# **5B Prince Arthur Road** Hampstead, London, NW3 6AX

SUSTAINABILITY AND ENERGY STATEMENT | MAY 2020

On behalf of Mr and Mrs Palsson



# i | Table of Contents

| 1 EXECUTIVE SUMMARY                          | 1  |
|----------------------------------------------|----|
| 2   INTRODUCTION                             |    |
| 3   THE PROPOSALS                            | 5  |
| 4   PLANNING AND REGULATORY CONTEXT          | 7  |
| 5   SUSTAINABILITY STATEMENT                 |    |
| 6   ENERGY STRATEGY                          | 15 |
| 7   CONCLUSION                               | 19 |
| APPENDIX A1   SITE PLAN                      |    |
| APPENDIX A2   WATER USAGE CALCULATOR         |    |
| APPENDIX A3   DER/TER WORKSHEETS             |    |
| APPENDIX A4   ENERGY PERFORMANCE CERTIFICATE |    |
| APPENDIX A5   GENERAL NOTES                  |    |

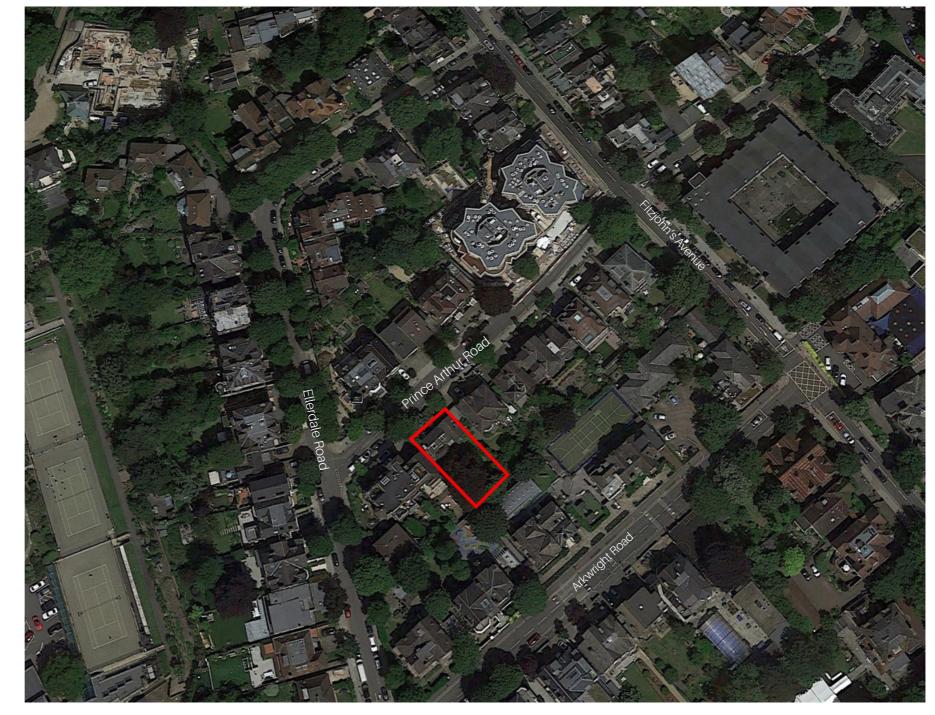
# 5B PRINCE ARTHUR ROAD | HAMPSTEAD

# Section 1 Executive Summary.

# 1 | Executive Summary

- 1.1 Iceni Projects Ltd was commissioned by Mr and Mrs Palsson to produce a Sustainability and Energy Statement for the proposed redevelopment of 5B Prince Arthur Road, Hampstead, London, NW3 6AX.
- 1.2 This application proposes the demolition of the existing property, and the construction of a new three storey plus basement family home, designed to be both contemporary and fit for the future.
- 1.3 Sustainability is a core consideration of this application, and has been considered from the outset. Resource and water efficiency have been maximised, whilst the production of waste and pollution is to be minimised, thus ensuring the impact of the proposals on its immediate surroundings and the environment as a 1.7 whole is minimised.
- 1.4 Consideration has been given to the London Borough of Camden's Local Plan in the formulation of this strategy, aiming to minimise the environmental impact of the proposed development, and to ensure it is constructed to rigorous sustainability standards.
- 1.5 The proposed strategy has been based around the objectives of the Local Plan Policy CC1 (Climate change mitigation). In summary, based on this strategy, the proposed development:
  - will provide a new family home to replace the existing dwelling on-site;
  - will give consideration to the lifecycle environmental performance of the new dwelling when selecting materials to reduce embodied carbon;
  - will minimise internal water consumption to 105 litres per person per day;
  - will retain the existing copper beech tree, and provide new planting to maintain and enhance the biodiversity of the site;
  - will manage surface water runoff through the incorporation of soft landscaping;
  - will minimise energy demand through the specification of low u-values, low air permeability and low thermal bridging to reduce heat loss; and
  - will utilise a highly efficient air source heat pump system to eliminate the need for on-site fossil fuel combustion to provide space and water heating,

mechanical ventilation with heat recovery, and a degree of comfort cooling.


- 1.6 By designing to rigorous energy standards, and omitting the use of fossil fuels for space and water heating through the employment of an air source heat pump system, the application will respond directly to the Climate Emergency declared by the Council in April 2019. These measures combine to provide a carbon dioxide emissions saving of 27.9%, compared to the Part L:2013 baseline, meeting and exceeding the requirements of the London Borough of Camden's policies to achieve a 19% reduction through on-site means alone.
- 7 Overall, the proposals constitute sustainable development in accordance with national, regional and local policy requirements, and will provide a new dwelling seeking to promote these principles in operation.

## 5B PRINCE ARTHUR ROAD | HAMPSTEAD

# Section 2 Introduction.

# 2 | Introduction

- 2.1 Iceni Projects have been appointed by Mr and Mrs Palsson to prepare a Sustainability and Energy Statement for the proposals to redevelop 5B Prince Arthur Road, Hampstead, London, NW3 6AX.
- 2.2 This document details the sustainable design and construction methods adopted by the proposals and gives an overview of the design proposals that will ensure the development operates in a sustainable manner over the lifespan of the proposed dwelling. The Sustainability and Energy Statement report headlines will provide a framework for the project team to operate consistently within the sustainability guidelines set out by the London Borough of Camden.
- 2.3 The site is currently occupied by an infill development building on the former western portion of the garden of 5 Prince Arthur Road, within the Fitzjohns and Frognal ward of the London Borough of Camden. The site currently comprises a large detached house of two storeys with a three storey bay to the east.
- 2.4 The site is bounded by Prince Arthur Road to the north west. Large residential dwellings surround the site to the north east, south east and south west. The proposed development site falls within both the Fitzjohns Netherhall Conservation Area and the Hampstead Neighbourhood Plan Area. A mix of Queen Anne, Domestic Revival, Gothic and Neo-Georgian architectural styles characterise the Fitzjohn's subarea of the Conservation Area, however the site itself is not identified as being a property of particular interest.
- 2.5 This Statement has been produced to demonstrate how the proposals will meet the sustainability-related requirements of the London Borough of Camden, to provide a new dwelling that is fit for the future.
- 2.6 The report is structured to meet these guidelines as follows:
  - Section 3 summaries the proposals;
  - Section 4 discusses the planning context and policies which are relevant to sustainability;
  - Section 5 discusses the development response to the policy drivers for sustainability;
  - Section 6 discusses the development response to the policy drivers for energy; and
  - Section 7 summarises the development's design response.



## 5B PRINCE ARTHUR ROAD | HAMPSTEAD

Figure 1.1 Aerial view of the site, marked in red

# Section 3 The Proposal.

# 3 | The Proposal

- 3.1 The proposed development comprises the demolition of the existing dwelling on the site, and the erection of a replacement family home. It is intended that the new dwelling will:
  - 1. better utilise space and light than the existing dwelling;
  - 2. provide a strong connection between the indoors and outdoors;
  - 3. promote lateral, rather than cellular, living;
  - benefit from improved sustainability and environmental credentials when compared with the existing dwelling;
  - 5. maintain and showcase the copper beech tree that gives the plot its distinctiveness; and
  - 6. positively contribute to the Hampstead street scene and conservation area, with architectural inspiration to be drawn from the character of the surrounding area.
- 3.2 The proposed front and rear elevations and the illustrative floor plans are displayed to the right. The proposed site layout is provided in Appendix A1.



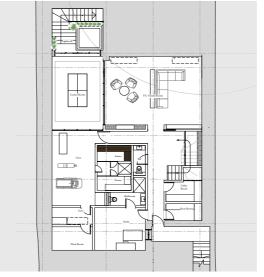



Figure 3.1 Proposed front elevations

Figure 3.3 Proposed basement



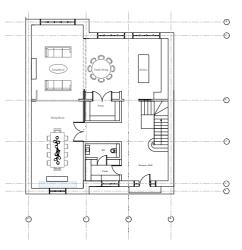



Figure 3.2 Proposed rear elevations

Figure 3.4 Proposed ground floor

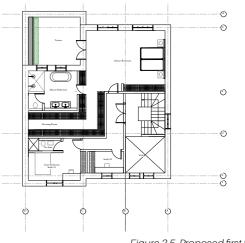



Figure 3.5 Proposed first floor

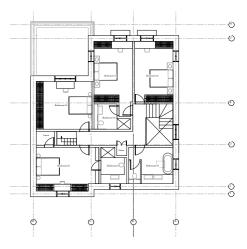
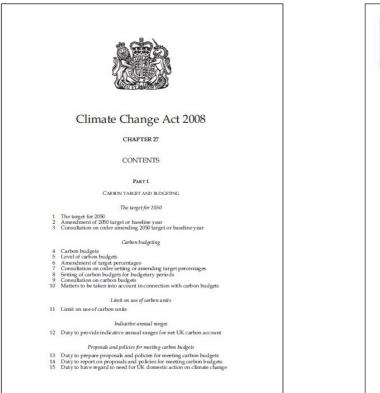



Figure 3.6 Proposed second floor

# Section 4 **Planning and Regulatory Context.**




# 4 | Planning and Regulatory Context

4.1 Built environment sustainability is incorporated within policy and regulation at a national, regional and local level, as set out below.

# NATIONAL

Climate Change Act 2008

- 4.2 On 26<sup>th</sup> November 2008, the UK Government published the Climate Change Act 2008; the world's first long-term legally binding framework to mitigate against climate change. Within this framework, the Act sets legally binding targets to increase greenhouse gas emission reductions through action in the UK and abroad from the 60% target set out in the Energy White Paper, to 80% by 2050.
- 4.3 As required under Section 34 of the Climate Change Act, the Fifth Annual Carbon Budget was accepted by the Government in June 2016. This sets out a budget for UK emissions for the period 2028-2032.
- 4.4 Following a commitment in June 2019, the Climate Change Act has been amended to target net zero emissions by 2050.



National Planning Policy Framework (February 2019)

- 4.5 The Department for Communities and Local Government determines national policies on different aspects of planing and the rules that govern the operation of the system. Accordingly, the National Planning Policy Framework (NPPF), which came into force in March 2012 and was updated in February 2019, aims to strengthen local decision making.
- 4.6 Paragraph 10 of the NPPF confirms that at the heart of this document is a *"presumption in favour of sustainable development"*, and that development proposals that accord with an up-to-date development plan should be approved without delay.
  - Paragraph 7 states that the purpose of the planning system is to contribute to the achievement of sustainable development. At a very high level, the objective of sustainable development can be summarised as meeting the needs of the present without compromising the ability of future generations to meet their own needs.



- An Economic Role ensuring the provision of land and infrastructure needed to help build a *strong*, *responsive and competitive economy*.
- A Social Role supplying the required amount of housing while at the same time ensuring and building strong, vibrant and healthy communities. Ensuring the built environment is sited around accessible local services which help support a community's health, social and cultural wellbeing.
- An Environmental Role ensuring development contributes to the protection and enhancement of the natural, built and historic environment through the improvement of biodiversity, minimising the use of natural resources and production of pollution/ waste, and guaranteeing sufficient adaptation to climate change.

National Planning Practice Guidance

- Climate Change advises how planning can identify suitable mitigation and adaptation measures in plan-making and the application process to address the potential for climate change.
- Design design impacts on how people interact with places and can affect a range of economic, social and environmental objectives. The guidance states that planning policies and decisions should seek to ensure that the physical environment supports these objectives.
- Natural Environment explains key issues in implementing policy to protect biodiversity, including local requirements.
- Renewable and Low Carbon Energy the guidance is intended to assist local councils in developing policies for renewable energy in local plans, and identifies the planning considerations for a range of renewable sources.

Futi

4.8

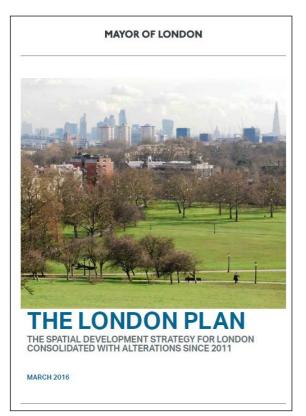
## Future Homes Standard 2025 (March 2019)

- Within the Spring Statement 2019, The Chancellor announced the future introduction of the Future Homes Standard 2025. The Standard will mandate the end of fossil fuel heating systems in new homes from 2025 and target "world-leading levels of energy efficiency". In doing this, the Standard aims to utilise green technology to reduce environmental impacts, as well as reducing consumer energy bills.
- This Standard is expected to build on the Prime Minister's Clean Growth Grand Challenge mission, which aims to at least halve the energy usage of new build properties by 2030. It also looks to halve the costs of renovating existing buildings to achieve a similar standard of energy efficiency as new buildings, whilst improving their quality and safety.

Ministry of Housing, Communities & Local Government

### The Future Homes Standard

2019 Consultation on changes to Part L (conservation of fuel and power) and Part F (ventilation) of the Building Regulations for new dwellings


# 4 | Planning and Regulatory Context

## REGIONAL

4.9 Within Greater London, key sustainable development principles for economic, environmental and social improvement are set out below:

The London Plan (March 2016)

- 4.10 The London Plan is the overall strategic plan for London and includes policies for sustainable development and energy within Chapter 5 (London's response to climate change). Key policies of relevance to this scheme are as follows:
  - Policy 5.2 Minimising Carbon Dioxide Emissions. This states that development proposals should make the fullest contribution to minimising carbon dioxide emissions in accordance with the following energy hierarchy:
    - 7. Be lean: use less energy
    - 8. Be clean: supply energy efficiently
    - 9. Be green: use renewable energy

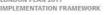


 Policy 5.3 Sustainable Design and Construction. This states that development proposals should demonstrate that sustainable design standards are integral to the proposal, including its construction and operation, and should ensure that they are considered at the beginning of the design process.

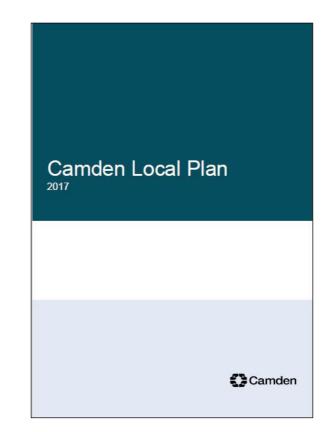
Sustainable Design and Construction Supplementary Planning Guidance (SPG) (April 2014)

4.11 This document provides guidance on the implementation of London Plan Policy 5.3 'Sustainable Design and Construction', as well as a range of policies relating to environmental sustainability. The document contains best practice and priority targets for a range of issues related to sustainable design and construction, grouped into three categories: resource management, adapting to climate change and greening the city, and pollution management.

