APPENDIX 3 Ground movement assessment

WEST END LANE BASEMENT IMPACT ASSESSMENT

1. GROUND MOVEMENT ASSESSMENT

A Ground Movement Assessment (GMA) has been carried out in accordance with CIRIA C760 and takes into account the construction methodology and site specific ground and groundwater conditions.

All structures / properties within the zone of influence have been assessed (including buildings, tunnels, retaining walls etc) and foundation depths have been confirmed as circa 4.0 m below ground.

The design conservatively assumes that the piled wall acts as a propped cantilever for the purposes of assessing anticipated ground movements.

1.1. Zone of Influence

In accordance with CIRIA C760, the distance behind the wall to negligible movement is $1.5 \times 1.5 \times 1.$

For a conservative approach, a zone of influence of **2** x wall depth will be taken and with reference to the outline pile calculations attached to this document, a pile length of **11.0** m will be adopted.

With this in consideration, the zone of influence will be taken as 22.0 m

Again conservatively, it is assumed the wall will be installed to the extents of the site boundary and therefore the plotted zone is as follows:

Figure 1 - Showing zone of influence plotted on OS mapping

The logic of ground movement increasing linearly with wall depth assumes the zone of influence around a singular structure (for example a singular pile of a diaphragm wall panel) extends from the toe of the wall as a cone, that spreads linearly to the ground surface.

Simply put, the closer to the piled wall, the greater the anticipated ground movement.

With this in consideration, it is clear from Figure 1 that the 'worst affected' adjoining building would be the nearby Sycamore Court to the North of the application site. Conservatively, the distance to the retaining wall will be taken as 0 m.

1.2. Estimated Movement Due to Installation of Wall

Therefore, using parameters from table 6.1 of CIRIA C760 for contiguous bored piles and assuming 'high stiffness' construction:

Horizontal Surface Movement / Wall Depth

Maximum horizontal movement (Max dh):	0.04 % x 11.0 m =	4.4 mm
Distance behind wall to negligible horizontal movement (L0):	1.5 x 11.0 m =	16.5 m
Gradient of horizontal movement behind wall (M):	4.4 / 16.5 =	0.27 mm/m

Maximum vertical movement (Max dv):	0.04 % x 11.0 m =	4.4 mm
Distance behind wall to negligible horizontal movement (L0):	2.0 x 11.0 m =	22.0 m
Gradient of vertical movement behind wall (M):	4.4 / 22.0 =	0.20 mm/m

Total Vertical Movement: Installation Stage

1.3. Estimated Movement Due to Excavation

Horizontal Surface Movement / Wall Depth Maximum horizontal movement (Max dh):	0.015 % x 4.0 m =	6.0 mm
Distance behind wall to negligible horizontal movement (L0):	4.0 x 4.0 m =	16.0 m
Gradient of horizontal movement behind wall (M):	6.0 / 16.0 =	0.375 mm/m
Vertical Surface Movement / Wall Depth Maximum vertical movement (Max dv):	0.08 % x 4.0 m =	3.2 mm
Distance behind wall to negligible horizontal movement (L0):	3.5 x 4.0 m =	14.0 m
Gradient of vertical movement behind wall (M):	32/140-	0 229 mm/m

Relative movement (Delta):

$\Delta =$	3.20 mm – 1.20 mm =	2.00 mm (at m	ax sagging locat	ion)
∆ / L =	2.00 mm / 14.0 m =	-0.014 %		
Total horizontal	movement (excavation & installa	ation) (dH):	4.4 + 6.0 =	10.4 mm

Total vertical movement (excavation & installation) (dv): 4.4 + 3.2 = 7.6 mm

Thus, in accordance with the Burland Scale given within Table 6.4 of CIRIA C760:

Category of Damage	Normal Degree	Limiting Tensile Strain (%)
0	Negligible	0.000 % to 0.050 %
1	Very Slight	0.050 % to 0.075 %
2	Slight	0.075 % to 0.150 %
3	Moderate	0.150 % to 0.300 %
4 to 5	Severe to Very Severe	Greater than 0.300 %

The anticipated movement is estimated to cause negligible damage to the nearby Sycamore Court.

By inspection, damage to remainder of structures within the zone of influence will be also negligible.

