Basement Impact Assessment Vine House, Hampstead NW3 1AB

Hydrogeology, Land Stability and Ground Movement Assessment

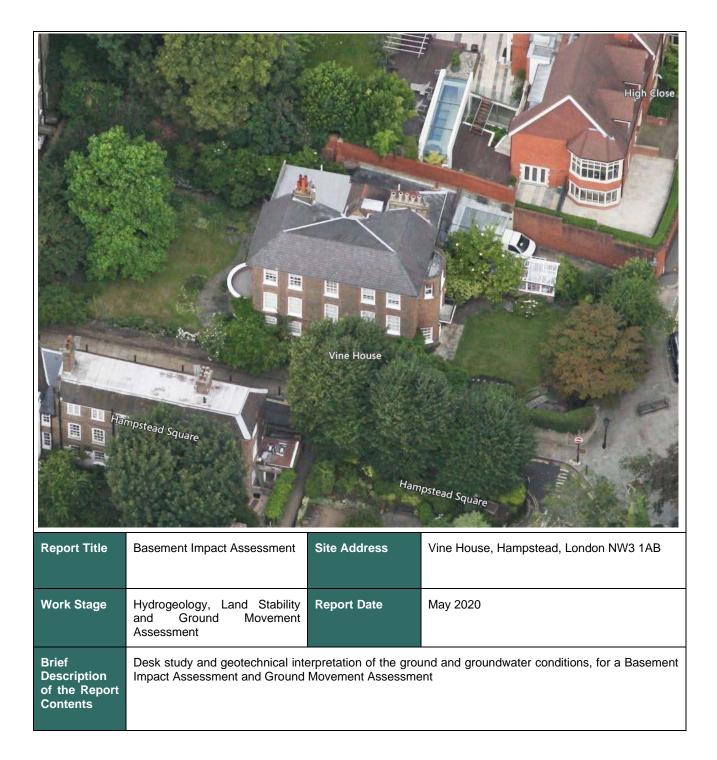
27 May 2020

MAUND GEO-CONSULTING

Produced for:

Croft Structural Engineers Clock Shop Mews, Rear of 60 Saxon Road London SE25 5EH

Prepared by:


Julian Maund BSc PhD CEng MIMMM CGeol FGS UK and Ireland Registered Ground Engineering Adviser

Maund Geo-Consulting Ltd 3 Coopers Square Chipping Norton OX7 5DG

T 07817018716 E julian.maund@gmail.com

MGC-BIA-19-34-V4

MAUND GEO-CONSULTING

Document Control Sheet

Project Title	Basement Impact Assessment Vine House, Hampstead, London NW3 1AB
Report Title	Hydrogeology, Land Stability and Ground Movement Assessment
Reference Revision Status	MGC-BIA-19-34-V4 3 Final
Control Date	27May 2020

Record of Issue

Issue	Status	Date	Author	
А	Draft	05/12/19	Julian Maund	
			BSc PhD CEng MIMMM CGeol FGS	
			Registered Ground Engineering Adviser	
В	Final	11/12/19	Julian Maund	1 1 . 12
			BSc PhD CEng MIMMM CGeol FGS	
			Registered Ground Engineering Adviser	
С	Final (correction to Figure 5.2	23/03/2020	Julian Maund	
	caption)		BSc PhD CEng MIMMM CGeol FGS	
			Registered Ground Engineering Adviser	
D	Response to audit D1 dated	27/05/2020	Julian Maund	
	1/05/2020		BSc PhD CEng MIMMM CGeol FGS	June 1
			Registered Ground Engineering Adviser	

Distribution

Organisation	Contact	Copies	Date
Croft Structural Engineers	Geoff Watson	1	27/05/2020
Campbell Reith	Kat Barker	1	27/05/2020

Contents

1	Non-Technical Summary	1
2 2.1 2.2 2.3 2.4	Introduction Terms of Reference Scope and Objective Author Sources of Information	2 2 3
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11	Desk Study - Background Information on the Site	4 4 5 6 7 8 9 .10
4 4.1	Site Investigation Details of laboratory tests	
5 5.1 5.2 5.3	Ground Conditions Stratigraphy Groundwater Consideration of the individual strata, with reference to the basement	13 13
6 6.1 6.2 6.3 6.4 6.5	Geotechnical Assessment of Ground Conditions Introduction Presumed Bearing resistance Effect of vertical ground movement from soil excavation Effect of vertical ground movement from construction Sub –surface Concrete	18 18 19 19
7 7.1 7.2 7.3	Screening Introduction Subterranean (Groundwater) flow Slope / Land Stability	22 22
8 8.1	Scoping Introduction	
9 9.1 9.2	Impact Assessment Groundwater Land Stability	30
	Ground Movement Assessment Introduction Ground movement impact on neighbouring property High Close House Ground movement impact on Host Property	32 32
11	Damage Assessment Category	
12	References	38

Appendix A Drawings

Appendix B Ground Investigation Report

Appendix C Existing Exploratory Hole Records

Appendix D PDisp Output

Appendix E Historical Maps (Groundsure)

Appendix F Groundsure Geo and Enviro Insight Reports

1 Non-Technical Summary

A basement impact assessment (BIA) has been undertaken for hydrogeology and land stability in general accordance with 'CPG Basements' (2018) for the site within the grounds of Vine House, Hampstead, London NW3 1AB, in the London Borough of Camden.

The proposed basement is located at Vine House, a detached house surrounded by gardens and driveway. The basement will extend below the footprint of the building to provide additional accommodation.

The BIA report considered relevant information from existing sources included in the 'Guidance for subterranean development' produced for the London Borough of Camden' (November 2010) and a Groundsure Enviro/Geo insight report with historical maps and BGS records.

A ground investigation at the site was undertaken by Ground and Water Ltd on 04/11/19 which comprised three boreholes to determine the ground conditions and two hand dug trial pits to expose wall footings. The boreholes were drilled to depth of between 5.45 and 8.45 m below ground level (bgl), while the trial pits were excavated to depths of 1.1 and 1.3 m bgl.

The ground investigation determined the ground conditions as a layer of Made Ground of a clayey sand with gravel of flint brick concrete and clinker from circa 125.3 m AOD between 0.9 and 2.1m bgl overlying the Bagshot Formation of gravelly sand, clayey sand and sandy clay.

Groundwater was not encountered during the ground investigation. Subsequent monitoring indicated no groundwater present to at least 4.95m bgl or circa 120.35 m AOD. An existing borehole 50 m to the west of the site indicated possible groundwater at 108m AOD.

An assessment of land stability has been made from the excavation and construction of the basement. Due to the predominantly granular nature of the geology heave is not anticipated. The foundation formation will be able to accommodate a maximum imposed load modelled as a conservative worse case from the retaining walls of 100 kPa with settlement of < 25 mm.

An arboricultural survey undertaken in June 2019 has determined that the basement will not impinge in root protection area from existing trees.

The proposed basement construction will comprise concrete underpins installed on a hit and miss principle.

A ground movement assessment has been undertaken for the host property, a Grade II listed building, and the neighbouring property of High Close House. The assessment has determined a Damage Assessment Category of less than 1 for High Close House and 1 for Vine House.

2 Introduction

2.1 Terms of Reference

Maund Geo-Consulting Ltd was instructed on 4 November 2019 by Croft Structural Engineers Ltd (Croft) to undertake the hydrogeology and geology sections of a Basement Impact Assessment (BIA) including a Ground Movement Assessment (GMA) for a proposed development at Vine House, Hampstead, London NW3 1AB. The hydrology section of the BIA is being undertaken separately by Croft.

2.2 Scope and Objective

This report has been written in general accordance with 'Camden geological, hydrogeological and hydrological study - Guidance for subterranean development' produced for the London Borough of Camden (LBC) by Arup (November 2010), hereafter referred to as the GSD. The guidance sets out the methodology for a risk-based impact assessment to be undertaken with regard to hydrology, hydrogeology and land stability in support of Local Plan Policy A5 (2017). The BIA comprises stages in which information is obtained to enable LBC to decide on the impact of the development for the planning application. The LBC Guidance CPG Basements (March 2018) requires a BIA to be undertaken for new basements in 5 stages:

- 1. Screening
- 2. Scoping
- 3. Site investigation
- 4. Impact assessment
- 5. Review and decision making (By LBC)

As a site investigation has already been undertaken as part of the BIA for Vine House (Factual Report included in Appendix B) the screening part of the assessment has been assessed based on existing information including the site investigation, so the project has been completed in the following sequence:

- 1. Desk Study of background information
- 2. Site Investigation including interpretation of ground conditions
- 3. Screening
- 4. Scoping
- 5. Impact Assessment

This report considers the hydrogeological and land stability elements of the BIA only. Hydrology is considered in a separate report by Croft Structural Engineers Ltd.

2.3 Author

This report has been prepared by Dr Julian Maund, director of Maund Geo Consulting Ltd, who is a chartered engineer and chartered geologist with over 35 years' experience. Dr Maund is a UK and Ireland Registered Ground Engineering Adviser and a member of the Association of Geotechnical Specialists.

2.4 Sources of Information

Background information has been derived from Groundsure Geo Insight and Enviro Insight reports obtained on 5/11/19 for the site (Appendix F). Geological information has been derived from on-line BGS sources (Geology of Britain Viewer) and the GSD. Mapping and aerial photography have been obtained from Google Earth. The full list of information is shown below in Table 2.1. Information is also derived from the site investigation undertaken specifically for the proposed development by Ground and Water Ltd on 4/11/19.

The following baseline data indicated in Table 2.1 have been referenced to complete the BIA in relation to the proposed development:

Information Type	Source				
Site walkover	During SI on 4/11/19				
Current/historical mapping	Groundsure Reports, Google Earth				
Geological mapping	GSD				
Underground tunnels	Groundsure				
Hydrogeological data	Groundsure/GSD/EA				
Current/historical hydrological data	Groundsure/GSD/EA/ LBC				
Flood risk mapping	Groundsure/GSD EA/ LBC				
Unexploded Ordnance	(<u>http://bombsight.org)</u>				
Ground and groundwater conditions	Site Investigation				

Table 2.1 Information type and sources

3 Desk Study - Background Information on the Site

3.1 Location

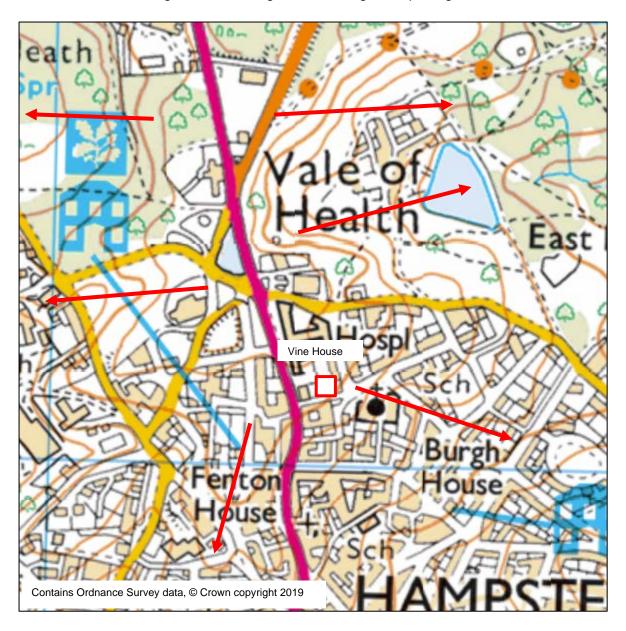
The site is located at Vine House Hampstead Square, NW3 1AB in the Hampstead Village area of the London Borough of Camden.

3.2 Description

The existing building comprises a three storey detached house occupying a central location in a garden off Hampstead Square as shown in Figure 3.1.

Figure 3.1 South Elevation (From Drawing VH-PP-11 2015)

3.3 Present use


Vine House is a residential dwelling and is currently occupied by the owner who is proposing the basement construction. The area of the proposed basement is below the entire footprint of the house and the garden room adjoining the east of the house.

3.4 Proposed use

The proposed development relevant to this BIA is understood to comprise a basement for provision of additional accommodation. The proposed basement measures approximately up to 23 m in an E-W direction and 12 m in an N – S direction as shown on the proposed basement plan SL50 in Appendix A.

3.5 Topography, geomorphology and drainage

The ground level at the site is at approximately 125.30 m AOD. No detailed topographical survey is currently available. The land in the vicinity of the site slopes down to west, south and east from the north, where Hampstead Heath forms an area of high ground at circa 135m AOD as indicated in Figure 3.2, forming a distinctive geomorphological feature.

Figure 3.2 Regional topography at Vine House with arrows indicating direction of downwards slopes

Whitestone Pond is located about 200m to the north at approximately 129 m AOD and Vale of Health Pond 500m to the north east at approximately 110m AOD. Further Hampstead Ponds lie 1 km to the east of the site. These Ponds are on lower ground on lower ground between approximately 100 and 70m AOD.

The site itself is not within a Flood Zone. The nearest risk of surface water flooding is located 40m to the south west of the site, which is identified as a low risk from the UK Government Flood risk website <u>https://flood-warning-information.service.gov.uk/long-term-flood-risk/map</u> as indicated on the surface water flooding map in Figure 3.2 below.

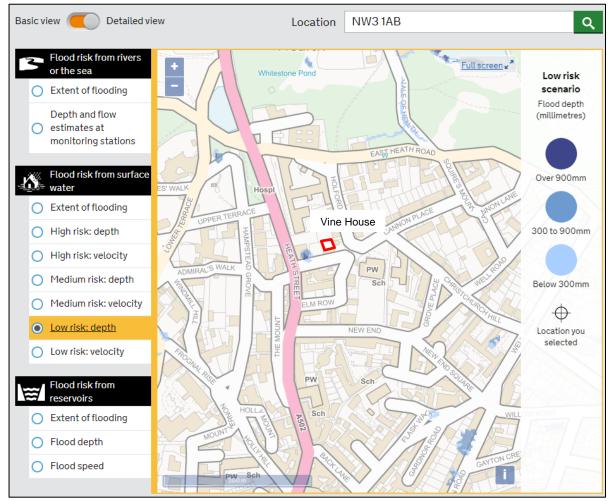


Figure 3.2 Surface water flooding

3.6 Geology

Geological information obtained from Figure 4 of the GSD at 1: 10 000 and the BGS website geological mapping at 1 50 000 scale shows the site to be directly underlain by the Bagshot Formation, which comprises a predominantly fine to coarse sand, locally clayey and gravelly. No superficial deposits are shown as indicated in Figure 3.3

A review of boreholes in the vicinity available from the BGS Geology of Britain Viewer indicates comparable geology. The closest existing available borehole is OF4 (BGS Ref. TQ/28NE/91) located at the corner of Hampstead Square and Heath Street, approximately 50m to the west of the site. The borehole indicates 600mm of Made Ground overlying sandy gravel and sandy clay to a depth of ~3m, then silty sand to a depth of ~9m (Bagshot

Formation), below which is stiff clay probably of the Claygate Member. OF4 is included in Appendix C.

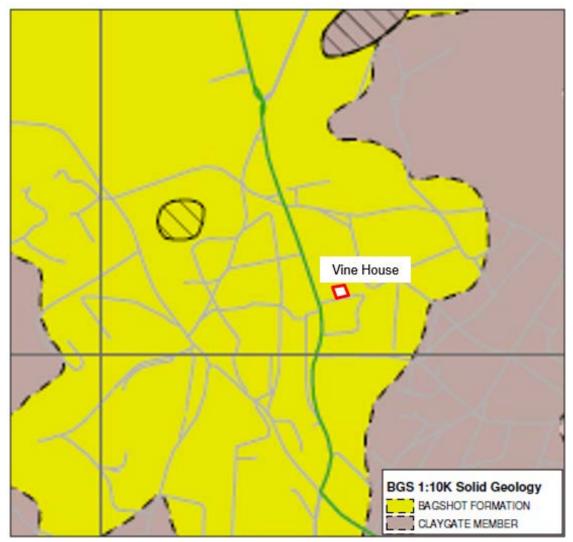
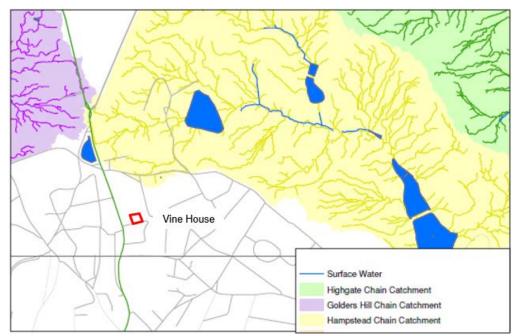


Figure 3.4 Geology

3.7 Hydrogeology/groundwater

The property is located on the Bagshot Formation, which is classified as Secondary (A) Aquifer. Figure 8 of the GSD confirms this classification.


The site does not lie within a ground water protection zone.

The site is located to the south of the Hampstead Heath surface water catchment and drainage as indicated in Figure 3.5 extracted from Figure 14 of the GSD.

3.7.1 Groundwater level

The ground investigation by Ground and Water at the site in November 2019 did not encounter groundwater to a depth of 8.45m (circa 120.35m AOD). Borehole OF4 indicated (included in Appendix C) wet sand at a depth of 17m or approximately 108m AOD.

Vine House, Hampstead, London NW3 1AB

Figure 3.5 Surface water catchments

3.8 Natural Hazards

The Groundsure report (Appendix F) findings on natural hazards are summarised in Table 3.1

Table	3.1	Natural	Hazards
	••••		

Natural Hazard	Risk (Stated by BGS in Groundsure report)	Comment		
Natural ground	Low	No records of subsidence in the		
subsidence		vicinity		
Shrink-Swell	Negligible	The site is underlain by the Bagshot		
		Formation, a predominantly sandy		
		material. This is an important factor		
		giving a very low heave potential		
		from the basement excavation.		
Landslide	Very Low	The site itself is on level ground		
Soluble Rock	Negligible	Not applicable to the site geology		
Compressible Ground	Negligible	Not applicable to the site geology		
Collapsible rock	Very Low	Not applicable to the site geology		
Running Sand	Low	The clay content in the sand may		
		make this a low risk		
Radon	Not in a Radon affected	No Radon protection measures are		
	area	necessary		

3.9 History of site

The Groundsure Insights Maps in Appendix E includes historical mapping surveys from 1870 to 2003. A Heritage Assessment Report by Archangel Heritage (reference AH0268 24/06/19) also provide historical information.

Vine House was constructed around 1715 and is now a Grade II listed property.

Vine House and the land within the property boundary has shown little change since 1870. A heritage assessment by Archangel Heritage (June 2019) indicates that the rear of the house was built in the late 18th century / early 19th century with the parapet being added in the 20th century; the curved bays at the sides were also added after the original construction.

The adjacent property to the north, High Close, appeared on the 1896 map. There was no apparent change to this property until after the 2003 map, where the property has been extended in recent years.

3.9.1 WW2 bomb sites

A record of known bomb sites is presented in Figure 3.6 from the website http://bobsight.org. While this does not claim to be a definitive record, it shows nothing recorded in the environs of the site. The lack of change of building development in the area of the site suggests no bomb related destruction occurred at the site.

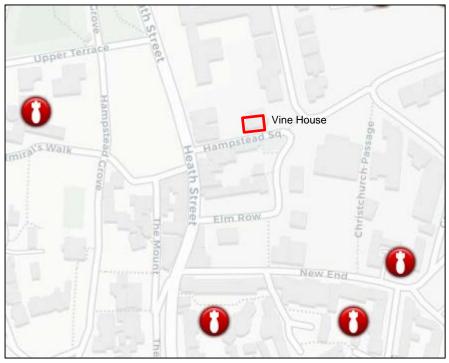


Figure 3.6 WWII Bomb record

3.10 Underground features

The Groundsure Geoinsight Report (Appendix F) has not identified any mining, underground workings or natural cavities within at least 500 m of the site.

The Groundsure Geoinsight Report (Appendix F) has not identified any tunnels or railways within 50m of the site.

3.11 Other factors e.g. contamination and archaeology

The Groundsure Enviroinsight Report (Appendix F) has not identified any 'Environmental Permits, Incidents and Registers' or 'Landfill and Other Waste Sites' within at least 250 m of the site boundary.

The Groundsure Enviroinsight Report has identified one 'potentially contaminative use, 18 m from the site. This is Queens Mary Hospital to the NW of the site.

No specific archaeological investigation has been undertaken. The 'Groundsure' survey has not identified any known 'Environmentally Designated Sensitive Sites' within 250 m of the site.

4 Site Investigation

A site investigation was undertaken by Ground and Water Ltd on 04/11/19. A report of the site investigation comprising exploratory hole records and laboratory testing is included in Appendix B.

The site investigation comprised:

- 3 No. boreholes carried out using windowless sampler borehole methods to a depth between 5.45 to 8.45 m bgl,
- 2 No. hand dug trial pits to expose footings,
- The in-situ strengths of the subsoil encountered were assessed by means of SPTs at 1 m intervals,
- Disturbed soil samples were obtained from the boreholes for laboratory geotechnical and contamination testing and further examination.
- A 50 mm diameter groundwater monitoring well was installed to a depth of 5.0 m in BH WS3

The locations of the above exploratory holes are shown in Figure 4.1 below taken from the Ground and Water Factual report included in Appendix B.

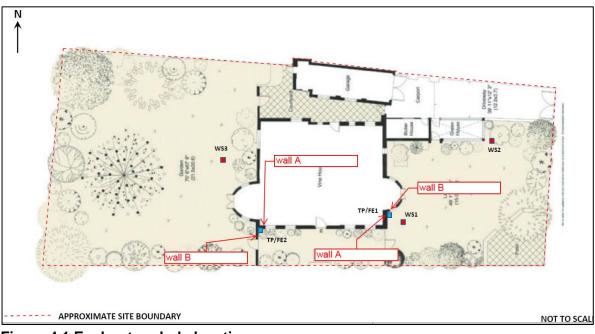


Figure 4.1 Exploratory hole locations

4.1 Details of laboratory tests

Laboratory tests to determine the geotechnical and contaminative properties of the soil were scheduled by Ground and Water Ltd and carried out K4 Soils Ltd and DETS Ltd generally in accordance with BS1377:1990 and UKAS. The tests included:

- 3 PSD (BS1377:1990)
- 1 Water soluble sulphate and pH (BS1377:1990)
- 3 Soil contamination tests which include:

Asbestos Screen, pH, Sulphate, total organic compound, metals, PAH and TPH. For a full list of contaminants refer to the factual report in Appendix B

5 **Ground Conditions**

5.1 Stratigraphy

The ground conditions encountered are summarised in Table 5.1 below. For a full description refer to exploratory records in Appendix B.

Stratum	Description	Depth at top of Strata (mbgl)		Thickness of Stratum (m)	SPT N value
MADE GROUND	Dark brown silty gravelly clayey sand or sandy clay with gravel of flint, concrete, brick, claystone and clinker	0.00	125.30	0.9 to 2.1	1 to 12
Bagshot Formation	Orange to brown gravelly silty SAND	1.8 to 2.10	123.2 to 123.5	0.3 to 1.4	2 to 10
Bagshot Formation	Light Brown slightly clayey SAND, with occasional gravel and pockets of clay	2.1 to 3.5	120.3 to 123.2	Proven for 4.95	10 to 22

Table 5.1 Summary of ground conditions

5.2 Groundwater

Groundwater was not reported during drilling to a depth of 8.45m.

Groundwater readings from post investigation monitoring on the site are shown in Table 5.2 indicating groundwater was not present to the depth of the monitoring installation.

Table 5.2	Groundwater	monitoring in BH01
	orounditation	

Date of monitoring	Groundwater Depth (metres below ground level – Approximately 125.3 m AOD)	level (m AOD)
21/11/19	dry (to base of installation at 4.95m)	< 120.35
27/11/19	dry (to base of installation at 4.95m)	< 120.35

5.3 Consideration of the individual strata, with reference to the basement.

The anticipated formation level of the basement floor slab will be approximately 2.5 m bgl at 122.8 m AOD, within the Bagshot Formation. An excavation depth of 3.50 m is assumed for a ground movement assessment.

The overall ground model is illustrated in the conceptual model in Section 6.2 below.

5.3.1 Made Ground

Below existing ground level, the made ground has been described a dark brown silty gravelly clayey sand or sandy clay with gravel of flint, concrete, brick, claystone and clinker. Made ground encountered was 0.9 to 2.1m thick. This material may represent build-up of site levels around the house, although the reason for this is not apparent due to the lack of any significant changes in the site layout since the house was construction in 1715.

The description of the material indicates it is likely to display similar physical properties to the underlying Bagshot Formation, in terms of particle size distribution and stability.

The made ground is appears as an inert material with no visual or olfactory indications of contamination.

Contamination testing has been undertaken from WS1 at 0.3m, for a range of contaminants indicated in the laboratory test report included in Appendix B. The testing for Waste Acceptance Criteria, based on leachate testing, indicates the made ground comprises inert waste. However, an elevated level of lead was noted in WS1 at 0.3m with a concentration of 3980 mg/kg. From a single sample it is not possible to indicate if this is an exception, such as from a piece of lead flashing (it is noted in the Heritage Assessment Report (2019) that work to the roof was undertaken in 1952). As a precaution it is recommended that additional testing is undertaken prior to any excavation works. However, it is not considered to have any impact on the basement construction as the soil is not within the basement footprint itself.

5.3.2 Bagshot Formation

The Bagshot Formation (BF) was encountered during the site investigation at a depth from 0.9 to 2.1 m bgl to termination of BH01 at 8.45 m bgl. Upper layers of the BF have been described as more gravelly sand, in BH WS1 and WS2 before becoming a silty clayey sand. WS3 showed clayey sand directly below the made ground.

Particle size distribution tests for samples from WS1 at 2.5, 3.5 and 5.5 m bgl confirm the BF to have a sand content of 68.9, 79.3 and 85.2% respectively. The fines content (clay and silt < 63μ m) was 7.8, 20.2 and 13.9% respectively.

SPT N values have been corrected for overburden pressure in accordance with BS EN ISO 22476-3: 2005 for sands. A plot of SPT $(N_1)_{60}$ values against depth is shown in Figure 5.1. The SPT $(N_1)_{60}$ plot shows values ranging between 3 and 25 in the BF, with a general pattern of N values increasing with depth to 6m, with decrease from 6 to 8m.