# LOCAL


Camden Local Plan (2017)

- 4.12 The Camden Local Plan sets out the Council's planning policies to ensure that Camden continues to have robust, effective and up-to-date planning policies that respond to changing circumstances and the borough's unique characteristics and contribute to delivering the Camden Plan and other local priorities.
- 4.13 The overall vision of the Camden Plan, and the Local Plan, is as follows:


We want to make Camden a better borough - a place where everyone has a chance to succeed and nobody gets left behind. A place that works for everyone.

- 4.14 Policies of relevance to the proposed development include:
  - Policy D1 Design. This states that, in order to secure high quality design, the Council will require that development:





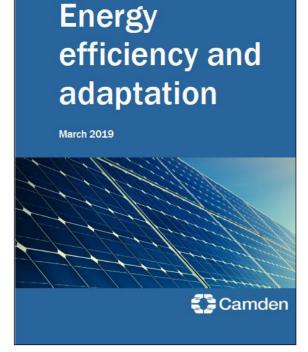
MAYOR OF LONDON



- · respects local context and character;
- is sustainable in design and construction, incorporating best practice in resource management and climate change mitigation and adaptation;
- is of sustainable and durable construction and adaptable to different activities and land uses;
- comprises details and materials that are of high quality and complement the local character;
- responds to natural features and preserves gardens and other open space;
- incorporates high quality landscape design and maximises opportunity for greening for example through planting of trees and soft landscaping; and
- for housing, provides a high standard of accommodation.
- Policy CC1 Climate change mitigation. This states that the Council will require all development to minimise the effects of climate change and encourage all developments to meet the highest feasible environmental standards that are financially viable during construction and occupation by:
  - requiring all development to reduce carbon dioxide emissions through following the steps in the Energy Hierarchy;
  - expecting all developments to optimise resource efficiency; and
  - requiring all new residential development to demonstrate a 19% CO<sub>2</sub> reduction below Part L:2013 Building Regulations.
- Policy CC2 Adapting to Climate Change. This states that, to ensure resilience to climate change, all development should adopt appropriate climate change adaptation measures such as:
  - not increasing, and wherever possible reducing, surface water runoff through increasing permeable surfaces and the use of Sustainable Drainage Systems;
  - · incorporating biodiverse roofs, combination

green and blue roofs, and green walls where appropriate; and

· measures to reduce the impact of urban and dwelling overheating, including application of the Cooling Hierarchy.


Camden Planning Guidance (CPG): Energy Efficiency and Adaptation (March 2019)

- 4.15 This document was published to support the policies set out within the Camden Local Plan (2017). It provides guidance on key energy and resource issues within the London Borough of Camden, and supports Local Plan Policies CC1Climate change and mitigation, and CC2 Adapting to climate change.
- Other policies for which guidance is provided include: 4.16 C1 Health and well-being; A1 Open space; A2 Biodiversity; D1 Design; D2 Heritage; CC3 Water and flooding; CC4 Air quality; and, CC5 Waste.
- This CPG also outlines the requirements for producing 4.17 Energy Assessments and Sustainability Statements.

Camden Planning Guidance

Declaration of a Climate Emergency (April 2019)

4.18 On 8th April 2019, the London Borough of Camden's Cabinet Member for Improving Camden's Environment, Councillor Harrison, declared a climate emergency. As part of this declaration, the following full Council debate was to be dedicated to climate change. It was also noted that the Council would be convening a Citizens' Assembly with a special focus on climate change, and involving young people as much as possible.



## 5B PRINCE ARTHUR ROAD | HAMPSTEAD



# Section 5 Sustainability Statement.

# **5** | Sustainability Statement

- Although the proposed scheme is not referable 5.1 to the Greater London Authority (GLA), the sustainability strategy for the proposed development has been assessed using the GLA supplementary planning guidance (SPG) 'Sustainable Design and Construction'. This enables a holistic sustainability approach for the proposed development. The principle of sustainable design and construction is referenced within the London Borough of Camden's Local Plan, and therefore the GLA's 'Sustainable Design and Construction' SPG represents best practice guidance to meet high standards of sustainable design and construction.
- This Sustainability and Energy Statement for the 5.2 proposed dwelling at 5B Prince Arthur Road is divided into two main parts:
  - · In line with the categories highlighted within the GLA's SPG on 'Sustainable Design and Construction', the sustainability features of the proposed development are outlined within this section.
  - The carbon dioxide (CO<sub>2</sub>) emissions reduction strategy for the proposed dwelling is based on the Energy Hierarchy to provide a rigorous methodology. This strategy, which maximises costeffective opportunities for emissions reductions, is detailed in Section 6 of this report.

# Land

The site, as shown in Figure 5.1, is currently occupied 5.3 by a detached 2-3 storey, large residential dwelling with a private rear garden. It is currently in use as a single family residential dwelling (Use Class C3).



Figure 5.1 View of the existing site

- The utilisation of this site will ensure that the proposed 5.4 dwelling is constructed on a previously used (brownfield) site, thus reducing development on greenfield and Green Belt sites.
- 5.5 The proposed dwelling has been designed in line with the scale and massing of the neighbouring properties. This will ensure that the form of the proposed scheme will fit within the street scene, whilst also respecting the neighbouring buildings, as shown in Figure 5.2 below.

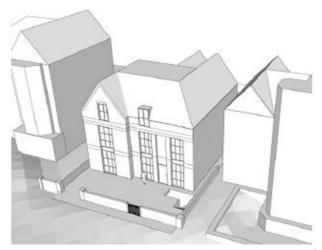
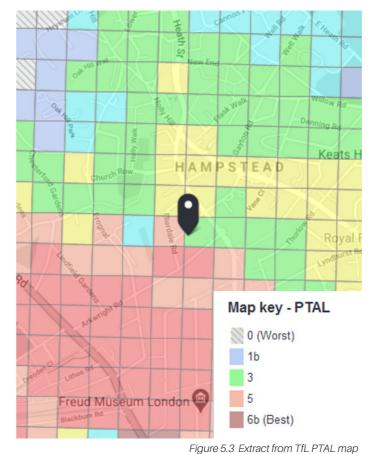




Figure 5.2 Massing model of the proposed dwelling (front)

## Location and Transport

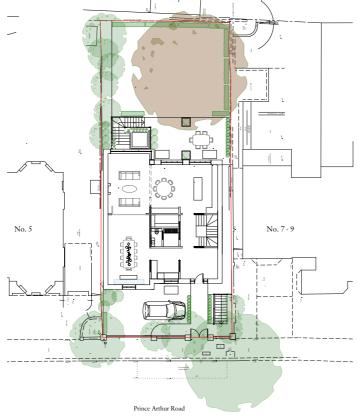
- The site is located towards the western end of Prince 5.6 5.10 Arthur Road, to the south of the main town centre around Hampstead station, and west of Hampstead High Street.
- There are numerous public transport connections 5.11 5.7 for London Underground, rail and the London bus network within the local area, with the site scoring a PTAL rating of 3, as shown in Figure 5.3.
- Hampstead station, located approximately 5-minutes' 5.8 walk to the north, is served by the London Underground Northern line. To the south west, Finchley Road 5.12 and Frognal station, which is served by the London Overground line, is a 10-minute walk from the site.
- In addition to this, the site is located within walking 59 distance of two bus stops, served by the number 46 route between Lancaster Gate and the City of London.



# Water Efficiency

- The city often consumes more water than is available during dry weather. As the population of London grows, this situation will be further exacerbated, with increased pressure on the supply of potable water.
- In order to actively mitigate against this, water saving fittings and appliances shall be installed to target a water consumption rate of 105 litres or less per person per day, based on the DCLG water efficiency calculator for residential dwellings. Full details of the water calculation are provided in Appendix A2.
- Subject to changes at later detailed design stages, it is proposed that the following measures will be incorporated:
- Low volume, dual flush toilets of 6/3 litres.
- Water consumption levels no higher than 3 litres/ minute in hand-wash basins, and 4 litres/minute in kitchen sinks.
- Bath with a capacity to overflow no higher than 180 litres.
- Showers with a flow rate of 8 litres/minute using a flow restrictor.
- · Washing machine with water consumption no more than 18 litres/kg.
- · Dishwasher with water consumption of no more than 4.5 litres per place setting.

5.13 It is intended that, to further reduce the consumption of water post-development, storage tanks to facilitate the recycling of grey- and/or rainwater will be provided. This will contribute to a reduction in the use of potable water.


# 5 | Sustainability Statement

# Materials and Waste

- 5.14 The selection of materials is determined by a variety of factors, such as the architectural context, design rationale, embodied carbon and maintenance requirements. For the proposed dwelling, consideration will be given to the lifecycle environmental performance, with materials selected in consideration of the BRE's Green Guide to Specification, aiming for A or B rated materials wherever possible.
- 5.15 During the detailed design of the building fabric, consideration will be given to minimising the environmental impact of materials, by selecting non-toxic and robust materials to ensure longevity and a minimal impact on the health of the occupants.
- 5.16 Timber will be selected and purchased in consideration of sustainability certification. It is intended that all structural timber elements, along with any timber used for temporary uses such as scaffolding, will be sustainably sourced. This may include FSC and/or PEFC sources.
- 5.17 Where possible, it is intended that locally sourced materials will be employed during the construction of the proposed dwelling. This will aid in ensuring materials that are is in keeping with local vernacular are employed, whilst also contributing to the minimisation of the embodied carbon associated with these materials.
- 5.18 Furthermore, applying the principles of a circular economy, whereby the use of recycled and reused materials is prioritised, where feasible will also aid in minimising the embodied carbon associated with the dwelling.
- 5.19 During operation, a dedicated storage area will be incorporated for the storage of recycling and general waste, in line with the requirements of the London Borough of Camden policy.

# Nature Conservation and Biodiversity

- 5.20 The site in its current state comprises an existing dwelling with a private rear garden. The rear garden currently comprises a significant area of hardstanding, as well as a network of retaining walls, including a garden house, all with concrete foundations.
- 5.21 An arboricultural survey has been undertaken and advice sought in relation to the existing trees, in particular the Copper Beech tree at the rear.
- 5.22 The proposals have been carefully considered around the Copper Beech tree, which is to be retained. Furthermore, it is proposed to remove the current hardstanding and concrete base structures within the garden, which are considered to currently be acting as a barrier to the root growth of the copper beech tree. This will aid in re-establishing the permeable ground around the roots of the tree.
- 5.23 In addition to this, soft landscaping will be incorporated within the rear garden, as shown in Figure 5.4 below.



# Tackling Increased Temperatures and Drought

- 5.24 Inorder to protect the development against overheating in the future, a number of key design features have been proposed to ensure the new dwelling is resilient to increased temperatures which may be experienced as a result of climate change and the urban heat island effect. A summary of the measures included to reduce the risk of overheating is provided below.
- 5.25 The design of the proposed dwelling has been developed in line within the GLA's recommended 'Cooling Hierarchy' approach, detailed in London Plan Policy 5.9. This applies a similar principle to the thorough decision-making process of the Energy Hierarchy, with the aim of reducing CO<sub>2</sub> emissions from cooling, and minimising the risk of overheating where no cooling is present:

# Minimisation of internal heat generation through energy efficient design

- Heat gain from lighting is kept to a minimum as a result of an energy-efficient lighting design solution.
- The availability of natural light is maximised by optimising the light transmittance of the glass elements of the façade.
- Heat gains from equipment will be minimised through the specification of low energy systems.
- The scheme will use an air source heat pump for heating and hot water. This is a low temperature distribution system, leading to lower internal heat gains from distribution pipework.

# Reduction of the amount of heat entering the building in the summer

 The building's façades have a balanced amount of glazing to optimise daylight penetration, without increasing the risk of overheating arising from solar gain.

## Management of the heat within the building

 The proposed dwelling will have high ceilings, promoting increased air movement and stratification, whereby warmer air rises, thus aiding to mitigate overheating.

## Passive ventilation

· Openable windows on multiple aspects across

Figure 5.4 Proposed landscaping

all floors will provide a passive ventilation strategy that utilises cross-flow and stack ventilation to maximise the potential for natural ventilation within the proposed dwelling.

# Mechanical and active cooling

Cooling may potentially be provided by the proposed Nilan Compact P system, which includes a reversible cooling unit capable of cooling air used for ventilation only. Whilst this cooling will not be the equivalent of air conditioning, whereby the air within a space is cooled to a specified temperature, the use of a reversible cooling unit allows the specified system to cool incoming air by up to 10°C. In this way, supply air can be cooled during warm periods, without affecting the efficiency with which hot water is produced. The inclusion of this technology has been accounted for within the energy modelling detailed within the Energy Strategy section of this report.

# Flooding

- 5.26 Figure 5.5 below confirms that the proposed site is located in Flood Zone 1, and is not at risk of flooding from rivers or the sea, reservoirs or surface water.
- 5.27 The proposed reduction in hardstanding area through the removal of the existing built structures in the rear garden, and the re-establishment of permeable ground around the roots of the Copper Beech tree, will aid in reducing the volume of surface water runoff on-site. Furthermore, the incorporation of soft landscaping will positively contribute to the management of the 5mm storm event, therefore limiting runoff for the typical everyday rainfall event.
- 5.28 The management of surface water in this way will reduce the burden on the existing Thames Water sewer network, as well as reducing the risk of flooding on-site and within the immediate surroundings.

# Pollution

# Air Pollution

- 5.29 The Environment Act 1995 requires all Local Authorities to review air quality within their districts. If it appears that any air quality 'Objective' prescribed in the regulations and in the National Air Quality Strategy is not likely to be achieved, then the Local Authority must designate the affected area as an Air Quality Management Area (AQMA).
- 5.30 The site location, and the whole of the London Borough of Camden, is specified as an AQMA, due to excessive levels of nitrogen dioxide  $(NO_2)$  and particulate matter  $(PM_{10})$  arising from road transport.
- 5.31 Figure 5.6 below shows the levels of NO2 and PM10 measured at the site in 2016. These images indicate that the levels of  $NO_2$  and  $PM_{10}$  present at the site in 2016 would have been below the annual mean objectives for both pollutants.

5.32 No fossil fuels will be used for the building systems 5.35 proposed for the new dwelling, and it is anticipated that transport emissions may be mitigated by encouraging the occupants to cycle through the provision of bicycle storage within the new dwelling.

## Noise Pollution

- 5.33 The development is not located within close proximity to transport noise sources. The closest road noise sources are Rosslyn Hill (A502) to the east, and Finchley Road (A41) to the west of the site. However, the below map (top) shows that noise from these roads will have no impact on the new dwelling.
- 5.34 The site is also not located within close enough proximity to any rail lines for noise from this source to impact on the occupants in the future, as demonstrated on the map below (bottom).



Figure 5.5 Extract from the Environment Agency's online flood map

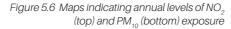



Figure 5.7 Maps indicating levels of noise from road (top) and rail (bottom) sources

### 5B PRINCE ARTHUR ROAD | HAMPSTEAD

In addition to this, the air source heat pump (ASHP) system proposed to serve the space and water heating demand of the new dwelling is quiet in operation. As the design progresses, acoustic measures should be considered to further limit the noise generated by the outside unit of the system, should this be deemed necessary.