Tekla Tedds	Project				Job no.	
Ridge and Partners LLP	Calcs for				Start page no /	Revision
Partnership House					etait page itel.	1
Winchester SO23 7RX	Calcs by M	Calcs date 23/06/2020	Checked by	Checked date	Approv ed by	Approved date
			•	•		•
[Error 154 - interrupted by user]	Steel sheet pil	ING ANALYSIS	& DESIGN			
In accordance with BS EN1997	7-1:2004 - Code	of Practice for	Geotechnical	design and the	UK National A	nnex
Geometry						
Design method		Fixed earth	support			
Total length of sheet pile provide	d	H _{pile} = 1100	0 mm			
Number of different types of soil		$N_s = 1$				
Retained height		d _{ret} = 3500	mm			
Depth of unplanned excavation		d _{ex} = 500 m	m			
Total retained height		d _s = 4000 n	m			
Angle of retained slope		$\beta = 0.0 \deg$				
Depth from ground level to tie		d _t = 1000 m	m			
Depth from GL to top of water ta	ble retained side	d _w = 500 mr	n			
Depth from GL to top of w ater ta	ble retaining side.	$d_{wp}=\textbf{4000}$	mm			
Loading						
Variable surcharge		p _{o,Q} = 20.0	kN/m²			
Soil layer 1						
Characteristic shearing resistand	ce angle	φ'k_s1 = 25.0	deg			
Characteristic wall friction angle		$\delta_{k_{s1}} = 25.0$	deg			
Moist density of soil		γm_s1 = 20.0	kN/m³			
Characteristic saturated density	of retained soil	γs_s1 = 20.0	kN/m³			
Height of soil 1		h ₁ = 11500	mm			
Partial factors on actions - Se	ction A.3.1 - Co	mbination 1				
Permanent unfavourable action		γ _G = 1.35				
Permanent favourable action		$\gamma_{G,f} = 1.00$				
Variable unfavourable action		$\gamma_Q = 1.50$				
Angle of shearing resistance		$\gamma_{\varphi'} = 1.00$				
Weight density		$\gamma_{\gamma} = 1.00$				
Design soil properties - soil	1					
Design effective shearing resista	ance angle	φ'd = Atan(ta	$an(\phi'_k) / \gamma_{\phi'}) = 2!$	5.0 deg		
Design w all friction angle		$\delta_d = atan(ta)$	$n(\delta_k) / \gamma_{\phi'}) = 25.$	0 deg		
Design moist density of retained	soil	$\gamma_{m.d1} = \gamma_m / \gamma_m$	_{γγ} = 20.0 kN/m ³			
Design saturated density of retai	ned soil	$\gamma_{s.d1} = \gamma_s / \gamma_s$	_/ = 20.0 kN/m ³			
Design buoyant density of retain	ed soil	$\gamma_{d.d1} = \gamma_{s.d1}$	γ _w = 10.2 kN/m ²	3		
$ \label{eq:Ka1} \mbox{Active pressure using Coulomb theory} \qquad \qquad$		$ imes sin(\phi'_d - \beta)$ /				
		$(\sin(\alpha - \delta_d))$	$\times \sin(\alpha + \beta))))^2$) = 0.355		
Passive pressure using Coulomb	theory	$K_{p1} = sin(90 - \phi'_d)^2 / (sin(90 + \delta_d) \times [1 - \sqrt{[sin(\phi'_d + \delta_d) \times sin(\phi'_d)} / (sin(90 + \delta_d) \times sin(\phi'_d))) $				
		$\delta_{d}))]]^{2}) = 5.5$	i99			

Pressure on active side

Active at 0 mm below GL in soil 1 Active at 500 mm below GL in soil 1 Active at 4000 mm below GL in soil 1 Active at 9241 mm below GL in soil 1

