56 Platt's Lane London NW3 7NT

Proposal for basement extension

Table of Contents:

INTRODUCTION

- **1.0 HIGHWAY DETAILS**
- 2.0 SITE DETAILS
- 3.0 PROPOSED STRUCTURE
- 4.0 DESIGN CRITERIA
- 5.0 STRUCTURAL ANALYSIS
- 6.0 GEOTECHNICAL CONDITIONS
- 7.0 CATEGORY CHECK
- 8.0 STATEMENT BY DESIGNER
- **APPENDIX A** Monitoring Proposals
- **APPENDIX B** Permanent Works Drawings
- APPENDIX C Underpinning Sequencing & Temporary Works Drawings
- APPENDIX D Structural Calculations & Design
- APPENDIX E Trial Hole Details

INTRODUCTION

This document has been prepared for the purposes of Approval in Principle (AIP) of the proposed structural design and details for a new basement to be located within the existing outline of 56 Platt's Lane. S R Brunswick has been appointed by the client, i.e. the owner of 56 Platt's Lane to carry out the structural design for works for the project. Land Science were also appointed by the client with the purpose of carrying out a full geotechnical investigation of the property.

1.1 HIGHWAY DETAILS

1.2 Type of Highway

The proposed works are to be constructed adjacent to Platt's Lane, London NW3 7NT. The highway is a narrow single lane two-way carriageway with pavements to either side and is used for local access to private residential properties. The road is ground bearing.



Figure 1.1 - Google Maps View showing 56 Platt's Lane

1.3 Permitted Traffic Speed

From road signage in place along Platt's Lane it is apparent that the legal speed limit on Platt's Lane is 20mph.

1.4 Existing Restrictions

Loading and vehicle restrictions currently in place on the road only apply between the hours of 6:30pm – 8:00am, outside of working hours allowed by the by the local authority.

2.1 SITE DETAILS

2.2 Obstacles Crossed

Generally, the properties along either side of the public highway of Platt's Lane have lower ground floors or basements.

On the boundary between the property and the public highway there is an existing masonry wall.

Figure 2.1.1 – Image of Front Elevation

3.1 PROPOSED STRUCTURE

3.2 Description of Structure and Design Working Life

The proposed works will include underpinning to the existing masonry boundary external walls as well as providing a new 350mm thick RC retaining wall and base slab. For further information refer to SR Brunswick permanent works drawings included in Appendix A at the back of this document. The minimum design working life of the proposed structure is to be 60 years. Additionally, a movement monitoring proposal has been prepared by SR Brunswick, also included in Appendix A.

3.3 Structural Type

The new RC retaining wall will be 350mm thick in-situ reinforced concrete. Concrete strength for underpinning is to have a minimum strength class of C25/30 and concrete strength for the new RC retaining wall is to have a minimum strength class of C32/40.

3.4 Foundation Type

The RC retaining walls will be founded on a ground bearing base slab, 350mm thick reinforced concrete with a minimum strength class of C32/40.

3.5 Span Arrangements

The basement is designed as a reinforced concrete box formed by underpinning the existing property and linking the underpins to a structural raft slab. The raft slab will act as a restraint to the perimeter retaining walls and transfer the load to the ground. The retaining walls have been designed as free standing cantilevers as this is the worst case and will have continuity reinforcement to link all the sections together. The internal loadbearing walls are to be carried by new structural support beams spanning between the new external retaining walls and any internal column support as appropriate.

3.6 Articulation Arrangements

Not applicable.

3.7 Road Restraint Systems Requirements

Not applicable.

3.8 Proposed Arrangements for Future Maintenance and Inspection of Structure

- 3.8.1 Traffic Management See traffic Management Plan below.
- 3.8.2 Arrangements for future maintenance and inspection of structure.

Access is to be the same as existing.

3.8.3 Intrusive or further investigations proposed – Not currently required, ground test and soil report carried out, see Appendix B.

3.9 Environment and Sustainability

The new structure is to be installed where there is existing masonry structure and hard standing area so there is little or no impact on the environment. From an overall sustainability perspective, the proposed new concrete structure has been specified to contain a percentage of recycled aggregate, min. 20% as well as the option for a cement replacement such as GGBS (ground granulated blast-furnace slag) which will serve to minimise the carbon footprint of the proposed new structure.

3.10 Durability, Materials and Material Strengths

For durability purposes the minimum nominal cover to reinforcement in the RC retaining wall will be 40mm which is adequate for 'severe' exposure conditions as per Table 4.8 from BS 8110 - Part 1. The minimum concrete strength class is to be cube strength 40N/mm² at 28 days. Steel reinforcement is to be high yield grade 500B in accordance with BS 4449.

3.11 Risks and Hazards Considered for Design, Execution, Maintenance and Demolition

The proposed alterations have been designed so that all temporary loads from the building above, adjacent properties and the highway / pavement have been considered and designed into the permanent design.

The existing property is of traditional masonry and timber design for a domestic property and so care will be required in executing the underpinning and because of the depth the reinforced underpins will be constructed on a hit and miss basis in 2 staggered lifts to minimise and movement of the property.

The design parameters used in the design are on the basis of a 60 year life to reflect the standards used for new build property and it is expected that the new basement structure will last for the life time of the property. The detailing and concrete cover / strength reflect the permanent works design life and requirements of the Building Regulations and appropriate design codes.

There are no residual risks from this work as no voids are being left outside of the structure and as the water table is well below the raft level, no water courses in the ground will be affected.

3.12 Estimated Cost of Structure and other Structural forms Considered

The cost of the proposed new structure has been factored into the overall cost of the refurbishment of 56 Platt's Lane. The proposed cost for the structural works are £180,000.00.

3.13 Proposed Arrangements for Construction

3.13.1 Construction of Structure

The following outline construction sequence is to be followed;

- Remove existing structural floors from ground floor.
- Underpin operation to be carried out in sequence. 1m long sections and reduce dig to formation of new RC base slab including waling beams to support as underpin progresses.
- Temporary support to existing structural partitions to be fixed during underpin operation.
- Cast new ground bearing RC slab and remove temporary waling beams and props.

Refer to sketches in Appendix B.

- 3.13.2 Traffic Management Access to be via front of property, road is of sufficient width to allow for wide vehicles to offload.
- 3.13.3 Service Diversions Not Applicable.
- 3.13.4 Interface with Existing Structures.

The new RC retaining walls are to be cast below the existing masonry wall 75mm dry packing to be inserted between underpin and existing masonry wall.

3.14 Year of Construction

2019

3.15 Reason for Assessment

In preparing the design proposal it was necessary to review the condition of the existing property and assess its condition and ability to accommodate the proposed works without causing any damage. This is also applicable to the neighbors and adjacent highway bearing in mind that the property is on a slope and the potential for slippage of the ground during the excavation. To facilitate this trial holes were dug and a bore hole undertaken which has demonstrated that the building is founded on sandy clay which extends to below the new proposed foundations,

3.16 Part of Structure Assessed

The assessment undertaken comprised the existing property and immediate areas on the boundary. The Property is in good condition and comprises load bearing walls and timber floors as would be expected for this property. Foundations are traditional spread footings founded on the underlying sandy clay

4.1 DESIGN CRITERIA

4.2 Design Codes of Practice

The proposed works have been designed in accordance with the following British Standards:

- BS 6399 Part 1: Code of Practice for Dead and Imposed Loads
- BS 6399 Part 2: Code of Practice for Wind Loads
- BS 8110 All Parts: Codes of Practice for the Structural Use of Concrete
- BS 5950 All Parts: Codes of Practice for Structural Use of Steelwork
- BS 8002: Code of Practice for Earth Retaining Structures
- BS 8102: Code of Practice for Protection of Structures against Ground Water

4.3 Live Load Surcharge for Retaining Wall

A live load surcharge of 10kN/m² is deemed appropriate and has been used in the structural design of the RC retaining wall as per BS 5400: Part 2, Clause 5.8.2.1 (a), HA loading.

4.4 Authorities Consulted – London Borough of Camden

The maximum deflection at road level is to be less than 5mm.

5.1 STRUCTURAL ANALYSIS

5.2 Method of Analysis

The structure has been analyzed as a vertical cantilevered retaining wall which is to be supported by a ground bearing base slab. Detailed design calculations have been carried out.

5.3 Soil Parameters

With regard to soil parameters for the purposes of design of the retaining wall to the public footpath an angle of shearing resistance of 24 degrees has been assumed resulting in an active pressure co-efficient of 0.42. See the Basement Impact Assessment for addition details.

6.0 GEOTECHNICAL CONDITIONS

6.1 Site Investigation

SR Brunswick & Land Science have carried out an intrusive ground investigation which can be found in the Basement Impact Assessment prepared by Geotechnical & Environmental Associates Limited. The recommendations included in this report with respect to safe bearing capacities, angle of shearing resistance and other parameters have been adopted in the design.

7.0 CATEGORY CHECK

7.1 In accordance with BD2/12, CLAUSE 3.4.2 (c), it is recommended that the proposed development be classed as a Category 1 structure, i.e. *"earth retaining structure with an effective height of 2m or greater but less than 7m"*.

8.0 STATEMENT BY DESIGNER

8.1 The design is submitted for Approval in Principle on behalf of SR Brunswick, 138 Woodcock Hill, Kenton, Middlesex HA3 0JN. As part of my design I have reviewed the soils investigation results and incorporated them into my design for the basement at 56 Platt's Lane.

5.B/

Signed: Name: Position Held:

Steven Brunswick Director

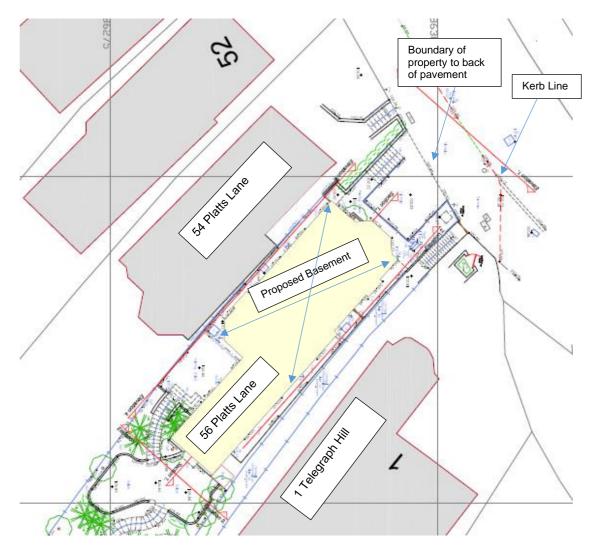
APPENDIX A – Monitoring Proposal

S R BRUNSWICK C Eng, FICE, FCIOB

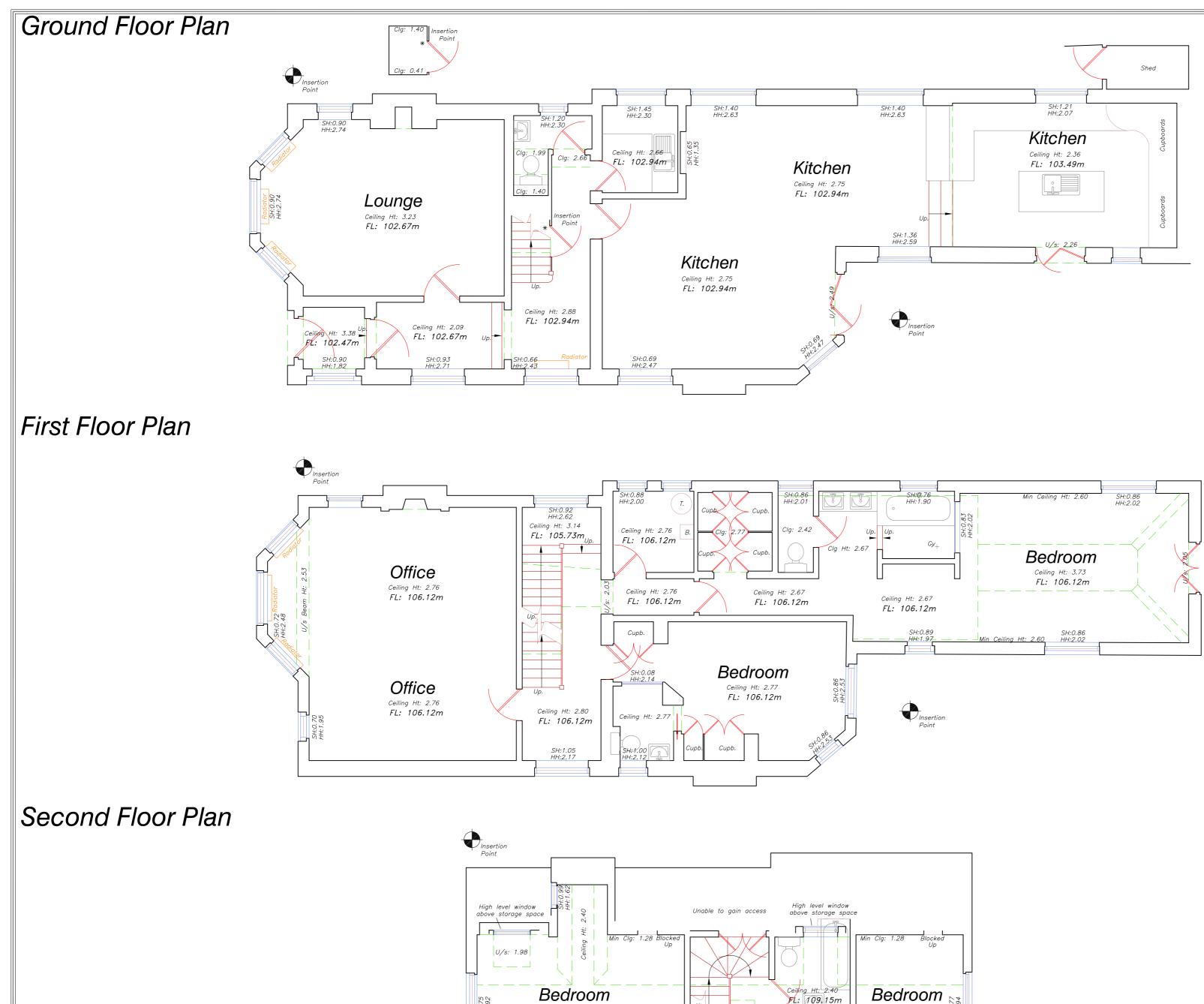
138 Woodcock Hill Kenton, Middx. HA3 0JN

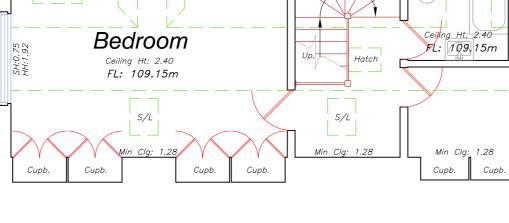
56 Platt's Lane Monitoring Plan

The following system of control shall be employed by the main contractor for the construction of the basement, in this case as the property is detached the monitoring will be the flank wall for 54 Platts lane, the path to 1 Telegraph Hill and the back edge of pavement for the width of the property plus 2m each side. Readings are to be taken according to the following events schedule rather than at arbitrary time intervals:


- 1 week prior to commencement of first excavations to establish the base tine. This to be done twice to ensure consistency,
- Immediately following the first reduced dig i.e. the removal of the existing ground floor and initial preliminary access trenches.
- Upon completion of excavation of the first pin.
- Upon completion of the casting of the concrete and drypacking of the last pin marked "1" and prior to the excavation of pins marked "2"
- · Weekly thereafter
- Final reading one week following completion of the ground floor installation

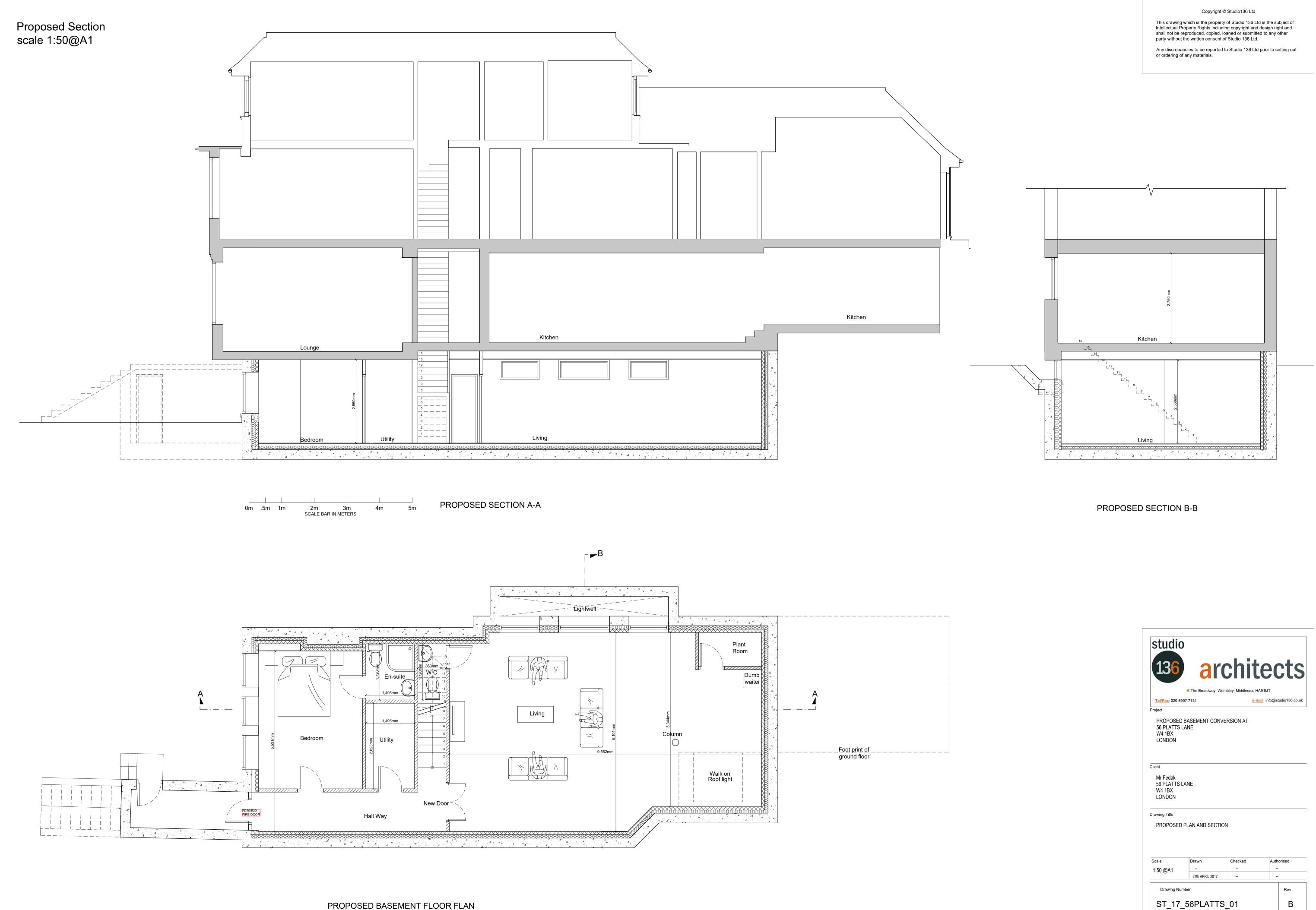
Monitoring points are to be no greater than 2.5 m apart and located at approximately existing ground floor level, The Trigger value, at which the appropriate action shall be taken, for each section, is given in the table below. The method of construction by use of sequential underpins


Limits the deflections in the surrounding areas. The maximum horizontal movement across the length of the party wall must not exceed height of excavation ratio as below. Vertical limits based on ratio of length of wall under consideration. Any movement (H or V) between the monitoring points must be limited to a red limit of 3mm. During works measurements are taken, these are compared with the limits set out below:

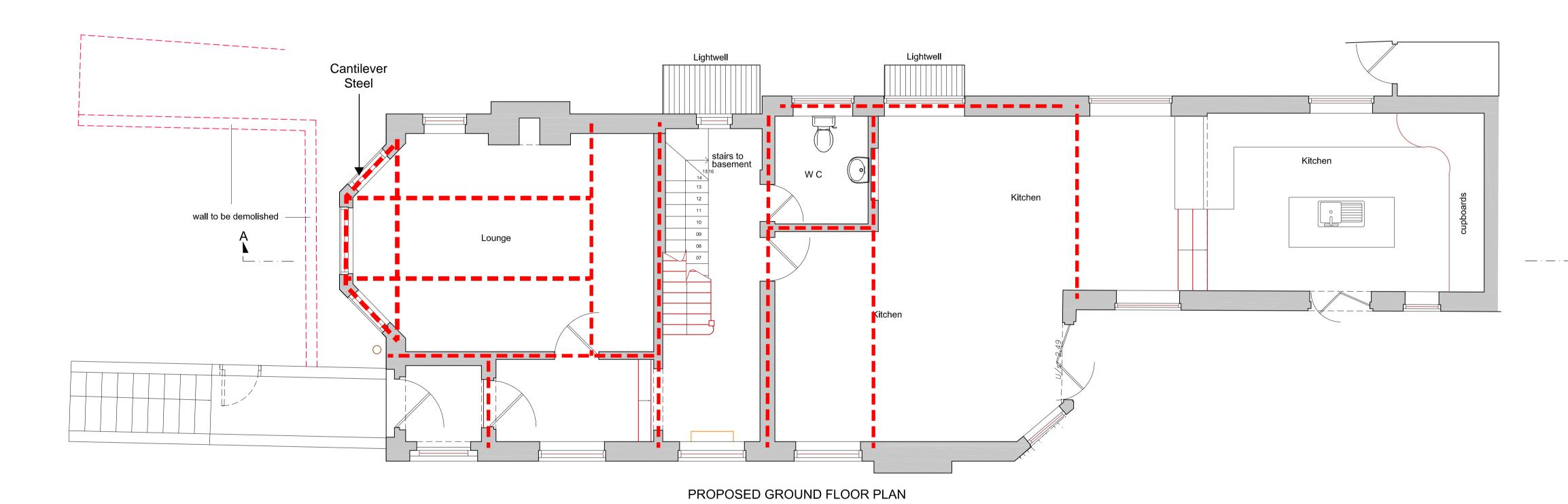

Horizontal	Category	Action
<11/900 i.e.	Green	No action required
H/500-900 i.e. 4.5-8mm	Amber	Crack Monitoring: Carry out a local structural review; Preparation for the implementation of remedial measures should be required.
>F1/500 i.e. >13mm	Red	Crack Monitoring: Implement structural support as required; Cease works with the exception of necessary works for the safety and stability of the structure and personnel; Review monitoring data and implement revised method of works
Vertical		
<l 2000="" i.e.<="" td=""><td>Green</td><td>No action required</td></l>	Green	No action required
L/2000-1000 i.e. 5-10mm	Amber	Crack Monitoring: Carry out a local structural review; Preparation for the implementation of remedial measures should be required.
>L/1000 i.e. 10mm	Red	Crack Monitoring: Implement structural support as required; Cease works with the exception of necessary works for the safety and stability of the structure and personnel; Review monitoring data and implement revised method of works