# Section 6 Energy Strategy.

# 6 | Energy Strategy

# The Energy Hierarchy

- 6.1 With reference to the policy requirements, guidance and industry best practice detailed in Section 4, a comprehensive energy and carbon dioxide (CO<sub>2</sub>) emissions assessment has been carried out for the proposed scheme. The energy performance of the scheme has been analysed and evaluated against the most up-to-date iteration of Part L of the Building Regulations and pertinent London Borough of Camden policies, accounting for economic, technical and functional feasibility.
- 6.2 The proposed energy strategy is based upon the principles of the Energy Hierarchy on the basis that it is preferable to reduce carbon dioxide emissions through reduced energy consumption above decarbonisation through alternative energy sources.
- 6.3 The tiers of the Energy Hierarchy are:
  - Be Lean | Use less energy
  - Be Clean | Supply energy efficiently
  - Be Green | Use renewable energy

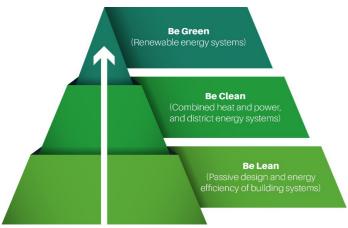



Figure 6.1 The Energy Hierarchy

6.4 Design recommendations were provided to Charlton Brown Architects, and preliminary design assessments were carried out to enable an energy strategy to develop from an early stage.

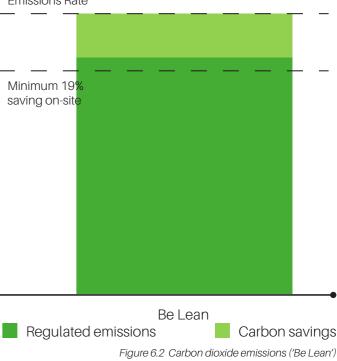
# 'Be Lean' | Use Less Energy

- 6.5 Within the first stage of the energy hierarchy, it is proposed to incorporate high levels of passive and energy efficient design measures in order to reduce the development's energy consumption and associated CO<sub>2</sub> emissions.
- 6.6 It is technically possible to exceed Building Regulations requirements through demand reduction measures alone, and it is an expectation of the Greater London Authority (GLA) that new dwellings achieve at least 6.12 10% reduction via the 'Be Lean' stage.
- 6.7 The proposed development includes a wide range of energy efficiency measures, intended to reduce energy demand.
- 6.8 The following U-values are proposed as a means of limiting heat loss through the dwelling's building fabric:

| Building<br>Fabric<br>Element | Part L1A:2013<br>backstop<br>U-values (W/m²K) | Proposed<br>U-values<br>(W/m²K) |
|-------------------------------|-----------------------------------------------|---------------------------------|
| Ground floor                  | 0.25                                          | 0.08 - 0.10                     |
| External wall                 | 0.30                                          | 0.13 - 0.15                     |
| Roof                          | 0.20                                          | 0.10 - 0.12                     |
| Exposed<br>ceilings/floors    | 0.25                                          | 0.13 - 0.18                     |
| Windows                       | 2.00 (including frame)                        | 1.30 (including frame)          |
| Doors                         | 2.00                                          | 1.00                            |

6.9 The glazing will be double glazed, argon filled with a low emissivity coating. Although this has yet to be formally specified, it is expected that window U-values will be 1.3 W/m<sup>2</sup>K or better (including frame), with a g-value of 0.63, and light transmission of ~70% to improve natural daylight penetration.

- 6.10 A high level of airtightness is proposed, where a level equal to or below 3 m<sup>3</sup>/h/m<sup>3</sup> shall be targeted, meaning that air infiltration between the internal and the external environment will be largely controlled, and space heating/cooling demand further reduced.
- 6.11 The other significant means of heat loss from dwellings is due to thermal (cold) bridging. This is typically a construction detail which has higher thermal


conductivity than the surrounding materials, creating a path of least resistance for heat transfer. Thermal bridges result in an overall reduction in thermal resistance of the building elements and should be designed out where possible to minimise unwanted heat loss. In order to minimise heat loss through thermal bridges, accredited construction details have been assumed, with an equivalent y-value of 0.05.

- High efficiency plant, equipment and controls are proposed to limit the energy consumed in order to provide the required level of indoor environmental performance and control. Performance efficiency <sup>6</sup> values were tested and improved in energy models to benchmark the resulting predicted CO<sub>2</sub> reduction.
  - Low energy LED lighting will be installed <sup>6.14</sup> throughout the dwelling.
  - In order to assess the CO<sub>2</sub> emissions reductions achieved through the 'Be Lean' stage, space and water heating demand is served by an individual gas-fired boiler with an efficiency of 90%.
  - Although the dwelling will be provided with opening windows to mitigate against overheating, outside

### 5B PRINCE ARTHUR ROAD | HAMPSTEAD

air will be provided via mechanical ventilation with heat recovery (MVHR), with a specific fan power (SFP) of 0.76 W/l/s. A heat exchanger with an efficiency of >90% has also been specified. These efficiencies are higher than those set out in the Domestic Building Services Compliance Guide.

- Time and temperature zones, controlled by the suitable arrangement of plumbing and electrical services, will be employed to control heating consumption within the dwelling.
- 6.13 Energy modelling of the proposed dwelling has been undertaken using the Standard Assessment Procedure (SAP).
  - The carbon dioxide emissions for the dwelling under the 'Be Lean' tier of the Energy Hierarchy are shown to the right. DER and TER worksheets showing the 'Be Lean' performance of the dwelling are provided in Appendix A3.
  - The analysis presented below shows that the proposed dwelling will achieve a carbon dioxide emissions saving of 15.6% through energy efficiency means alone, under the 'Be Lean' scenario.



Part L:2013 Target Emissions Rate

6.15

(mnnr

12

10

8

6

# 6 | Energy Strategy

# 'Be Clean' | Supply Energy Efficiently

- 6.16 The potential for the proposed dwelling to incorporate a low carbon heating/cooling system has been reviewed, in line with the hierarchy presented in London Plan Policy 5.6:
  - 1. Connection to existing heating or cooling networks;
  - 2. Site-wide CHP network; and
  - 3. Communal heating and cooling.
- 6.17 The London Heat Map is a tool provided by the Mayor of London to identify opportunities for decentralised energy projects in London. It builds on the 2005 London Community Heating Development Study.
- 6.18 The image displayed in Figure 6.3 is an extract from the London Heat Map, showing the area in the vicinity of the site. It illustrates;
  - Heat demand (areas of higher heat demand are shown in red);
  - Existing heat networks (shown as red lines);
  - Proposed heat networks (shown as orange lines); and
  - Heat network priority areas (white with black borders).
- 6.19 The extract displayed in Figure 6.3 indicates that the site of the proposed dwelling is located within an area of low heat demand, with no planned or existing heat networks within the vicinity. It is also located outside local heat network priority areas.
- 6.20 Given the scale and density of the proposed development, the establishment of a new heat network is unfeasible. Furthermore, the use of combined heat and power (CHP) is also considered to be unviable for the proposed site, based on the most up-to-date GLA energy guidance, which looks to move away from the use of natural gas to meet space and water heating demands. It is therefore recommended that an air source heat pump (ASHP) system is employed to service the space and water heat demand of the new dwelling. The incorporation of heat pump technology is discussed in greater detail in the 'Be Green' section.
- 6.21 The "Be Clean" carbon dioxide emissions are therefore identical to those set out in the "Be Lean" scenario.

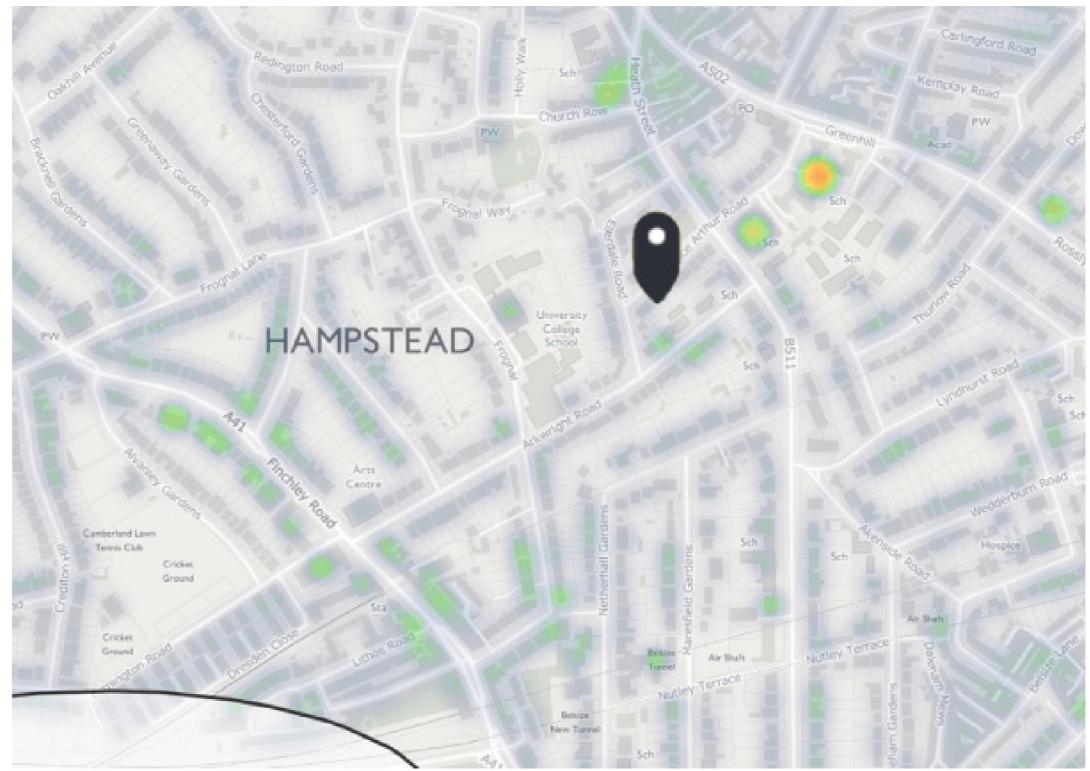
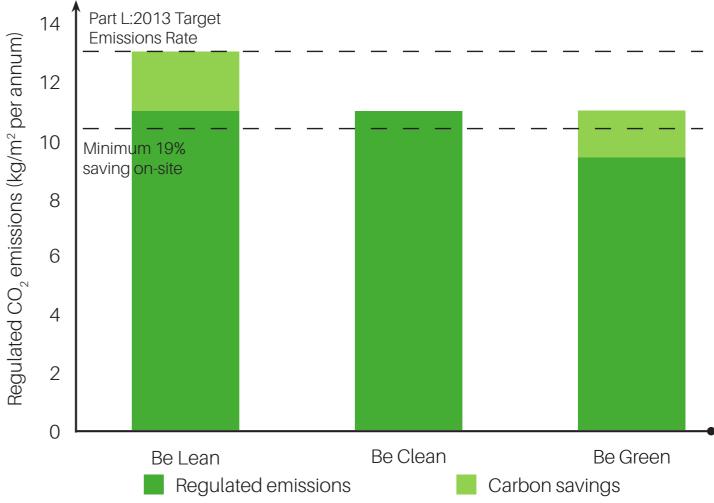



Figure 6.3 Extract from the London Heat Map


## 'Be Green' | Utilise Renewable Technologies

- 6.22 The proposed development has given consideration to renewable energy technologies that may be applicable to deliver the required level of carbon dioxide savings over the Part L1A:2013 baseline, and the likely local effects on the environment.
- In determining the appropriate renewable technology 623 for the site, a number of factors including carbon dioxide savings, site constraints, and potential visual impacts have been considered. Further details of each technology and its associated assessment in relation to the proposed new dwelling are provided below.
  - · Biomass This technology is not considered a practical solution for reducing carbon dioxide, in the view of limited options for domestic scale installations, storage space requirements for the combustible material, and the transport related carbon dioxide emissions which are not normally accounted for within energy modelling. Furthermore, high levels of nitrous oxide (NOx) and particulate matter (PMx) emissions are associated with the use of biomass fuel. As the proposed dwelling is located within a dense, urban area, permitted emissions will be restricted.
  - Air Source Heat Pumps (ASHP) given the site location and lack of existing or proposed heat networks, it is proposed that air source heat pump (ASHP) technology is incorporated within the development. It is expected that a highly efficient system, such as the Nilan Compact P, will be employed to serve both the space and water heating demands of the proposed dwelling. This system also provides mechanical ventilation with heat recovery (MVHR) and includes a reversible cooling unit, allowing for the provision of comfort cooling. Typical manufacturer specifications for the proposed Nilan Compact P system quote a heating coefficient of performance of approximately 4.2. The specified system is quiet in operation, though it is recommended that measures to further mitigate the sound produced by the external component of the proposed system are considered during detailed design. In addition to this, the proposed system provides an element of cooling, which has been accounted for within the SAP calculations by assuming an Energy Efficiency Ration (EER) of 3.
  - Ground Source Heat Pumps (GSHP) Due to the nature of the proposed development, the site is not

suitable for a horizontal ground collection loop. Furthermore, ground investigation and borehole drilling are likely to be cost prohibitive, and may not yield a suitable energy source. The use of ground source heat pumps for the proposed scheme is therefore not considered viable.

- Photovoltaics (PV) Whilst the orientation of the site faces south-east, the proposed form of the roof means that areas of roof facing south-east would not offer a large enough area to house PV panels. Furthermore, the significant size of the copper beech tree in the southern corner of the rear garden may cause the south-east facing portion of the roof to become overshadowed. This would result in the output of PV panels being significantly reduced. Based on this, it is considered that the employment of PV panels would not be suitable for the proposed development.
- Solar Thermal Hot Water (STHW) This technology is presently rejected, as domestic hot water is proposed to be provided by a highly efficient air source heat pump system. In addition to this, hot water demand is considered to be outside the energy generating period for the solar thermal panels, meaning its ability to significantly reduce carbon emissions during operation is limited. Furthermore, as outlined above with regards to photovoltaic (PV) technology, the area of southeast facing roofspace available will not be of a sufficient size to house the solar thermal panels, and the potential overshadowing caused by the copper beech tree would significantly reduce the efficiency of this technology.
- Wind Turbines This technology is rejected on the basis of its potential impact on visual amenity and relatively low efficiency from unpredictable, turbulent wind conditions associated with urban locations.
- As for the 'Be Lean' stage, 'Be Green' energy analysis 6.24 has been carried out for the proposed development using the Standard Assessment Procedure (SAP).
- 6.25 The carbon dioxide emissions for the proposed development, under each tier of the Energy Hierarchy, are shown in Figure 6.4. DER and TER worksheets showing the 'Be Green' performance of the proposed dwelling are provided in Appendix A3.

- The Energy Performance Certificate (EPC) for the 6.26 dwelling that currently stands on the site indicates that it achieves a rating of 56, which is only marginally within band D (scores between 55 and 68). The EPC for the proposed dwelling, provided in Appendix A4, shows it will achieve a rating of 88, which is within band B (scores between 81 and 91). This is higher than the average energy efficiency of 60 for a dwelling in England and Wales.
- 6.27 The energy analysis carried out shows that the proposed development achieves a carbon dioxide emissions saving of 27.9% through energy efficiency measures and renewable technologies. This exceeds the 19% target necessary to meet the requirements of the London Borough of Camden.