Pressure on passive side

Force in tie

Passive at 4000 mm below GL in soil 1 Passive at 9241 mm below GL in soil 1

Sum of passive moments about contraflexure point

$$\begin{split} p'_{a11} &= K_{a1} \times OB'_{a11} = \textbf{10.7} \text{ kN/m}^2 \\ p'_{a21} &= K_{a1} \times OB'_{a21} = \textbf{15.4} \text{ kN/m}^2 \\ p'_{a31} &= K_{a1} \times OB'_{a31} + \gamma_G \times \gamma_W \times (d_{L3} - d_w) = \textbf{78.9} \text{ kN/m}^2 \\ p'_{a41} &= K_{a1} \times OB'_{a41} + \gamma_G \times \gamma_W \times (d_{L4} - d_w) = \textbf{173.9} \text{ kN/m}^2 \end{split}$$

$$\begin{split} p'_{p31} &= K_{p1} \times OB'_{p31} + \gamma_{G,f} \times \gamma_{W} \times (d_{L3} - max(d_{s}, d_{w})) = \textbf{0.0} \ kN/m^{2} \\ p'_{p41} &= K_{p1} \times OB'_{p41} + \gamma_{G,f} \times \gamma_{W} \times (d_{L4} - max(d_{s}, d_{w})) = \textbf{350.4} \ kN/m^{2} \end{split}$$

Find the force in the tie by taking moments about and above the contraflexure point, where the contraflexurepoint is assumed to occur at the level when the active pressure equals the passive pressureDepth to point of contraflexure $d_{contra} = 5619 \text{ mm}$ Sum of active moments about contraflexure point $\Sigma M_{ac} = 642.5 \text{ kNm/m}$

 $\Sigma M_{pc} = 47.3 \text{ kNm/m}$

 $T = (\Sigma M_{ac} - \Sigma M_{pc}) / (d_{contra} - d_t) = 128.9 \text{ kN/m}$

By iteration the depth at which the moments of all the forces are in equilibrium has been determined as 924	11
mm as follows:-	

Active moment about 9241 mm	
Moment level 1	$M_{a11} = 0.5 \times p'_{a11} \times h_{a1} \times ((H - d_{L2}) + 2/3 \times h_{a1}) = \textbf{24.2 kNm/m}$
Moment level 1	$M_{a12} = 0.5 \times p'_{a21} \times h_{a1} \times ((H - d_{L2}) + 1/3 \times h_{a1}) = \textbf{34.4 kNm/m}$

Tekla [®] Tedds	Project				Job no.	
Ridge and Partners LLP	Calcs for				Start page no./F	levision
Partnership House Moorside Boad					;	3
Winchester SO23 7RX	Calcs by M	Calcs date 23/06/2020	Checked by	Checked date	Approved by	Approv ed date
Moment level 2		$M_{a21} = 0.5 \times$	$p'_{a21} \times h_{a2} \times ((H - h_{a2}))$	- d _{L3}) + 2/3 × h _{a2})	= 204.7 kNm/m	1
Moment level 2		$M_{a22} = 0.5 \times$	$p'_{a31} \times h_{a2} \times ((H +$	$- d_{L3}) + 1/3 \times h_{a2})$	= 884.7 kNm/m	ı
Moment level 3		$M_{a31} = 0.5 \times$	$p'_{a31} \times h_{a3} \times ((H +$	$- d_{L4}) + 2/3 \times h_{a3})$	= 722.3 kNm/m	ı
Moment level 3		$M_{a32} = 0.5 \times$	$p'_{a41} \times h_{a3} \times ((H +$	$- d_{L4}) + 1/3 \times h_{a3})$	= 796.1 kNm/m	ı
Passive moment about 9241 r	nm					
Moment level 3		$M_{p31} = 0.5 \times$	$p'_{p31} \times h_{p3} \times ((H +$	$- d_{L4}) + 2/3 \times h_{p3})$	= 0.0 kNm/m	
Moment level 3		$M_{p32} = 0.5 \times$	$p'_{p41} \times h_{p3} \times ((H +$	$- d_{L4}) + 1/3 \times h_{p3})$	= 1604.3 kNm/	m
Moment about toe for tie/prop		$M_{pt} = T \times (H$	- dt) = 1062.0 kN	lm/m		
Total moments about 9241 m	m					
Total active moment		$\Sigma M_a = 2666$.8 kNm/m			
Total passive moment		$\Sigma M_{p} = 2666$. 8 kNm/m			
Required pile length						
Length of pile required to balance	moments	H = 9241 mr	n			
Depth to point of contraflexure		d _{contra} = 561	9 mm			
Add 20% below this point		$d_{e_add} = 1.2$	\times (H - d _{contra}) = 43	347 mm		
Minimum required pile length		$H_{total} = d_{contra}$	a + d _{e_add} = 9965	mm		
	Pass - Provi	ded length of s	heet pile great	er than minimu	im required lo	ength of pile
Partial factors on actions - Se	ction A.3.1 - Co	mbination 2				
Permanent unfavourable action		$\gamma_{G} = 1.00$				
Permanent favourable action		$\gamma_{G,f}=\textbf{1.00}$				
Variable unfavourable action		$\gamma_{\rm Q} = 1.30$				
Angle of shearing resistance		$\gamma_{\varphi'} = 1.25$				
Weight density		$\gamma_{\gamma}=\textbf{1.00}$				
Design soil properties - soil 1						
Design effective shearing resista	nce angle	φ'd = Atan(ta	$n(\phi'_k) / \gamma_{\phi'}) = 20.5$	5 deg		
Design w all friction angle		δ_d = atan(tar	$n(\delta_k) \ / \ \gamma_{\varphi'}) = \textbf{20.5}$	deg		
Design moist density of retained s	soil	$\gamma_{m.d1} = \gamma_m / \gamma_m$	γ = 20.0 kN/m³			
Design saturated density of retain	ned soil	$\gamma_{s.d1} = \gamma_s / \gamma_\gamma$	= 20.0 kN/m ³			
Design buoyant density of retaine	ed soil	$\gamma_{d.d1} = \gamma_{s.d1}$	γw = 10.2 kN/m³			
Active pressure using Coulomb the	neory	$K_{a1} = sin(\alpha - \alpha)$	+ ϕ'_d) ² / (sin(α) ² ×	$\sin(\alpha - \delta_d) \times (1 + \delta_d)$	$-\sqrt{(\sin(\phi'_d + \delta_d))}$	$\times \sin(\phi_d - \beta) / $
		$(\sin(\alpha - \delta_d))$	$(\sin(\alpha + \beta)))^2$ =	= 0.420		
Passive pressure using Coulomb	theory	$K_{p1} = sin(90)$	- φ'd)² / (sin(90 +	δ_{d}) × [1 - $\sqrt{[sin(\phi)]}$	$d + \delta_d$ × sin(ϕ'_d) / (sin(90 +
		δ _d))]] ²) = 3.6	64			