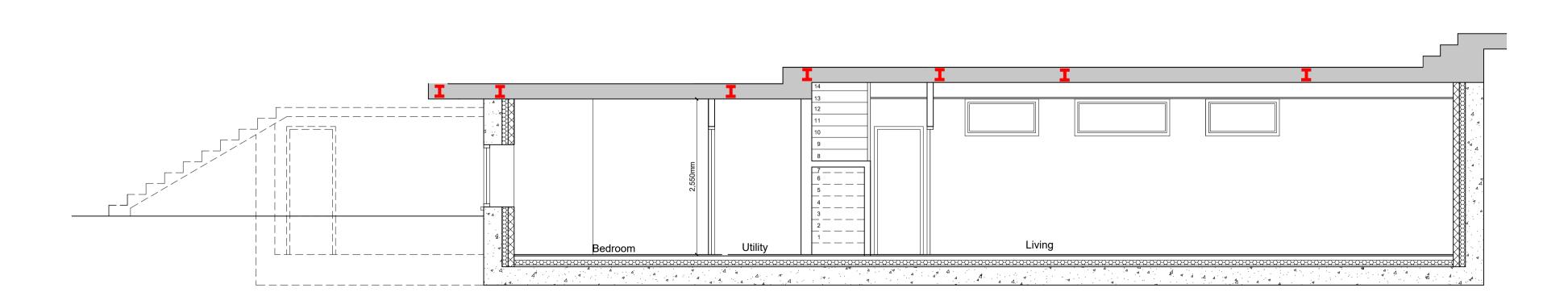
Any movements which exceed the individual amber bigger levels for a monitoring measure given in the table shall be immediately reported to the PWS and design engineer, and a review of all of the current monitoring data for all monitoring measures must be implemented to determine the possible causes of the bigger level being exceeded. Monitoring of the affected location must be increased and the actions described above implemented. Assessment of exceeded bigger levels must not be carried out in isolation from an assessment of the entire monitoring regime as the monitoring measures are inter-related. Where required, measures may be implemented or prepared as determined by the specific situation and combination of observed monitoring measurement data.

APPENDIX B – Permanent Works Drawings



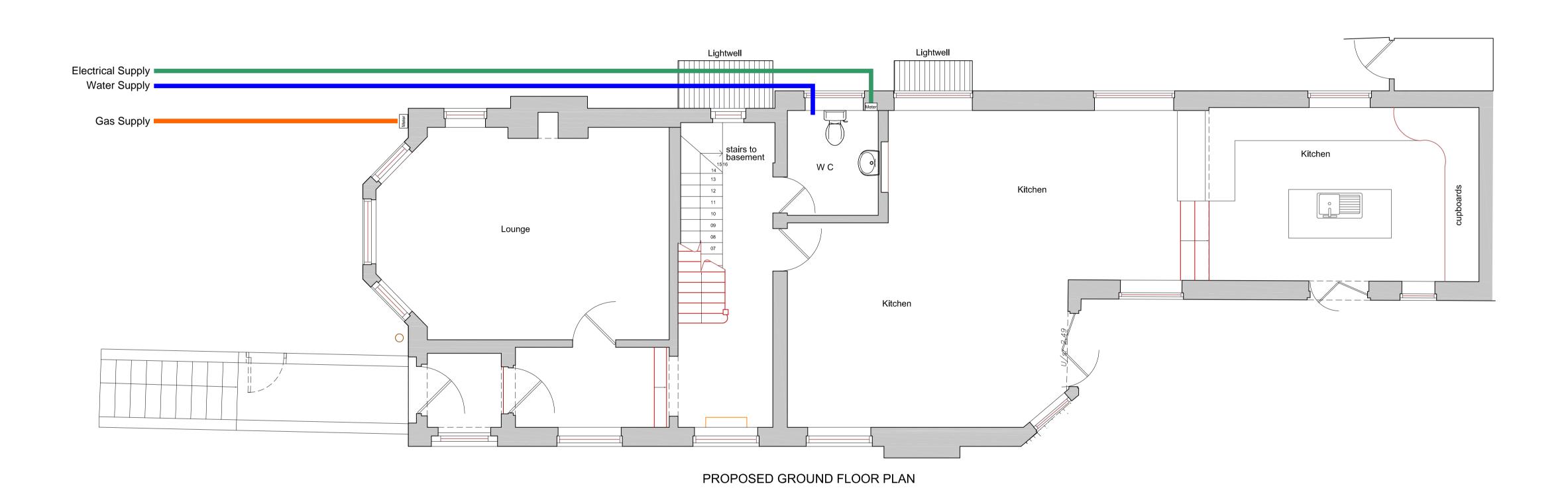
Datum: 100.00m. Section 1.