Ba L1 Em (kg) ar

## 5B PRINCE ARTHUR ROAD | HAMPSTEAD

| TER:<br>aseline<br>Part<br>A:2013<br>hissions<br>ICO <sub>2</sub> per<br>nnum) | DER:<br>Proposed<br>'Be Green'<br>Emissions<br>(kgCO <sub>2</sub> per<br>annum) | Emissions<br>Savings<br>(kgCO <sub>2</sub> per<br>annum) | Emissions<br>Savings (%) |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------|
| 13.1                                                                           | 9.5                                                                             | 3.7                                                      | 27.9%                    |

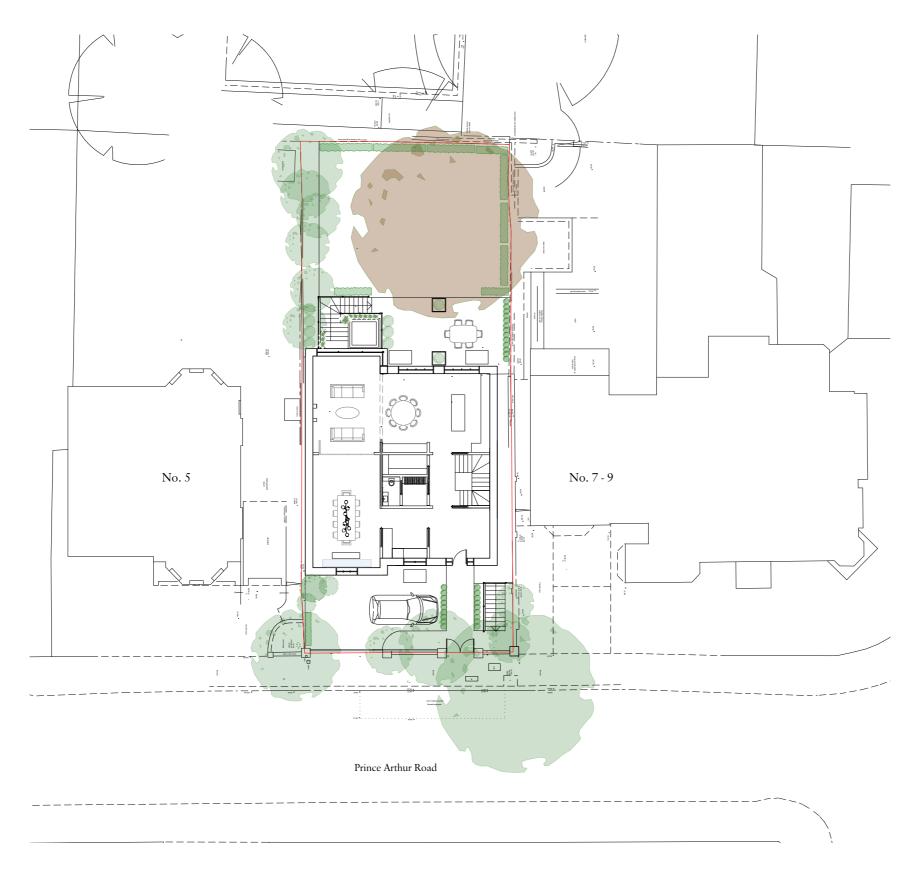
Figure 6.4 Carbon dioxide emissions ('Be Green')

Sustainability and Energy Statement | 17

# Section 7 Conclusion.

# 7 | Conclusion

- 7.1 This Sustainability and Energy Statement provides an overview as to how the proposed development at 5B Prince Arthur Road contributes to sustainable development in the context of national, regional and local considerations.
- 7.2 Consideration has been given to the London Borough 7.5 of Camden's Local Plan, and the Greater London Authority's (GLA) London Plan in the formulation of this statement. The overall development has been assessed using the GLA's supplementary planning guidance (SPG) 'Sustainable Design and Construction', providing a holistic sustainability approach for the building.
- 7.3 Sections 5 and 6 of this statement demonstrate that the siting and design of the proposals support relevant policy relating to sustainable development. This shows that the proposed development:
  - will provide a new family home to replace the existing dwelling on-site;
  - will give consideration to the lifecycle environmental performance of the new dwelling when selecting materials to reduce embodied carbon;
  - will minimise internal water consumption to 105 litres per person per day;
  - will retain the existing copper beech tree, and provide new planting to maintain and enhance the biodiversity of the site;
  - will manage surface water runoff through the incorporation of soft landscaping;
  - will minimise energy demand through the specification of low u-values, low air permeability and low thermal bridging to reduce heat loss; and
  - will utilise a highly efficient air source heat pump system to eliminate the need for on-site fossil fuel combustion to provide space and water heating, mechanical ventilation with heat recovery, and a degree of comfort cooling.
- 7.4 By designing to rigorous energy standards, and omitting the use of fossil fuels for space and water heating through the employment of an air source heat pump system, the application will respond directly to the Climate Emergency declared by the Council in April 2019. These measures combine to provide a


carbon dioxide emissions saving of 27.9%, compared to the Part L:2013 baseline, meeting and exceeding the requirements of the London Borough of Camden's policies to achieve a 19% reduction through on-site means alone.

5 Overall, the proposals for the scheme are in line with the principles of sustainable development, as well as the policy requirements of the NPPF and the London Borough of Camden, and will provide a new dwelling that seeks to promote these principles in operation.

## 5B PRINCE ARTHUR ROAD | HAMPSTEAD

# Appendix A1 Site Layout.

A1 | Site Layout



Rev Date

Telephone Email Website

Client Mr & Mrs Palsson Project Drawing Title Proposed Site Plan Date 02/04/2020 Scale 1:100 @A1 / 1:200 @ A3 Issue Status FOR PLANNING

5B PRINCE ARTHUR ROAD | HAMPSTEAD

Copyright - Charlton Brown Architects Ltd

Details

# Charlton Brown Architecture & Interiors

The Belvedere, 2 Back Lane, Hampstead, London, NW3 1HL

+44(0)20 7794 1234 office@charltonbrown.com

Copper Beech House, 5b Prince Arthur Rd.

Drawn Checked SI CP

# Appendix A2 Water Usage Calculator.

# A2 | Water Usage Calculator

CSH Wat tool May 09

# breglobal

Job no: Date: Assessor name Registration no: Development name

N/A 5B Prince Arthur Road

20-S011

03/04/2020

BRE Global 2010. BRE Certification is a registered trademark owned by BRE Global and may not be used without BRE Global's written permission.

Permission is given for this tool to be copied without infringement of copyright for use only on projects where a Code for Sustainable Homes assessment is carried out. Whilst every care is taken in preparing the Wat 1 assessment tool, BREG cannot accept responsibility for any inaccuracies or for consequential loss incurred as a result of such inaccuracies arising through the use of the Wat 1 tool.

PRINTING: before printing please make sure that in "Page Setup" you have selected the page to be as "Landscape" and that the Scale has been set up to 70% (maximum)

### WATER EFFICIENCY CALCULATOR FOR NEW DWELLINGS - (BASIC CALCULATOR)

House Type Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Type 9 Descriptio Typical Unit Litres Litres/ Litres/ Litres/ Litres/ Litres/ Litres/ Litres/ Litres Unit of Capacity/ apacity Capacity Capacity apacity apacity/ apacity apacity Capacity Installation Type person person person/ person person person person person/ perso measure flow rate low rate flow rate day day day day day day day day day Is a dual or single flush WC specified Dual Select option: Select option: Select option: Select option: Select option: Select option: **Click to Select** Click to Select Full flush volume 8.76 0.00 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 wc 3 8.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Part flush volume Taps Flow rate (litres (excluding kitchen 3 6.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 minute) and external taps) Are both a Bath & Shower Present Bath & Shower Select option: Capacity to 19.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 180 0.00 Bath verflow Flow rate (litres / 8 34.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Shower minute) Flow rate (litres / 4 12.12 0.00 Kitchen sink taps 0.00 0.00 0.00 0.00 0.00 0.00 0.00 minute) Select option: Has a washing machine been specified Yes Select option: 8.17 17.16 Washing Machine Litres / kg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Has a dishwasher been specified Yes Select option: Litres / place 1.25 4.50 0.00 Dishwasher 0.00 0.00 0.00 0.00 0.00 0.00 0.00 etting Has a waste disposal unit be Select Select Select Select Select Select Select Select 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 No specified optior option option option option option option option: Litres / person / Water Softener 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Calculated Use 112.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 Normalisation facto 0.0 0.0 Total Consumption 102.4 0.0 0.0 0.0 0.0 0.0 0.0 Code for Level Sustainable Homes Mandatory level -3/4 External use 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Building 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 **Total Consumption** 107.4 Regulations 17.K 17.K Compliance? Yes

### 5B PRINCE ARTHUR ROAD | HAMPSTEAD

|          | Тур                    | e 10                      |
|----------|------------------------|---------------------------|
|          |                        |                           |
| s/<br>n/ | Capacity/<br>flow rate | Litres/<br>person/<br>day |
| t        | Click to               | Select                    |
| )        |                        | 0.00                      |
| )        |                        | 0.00                      |
| )        |                        | 0.00                      |
|          | Select                 | option:                   |
| )        |                        | 0.00                      |
| )        |                        | 0.00                      |
| )        |                        | 0.00                      |
|          | Select                 | option:                   |
| )        |                        | 0.00                      |
|          | Select                 | option:                   |
| )        |                        | 0.00                      |
| )        | Select option:         | 0.00                      |
| )        |                        | 0.00                      |
|          |                        | 0.0                       |
|          |                        | 0.91                      |
|          |                        | 0.0                       |
|          |                        | -                         |
|          |                        | 5.0                       |
|          |                        | 0.0                       |
|          |                        | -                         |
|          |                        |                           |

# Appendix A3 DER/TER Worksheets.

# A3 | DER/TER Worksheets

#### DER WorkSheet: New dwelling design stage

| Assessor Name:<br>Software Name:                        | Stroma FSAP 2                                        | 012              | •                     | a Nun<br>are Ve | nber:<br>ersion: | Vers          | ion: 1.0.4.25         |         |
|---------------------------------------------------------|------------------------------------------------------|------------------|-----------------------|-----------------|------------------|---------------|-----------------------|---------|
|                                                         |                                                      | Prop             | perty Address         | : 5B Pri        | ince Arthur      | Road_Be Lea   | an                    |         |
| Address :                                               |                                                      |                  |                       |                 |                  |               |                       |         |
| 1. Overall dwelling dime                                | ensions:                                             |                  |                       |                 |                  |               |                       |         |
| Basement                                                |                                                      |                  | Area(m <sup>2</sup> ) | 1               | Av. Heig         |               | Volume(m              | <u></u> |
|                                                         |                                                      |                  | 177.5                 | (1a) x          | 4                | (2a) =        | 710                   | (3a     |
| Ground floor                                            |                                                      |                  | 155                   | (1b) x          | 3.1              | (2b) =        | 480.5                 | (3b     |
| First floor                                             |                                                      |                  | 131.9                 | (1c) x          | 2.7              | (2c) =        | 356.13                | (3c     |
| Second floor                                            |                                                      | i                | 131.9                 | (1d) x          | 2.6              | (2d) =        | 342.94                | (3d     |
| Total floor area TFA = (1                               | a)+(1b)+(1c)+(1d)+(                                  | 1e)+(1n)         | 596.3                 | (4)             |                  |               | L                     |         |
| Dwelling volume                                         |                                                      | , , ,            |                       | (3a)+(3         | b)+(3c)+(3d)+    | (3e)+(3n) =   | 1889.57               | (5)     |
| •                                                       |                                                      |                  |                       | () (-           | -, (, (,         | ()            | 1009.37               | (3)     |
| 2. Ventilation rate:                                    | main                                                 | secondary        | other                 |                 | total            |               | m <sup>3</sup> per ho | ur      |
| Number of chimnevs                                      | heating                                              | heating          | +                     |                 | 0                | x 40 =        | 0                     | <br>(6a |
| ,                                                       |                                                      | 0                |                       |                 |                  |               |                       |         |
| Number of open flues                                    | 0 *                                                  | 0                | • 0                   | ] = [           | 0                | x 20 =        | 0                     | (6b     |
| Number of intermittent fa                               | ans                                                  |                  |                       |                 | 0                | x 10 =        | 0                     | (7a     |
| Number of passive vents                                 | 5                                                    |                  |                       |                 | 0                | x 10 =        | 0                     | (7b     |
| Number of flueless gas f                                | ires                                                 |                  |                       | - \ i           | 0                | x 40 =        | 0                     | (7c     |
|                                                         |                                                      |                  |                       |                 |                  | Air o         | hanges per h          | nour    |
| Infiltration due to chimne                              | eys, flues and fans =                                | (6a)+(6b)+(7a)+  | +(7b)+(7c) =          |                 | 0                | + (5) =       | 0                     | (8)     |
| If a pressurisation test has                            | been carried out or is inter                         | nded, proceed to | (17), otherwise       | continue        | from (9) to (16  | 5)            |                       |         |
| Number of storeys in t                                  | he dwelling (ns)                                     |                  |                       |                 |                  |               | 0                     | (9)     |
| Additional infiltration                                 |                                                      |                  |                       |                 |                  | [(9)-1]x0.1 = | 0                     | (10     |
| Structural infiltration: (                              | ).25 for steel or timbe<br>resent, use the value con |                  |                       |                 | truction         |               | 0                     | (11     |
| deducting areas of open                                 |                                                      | coponang to an   | greater wan ar        | a faiter        |                  |               |                       |         |
| If suspended wooden                                     | floor, enter 0.2 (unse                               | ealed) or 0.1 (  | (sealed), else        | enter 0         | )                |               | 0                     | (12     |
| If no draught lobby, er                                 |                                                      |                  |                       |                 |                  |               | 0                     | (13     |
| Percentage of window                                    | s and doors draught                                  | stripped         |                       |                 |                  |               | 0                     | (14     |
| Window infiltration                                     |                                                      |                  | 0.25 - [0.            |                 |                  |               | 0                     | (15     |
| Infiltration rate                                       |                                                      |                  |                       |                 | (12) + (13) + (  |               | 0                     | (16     |
| Air permeability value,                                 |                                                      |                  |                       |                 | netre of en      | velope area   | 3                     | (17     |
| f based on air permeabi<br>Air permeability value appli |                                                      |                  |                       |                 | v is heina use   | 4             | 0.15                  | (18     |
| Number of sides shelter                                 |                                                      |                  | sogree all pe         |                 | ,                | -             | 2                     | (19     |
| Shelter factor                                          |                                                      |                  | (20) = 1 -            | [0.075 x        | (19)] =          |               | 0.85                  | (20     |
| nfiltration rate incorpora                              | ting shelter factor                                  |                  | (21) = (18            | 3) x (20) =     |                  |               | 0.13                  | (21     |
| nfiltration rate modified                               | for monthly wind spe                                 | ed               |                       |                 |                  |               |                       | _       |
| Jan Feb                                                 | Mar Apr Ma                                           | v Jun            | Jul Aua               | Sep             | Oct              | Nov Dec       |                       |         |