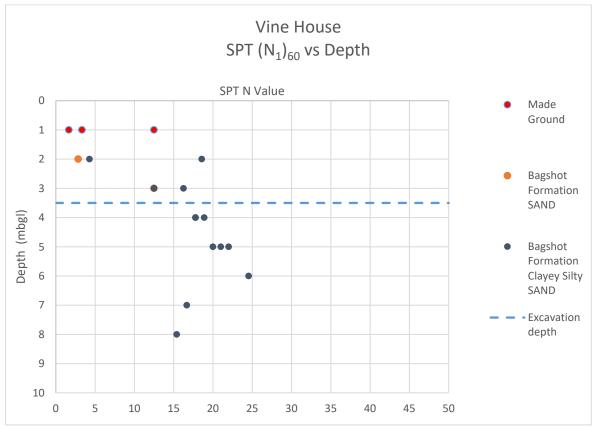


Figure 5.1 SPT (N1)60 values for the Made Ground and Bagshot Formation

Figure 5.2 shows the drained stiffness (Young's Modulus) profile based on correlation with SPT N values after Burland and Burbidge (in CIRIA C143, 1995) where E'/N = 2.0 MPa which is considered a cautious estimate of the characteristic value.

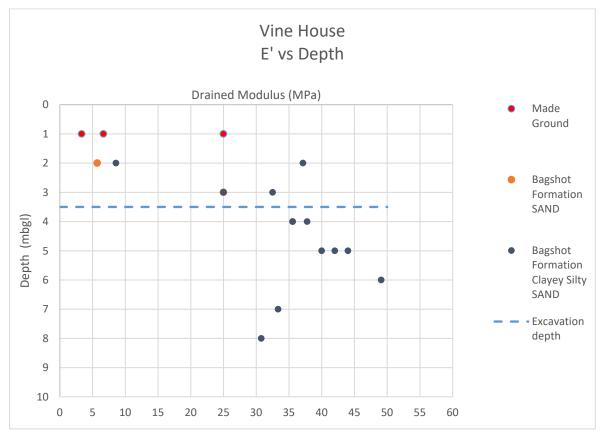


Figure 5.2 Relationship of stiffness with depth in Bagshot Formation

Poisson Ratio is taken as v' = 0.3 for the sand and clayey sand of the BF.

The characteristic values of geotechnical parameters are a cautious estimate in accordance with BS EN 1997, based on the data obtained from the ground investigation (Appendix B) have been summarised in Table 5.3 as follows:

Strata) Besign Level (Dow /	Effective angle of ¹⁰ shearing resistance	A Bulk unit weight "W	E Deformation Modulus (≝) b b	Poisson ratio v'	Ka	K
Made Ground (predominantly granular)	0 (~125.3)	28 ⁰	17*	20	0.3	0.30	4.8
Bagshot Formation	2.0 (~123.3)	30º	17*	37	0.3	0.30	4.8

Notes:

*BS8004 2015 (in the excavation zone)

Active and Passive pressure coefficients k_a and k_p from BS EN 1997-1 Annex C

The parameters in Table 5.3 are unfactored (Serviceability Limit State) and considered to be 'a cautious estimate'.

Active and Passive coefficients K_a and K_p are assumed the same for made ground and Bagshot Formation for wall design.

6 Geotechnical Assessment of Ground Conditions

6.1 Introduction

The information obtained from the ground investigation on the soil conditions in relation to the proposed basement construction has been assessed for impacts on existing building structures. The principle impacts are ground movements from the excavation for the basement. These movements are vertical and horizontal movements of the foundation formation level from isostatic readjustment from the excavation and possible vertical and horizontal impacts of existing structures from the basement underpin wall construction.

6.2 Presumed Bearing resistance

The foundation formation level of the basement will be at approximately 121.80 m AOD or 3.5 m below ground level. At the formation level a conservative angle of friction of 30^o has been evaluated from the SPT profile. Wall loads provided by Croft Structural Engineers (Drawing 191025-SL-50 Rev1 in Appendix A) comprise the following shown in Table 6.1,

Wall No.	Combined SLS kPa	Net Loading kPa	Adequacy Factor (DA1- 2)
1	100	40	>5
2	70	10	>5
3	100	40	>5
4	70	10	>5
internal walls	100	40	>5

Table 6.1 Wall loading

The net loading allows for the removal of 3.5 m depth of soil (~60 kPa, based on a unit weight of 17 kN/m³). The wall loads will be taken by the basement floor slab which will be initially 2m wide (Drawing 191025-SL-100 in Appendix A). Preliminary calculations indicate that there will be an adequacy factor (utilisation) of greater than 5 (EC7 DA1 Combination 2). This indicates the ground will accommodate the imposed load without significant (<25 mm) settlement. The actual settlement however will be determined from the net effect from the removal of soil during the basement excavation.

6.3 Effect of vertical ground movement from soil excavation

Dimensions of the excavation is based on Drawing 191025-SL-50, included Appendix A.

The ground model is based on the ground conditions assessment in Section 5. As the ground conditions below the excavation comprise the Bagshot Formation, which is a predominantly granular material (fines content ranging from 13.9 to 20.2% in test results from samples below the excavation), heave from unloading is expected to be negligible.

6.4 Effect of vertical ground movement from construction

The loading of the soil from the wall loads has been modelled using PDisp version 20.12. The loading imposed from the underpins will be carried by the underpin return, as well as additional loading from central columns and walls within the basement as indicated in Drawing 191025-SL-50.

These loads have been modelled by Pdisp as indicated in Figure 6.1, 6.2, 6.3 and 6.4.

The implication of ground movement on the impact on the neighbouring properties and the host property are considered in Sections 10 and 11.

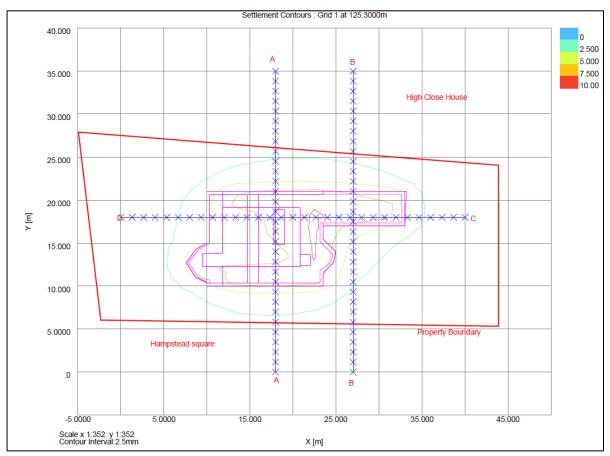


Figure 6.1 Vertical ground movements from wall loading

The plots indicate that the maximum settlement is approximately 9.2mm in the centre of the basement with approximately 6 to 8mm at the underpin walls. Away from the basement itself 2mm is indicated at the property boundary wall with the neighbouring property High Close House.

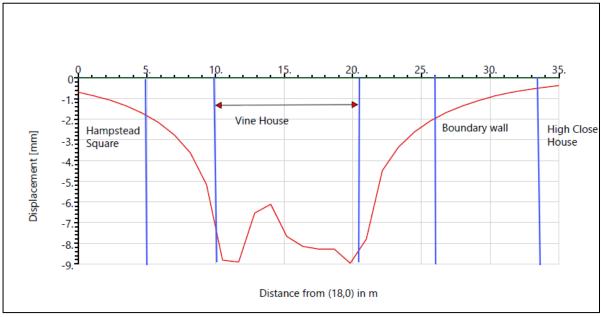


Figure 6.2 Cross Section A-A of vertical ground movements from wall loadings

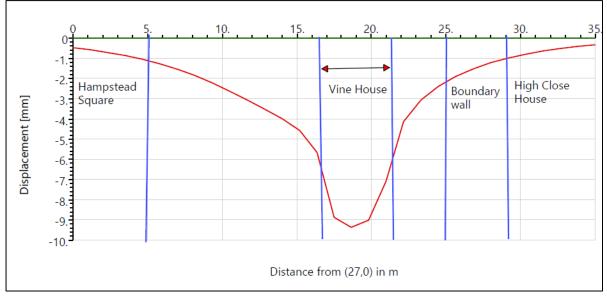


Figure 6.3 Cross Section B-B of vertical ground movements from wall loadings

Figure 6.4 Long Section C-C of vertical ground movements from wall loadings

Full output of the PDisp model is included in Appendix E.

6.5 Sub –surface Concrete

The results of lab testing for sulphate and pH are summarised below in Table 5.1. The full analysis is included in Appendix B.

Sample depth	Sample ID	Soil Type	Sulphate S04 2:1 extract	рН	Sulphate Class (DS)	ACEC Class
0.3	WS1*	Made Ground	<0.01	6.2	DS-1	AC-2z
2.5	WS3+	Bagshot Formation	<0.01	4.7	DS-1	AC-3z
3.5	WS1+	Bagshot Formation	0.27	7.53	DS-1	AC1
6.0	WS1+	Bagshot Formation	<0.01	7.6	DS-1	AC1

 Table 6.1 Sulphate and pH categories

* Tested to BS1377

⁺ Tested to BRE SD1

It is recommended that an overall design sulphate class of DS-1 and an Aggressive Chemical Environment for Concrete (ACEC) class of AC-2z is adopted for the basement slab and underpinning. If a concrete piled solution is to be adopted, then DS-1 AC-2z should also be adopted.

7 Screening

7.1 Introduction

Screening is undertaken as outlined in Section 6.2 of the GSD recommendations. It identifies if there are hydrogeological and land stability issues associated with the proposed development that requires detailed analysis and investigation. If there are no significant issues identified in the screening stage, then further stages are not required. The report follows the flow charts set out in CPG Basement (2018) and makes reference to the GSD.

7.2 Subterranean (Groundwater) flow

This section answers questions in Figure 1 of CPG Basements:

The source of information for the assessment of subterranean flow is from the GSD and a site-specific Groundsure Environmental Insight Report obtained on 5th November 2019 for Vine House (Appendices B and C) along with the ground investigation undertaken at Vine House on 4 November 2019 (Appendix B).

Question	Response	Action required
<i>1a.</i> Is the site located directly above an aquifer?	Yes. The site is underlain by the Bagshot Formation, which is classed as a Secondary (A) aquifer. Groundwater is	Assess the risk of impact of/to the basement
<i>1b.</i> Will the proposed basement extend beneath the water table surface?	No Groundwater monitoring shows no groundwater to a depth of at least 4.95 m	None

Table 7.1: Responses to Figure 1, CPG Basements

Question	Response	Action required
2. Is the site within 100m of a watercourse, well, or potential spring line?	No. There are no known wells or spring-lines within 100 m of the site	None
3. Is the site within the catchment of the pond chains on Hampstead Heath?	No. The site is not within the catchment of the ponds. As indicated in Figure 3.5	None
4. Will the proposed basement development result in a change in the proportion of hard surfaced/paved areas?	No The basement is entirely below the existing building	None
5. As part of site drainage, will more surface water than at present be discharged to ground (e.g. via soakaways and/or SUDS)?	No, the basement is entirely below the existing building.	None
6. Is the lowest point of the proposed excavation (allowing for any drainage and foundation space under the basement floor) close to, or lower than, the mean water level in any local pond or spring lines?	No. There are no recorded local ponds or spring lines within 250 m of the site	None

a. Camden Geological, Hydrogeological, and Hydrological Study, Arup, 2010. (Fig. 8).

b. Camden Geological, Hydrogeological, and Hydrological Study, Arup, 2010. (Fig. 11).

c. Camden Geological, Hydrogeological, and Hydrological Study, Arup, 2010. (Fig. 14).

In summary, the site is located on the Bagshot Formation. Post investigation monitoring indicated that groundwater was not encountered to a depth of at least 4.95 m.

7.3 Slope / Land Stability

This section answers questions posed by Figure 2 in CPG Basements.

Table 7.2: Responses to Figure 2, CPG Basements

Question	Response	Action required
 Does the site include slopes, natural or man-made, greater than about 1 in 8? 	No. The site is on level ground	None
2. Will the proposed re-profiling of the landscaping at site change slopes at the property boundary to greater than about 1 in 8?	No.	None
3. Does the development neighbour's land including railway cuttings and the like with a slope greater than about 1 in 8?	No No railway is present with 500m of the site	None.
<i>4.</i> Is the site within a wider hillside setting in which the general slope is greater than about 1 in 8?	The site is located on a ridge of the Bagshot sands. The ground slopes away on the west, south and east sides, but the slopes are more than 50m from the site (see Figure 3.2)	None
5. Is the London Clay the shallowest stratum on site?	No	None
6. Will any trees be felled as part of the proposed development and/or are any works proposed within any tree protection zones where trees are to be retained	Three trees will be removed, because of damage to the existing building and or disease.	An arboricultural survey has been undertaken
7. Is there a history of shrink/swell subsidence in the local area and/or evidence of such at the site.	No records.	None

Hydrogeology, Land Stability and Ground Movement Assessment

Question	Response	Action required
8. Is the site within 100 m of a watercourse or a potential spring line?	No ^{a,b} .	None
9. Is the site within an area of previously worked ground?	No Made ground was encountered to a depth of 2.10m. However historical mapping shows no change in land use from at least 1870 to the present day therefore this is not worked ground as defined by CPG Basements.	Ensure appropriate PPE is used during construction. Confirm contamination status prior to undertaking excavation of the soil.
<i>10.</i> Is the site within an aquifer?	Yes. The site is underlain by the Bagshot Formation a Secondary (A) Aquifer	Assess the risk of impact of/to the basement
<i>11.</i> Is the site within 50m of the Hampstead Heath Ponds?	No.	None
<i>12.</i> Is the site within 5 m of a highway or pedestrian right of way?	Yes The existing house and proposed basement are 4m from a footway and 6m from the highway.	Assess the ground movement from the basement construction on the pedestrian walkway.
<i>13.</i> Will the proposed basement significantly increase the differential depth of foundations relative to neighbouring properties?	The house is surrounded by a garden and is over 10 m from the neighbour's property	A ground movement assessment will be undertaken to assess impact (Burland Damage Assessment)
<i>14.</i> Is the site over (or within the exclusion zone of) any tunnels?	No.	None.

- a. Camden Geological, Hydrogeological, and Hydrological Study, Arup, 2010. (Fig. 8).
- b. Camden Geological, Hydrogeological, and Hydrological Study, Arup, 2010. (Fig. 11).
- c. Camden Geological, Hydrogeological, and Hydrological Study, Arup, 2010. (Fig. 14).
- d. Groundsure Report (Appendix C) September 2016

In summary, the proposed basement is located on level ground and will be founded within the Bagshot Formation, which is present from 0.9 to 2.1 m depth below the site surface.

8 Scoping

8.1 Introduction

This section considers the output from the screening survey where further actions are required. It considers the scope of information required in addressing these actions and what the potential impacts are of the basement construction. The existing ground conditions and the location of the basement can be summarised in a conceptual site model as indicated in Figure 8.1.

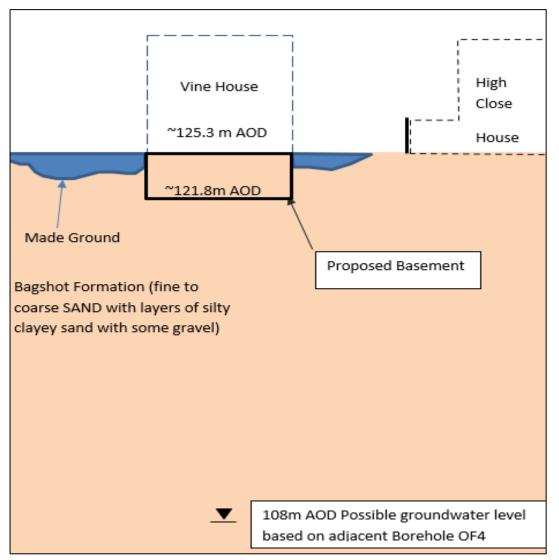


Figure 8.1 Conceptual Site Model (Not to scale, approx. m AOD)

There does not appear to be any requirement for groundwater mitigation measures for groundwater due to the depth of groundwater, as summarised in Table 8.1

Table 8.1 Summa	y of Scoping Requirements	s - Hydrogeology
-----------------	---------------------------	------------------

Screening questions of concern - Hydrogeology	Potential Impact	Mitigation
<i>1a.</i> Is the site located directly above an aquifer?	Yes. The site is underlain by the Bagshot Formation, which is classed as a Secondary (A) aquifer. Groundwater is	Assess the risk of impact of/to the basement

The land stability issue relates to the ground movements resulting from the excavation within the London Clay Formation which will be addressed by a ground movement analysis as summarised in Table 8.2

Table 8.2 Summary of	of Scoping	Requirements – Land Stability
----------------------	------------	--------------------------------------

Screening questions of concern – Land Stability	Potential Impact	Mitigation
6. Will any trees be felled as part of the proposed development and/or are any works proposed within any tree protection zones where trees are to be retained	Three trees will be removed, because of damage to the existing building and or disease.	An arboricultural survey has been undertaken
<i>10.</i> Is the site within an aquifer?	Yes. The site is underlain by the Bagshot Formation a Secondary (A) Aquifer	Assess the risk of impact of/to the basement

Screening questions of concern – Land Stability	Potential Impact	Mitigation
<i>12.</i> Is the site within 5 m of a highway or pedestrian right of way?	Yes The existing house and proposed basement are 4m from a footway and 6m from the highway.	Assess the ground movement from the basement construction on the pedestrian walkway.
13. Will the proposed basement significantly increase the differential depth of foundations relative to neighbouring properties?	The house is surrounded by a garden and is over 10m from the neighbour's property	A ground movement assessment will be undertaken to assess impact (Burland Damage Assessment) as a precaution

9 Impact Assessment

9.1 Groundwater

9.1.1 Groundwater level

The screening process has shown from borehole information that groundwater occurs at a depth of between at least 4.95m below ground level. An adjacent borehole OF4 located at the corner of Hampstead Square and Heath Street, approximately 50m to the west of the site indicates wet sand at 17m bgl or approximately 108m AOD. The basement construction will therefore have no impact on or be impacted by the flow of groundwater.

9.1.2 Impact on groundwater by any contamination from the made ground

The construction of the basement will remove made ground from the site if it is found that the made ground extends below the house.

The natural strata underlying the site will have variable permeability depending on the clay content. The low permeability layer associated with the clayey sand from 3.5 to 8.45m in BH WS1, and to the base of the shallower boreholes WS2 and WS3 will act as a barrier to leaching into ground water is therefore considered negligible.

9.2 Land Stability

The screening process has identified three issues which require an impact assessment listed below from Tables 7.2 and 8.2.

- Felling of trees,
- Presence of an aquifer
- Proximity to the highway and
- Proximity of an adjacent structure with differential depth of foundations.

9.2.1 Felling of Trees

Three trees have been identified in the arbicultural survey (Tree Sense 2019) that need to be felled. One of these is a Magnolia which is causing damage to the existing building. The other two trees are due to disease and are not related to the basement project. The survey also indicates root zones which need to be protected from compaction from construction plant. The root protection areas do not impinge on the proposed basement construction, as indicated in the tree constraints drawing in the arboricultural survey and included in Appendix A of this report.

9.2.2 Proximity of the basement to the highway

The proposed basement will be approximately 6.0 m from the highway kerb, and 4.0 m from the pedestrian pavement. Based on the PDisp analysis net movements are not considered significant for the pavement or associated infrastructure as a consequence of the granular geology and distance from the proposed basement to the highway.

9.2.3 Proximity to adjacent buildings

Vine House is a detached property surrounded by gardens. The nearest property is High Close House, which is approximately 3.6 to 5 m to the north of Vine House

The land stability issue relates to ground movement from the excavation and construction to form the basement, which is considered in Section 10. There are no other issues such as sloping or unstable ground which are considered significant.

9.2.4 Stability of Temporary Excavations

It is proposed that the basement retaining walls will be constructed using a hit and miss underpinning technique, with temporary propping supporting the excavation, which is set out in the Basement Method Statement issued by Croft and indicated in Drawing Nos. 191025-TW-100 & 200 included in Appendix A.

9.2.5 Groundwater Control

As discussed in Section 8.1.1 groundwater was not encountered. Although considered unlikely, if localised perched water seepages are encountered, they could be controlled by pumping to a tank prior to disposal by tanker to an approved facility.

9.2.6 Monitoring of groundwater and ground movements

Groundwater levels should be monitored before the works as a precaution. Monitoring of adjacent structures and the highway should be carried out before, during and after construction.

10 Ground Movement Assessment

10.1 Introduction

This section provides an assessment of ground movement that may result from the construction of the basement and to determine how these may affect the adjacent building structures as well as the host property which is a Grade II listed building.

The proposed construction sequence for the basement comprise the following elements for the main building:

- Phase 1 Install underpins on a hit and miss basis below the perimeter wall; install props against a central soil mass.
- Phase 2 excavate remaining soil mass below building, installing full width props as excavation progresses.
- Phase 3 construct internal walls and columns from basement to ground floor level, then complete ground floor structure.

The construction sequence for the side extension will involve installing full-width cross props as the excavation progresses. There will be no central soil mound for propping against.

For details of the construction sequence refer to Drawing Nos. TW-100 & 200.

The house is surrounded by gardens and does not directly adjoin any neighbouring property. The geology of the soil is the Bagshot Formation which is a predominantly granular material.

10.2 Ground movement impact on neighbouring property High Close House

The location of the neighbouring property, High Close House is show in Figure 8.1 and Figure 10.1 which is approximately 3.5m from Vine House. High Close House is approximately 23.5m in length, including the single storey section between the wall and the main building.

Figure 10.1 Oblique aerial view of Vine House and High Close House

The vertical ground movement at the boundary wall with High Close House from the loading of the basement underpins is 2mm settlement, which decreasing to zero 10.5m from the boundary.

In addition, it is possible that from the installation of the underpins there could be an anticipated 5mm horizontal and vertical movement associated with the excavation, construction and loading of the underpins as they are constructed. The movement will decrease with increasing distance from the underpin walls. The distance to negligible movement has been reviewed for embedded retaining walls in CIRIA C760, for both excavation and installation, which range between 1.5 and 4 times the wall height or excavation depth. In the case of underpins there is no such guidance. It is considered that 2 times wall height is a reasonable estimate, for both vertical and horizontal displacements particularly in granular soils where the attenuation of movement may be higher due to the immediate response to strain.

Taking into account the installation movements an additional 2.5mm of vertical movement (4.5mm total) and 2.5m of horizontal movement could be experienced at the boundary wall decreasing to zero 7m from the nearest Vine House retaining wall.

10.3 Ground movement impact on Host Property

The ground movements at the host property will arise from the loading of the ground from the underpin wall and from the internal columns and wall within the basement. The loading movements have been approximated from the Pdisp plots which his indicated in Figures 6.1, 6.2, 6.3 and 6.4. In addition, the vertical ground movement from the installation of the underpins has been included as shown in Figure 10.2 for a long section from west to east across the property and Figure 10.3 for south to north cross section. The plots assume that 5mm of settlement will arise at the underpin locations and decrease at a gradient of 1 on 2 away from the underpins. The plots show the maximum deflection strains from the movement. Horizontal ground movement has been taken as 5mm from the wall which is being installed.

11 Damage Assessment Category

11.1 Introduction

The calculated ground movements have been used to assess potential 'damage categories' that may apply to neighbouring property and host property due to the proposed basement construction. In additional the impact on the highway has been considered from ground movment. The methodology proposed by Burland and Wroth and later supplemented by the work of Boscardin and Cording has been used, as described in *CIRIA Special Publication 200* and *CIRIA C760*. General damage categories are summarised in Table 11.1 below:

Table 11.1: Classification of damage visible to walls (reproduction of Table 6.4, CIRIA C760)

Category	Description		Limiting tensile Strain ε _{lim} (%)
0 (Negligible)	Negligible – hairline cracks	<0.1	0.0 – 0.05
1 (Very slight)	Fine cracks that can easily be treated during normal decoration	<1	0.05 – 0.075
2 (Slight)	Cracks easily filled; redecoration probably required. Some repointing may be required externally.	<5	0.075 – 0.15
3 (Moderate)	The cracks require some opening up and can be patched by a mason. Recurrent cracks can be masked by suitable linings. Repointing of external brickwork and possibly a small amount of brickwork to be replaced.	5 -15 or a number of cracks > 3	0.15 – 0.3
4 (Severe)	Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows.	15-25 but also depends on number of cracks	> 0.3
5 (Very Severe)	This requires a major repair involving partial or complete re-building.	> 25 but also depends on number	

11.2 Damage Assessment Categories for neighbouring property High Close House

Table 11.2 incorporates superimposed horizontal and vertical movements derived from the wall deflection and settlement due to excavation as outlined in Section 10. The assessment is based on the assumption of the geology being a granular material. The assessment has been based on the limiting tensile strain for Category 1 of a strain of up to 0.075%. Table 11.2 indicates a Damage Category of less than 1. The Damage Category is shown graphically in Figure 11.3 appropriate for a overall length/height ratio of 2 for the building.

Table 11.2: Summary of ground movements and corresponding damage category High
Close House

Adjacent Property	High House	Close
Building width - L (m)	23.5	
Building overall height - H (m)	11	
L/H = 0.5 (approximated for plotting)	0.5	
max deflection (Δ) in metres (from Fig 10.1)	0.0035	
Δ/L (%)	0.015	
εlim	0.075	
Δ/L/εlim	0.075	
length to negligible horizontal movement 2x wall height (m)	7	
δh _{max} (m)	0.005	
δh (m)	0.0025	
δh/L (%) = εh	0.011	
Damage Category	<1	

Vine House BIA-MGC-19-34-V4

11.3 Impact on Highway/Footway at Hampstead Square

The Pdip model show a possible 2mm of vertical ground movement at the boundary with the highway. The vertical and horizontal movements from installation are approximately 1mm. It is not anticipated this will have any adverse effect on the footway/highway.

11.4 Damage Assessment Categories for Vine House

The Damage Assessment Category for the host property Vine has been considered as it is a Grade II listed building.