Image lange Image lange Open only Bits Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Image lange Ima	Note:		
The Ordnance Survey tile is to be used as a guide only. OS Buildings Survey has been orientated to the Ordnance Survey (S) Nation (GOSGB3) and the OS. Active Network (OS Net). Arue OSGB3 coordinate has been established to the position at a further of or more OSGB3 points established to the position at a further of or more OSGB3 points established to the position at a further of or more OSGB3 points established to the position at a further of or more OSGB3 points established to the position at a further of or more OSGB3 points established to the position at a further of or more OSGB3 points established to create a true O.S. Coordinate which have a scale factor applied. Please refer to Survey Station Table to enable established to the form of the on-site grid. Shift 1.00 Struct Cetit: 31.00m Struct Cetit: 30.00 Stru	Some services may hav	ve been omitted due	e to parked vehicle
(C.S.) National Grid (USSG33) via Global Navigational Sate Systems (GNS) and the 0.S. Active Network (CS Net). At the OSGB36 coordinate has been established near to the the centre via a transformation using the OSTN15 & OSSN transformation models. At the OSGB36 points established to create a true O.S. Dearing for angle orientation. No scale factor applied. Please refer to Survey Station Table to enable established the on-sile grid. State of the on-sile grid. State of the on-sile grid. Surge Cell: 30.00m Struct Cell: 31.00m Struct Cell: 30.00m			
art to OSGB36 coordinate has been established to create a true OSSTR/5 & OSSCh transformation models. The survey has been correlated to this point and a further of or more OSSB36 points established to create a true OSS. So OSCH transformation models. No scale factor has been applied to the survey therefore the toordinates shown are abilitory and true OSS. The survey has been correlated to this point and a further of or more OSSB36 points established to create a true OSS. Please refer to Survey Station Table to enable established or on-site grid. Survey Station Table to enable established or on-site grid. Shift 1.00 Struct Cell: 3.000 Struct Cell: 3.0	This survey has been o (O.S) National Grid (OS	rientated to the Ord GB36) via Global N	nance Survey lavigational Satell
The survey has been correlated to this point and a further. To contradicts on the O.S. Dearing for angle contraction. No scale factor applied to the survey therefore the coordinates shown are arbitrary & not two O.S. Coordinates shown are arbitrary and the onsale establishme defined datum. Has 22.8.2cm Struct Criter 3.0.00 million of the overlay drawing of struct Criter 3.0.00 million of the overlay drawing of struct Criter 3.0.00 million of the overlay drawing of	A true OSGB36 coordin site centre via a transfo	ate has been estab	lished near to the
soordinates show are arbitrary & not two O.S. Coordinates which have a scale lactor applied. Please refer to Survey Station Table to enable establishme of the on-site of t	The survey has been co or more OSGB36 points	s established to crea	
or interval Survey Legend: Sht 1.00 Sill Height from FFL. SL 51.03m Sill Ausel from defined datum, Head Level from defined datum, Head Level from defined datum, Head Struct CHI: 3.00 Suspended Ceiling Height from FFL. Susp Cell: 3.00m Suspended Ceiling Height from FFL. Suspended Ceiling Height from FFL. Image: Suspended Ceiling Height from FFL. Suspended Ceiling Height from FFL. Suspended Ceiling Height from FFL. Image: Suspended Ceiling Level from datum Suspended Ceiling Level from datum Suspended Ceiling Level from datum Image: Suspended Ceiling Level from datum Suspended Ceiling Level from datum Suspended Ceiling Level from datum Image: Suspended Ceiling Level from datum Suspended Ceiling Level from datum Suspended Ceiling Level from datum Image: Suspended Ceiling Level from datum Suspended Ceiling Level from datum Suspended Ceiling Level from datum Image: Suspended Ceiling Level from datum Suspended Ceiling Level from datum Suspended Ceiling Level from datum Image: Suspended Ceiling Level from datum Suspended Ceiling Level from datum Suspended Ceiling Level from datum Image: Suspended Ceiling Level from datum Suspended Ceiling Level from datum Suspended Ceiling Level from datum Image: Suspended Ceiling Level from datum Suspended Ceiling	coordinates shown are	arbitrary & not true	vey therefore the O.S. Coordinates
SHI 1.00 HHt 2.12 SIII Helphi from FFL. Head Height from FFL. SL 51.03m HL 52.82m Sill Level from defined datum. Head Level from defined datum. Susp CHI: 2.00 Struct CHI: 3.00 Suspended Celling Height from FFI. Susp CHI: 2.00 Struct Cell: 3.000m Structural Celling Level from datu Fill 00.000m Internal Floor Level (General). Internal Floor Level (Specific). IFL: 100.00m Fillow Internal Floor Level (Specific). Image: Specific Celling Level from datu Fillow Image: Specific Celling Level from datu Structural Celling Level from datu Fillow Image: Specific Celling Level from datu Fillow Image: Specific Celling Level from datu Fillow Image: Specific Celling Level from datu Fillow Image: Specific Celling Level from datu Fillow Image: Specific Celling Level from datu Fillow Image: Specific Celling Level from datu Fillow Image: Specific Celling Level Specific Celling Level from datu Fillow Image: Specific Celling Level Specific Celling	of the on-site grid.		
SL 51.03m Sill Level from defined datum. Supp CHI: 2.00 Suspended Ceiling Height from F Struct Ceil: 30.00m Suspended Ceiling Level from data IFL: 100.00m Internal Floor Level (Specific). IFL: 100.00m Internal Floor Level (Specific). Ifter and Floor Level (Specific). Internal Floor Level (Specific). Ifter and Floor Level (Specific). Internal Floor Level (Specific). Ifter and Floor Level (Specific). Internal Floor Level (Specific). Ifter and Floor Level (Specific). Internal Floor Level (Specific). Ifter and Floor Level (Specific). Internal Floor Level (Specific). Ifter and Floor Level (Specific). Internal Floor Level (Specific). Ifter and Floor Level (Specific). Internal Floor Level (Specific). Ifter and Floor Level (Specific). Internal Floor Level (Specific). Ifter and Floor Level (Specific). Internal Floor Level (Specific). Ifter and Floor Level (Specific). Internal Floor Level (Specific). Ifter and Floor Level (Specific). Internal Floor Level (Specific). Ifter and Floor Level (Specific). Internal Floor Level (Specific). Ifter and Floor Level (Specific). Internal Floor Level (Specific). Ifter and Level (Specific). Internal Floor Level (Specific). Ifter and Level (Specific). Internal Floor Level (Specific). <th>SHt 1.00</th> <th>SIII Helght from F</th> <th>FL.</th>	SHt 1.00	SIII Helght from F	FL.
Struct CH: 3.00 Structural Ceiling Height from FFI Supp Ceil: 30.00m Suppended Ceiling Level from distruct Ceiling Level from distructural Ceiling Leve	SL 51.03m	Sill Level from de	efined datum.
Struct Cell: 31.00m Structural Celling Level from data IFL: 100.00m Internal Floor Level (General). Image: Internal Floor Level (General). Internal Floor Level (General). Image: Internal Floor Level (General). Internal Floor Level (General). Image: Internal Floor Level (General). Internal Floor Level (General). Image: Internal Floor Level (General). Internal Floor Level (General). Image: Internal Floor Level (General). Internal Floor Level (General). Image: Internal Floor Level (General). Internal Floor Level (General). Image: Internal Floor Level (General). Internal Floor Level (General). Image: Internal Floor Level (General). Internal Floor Level (General). Image: Internal Floor Level (General). Internal Floor Level (General). Image: Internal Floor Level (General). Internal Floor Level (General). Image: Internal Floor Level (General). Internal Floor Level (General). Image: Internal Floor Level (General). Internal Floor Level (General). Image: Internal Floor Level (General). Internal Floor Level (General). Image: Internal Floor Level (General). Internal Floor Level (General). Image: Internal Floor Level (General). Internal Floor Level (General). Image: Internal F	Susp CHt: 2.00	Suspended Ceili	ng Height from FF
+ 100.00m Internal Floor Level (Specific). Internal Floor Level (Specific). Insertion Poth for overlay drawing of the floors or details. Internal Floor Level (Specific). Insertion Poth for overlay drawing of the floors or details. Internal Floor Level (Specific). Insertion Poth for overlay drawing of the floors or details. Internal Floor Level (Specific). Insertion Poth for overlay drawing of the floors or details. Insertion Poth for overlay drawing of the floors or details. Insertion Poth for overlay drawing of the floors or details. Insertion Poth for overlay drawing of the floors or details. Insertion Poth for overlay drawing of the floors or details. Insertion Poth for overlay drawing of the floors or details. Insertion Poth for overlay drawing of the floors or details. Insertion Poth for overlay drawing of the floors or details. Insertion Poth for overlay drawing of the floors or details. Insertion Poth for overlay drawing of the floors or details. Insertion Poth for overlay drawing of the floors or details. Insertion Poth for overlay drawing or the floors or details. Insertion Poth for overlay drawing or the floors or details. Insertion Poth for overlay drawing or the floors or details. Insertion Poth for overlay drawing or the floors or details. Insertion Poth for overlay drawing or the floors or details. Insertion Poth for overlay drawing or the floor overlay drawing or the floors overlay drawing or the fl	Struct Ceil: 31.00	m Structural Celling	g Level from datum
Priori Other floors or details. Lifting Compared Calify Transmission Transmissi Transmission Transmission Transmissi	+100.00m	Internal Floor Le	vel (Specific).
Image: second control of the second control of th		of other floors or	detalls.
Image description Org Org Org Bits Particle State Image description Image description Description Org Org Org Image description Image description Description The second factor The second factor Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image description Image de	Wall Concrete edge	IC Inspection chambe	er Bol Bollard
Control for 100.000 User basis and the set in an advance matrix Page Part down ground in Marcha With Marcha	Kerb line Tarmac edge Line marking Grass verge Drop kerb Ganopy/Overhan	Gy Gully Bg Back gully	Bin Rubbish bin Vp Vent pipe
Image: Second System P Production P Production The Treaded State Image: Second System Area of Undergrade The The State Stat	1 Station and Name	MH Manhole WL Water level	Ldr Ladder Sty Stile
Product	🕐 Ö 🕷 Tree / Bush / Saplin	ng Lp Lamp post Tp Telegraph post	THL Threshold level Sp Sign post
P Tar Bached Level Core B Bits top Class Clas	R: Ridge Level	Ep Electricity post TI Traffic light Bus Bus stop	BH Borehole ELC Electric
Instrument Instrument <th>F: Flat Roof Level Gate Fence types:</th> <td>St Stop tap Er Earth rod</td> <td>C'box Control box TT Tactile</td>	F: Flat Roof Level Gate Fence types:	St Stop tap Er Earth rod	C'box Control box TT Tactile
Product A Weil Product A Wei	IW Interwoven	Gas Gas valve Av Alr valve	CPS Concrete paving CVR Cover
Charl Link Cirk Link Cirk Link Cirk Link Cirk Link Cirk Link Cirk Link Mile grad	PIR Post & Reil	Wo Wash out Re Rodding eye	R/wall Retaining wall UTL Unable to lift
Provide State Patient State Clic Convertived It Rev Date Description Drawn Q. Stee Engineering 3D Basured Building Sur- (3) Measured Building Sur- (3) Stee Engineering 3D Laser Scanning Utility / CCTV Surveys Measured Building Sur- (3) Basured Building Sur- (3) Busineering 3D Laser Scanning Utility / CCTV Surveys Revit & BIM Models Derby DE21 SDR Tel (0132) S00044 Fax (0132) Fax (0132) St Albans Poland Www.greenhatch-group.co.uk U.Panewnicka Werkastle Poland Newcastle Poland Unt B, The Courty or Alban Park St Albans Newcastle At 0LA Poland Newcastle Poland Unt B, The Courty or Alban Park St Albans Newcastle PROJECT 56 Platts Lane, London, NW3 7NT TITLE ExlstIng Elevations & Section SCALE DATE A2@ 1: 100 14/02/2017 DRAWN QUALITY REF Gy Quality REF Level datum See OS Note Grid orientation See OS Note	WP Wooden Panels	Mkr Marker post	MG Multi girth
Scale Date PROJECT Scale PROJECT Scale Date Date Scale Secos Scale Secos <th>Steel Paljsade</th> <th></th> <th></th>	Steel Paljsade		
Scale Date PROJECT Scale PROJECT Scale Date Date Scale Secos Scale Secos <th></th> <th></th> <th></th>			
Derby DE21 SDR Tel (01332) 830055 admin@greenhatch-group.co.uk www.greenhatch-group.co.uk St Alban Park St Alban Park St Alban Bark Hetfordshife Al4 04Ast t. (01727) 854481 t. (01912) 736391 t. (01912) 736391 t	Topographical Surversity Site Engineering Utility / CCTV Surversity Ro	ys Measu 30 ys Re Dwan House uffield Road	red Building Surve Laser Scanning
admin@greenhatch-group.co.uk www.greenhatch-group.co.uk St Albans Unit B, The Courtyerd Alban Park St Dabare AL4 00A Newcastle Newcastle Dus, Park Newcastle Dus, Park New Castle Dus, Park New Cas		Derby DE21 5DR	
Unit B, The Courtyard Alban Pref Altan Dark Herffordshire AL4 0LA t. (01727) 854481 t. (01727) 854481 t. (01912) 736391 t. (0048 32 202 3 t. 0048 32 200 3 t.	admin@	greenhatch-group.c	o.uk
Hettordshife AL 004 New Caste-0-1 yne NE 7/11 t. 0048 32 202 2 CLIENT Amirilan t. 0048 32 202 2 CLIENT Amirilan PROJECT 56 Platts Lane, London, NW3 7NT TITLE Exlisting Elevations & Section SCALE A2@ 1: 100 DATE DATE Gy Level datum See OS Note Git13_03_ES	St Albans Ne	4 Riverside Studios Amethyst Road	ul. Panewnicka 9 40-761 Katowice
CLIENT Amirilan PROJECT 56 Platts Lane, London, NW3 7NT TITLE 56 Platts Lane, London, NW3 7NT TITLE Existing Elevations & Section SCALE DATE A2@ 1: 100 14/02/2017 DRAWN QUALITY REF Gy QUALITY REF Job number 26113 Drawing No. R 26113_03_ES 0	Alban Park		t. 0048 32 202 22 www.greenhatch.
PROJECT 56 Platts Lane, London, NW3 7NT State, NW3 7NT TITLE Exlisting Elevations & Section SCALE DATE A2@ 1: 100 DATE GI 14/02/2017 GI 14/02/2017 GI 14/02/2017 GI 14/02/2017 GI 14/02/2017 GI 14/02/2017 GI 13/03_ES	Alban Park St Albans N Hertfordshire I AL4 0LA		1 5 2
56 Platts Lane, London, NW3 7NT TITLE Existing Elevations & Section SCALE DATE A2@ 1: 100 DATE DATE Gy Level datum See OS Note Grid orientation See OS Note Job number 26113_03_ES	Alban Park St Albans N Hertfordshire AL4 0LA t. (01727) 854481 t CLIENT	Amirilan	
TITLE ExIstIng Elevations & Section SCALE A2@ 1: 100 DRAWN Gy UALITY REF Gy Level datum Grid orientation See OS Note Grid orientation Dot number 26113_03_ES	Alban Park St Albans N Hertfordshire AL4 0LA t. (01727) 854481 t CLIENT	Amirilan	
A2@ 1: 100 14/02/2017 DRAWN QUALITY REF Gy Level datum Grid orientation See OS Note Job number 26113_03_ES 0	Alban Park ST Albans Hertfordshire AL4 00LA t. (01727) 854481 t CLIENT PROJECT 56 F	Platts Lan _ondon,	e,
Gy Level datum See OS Note Grid orientation See OS Note Job number 26113 Drawing No. R 26113_03_ES 0	Alban Park ST Albans Hettfordshire AL4 0LA t. (01727) 854481 t CLIENT PROJECT 56 F L N TITLE ExIstIr &	Platts Lan _ondon, IW3 7NT ng Elevatl	ons
Grid orientation See OS Note Job number 26113 Drawing No. R 26113_03_ES 0	Alban Park ST Albans Hetfordshire AL4 04A t. (01727) 854481 t CLIENT PROJECT 56 F L N TITLE ExIstIr & SCALE A2@ 1: 100	Platts Lan _ondon, IW3 7NT ng Elevati a Section	ONS
Job number 26113 Drawing No. R 26113_03_ES 0	Alban Park ST Albans Hetfordshire AL4 0L4 t. (01727) 854481 t CLIENT PROJECT 56 F L N TITLE Existin 8 SCALE A2@ 1: 100 DRAWN	Platts Lan _ondon, IW3 7NT ng Elevati Section	ONS DATE /02/2017
26113_03_ES 0	Alban Park ST Albans Hertfordshire AL4 00LA t. (01727) 854481 CLIENT PROJECT FITLE Existin & SCALE A2@ 1: 100 DRAWIN Gy Level datum	Platts Lan _ondon, IW3 7NT ng Elevation 	ONS DATE /02/2017
	Alban Park ST Albans Hetfordshire AL4 04 CLIENT PROJECT 56 F L N TITLE ExIstIr 8 SCALE A2@ 1: 100 DRAWN Gy Level datum Grid orientation	Platts Lan ondon, IW3 7NT ING Elevation Section 14 See OS Note See OS Note	ONS DATE /02/2017
Comments	Alban Park ST Albans Hertfordshire AL4 001227) 854481 t CLIENT PROJECT 56 F I N TITLE ExIstIr & SCALE A2@ 1: 100 DRAWN Gy Level datum Grid orientation i Job number i Drawing No.	Platts Lan ondon, IW3 7NT ING Elevation Section 14 See OS Note See OS Note See OS Note See OS Note	DATE /02/2017 ALITY REF
This plan should only be used for its original purpose. Greenhatch Group accepts no responsibility for this plan if supplied to any party other than the original client.	Alban Park ST Albans Hertfordshire AL4 04 L. (01727) 854481	Platts Lan ondon, IW3 7NT ING Elevation Section 14 20 See OS Note See OS Note 26113 3_03_ES	DATE JO2/2017 ALITY REF