DER WorkSheet: New dwelling design stage

| Monthly averag                              | e wind s     | speed fr    | om Tabl        | e 7        |                |             |                |             |              |            |                                 |          |               |
|---------------------------------------------|--------------|-------------|----------------|------------|----------------|-------------|----------------|-------------|--------------|------------|---------------------------------|----------|---------------|
| (22)m= 5.1                                  | 5            | 4.9         | 4.4            | 4.3        | 3.8            | 3.8         | 3.7            | 4           | 4.3          | 4.5        | 4.7                             |          |               |
| Wind Factor (22                             | ) = (        | (22)m ÷     | 4              |            |                |             |                |             |              |            |                                 |          |               |
| (22a)m= 1.27                                | 1.25         | 1.23        | 1.1            | 1.08       | 0.95           | 0.95        | 0.92           | 1           | 1.08         | 1.12       | 1.18                            | 1        |               |
|                                             |              |             |                |            |                |             |                |             |              |            |                                 | 1        |               |
| Adjusted infiltra                           |              | ·           | <u> </u>       |            |                |             | <u> </u>       | <u> </u>    |              |            |                                 |          |               |
| 0.16<br>Calculate effect                    | 0.16         | 0.16        | 0.14           | 0.14       | 0.12           | 0.12        | 0.12           | 0.13        | 0.14         | 0.14       | 0.15                            |          |               |
| If mechanical                               |              |             |                | ne appli   |                | 30          |                |             |              |            |                                 | 0.5      | (23a)         |
| If exhaust air hea                          | at pump u    | ising App   | endix N, (2    | 3b) = (23a | a) × Fmv (e    | equation (I | N5)) , othe    | rwise (23b  | o) = (23a)   |            |                                 | 0.5      | (23b)         |
| If balanced with I                          | heat reco    | very: effic | iency in %     | allowing f | for in-use f   | actor (from | n Table 4h     | ) =         |              |            |                                 | 73.1     | (23c)         |
| a) If balanced                              | l mecha      | inical ve   | entilation     | with he    | at recov       | ery (MV     | HR) (24a       | a)m = (2    | 2b)m + (     | 23b) × [   | 1 – (23c)                       | ÷ 100]   |               |
| (24a)m= 0.3                                 | 0.29         | 0.29        | 0.27           | 0.27       | 0.26           | 0.26        | 0.25           | 0.26        | 0.27         | 0.28       | 0.28                            |          | (24a)         |
| b) If balanced                              | l mecha      | nical ve    | entilation     | without    | heat red       | covery (I   | MV) (24b       | o)m = (2    | 2b)m + (i    | 23b)       |                                 |          |               |
| (24b)m= 0                                   | 0            | 0           | 0              | 0          | 0              | 0           | 0              | 0           | 0            | 0          | 0                               |          | (24b)         |
| c) If whole ho                              | use ext      | ract ver    | tilation of    | or positiv | /e input       | ventilatio  | on from o      | outside     |              |            |                                 |          |               |
| if (22b)m                                   | < 0.5 ×      | (23b), t    | hen (24        | c) = (23b  | o); othen      | vise (24    | c) = (22b      | b) m + 0    | .5 × (23t    | )          | _                               |          |               |
| (24c)m= 0                                   | 0            | 0           | 0              | 0          | 0              | 0           | 0              | 0           | 0            | 0          | 0                               |          | (24c)         |
| d) If natural v<br>if (22b)m                |              |             |                |            |                |             |                |             | 0.51         |            |                                 |          |               |
| (24d)m= 0                                   | 0            | 0           | 0              | 0          |                | 40)11 -     | 0.5 + [[2      | 20,111 X    | 0.5          | 0          | 0                               |          | (24d          |
| Effective air c                             |              | rate - er   | -<br>ter (24 a | ) or (24)  |                | c) or (2/   | d) in hor      |             | -            |            |                                 |          |               |
| (25)m= 0.3                                  | 0.29         | 0.29        | 0.27           | 0.27       | 0.26           | 0.26        | 0.25           | 0.26        | 0.27         | 0.28       | 0.28                            |          | (25)          |
|                                             |              | _           |                |            |                |             |                |             |              |            |                                 |          |               |
| 3. Heat losses                              |              |             |                |            |                |             |                |             |              |            |                                 |          |               |
| ELEMENT                                     | Gros<br>area |             | Openin<br>m    |            | Net Ar<br>A ,r |             | U-valı<br>W/m2 |             | A X U<br>(W/ | <)         | k-value<br>kJ/m <sup>2</sup> ·l |          | A X k<br>kJ/K |
| Doors                                       |              | . ,         |                |            | 5.7            | ×           | 1              | =           | 5.7          | ŕ          |                                 |          | (26)          |
| Windows Type                                | 1            |             |                |            | 20.3           | <b>−</b> ×1 | /[1/( 1.3 )+   | 0.04] =     | 25.09        | =          |                                 |          | (27)          |
| Windows Type:                               | 2            |             |                |            | 53.4           | ≓ ×1        | /[1/( 1.3 )+   | 0.04] =     | 65.99        | =          |                                 |          | (27)          |
| Rooflights Type                             | 1            |             |                |            | 0.8            | Ξ,          | /[1/(1.3) +    | 0.04] =     | 1.04         | =          |                                 |          | (27b)         |
| Rooflights Type                             |              |             |                |            | 1.3            | ≓ ,         | /[1/(1.3) +    | 0.041 =     | 1.69         | =          |                                 |          | (27b          |
| Floor                                       |              |             |                |            | 177.5          | =           | 0.1            | _           | 17.75        | = ,        |                                 |          | (28)          |
| Walls Type1                                 | 295          |             | 79.4           | _          | 216            | 4∶          | 0.15           |             | 32.4         | =          |                                 | 4 12     | (29)          |
| Walls Type2                                 | 1295.0       | <u> </u>    |                |            | -              | = "         |                | = ]         |              | =          |                                 | ╡╞       | (29)          |
| Walls Type2<br>Walls Type3                  |              | _           | 0              | =          | 129.2          | ≝ "         | 0.14           | = 1         | 18.03        | ╡╏         |                                 | $\dashv$ |               |
|                                             | 226.4        | _           | 0              | _          | 226.4          | -           | 0.15           |             | 33.96        | $\dashv$   |                                 | ╡┝       | (29)          |
| Roof Type1                                  | 136.         |             | 2.1            |            | 134            | _ *         | 0.13           |             | 17.42        | 4          |                                 |          | (30)          |
| Roof Type2                                  | 18.9         |             | 0              |            | 18.9           | ×           | 0.13           | =           | 2.46         |            |                                 |          | (30)          |
| Total area of ele                           |              |             |                |            | 983.5          |             |                |             |              |            |                                 |          | (31)          |
| * for windows and n<br>** include the areas |              |             |                |            |                | ated using  | formula 1      | /[(1/U-valu | ue)+0.04] a  | s given in | paragraph                       | 3.2      |               |
| Fabric heat loss                            |              |             |                | 2 2 pur    |                |             | (26)(30)       | ) + (32) =  |              |            |                                 | 221.3    | 9 (33)        |
|                                             | ,            |             | - /            |            |                |             |                |             |              |            |                                 |          |               |

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

## DER WorkSheet: New dwelling design stage



Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

Page 1 of 9

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

Page 2 of 9

If commun Volume fa Temperatu Energy los Enter (50 Water sto (56)m= 3 If cylinder or (57)m= 32 Primary ci Primary ci (modifie (59)m= 2 Combi los (61)m= 
 (61)m=

 Total hea

 (62)m=
 24

 Solar DHW

 (add addii

 (63)m=

 Output fro

 (64)m=
 24
 Heat gain (65)m= 10 include 5. Intern Metabolic (66)m= 17 Lighting g Appliance (68)m= 66 Cooking g