Overburden at 0 mm below GL in soil 1 Overburden at 500 mm below GL in soil 1 Overburden at 4000 mm below GL in soil 1 Overburden at 10004 mm below GL in soil 1

Overburden on passive side

Overburden at 4000 mm below GL in soil 1 Overburden at 10004 mm below GL in soil 1

Pressure on active side

Active at 0 mm below GL in soil 1 Active at 500 mm below GL in soil 1 Active at 4000 mm below GL in soil 1 Active at 10004 mm below GL in soil 1

Pressure on passive side

Passive at 4000 mm below GL in soil 1 Passive at 10004 mm below GL in soil 1 $\begin{array}{l} OB'_{a21} = \gamma_{G} \times \gamma_{d} = \textbf{20.0 kW} \\ OB'_{a21} = \gamma_{G} \times \gamma_{m,d1} \times h_{a1} + OB'_{a11} = \textbf{36.0 kW} \\ OB'_{a31} = \gamma_{G} \times \gamma_{d,d1} \times h_{a2} + OB'_{a21} = \textbf{71.7 kW} \\ OB'_{a41} = \gamma_{G} \times \gamma_{d,d1} \times h_{a3} + OB'_{a31} = \textbf{132.8 kW} \\ \end{array}$

$$\begin{split} OB'_{p31} &= 0 \ kN/m^2 = \textbf{0.0} \ kN/m^2 \\ OB'_{p41} &= \gamma_{G,f} \times \gamma_{d,d1} \times h_{p3} + OB'_{p31} = \textbf{61.2} \ kN/m^2 \end{split}$$

$$\begin{split} p'_{a11} &= K_{a1} \times OB'_{a11} = \textbf{10.9} \text{ kN/m}^2 \\ p'_{a21} &= K_{a1} \times OB'_{a21} = \textbf{15.1} \text{ kN/m}^2 \\ p'_{a31} &= K_{a1} \times OB'_{a31} + \gamma_G \times \gamma_W \times (d_{L3} - d_w) = \textbf{64.4} \text{ kN/m}^2 \\ p'_{a41} &= K_{a1} \times OB'_{a41} + \gamma_G \times \gamma_W \times (d_{L4} - d_w) = \textbf{149.0} \text{ kN/m}^2 \end{split}$$