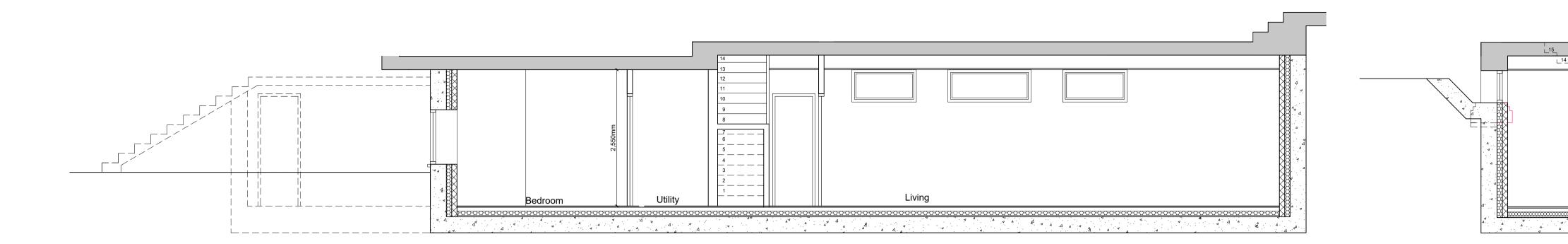


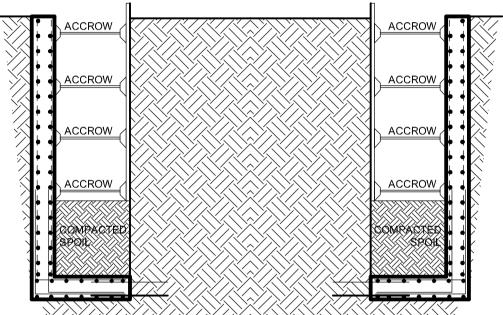
studio)		
136	ar	chit	tects
	<mark>6</mark> The Broadway, We	embley, Middlesex, I	HA9 8JT
Tel/Fax: 020 89	07 7131	<u>e-</u>	mail: info@studio136.co.uk
56 PLATTS I W4 1BX LONDON			
^{Client} Mr Fedak 56 PLATTS I W4 1BX LONDON	LANE		
Drawing Title PROPOSED	PLAN AND SECTIO	DN	
Scale	Drawn	Checked	Authorised
1:50 @A1	 27th APRIL 2017		
Drawing Nu	mber		Rev
ST 17	_56PLATTS	S 01	В