Page 3 of 9

## 5B PRINCE ARTHUR ROAD | HAMPSTEAD

#### DER WorkSheet: New dwelling design stage

| Hot water stor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                          |                                                                                                                                                                                                                                            |                                                                                                                       | e 2 (kW                                                                                         | h/litre/da                                                                                | iy)                                                                                |                                                                                      |                                                                                   |                                                                                                               |                                               | 0                                             |             | (51                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-------------|---------------------------------|
| If community I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                          |                                                                                                                                                                                                                                            | on 4.3                                                                                                                |                                                                                                 |                                                                                           |                                                                                    |                                                                                      |                                                                                   |                                                                                                               |                                               |                                               |             |                                 |
| Volume factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                          |                                                                                                                                                                                                                                            |                                                                                                                       |                                                                                                 |                                                                                           |                                                                                    |                                                                                      |                                                                                   |                                                                                                               | -                                             | 0                                             |             | (52)                            |
| Temperature f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | actor from                                                                                                                                               | m Table                                                                                                                                                                                                                                    | 2b                                                                                                                    |                                                                                                 |                                                                                           |                                                                                    |                                                                                      |                                                                                   |                                                                                                               |                                               | 0                                             |             | (53)                            |
| Energy lost fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                          |                                                                                                                                                                                                                                            | , kWh/ye                                                                                                              | ear                                                                                             |                                                                                           |                                                                                    | (47) x (51                                                                           | ) x (52) x (                                                                      | 53) =                                                                                                         |                                               | 0                                             |             | (54                             |
| Enter (50) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (54) in (5                                                                                                                                               | i5)                                                                                                                                                                                                                                        |                                                                                                                       |                                                                                                 |                                                                                           |                                                                                    |                                                                                      |                                                                                   |                                                                                                               | 1.                                            | 05                                            |             | (55)                            |
| Nater storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | loss cald                                                                                                                                                | culated f                                                                                                                                                                                                                                  | or each                                                                                                               | month                                                                                           |                                                                                           |                                                                                    | ((56)m = (                                                                           | 55) × (41)                                                                        | n                                                                                                             |                                               |                                               |             |                                 |
| 56)m= 32.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.48                                                                                                                                                    | 32.64                                                                                                                                                                                                                                      | 31.59                                                                                                                 | 32.64                                                                                           | 31.59                                                                                     | 32.64                                                                              | 32.64                                                                                | 31.59                                                                             | 32.64                                                                                                         | 31.59                                         | 32.64                                         |             | (56                             |
| f cylinder contain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s dedicated                                                                                                                                              | d solar stor                                                                                                                                                                                                                               | rage, (57)r                                                                                                           | m = (56)m                                                                                       | x [(50) - (                                                                               | H11)] + (5                                                                         | 0), else (5                                                                          | 7)m = (56)                                                                        | m where (                                                                                                     | H11) is fro                                   | m Append                                      | ix H        |                                 |
| 57)m= 32.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.48                                                                                                                                                    | 32.64                                                                                                                                                                                                                                      | 31.59                                                                                                                 | 32.64                                                                                           | 31.59                                                                                     | 32.64                                                                              | 32.64                                                                                | 31.59                                                                             | 32.64                                                                                                         | 31.59                                         | 32.64                                         |             | (57                             |
| Primarv circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t loss (an                                                                                                                                               | inual) fro                                                                                                                                                                                                                                 | m Table                                                                                                               | 3                                                                                               |                                                                                           |                                                                                    |                                                                                      |                                                                                   |                                                                                                               |                                               | 0                                             |             | (58                             |
| Primary circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | `                                                                                                                                                        |                                                                                                                                                                                                                                            |                                                                                                                       |                                                                                                 | 59)m = (                                                                                  | (58) ÷ 36                                                                          | 5 × (41)                                                                             | m                                                                                 |                                                                                                               | L                                             |                                               |             |                                 |
| (modified by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                            |                                                                                                                       |                                                                                                 |                                                                                           |                                                                                    |                                                                                      |                                                                                   | r thermo                                                                                                      | ostat)                                        |                                               |             |                                 |
| 59)m= 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.01                                                                                                                                                    | 23.26                                                                                                                                                                                                                                      | 22.51                                                                                                                 | 23.26                                                                                           | 22.51                                                                                     | 23.26                                                                              | 23.26                                                                                | 22.51                                                                             | 23.26                                                                                                         | 22.51                                         | 23.26                                         |             | (59                             |
| Combi loss ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | i hateluul                                                                                                                                               | for each                                                                                                                                                                                                                                   | month (                                                                                                               | 61)m =                                                                                          | (60) ± 36                                                                                 | 35 x (41)                                                                          | )m                                                                                   |                                                                                   |                                                                                                               |                                               |                                               |             |                                 |
| 61)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                          | 0                                                                                                                                                                                                                                          | 0                                                                                                                     | 0 1)11 -                                                                                        | 00) • 0                                                                                   | 0                                                                                  | 0                                                                                    | 0                                                                                 | 0                                                                                                             | 0                                             | 0                                             |             | (61                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                        |                                                                                                                                                                                                                                            |                                                                                                                       | -                                                                                               |                                                                                           | -                                                                                  |                                                                                      | -                                                                                 | -                                                                                                             | -                                             |                                               | (===) (==   |                                 |
| Fotal heat req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                          |                                                                                                                                                                                                                                            | <u> </u>                                                                                                              |                                                                                                 |                                                                                           |                                                                                    | <u>,                                     </u>                                        |                                                                                   |                                                                                                               | <u> </u>                                      | È /                                           | (59)m + (61 | ·                               |
| 62)m= 247.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 218.46                                                                                                                                                   | 229.24                                                                                                                                                                                                                                     | 205.22                                                                                                                | 200.9                                                                                           | 179.22                                                                                    | 171.85                                                                             | 188.95                                                                               | 188.74                                                                            | 212.81                                                                                                        | 225.38                                        | 241.9                                         |             | (62                             |
| iolar DHW input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                          |                                                                                                                                                                                                                                            |                                                                                                                       |                                                                                                 |                                                                                           |                                                                                    |                                                                                      |                                                                                   | r contribut                                                                                                   | ion to wate                                   | er heating)                                   |             |                                 |
| add additiona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I lines if I                                                                                                                                             | FGHRS                                                                                                                                                                                                                                      | and/or V                                                                                                              | WWHRS                                                                                           | applies                                                                                   | , see Ap                                                                           | pendix (                                                                             | S)                                                                                |                                                                                                               |                                               |                                               |             |                                 |
| 63)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                        | 0                                                                                                                                                                                                                                          | 0                                                                                                                     | 0                                                                                               | 0                                                                                         | 0                                                                                  | Ò                                                                                    | 0                                                                                 | 0                                                                                                             | 0                                             | 0                                             |             | (63                             |
| Dutput from w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ater heat                                                                                                                                                | ter                                                                                                                                                                                                                                        |                                                                                                                       | -                                                                                               |                                                                                           |                                                                                    |                                                                                      |                                                                                   |                                                                                                               |                                               |                                               |             |                                 |
| 54)m= 247.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 218.46                                                                                                                                                   | 229.24                                                                                                                                                                                                                                     | 205.22                                                                                                                | 200.9                                                                                           | 179.22                                                                                    | 171.85                                                                             | 188.95                                                                               | 188.74                                                                            | 212.81                                                                                                        | 225.38                                        | 241.9                                         |             |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                          |                                                                                                                                                                                                                                            |                                                                                                                       |                                                                                                 |                                                                                           |                                                                                    | Outp                                                                                 | out from wa                                                                       | ater heate                                                                                                    | r (annual),                                   |                                               | 2510.62     | (64                             |
| leat gains fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m water                                                                                                                                                  | heating                                                                                                                                                                                                                                    | kWh/m                                                                                                                 | onth 0.2                                                                                        | 5 10 85                                                                                   | x (45)m                                                                            | + (61)m                                                                              | 1+08                                                                              | r [(46)m                                                                                                      | + (57)m                                       | + (59)m                                       | 1           |                                 |
| 65)m= 108.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 96.25                                                                                                                                                    | 102.36                                                                                                                                                                                                                                     | 93.53                                                                                                                 | 92.94                                                                                           | 84.88                                                                                     | 83.28                                                                              | 88.96                                                                                | -                                                                                 | 96.9                                                                                                          | · · /                                         | <u>, ,</u>                                    |             |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                          |                                                                                                                                                                                                                                            |                                                                                                                       |                                                                                                 |                                                                                           |                                                                                    |                                                                                      | 88.05                                                                             |                                                                                                               |                                               | 106 57                                        |             | (65                             |
| include (57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m in colo                                                                                                                                                | ulation a                                                                                                                                                                                                                                  | £ (CE)-                                                                                                               | anh if a                                                                                        |                                                                                           |                                                                                    |                                                                                      | 88.05                                                                             |                                                                                                               | 100.23                                        | 106.57                                        |             | (65                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m in calc                                                                                                                                                |                                                                                                                                                                                                                                            | • •                                                                                                                   |                                                                                                 |                                                                                           |                                                                                    |                                                                                      |                                                                                   |                                                                                                               |                                               |                                               | eating      | (65                             |
| 5. Internal g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                          |                                                                                                                                                                                                                                            | • •                                                                                                                   |                                                                                                 |                                                                                           |                                                                                    |                                                                                      |                                                                                   |                                                                                                               |                                               |                                               | eating      | (65                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ains (see<br>ns (Table                                                                                                                                   | Table 5<br>5), Wat                                                                                                                                                                                                                         | and 5a                                                                                                                | ):                                                                                              |                                                                                           | s in the o                                                                         |                                                                                      |                                                                                   | ater is fi                                                                                                    | rom com                                       |                                               | leating     | (65                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ains (see                                                                                                                                                | Table 5                                                                                                                                                                                                                                    | and 5a                                                                                                                |                                                                                                 |                                                                                           |                                                                                    |                                                                                      |                                                                                   |                                                                                                               |                                               |                                               | eating      | (65                             |
| Metabolic gair<br>Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ains (see<br>ns (Table                                                                                                                                   | Table 5<br>5), Wat                                                                                                                                                                                                                         | and 5a                                                                                                                | ):                                                                                              | ylinder i                                                                                 | s in the o                                                                         | dwelling                                                                             | or hot w                                                                          | ater is fi                                                                                                    | rom com                                       | munity h                                      | leating     |                                 |
| Metabolic gair<br>Jan<br>66)m= 175.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ains (see<br>ns (Table<br>Feb<br>175.86                                                                                                                  | Table 5<br>5), Wat<br>Mar<br>175.86                                                                                                                                                                                                        | and 5a<br>ts<br>Apr<br>175.86                                                                                         | May<br>175.86                                                                                   | ylinder i<br>Jun<br>175.86                                                                | Jul                                                                                | Aug<br>175.86                                                                        | or hot w<br>Sep<br>175.86                                                         | ater is fi<br>Oct                                                                                             | rom com                                       | munity h                                      | leating     |                                 |
| Metabolic gair<br>Jan<br>66)m= 175.86<br>Lighting gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ains (see<br>ns (Table<br>Feb<br>175.86                                                                                                                  | Table 5<br>5), Wat<br>Mar<br>175.86                                                                                                                                                                                                        | and 5a<br>ts<br>Apr<br>175.86                                                                                         | May<br>175.86                                                                                   | ylinder i<br>Jun<br>175.86                                                                | Jul                                                                                | Aug<br>175.86                                                                        | or hot w<br>Sep<br>175.86                                                         | ater is fi<br>Oct                                                                                             | rom com                                       | munity h                                      | eating      | (65                             |
| Metabolic gair<br>Jan<br>66)m= 175.86<br>Lighting gains<br>67)m= 65.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ains (see<br>ns (Table<br>Feb<br>175.86<br>(calculat<br>57.99                                                                                            | 5), Watt<br>Mar<br>175.86<br>ted in Ap<br>47.16                                                                                                                                                                                            | Apr<br>175.86<br>ppendix 1<br>35.7                                                                                    | May<br>175.86<br>, equat<br>26.69                                                               | Jun<br>175.86<br>ion L9 o<br>22.53                                                        | Jul<br>175.86<br>r L9a), a<br>24.35                                                | Aug<br>175.86<br>Iso see<br>31.65                                                    | or hot w<br>Sep<br>175.86<br>Table 5<br>42.48                                     | Oct<br>175.86<br>53.93                                                                                        | Nov                                           | Dec                                           | leating     | (66                             |
| Metabolic gair<br>Jan<br>(66)m= 175.86<br>Lighting gains<br>(67)m= 65.29<br>Appliances ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ains (see<br>ns (Table<br>Feb<br>175.86<br>(calculat<br>57.99<br>iins (calcu                                                                             | 5), Watt<br>Mar<br>175.86<br>ted in Ap<br>47.16<br>ulated in                                                                                                                                                                               | and 5a<br>ts<br>Apr<br>175.86<br>opendix 1<br>35.7<br>Append                                                          | ):<br>175.86<br>L, equat<br>26.69<br>dix L, eq                                                  | Jun<br>175.86<br>ion L9 o<br>22.53<br>uation L                                            | Jul<br>175.86<br>r L9a), a<br>24.35<br>13 or L1                                    | Aug<br>175.86<br>Iso see<br>31.65<br>3a), also                                       | or hot w<br>Sep<br>175.86<br>Table 5<br>42.48<br>o see Tal                        | Oct<br>175.86<br>53.93<br>ble 5                                                                               | Nov<br>175.86<br>62.95                        | Dec<br>175.86<br>67.1                         | leating     | (66                             |
| Jan           66)m=         Jan           ighting gains         175.86           ighting gains         67.78           67)m=         65.29           Appliances ga         669.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ains (see<br>Feb<br>175.86<br>(calculat<br>57.99<br>iins (calcu                                                                                          | 5), Watt<br>Mar<br>175.86<br>ted in Ap<br>47.16<br>ulated in<br>658.56                                                                                                                                                                     | and 5a<br>ts<br>Apr<br>175.86<br>opendix 1<br>35.7<br>Append<br>621.31                                                | May<br>175.86<br>L, equat<br>26.69<br>dix L, eq<br>574.29                                       | ylinder i<br>Jun<br>175.86<br>ion L9 o<br>22.53<br>uation L<br>530.1                      | Jul<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58                          | Aug<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64                             | or hot w<br>Sep<br>175.86<br>Table 5<br>42.48<br>see Tal<br>511.13                | Oct<br>175.86<br>53.93<br>ble 5<br>548.38                                                                     | Nov                                           | Dec                                           |             | (66                             |
| Aetabolic gair<br>Jan<br>Jan<br>175.86<br>ighting gains<br>67)m= 65.29<br>Appliances ga<br>68)m= 669.12<br>Cooking gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ains (see<br>ns (Table<br>Feb<br>175.86<br>(calculat<br>57.99<br>iins (calculat<br>676.06<br>6 (calculat                                                 | Table 5<br>5), Watt<br>Mar<br>175.86<br>ted in Ap<br>47.16<br>ulated in<br>658.56<br>ted in Ap                                                                                                                                             | Apr<br>Apr<br>175.86<br>ppendix l<br>35.7<br>Append<br>621.31<br>ppendix                                              | May<br>175.86<br>L, equat<br>26.69<br>dix L, eq<br>574.29<br>L, equal                           | Jun<br>175.86<br>ion L9 o<br>22.53<br>uation L<br>530.1<br>ion L15                        | Jul<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58<br>or L15a)              | Aug<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64<br>), also se               | Sep<br>175.86<br>Table 5<br>42.48<br>see Tal<br>511.13<br>se Table                | Oct<br>175.86<br>53.93<br>ble 5<br>548.38<br>5                                                                | Nov<br>175.86<br>62.95<br>595.4               | Dec<br>175.86<br>67.1<br>639.59               |             | (66<br>(67<br>(68               |
| Aetabolic gain<br>Jan<br>56)m= 175.86<br>ighting gains<br>57)m= 65.29<br>oppliances ga<br>88)m= 669.12<br>Cooking gains<br>59)m= 40.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ains (see<br>ns (Table<br>Feb<br>175.86<br>(calculat<br>57.99<br>ins (calculat<br>676.06<br>s (calculat<br>40.59                                         | Table 5<br>5), Watt<br>Mar<br>175.86<br>ted in Ap<br>47.16<br>ulated in<br>658.56<br>ted in Ap<br>40.59                                                                                                                                    | and 5a<br>ts<br>Apr<br>175.86<br>opendix l<br>35.7<br>Append<br>621.31<br>opendix<br>40.59                            | May<br>175.86<br>L, equat<br>26.69<br>dix L, eq<br>574.29                                       | ylinder i<br>Jun<br>175.86<br>ion L9 o<br>22.53<br>uation L<br>530.1                      | Jul<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58                          | Aug<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64                             | or hot w<br>Sep<br>175.86<br>Table 5<br>42.48<br>see Tal<br>511.13                | Oct<br>175.86<br>53.93<br>ble 5<br>548.38                                                                     | Nov<br>175.86<br>62.95                        | Dec<br>175.86<br>67.1                         | leating     | (66<br>(67<br>(68               |
| Metabolic gains           Jan           66)m=         175.86           .ighting gains           67)m=         65.29           Appliances ga           68)m=         669.12           Cooking gains           69)m=         40.59           Pumps and fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ains (see<br>ns (Table<br>Feb<br>175.86<br>(calculat<br>57.99<br>ins (calculat<br>676.06<br>s (calculat<br>40.59<br>ns gains                             | Table 5<br>5), Wat<br>Mar<br>175.86<br>ted in Ap<br>47.16<br>ulated in<br>658.56<br>ted in Ap<br>40.59<br>(Table 5                                                                                                                         | Apr<br>175.86<br>ppendix 1<br>35.7<br>Append<br>621.31<br>ppendix<br>40.59<br>ja)                                     | ):<br>May<br>175.86<br>L, equat<br>26.69<br>dix L, eq<br>574.29<br>L, equat<br>40.59            | Jun<br>175.86<br>ion L9 o<br>22.53<br>uation L<br>530.1<br>ion L15<br>40.59               | Jul<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58<br>or L15a<br>40.59      | Aug<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64<br>), also se<br>40.59      | Sep<br>175.86<br>Table 5<br>42.48<br>see Tal<br>511.13<br>se Table                | Oct<br>175.86<br>53.93<br>ble 5<br>548.38<br>5                                                                | Nov<br>175.86<br>62.95<br>595.4<br>40.59      | Dec<br>175.86<br>67.1<br>639.59               | leating     | (66<br>(67<br>(68               |
| Metabolic gains<br>[34] Jan<br>[46]m= 175.86<br>[35] Jan<br>[45] Jan<br>[45] Jan<br>[45] Jan<br>[45] Jan<br>[46] Jan<br>[45] Jan<br>[40] Jan<br>[4 | ains (see<br>ns (Table<br>Feb<br>175.86<br>(calculat<br>57.99<br>ins (calculat<br>676.06<br>s (calculat<br>40.59                                         | Table 5<br>5), Watt<br>Mar<br>175.86<br>ted in Ap<br>47.16<br>ulated in<br>658.56<br>ted in Ap<br>40.59                                                                                                                                    | and 5a<br>ts<br>Apr<br>175.86<br>opendix l<br>35.7<br>Append<br>621.31<br>opendix<br>40.59                            | May<br>175.86<br>L, equat<br>26.69<br>dix L, eq<br>574.29<br>L, equal                           | Jun<br>175.86<br>ion L9 o<br>22.53<br>uation L<br>530.1<br>ion L15                        | Jul<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58<br>or L15a)              | Aug<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64<br>), also se               | Sep<br>175.86<br>Table 5<br>42.48<br>see Tal<br>511.13<br>se Table                | Oct<br>175.86<br>53.93<br>ble 5<br>548.38<br>5                                                                | Nov<br>175.86<br>62.95<br>595.4               | Dec<br>175.86<br>67.1<br>639.59               | eating      | (66<br>(67<br>(68               |
| Metabolic quin         Jan           66)m=         175.86           Lighting gains         67)m=           67)m=         65.29           Appliances ga         68)m=           68)m=         669.12           Cooking gains         69/m=           40.59         Pumps and fa           70)m=         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ains (see<br>ns (Table<br>Feb<br>175.86<br>(calculat<br>57.99<br>iins (calculat<br>676.06<br>s (calculat<br>40.59<br>ns gains<br>3                       | Table 5<br>5), Wat<br>Mar<br>175.86<br>ted in Ap<br>47.16<br>ulated in<br>658.56<br>ted in Ap<br>40.59<br>(Table 5<br>3                                                                                                                    | and 5a<br>ts<br>Apr<br>175.86<br>ppendix  <br>35.7<br>Appendix<br>621.31<br>opendix<br>40.59<br>isa)<br>3             | ):<br>May<br>175.86<br>L, equat<br>26.69<br>dix L, eq<br>574.29<br>L, equal<br>40.59<br>3       | Jun<br>175.86<br>ion L9 o<br>22.53<br>uation L<br>530.1<br>tion L15<br>40.59<br>3         | Jul<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58<br>or L15a<br>40.59      | Aug<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64<br>), also se<br>40.59      | Sep<br>175.86<br>Table 5<br>42.48<br>5 see Tal<br>511.13<br>se Table<br>40.59     | Oct<br>175.86<br>53.93<br>ble 5<br>548.38<br>5<br>40.59                                                       | Nov<br>175.86<br>62.95<br>595.4<br>40.59      | Dec<br>175.86<br>67.1<br>639.59<br>40.59      | eating      | (66<br>(67<br>(68               |
| (66)m=         175.86           Lighting gains         65.29           Appliances ga         669.12           Cooking gains         669.29           Lighting gains         669.12           Cooking gains         40.59           Pumps and fa         10.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ains (see<br>ns (Table<br>Feb<br>175.86<br>(calculat<br>57.99<br>iins (calculat<br>676.06<br>s (calculat<br>40.59<br>ns gains<br>3                       | Table 5<br>5), Wat<br>Mar<br>175.86<br>ted in Ap<br>47.16<br>ulated in<br>658.56<br>ted in Ap<br>40.59<br>(Table 5<br>3                                                                                                                    | and 5a<br>ts<br>Apr<br>175.86<br>ppendix  <br>35.7<br>Appendix<br>621.31<br>opendix<br>40.59<br>isa)<br>3             | ):<br>May<br>175.86<br>L, equat<br>26.69<br>dix L, eq<br>574.29<br>L, equal<br>40.59<br>3       | Jun<br>175.86<br>ion L9 o<br>22.53<br>uation L<br>530.1<br>tion L15<br>40.59<br>3         | Jul<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58<br>or L15a<br>40.59      | Aug<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64<br>), also se<br>40.59      | Sep<br>175.86<br>Table 5<br>42.48<br>5 see Tal<br>511.13<br>se Table<br>40.59     | Oct<br>175.86<br>53.93<br>ble 5<br>548.38<br>5<br>40.59                                                       | Nov<br>175.86<br>62.95<br>595.4<br>40.59      | Dec<br>175.86<br>67.1<br>639.59<br>40.59      | leating     | (66<br>(67<br>(68<br>(69<br>(70 |
| Metabolic gains           66)m=         Jan           66)m=         175.86           Lighting gains         65.29           Appliances ga         669/m=           66)m=         669.12           Cooking gains         669/m=           60)m=         40.59           Pumps and fa         70)m=           3         cosses e.g. ev           71)m=         -140.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ains (see<br>ns (Table<br>Feb<br>175.86<br>(calculat<br>57.99<br>ins (calculat<br>676.06<br>6 (calcula<br>40.59<br>ns gains<br>3<br>vaporatio<br>-140.68 | Table 5           5), Watt           Mar           175.86           ted in Ap           47.16           ulated in           658.56           ted in Ap           40.59           (Table 5           3           n (negat           -140.68 | and 5a<br>ts<br>Apr<br>175.86<br>ppendix l<br>35.7<br>Appendix<br>621.31<br>opendix<br>40.59<br>5a)<br>3<br>tive valu | May<br>175.86<br>L, equat<br>26.69<br>dix L, eq<br>574.29<br>L, equat<br>40.59<br>3<br>es) (Tab | Jun<br>175.86<br>ion L9 o<br>22.53<br>uation L<br>530.1<br>ion L15<br>40.59<br>3<br>le 5) | Jul<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58<br>or L15a<br>40.59<br>3 | Aug<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64<br>), also se<br>40.59<br>3 | Sep<br>175.86<br>Table 5<br>42.48<br>See Tal<br>511.13<br>see Table<br>40.59<br>3 | Oct           175.86           53.93           ble 5           548.38           5           40.59           3 | Nov<br>175.86<br>62.95<br>595.4<br>40.59<br>3 | Dec<br>175.86<br>67.1<br>639.59<br>40.59<br>3 |             | (66                             |
| Metabolic quin         Jan           66)m=         Jan           175.86         Jan           Lighting gains         65.29           Appliances ga         669.12           Cooking gains         69.12           Cooking gains         40.59           Pumps and fa         70m=           3         cosses e.g. etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ains (see<br>ns (Table<br>Feb<br>175.86<br>(calculat<br>57.99<br>ins (calculat<br>676.06<br>6 (calcula<br>40.59<br>ns gains<br>3<br>vaporatio<br>-140.68 | Table 5           5), Watt           Mar           175.86           ted in Ap           47.16           ulated in           658.56           ted in Ap           40.59           (Table 5           3           n (negat           -140.68 | and 5a<br>ts<br>Apr<br>175.86<br>ppendix l<br>35.7<br>Appendix<br>621.31<br>opendix<br>40.59<br>5a)<br>3<br>tive valu | May<br>175.86<br>L, equat<br>26.69<br>dix L, eq<br>574.29<br>L, equat<br>40.59<br>3<br>es) (Tab | Jun<br>175.86<br>ion L9 o<br>22.53<br>uation L<br>530.1<br>ion L15<br>40.59<br>3<br>le 5) | Jul<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58<br>or L15a<br>40.59<br>3 | Aug<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64<br>), also se<br>40.59<br>3 | Sep<br>175.86<br>Table 5<br>42.48<br>See Tal<br>511.13<br>see Table<br>40.59<br>3 | Oct           175.86           53.93           ble 5           548.38           5           40.59           3 | Nov<br>175.86<br>62.95<br>595.4<br>40.59<br>3 | Dec<br>175.86<br>67.1<br>639.59<br>40.59<br>3 |             | (66<br>(67<br>(68<br>(69<br>(70 |

