1         | 21      | 50          | 750    |  |  |
| 1         | 22      | 50          | 800    |  |  |
| 1         | 23      | 50          | 850    |  |  |
| 1         | 24      | 50          | 900    |  |  |
|           |         |             |        |  |  |
|           |         |             |        |  |  |


254 Kilburn High Road Test Reference: - CBR 1

Job Nr J338

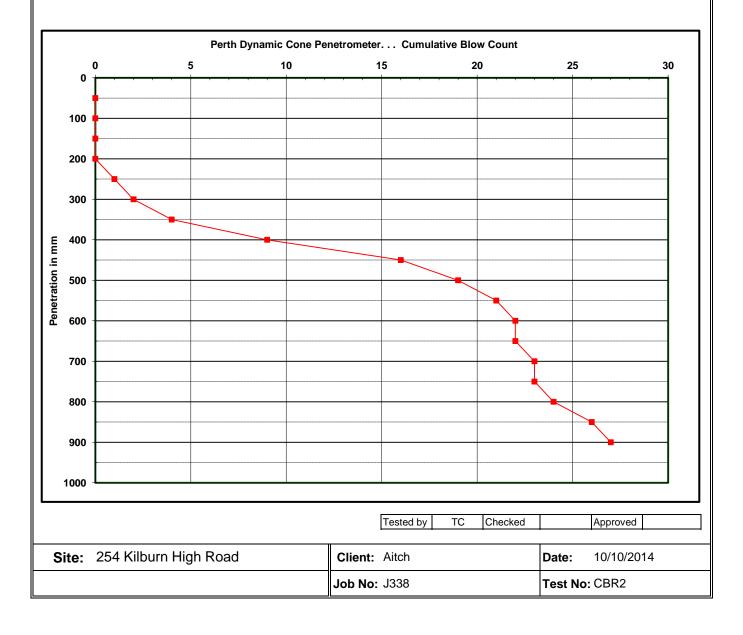
Date 10-Oct-14

## **CBR VALUE CALCULATIONS**

| Initial S | Final S | Initial S | Final S | Pen/Blow | CBR  | CBR  | CBR       |
|-----------|---------|-----------|---------|----------|------|------|-----------|
| Pen mm    | Pen mm  | Blows     | Blows   | mm       | TRRL | KVH  | Value (%) |
| 250       | 350     | 3         | 11      | 12.5     | 20.9 | 16.9 | 16.9      |
| 350       | 500     | 11        | 15      | 37.5     | 6.6  | 4.1  | 4.1       |
| 550       | 900     | 17        | 24      | 50.0     | 4.8  | 2.9  | 2.9       |
|           |         |           |         |          |      |      |           |
|           |         |           |         |          |      |      |           |
|           |         |           |         |          |      |      |           |
|           |         |           |         |          |      |      |           |



| Nr Blows | S Blows | Penetration | S Pen. |  |  |
|----------|---------|-------------|--------|--|--|
| NI DIOWS | 3 BIOWS | mm          | mm     |  |  |
| 0        | 0       | 50          | 50     |  |  |
| 0        | 0       | 50          | 100    |  |  |
| 0        | 0       | 50          | 150    |  |  |
| 0        | 0       | 50          | 200    |  |  |
| 1        | 1       | 50          | 250    |  |  |
| 1        | 2       | 50          | 300    |  |  |
| 2        | 4       | 50          | 350    |  |  |
| 5        | 9       | 50          | 400    |  |  |
| 7        | 16      | 50          | 450    |  |  |
| 3        | 19      | 50          | 500    |  |  |
| 2        | 21      | 50          | 550    |  |  |
| 1        | 22      | 50          | 600    |  |  |
| 0        | 22      | 50          | 650    |  |  |
| 1        | 23      | 50          | 700    |  |  |
| 0        | 23      | 50          | 750    |  |  |
| 1        | 24      | 50          | 800    |  |  |
| 2        | 26      | 50          | 850    |  |  |
| 1        | 27      | 50          | 900    |  |  |
| 1        |         |             |        |  |  |
| 1        |         |             |        |  |  |