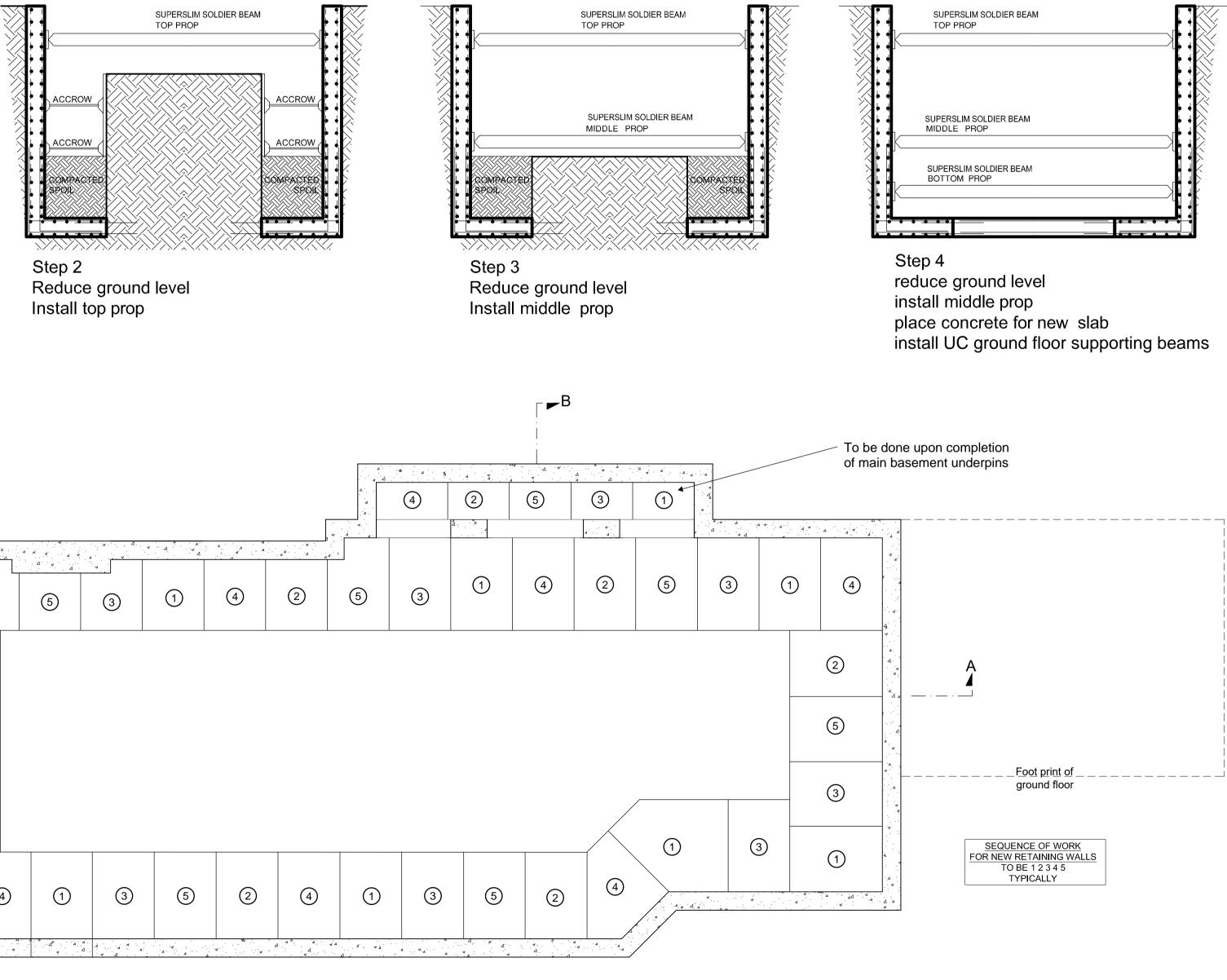
Draw	ing inur	nder	
ST	17	56PLATTS	02

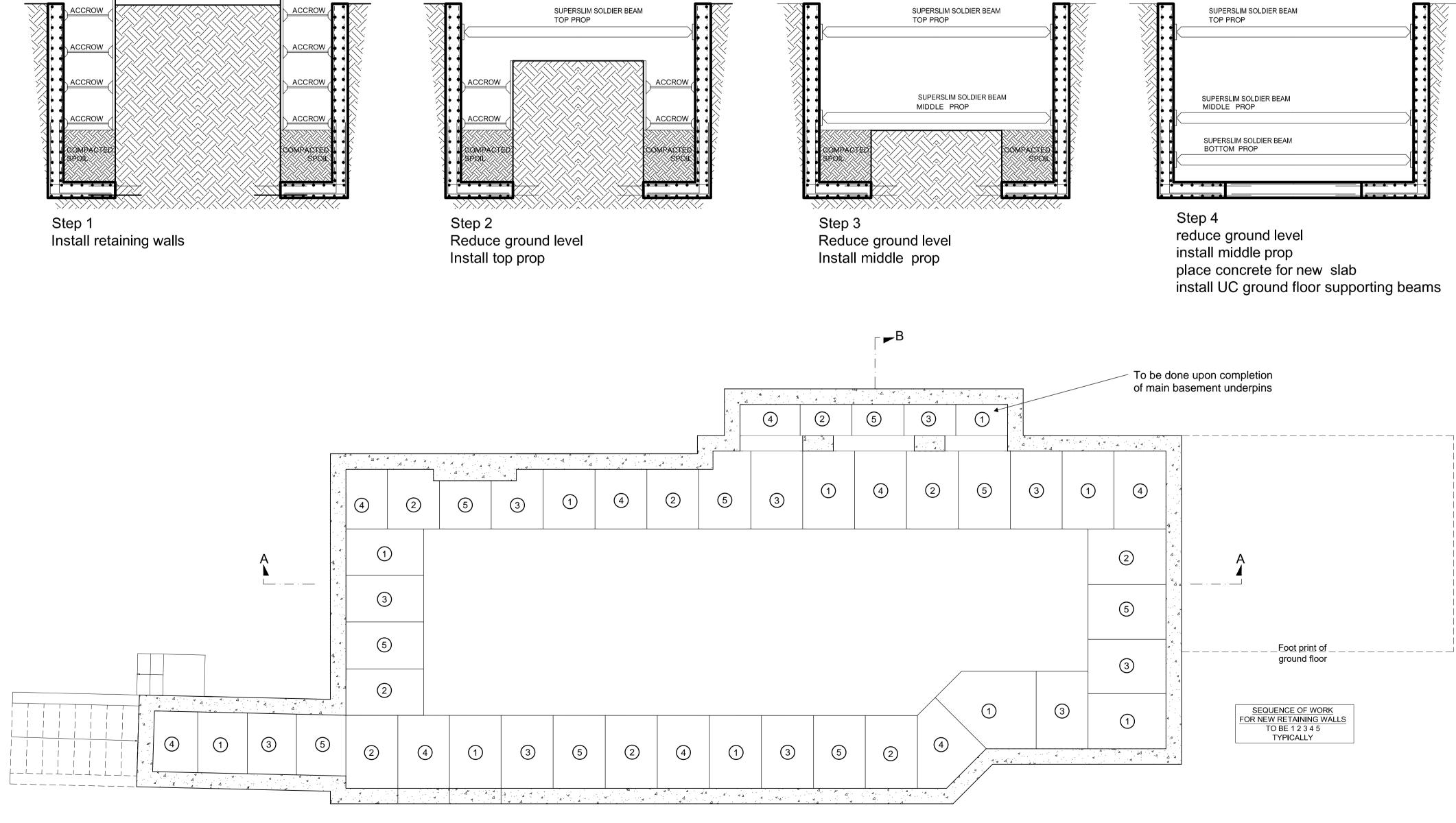


PROPOSED SECTION A-A


A

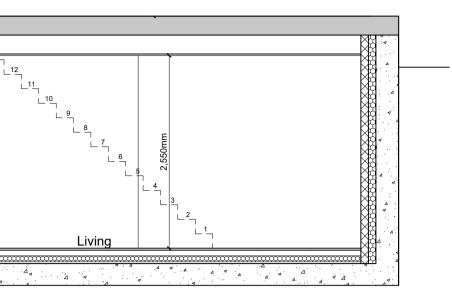



APPENDIX C – Underpinning Sequencing & Temporary Works

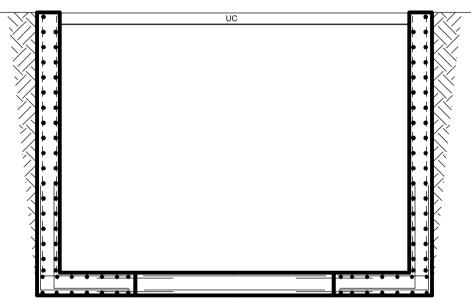


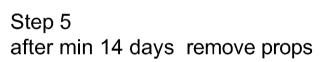
SECTION 1-1

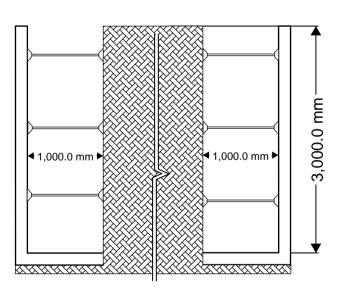
SECTION 1-1

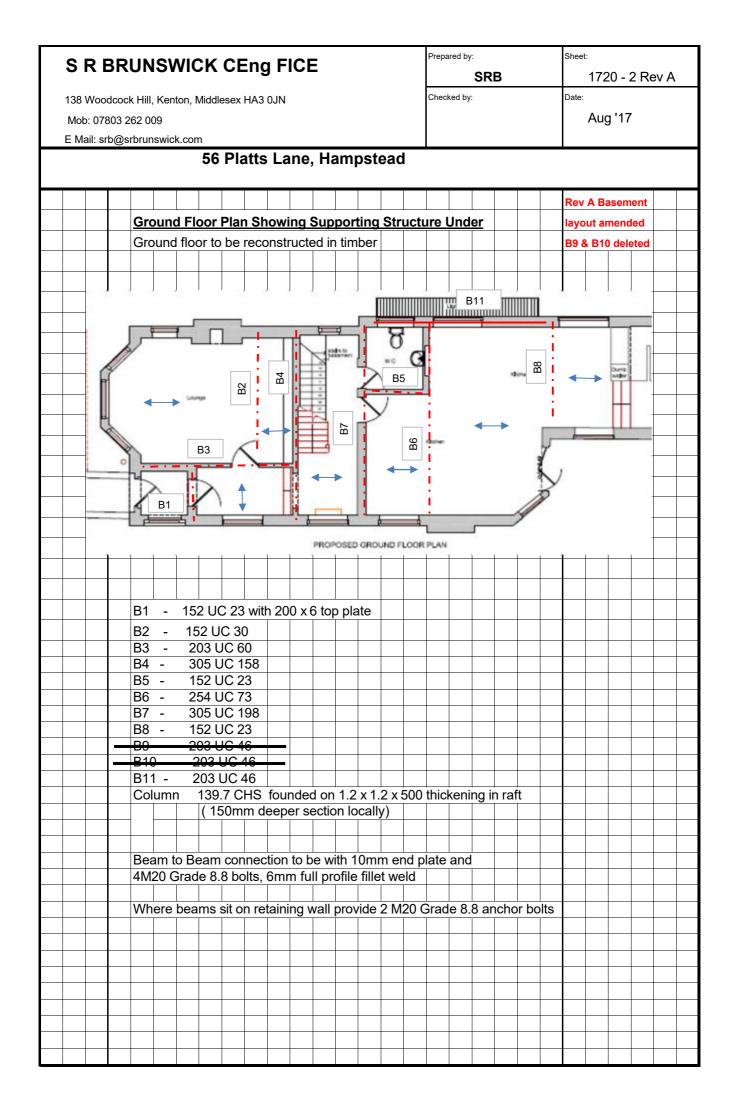

PROPOSED BASEMENT UNDERPIN SEQUENCE PLAN

SECTION 1-1



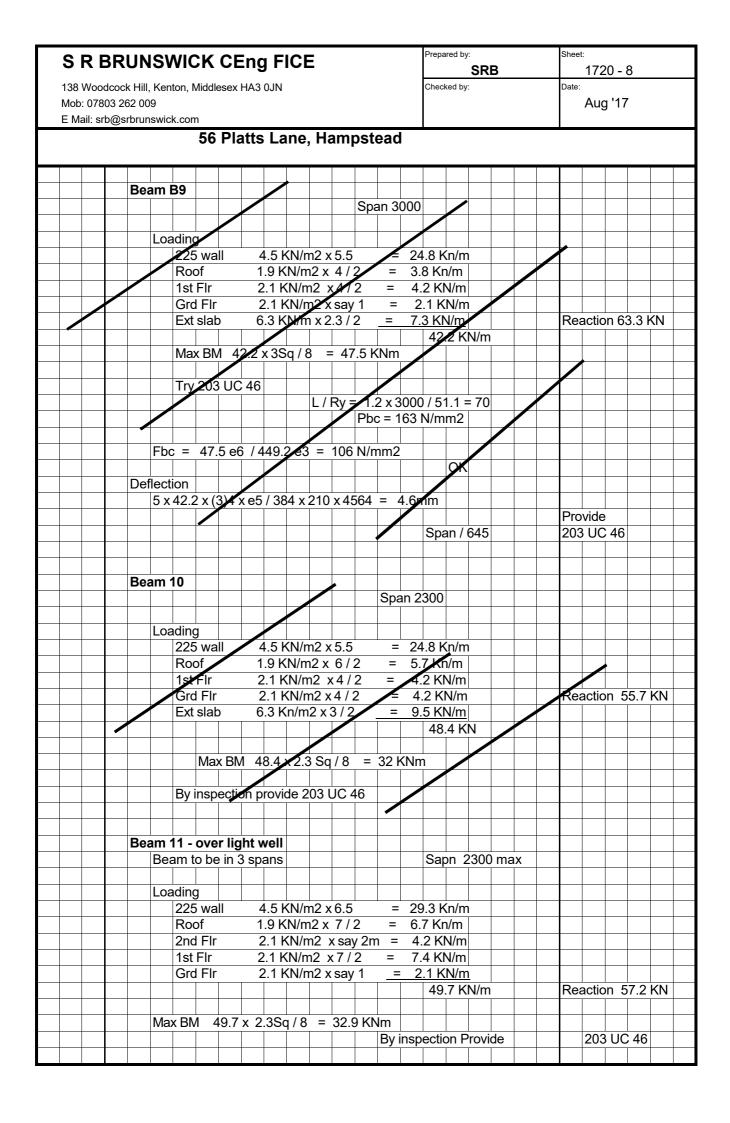

SECTION 1-1

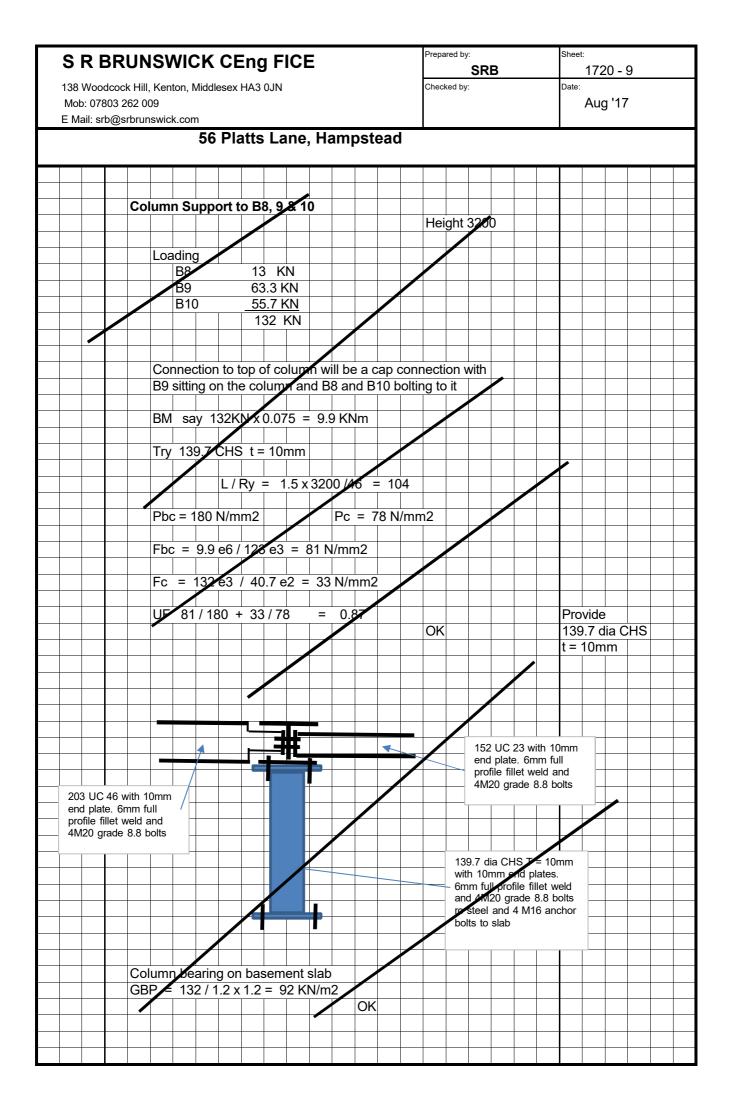

PROPOSED SECTION B-B



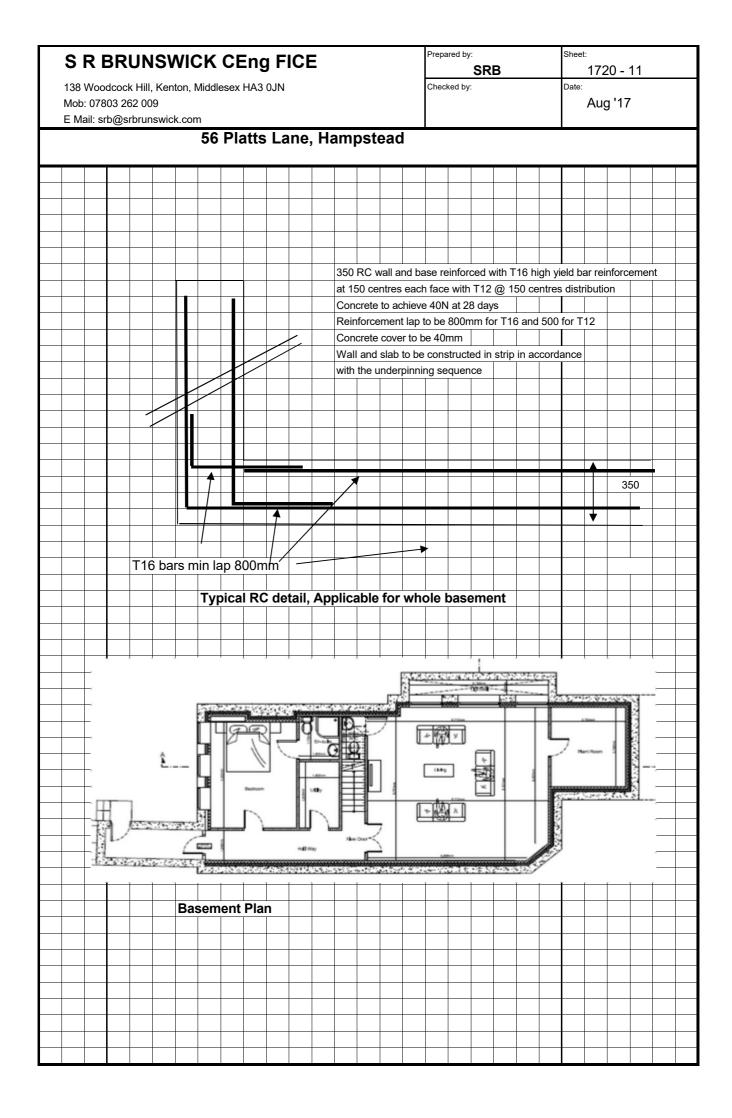
APPENDIX D – Structural Calculations

S	RE	BR	UN	SV	VIC	K	CE	ing	j Fl	CE						Prepa	ared by	SR	в		Sheet		20 - 1	1	
					on, N	/liddle	esex	HA3	0JN							Chec	ked by				Date:				
			62 00 rbrun	9 Iswicł																		Aug	g '17	,	
						56	Pla	itts	La	ne,	На	amp	ost	ead											
		The	e foll	owir	ng ca	alcu	latic	ons a	are	or th	ne d	lesig	n of	f inte	erna	l alt	erati	ons	and						
		nev	v ba	sem	ent	to tł	nis tr	adit	iona	l pro	pper	ty.													
				-			nd E							αιο	cor	npiy	/ with	1 all	reie	evan					
		Dint			uarc	13 U			ing	iteg	ulat		•												
		Loa	ding	gs																					-
			Roc		1	legr	ee p	oitch																	
				slat						0.			/m2												
				Bat Raf	tens	٨H	elt			0.			/m2												
					d an	d sl	(im			0. 0.:	10 30	KN/	/m2 /m2												
				175							00		/m2												
				Pla	1				1.	22	KN	/m2													
								cos	35																
				Sup	er							0	.6	KN											
													82	KN	/m2										
 									-	say	1.9	KN	/m2					-	-					-	
												Ela	troc	of to	dor	mor	= 1.	0 K	N/m	ົ າ					
				Floo	or							га			uon	nei	- 1.	91	N/111	2					
					Boa	rds					0.	15	KN	/m2											
					Jois	sts					0.	15	KN	/m2											
							boar	d &	Ski	n		30		/m2											
					Sup	er						50		/m2											
											2.	10	KN	/m2											
				Der	•i+:		ot				0	60		/											
				Par	utior	1S -	stud			say	υ.	60	ĸΝ	/m2											
				Cav	vity V	Vall	I				3.6	0	KN/	/m2											
					d wa					say				/m2		_									
		Solid wall 340									7.	2 K	(N/n	n2											
				Dor	mer	che	eek		S	ay 1	.5 K	N/m	12												
				Tim	ber	to b	e G	rade	e C1	6 to	BS	526	8												
							Gra																		

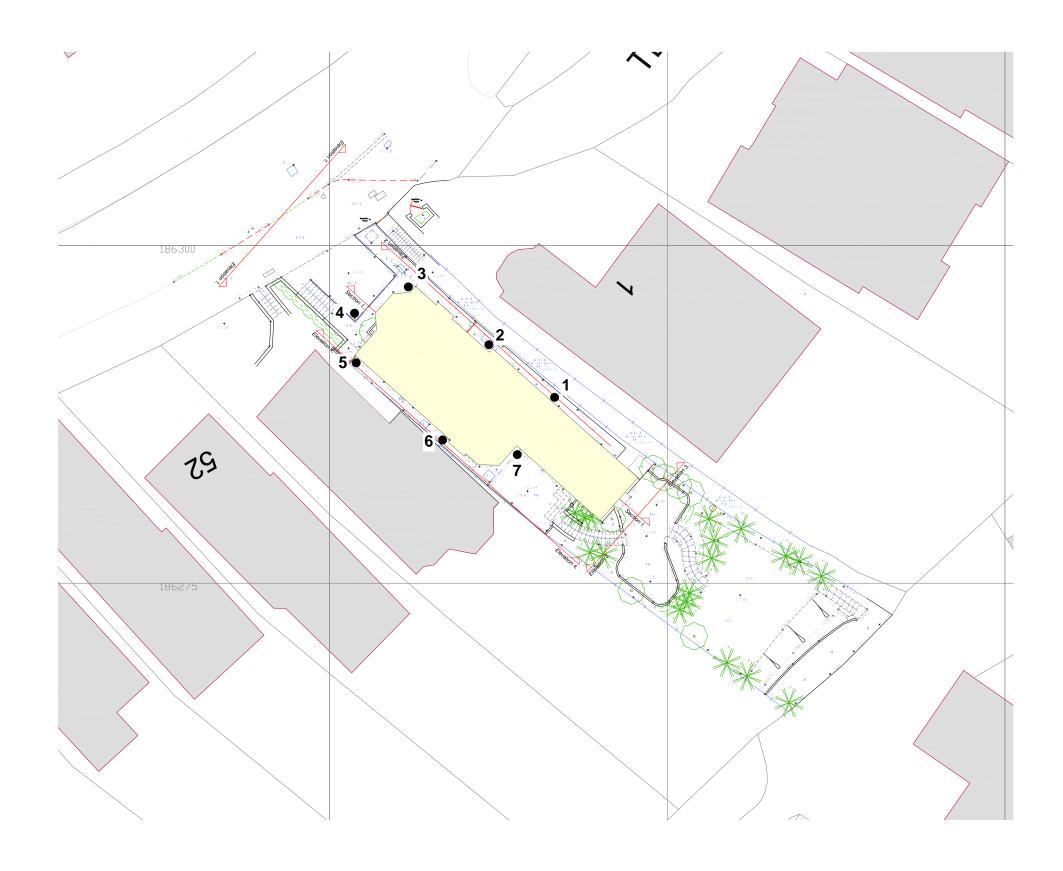

	BRU							ICE	Ξ						ared by	SRB	3		Shee	172	20 - 3	3	
Mob: 0	oodcock Hil)7803 262 (srb@srbru	009		n										Chec	ked by:				Date		g '17		
				56	Pla	atts	: La	ine	, Ha	amj	ost	eac											
	De	esigr	ו ח of	floo	r joi	ists																	
	Ca	ase 1	to I	oung	ge o	ver	Bed	roor	n			Spa	an 4 ⁻	100									
		UD)L 2	.1 K	N/m	12													_				
			Ma	x BN	1 2	2.1 x	(4.1	Sq /	8	= 4	.4 K	(Nm	/m						-				
		_	ZF	Reqd	4	1.4e	6/5	5.3 x	1.1	=	757	mn	n3 / r	n	-			_	+			_	
			Try	225	5 x 5	0@	9400	0 ctr	s (Z =	940) e3	mm	3)									
		eflect	lion																+				
	De			x 0.	4 x	(4.1))4 x	e3 /	384	- x 8	.8 x	41.´	=	8.	5mn	1							
													spa	n x	0.00	2	C)K	_				