Table 11.2: Summary of ground movements and corresponding damage category 15Lyncroft Gardens

Host Property Vine House	West East Section	North -South Section
Building width - L (m)	22.5	11
Building height - H (m)	11	11
L/H (approximated for plotting)	2	1
max deflection (Δ) in metres (from Fig 11.4)	0.004	0.0024
Δ/L (%)	0.018	0.022
εlim	0.075	0.075
Δ/L/εlim	0.24	0.29
Length to negligible horizontal movement (m) 2x wall height (m)	7	7
δh _{max} (m)	0.005	0.005
δh (m)	0.005	0.005
δh/L (%) = εh	0.022	0.045
Damage Category	<1	1

Table 11.3 incorporates superimposed horizontal and vertical movements derived from the wall deflection and settlement due to excavation as outlined in Section 10. The assessment is based on the assumption of the geology being a granular material. The assessment has

Vine House, Hampstead, London NW3 1AB

been based on the limiting tensile strain for Category 1 of a strain of 0.075 %. Table 11.3 indicates a Damage Category of less than 1 and 1. The Damage Category is shown graphically in Figure 11.2 and 11.3 appropriate for an overall length/height ratio of 1 for the width and 2 length of the building. An overall Damage Category of 1 is considered applicable to Vine House.

12 **References**

Boscardin, M.D., and Cording, E.G., (1989). *Building response to excavation induced settlement*. J Geotech Eng, ASCE, 115 (1); pp 1-21

Burland, J.B., and Wroth, C.P. (1974). *Settlement of buildings and associated damage*, State of the art review. Conf on Settlement of Structures, Cambridge, Pentech Press, London, pp611-654

Burland, J. B. (2008) The assessment of the risk of damage to buildings due to tunnelling and excavations. Jornada Tecnica de Movimientos de Edificios Inducidos por Excavaciones, Barcelona 16/12/2008.

BS 1377:1990. British Standard Methods of test for soils for Civil engineering purposes. British Standards Institution.

BS 5930: 2015. Code of practice for Ground Investigation. British Standards Institution.

BS EN 1997-1 Eurocode 7 Geotech Design Part1 General Rules- inc. corrigendum Feb 2009

BS EN 1997-2 Eurocode 7 Geotechnical Design Part 2 Ground Investigation and Testing – inc. corrigendum 2010

BS 8002: 2015 Earth Retaining Structures

BS 8004: 2015 Code of practice for Foundations

BGS Geology of Britain Viewer (http://mapapps.bgs.ac.uk/geologyofbritain/home.html)

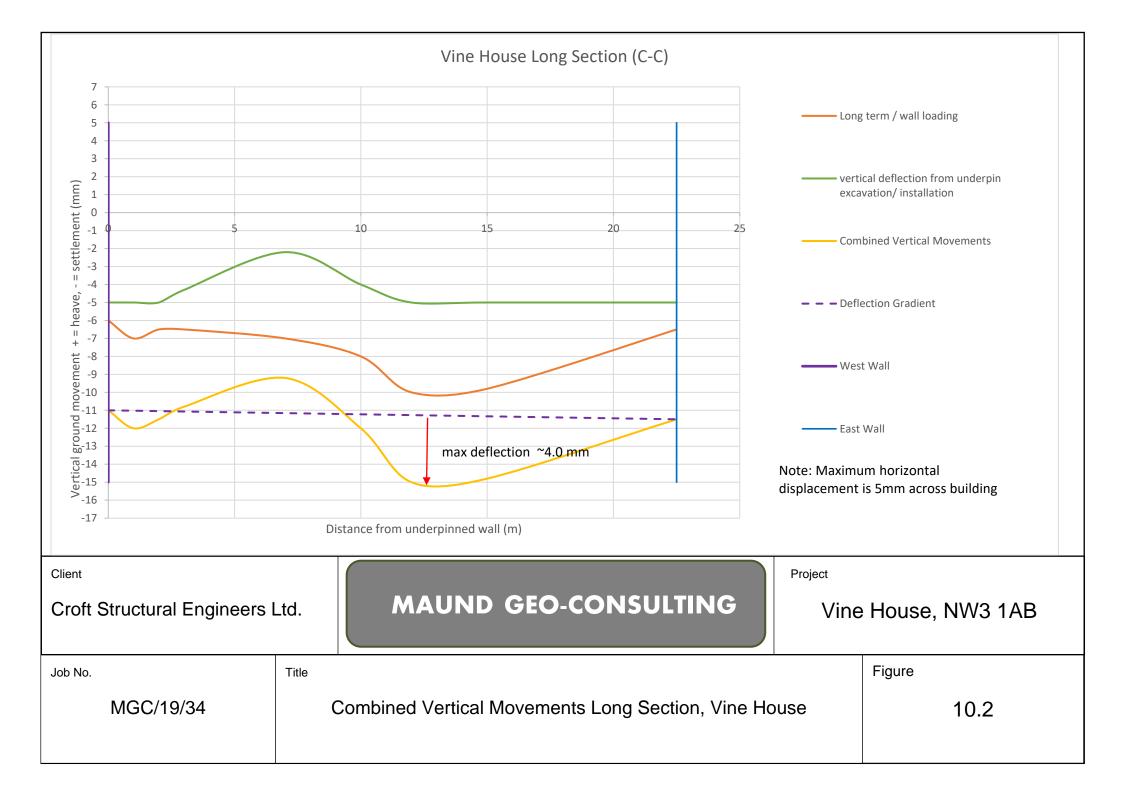
Camden Development Policy DP27 – Basement development.

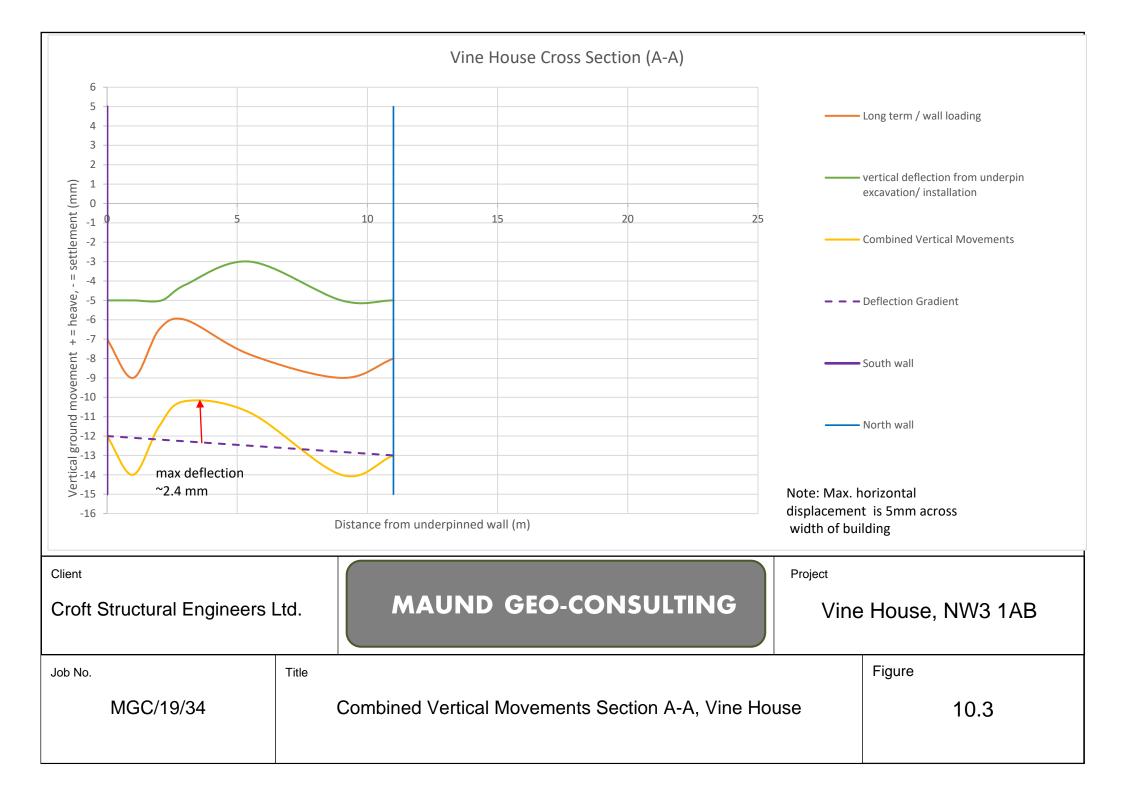
Camden Planning Guidance – Basements 2018

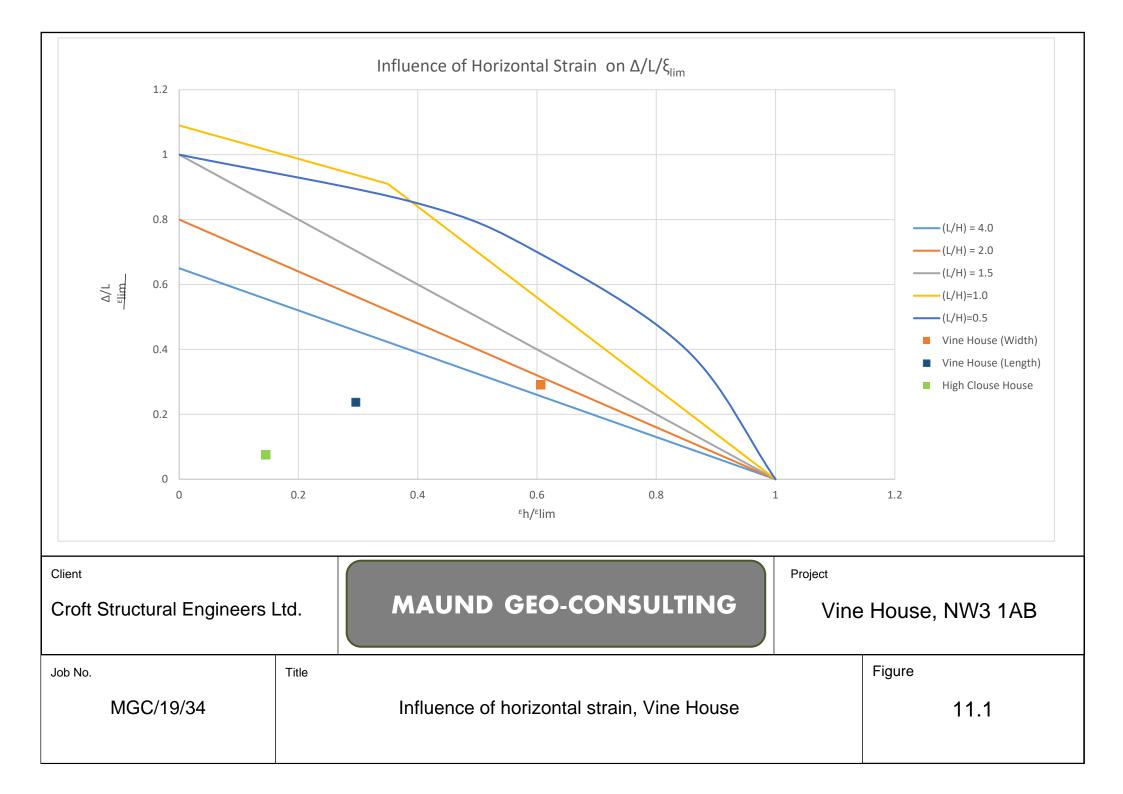
Camden geological, hydrogeological and hydrological study – Guidance for subterranean development. Arup November 2010

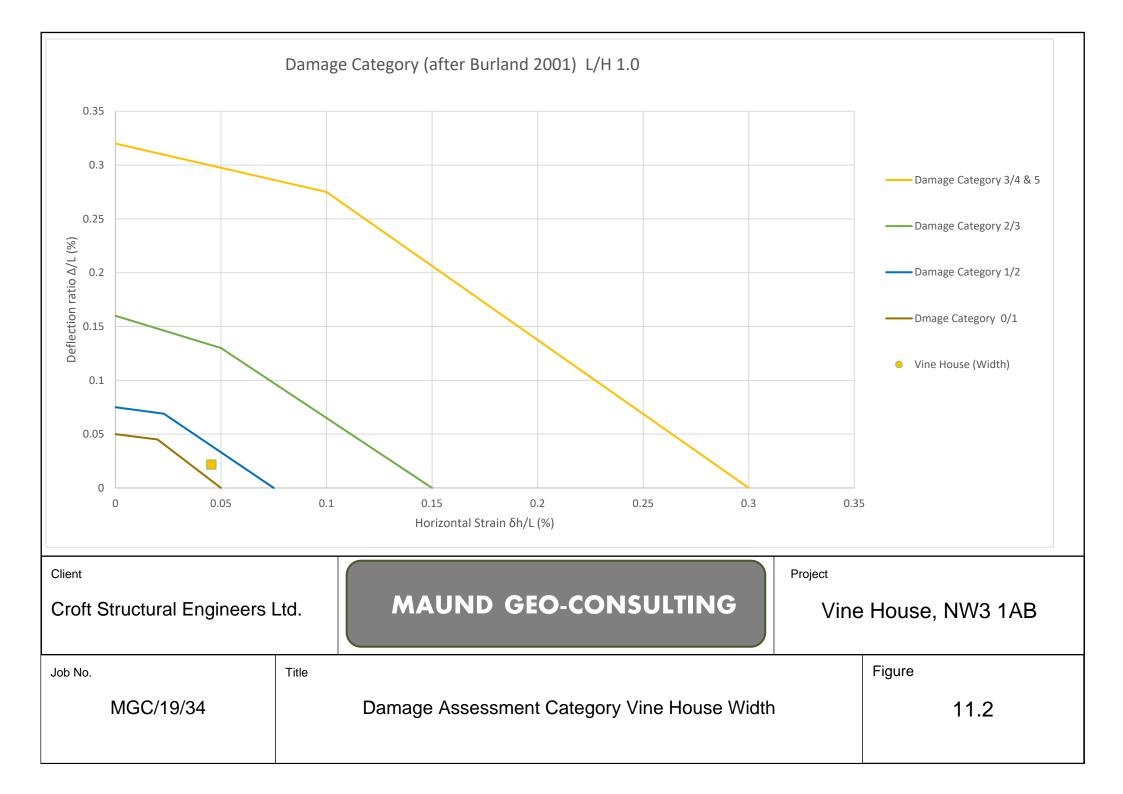
CIRIA C760 Guidance on Embedded retaining wall design 2017.

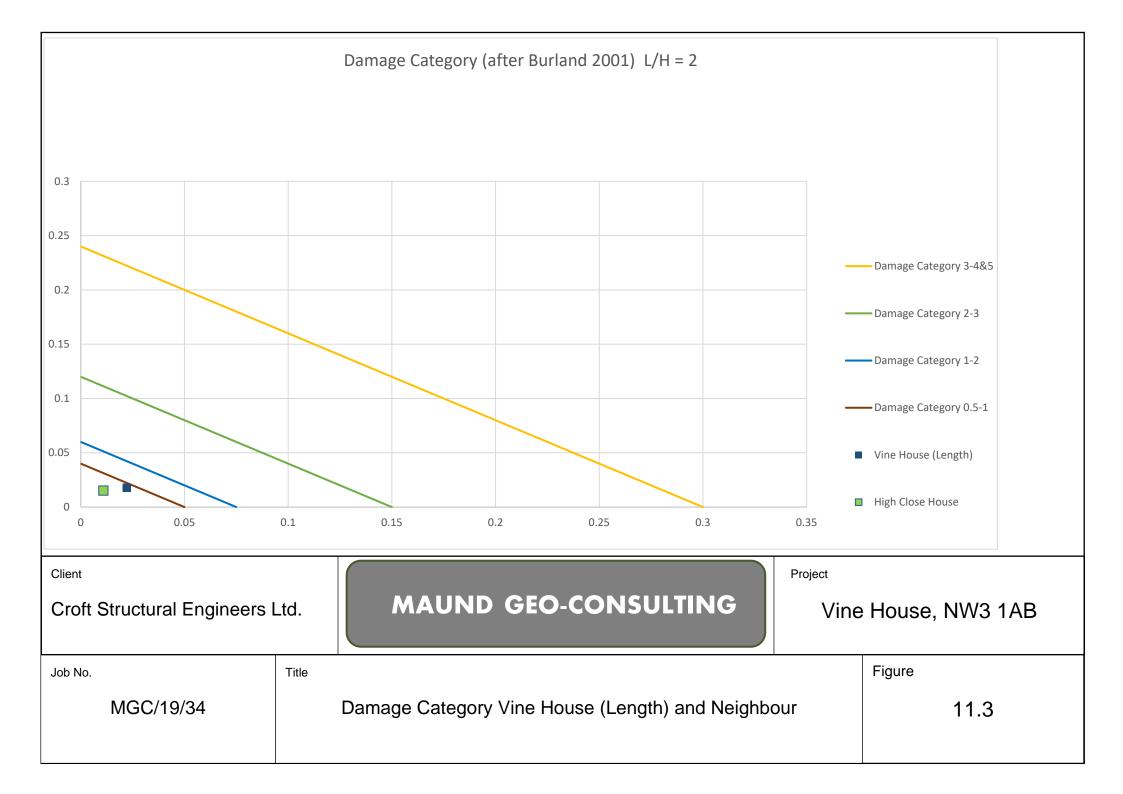

Heritage Assessment Vine House Hampstead. Archangel Heritage_JPW_2019_V3_FINAL June 2019

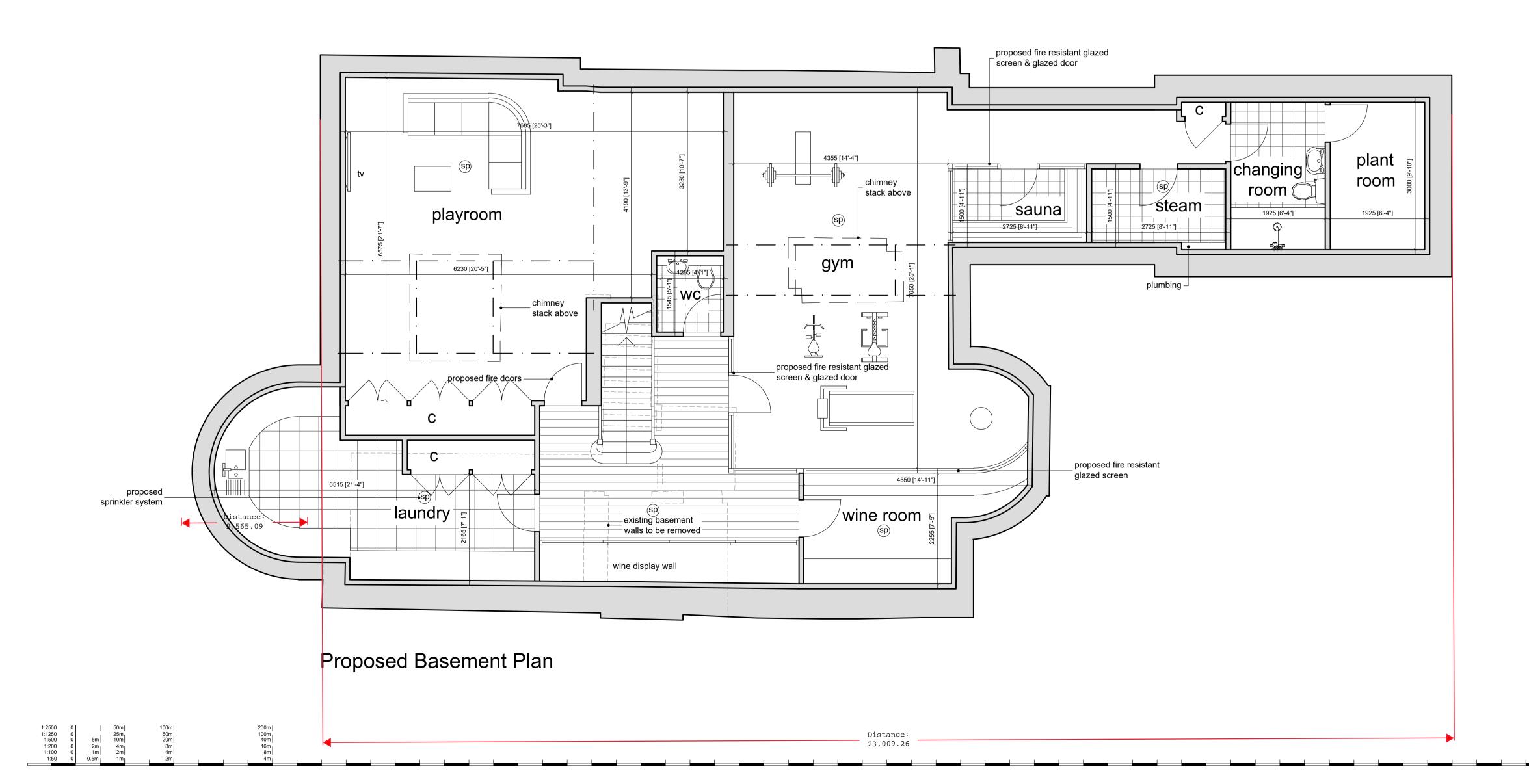

Vine House- Arboricultural report. Tree Sense Ltd 21/06/19

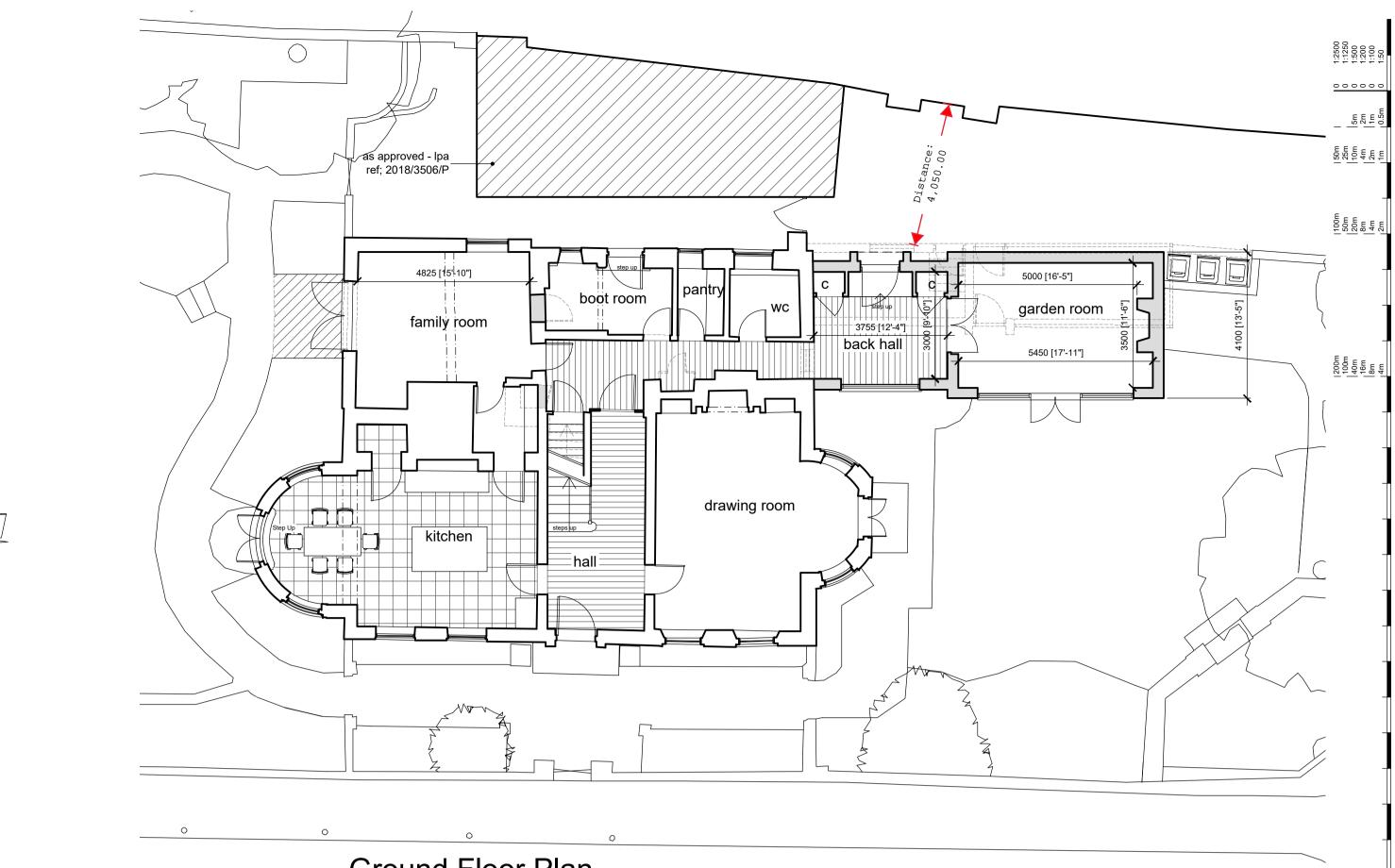

Vine House, Hampstead, London NW3 1AB


Hydrogeology, Land Stability and Ground Movement Assessment


Figures







Appendix A Drawings

notes:

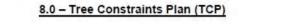
any discrepancies should be reported

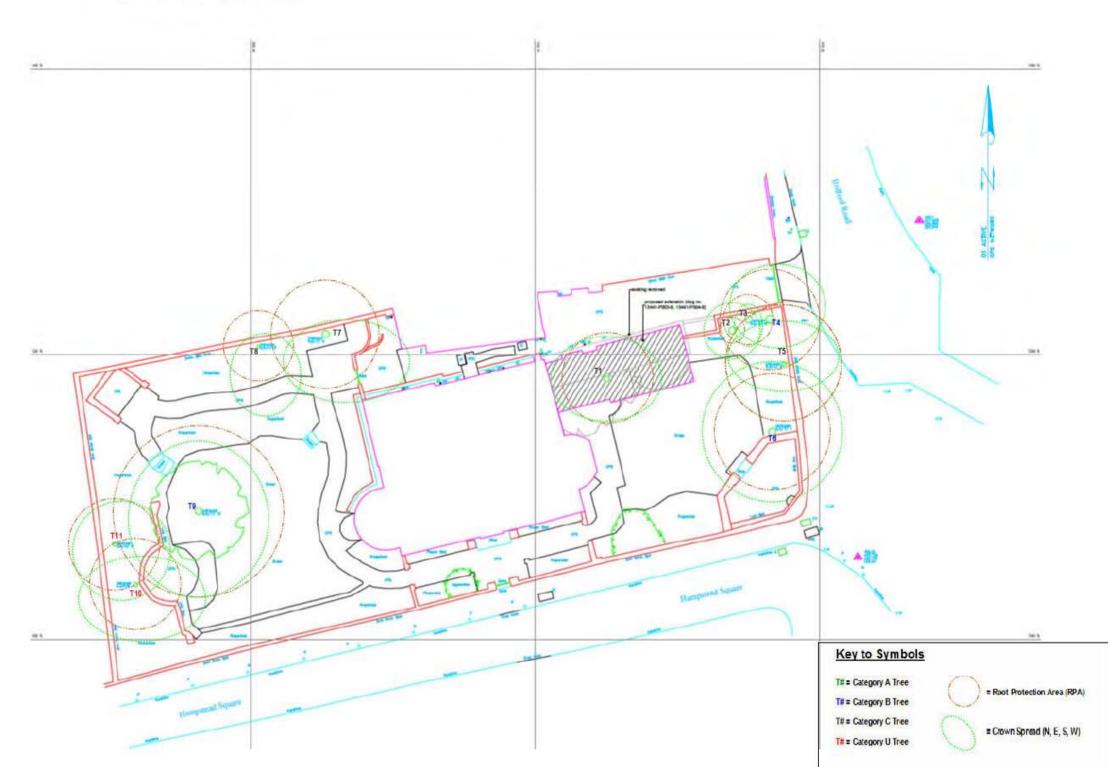
> all dimensions should be checked on site prior to commencement of work

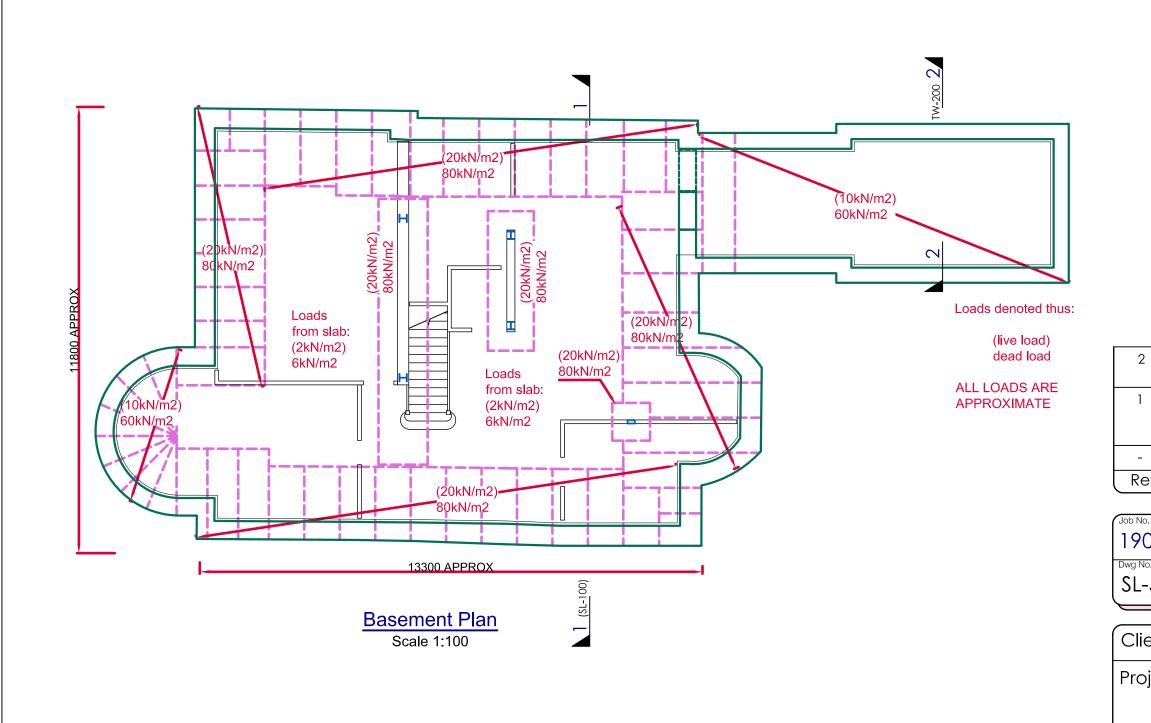
<u>المَ التَّ التَ التَّ التَّ</u> information provided by prodat systems plc, (www.promap.co.uk) prodat does not guarantee that all past or current uses or features will be identified in the product

> the product does not give details about the actual state or condition of the site nor should it be used or taken to indicate or exclude actual suitability or unsuitability of the site for any particular purpose, or relied upon for determining salability or value, or used as a substitute for any physical investigation or inspection.

 $\underbrace{\xi}_{\underline{\xi}} \underbrace{\xi}_{\underline{\xi}} \underbrace{\xi}_{\underline{\xi}} \underbrace{\xi}_{\underline{\xi}} \underbrace{\xi}_{\underline{\xi}}$ drawings to be read in accordance with the dwelling emission rate (der/ter) calculation. the building must be built 'as designed' meeting the criteria set for air permeability.

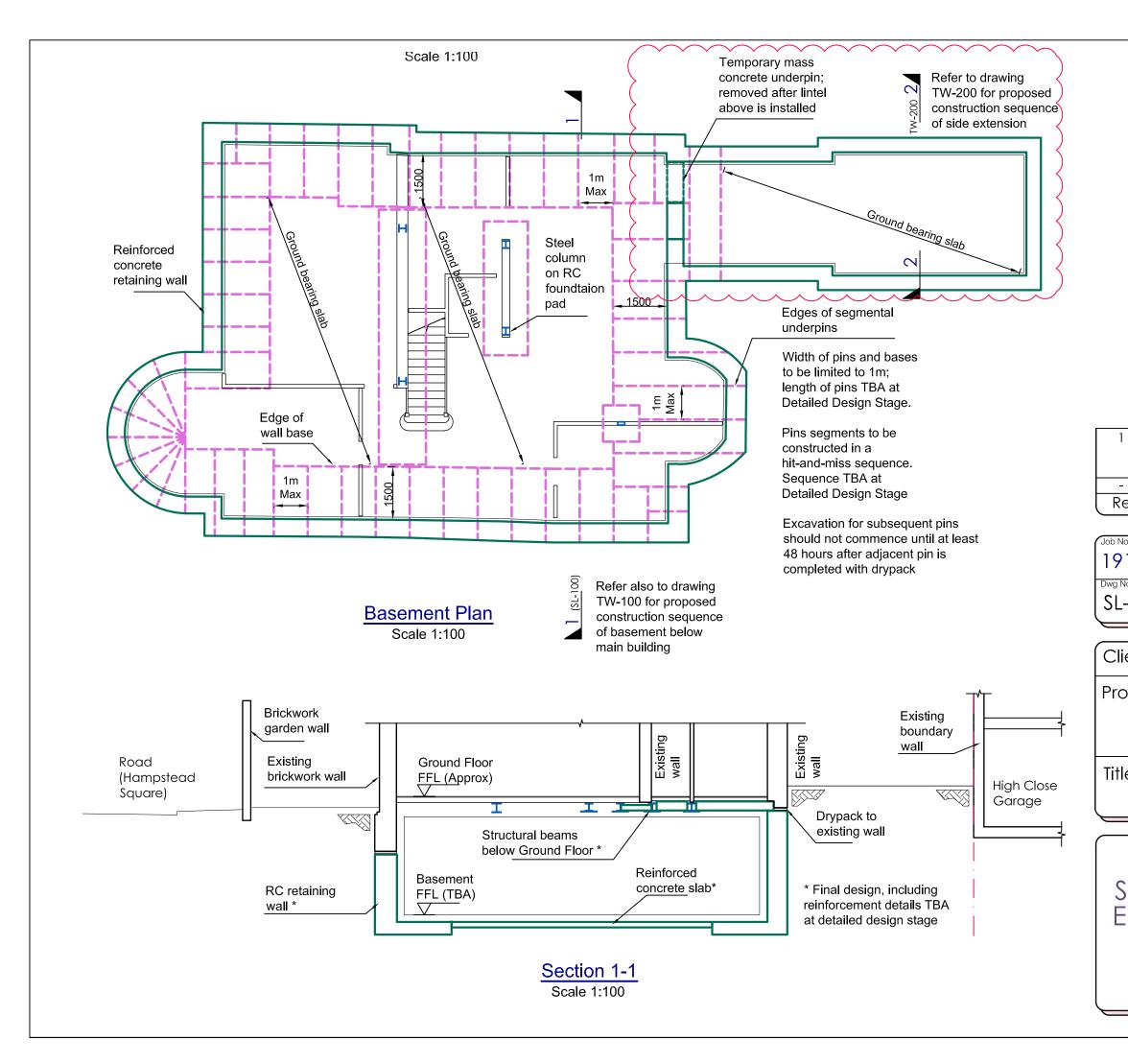

© HERTFORD PLANNING SERVICE


note


when printing off pdf's. it is the responsibility of the user to verify that the resulting prints are to scale on the appropriate sized sheet.

also that the scale bars on the plan measure correctly.

- PLANNING ISSUE - NOT FOR CONSTRUCTION



nojeci.	
	Hampstead Square,
	Camden, NW3 1AB
Title :	Structural Loading

ent:	Julia Gosmond
viact	Vine House

^{10.}	Drawn	GW	^{Scale} As shown
	Chk'd	-	@ A3
^{No.} .−50	Rev.	2	Date Nov 2019

2	27.05.2020	Segmental pin boundaries revised
]	10.12.2019	Basement extent altered to latest Architect's proposals
-	25.11.2019	First issue for comment
ev	Date	Amendments

	27.05.2020	Alterations to proposed
		construction of side extension
-	10.12.2019	First issue for comment
ev	Date	Amendments

	Drawn	GW	Scale As shown
1025	Chk'd	-	@ A3
No.	Rev.		Date
-100		1	Dec 2019

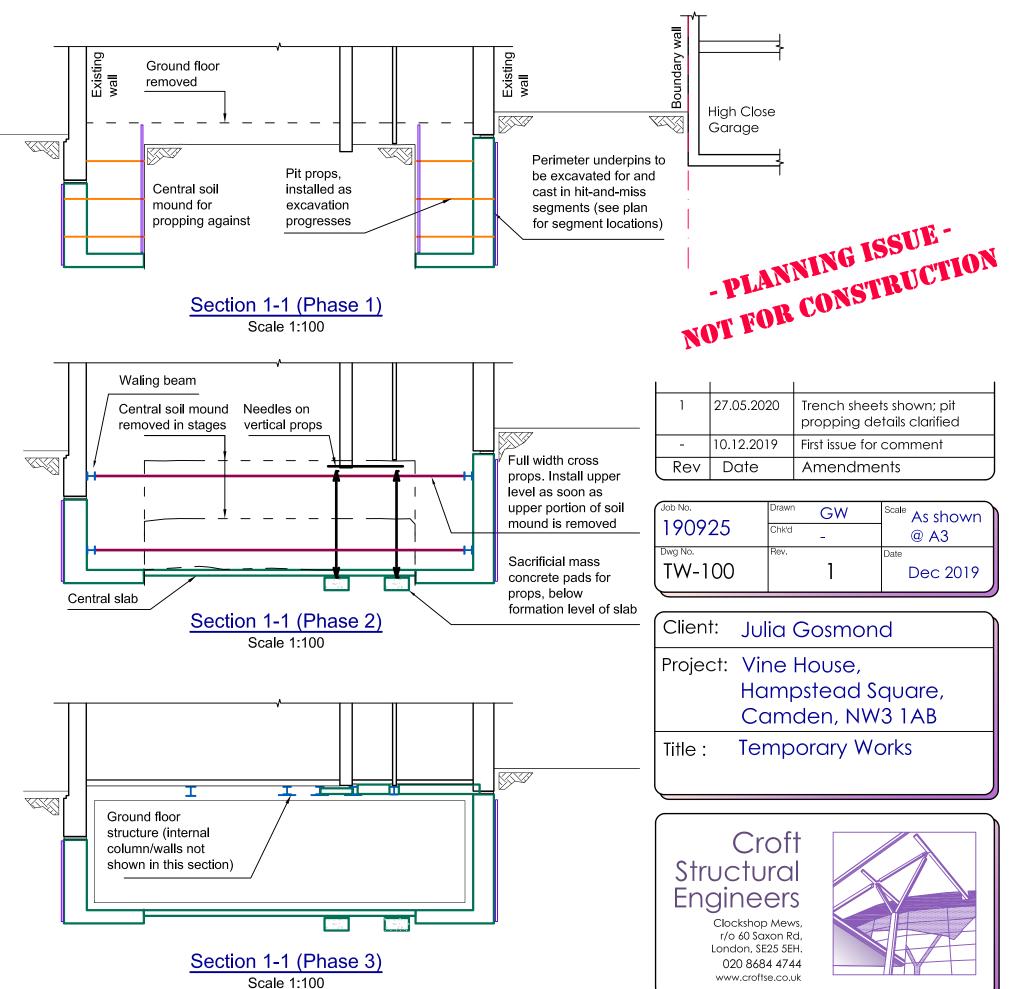
ient:	Julia Gosmond
oject:	Vine House, Hampstead Square, Camden, NW3 1AB
le :	Structural Scheme Design: Basement

PHASE 1

- 1.3. Demolish ground floor and excavate to level of existing footings
- 1.4. Excavate pits and cast underpins in a hit and miss procedure (segmental outlines shown on plan)
 - 1.4.1. Install trench sheets against soil face; trench sheets around external perimeter to be sacrificial

wa

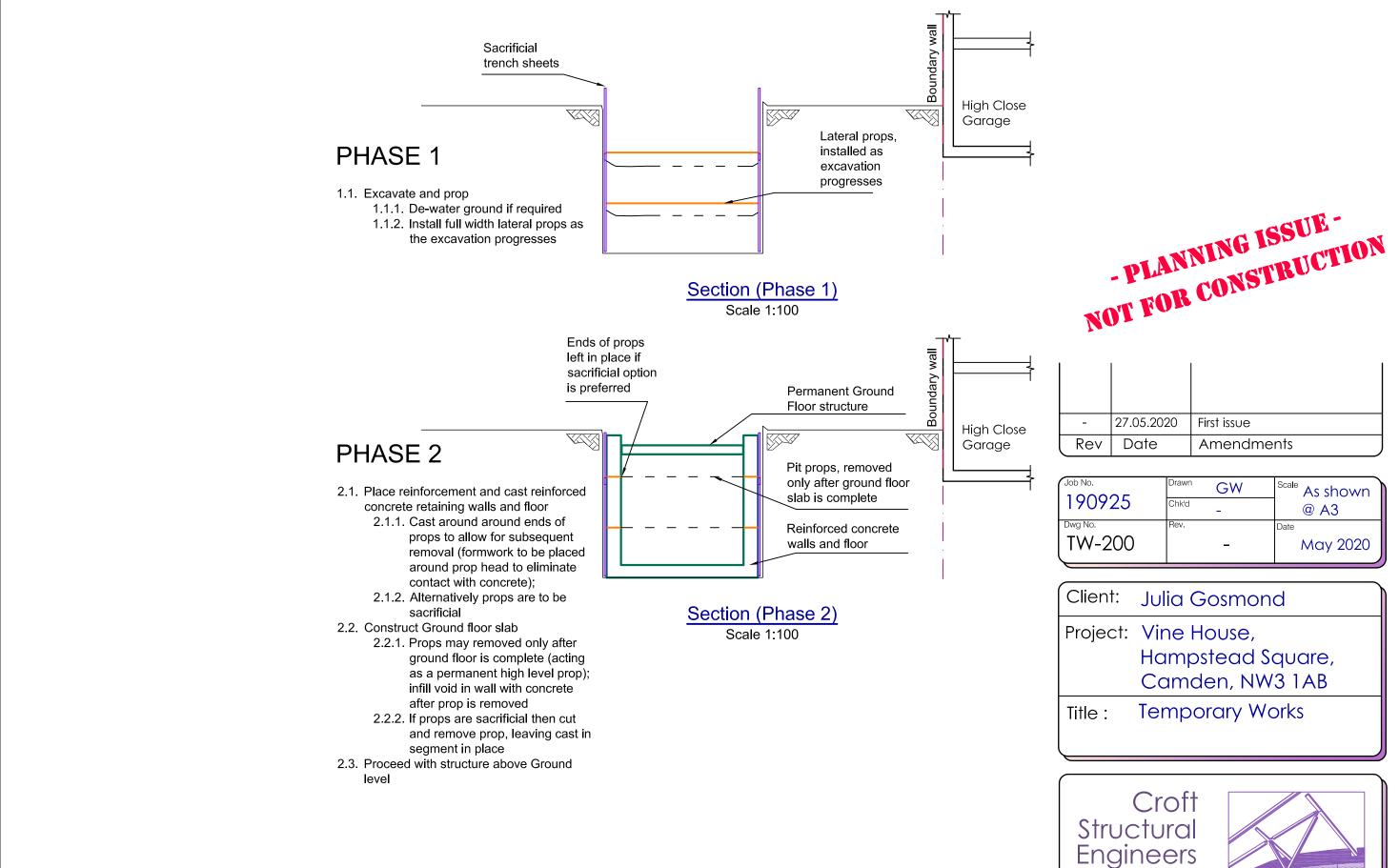
Boundary **v**


- 1.4.2. Prop pits against soil face via trench sheets as excavation progresses (props to be sacrificial and removed following similar procedures described in stage 2.2.2 on Drawing TW-200)
- 1.4.3. Do not commence excavation for pin until at least 48 hours after drypacking for adjacent pin is complete (24hours minimum is possible if Conbextra 100 cement accelerator is added to dry pack mix)

- 2.1. After perimeter underpins are complete, excavate remaining soil mass below building
 - 2.1.1. Initial horizontal props may be removed as excavation progresses
 - 2.1.2. Central soil mound to be removed in stages except where vertical propping to internal walls is required
 - 2.1.3. Install full width cross props before excavating to the next stage
- 2.2. Cast sacrificial pads and install needles and props to inernals walls as excavation progresses
 - 2.2.1. Full height of central soil mound may be removed locally at vertical propping locations
 - 2.2.2. Do not excavate more than 1mx1m in plan of soil without installing vertical props to the wall above
 - 2.2.3. As excavatnion progresses downwards for sacrifical pads, install additional horizontal pit props
- 2.3. After central soil mass is completely removed, construct internal concrete pads and floor slab
 - 2.3.1. Place below-slab drainage prior to placing reinforcement for slab

PHASE 3

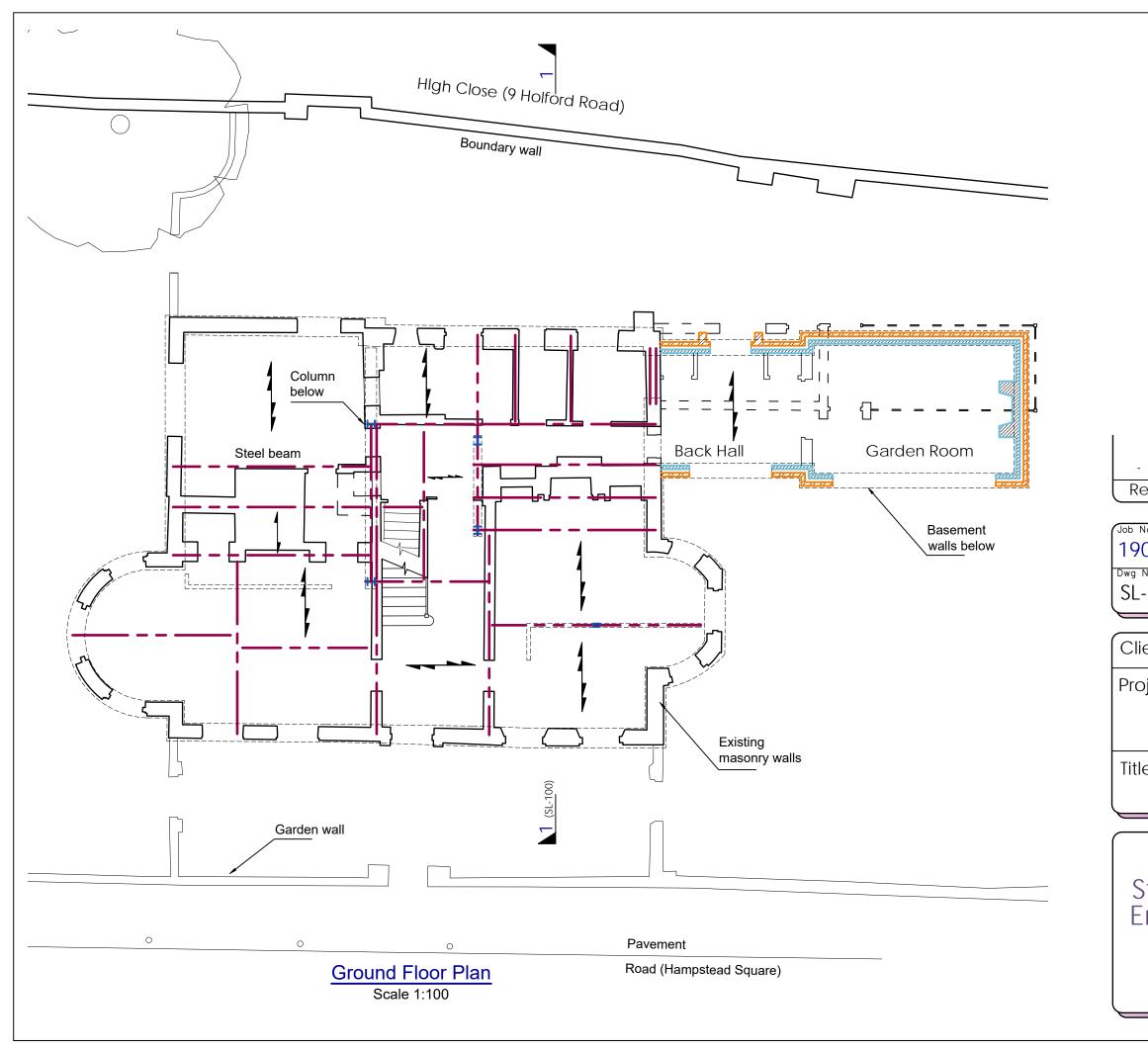
- 3.1. Proceed with construction of internal walls and columns from Basement to Ground Floor level
- 3.2. Complete Ground floor structure
- 3.3. After ground floor structure is complete, props may be removed.



eni.	Julia Gosmona
oject:	Vine House,
	Hampstead Square,
	Camden, NW3 1AB
e:	Temporary Works

^{lo.}	Drawn	GW	^{Scale} As shown
10925	Chk'd	-	@ A3
vo. V-100	Rev.	1	Dec 2019

	27.05.2020	Trench sheets shown; pit propping details clarified
-	10.12.2019	First issue for comment
ev	Date	Amendments



	Camden, NW3 1AB
e:	Temporary Works

ent:	Julia Gosmond
------	---------------

	Drawn	GW	Scale As shown
0925	Chk'd	-	@ A3
No.	Rev.		Date
V-200		-	May 2020

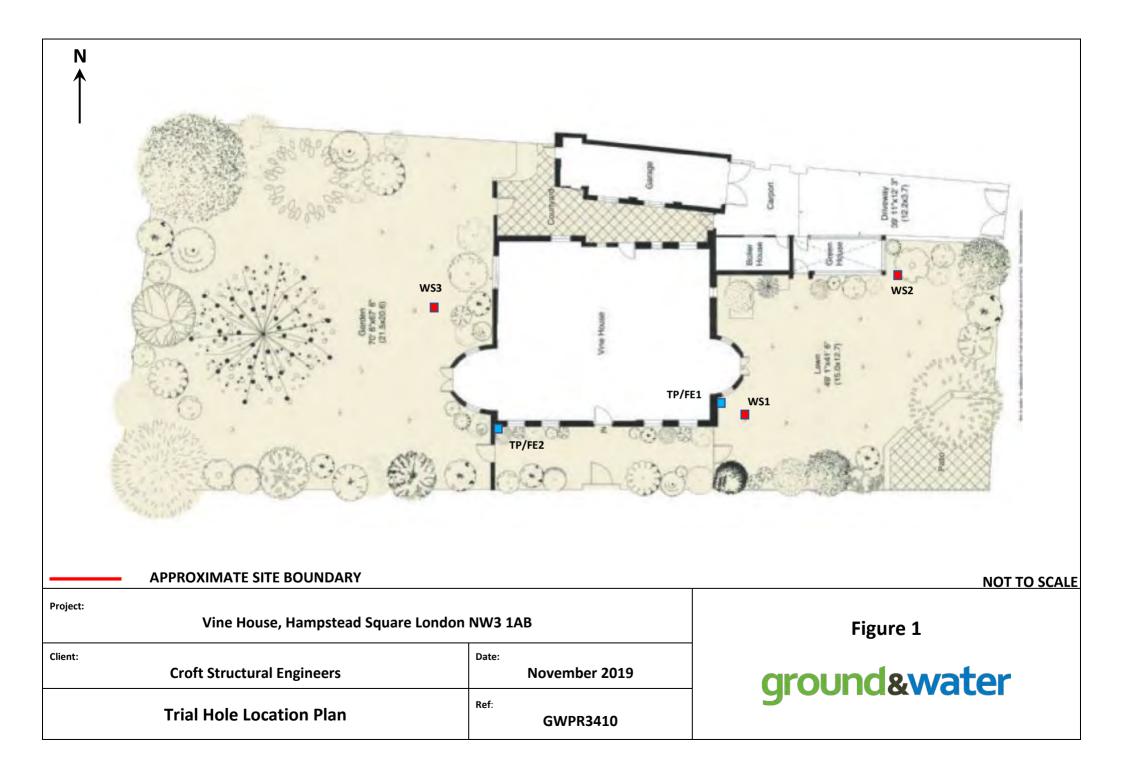
	27.05.2020	First issue
ev	Date	Amendments