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

Page 4 of 9

# A3 | DER/TER Worksheets

### DER WorkSheet: New dwelling design stage

### DER WorkSheet: New dwelling design stage

# DER WorkSheet: New dwelling design stage

| Fotal interna                |                         |      |                           |       |              | <u> </u> | 3)m + (69)m + (70 | ·      |           |      | 1       |           |
|------------------------------|-------------------------|------|---------------------------|-------|--------------|----------|-------------------|--------|-----------|------|---------|-----------|
| 73)m= 959.11                 |                         | 2.06 | 865.67 804.6              | 5 7   | 49.29 715.61 | 723      | .61 754.65        | 811.3  | 876.31 92 | 8.69 |         | (73)      |
| <ol><li>Solar gair</li></ol> |                         |      |                           |       |              |          |                   |        |           |      |         |           |
| -                            |                         |      | flux from Table 6<br>Area | a and | Flux         | tions    |                   | applic | FF        |      | Gains   |           |
| Unentation:                  | Access Fact<br>Table 6d | Dr   | Area<br>m <sup>2</sup>    |       | Table 6a     |          | 9_<br>Table 6b    |        | Table 6c  |      | (W)     |           |
| Southeast 0.9x               | 0.77                    | ٦ ×  | 53.4                      | l x   | 36.79        | x        | 0.63              | 1 × 1  | 0.7       | 1 =  | 600.47  | 7(77)     |
| Southeast 0.9x               | 0.77                    | i .  | 53.4                      | x     | 62.67        | ×        | 0.63              | ×      | 0.7       | 1 =  | 1022.81 |           |
| Southeast 0.9x               | 0.77                    | i .  | 53.4                      | x     | 85.75        | ×        | 0.63              | x      | 0.7       | i =  | 1399.46 | 707       |
| Southeast 0.9x               | 0.77                    | ×    | 53.4                      | x     | 106.25       | x        | 0.63              | ×      | 0.7       | i =  | 1734    | 707       |
| Southeast 0.9x               | 0.77                    | ×    | 53.4                      | x     | 119.01       | ×        | 0.63              | ×      | 0.7       | 1 =  | 1942.22 | [77]      |
| Southeast 0.9x               | 0.77                    | ×    | 53.4                      | ×     | 118.15       | x        | 0.63              | ×      | 0.7       | i =  | 1928.18 | (77)      |
| Southeast 0.9x               | 0.77                    | ×    | 53.4                      | x     | 113.91       | x        | 0.63              | ×      | 0.7       | i =  | 1858.97 | -<br>(77) |
| Southeast 0.9x               | 0.77                    | ×    | 53.4                      | x     | 104.39       | x        | 0.63              | ×      | 0.7       | i =  | 1703.62 | 777       |
| Southeast 0.9x               | 0.77                    | ×    | 53.4                      | ×     | 92.85        | x        | 0.63              | ×      | 0.7       | ] =  | 1515.32 | (77)      |
| Southeast 0.9x               | 0.77                    | ×    | 53.4                      | ×     | 69.27        | x        | 0.63              | ×      | 0.7       | ] =  | 1130.43 | (77)      |
| Southeast 0.9x               | 0.77                    | ×    | 53.4                      | ×     | 44.07        | x        | 0.63              | x      | 0.7       | -    | 719.22  | (77)      |
| Southeast 0.9x               | 0.77                    | ×    | 53.4                      | x     | 31.49        | x        | 0.63              | ×      | 0.7       | ] =  | 513.87  | (77       |
| Southwest <mark>0.9x</mark>  | 0.77                    | ×    | 20.3                      | x     | 36.79        |          | 0.63              | ×      | 0.7       | ] =  | 228.27  | (79       |
| Southwest <mark>0.9x</mark>  | 0.77                    | ×    | 20.3                      | x     | 62.67        | /        | 0.63              | ×      | 0.7       | =    | 388.82  | (79       |
| Southwest <mark>0.9x</mark>  | 0.77                    | x    | 20.3                      | ×     | 85.75        |          | 0.63              | ×      | 0.7       | =    | 532     | (79       |
| Southwest <mark>0.9x</mark>  | 0.77                    | ×    | 20.3                      | x     | 106.25       |          | 0.63              | ×      | 0.7       | =    | 659.18  | (79       |
| Southwest0.9x                | 0.77                    | ×    | 20.3                      | ×     | 119.01       |          | 0.63              | ×      | 0.7       | =    | 738.34  | (79)      |
| Southwest <mark>0.9x</mark>  | 0.77                    | ×    | 20.3                      | ×     | 118.15       |          | 0.63              | ×      | 0.7       | =    | 733     | (79)      |
| Southwest <sub>0.9x</sub>    | 0.77                    | x    | 20.3                      | x     | 113.91       |          | 0.63              | ×      | 0.7       | =    | 706.69  | (79       |
| Southwest <sub>0.9x</sub>    | 0.77                    | x    | 20.3                      | x     | 104.39       |          | 0.63              | ×      | 0.7       | =    | 647.63  | (79       |
| Southwest <sub>0.9x</sub>    | 0.77                    | x    | 20.3                      | x     | 92.85        |          | 0.63              | ×      | 0.7       | =    | 576.05  | (79       |
| Southwest <sub>0.9x</sub>    | 0.77                    | x    | 20.3                      | x     | 69.27        |          | 0.63              | ×      | 0.7       | ] =  | 429.73  | (79       |
| Southwest <sub>0.9x</sub>    | 0.77                    | ×    | 20.3                      | ×     | 44.07        |          | 0.63              | ×      | 0.7       | ] =  | 273.41  | (79)      |
| Southwest <sub>0.9x</sub>    | 0.77                    | ×    | 20.3                      | ×     | 31.49        |          | 0.63              | ×      | 0.7       | ] =  | 195.35  | (79)      |
| Rooflights 0.9x              | 1                       | ×    | 0.8                       | ×     | 26           | ×        | 0.3               | ×      | 0.7       | ] =  | 3.93    | (82)      |
| Rooflights 0.9x              | 1                       | ×    | 1.3                       | ×     | 37.03        | ×        | 0.3               | ×      | 0.7       | ] =  | 9.1     | (82)      |
| Rooflights 0.9x              | 1                       | ×    | 0.8                       | ×     | 54           | ×        | 0.3               | ×      | 0.7       | ] =  | 8.16    | (82)      |
| Rooflights 0.9x              | 1                       | ×    | 1.3                       | ×     | 70.28        | ×        | 0.3               | ×      | 0.7       | ] =  | 17.27   | (82)      |
| Rooflights 0.9x              | 1                       | ×    | 0.8                       | ×     | 96           | ×        | 0.3               | ×      | 0.7       | =    | 14.52   | (82)      |
| Rooflights 0.9x              | 1                       | ×    | 1.3                       | ×     | 111.87       | ×        | 0.3               | ×      | 0.7       | =    | 27.49   | (82)      |
| Rooflights 0.9x              | 1                       | ×    | 0.8                       | ×     | 150          | ×        | 0.3               | ×      | 0.7       | =    | 22.68   | (82)      |
| Rooflights 0.9x              | 1                       | ×    | 1.3                       | ×     | 159.33       | ×        | 0.3               | ×      | 0.7       | =    | 39.15   | (82)      |
| Rooflights 0.9x              | 1                       | ×    | 0.8                       | ×     | 192          | ×        | 0.3               | ×      | 0.7       | =    | 29.03   | (82)      |
| Rooflights 0.9x              | 1                       | ×    | 1.3                       | x     | 193.3        | x        | 0.3               | ×      | 0.7       | =    | 47.49   | (82)      |

Page 5 of 9

| Rooflights 0.9x | 1 | x | 0.8 | × | 200    | x | 0.3 | x | 0.7 | = | 30.24 | (82) |
|-----------------|---|---|-----|---|--------|---|-----|---|-----|---|-------|------|
| Rooflights 0.9x | 1 | x | 1.3 | x | 197.35 | x | 0.3 | x | 0.7 | = | 48.49 | (82) |
| Rooflights 0.9x | 1 | × | 0.8 | × | 189    | x | 0.3 | x | 0.7 | = | 28.58 | (82) |
| Rooflights 0.9x | 1 | x | 1.3 | × | 188.08 | x | 0.3 | x | 0.7 | = | 46.21 | (82) |
| Rooflights 0.9x | 1 | x | 0.8 | x | 157    | x | 0.3 | x | 0.7 | = | 23.74 | (82) |
| Rooflights 0.9x | 1 | x | 1.3 | x | 162.62 | x | 0.3 | x | 0.7 | = | 39.95 | (82) |
| Rooflights 0.9x | 1 | x | 0.8 | x | 115    | x | 0.3 | x | 0.7 | = | 17.39 | (82) |
| Rooflights 0.9x | 1 | x | 1.3 | x | 128.66 | x | 0.3 | x | 0.7 | = | 31.61 | (82) |
| Rooflights 0.9x | 1 | × | 0.8 | x | 66     | x | 0.3 | x | 0.7 | = | 9.98  | (82) |
| Rooflights 0.9x | 1 | × | 1.3 | x | 82.24  | x | 0.3 | x | 0.7 | = | 20.21 | (82) |
| Rooflights 0.9x | 1 | × | 0.8 | x | 33     | x | 0.3 | x | 0.7 | = | 4.99  | (82) |
| Rooflights 0.9x | 1 | × | 1.3 | x | 45.75  | x | 0.3 | x | 0.7 | = | 11.24 | (82) |
| Rooflights 0.9x | 1 | × | 0.8 | x | 21     | x | 0.3 | x | 0.7 | = | 3.18  | (82) |
| Rooflights 0.9x | 1 | x | 1.3 | × | 30.74  | x | 0.3 | x | 0.7 | = | 7.55  | (82) |
|                 |   |   |     |   |        |   |     |   |     |   |       |      |

| Solar g        | ains in   | watts, ca   | lculated   | for eac          | h month   |            |           | (83)m = S | um(74)m . | (82)m       |             |           |        |      |
|----------------|-----------|-------------|------------|------------------|-----------|------------|-----------|-----------|-----------|-------------|-------------|-----------|--------|------|
| 83)m=          | 841.76    | 1437.07     | 1973.47    | 2455             | 2757.08   | 2739.9     | 2640.44   | 2414.95   | 2140.37   | 1590.35     | 1008.86     | 719.95    | i i    | (83) |
| rotal g        | ains – i  | nternal a   | nd solar   | (84)m =          | (73)m ·   | + (83)m    | , watts   |           |           |             |             |           |        |      |
| 84)m=          | 1800.87   | 2393.1      | 2895.52    | 3320.68          | 3561.74   | 3489.19    | 3356.05   | 3138.56   | 2895.02   | 2401.65     | 1885.17     | 1648.64   |        | (84) |
| 7 Me           | an inter  | nal temp    | erature    | (heat <b>ing</b> | season    | )          |           |           |           |             |             |           |        |      |
|                |           |             |            |                  |           |            | from Tab  | le 9 Th   | 1 (°C)    |             |             |           | 21     | (85  |
|                |           |             |            |                  | a, h1,m   | -          |           | ,         |           |             |             |           |        |      |
| 1              | Jan       | Feb         | Mar        | Apr              | May       | Jun        | Jul       | Aua       | Sep       | Oct         | Nov         | Dec       | 1      |      |
| 86)m=          | 1         | 1 00        | 1          | 0.99             | 0.93      | 0.76       | 0.56      | 0.62      | 0.89      | 1           | 1           | 1         |        | (86  |
|                |           |             |            |                  |           |            |           |           |           |             |             |           |        |      |
|                | _         | · ·         |            |                  | · · ·     | _          | ps 3 to 7 | _         | <u> </u>  |             |             |           | ,      |      |
| 87)m=          | 20.02     | 20.17       | 20.38      | 20.65            | 20.87     | 20.98      | 21        | 21        | 20.93     | 20.63       | 20.27       | 20        | 1      | (87  |
| Temp           | erature   | during h    | eating p   | eriods i         | n rest of | dwelling   | from Ta   | ble 9, Ti | h2 (°C)   |             |             |           |        |      |
| 38)m=          | 20.28     | 20.29       | 20.29      | 20.3             | 20.31     | 20.32      | 20.32     | 20.33     | 20.32     | 20.31       | 20.3        | 20.3      | i i    | (88  |
| ,<br>L Itilisa | tion fac  | tor for a   | ains for i | rest of d        | welling   | h2 m (se   | e Table   | 9a)       |           |             |             |           |        |      |
| 89)m=          | 1         | 1           | 1          | 0.98             | 0.9       | 0.69       | 0.48      | 0.53      | 0.85      | 0.99        | 1           | 1         | 1      | (89  |
|                |           |             |            |                  |           |            |           |           |           |             |             |           | 1      |      |
|                |           | <u> </u>    |            |                  |           | <u> </u>   |           | <u> </u>  | 7 in Tabl | <u> </u>    |             |           | 1      |      |
| 90)m=          | 18.92     | 19.15       | 19.46      | 19.86            | 20.17     | 20.31      | 20.32     | 20.32     | 20.26     | 19.84       | 19.31       | 18.91     |        | (90  |
|                |           |             |            |                  |           |            |           |           |           | fLA = Livin | g area + (4 | )=        | 0.13   | (91  |
| Mean           | interna   | l temper    | ature (fo  | r the wh         | ole dwe   | lling) = f | LA × T1   | + (1 – fL | A) × T2   |             |             |           |        |      |
| 92)m=          | 19.06     | 19.27       | 19.57      | 19.96            | 20.25     | 20.39      | 20.41     | 20.41     | 20.34     | 19.94       | 19.43       | 19.05     | 1      | (92  |
| Apply          | adjustn   | nent to th  | ne mean    | interna          | temper    | ature fro  | m Table   | 4e, whe   | ere appro | opriate     |             |           |        |      |
| 93)m=          | 18.91     | 19.12       | 19.42      | 19.81            | 20.1      | 20.24      | 20.26     | 20.26     | 20.19     | 19.79       | 19.28       | 18.9      | i i    | (93  |
| 8. Spa         | ace hea   | ting requ   | irement    |                  |           |            | -         |           |           |             |             |           |        |      |
|                |           |             |            |                  |           | ed at st   | ep 11 of  | Table 9   | b, so tha | t Ti,m=(    | 76)m an     | d re-cald | culate |      |
| the ut         | ilisation | factor fo   | or gains   | using Ta         | ble 9a    |            |           |           |           |             |             |           |        |      |
|                | Jan       | Feb         | Mar        | Apr              | May       | Jun        | Jul       | Aug       | Sep       | Oct         | Nov         | Dec       | 1      |      |
|                |           | 4 m x 6 m x | aina has   | -                |           |            |           |           |           |             |             |           |        |      |
| Utilisa        | ation fac | tor for ga  | ains, nin  |                  |           |            |           |           |           |             |             |           | 1      |      |