		Wo	orst o	case	SO	prov	∕ide	225	x 50	0@	400) ctrs	s in a	all a	reas	;							
																			+				
																			_				
	Be	am	B1																				
		_				-		-					Spa	an 1	800			_	_				
		Loa	adin	g																			
				5 wa				/m2					= 1 = 3		KN/				+				
			Flo			say	۲.۱	KN/	1112	× 1.3			- 3			<u>n</u> (N/m			Re	actic	n 1:	2 KN	١
							L.		<u> </u>										1				
		_	BM	13	.3 x	1.85	sd /	8 =	= 5.	.4 Kl	NM												
						L	L	L	By	insp	ecti	on p	rovio	de 1	52 l	JC 23	3 in f	loor	depth	ו			
		am	D2																1				
		za111	52									Spa	an 44	400					+				
												Ĺ											
		LOa	adin		flor	or =	21	KN	 /m2	2 x 6	/2	= f	5.3 K	(N/n	 n				Re	actic	n =	13 9	K
														/1	••						•••		4 M
	+			Max	хBN	/ 6	.3 x	4.48	Sq/	8 =	= 15	5.3 K	(Nm			\square			+				
		Trv	/ 15	2 U(C 23	 }		-							-				+				
							L/R	ky =	1.2	x 44	00 /	36.8	8 = 1	44									
		_									Ph/		98 N	l/m	m?				+				
														.,					+				
		Fb	c =	15.3	3 e6	/ 16	5.7	e3	= 9	92 N	/mr	n2							1				
						-		-						OK					Pro	ovide		_	
		De	flect																15	2 UC	; 30		
				5 x	6.3	x (4	.4)4	x et	5/3	84 x	210) x 1				mm			De	flect	ion =	= 8.3	m
		_	-						-					100	high	1							


Mob: 07803	3 262 00 @srbrun)9 Iswicl		n	@srbrunswick.com														Date:				
		am	56 Platts Lane, Hampstead																	Aug	g '17		
		am				atts	: La	ine	, H	am	pst	ead											
		-	B3																				
			_											Spa	an 5	100)						
		Loa	din	a																	\vdash		
					L 1																		
										n2 x													
						FIO	or 2	2.1 P	KN/r	n2 x	27	2 =			IN/M								
														5.1									
				UD	L 2																		
										n2 x													
-++	_					F10	or 2	∠.1 ľ	NN/r	n2 x	273	2 =			<u>N/m</u> KN/r	_					\vdash		
						-								5.01			-						
			Poi	nt lo	ad																		
						B2	= 1	13.9	KN											⊢			
	Ra	= 9	.1 x	3.3	x 1.0	65 /	5.1	+			12	KN				13.9) KN						
				1.8 ×			1 +		_														
				3/5 1.1/						16.5	KN/r	n		9.1	1 KN/	/m				\vdash	\vdash		
			9 KI		5.1	-			F	1	1800)		2200	1	-	100						
									·				-			-	-						
	Dh	_ 0	1	3.3			E 4	Ļ	A١			!	5100)				В		\mid			
	UN			3.3 1.8 x																			
		12	x 1.8	8/5	.1 +																		
		13.9	9 x 4	4.0/	5.1	= 4	40.7	KN															
			Doi	int of	fzor			fror	n P	<u> </u>	(40-	7 1	3 0)	/0	1 –	20	45m						
			FUI			0 31				- (40.		5.9)	19.		2.9	4311						
		Max	×ВN	Л 40				- 13	3.9 >	(1.8	45	- 9.1	1 x 2	.94	5 Sc	/2	=						
					54.	8 KI	١m																
			Try	201		16																	
			iiy	201				L/	Ry	= 1	l.2 x	510	0/5	51.1	=	120							
									Pb	c =	125	N/m	1m2				<u> </u>				\vdash		
		Fbr	; =	54 8	8 e6	/ 44	9.2	e3	=	122	N/m	l m2				-	+	$\left \right $			$\left - \right $		
																	1						
		Def	lect					_	<u> </u>						.,								
	_		Equ	uival	lent	UDL	_ =	8 x	54.8	8/5	.1Sc	1 =	16.9) KN	l/m	-	+			┍──┤	\vdash		
		5 x	16.9) x (ا 5.1)	4 x e	e5 / :	384	x 2'	10 x	456	4 =	15	.5 n	ן זm	-			 Pro	vide			
																			203	B UC	60		
												Тос	b hig	h							ion =	= 11	.6m
	_					-			-						-	-			 Spa	an / 4	435		
									-							-				 			