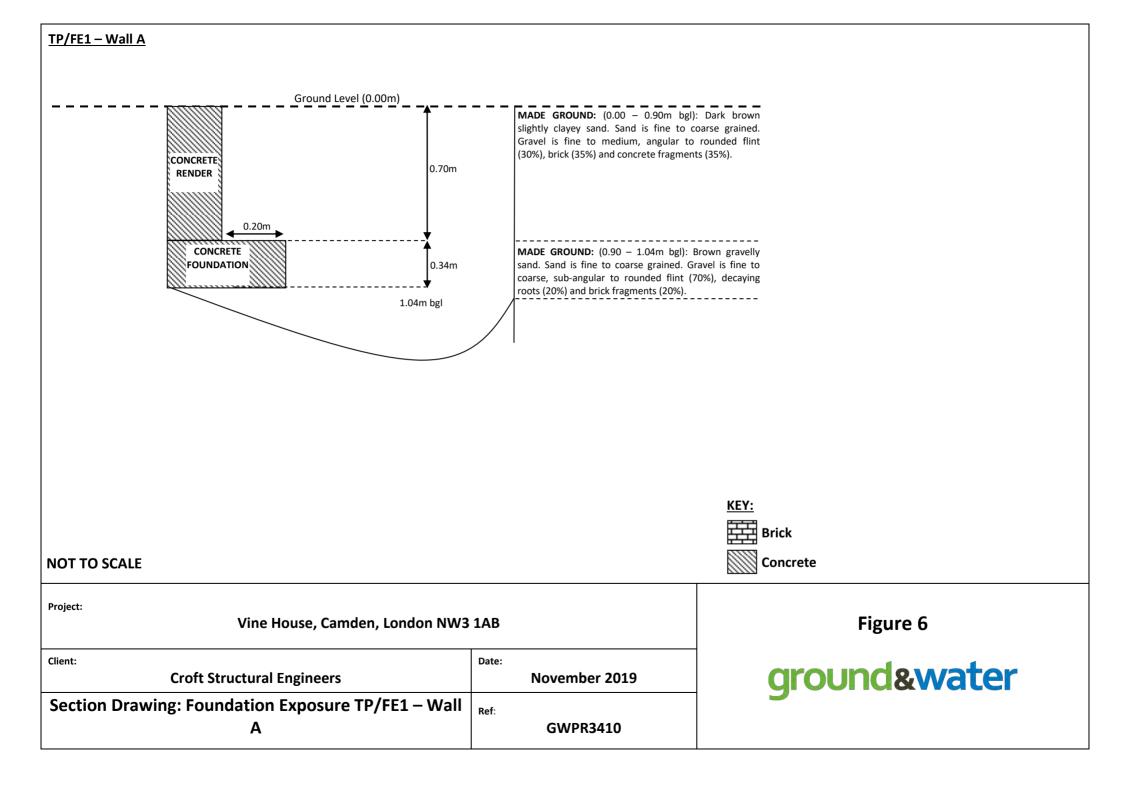
Clockshop Mews, r/o 60 Saxon Rd, London, SE25 5EH. 020 8684 4744 www.croftse.co.uk

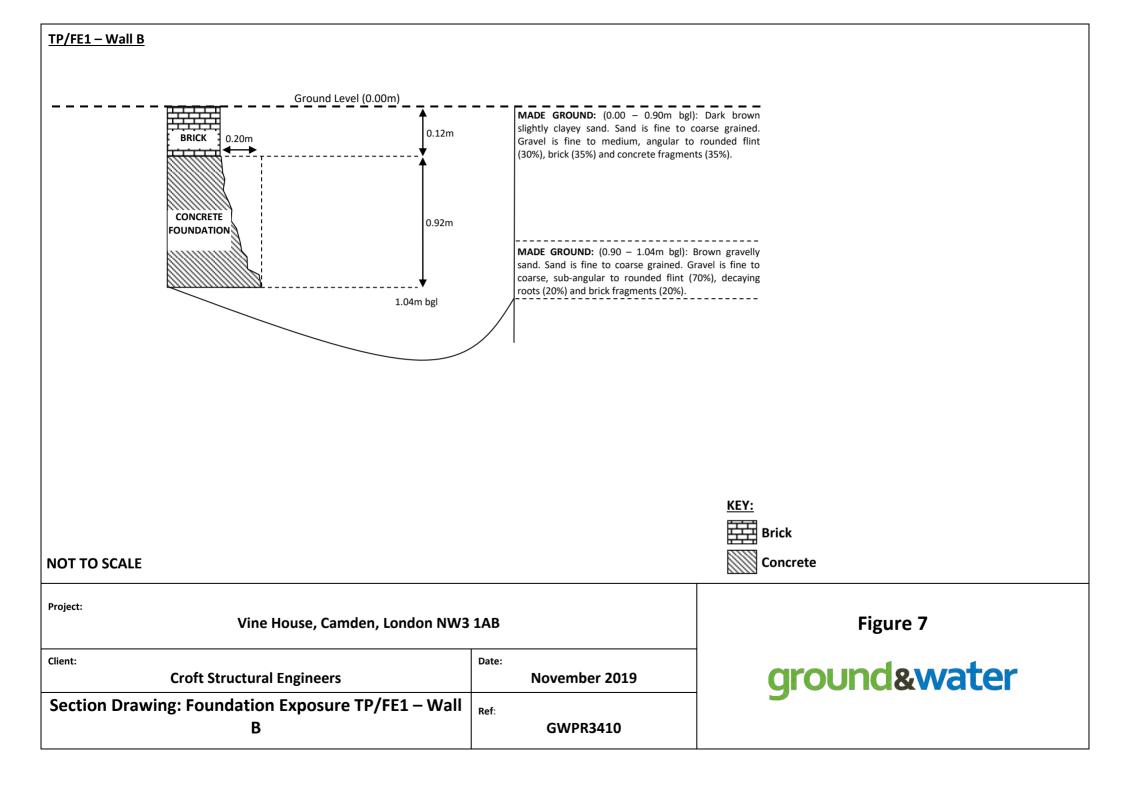
Croft Structural Engineers

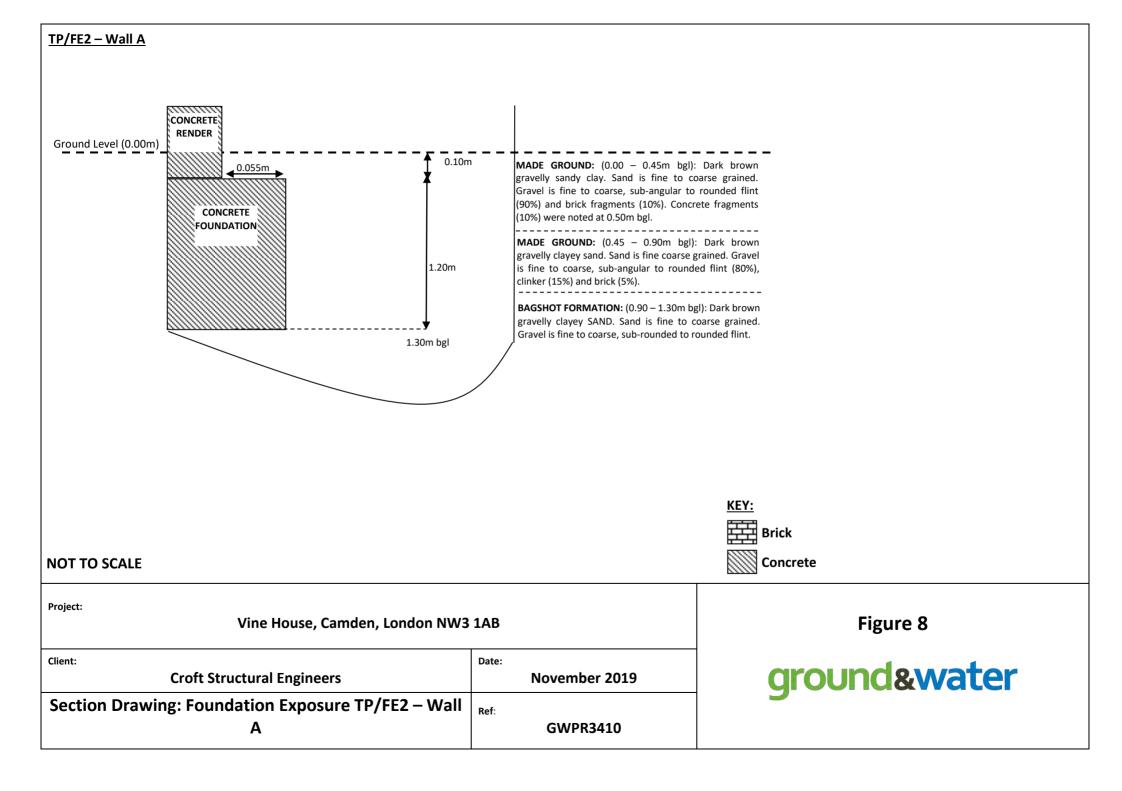
	Camden, NW3 1AB
e:	Structural Scheme
	Design: Ground Floor

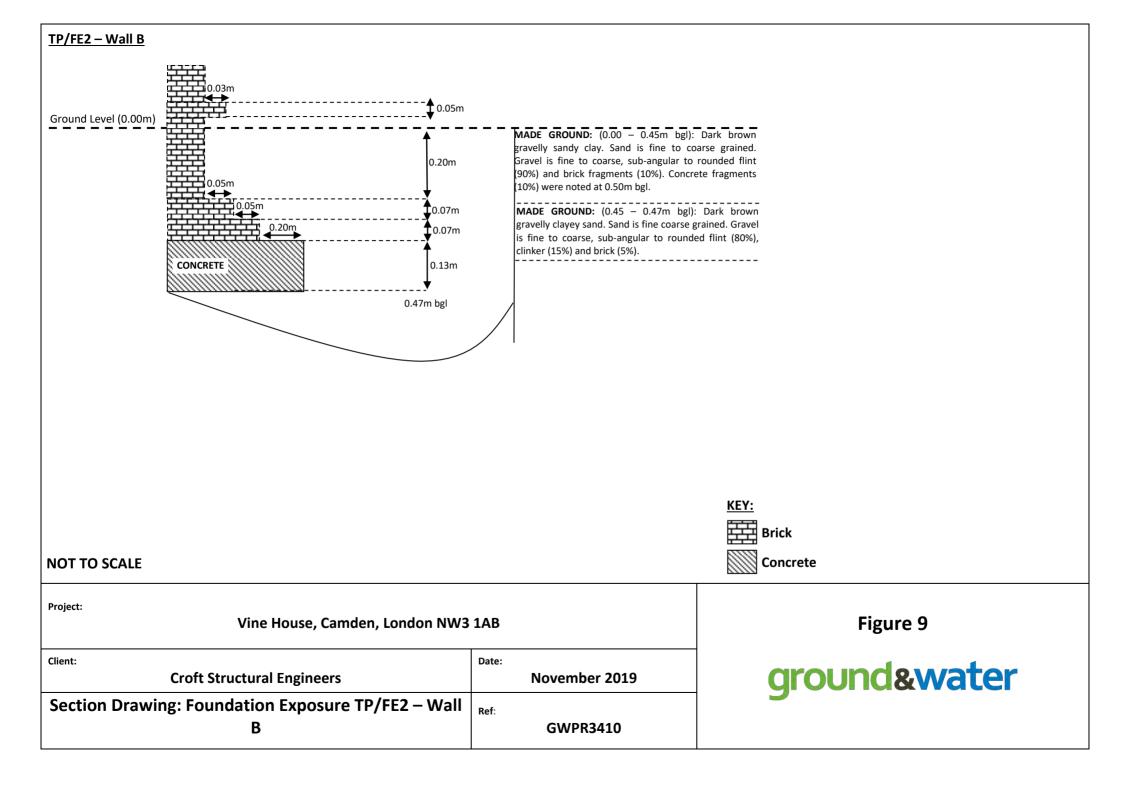
Project: Vine House, Hampstead Square, Camden, NW3 1AB


ulia	Gosmond
	ulia


^{No.}	Drawn	GW	^{Scale} As shown
0925	Chk'd	-	@ A3
^{No.} -200	Rev.	_	Nov 2019


	10.12.2019	First issue for comment
ev	Date	Amendments




Appendix B Ground Investigation Report

Percussion Drilling Log

opject Name: Vine House Client: Croft Structural Engineers Date: 04/11/2019 cation: London Borough of Camden, Constructural Engineers Date: 04/11/2019													
cation: Lor ndon NW3		ugh of Can	f Camden, Contractor:										
oject No. :	GWPR34	10		Crew	Crew Name: Level				Drilling Eq	uipment:			
Borehole N WS			e Type VLS					ed By A		Scale Page Number 1:50 Sheet 1 of 1			
ell Water Strikes		-	Situ Testing Results	-	Depth (m)	Level (m)	Legend		Stratu	m Description			
	0.30 0.50 0.80	D	Results	,	0.80			silty clay. to coarse	ROUND: Dark Sand is fine to , angular to su ncrete (15%), s (15%).	o coarse gra b-rounded f	ined. Grave lint (40%), k	el is fine brick	
	1.00 1.00 1.50	D SPT	N=2 (1,0/0,1	,0,1)	0.00			silty sand fine to coa	ROUND: Dark . Sand is fine arse, angular 6), claystone (to coarse gr to sub-round	ained. Grav led flint (30 ⁰	vel is %),	
	2.00 2.00		N=2 (1,0/1,0,	,1,0)	2.10			gravelly s	T FORMATIO ilty SAND. Sa	nd is fine to	coarse grai	ined.	
	2.50 3.00 3.00	D	N=10 (1,1/2,2	2,3,3)					fine to coarse				
	3.50	D		- /	3.50				T FORMATIO D, with occasi dium.				_
· · · · · · · · · · · · · · · · · · ·	4.00 4.00	SPT	N=16 (3,3/4,4	4,4,4)			× × × ×						
•	4.50	D											
÷	5.00 5.00		N=20 (4,4/5,5	5,5,5)			× × × ×						
	5.50	D											
	6.00 6.00		N=27 (6,6/6,7	7,7,7)									
	6.50	D					× × ×						
	7.00 7.00		N=20 (4,4/5,5	5,5,5)									
	7.50	D											
	8.00 8.00		N=20 (5,5/5,5	5,5,5)	8.45				End of B	orehole at 8.4	450m		
													1
Hole Dian Base (m) Dia			Diameter Diameter (mm)	Dept	h Top Dept	Chise h Base	lling Duration	Tool	Depth Top	Inclination Depth Base	and Orientati		tatio
marks			No groundwate										_

Percussion Drilling Log

<u>a</u>	vva													
-		Vine House			Client	: Croft Str	uctural E	Engineers		Date: 04/1	1/2019			
	on: Lono n NW3	don Borough 1AB	of Can	nden,	Contractor:									
		GWPR3410			Crew	Name:				Drilling Eq	uipment:			
-	ehole N		Hole	е Туре					ged By Scale Page Numb				er	
	WS2			VLS				E	M	1	:50	She	et 1 of	1
Well	Water Strikes	-		Situ Testing		Depth (m)	Level (m)	Legend		Stratu	m Descripti	on		
	Suikes	Depth (m)	Туре	Results		(11)	(11)		MADE GR	OUND: Dark	brown/black	aravelly sar	ndv	_
		0.30	D						clay. Sand	is fine to coa	rse grained. rounded flint	Gravel is fin	e to	-
		0.50	D						(40%) and	brick (20%).		(1070), 00110		-
		0.80	D											
		1.00 1.00	D SPT	N=1 (1,0/0,0, ²	1,0)									1 -
		1.50	D											-
		1.50												-
		2.00	D			1.80		*****			N: Orangish fine to coars			2 —
		2.00	SPT	N=3 (1,0/1,0, ⁻	1,1)	2.10			is fine to m	edium, sub-a	angular to rou N: Brown gra	unded flint.	/	
		2.50	D						Sand is fine	e to coarse g	rained. Grav	el is fine to	CLAT.	
									medium, si	ub-angular to	rounded flin	t.		-
		3.00	D	N 40 (0 0/0 0	0.0	2.90					N: Light brow and is fine to			3 —
		3.00	SPT	N=10 (2,2/2,2,	,3,3)				Signity clay	YEY SAND. S		ineuluni gia	anieu.	-
		3.50	D											
		4.00 4.00	D SPT	N=16 (3,3/3,4,	,4,5)									4 —
		4 50	D											-
		4.50												
		5.00	D											5 —
		5.00		N=21 (4,4/5,5,	,5,6)									
						5.45		<u> 26:150</u>		End of Bo	orehole at 5.4	50m		
														6 -
														-
														-
														-
														7 —
														-
														-
														8 —
														-
														-
														9 —
														-
														10 —
	Hole Diamo Ise (m) Diai	eter meter (mm) Depth		Diameter Diameter (mm)	Depth	n Top Dept	Chise h Base	lling Duration	Tool	Depth Top	Inclination Depth Base	and Orientatior Inclination	Orient	ation
Rema				1		I	I	I_		1	1		I	
Roots	noted to a	a depth of 1.00	m bgl. I	No groundwater	r was I	noted.								
													AUN	D

Percussion Drilling Log

Q	vva														
Projec	t Name	Vine House			Clien	t: Croft Sti	uctural E	Engineers		Date: 04/1	1/2019				
		don Borough	of Can	nden,	Cont	ractor:									
	o <u>n NW3</u> et No · (GWPR3410				Name:				Drilling Eq	uipment:				
	ehole N		Hole	е Туре		Level		Logo	ed By		cale	Page	e Numb	er	
	WS3			VLS					A		:50		et 1 of		
Well	Water	Sample a	and In	Situ Testing		Depth	Level	Legend		Stratu	m Descriptio	on			
S///2S///	Strikes	Depth (m)	Туре	Results		(m)	(m)								
Well	Water Strikes	-	Type D D SPT D SPT D SPT D SPT D SPT D SPT D	-	,3,4) ,4,3) ,3,4)	Depth (m) 0.40 0.80 2.00 5.45	Level (m)	Legend	silty gravel fine to coard (15%), and MADE GR clay. Sand coarse, and fragments. MADE GR sand. Sanc angular to fragments BAGSHOT	OUND: Dark . Sand is fine rse, angular ti concrete (21 OUND: Brow is fine to coa gular to roun OUND: Brow d is fine to co rounded fine (5%).	m Description brown slightly to coarse gra- to rounded filin 0%) fragment m slightly san trse grained. I ded flint (90% n very gravel arse grained. to coarse flin N: Light brow pockets of cla	y sandy clay ained. Gravu ht (65%), bri s. dy gravelly : Gravel is fin b) and brick ly clayey silf Gravel is si t (95%) and n/ grey clay ay. Sand is f	el is ick silty e to (10%) ty ub- brick ey		
														8 -	
														-	
														=	
														9 —	
										1				10 —	
	Hole Diame ise (m) Diai	eter meter (mm) Depth		Diameter Diameter (mm)	Dept	h Top Dept	Chise h Base	lling Duration	Tool	Depth Top	Inclination a Depth Base	and Orientation Inclination	Orient	ation	
	Remarks														
Roots	noted to a	a depth of 1.50	m bgl. N	No groundwate	r was	noted.							AGS	S	

g	rou wat	nd ter			Client: Croft Structural Engineers Date: 04/11/2019													
		Vine Hou	se		Client: Croft Str	uctural E	Ingineers		Date: 04/11/2019									
	on: Lono on NW3	don Borou	gh of Cam	iden,	Contractor:													
		GWPR3410)		Crew Name:				Equipment:									
Loc	ation Nu			on Type IP	Level			ed By M	Scale 1:25	Page Nun Sheet 1 c								
Well	Water	-		Situ Testing		Level	Legend		Stratum Description	n								
	Strikes	Depth (m	n) Type	Results	(m)	(m)		MADE GRO	OUND: Dark brown slightly	clavev sand								
		0.30 0.50 0.80 1.00	D D D		0.90 1.04			MADE GRC coarse grain	to coarse grained. Gravel gular to rounded flint (30% te fragments (35%). DUND: Brown gravelly san ned. Gravel is fine to coars flint (70%), decaying roots 10%). End of Borehole at 1.040	6), brick (35%) d. Sand is fine to se, sub-angular (20%) and brick	1							
											2							
Rema	Length	ensions Pit Wid		Pit Stability	Shoring Used	1 Support	and Comme	ent Remarks	Date	Pumping Data Rate Rer	4							
										AC	15							

g &	rou wat	nd ter						Tr	ial F	Pit Lo	g				
		: Vine Ho	use			Clien	t: Croft Str	uctural E	ngineers		Date: 04/11/2019				
	ion: Lon on NW3	don Boroi 1AB	ugh of	Cam	den,	Cont	ractor:								
		GWPR34	10			Crew	Name:				Equipment:				
Loo	cation N	umber	Lc	ocatio	on Type		Level		Logg	ed By	Scale		Pa	ge Numbe	er
	TP/FE				P				E	M	1:25		Sł	neet 1 of 1	1
Well	Water Strikes						Depth (m)	Level (m)	Legend		Stratum Descri	ption			
Well	Water Strikes	Sam Depth (0.30 0.50 0.80 1.00	<u>m) T</u>	d In S	Situ Testing Results		Depth (m) 0.45 0.90 1.30	Level (m)		Sand is fine coarse, sub fragments ((10%) were MADE GRC Sand is fine coarse, sub (15%) and b BAGSHOT SAND. San	DUND: Dark brown gra to coarse grained. Gr -angular to rounded fl 10%). At 0.50m bgl co	avelly sa ravel is f lint (90% oncrete f avelly cla ravel is f lint (80% rown gra ined. Gr e flint.	ine to) and ragme ayey s ine to), clin	brick ents sand. ker clayey	
															5 —
Dit	Dim Length	ensions Pit W	Vidth		Pit Stability	Sho	Trench ring Used	n Support	and Comme	ent Remarks	ים יח	P ate R	umpir late	ng Data Remai	rks
	-		יומוח	F	-it Stadility	500	nny Usea			Remarks				Kema	185
Rema Roots		a depth of	1.00m k	bgl. N	o groundwate	r was	noted.							AGS	

	K	4				PA	٩RT	ICL	.E	SIZ	ZE	DIS	TR	IB	UT	ION						b Re					27431								
		soils																				oreho			э.					V	NS1				
S	ite Na	me		Vine I	House			_					T								Sa	ample	e No								-				
Pr	oject I	No.			GWPR	3410)			Cli	ent			C	Grou	nd & V	Vat	ter Lto	b		De	epth ⁻	Тор							2.50)			m	ı
																					Dep	pth B	ase							-				m	ı
	Soil D)escripti	on	Bro	own clay	ey ve	ery gi	ravell	ly S) (gra Ingul		is fr	n an	d su	b-rour	nde	ed to s	sub-		Sa	ample	е Тур	pe							D				
										6	ingui	ai)										ampl								11/1					
	Tes	t Method	ł	BS13	77:Part	2: 19	90. c	lause	e 9.	0										_		hedu Proje				d				11/1 12/1					_
							,		-	-													te te							20/1					
	-	CLAY			SILT								SANE								GRA						CO	BBLE	s	E	BOUL	DERS	5		
	100		Fine		Medium		Coar	se		Fin	e	N	lediu	m	(Coarse	_	Fi	ine		Med	lium		Coa	rse			•					_		
																					/														
	90																																	1	
	80													+				\checkmark				+							+		+				
0	70						_				-									_		_	-		\square				_	_	_				
% ɓu	60															/																			
Percentage Passing	50														Ι																				
age F	50																																	1	
cent	40																					-	-						+		+				
Per	30						_						4	-			_		_			_	_						_	_	_				
	20																																		
	10							-	T																										
	0	001)1 0.01 0.1 1 10															-				1C	0					10	 000						
			Particle Size mm																																
		Sieving Sedimentation																																	
	Pa	rticle Siz	ze mm	%	b Passin	g	Pa	rticle	Siz	ze m	m	%	b Pa	ssin	g																				
		125			100											1		Samp			ortic	ons								% d		ass			
		90 75			100 100											-		Very o Grave		se	ie										0.0 23.3				
		63			100													Sand												(68.9				
		50 37.5			100 100											-		Fines	<0.0	063r	nm										7.8				
		28			100											1	-										<u> </u>								
	\vdash	20 14			100 99		╟─				+					-		Gradi D100		Ana	iysis	5			m	m	┢								-
		10			97											1	Ī	D60							m	m	t				.909				
	-	6.3 5			92 88		╟──				+					-		D30 D10								m m	┢				.291 .101				-
		3.35			82 77											1	Ī	Unifor									t				9				
	<u> </u>	2 1.18					+					-	Ľ	Curva	ture	e Coe	effici	ent								(0.93								
		0.6 46 Remarks																																	
		0.425 37 Preparation and testing in acco 0.3 31													ordan	ce wi	th BS	5137	7 un	iless r	noted	belov	N												
		0.212 22																																	
		0.15 12																																	
	0.063 8													1		Checked and Ap						proved													
- 5	K4 Soils Laboratory																one	UNU	u dil	u Ap	-pi 0	veu													
-(≯	Unit 8, Olds Close, Watford, Herts, WD18 9RU Email: james@k4soils.com												In	itial	ls:						J.P														
	AS							CIU			me: 019					JIII									Date: 25/11/2019										
25	519	Appr	oved S	ignato	ries: K.F	Phaur	re (Te	ech.N																					N	1SF-	5-R	3			