254 Kilburn High Road Test Reference: - CBR 3

Job Nr J338

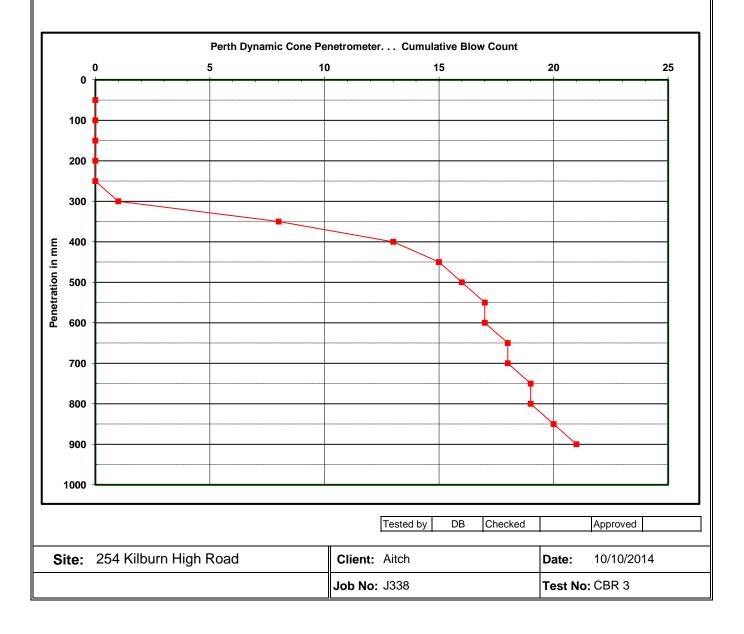
Date 10-Oct-14

## **CBR VALUE CALCULATIONS**

| Initial S | Final S | Initial S | Final S | Pen/Blow | CBR  | CBR  | CBR       |
|-----------|---------|-----------|---------|----------|------|------|-----------|
| Pen mm    | Pen mm  | Blows     | Blows   | mm       | TRRL | KVH  | Value (%) |
| 300       | 400     | 2         | 9       | 14.3     | 18.2 | 14.2 | 14.2      |
| 400       | 550     | 9         | 21      | 12.5     | 20.9 | 16.9 | 16.9      |
| 550       | 750     | 21        | 23      | 100.0    | 2.3  | 1.2  | 1.2       |
| 800       | 900     | 24        | 27      | 33.3     | 7.4  | 4.8  | 4.8       |
|           |         |           |         |          |      |      |           |
|           |         |           |         |          |      |      |           |
|           |         |           |         |          |      |      |           |



| Nr Blows | S Blows | Penetration | S Pen. |  |
|----------|---------|-------------|--------|--|
| NI DIOWS | 3 DIOWS | mm          | mm     |  |
| 0        | 0       | 50          | 50     |  |
| 0        | 0       | 50          | 100    |  |
| 0        | 0       | 50          | 150    |  |
| 0        | 0       | 50          | 200    |  |
| 0        | 0       | 50          | 250    |  |
| 1        | 1       | 50          | 300    |  |
| 7        | 8       | 50          | 350    |  |
| 5        | 13      | 50          | 400    |  |
| 2        | 15      | 50          | 450    |  |
| 1        | 16      | 50          | 500    |  |
| 1        | 17      | 50          | 550    |  |
| 0        | 17      | 50          | 600    |  |
| 1        | 18      | 50          | 650    |  |
| 0        | 18      | 50          | 700    |  |
| 1        | 19      | 50          | 750    |  |
| 0        | 19      | 50          | 800    |  |
| 1        | 20      | 50          | 850    |  |
| 1        | 21      | 50          | 900    |  |
|          |         |             |        |  |
|          |         |             |        |  |


254 Kilburn High Road Test Reference: - CBR 3

Job Nr J338

Date 10-Oct-14

## **CBR VALUE CALCULATIONS**

| Initial S | Final S | Initial S | Final S | Pen/Blow | CBR  | CBR  | CBR       |
|-----------|---------|-----------|---------|----------|------|------|-----------|
| Pen mm    | Pen mm  | Blows     | Blows   | mm       | TRRL | KVH  | Value (%) |
| 300       | 400     | 1         | 13      | 8.3      | 32.1 | 28.4 | 28.4      |
| 400       | 550     | 13        | 17      | 37.5     | 6.6  | 4.1  | 4.1       |
| 550       | 750     | 17        | 19      | 100.0    | 2.3  | 1.2  | 1.2       |
| 800       | 900     | 19        | 21      | 50.0     | 4.8  | 2.9  | 2.9       |
|           |         |           |         |          |      |      |           |
|           |         |           |         |          |      |      |           |
|           |         |           |         |          |      |      |           |