	BRUN				-	-	ICI	Ε				-		ared by	SRI	3		She	172	20 - 5	
lob: 078	odcock Hil 303 262 0 rb@srbru	09	k.com										Chec	ked by	:			Date		g '17	
_	_	_	5	6 Pla	atts	: La	ine	, Н <mark>а</mark>	amj	pste	ead		_	_		_	_	_	_	_	_
	Be	am I	B4																		
												Spa	n 6	5300)						
		ading																_			
		auirių	Roof	1.9	KN	/m2	x 8	/2		=	7	.6 K	N/m	ן ו							
			2nd F	lr 2.	1 Kr	n/m2	2 x s	say 3	Зm		- 6	6.3 K	íN/r	n							
			1st Fl									4 Ki						_			
			Grd F Wall		1 KM y 3K							8.7 K 7.0 k						_			
			vvan	30			2 4		5111		- 2			N/m	1						
			Point	load	B3	= 4	0.7	KN				46 -									-+
				_								40.7	κN							+	-+
	Ra	1 = 53	3 x 6.3	/2 +			-													+	
			40.7 >	(4.5/		=						53	3.0 K	(N/m							
			196.0	KN	-									· - ·		<u>/</u>					-+
	Rh	= 5	3 x 6.3	12.	+		-	-			1800)	_	4500)			_	+	+	+
		/- J	40.7 ×			=				A							В	_			
			178.5																		
	_			_	Ļ	L												_			
	Po	int o	f zero :	shear	fror	m B	= '	178.	5/5	53 =	3.	368									
		Ma	x BM [·]	178.5	x 3.	368	/2	= ;	300.	6 KN	M										
		Try	305 U	C 15	8						_										
								L/	Ry :	= 1.	2 x (3300)/7	8.9	= 96			_			
					Pbo	c =	149	N/n	ן m2												
		Fbo	c = 30	0.6 e	6/2	2368	8 e3	=	127	7 N/r	nm2										
		Det	flectior										OK					_			
		Dei	Equiv		UDL	_ 8	x 30	00.6	/ 6.3	3Sa	=	60.6	KΝ	l/m				_			
																			ovide		
			5 x 60	.6 x (6.3)	4 x e	e5 /	384	x 21	0 x 3	387	40 =	: 1	5.2n	nm			30	5 UC	2 158	-+
				_	-		-	-		$\left \right $		Spa	n /	 41つ			_	_	+	+	+
												Spa		-712	OK			+		+	
		Bea	am B5										_				_	\square			-
			ading					<u> </u>				Spa	n 2	000				_			-+
		LUE		2.2 ł	\ (n/m	ן 12 ×	2.7	<u> </u>	=	5.9 I	KN/ı	n						Re	actio	on 8 k	(N
			Floor					1		2.1											
										8.	0 K	N/m									
		Mar	x BM 8	2 2 2 2	Sc /	8 –	11	<ni~< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>-+</td></ni~<>										_			-+
		IVIA			Sq/	ບ =	41		1	$\left - \right $								Pro	ovide	<u> </u>	-+
			By ins	pecti	on p	rovi	de 1	ן 52 ו		23 as	s B1			L					2 UC		_
																					\bot
]												


S R	BRUN	ISV	NIC	CK	CE	Eng	ј F	ICE	Ξ					Fiebe	ared by	SR	в		Sheet		20 -	6	
138 Wo	odcock Hil	, Ken	iton, N	Middle	esex	НАЗ	0JN							Chec	ked by				Date:			•	
Mob: 07	7803 262 0 srb@srbru	09																		Auę	g '17	,	
	0				Pla	atts	s La	ine	, Ha	am	pst	ead											
	Be		DC																				
	Бе	am I	B0										Sna	an	660	0							
													ope			Ī							
			adinę																				
		Flo	oor	2.1	KN	/m2	2 x 6	/2		=	6.3	KN/	n										
		e/o	wal	l as	B5					= 5	5.9 K	(N/m	1										
										-					8	KN							
		Poi	int lo	ad E	35 =	= 8	KN																
															5	.9 KI	N/m	L					
	Ra	= 6	6.3 x	6.6	/2	+ 8	⊥ x 2.2	2/6	.6 +	-							N/111						-
				x 2.	2 x	1.1						1		6.3	3 KN/	m							
				25.	6 KN	N	-						44	00			200						
	Ra	= 6	6.3 ×	6.6	12	+ 8	x 4 4	1/6	.6 +			Ā			▶ ◀		-	B					-
		L		x2.						L							L			L	L		
				36.9	9 KI	١																	\vdash
		Doi	int of	f zor	ro ch		fro	m ^	_ '	25.6	16	2 -	4.0	6m									
		FU			0 51	leai			- 4	25.0	/ 0.	5 -	4.0	om									
			Ma	хBN	/ 25	5.6 >	4.0	6/2	2 =	52 I	KNn	่า											
																							
	113	/ 203		, 52				1/	rv =	= 1 3	2 x 6	600	/ 51	6 =	= 154	4							
													,										
								Pb	c = 1	106	N/m	m2											
		Fbo	c = ;	52 e	6/5	510	4 e?	3 =	102	PN/r	nm2	>											
									102			-	OK										
	De	flect																					
		Equ	uival	ent	UDL	- 8	x 52	2/6	.6 S	q =	9.6	i Kn/	m										
			5 x	9.6	x (6.	.6)4	x e	5/3	884 :	x 21	0 x 5	5263	=	21.	5 mr	n			Pro	vide) ;		
																				1 UC			
	_											too	high	۱					def	lecti	on =	= 9.9)mr
																			 				-
	Be	am I	B7											C		000							
		-		-	-	-			-			-		Spa	an 6	300				-	-		-
	Lo	adin	g																				-
		Ro	of									KN/											
		2nd 1st	d flr									1 KN											<u> </u>
			tir rtitioi	ns								KN/ Kn/											-
		Gro	d flr		2	.1 K	N/m	12 x	8/2	2 =	8.4	1 Kn	/m2				L	L	 L	L	L		F
			all gr																				
		Wa	all 2r	nd	().6 k	KN/r	n2 x	2.7			<u>3 KN</u> 8.6 I		n									
		-									0	0.01	\IN/ [11									
	1 1	D.:	int lo		5	<u> </u>		+	1		1				+			1					<u> </u>

	BRU								Ξ					Prepar		SR	В				1720) - 7		
Mob: 0	oodcock H)7803 262 srb@srbri	009			esex	HA3	0JN						C	Check	ed by:				D	ate:	۹ug	'17		
	-				P	att	s L	ar	ıe,	Ha	m	ost	ead	k										
	R	a = 6	6.86	x 6.3	3/2	+ ;	8 x 2	2/6	.3 =								8 KI	J						
			218	3.6 k	٢N												014							
	R	с =	68.6	x 6.	3/2	2 +	8 x -	4.3	6.3	3 =		1		68.6	Kn/r	n								
			221	1.6 k	<n< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>430</td><td>00</td><td></td><td></td><td>200</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td></n<>								430	00			200	2						
		Po	int of	f zer 3.6 /								A						B						
_			IX BN				.19	/2:	= 34	48.3	KN	m		_					_	_	_		_	
		Try	/ 305	5 UC	15	8			L/	Rv	= 1.3	2 x 6	300	/ 78	8.9 =	: 96								
											152													
		C h		240																				
		FD	c =	348	5.3 e	6/2	2368	s e3	= '	147	N/m	m2												
		De	flect		ent	וחט	=	8 x	348	3/	6 35	in i	= 70	2 K	(N/n	<u>ו</u>								
		5 x											= 17											
																		05 U	C 19	8				
													Defl		on = in / 4			m	_					
		eam	Do																					
		am	DO										Spa	n	360	0								
		UD)L flo	or	2.	1 K	N/m	2 x	6.5	/ 2	= 6	.8 K	n/m								otion	า 13		
		Ma	IX BN	16.	8 x 3	3.6S	6q / 8	3 =	11	KNr	n									Ca		113		
		Try	/ 15	2 U0	C 23	 }																		
									L/	Ry	= 1	2 x	3600	/ 30	6.8	= 11	17							
											Pbo	c = 1	19 N	l/mr	m2									
			Fbo	c = 1	1 e	6 / 1	65.7	7 e3	= (66 N	l/mr	n2												
			Def	flect																				
				5 x	6.8	x (3.	.6)4	x e5	5/3	84 x	210) x 1	263	= 5	5.6n	ım				Prov 52	ide UC	23	+	
_			-										Spa	n / 6	640									
																				+				
+																			+			-+	-+	



S	RB	RUN	ISV	NIC	ĸ	CE	Eng	j F	ICI	Ε					Prepa	ared by	sR	B			Shee		20 -	10		
138	Wood	cock Hill	l, Ken	iton, I	Middl	esex	HA3	0JN							Checl	ked by		0			Date		- 0-	10		
		03 262 0 @srbru		k.con	n																	Auę	g '17	,		
					56	i Pl	att	s l	_ar	ıe,	На	m	pst	ea	d											
		De	sigr	ιοτ	Bas	eme	ent																		$\left - \right $	
		Th	e ba	sem	ent	is fo	orme	ed w	ithir	the	slo	be o	f the	e gro	ounc	d wit	ha									
			iximi																							
			nforo provi				e un	derp	pins	con	nect	ed t	o th	e raf	t an	id bi	uilt ir	n str	ips.						\mid	
		101			lab	iity.																		ļļ		
														Max	ximu	um h	neigl	nt 3.	5m							
			A = 4											a fa		lingt	miall									
			Ass	sum		oli p nsity					lens		ina a gle c							iree	s				$\mid - \mid$	
				L		= (L			L			L				, -	Ē	L	L			
			6						_								_ ,									
			Su	rcha	rge	say	' 5 K	N/m	12						-										\mid	
		H1	5 K	(N/m	ן 12 x	0.26	5 x 3	5.5 =	= 4	6 K	N/m			4			/	-	-	H1						
			soil																							
						28.	7 KI	V/m				H3	\square							H2						
		НЗ	Wa	tor :	- 10	0KN	/m2	v 2	590	1/2			1												$\mid - \mid$	
		115	vva				3 KI			4/ <i>~</i>															$\left - \right $	
			Ma	x BN						v 3	5/3	-	31.	3 × 2	5/3	2 -	67 6	3 K N	Im						$\mid - \mid$	
					4.0	× J.	5/2		0.7	<u></u>	573		01.			, _ 	07.0									
						Ult	load	d sa	y 67	7.6 ł	KN/r	n x 1	.55	= 1	04.	8 K	Nm									
			T	250	. +h-:-		<u> </u>																			
			ITY	350	· · · · · · · · · · · · · · · · · · ·	ver s			m				d =	300											$\mid - \mid$	
					00								u.													
			M/t	o*ds	q*fc	u	= ^	105	e6	/(e	3 x 3	3005	Sq x	35)	= (0.03	3									
			<u>_1</u>	= (0.04																					
			аг	- (J.94	•																				
			Ast	= 1	05 (e6 /	(0.8	7 x	<u>50</u> 0	x 0.	94 x	300)) :	= 8	56 r	nm2	<u>2 / m</u>	1								
			Pro	vide	 . Т1	6 @) 15	 0 cti	re (13/0) mr	n2 \	in e	ach	fac		rtic				-		-	<u> </u>	$\mid \mid \mid$	
													trs						ach '	face)					
																					Ĺ					
				mir	i ste	el C).13	% a	rea	= 4	55 n	1m2	/m												<u> </u>	
\vdash	+	_	Ch	eck	slen	derr	ness	5	-			-	-						-		-		-	\vdash	$\mid - \mid$	
					Spa	an /	dep	th =	7	1			M/b	dSq	=	1.1	7									
					Mf	= 1	.75																			
					Mf	com	pres	ssio	n st	eel 1	1.12										┣──			<u> </u>	──┤	
	+		Allo	ował	ole s	span	=	7 x	1.75	5 x 1	.12 :	x 30	0 =	41	10						-		-		$\left - \right $	
															OK											
]																									
	+								-			-													├──┤	
							L	L	L		L	L				L			L		L		L			

APPENDIX E – Trial Hole Details

FFL Driveway