	K	4				PAR	TICI	_E :	SIZE	DI	STF	RIB	UT	ION	1					lob Re								274				$\overline{]}$
		soils																		Boreh			Э.					W	51			_
S	Site Na	ame		Vine Ho	ouse														5	Sampl	e No).						-				
Pr	oject l	No.		0	GWPR34	10			Client			(Grou	nd &	Wa	ater L	.td		0	Depth	Тор						3	.50			n	۱
																			D	epth E	Base							-			n	n
	Soil [Descripti	on		Lig	ght bro	own sil	ty cla	ayey S	SAND) with	rare	e fine	e grav	vel				5	Sampl	е Ту	ре						C)			
																				Samp									2019			
	Tee	t Method	4	BS1377	7:Part 2:	1000	claus	<u> </u>)										S	Sched	ules ject s			d					/2019 /2019			_
	100			DOTOT		1000,	oluus	0 0.0	,												ate te								2019			-
	_	CLAY			SILT						SAN									AVEL	_				COBI	BLES	Τ	BO	ULDEF	٦S		
	100	1	Fine		Medium	Co	arse		Fine		Mediu	um		Coars	e		Fine		Me	edium	-	Coa	rse		T	•					i	
	90									T																						
										/																						
	80																				+						+					
%	70					+	_			_	_					_					-						+-	_				
% gui	60																															
Percentage Passing	50								/																							
age F	50								/																							
centa	40										-										-					-	-					
Per	30																				_					_	_					
	20																															
	20																															
	10										-																+					
	0						0.1																									
	0.	001	01 0.01 0.1 1 10 Particle Size mm																	100	0				10	000						
		Particle Size mm Sieving Sedimentation Particle Size mm % Passing Particle Size mm % Passing																														
	Pa																															
		125			100			0587				20					-		port	ions							%		mas	s		
		90 75			100 100			0436 0308				20 19		-		Very Grav	/ coa vel	arse										0. 0.				4
		63			100		0.	0217	,			18				San												79	.3			
		50 37.5			100 100			0158 0112				17 16		-		Silt Clay	,											9. 10				
		28			100			0079				15				olay												10				
		20 14			100			0056 0039				14 13		_		Gra D10		An	alys	is				~								
		14			100			0039				12				D60							mı mı					0.1	09			-
		6.3			100		0.	0016	ì			10				D30							m					0.07		_		
		5 3.35			100 100									-		D10 Unif		ty C	oeffi	cient			mı	m				0.00 6				-
		2 100 Curvature Coefficient																				2		_								
		1.18			99 98		Particl	e de	nsitv	(ass	sume	d)		_		Ren	harks															
		0.425 96 2.70 Mg/m3 Preparation and testing in accorda														ordan	ice wit	th BS	61377	7 unle	ess no	ted be	elow									
		0.3)		96 95	_																										
		0.212			83																											
	0.15 83 0.063 20																															
G	K4 Soils Laboratory													Checked and Approved																		
- (\$	Unit 8, Olds Close, Watford, Herts, WD18 9RU													itial	s:					J.F	•											
	LAS	E					Em		jam					om									Da	te:				2	25/11/	201	9	
1 ES	ійк о 519	Appr	oved S	Signatorie	es: K.Ph	aure (Tech.I		el: 01 J.Pha																		MS	F-5-	R3			

	K	1)		F	PART	ICI	F S	IZF	DIS	TRI	BU.	тіс	אכ				Jo	b Ref						Ī					
	C	SOILS			•	/						20						Во	rehole	e/Pit	No.					WS	1			
S	ite Nam	е		Vine Hous	e						-							Sa	mple	No.						-				
Pro	oject No).		GW	PR34	10		С	lient			Gro	und	1 & W	ater L	td		De	pth T	ор					5.5	50			m	
																		Dep	oth Ba	se					-	-			m	
	Soil De	scriptio	n		L	.ight bro	own c	layey	SAN	D wit	h rare	fine	gra	ivel				Sa	mple	Туре	9					D				
						-							-						ample							/11/2				
	Test N	/lethod		BS1377:P	art 2· ′	1990 c	lause	9.0											hedul Projec			ed				/11/2 /11/2				
	10011	louiou		Belonnin	urt <u>2</u> .	1000, 0	laaco	0.0											Date							/11/2				
		LAY		SIL							SAND							GRA					COF	BLES		BOU	LDERS	5		
	100 -		Fine	e Med	ium	Coars	se	Fi	ne	M	edium		Co	arse		Fine		Med	ium	C	oarse	; •••••								
										Γ																				
	90 -																													
	80 -														+											+				
%	70 -													_	-											\vdash				
6 bu	60 -																													
Percentage Passing	50 -								'																					
age I	30 T																													
rcent	40																													
Pe	30 -							+	_						-					_						++				
	20						/																							
	10																													
	10 +																													
	0 - 🎩 0.00)1														i	_		<u>بد ار</u> 10)0				10	00					
			1 0.01 0.1 1 10 Particle Size mm																											
			Sie	ving				See	dimer	ntatio	on																			
	Parti	cle Size	e mm	% Pas	sing	Par	ticle	Size r	nm	%	Pass	sing																		_
		125 90		100												n <mark>ple</mark> / coa		portic	ons				_		%	dry n 0.0				
		75		100											Gra		1150						+			0.0				
		63		100											San	d										85.2	2			
		50 37.5		100		_									Fine	es <0	063	3mm								13.9	9			
		28		100																										1
		20		100													An	alysis												
		14 10		100									_		D10 D60							nm nm	+			0.11	3			
		6.3		100											D30							nm				0.077				
		5 100 D10													r	nm														
		3.35 99 Uniformity Coefficient 2 99 Curvature Coefficient																												
		1.18		99					_						Cui	vatui	60	Uemcie	SIIL											1
		0.6		99											Ren	narks	5													
		0.425		99											Prepa	aration	n and	testing i	n accor	dance	with I	3S137	77 un	less not	ed bel	ow				
		0.3 99																												
	0.212 98 0.15 82																													
	0.15 82 0.063 14																													
~																								Check	ked a	nd A	ppro	ved		
	K4 Soils Laboratory																													
-(≯	Unit 8, Olds Close, Watford, Herts, WD18 9RU Email: james@k4soils.com												nitia	IS:					J.P											
	AS								: 019												Date: 25/11/2019									
25	19	Appro	ved S	ignatories:	K.Pha	ure (Te	ech.M	gr) J.	Phau	re (La	ab.Mg	r)											MSF-5-R3							

		s	Sul	phate C	Content (Gravimetric Method) for 2:1 Soil Tested in accordance with BS1377 :						f Results
Job No.			Project N	ame						Progra	mme
27431			Vine Hou						Samples r	eceived	11/11/2019
			Client						Schedule r Project s		11/11/2019 12/11/2019
Project No									-		
GWPR341	0			k Water Lt	id			1	Testing S	started	19/11/2019
			ample	_		Dry Mass passing	SO3 Content	SO4 Content			. .
Hole No.	Ref	Тор	Base	Туре	Soil description	2mm			рН		Remarks
		m	m			%	g/l	g/l			
WS1	-	3.50	-	D	Light brown silty clayey SAND with rare fine gravel	100	0.23	0.27	7.53		
G.	9	Ī	-	-	Test Report by K4 SOILS LABORATORY	,	-	-	-		ecked and
					Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU					/ Initials	Approved J.P
	シ				Tel: 01923 711 288					muais	
				•	Email: James@k4soils.com	A ===)				Date:	25/11/2019
251	Я			Approv	ved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.	wgr)					MSF-5-R29

Aaron Abu Ground & Water Ltd 2 The Long Barn Norton Farm Selborne Road Alton Hampshire GU34 3NB

DETS Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 19-15842

Site Reference:Vine House, Comden, London, NW3 1ABProject / Job Ref:GWPR3410Order No:None SuppliedSample Receipt Date:11/11/2019Sample Scheduled Date:11/11/2019Report I ssue Number:1Reporting Date:15/11/2019

Authorised by:

Dave Ashworth Technical Manager

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Son Analysis contineate								
DETS Report No: 19-15842			Date Sampled	04/11/19	04/11/19	04/11/19		
Ground & Water Ltd			Time Sampled	None Supplied	None Supplied	None Supplied		
Site Reference: Vine House, Como	den, London, NW3		TP / BH No	WS1	WS3	WS1		
1AB								
Project / Job Ref: GWPR3410		A	Additional Refs	None Supplied	None Supplied	None Supplied		
Order No: None Supplied			Depth (m)	6.00	2.50	0.30		
Reporting Date: 15/11/2019		DE	ETS Sample No	446511	446512	446513		
Determinand	Unit	RL	Accreditation					
Asbestos Screen (S)	N/a	N/a	ISO17025			Not Detected		
pH	pH Units	N/a	MCERTS	7.6	4.7	6.2		
Total Cyanide	mg/kg	< 2	NONE			< 2		
Total Sulphate as SO ₄	mg/kg	< 200	NONE	680	< 200			
Total Sulphate as SO ₄	%	< 0.02	NONE	0.07	< 0.02			
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	< 10	< 10	< 10		
W/S Sulphate as SO_4 (2:1)	g/l	< 0.01	MCERTS	< 0.01	< 0.01	< 0.01		
Total Sulphur	%	< 0.02	NONE	0.02	< 0.02			
Organic Matter	%	< 0.1	MCERTS			3.2		
Total Organic Carbon (TOC)	%	< 0.1	MCERTS			1.9		
Ammonium as NH ₄	mg/kg	< 0.5	NONE	< 0.5	< 0.5			
Ammonium as NH ₄	mg/l	< 0.05	NONE	< 0.05	< 0.05			
W/S Chloride (2:1)	mg/kg	< 1	MCERTS	4	9			
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS	2.2	4.6			
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS	5	< 3			
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS	2.6	< 1.5			
Arsenic (As)	mg/kg	< 2	MCERTS			24		
W/S Boron	mg/kg	< 1	NONE			< 1		
Cadmium (Cd)	mg/kg	< 0.2	MCERTS			0.4		
Chromium (Cr)	mg/kg	< 2	MCERTS			18		
Chromium (hexavalent)	mg/kg	< 2	NONE			< 2		
Copper (Cu)	mg/kg	< 4	MCERTS			78		
Lead (Pb)	mg/kg	< 3	MCERTS			3980		
W/S Magnesium	mg/l	< 0.1	NONE	0.8	< 0.1		_	
Mercury (Hg)	mg/kg	< 1	NONE			2.3		
Nickel (Ni)	mg/kg	< 3	MCERTS			14		
Selenium (Se)	mg/kg	< 3	NONE			< 3		
Vanadium (V)	mg/kg	< 2	NONE			40		
Zinc (Zn)	mg/kg	< 3	MCERTS			140		
Total Phenols (monohydric)	mg/kg	< 2	NONE			< 2		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30^oC Subcontracted analysis (S)

Soil Analysis Certificate	- Speciated PAHs					
DETS Report No: 19-1584	42		Date Sampled	04/11/19		
Ground & Water Ltd			Time Sampled	None Supplied		
Site Reference: Vine Hou:	se, Comden,		TP / BH No	WS1		
London, NW3 1AB						
Project / Job Ref: GWPR3	3410	A	Additional Refs	None Supplied		
Order No: None Supplied			Depth (m)	0.30		
Reporting Date: 15/11/2	019	DE	ETS Sample No	446513		
Determinand	Unit	RL	Accreditation			
Naphthalene	mg/kg	< 0.1		< 0.1		
Acenaphthylene	mg/kg			< 0.1		
Acenaphthene	mg/kg			< 0.1		
Fluorene	mg/kg			< 0.1		
Phenanthrene	mg/kg	< 0.1	MCERTS	0.62		
Anthracene	mg/kg			0.13		
Fluoranthene	mg/kg		MCERTS	1.55		
Pyrene	mg/kg			1.35		
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	0.72		
Chrysene	5,5			0.61		
Benzo(b)fluoranthene				0.83		
Benzo(k)fluoranthene				0.27		
Benzo(a)pyrene				0.51		
Indeno(1,2,3-cd)pyrene				0.43		
Dibenz(a,h)anthracene				< 0.1		
Benzo(ghi)perylene		< 0.1		0.28		
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	7.3		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate	 TPH CWG Bande 	d				
DETS Report No: 19-158	42		Date Sampled	04/11/19		
Ground & Water Ltd			Time Sampled	None Supplied		
Site Reference: Vine Hou	se, Comden,		TP / BH No	WS1		
London, NW3 1AB						
Project / Job Ref: GWPR:		A	Additional Refs	None Supplied		
Order No: None Supplied			Depth (m)	0.30		
Reporting Date: 15/11/2	2019	DI	ETS Sample No	446513		
Determinand			Accreditation		 	-
Aliphatic >C5 - C6		< 0.01		< 0.01		
Aliphatic >C6 - C8	5,5	< 0.05		< 0.05		
Aliphatic >C8 - C10	5,5			< 2		
Aliphatic >C10 - C12	5,5			< 2		
Aliphatic >C12 - C16				< 3		
Aliphatic >C16 - C21	5, 5			< 3		
Aliphatic >C21 - C34				< 10		
Aliphatic (C5 - C34)				< 21		
Aromatic >C5 - C7		< 0.01		< 0.01		
Aromatic >C7 - C8		< 0.05		< 0.05		
Aromatic >C8 - C10	5, 5			< 2		
Aromatic >C10 - C12	515			< 2		
Aromatic >C12 - C16	515			< 2		
Aromatic >C16 - C21	5,5			< 3		
Aromatic >C21 - C35	5 5			< 10		
Aromatic (C5 - C35)				< 21		
Total >C5 - C35	mg/kg	< 42	NONE	< 42		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate	- BTEX / MTBE					
DETS Report No: 19-1584	2		Date Sampled	04/11/19		
Ground & Water Ltd			Time Sampled	None Supplied		
Site Reference: Vine Hous	se, Comden,		TP / BH No	WS1		
London, NW3 1AB						
Project / Job Ref: GWPR3	3410	A	Additional Refs	None Supplied		
Order No: None Supplied			Depth (m)	0.30		
Reporting Date: 15/11/2	019	DI	ETS Sample No	446513		
Determinand	Unit	RL	Accreditation			
Benzene	ug/kg	< 2	MCERTS	< 2		
Toluene	ug/kg	< 5	MCERTS	< 5		
Ethylbenzene	ug/kg	< 2	MCERTS	< 2		
p & m-xylene	ug/kg	< 2	MCERTS	< 2		
o-xylene	ug/kg	< 2	MCERTS	< 2		
MTBE	ug/kg	< 5	MCERTS	< 5		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

DETS Ltd Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Waste Acceptance Criteria A	Analytical Ce	ertificate - BS EN	12457/2						
DETS Report No: 19-15842		Date Sampled	04/11/19				Landfill Wast	e Acceptance (Criteria Limit
Ground & Water Ltd		Time Sampled	None Supplied						
Site Reference: Vine House, Co London, NW3 1AB	omden,	TP / BH No	WS1					Stable Non- reactive	
Project / Job Ref: GWPR3410		Additional Refs	None Supplied				Inert Waste Landfill	HAZARDOUS waste in non-	Hazardous Waste
Order No: None Supplied		Depth (m)	0.30					hazardous Landfill	Landfill
Reporting Date: 15/11/2019	-	DETS Sample No	446513						
Determinand	Unit	MDL							
TOC ^{MU}	%	< 0.1	1.9				3%	5%	6%
Loss on Ignition	%	< 0.01	6.50						10%
BTEX ^{MU}	mg/kg	< 0.05	< 0.05				6		
Sum of PCBs	mg/kg	< 0.1	< 0.1				1		
Mineral Oil ^{MU}	mg/kg	< 10	< 10				500		
Total PAH ^{MU}	mg/kg	< 1.7	7.3				100		
pH ^{MU}	pH Units	N/a	6.2					>6	
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	< 1			_		To be evaluated	To be evaluated
			10:1			Cumulative	Limit values	for compliance	leaching tes
Eluate Analysis						10:1	using BS E	N 12457-3 at I	_/S 10 I/kg
			mg/l			mg/kg		(mg/kg)	
Arsenic ^u			< 0.01			< 0.1	0.5	2	25
Barium ^U			0.07			0.7	20	100	300
Cadmium ^u			< 0.0005			< 0.005	0.04	1	5
Chromium ^U	1		< 0.005			< 0.05	0.5	10	70
Copper ^U	1		< 0.01			< 0.1	2	50	100
Mercury ^U	1		< 0.0005			< 0.005	0.01	0.2	2
Molybdenum ^U			< 0.001			< 0.01	0.5	10	30
Nickel ^U			< 0.007			< 0.07	0.4	10	40
Lead ^U			0.020			0.20	0.5	10	50
Antimony ^U			< 0.0050			< 0.05	0.06	0.7	5
Selenium ^u			< 0.005			< 0.05	0.1	0.5	7
Zinc ^U			0.005			0.06	4	50	200
Chloride ^U			< 1			< 10	800	15000	25000
Fluoride ^U			< 0.5	-		< 5	10	15000	500
				-		-			
Sulphate ^U	1		2 69		1	20	1000 4000	20000 60000	50000 100000
TDS Rhanal Inday	1				1	690		00000	100000
Phenol Index DOC	1		< 0.01			< 0.1	1 500	-	1000
Leach Test Information			7.6			76.1	500	800	1000
Sample Mass (kg)			0.11						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0.11						
Dry Matter (%)			82.2	ļ					
Moisture (%)			21.8						
Stage 1									
Volume Eluate L10 (litres)			0.88						

M Denotes MCERTS accredited test U Denotes ISO17025 accredited test

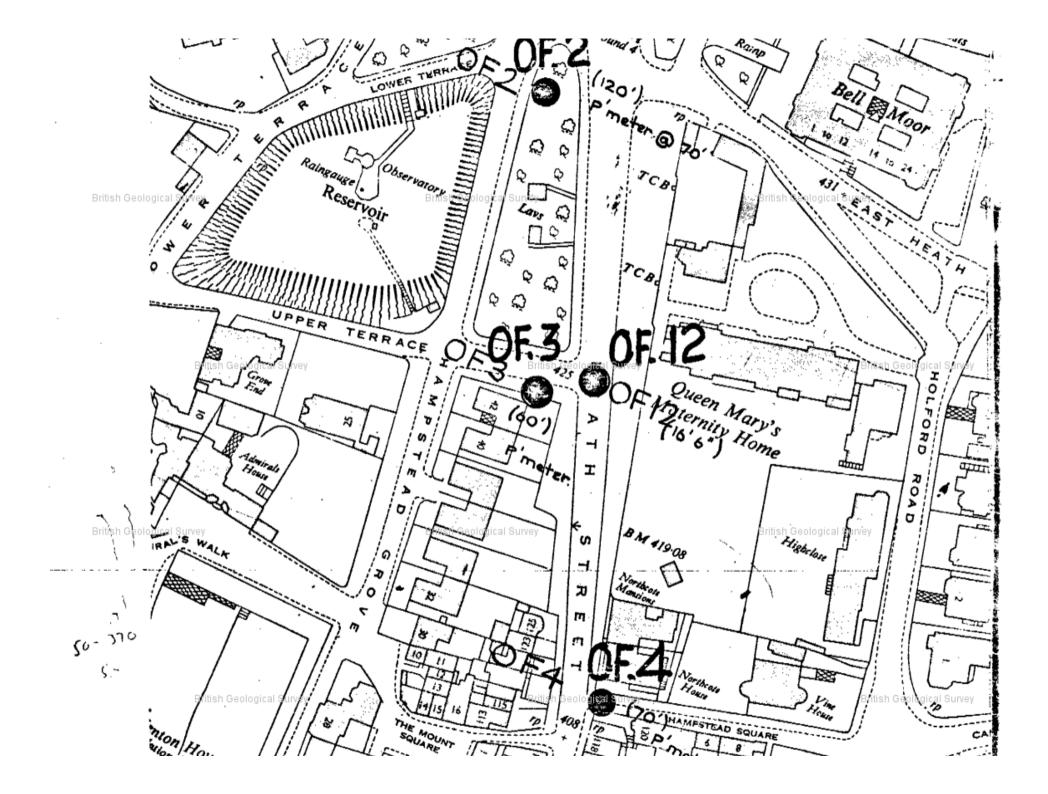
Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 19-15842	
Ground & Water Ltd	
Site Reference: Vine House, Comden, London, NW3 1AB	
Project / Job Ref: GWPR3410	
Order No: None Supplied	
Reporting Date: 15/11/2019	

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
446511	WS1	None Supplied	6.00	8.7	Brown sandy clay
446512	WS3	None Supplied	2.50	8.9	Brown sandy clay
446513	WS1	None Supplied	0.30	17.8	Black loamy sand

Moisture content is part of procedure E003 & is not an accredited test

Insufficient Sample ^{I/S}

 $\stackrel{\cdot}{\text{\ \ samples\ received\ in\ inappropriate\ containers\ for\ hydrocarbon\ analysis\ }}$


Soil Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 19-15842
Ground & Water Ltd
Site Reference: Vine House, Comden, London, NW3 1AB
Project / Job Ref: GWPR3410
Order No: None Supplied
Reporting Date: 15/11/2019

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D	Cations	Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography	E009
Cail	4.0	Chromium House slout	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	F016
Soil	AR	Chromium - Hexavalent	1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 – C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	E004
Soil	AK	C12-C16, C16-C21, C21-C40)	headspace GC-MS	E004
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Coil	D		Determination of fraction of organic carbon by oxidising with potassium dichromate followed by	E010
Soil	D	FOC (Fraction Organic Carbon)	titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR	pH	Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR	Sulphide	Determination of sulphide by distillation followed by colorimetry	E018
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)		E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried

AR As Received

Appendix C Existing Exploratory Hole Records

						C (253 P	2138.8609 0F.4
British Geological Survey	HAMPST	EAD		IARE,	<u>611</u>		
Location	114400000				Во	rehole	Dia : 8"
	No. : 431				Ca	sing	•
Type of	Boring: Shell+	. Auge	r		Gr	i ound L	evel : 407.0481
Date (sta	arted) :	-					Sheet lofz
Buttish	Geological Survey SA	MPLES		Briti	STRATA	al Survey	DESCRIPTION OF STRATAritish Geological Surve
Casing	Water Depth	Туре	No.	Legend		Thickness	· · · · · · · · · · · · · · · · · · ·
							MADE GROUND /
					e:ö	2.0	
	2:0	D	1	83		2.0	Loose Jark bown Sandy GRAVEL (Up to l'rounder
				10	4 0		pepples)
British Geological Survey	(N=13)	D Brit	isi Re eolog		6.0	2.0	CLAY matrix + abundant
			-	00			large fragments , pebbles Abundant rounded hard
	DRY 7:6	Þ	3	0.0.		3.6	l' pepples predominates
100	10.0	<u>ں</u>	A	L'AND	96	١Ö	Matrix. Firm brown sandy
			-		10:6		CLAY Compact grey
. Drities	Geological Surviz: 6	Ь	5	X	is:0	a kic ë	SAND
Dhush					13.0	allouus	Fine silly cloyer SANDiolical Surve
1		<u>ں</u>	6				
	15.°Č		-				
	17.6	Þ	7				
							Fine dense silly SAND
British Geological Survey	20:0		sh G olog	ical Sur x ey		14:0	(especial Billish and towards
	(N=32)						base)
	22.0	D	9				
	25:0	D	10	· · · · .			
	(N=3I)				27'Ö		stiff/hard are CLAY
Britis	Geological Survey 7 : 🚭	Þ	I II	A-CALSE	28.0	a l si cö y	Stiff/hard greyCLAY + little fine sand. British Geological Surve
							F b
15 60 30:0	DRY 30 0	L)	12			40	CLAY .
		-	13		32, Ö		
	32:6		1.3	Ě	-		motted brown tawn
British Geological Survey		ں Bri	isli <u>Gen</u> loa				Sand. British Geological Survey
	350						(Gilly chyoy SAND)
	37.00	D	15			9.0	
	<u>ن</u> :00	<u>ы</u>	16	and good	40: d		
HARKS:				1			
British	• Geological Survey			Briti	sh Geologi	al Survey	. British Geological Surve
· · ·						-	
CALE 1'= S					-		Foundation Engineering Ltd.

British	Geologica	l Survey		HAMPST	rr	tish Geolog	ical Surve	<u> </u>	ecor	D (7 2	orehole	No #4	
	, ,	ocatio	תכ	HAMPS	TEAD	HEA	TH		orehole	Dia	රේ		
1				: 43					asing	:	U .		
ř		fype o	f Borin	g: shell.	AUS	er				evel	407.04	B'	
ł		Date (s	started)	: 0.5.	69				, oona .				1
		Dapita	Geologica Water	Survey SAP	IPLES			STRATA	ical Survey			F STRATA	eological Sur
		of Casing	Level	Depth	Туре	No.		Depth					
								410	7]	more	sandy	
ļ							advisor	42:0	1.0	Com	pact br	oiv~	
ł				AZC	Δ	17			1	1			
British	Geologica			45 0	D	15	ucal Stutor		50	(as	clayey Dia+15		
		ourrey											
ŧ	' ,			47.6	D	19		47 0	ŀб	Golde	n brown y SANI	Jorey.	
i	1 - 20]	46:0 46:0	DRY	50.0	L	20			1		Jer/		
	100)							ыö		sand	アーム	∽	
	i			F2'4"	D	21	×						
		, ,	n Geologic	il Sunv §2∶ ⇔		1-1	F	tish Geolog	cal Survey		•		eological Sur
				55:0	D	22				mica	rwnning Ceous 7	bown	
									11. Ö	SAN	D	act	
				57 G	D	23						· .	
		•		60.0							•	• .	
Britist	Geologica	l Survey		(N.64)	D Bri	is 2.4 .	tal Suive				British Geo	logical Survey	
,				62:6	Ь	25	<u></u>	62:Ö	ŀö	Grey	micaceo	us firm	
							X.	63:Ö	1.0	SANI	CLAY Yown'y	predom.	
				65 Ö	പ	26							· · ·
									7:0	Dark	918~ m		
		Briti	sh Geologica	al Survey	Ь	27	÷	ritish Geolog	ical Survey	Silly	SÁN	D British Ge	eological Sur
	00)	0:0	15:0	70.5	υ		: × :						
				70:Ö		28		70 [:] Ö					
								rend					
												•	
British	Geologica	l Survey	•		в	tish Geolo	ical Surve	/			British Geo	, ological Survey	
										•			
										•			
	ARK	:				انــــــــــــــــــــــــــــــــــــ		l					-
		• Britis	sh Geologica		eler	ins	hile	႕ ရ) ritish Geolog	- 55			British Ge	eological Sur
								• •					
		= 5								Found	tion .Engine	لمعا معتمه	1

Hydrogeology, Land Stability and Ground Movement Assessment

Appendix D PDisp Output

Vine House Hampstead NW3 1AB

asvs

BIA and GMA

Job No.	Sheet No.	Rev.
MGC-19-34		
Drg. Ref.		