$$\begin{split} p'_{p31} &= K_{p1} \times OB'_{p31} + \gamma_{G,f} \times \gamma_{W} \times (d_{L3} - max(d_{s}, d_{w})) = \textbf{0.0} \ kN/m^{2} \\ p'_{p41} &= K_{p1} \times OB'_{p41} + \gamma_{G,f} \times \gamma_{W} \times (d_{L4} - max(d_{s}, d_{w})) = \textbf{283.0} \ kN/m^{2} \end{split}$$

Find the force in the tie by taking moments about and above the contraflexure point, where the contraflexure point is assumed to occur at the level when the active pressure equals the passive pressure

Depth to point of contraflexure	d _{contra} = 5948 mm
Sum of active moments about contraflexure point	ΣM _{ac} = 640.9 kNm/m
Sum of passive moments about contraflexure point	$\Sigma M_{pc} = 58.1 \text{ kNm/m}$
Force in tie	$T = (\Sigma M_{ac} - \Sigma M_{pc}) / (d_{contra} - d_t) = \textbf{117.8 kN/m}$

By iteration the depth at which the moments of all the forces are in equilibrium has been determined as 10004 mm as follows:-

Active moment about 10004 mm Moment level 1

 $M_{a11} = 0.5 \times p'_{a11} \times h_{a1} \times ((H - d_{L2}) + 2/3 \times h_{a1}) = 26.8 \text{ kNm/m}$

Tekla Tedds	Project				Job no.	
Ridge and Partners LLP	Calcs for				Start page no./F	Revision
Partnership House						5
Winchester SO23 7BX	Calcs by	Calcs date	Checked by	Checked date	Approv ed by	Approv ed date
	М	23/06/2020				
		1				1
Moment level 1		$M_{a12} = 0.5 \times$	$p'_{a21} \times h_{a1} \times ((H$	$- d_{L2} + 1/3 \times h_{a1}$	= 36.5 kNm/m	
Moment level 2		$M_{a21} = 0.5 \times$	$p'_{a21} \times h_{a2} \times ((H$	$- d_{L3}) + 2/3 \times h_{a2})$	= 220.4 kNm/n	า
Moment level 2		$M_{a22} = 0.5 \times$	$p'_{a31} \times h_{a2} \times ((H$	$- d_{L3}) + 1/3 \times h_{a2}$	= 808.2 kNm/n	า
Moment level 3		$M_{a31} = 0.5 imes$	$p'_{a31} \times h_{a3} \times ((H$	$- d_{L4}) + 2/3 \times h_{a3})$	= 773.9 kNm/n	n
Moment level 3		$M_{a32} = 0.5 \times$	$p'_{a41} \times h_{a3} \times ((H$	- d _{L4}) + 1/3 × h _{a3})	= 895.1 kNm/n	n
Passive moment about 10004	mm					
Moment level 3	$M_{p31} = 0.5 \times p'_{p31} \times h_{p3} \times ((H - d_{L4}) + 2/3 \times h_{p3}) = 0.0 \text{ kNm/m}$					
Moment level 3		$M_{p32} = 0.5 \times$	$p'_{p41} \times h_{p3} \times ((H$	$- d_{L4} + 1/3 \times h_{p3}$	= 1700.5 kNm/	'n
Moment about toe for tie/prop		$M_{pt} = T \times (H)$	- dt) = 1060.4 kN	lm/m		
Total moments about 10004 n	nm					
Total active moment		$\Sigma M_a = 2761.$.1 kNm/m			
Total passive moment		$\Sigma M_{p} = 2761.$.2 kNm/m			
Required pile length						
Length of pile required to balance	moments	H = 10004 m	nm			
Depth to point of contraflexure		d _{contra} = 594	8 mm			
Add 20% below this point		$d_{e_{add}} = 1.2$	\times (H - d _{contra}) = 48	867 mm		
Minimum required pile length	$H_{total} = d_{contra} + d_{e_add} = 10815 \text{ mm}$					
	Pass - Pro	vided length of s	heet pile great	er than minimu	um required l	ength of pile