Checked

Date

Made by JGM

Titles

Job No.: Job Tille: Sub-tille: Calculation Heading: Initials: Checker: Date Saved: Date Checked: Notes: File Name: File Path: MGC-19-34 Vine House Hampstead NW3 1AB BIA and GMA JGM

vine house excavation and walls all.pdd F:\OneDrive\Documents\Croft Structural Engineers\1-Vine House, London NW3 1AB\07-GIR- Vine House\PDISP

History

Date	Time	Ву	Notes
30-Nov-2019	13:11	Maund Geo Consulting	New
30-Nov-2019	14:44	Maund Geo Consulting	
30-Nov-2019	16:29	Maund Geo Consulting	
30-Nov-2019	16:38	Maund Geo Consulting	
15-May-2020	15:41	Maund Geo Consulting	
25-May-2020	20:12	Maund Geo Consulting	
26-May-2020	08:46	Maund Geo Consulting	
26-May-2020	09:54	Maund Geo Consulting	
26-May-2020	18:48	Maund Geo Consulting	
27-May-2020	18:26	Maund Geo Consulting	

Analysis Options

General

General Global Poisson's ratio: 0.20 Maximum allowable ratio between values of E: 1.5 Horizontal rigid boundary level: 100.30 [m OD] Displacements at load centroids: Yes GSA piled raft data : No

Elastic Elastic : Yes Analysis: Boussinesg Stiffness for horizontal displacement calculations: Weighted average Using legacy heave correction factor: No

Consolidation

Soil ProfilesSoil Profile 1

Layer ref.	N	ame	Level a top	t Number of intermediate displacement levels	Youngs Modulus : Top	Youngs Modulus : Btm.	Poissons ratio	Non-linear curve
			[mOD]		[kN/m ²]	[kN/m ²]		
1	Made Ground		125.3	0 5	20000.	20000.	0.30000	None
2	Bagshot Formation	silty clayey S	SAND 123.3	0 25	37000.	37000.	0.30000	None

Non-linear Curve Coordinates - Non-linear Curve 1

Point Strain Factor [%]

Soil Zones

Zone	Name	X min	X max	max Ymin Yr		Profile	ile		
		[m]	[m]	[m]	[m]				
1	A	0.0	45.000	0.0	35.000	Soil Profile 1			

Polygonal Load Data

Load ref.	Name	Position : Level	Position : F	Polygon :	Coords.	Position : Polygon : Rect. tolerance	No. of Rectangles	Value : Normal (local z)
		[m]		[m]		[%]		[kN/m ²]
1 wall 1 100 kpa		125.30000	(10,10) (23.5 (24.8,12.8) ((23.5,15.5) ((23.1,17.4) ((24.6,13.7) ((23.1,11.8) ((10,10.3) (10)	(25,14) (23.5,17.4 (23.1,15.2 (24.4,12.8 (23.1,10.3	4) 2) 3)	10.000	32	40.000
2 wall 2 80 kpa			(23.5,17) (33 (23.5,21) (23 (32.6,20.6) ((23.5,17.4) (3.5,20.6) (32.6,17.4 (23.5,17)	1)	10.000		
3 wall 3 10 kpa			(23.5,20.6) ((10,15) (10.3 (23.5,20.6)	3,15) (10.		10.000	2	40.000
4 wall 4 60 kpa		125.30000	(10.3,15) (9. (7.85,12.7) ((10.3,10.7) ((10,10.3) (8. (8.75,14.3) ((9.1,11) (10.3,10. .75,11) (1	7.6,12.7)	10.000	33	20.000
5 internal wall 1	100 kpa	125.30000	(14.7,10.3) ((16,20.6) (14 (14.7,10.3)			10.000	1	40.000
6 internal wall 2	100 kpa	125.30000	(17.8,14.8) ((19,18.9) (17 (17.8,14.8)			10.000	1	40.000
7 internal wall 3	100 kpa	125.30000	(20.9,12.3) ((22,13.7) (20 (20.9,12.3)			10.000	1	40.000
8 basement floor s	lab 8 kpa	125.30000	(10,10) (23.5 (24.8,12.8) ((23.5,15.5) ((33,21) (10,2 (8.75,14.3) ((8.75,11) (10)	(25,14) (23.5,17) 21) (10,15 (7.6,12.7)	(33,17) 5)	10.000	11	0.0
9 thin internal sl	ab 8 kpa	125.30000	(9.5,12.3) (2	20.9,12.3)	10.000	2	0.0
			(20.9,19.1) ((11.8,13.8) ((9.5,12.3)	(9.5,13.8))			
10 walls plus thick	slab (assume 100 kpa	125.30000	(11.8,12.3) ((20.9,19.1) ((11.8,21) (33 (23.5,17) (23 (24.8,12.8) ((23.5,10) (11 (11.8,12.3)	(11.8,19.1 3.2,21) (3 3.5,15.5) (23.5,11.5	1) 33,17) (25,14)	10.000	9	40.000

Vine House Hampstead NW3 1AB

BIA and GMA

Job No.	Sheet No.
MGC-19-34	

Date

Rev.

Checked

Drg. Ref.

Ma JG

lade	by	
GM		

						JGM
Load ref.	Name	Position : Level	Position : Polygon : Coords.	Position No. of : Polygon Rectangles	Value : Normal	
				: Rect. tolerance	(local z)	
11 walls plus thick	slab	125.30000	(11.8,13.8) (11.8,21) (10,21) (10,15) (8.75,14.3) (7.6,12.7)		40.000	
			(8.75,11) (10,10.5) (10,10) (11.8,10) (11.8,12.3) (9.5,12.3) (9.5,13.8)			
			(11.8,13.8)			
Polygonal Loads' No. Centre : Centre		Depth v				
х у	local x from					
[m] [m]	global X [Degrees] [m]	[m]				
Load 1 : wall 1 100 kp (Edge 1 optimal) 1 16.57500 10.1750		0.35000				
2 23.32500 10.9880 3 23.55000 11.8440	0 0.0 0.35000	1.9760				
4 23.65000 11.9300 5 23.75000 12.0160	0 0.0 0.10000	0.56000				
6 23.85000 12.1020 7 23.95000 12.1880 8 24.05000 12.2740	0 0.0 0.10000	0.50400				
9 24.15000 12.3600 10 24.25000 12.4460	0 0.0 0.10000 0 0.0 0.10000	0.42000				
11 24.35000 12.5320 12 24.42500 12.6325 13 24.47500 12.7475	0 0.0 0.050000					
13 24.47500 12.7475 14 24.52500 12.8625 15 24.57500 12.9775	0 0.0 0.050000	0.54500 0.67500 0.80500				
16 24.62500 13.0925 17 24.70000 13.5000	0 0.0 0.050000 0 0.0 0.10000	0.93500 1.6000				
18 24.77500 13.5500 19 24.82500 13.6500 20 24 87500 13 7500	0 0.0 0.050000	1.3500				
20 24.87500 13.7500 21 24.92500 13.8500 22 24.97500 13.9500	0 0.0 0.050000	0.75000 0.45000 0.15000				
23 23.32500 16.1625 24 23.56389 15.0861	0 0.0 0.35000 1 0.0 0.12778	2.3750				
25 23.69167 14.9583 26 23.81944 14.8305 27 23.94722 14.7027	6 0.0 0.12778	0.70000 0.70000 0.70000				
28 24.07500 14.5750 29 24.20278 14.4472	0 0.0 0.12778 2 0.0 0.12778	0.70000				
30 24.33056 14.3194 31 24.45833 14.1916 32 24.58611 14.0638	7 0.0 0.12778	0.70000				
Load 2 : wall 2 80 kpa (Edge 1 optimal)		0.70000				
1 28.07500 17.1750 2 32.82500 19.0000	0 0.0 0.35000	0.35000 4.0000				
3 28.05000 20.8250 Load 3 : wall 3 10 kpa (Edge 1 optimal)		0.35000				
1 16.75000 20.8250 2 10.17500 17.8250		13.500 0.35000				
Load 4 : wall 4 60 kpa (Edge 11 optimal)						
1 8.88079 14.3520 2 9.14237 14.4562 3 9.27497 14.4639	4 -55.923 0.060294	0.43876 1.3163 1.9134				
4 8.70971 14.0034 5 8.61034 13.8712	6 -55.923 0.053865 1 -55.923 0.053865	0.81232				
6 8.51098 13.7389 7 8.41161 13.6067 8 8.31225 13.4744	1 -55.923 0.053865	0.77180 0.75155 0.73129				
8 8.31225 13.4744 9 8.21288 13.3422 10 8.11352 13.2099	1 -55.923 0.053865	0.73129 0.71103 0.69078				
11 8.01415 13.0777 12 7.91479 12.9454	1 -55.923 0.053865 6 -55.923 0.053865	0.67052				
13 7.83989 12.8200 14 7.78946 12.7013 15 8.31556 11.8605	3 -55.923 0.070039	0.53187 0.31534 0.24463				
16 8.90614 11.0464 17 8.98467 10.9811	3 -55.923 0.098054 8 -55.923 0.098054	0.25756				
18 9.07913 10.9286 19 9.18950 10.8887 20 9.29988 10.8488	1 -55.923 0.094887	0.20131 0.23663 0.27194				
21 9.41025 10.8089 22 9.52062 10.7690	2 -55.923 0.094887 3 -55.923 0.094887	0.30726				
23 9.63100 10.7291 24 9.74137 10.6892	4 -55.923 0.094887	0.37789				
25 9.85175 10.6493 26 9.96212 10.6094 27 10.07249 10.5695	5 -55.923 0.094887	0.44853 0.48385 0.51916				
28 10.15134 10.5089 29 10.20417 10.4486	9 -55.923 0.093791 5 -55.923 0.065369	0.47969				
30 10.26250 10.4091 31 10.32083 10.3697 32 9.80054 14.7375	3 -55.923 0.065369	0.070427				
33 10.16685 14.9125 Load 5 : internal wall	0 -55.923 0.060294					
(Edge 1 optimal) 1 15.35000 15.5000 Load 6 : internal wall		10.300				
Edge 1 optimal) 1 18.40000 16.8500	0 0.0 1.2000	4.0000				
Load 7 : internal wall (Edge 1 optimal)	3 100 kpa	1 2000				
1 21.42500 13.0000 Load 8 : basement floo (Edge 2 optimal)	0 0.0 1.1500 r slab 8 kpa	1.3000				
1 16.75000 10.2500 2 16.43750 10.7500	0 90.000 0.50000	14.125				
3 16.04044 11.2500 4 16.05294 12.1000 5 16.17148 12.7250	0 90.000 1.2000	14.919 16.094 17.107				
6 16.48008 13.3750 7 16.74609 14.1500	0 90.000 1.2500 0 90.000 0.30000	16.790 16.208				
8 16.86250 14.6500 9 16.87500 15.2500	0 90.000 0.70000 0 90.000 0.50000	14.975 13.750				
10 16.75000 16.2500 11 21.50000 19.0000 Load 9 : thin internal	0 90.000 4.0000	13.500 23.000				
(Edge 1 optimal) 1 10.67500 13.0500	0 0.0 2.3500	1.5000				
2 16.35000 15.7250 Load 10 : walls plus t	0 0.0 9.0000 hick slab (assume 100	6.8500 kpa				
(Edge 1 optimal) 1 17.67500 10.7500 2 17.87500 11.9000		11.650				
3 22.68750 12.5250 4 22.86250 13.3750	0 90.000 0.45000 0 90.000 1.2500	3.6750 4.0250				
5 22.73750 14.3750 6 22.36250 15.1250 7 22.17500 16.2500	0 90.000 0.75000	3.7750 3.0250 2.6500				
8 26.95322 18.0750 9 22.50572 20.0750	0 90.000 2.1500 0 90.000 1.8500	12.206				
Load 11 : walls plus t	hick slab					

M

Rev.

Checked

Vine House Hampstead NW3 1AB BIA and GMA

GC-19-34	
Ref.	

Date

Sheet No.

Made by

Drg.

Job No.

JGM

Centre : Centre : Angle of Width x Depth y x y local x from global X No.
 global x

 [Cdge 2 optimal)
 -180.00
 1.8500
 7.2000

 1 10.92500 17.40000
 -180.00
 0.50000
 1.6500

 2 9.75001 14.3000
 -180.00
 0.50000
 1.6500

 3 9.12500 12.6500
 -180.00
 0.25000
 2.9700

 4 8.63500 12.66500
 -180.00
 0.23000
 2.3100

 6 8.17500 12.67500
 -180.00
 0.23000
 1.6500

 7 7.94501 12.66500
 -180.00
 0.23000
 9.9000

 8 7.71500 12.65500
 -180.00
 0.23000
 0.39000

 9 10.92500
 1.15000
 -180.00
 0.23000
 2.3000

 9 10.92500
 1.15000
 -180.00
 0.23000
 2.3000

 10
 9.75000
 1.45000
 -180.00
 0.23000
 1.3000

asys

Displacement Lines

Name	X1	Yl	Z1	X2	¥2	Z2	Intervals	Calculate	Detailed Results
	[m]	[m]	[m]	[m]	[m]	[m]	[No.]		
cross section1	18.00000	0.00000	125.30000	18.00000	35.00000	125.30000	30	Yes	Yes
cross section 2	27.00000	0.00000	125.30000	27.00000	35.00000	125.30000	30	Yes	Yes
long section	0.00000	18.00000	125.30000	40.00000	18.00000	125.30000	30	Yes	No

Displacement Grids

Name	Extrusion: Direction	Xl	Yl	Zl	X2	¥2	Z2	Intervals Along Line	Extrusion: Distance	Extrusion: Intervals Along	Calculate	Detailed Results
		[m]	[m]	[m]	[m]	[m]	[m]	[No.]	[m]	[No.]		
grid	Global X	0.00000	0.00000	125.30000	-	30.00000	125.30000	20	45.00000	10	Yes	Yes

Results : Immediate : Load Centres : Polygonal

Ref. Name	x	У	z	δz	Stress: Calc. Level	Stress: Vertical	Stress: Sum Princ.	Vert. Strain
	[m]	[m]	[mOD]	[mm]	[mOD]	[kN/m ²]	[kN/m ²]	[µ]
1 wall 1 100 kpa	19.57926	11.64500	125.30000	9.00533	125.13	39.878	87.804	0.0012750
2 wall 2 80 kpa	28.96578	19.00575	125.30000	8.80117	125.13	39.994	91.305	0.0012300
3 wall 3 10 kpa	14.81012	2 19.93988	125.30000	10.39857	125.13	73.176	146.98	0.0025517
4 wall 4 60 kpa	8.89817	12.41668	125.30000	6.69754	125.13	39.879	85.389	0.0013113
5 internal wall 1 100 kpa	15.35000	15.50000	125.30000	8.21339	125.13	39.738	82.474	0.0013459
6 internal wall 2 100 kpa	18.40000	16.85000	125.30000	8.54483	125.13	39.671	81.696	0.0013532
7 internal wall 3 100 kpa	21.42500	13.00000	125.30000	11.47500	125.13	79.264	160.58	0.0027435
8 basement floor slab 8 kpa	18.84163	16.04225	125.30000	8.13819	125.13	35.996	68.230	0.0013163
9 thin internal slab 8 kpa	16.04307	15.58032	125.30000	7.19099	125.13	13.686	38.622	310.28E-6
10 walls plus thick slab (assum	ne 100 kpa 22.40291	16.54712	125.30000	10.29500	125.13	40.029	92.265	0.0012179
11 walls plus thick slab	10.44303	15.06023	125.30000	7.85422	125.13	45.344	98.187	0.0014745

Results : Consolidation : Load Centres : Polygonal

None

Results : Total : Load Centres : Polygonal

None

Results : Immediate : Displacement Data : Lines

Ref.		Name	x	У	z	δz	Stress: Calc. Level	Stress: Vertical	Stress: Sum Princ.	Vert. Strain
			[m]	[m]	[mOD]	[mm]	[mOD]	[kN/m ²]	[kN/m ²]	[4]
1	rogg	section1	18.00000	0.00000	125.30000	0.69335	125.13	23.865E-6		-1.8027E-6
		section1	18.00000	1.16667	125.30000	0.86480	125.13	38.267E-6		-2.3283E-6
		section1	18.00000	2.33333	125.30000	1.07973	125.13	65.010E-6		-3.0918E-6
		section1	18.00000	3.50000	125.30000	1.35125	125.13	119.09E-6		-4.2539E-6
		section1	18.00000	4.66667	125.30000	1.69804	125.13	241.82E-6		-6.1348E-6
1 cr	ross	section1	18.00000	5.83333	125.30000	2.14863	125.13	571.36E-6	0.63295	-9.4571E-6
1 ст	ross	section1	18.00000	7.00000	125.30000	2.75212	125.13	0.0017328	1.0862	-16.181E-6
1 cr	ross	section1	18.00000	8.16667	125.30000	3.61834	125.13	0.0086924	2.2819	-33.664E-6
1 ст	ross	section1	18.00000	9.33333	125.30000	5.16874	125.13	0.20994	8.8251	-118.73E-6
1 ci	ross	section1	18.00000	10.50000	125.30000	8.81119	125.13	43.780	100.03	0.0013453
		section1	18.00000	11.66667	125.30000	8.89979	125.13	39.862	87.249	0.0012823
		section1	18.00000	12.83333	125.30000	6.53840	125.13	0.23699		-128.55E-6
		section1	18.00000	14.00000	125.30000	6.10874	125.13	0.045461		-76.339E-6
		section1	18.00000	15.16667	125.30000	7.67599	125.13	36.687	65.289	0.0014053
		section1	18.00000	16.33333	125.30000	8.14517	125.13	37.380	71.733	0.0013537
		section1	18.00000	17.50000	125.30000	8.26834	125.13	37.384	72.350	0.0013447
		section1	18.00000	18.66667	125.30000	8.27755	125.13	35.106	66.372	0.0012863
		section1	18.00000	19.83333 21.00000	125.30000	8.95423	125.13 125.13	39.929 39.281	88.607 80.742	0.0012663
		section1 section1	18.00000	22.16667	125.30000	7.79484 4.46879	125.13	0.036684		0.0013421 -61.186E-6
		section1	18.00000	23.33333	125.30000	3.34028	125.13	0.0039189		-23.834E-6
		section1	18.00000	24.50000	125.30000	2.61382	125.13	0.0010263		-12.923E-6
		section1	18.00000	25.66667	125.30000	2.07967	125.13	388.73E-6		-8.1004E-6
		section1	18.00000	26.83333	125.30000	1.66807	125.13	180.23E-6		-5.5143E-6
		section1	18.00000	28.00000	125.30000	1.34380	125.13	94.978E-6		-3.9624E-6
1 cr	ross	section1	18.00000	29.16667	125.30000	1.08511	125.13	54.687E-6	0.19754	-2.9595E-6
		section1	18.00000	30.33333	125.30000	0.87708	125.13	33.606E-6		-2.2762E-6
1 cr	ross	section1	18.00000	31.50000	125.30000	0.70892	125.13	21.710E-6	0.11954	-1.7917E-6
1 ст	ross	section1	18.00000	32.66667	125.30000	0.57247	125.13	14.593E-6	0.095889	-1.4374E-6
1 cr	ross	section1	18.00000	33.83333	125.30000	0.46150	125.13	10.133E-6	0.078148	-1.1716E-6
		section1	18.00000	35.00000	125.30000	0.37107	125.13	7.2288E-6	0.064558	0.0
		section 2	27.00000	0.00000	125.30000	0.48057	125.13	11.786E-6		-1.2332E-6
		section 2	27.00000	1.16667	125.30000	0.58777	125.13	17.006E-6		-1.5040E-6
		section 2	27.00000	2.33333	125.30000	0.71679	125.13	25.327E-6		-1.8602E-6
		section 2	27.00000	3.50000	125.30000	0.87190	125.13	39.153E-6		-2.3381E-6
		section 2	27.00000	4.66667	125.30000	1.05807	125.13	63.216E-6		-2.9940E-6
		section 2 section 2	27.00000 27.00000	5.83333 7.00000	125.30000	1.28090	125.13 125.13	107.16E-6 190.73E-6		-3.9147E-6
		section 2	27.00000	8.16667	125.30000	1.85855	125.13	351.85E-6		-7.1264E-6
		section 2	27.00000	9.33333	125.30000	2.21918	125.13	651.85E-6		-9.8003E-6
		section 2	27.00000	10.50000	125.30000	2.62354	125.13	0.0011876		-13.433E-6
		section 2	27.00000	11.66667	125.30000	3.06234	125.13	0.0021682		-18.210E-6
		section 2	27.00000	12.83333	125.30000	3.52019	125.13	0.0036467		-23.940E-6
		section 2	27.00000	14.00000	125.30000	3,98871	125.13	0.0048408		-30.084E-6
2 C1	ross	section 2	27.00000	15.16667	125.30000	4.56181	125.13	0.0095439	2.8851	-42.656E-6
2 C1	ross	section 2	27.00000	16.33333	125.30000	5.67054	125.13	0.16761	8.1848	-111.88E-6
2 C1	ross	section 2	27.00000	17.50000	125.30000	8.86113	125.13	41.754	92.963	0.0013195
		section 2	27.00000	18.66667	125.30000	9.36939	125.13	39.994	91.505	0.0012270
		section 2	27.00000	19.83333	125.30000	9.01728	125.13	39.997	90.950	0.0012356
		section 2	27.00000	21.00000	125.30000	7.08261	125.13	29.641	63.994	966.78E-6
		section 2	27.00000	22.16667	125.30000	4.12948	125.13	0.030437		-55.783E-6
		section 2	27.00000	23.33333	125.30000	3.06947	125.13	0.0034550		-22.207E-6
		section 2	27.00000	24.50000	125.30000	2.39092	125.13	932.94E-6		-12.060E-6
		section 2	27.00000	25.66667	125.30000	1.89688	125.13	358.41E-6		-7.5334E-6
		section 2 section 2	27.00000 27.00000	26.83333 28.00000	125.30000	1.51922	125.13 125.13	166.99E-6 88.020E-6		-5.1094E-6
2 C1	1023	Section 2	27.00000	20.00000	123.30000	1.22332	120.13	00.0202-0	0.24453	-3.00232-0

Vine House Hampstead NW3 1AB

asys

BIA and GMA

Job No.	Sheet No.
MGC-19-34	
Drg. Ref.	

Date

Rev.

Checked

Made by JGM

Ref. Name	x	У	z	δz	Stress: Calc. Level	Stress: Vertical	Stress: Sum Princ.	Vert. Strain
	[m]	[m]	[mOD]	[mm]	[mOD]	[kN/m ²]	[kN/m ²]	[µ]
2 cross section	2 27.00000	29.16667	125.30000	0.98805	125.13	50.605E-6	0.18239	-2.7325E-6
2 cross section	2 27.00000	30.33333	125.30000	0.79916	125.13	31.044E-6	0.14028	-2.1022E-6
2 cross section	2 27.00000	31.50000	125.30000	0.64652	125.13	20.030E-6	0.11055	-1.6570E-6
2 cross section	2 27.00000	32.66667	125.30000	0.52260	125.13	13.457E-6	0.088859	-1.3320E-6
2 cross section	2 27.00000	33.83333	125.30000	0.42170	125.13	9.3462E-6	0.072601	-1.0884E-6
2 cross section	2 27.00000	35.00000	125.30000	0.33935	125.13	6.6733E-6	0.060145	0.0
3 long section	0.00000	18.00000	125.30000	0.55579	125.13	21.074E-6	0.10102	-1.5139E-6
3 long section	1.33333	18.00000	125.30000	0.71912	125.13	36.916E-6	0.13623	-2.0410E-6
3 long section	2.66667	18.00000	125.30000	0.93140	125.13	69.868E-6	0.19093	-2.8595E-6
3 long section	4.00000	18.00000	125.30000	1.21005	125.13	146.53E-6	0.28143	-4.2119E-6
3 long section	5.33333	18.00000	125.30000	1.58165	125.13	356.94E-6	0.44513	-6.6538E-6
3 long section	6.66667	18.00000	125.30000	2.09267	125.13	0.0011255	0.78859	-11.756E-6
3 long section	8.00000	18.00000	125.30000	2.85397	125.13	0.0061968		-26.029E-6
3 long section	9.33333	18.00000	125.30000	4.35702	125.13	0.20838		-110.98E-6
3 long section	10.66667	18.00000	125.30000	7.81948	125.13	40.654	92.329	0.0012576
3 long section	12.00000	18.00000	125.30000	6.27960	125.13	4.3525		-101.58E-6
3 long section	13.33333	18.00000	125.30000	5.65829	125.13	0.046734	6.1688	-89.494E-6
3 long section	14.66667	18.00000	125.30000	7.25987	125.13	15.047	41.731	352.11E-6
3 long section	16.00000	18.00000	125.30000	7.68461	125.13	20.011	48.002	580.66E-6
3 long section	17.33333	18.00000	125.30000	6.78441	125.13	0.35264		-150.07E-6
3 long section	18.66667	18.00000	125.30000	8.53576	125.13	39.124	78.691	0.0013627
3 long section	20.00000	18.00000	125.30000	6.99018	125.13	0.11106		-129.48E-6
3 long section	21.33333	18.00000	125.30000	9.58100	125.13	39.704	86.038	0.0012902
3 long section	22.66667	18.00000	125.30000	10.28535	125.13	40.004	92.214	0.0012171
3 long section	24.00000	18.00000	125.30000	10.13316	125.13	40.023	92.239	0.0012179
3 long section	25.33333	18.00000	125.30000	9.71092	125.13	40.010	91.336	0.0012306
3 long section	26.66667	18.00000	125.30000	9.30104	125.13	40.009	90.957	0.0012362
3 long section	28.00000	18.00000	125.30000	8.89452	125.13	40.008	90.728	0.0012396
3 long section	29.33333	18.00000	125.30000	8.45615	125.13	40.008	90.505	0.0012429
3 long section	30.66667	18.00000	125.30000	7.91823	125.13	40.007	90.113	0.0012488
3 long section	32.00000	18.00000	125.30000	7.10297	125.13	40.022	89.012	0.0012663
3 long section	33.33333	18.00000	125.30000	3.99701	125.13	1.6093		-153.25E-6
3 long section	34.66667	18.00000	125.30000	2.20684	125.13	0.0089123		-24.946E-6
3 long section	36.00000	18.00000	125.30000	1.51187	125.13	0.0010795		-9.1913E-6
3 long section	37.33333	18.00000	125.30000	1.09760	125.13	272.10E-6		-4.7114E-6
3 long section	38.66667	18.00000	125.30000	0.81688	125.13	97.327E-6		-2.8508E-6
3 long section	40.00000	18.00000	125.30000	0.61574	125.13	42.958E-6	0.12722	-1.9055E-6

Results : Consolidation : Displacement Data : Lines

None

Results : Total : Displacement Data : Lines

None

Results : Immediate : Displacement Data : Grids

Ref.	Name	x	У	z	δz	Stress: Calc. Level	Stress: Vertical	Stress: Sum Princ.	Vert. Strain
		[m]	[m]	[mOD]	[mm]	[mOD]	[kN/m ²]	[kN/m ²]	[µ]
1	grid	0.00000	0 00000	125.30000	0.17145	125.13	3.2566E-6	0.036407	0.0
	grid	4.50000	0.00000	125.30000	0.31454	125.13	7.4942E-6	0.058049	0.0
	grid	9.00000		125.30000	0.49135	125.13	14.951E-6		-1.3036E-6
	grid	13.50000	0.00000	125.30000	0.64039	125.13	22.068E-6		-1.6809E-6
		18.00000	0.00000	125.30000	0.69335	125.13	22.068E-6 23.865E-6		-1.8027E-6
	grid	22.50000	0.00000		0.62790				
	grid			125.30000		125.13	19.452E-6	0.10778	-1.6155E-6
	grid	27.00000	0.00000	125.30000	0.48057	125.13	11.786E-6		-1.2332E-6
1	grid	31.50000	0.00000	125.30000	0.32001	125.13	6.0678E-6	0.057390	0.0
1		36.00000	0.00000	125.30000	0.18972	125.13	3.0860E-6	0.038966	0.0
1	grid	40.50000	0.00000	125.30000	0.09884	125.13	1.5958E-6	0.026351	0.0
	grid	45.00000	0.00000	125.30000	0.04168	125.13	0.0	0.017955	0.0
1	grid	0.00000	1.50000	125.30000	0.21244	125.13	4.3685E-6	0.042485	0.0
	grid	4.50000		125.30000	0.39899	125.13	11.482E-6		-1.0840E-6
1	grid	9.00000	1.50000	125.30000	0.64040	125.13	26.160E-6		-1.7416E-6
	grid	13.50000	1.50000	125.30000	0.84822	125.13	40.889E-6		-2.3357E-6
1	grid	18.00000	1.50000	125.30000	0.92128	125.13	44.233E-6	0.16799	-2.5170E-6
1	grid	22.50000	1.50000	125.30000	0.82823	125.13	34.942E-6	0.14727	-2.2067E-6
1	grid	27.00000	1.50000	125.30000	0.62223	125.13	18.990E-6	0.10647	-1.5958E-6
1		31.50000	1.50000	125.30000	0.40665	125.13	8.6807E-6	0.070202	-1.0525E-6
1	grid	36.00000	1.50000	125.30000	0.23863	125.13	4.0960E-6	0.045711	0.0
1	grid	40.50000	1.50000	125.30000	0.12460	125.13	2.0048E-6	0.029897	0.0
1	grid	45.00000	1.50000	125.30000	0.05437	125.13	1.0034E-6	0.019816	0.0
	grid	0.00000	3.00000	125.30000	0.25890	125.13	5.8946E-6	0.049642	0.0
1		4.50000	3.00000	125.30000	0.50113	125.13	18.318E-6		-1.3719E-6
1	grid	9.00000	3.00000	125.30000	0.83320	125.13	50.242E-6		-2.4221E-6
1	grid	13.50000	3.00000	125.30000	1.12592	125.13	84.394E-6		-3.4144E-6
1		18.00000	3.00000	125.30000	1.22692	125.13	90.898E-6		-3.6918E-6
1	grid	22.50000	3.00000	125.30000	1.09359	125.13	69.573E-6		-3.1536E-6
1		27.00000	3.00000	125.30000	0.80193	125.13	32.325E-6		-2.1153E-6
1	grid	31.50000	3.00000	125.30000	0.51208	125.13	12.656E-6		-1.3000E-6
	grid	36.00000		125.30000	0.29655	125.13	5.5042E-6	0.053901	
1	grid	40.50000	3.00000	125.30000	0.15433	125.13	2.5375E-6	0.033984	0.0
							1.2040E-6	0.021856	0.0
	grid	45.00000	3.00000	125.30000	0.06863	125.13			
1	grid	0.00000	4.50000	125.30000	0.31022	125.13	7.9633E-6	0.057950	0.0
1		4.50000	4.50000	125.30000	0.62302	125.13	30.597E-6		-1.7673E-6
1	grid	9.00000	4.50000	125.30000	1.08496	125.13	110.48E-6	0.23828	-3.5670E-6
1		13.50000	4.50000	125.30000	1.50340	125.13	203.94E-6		-5.3676E-6
	grid	18.00000	4.50000	125.30000	1.64296	125.13	216.85E-6		-5.8018E-6
	grid	22.50000	4.50000	125.30000	1.45045	125.13	161.82E-6		-4.8134E-6
	grid	27.00000	4.50000	125.30000	1.02937	125.13	58.864E-6		-2.8866E-6
	grid	31.50000	4.50000	125.30000	0.63929	125.13	18.801E-6		-1.6220E-6
1	grid	36.00000	4.50000	125.30000	0.36457	125.13	7.5111E-6	0.063926	0.0
	grid	40.50000	4.50000	125.30000	0.18825	125.13	3.2406E-6	0.038703	0.0
1	grid	45.00000	4.50000	125.30000	0.08443	125.13	1.4469E-6	0.024078	0.0
1		0.00000	6.00000	125.30000	0.36501	125.13	10.688E-6		-1.0095E-6
1	grid	4.50000	6.00000	125.30000	0.76557	125.13	53.667E-6		-2.3180E-6
	grid	9.00000	6.00000	125.30000	1.41982	125.13	300.63E-6		-5.7394E-6
	grid	13.50000	6.00000	125.30000	2.03250	125.13	634.26E-6		-9.4585E-6
	grid	18.00000	6.00000	125.30000	2.22392	125.13	657.12E-6		-10.133E-6
1	grid	22.50000	6.00000	125.30000	1.94430	125.13	488.61E-6		-8.1792E-6
	grid	27.00000	6.00000	125.30000	1.31607	125.13	116.02E-6		-4.0749E-6
1	grid	31.50000	6.00000	125.30000	0.79134	125.13	28.454E-6		-2.0445E-6
1		36.00000	6.00000	125.30000	0.44380	125.13	10.468E-6		-1.1446E-6
1	grid	40.50000	6.00000	125.30000	0.22646	125.13	4.1834E-6	0.044163	0.0
1		45.00000	6.00000	125.30000	0.10162	125.13	1.7402E-6	0.026480	0.0
1	grid	0.00000	7.50000	125.30000	0.42094	125.13	14.089E-6	0.077526	-1.1620E-6
1	grid	4.50000	7.50000	125.30000	0.92707	125.13	98.384E-6	0.20618	-3.0864E-6
	grid	9.00000	7.50000	125.30000	1.88364	125.13	0.0011895	0.72397	-10.782E-6
	grid	13.50000	7.50000	125.30000	2.82447	125.13	0.0031697	1.3810	-20.509E-6
	grid	18.00000	7.50000	125.30000	3.08001	125.13	0.0031657		-21.422E-6
	grid	22.50000	7.50000	125.30000	2.67431	125.13	0.0024813		-17.148E-6
1	grid	27.00000	7.50000	125.30000	1.67409	125.13	247.25E-6		-5.9611E-6
1		31.50000	7.50000	125.30000	0.97140	125.13	43.997E-6		-2.6061E-6
1	grid	36.00000	7.50000	125.30000	0.53544	125.13	15.050E-6		-1.3801E-6
	grid	40.50000	7.50000	125.30000	0.26886	125.13	5.4706E-6	0.050493	0.0
1	grid	45.00000	7.50000	125.30000	0.11992	125.13	2.0923E-6	0.029045	0.0
	grid	0.00000	9.00000	125.30000	0.47463	125.13	17.955E-6		-1.3161E-6
1			9.00000						-4.1243E-6
	grid	4.50000	9.00000	125.30000	1.10022	125.13	184.21E-6		
1	grid grid	9.00000 13.50000	9.00000	125.30000 125.30000	2.59901 4.27563	125.13 125.13	0.0099203 0.060834	1.8916	-27.730E-6 -74.732E-6
	grid	18.00000	9.00000	125.30000	4.58889	125.13	0.060054		-74.851E-6
1		22.50000	9.00000	125.30000	4.02130	125.13	0.055622		-64.451E-6
1	grid	27.00000	9.00000	125.30000	2.11138	125.13	547.44E-6	0.59877	-8.9460E-6

Job No.

Sheet No.

Date

Rev.

Checked

MGC-19-34

Drg. Ref.

Made by JGM

BIA and GMA

asys

Vine House Hampstead NW3 1AB

Ref.	Name	x	У	z	δz	Stress: Calc. Level	Stress: Vertical	Stress: Sum Princ.	Vert. Strain	
		[m]	[m]	[mOD]	[mm]	[mOD]	[kN/m ²]	[kN/m²]	[4]	
	l grid 1 grid	31.50000 36.00000	9.00000	125.30000 125.30000	1.18340 0.64082	125.13 125.13	70.485E-6 22.695E-6		-3.3733E-6 -1.6872E-6	
	1 grid	40.50000 45.00000	9.00000 9.00000	125.30000 125.30000	0.31504 0.13891	125.13 125.13	7.2571E-6 2.5094E-6	0.057835 0.031739	0.0	
	l grid 1 grid	0.00000	10.50000	125.30000	0.52187	125.13	21.722E-6	0.097169	-1.4561E-6	
	1 grid 1 grid	4.50000 9.00000	10.50000	125.30000 125.30000	1.26781 4.11366	125.13 125.13	329.84E-6 0.97995	13.561	-5.3715E-6 -139.72E-6	
	1 grid 1 grid	13.50000 18.00000	10.50000 10.50000	125.30000 125.30000	8.49774 8.81119	125.13 125.13	43.789 43.780	100.47	0.0013393 0.0013453	
	1 grid	22.50000	10.50000	125.30000	8.33776	125.13	43.813	99.918	0.0013491	
	1 grid 1 grid	27.00000 31.50000	10.50000 10.50000	125.30000 125.30000	2.62354 1.43409	125.13 125.13	0.0011876 122.12E-6	0.29983	-13.433E-6 -4.4895E-6	
	1 grid 1 grid	36.00000 40.50000	10.50000 10.50000	125.30000 125.30000	0.76158	125.13 125.13	36.763E-6 9.7583E-6	0.14061 0.066311	-2.1067E-6 0.0	
	1 grid 1 grid	45.00000	10.50000	125.30000 125.30000	0.15794	125.13 125.13	2.9920E-6 24.550E-6	0.034498	0.0 -1.5632E-6	
	l grid	4.50000	12.00000	125.30000	1.40012	125.13	486.64E-6	0.43135	-6.4386E-6	
	1 grid 1 grid	9.00000 13.50000	12.00000	125.30000 125.30000	6.69838 8.22740	125.13 125.13	39.927 38.967	85.804 80.768	0.0013082 0.0013213	
	1 grid 1 grid	18.00000 22.50000	12.00000	125.30000 125.30000	8.55553 9.57692	125.13 125.13	38.952 40.084	79.990 93.482	0.0013320 0.0012032	
	1 grid 1 grid	27.00000 31.50000	12.00000	125.30000	3.19210	125.13 125.13	0.0025607	1.3301	-19.785E-6 -6.3438E-6	
	1 grid	36.00000	12.00000	125.30000	0.89954	125.13	65.830E-6	0.18124	-2.7144E-6	
	1 grid 1 grid	40.50000 45.00000	12.00000	125.30000 125.30000	0.41441 0.17618	125.13 125.13	13.228E-6 3.5287E-6	0.037217	-1.1382E-6 0.0	
	1 grid 1 grid	0.00000 4.50000	13.50000 13.50000	125.30000 125.30000	0.58082	125.13 125.13	25.748E-6 491.05E-6	0.10828	-1.6226E-6 -6.6984E-6	
	1 grid 1 grid	9.00000 13.50000	13.50000 13.50000	125.30000 125.30000	6.65300 5.70974	125.13 125.13	39.825 0.044597	83.564	0.0013352 -85.816E-6	
	l grid	18.00000	13.50000	125.30000	6.14127	125.13	0.033212	5.3475	-78.054E-6	
	1 grid 1 grid	22.50000 27.00000	13.50000 13.50000	125.30000 125.30000	10.19379 3.78467	125.13 125.13	40.164 0.0043777	1.8402	0.0011891 -27.318E-6	
	1 grid 1 grid	31.50000 36.00000	13.50000 13.50000	125.30000 125.30000	2.13567	125.13 125.13	765.49E-6 133.32E-6		-10.250E-6 -3.6503E-6	
	1 grid 1 grid	40.50000 45.00000		125.30000 125.30000	0.46320	125.13 125.13	17.839E-6 4.0892E-6		-1.2954E-6 0.0	
	1 grid	0.00000	15.00000	125.30000	0.58751	125.13	25.236E-6	0.10876	-1.6298E-6	
	l grid 1 grid	4.50000 9.00000	15.00000	125.30000 125.30000	1.46627 4.58332	125.13 125.13	362.30E-6 0.40003	10.393	-6.2092E-6 -129.89E-6	
	1 grid 1 grid	13.50000 18.00000	15.00000	125.30000 125.30000	5.46209 7.45419	125.13 125.13	0.028600 33.630	4.6487 56.970	-67.872E-6 0.0013314	
	1 grid 1 grid	22.50000	15.00000	125.30000 125.30000	10.23972	125.13 125.13 125.13	40.043 0.0079476	92.703	0.0012123 -39.715E-6	
	l grid	31.50000	15.00000	125.30000	2.74212	125.13	0.0049190	1.5270	-22.585E-6 -5.1327E-6	
	1 grid 1 grid	36.00000 40.50000	15.00000	125.30000 125.30000	1.22762	125.13 125.13	300.90E-6 23.402E-6	0.096990	-1.4533E-6	
	1 grid 1 grid	45.00000	15.00000 16.50000	125.30000 125.30000	0.20591 0.57866	125.13 125.13	4.6194E-6 23.491E-6	0.041881 0.10612	0.0 -1.5903E-6	
	1 grid 1 grid	4.50000 9.00000	16.50000	125.30000 125.30000	1.41813 4.04134	125.13 125.13	257.80E-6 0.060663	0.37142 5.0785	-5.5546E-6 -72.235E-6	
	1 grid 1 grid	13.50000	16.50000	125.30000	5.47170 8.16923	125.13 125.13	0.029416 37.382		-69.519E-6 0.0013520	
	1 grid	22.50000	16.50000	125.30000	10.31473	125.13	40.058	92.652	0.0012140	
	l grid 1 grid	27.00000 31.50000		125.30000 125.30000	4.20131	125.13 125.13	0.38545 0.38159	9.9058	-142.32E-6 -123.78E-6	
	1 grid 1 grid	36.00000 40.50000	16.50000 16.50000	125.30000 125.30000	1.39619 0.53876	125.13 125.13	660.76E-6 28.977E-6	0.48580	-7.2440E-6 -1.5882E-6	
	1 grid 1 grid	45.00000 0.00000	16.50000 18.00000	125.30000 125.30000	0.21504	125.13 125.13	5.0450E-6 21.074E-6	0.043406	0.0 -1.5139E-6	
	1 grid 1 grid	4.50000 9.00000	18.00000	125.30000 125.30000	1.33663 3.83005	125.13 125.13	200.29E-6 0.058990	0.33096	-4.9514E-6 -68.435E-6	
	1 grid 1 grid	13.50000	18.00000	125.30000 125.30000	5.71561 8.30655	125.13 125.13 125.13	0.050586	6.3321	-91.694E-6 0.0013419	
	l grid	22.50000	18.00000	125.30000	10.25906	125.13	37.374 39.998	92.004	0.0012198	
	l grid 1 grid	27.00000 31.50000	18.00000	125.30000 125.30000	9.20013 7.46428	125.13 125.13	40.008 40.005	90.893 89.553	0.0012571	
	l grid 1 grid	36.00000 40.50000	18.00000	125.30000 125.30000	1.51187 0.55487	125.13 125.13	0.0010795 32.864E-6	0.11137	-9.1913E-6 -1.6685E-6	
	l grid 1 grid	45.00000	18.00000 19.50000	125.30000 125.30000	0.21898	125.13 125.13	5.2886E-6 18.339E-6	0.044115 0.094082	0.0 -1.4100E-6	
	1 grid 1 grid	4.50000 9.00000	19.50000	125.30000	1.22704 3.50863	125.13 125.13	160.49E-6 0.057566		-4.3438E-6 -63.743E-6	
	1 grid 1 grid	13.50000 18.00000	19.50000	125.30000 125.30000	8.08875 8.82093	125.13 125.13	39.307 39.370	82.543 83.883	0.0013168	
	1 grid 1 grid	22.50000 27.00000	19.50000	125.30000 125.30000	9.82924 9.20196	125.13 125.13	39.998 39.994	91.690 91.326		
	1 grid	31.50000	19.50000	125.30000	7.61905	125.13	39.992	90.130	0.0012475	
	l grid 1 grid	36.00000 40.50000	19.50000	125.30000 125.30000	1.51534	125.13 125.13	0.0011886 33.438E-6	0.11139	-9.5749E-6 -1.6687E-6	
	1 grid 1 grid	45.00000	19.50000 21.00000	125.30000 125.30000	0.21720	125.13 125.13	5.2959E-6 15.484E-6	0.043884 0.085916	0.0 -1.2877E-6	
	1 grid 1 grid	4.50000 9.00000	21.00000 21.00000	125.30000 125.30000	1.09472 2.86954	125.13 125.13	121.37E-6 0.032102		-3.6809E-6 -41.555E-6	
	1 grid 1 grid	13.50000 18.00000	21.00000	125.30000 125.30000	7.26360 7.79484	125.13 125.13	39.285 39.281	80.843 80.742	0.0013409 0.0013421	
	1 grid	22.50000	21.00000	125.30000	8.01588 7.08261	125.13	39.279	80.975	0.0013385	
	1 grid 1 grid	31.50000	21.00000	125.30000 125.30000	5.77163	125.13 125.13	29.641 29.638	63.994 63.052		
	l grid 1 grid	36.00000 40.50000	21.00000	125.30000 125.30000	1.39391 0.52695	125.13	859.61E-6 30.366E-6	0.10578	-7.9981E-6 -1.5847E-6	
	1 grid 1 grid	45.00000	22.50000	125.30000 125.30000	0.20972	125.13 125.13	5.0594E-6 12.676E-6	0.042707	-1.1557E-6	
	1 grid 1 grid	4.50000 9.00000	22.50000	125.30000 125.30000	0.94971 2.12302	125.13 125.13	83.401E-6 0.0032819	0.20047	-3.0017E-6 -15.600E-6	
	1 grid 1 grid	13.50000 18.00000	22.50000 22.50000	125.30000 125.30000	3.59105 4.07657	125.13 125.13	0.016629	2.9024	-42.455E-6 -44.103E-6	
	1 grid 1 grid	22.50000 27.00000	22.50000 22.50000	125.30000 125.30000	4.16815 3.76143	125.13 125.13	0.016128	3.0281	-44.373E-6 -40.625E-6	
	1 grid	31.50000	22.50000	125.30000	2.78307	125.13	0.012793	2.2590	-33.054E-6	
	1 grid 1 grid	36.00000 40.50000	22.50000 22.50000	125.30000 125.30000	1.19825 0.48615	125.13 125.13	412.92E-6 24.913E-6	0.095936	-5.6459E-6 -1.4374E-6	
	1 grid 1 grid	45.00000	22.50000 24.00000	125.30000 125.30000	0.19717 0.37658	125.13 125.13	4.6226E-6 10.088E-6	0.040704 0.068200	0.0 -1.0223E-6	
	1 grid 1 grid	4.50000 9.00000	24.00000	125.30000	0.80432 1.60840	125.13 125.13	53.222E-6 582.78E-6	0.15931	-2.3861E-6 -7.4791E-6	
	1 grid 1 grid	13.50000 18.00000	24.00000	125.30000 125.30000	2.49632 2.89507	125.13 125.13	0.0016642	0.99718	-14.849E-6 -16.405E-6	
	1 grid	22.50000	24.00000	125.30000 125.30000	2.95263	125.13 125.13	0.0016773 0.0015415	1.1116	-16.564E-6 -15.315E-6	
	1 grid 1 grid	31.50000	24.00000	125.30000	1.94592	125.13	0.0012353	0.77070	-11.480E-6	
	1 grid 1 grid	36.00000 40.50000	24.00000	125.30000 125.30000	0.99267	125.13 125.13	173.90E-6 18.944E-6	0.084075	-3.8211E-6 -1.2599E-6	
	l grid 1 grid	45.00000	24.00000 25.50000	125.30000	0.18064 0.32461	125.13 125.13	4.0617E-6 7.8525E-6	0.059687	0.0	
	1 grid 1 grid	4.50000 9.00000	25.50000	125.30000 125.30000	0.66837	125.13 125.13	33.015E-6 178.52E-6	0.29499	-1.8814E-6 -4.4132E-6	
	1 grid 1 grid	13.50000	25.50000	125.30000 125.30000	1.83638	125.13 125.13	403.00E-6 440.00E-6	0.50300	-7.5188E-6 -8.6077E-6	
	1 grid 1 grid 1 grid	22.50000	25.50000	125.30000	2.18892 1.95927	125.13 125.13	435.55E-6 405.15E-6	0.58404	-8.7324E-6 -8.0097E-6	
	l grid	31.50000	25.50000	125.30000	1.44776	125.13	301.57E-6	0.39519	-5.9083E-6	
	l grid 1 grid	36.00000 40.50000	25.50000		0.80767	125.13 125.13	78.446E-6 13.759E-6	0.072129	-2.6624E-6 -1.0810E-6	
	l grid 1 grid	45.00000		125.30000 125.30000	0.16144 0.27485	125.13 125.13	3.4580E-6 6.0253E-6	0.035105 0.051878	0.0	
	1 grid 1 grid	4.50000 9.00000	27.00000 27.00000	125.30000 125.30000	0.54721 0.96070	125.13 125.13	20.624E-6 73.399E-6	0.19486	-1.4894E-6 -2.9181E-6	
	1 grid 1 grid	13.50000 18.00000	27.00000	125.30000 125.30000	1.37993 1.61700	125.13 125.13	143.14E-6	0.30178	-4.5174E-6 -5.2450E-6	

ASYS GEO-CONSULTING LTD

Vine House Hampstead NW3 1AB

BIA and GMA

Job No.	Sheet No.	Rev.
MGC-19-34		
Drg. Ref.		
Made by JGM	Date	Checked

Stress: Calc. Level [mOD] Ref. Name у z δz Stress: Stress: Vertical Sum Princ. v Vert. Strain [m] 27.00000 27.00000 27.00000 27.00000 27.00000 28.50000 28.50000 28.50000 28.50000 28.50000 28.50000 28.50000 28.50000 [kN/m²] 163.83E-6 151.40E-6 109.54E-6 39.378E-6 9.7940E-6 2.8757E-6 13.203E-6 33.994E-6 63.375E-6 74.280E-6 75.238E-6 68.801E-6
 [km/m²]
 [µ]

 0.35651
 -5.3370±-6

 0.2450
 -4.8577±-6

 0.2416
 -3.6181±-6

 0.12906
 -1.9334±-6

 0.061235
 0.0

 0.031379
 0.0

 0.041431
 0.0

 0.079445
 -1.1908±-6

 0.13804
 -2.0682±-6

 0.23247
 -3.423±-6

 0.23683
 -3.5475±-6

 0.21474
 -3.2165±-6
 [mOD] 125.30000 125.30000 [mm] 1.64824 1.47253 [m] 22.50000 27.00000 125.13 125.13 1 grid 27.00000 31.50000 36.00000 40.50000 45.00000 4.50000 9.00000 13.50000 18.00000 22.50000 1.47233 1.10009 0.65016 0.32139 0.14091 0.22883 125.13 125.13 125.13 125.13 125.13 125.13 0.22883 0.44258 0.74614 1.04718 1.22589 1.24957 125.13 125.13 125.13 125.13 125.13 125.13 28.5000 28.5000 28.5000 28.5000 28.5000 28.5000 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000 30.00000 22.50000 27.00000 31.50000 36.00000 40.50000 45.00000 1.24937 1.11601 0.84319 0.51910 0.26809 0.12019 0.23083 -3.3473=0 0.21474 -3.2166E-6 0.16298 -2.4415E-6 0.097155 -1.4559E-6 0.051823 0.0 0.028888 0.0 0.12019 0.18741 0.35408 0.57892 0.79809 0.93204 0.94996 0.64820 0.41132 0.21979 0.10020 $\begin{array}{c} 0.028888 \\ 0.038877 \\ 0.038877 \\ 0.0 \\ 0.04268 \\ 0.12877 \\ 0.10247 \\ -1.53582-6 \\ 0.14122 \\ -2.4572-2 \\ 0.16634 \\ -2.4572-6 \\ 0.15080 \\ -2.2577-6 \\ 0.15080 \\ -1.75232-6 \\ 0.15081 \\ -1.75232-6 \\ 0.015314 \\ -1.2892-6 \\ 0.043315 \\ 0.0 \\ 0.025950 \\ 0.0 \end{array}$ 0.00000 4.50000 4.50000 9.00000 13.50000 18.00000 22.50000 27.00000 31.50000 36.00000 40.50000 45.00000

Results : Consolidation : Displacement Data : Grids

None

Results : Total : Displacement Data : Grids

None