Page 6 of 9

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

|                                                                        | 1800.74                                                                           | 2391.77                                                                             | 2885.53                                                                                    | 3248.02                                                                                   | 3187.45                                                        | 2373.68   | 1569.02          | 1644.42                 | 2422.05                 | 2379.25         | 1884.56        | 1648.58                   | 1                           |   |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------|------------------|-------------------------|-------------------------|-----------------|----------------|---------------------------|-----------------------------|---|
| Mont                                                                   | hly aver                                                                          | age exte                                                                            | rnal tem                                                                                   | perature                                                                                  | e from Ta                                                      | able 8    |                  |                         |                         |                 |                |                           | 1                           |   |
| (96)m=                                                                 | 4.3                                                                               | 4.9                                                                                 | 6.5                                                                                        | 8.9                                                                                       | 11.7                                                           | 14.6      | 16.6             | 16.4                    | 14.1                    | 10.6            | 7.1            | 4.2                       | ]                           |   |
| Heat                                                                   | loss rate                                                                         | e for mea                                                                           | an intern                                                                                  | al tempe                                                                                  | erature,                                                       | Lm,W:     | =[(39)m          | x [(93)m                | – (96)m                 | ]               |                |                           | ,                           |   |
| (97)m=                                                                 | 6659.58                                                                           | 6455.79                                                                             | 5840.04                                                                                    | 4821.4                                                                                    | 3697.21                                                        | 2425.97   | 1572.03          | 1650.98                 | 2642.66                 | 4041.29         | 5407.39        | 6583.3                    | ]                           |   |
| Spac                                                                   | e heatin                                                                          | g require                                                                           | ement fo                                                                                   | r each n                                                                                  | nonth, k                                                       | Wh/mon    | th = 0.02        | 24 x [(97               | )m – (95                | ;<br>)m] x (4   | 1)m            |                           |                             |   |
| =m(89                                                                  | 3614.98                                                                           | 2731.02                                                                             | 2198.15                                                                                    | 1132.83                                                                                   | 379.26                                                         | 0         | 0                | 0                       | 0                       | 1236.56         | 2536.44        | 3671.43                   |                             |   |
|                                                                        |                                                                                   |                                                                                     |                                                                                            |                                                                                           |                                                                |           |                  | Tota                    | l per year              | (kWh/yea        | ) = Sum(9      | (8) <sub>1.5,8.12</sub> = | 17500.67                    |   |
| Spac                                                                   | e heatin                                                                          | g require                                                                           | ement in                                                                                   | kWh/m <sup>2</sup>                                                                        | /year                                                          |           |                  |                         |                         |                 |                |                           | 29.35                       | ٦ |
| 80.5                                                                   | 0000                                                                              | olina rea                                                                           | uiromor                                                                                    |                                                                                           |                                                                |           |                  |                         |                         |                 |                |                           |                             | _ |
|                                                                        | -                                                                                 | r June, J                                                                           |                                                                                            |                                                                                           | See To                                                         | ble 10b   |                  |                         |                         |                 |                |                           |                             |   |
| Galoc                                                                  | Jan                                                                               | Feb                                                                                 | Mar                                                                                        | Apr                                                                                       | Mav                                                            | Jun       | Jul              | Aug                     | Sep                     | Oct             | Nov            | Dec                       | 1                           |   |
| Heat                                                                   | loss rate                                                                         | e Lm (ca                                                                            |                                                                                            |                                                                                           | <i></i>                                                        | nal tem   | perature         |                         |                         | nperatur        | e from T       |                           | )                           |   |
| (100)m=                                                                |                                                                                   | 0                                                                                   | 0                                                                                          | 0                                                                                         | 0                                                              | 4041.85   |                  | 3252.77                 | 0                       | 0               | 0              | 0                         | ĺ                           |   |
| Utilis                                                                 | ation fac                                                                         | tor for lo                                                                          | oss hm                                                                                     |                                                                                           |                                                                |           |                  |                         |                         |                 |                |                           | ,                           |   |
| (101)m=                                                                | 0                                                                                 | 0                                                                                   | 0                                                                                          | 0                                                                                         | 0                                                              | 0.91      | 0.96             | 0.94                    | 0                       | 0               | 0              | 0                         | 1                           |   |
| Usefi                                                                  | ul loss, h                                                                        | ımLm (V                                                                             | Vatts) =                                                                                   | (100)m x                                                                                  | (101)m                                                         |           | •                |                         |                         |                 |                |                           |                             |   |
| (102) <mark>m</mark> :                                                 | 0                                                                                 | 0                                                                                   | 0                                                                                          | 0                                                                                         | 0                                                              | 3659.04   | 3062.25          | 3069.69                 | 0                       | 0               | 0              | 0                         |                             |   |
| Gain                                                                   | s (solar                                                                          | gains ca                                                                            | lculated                                                                                   | for appli                                                                                 | cable w                                                        | eather re | egion, se        | e Table                 | 10)                     |                 |                |                           | ·                           |   |
| (103) <mark>m</mark> :                                                 | 0                                                                                 | 0                                                                                   | 0                                                                                          | 0                                                                                         | 0                                                              | 4284.57   | 4123.49          | 3877.33                 | 0                       | 0               | 0              | 0                         |                             |   |
| Spac                                                                   | e coolin                                                                          | g require                                                                           | ement fo                                                                                   | r month,                                                                                  | whole d                                                        | dwelling, | continu          | ous ( kV                | (h) = 0.0               | 24 x [(10       | )3)m – (       | 102)m ]                   | x (41)m                     |   |
|                                                                        |                                                                                   | zero if (                                                                           |                                                                                            | <u> </u>                                                                                  | <u> </u>                                                       |           |                  |                         |                         |                 |                |                           | ,                           |   |
| (104) <mark>m</mark> =                                                 | 0                                                                                 | 0                                                                                   | 0                                                                                          | 0                                                                                         | 0                                                              | 450.39    | 789.56           | 600.89                  | 0                       | 0               | 0              | 0                         |                             | _ |
|                                                                        |                                                                                   |                                                                                     |                                                                                            |                                                                                           |                                                                |           |                  |                         |                         | = Sum(          |                | =                         | 1840.84                     |   |
|                                                                        | d fractio                                                                         | n<br>actor (Ta                                                                      | abla 10b                                                                                   |                                                                                           |                                                                |           |                  |                         | fC=                     | cooled          | area + (4      | 4) =                      | 1                           |   |
| (106)m=                                                                | _                                                                                 |                                                                                     |                                                                                            | 0                                                                                         | 0                                                              | 0.25      | 0.25             | 0.25                    | 0                       | 0               | 0              | 0                         | 1                           |   |
| (100)                                                                  | L .                                                                               | ů                                                                                   | Ů                                                                                          | ů,                                                                                        | Ů                                                              | 0.20      | 0.20             | 0.20                    | -                       | I = Sum         |                | =                         | 0                           |   |
| Space                                                                  | cooling                                                                           | requirer                                                                            | ment for                                                                                   | month =                                                                                   | : (104)m                                                       | × (105)   | × (106)r         | m                       | 1010                    | i – Guin        | 1000)          | -                         | 0                           |   |
| (107)m=                                                                |                                                                                   | 0                                                                                   | 0                                                                                          | 0                                                                                         | 0                                                              | 112.6     | 197.39           | 150.22                  | 0                       | 0               | 0              | 0                         | 1                           |   |
|                                                                        |                                                                                   |                                                                                     |                                                                                            |                                                                                           |                                                                |           |                  |                         | Tota                    | I = Sum(        | 107)           | =                         | 460.21                      |   |
|                                                                        | cooling                                                                           | requirer                                                                            | ment in k                                                                                  | (Wh/m²/                                                                                   | /ear                                                           |           |                  |                         |                         | ) + (4) =       | ,              |                           | 0.77                        | ۲ |
| Snace                                                                  | ooomig                                                                            | roquiroi                                                                            |                                                                                            |                                                                                           | , oui                                                          |           |                  |                         | (                       | , (.)           |                |                           | 0.77                        |   |
| · .                                                                    |                                                                                   |                                                                                     | the land                                                                                   | defendence i he                                                                           |                                                                |           | م مالين بالم م   | - milana (              |                         |                 |                |                           |                             |   |
| 9a. En                                                                 |                                                                                   | quiremer                                                                            | nts – Ind                                                                                  | ividual h                                                                                 | eating s                                                       | ystems i  | including        | micro-C                 | HP)                     |                 |                |                           |                             |   |
| 9a. En<br>Spac                                                         | e heati                                                                           | ng:                                                                                 |                                                                                            |                                                                                           |                                                                |           |                  |                         | HP)                     |                 |                |                           | 0                           | _ |
| 9a. En<br>Spac<br>Fract                                                | tion of sp                                                                        | ng:<br>bace hea                                                                     | at from s                                                                                  | econdar                                                                                   | y/supple                                                       |           | system           |                         |                         |                 |                |                           |                             |   |
| 9a. En<br>Spac<br>Fract<br>Fract                                       | tion of sp<br>tion of sp<br>tion of sp                                            | ng:<br>bace hea<br>bace hea                                                         | at from s<br>at from m                                                                     | econdar<br>nain syst                                                                      | y/supple<br>em(s)                                              |           | system           | (202) = 1               | - (201) =               | (2021) -        |                |                           | 1                           |   |
| 9a. En<br>Spac<br>Fract<br>Fract<br>Fract                              | tion of sp<br>tion of sp<br>tion of sp<br>tion of to                              | n <b>g:</b><br>bace hea<br>bace hea<br>tal heati                                    | at from s<br>at from m<br>ng from                                                          | econdar<br>nain syst<br>main sys                                                          | y/supple<br>em(s)<br>stem 1                                    |           | system           |                         | - (201) =               | (203)] =        |                |                           |                             |   |
| 9a. En<br>Spac<br>Fract<br>Fract<br>Fract                              | tion of sp<br>tion of sp<br>tion of sp<br>tion of to                              | ng:<br>bace hea<br>bace hea                                                         | at from s<br>at from m<br>ng from                                                          | econdar<br>nain syst<br>main sys                                                          | y/supple<br>em(s)<br>stem 1                                    |           | system           | (202) = 1               | - (201) =               | (203)] =        |                |                           | 1                           |   |
| 9a. En<br>Spac<br>Fract<br>Fract<br>Fract<br>Effici                    | ce heatin<br>tion of sp<br>tion of sp<br>tion of to<br>ency of                    | n <b>g:</b><br>bace hea<br>bace hea<br>tal heati                                    | at from s<br>at from n<br>ing from<br>ace heat                                             | econdar<br>nain syst<br>main sys<br>ing syste                                             | y/supple<br>tem(s)<br>stem 1<br>em 1                           | mentary   | / system         | (202) = 1               | - (201) =               | (203)] =        |                |                           | 1                           |   |
| 9a. En<br>Spac<br>Fract<br>Fract<br>Fract<br>Effici<br>Effici          | tion of sp<br>tion of sp<br>tion of to<br>ency of<br>ency of                      | n <b>g:</b><br>bace hea<br>bace hea<br>tal heati<br>main spa                        | at from s<br>at from m<br>ng from<br>ace heat<br>ary/suppl                                 | econdar<br>nain syst<br>main sys<br>ing syste<br>ementar                                  | y/supple<br>em(s)<br>stem 1<br>em 1<br>y heatin                | mentary   | / system         | (202) = 1               | - (201) =               | (203)] =        |                |                           | 1<br>1<br>90.9              |   |
| 9a. En<br>Spac<br>Fract<br>Fract<br>Fract<br>Effici<br>Effici          | tion of sp<br>tion of sp<br>tion of to<br>ency of<br>ency of                      | ng:<br>bace hea<br>bace hea<br>ital heatii<br>main spa<br>seconda                   | at from s<br>at from m<br>ng from<br>ace heat<br>ary/suppl                                 | econdar<br>nain syst<br>main sys<br>ing syste<br>ementar                                  | y/supple<br>em(s)<br>stem 1<br>em 1<br>y heatin                | mentary   | / system         | (202) = 1<br>(204) = (2 | - (201) =               | (203)] =<br>Oct | Nov            | Dec                       | 1<br>1<br>90.9<br>0         |   |
| 9a. En<br>Spac<br>Fract<br>Fract<br>Fract<br>Effici<br>Effici<br>Cooli | tion of sp<br>tion of sp<br>tion of to<br>ency of<br>ency of<br>ing Syste<br>Jan  | ng:<br>bace hea<br>bace hea<br>ital heati<br>main spa<br>seconda<br>em Ener         | at from s<br>at from n<br>ng from<br>ace heat<br>ry/suppl<br>gy Efficie<br>Mar             | econdar<br>nain syst<br>main syste<br>ementar<br>ency Rat<br>Apr                          | y/supple<br>tem(s)<br>stem 1<br>em 1<br>y heatin<br>tio<br>May | g systen  | r system<br>n, % | (202) = 1               | - (201) =<br>02) × [1 – |                 | Nov            | Dec                       | 1<br>1<br>90.9<br>0<br>4.05 |   |
| 9a. En<br>Spac<br>Fract<br>Fract<br>Fract<br>Effici<br>Effici<br>Cooli | tion of sp<br>tion of sp<br>tion of to<br>ency of<br>ing Syste<br>Jan<br>e heatin | ng:<br>bace hea<br>bace hea<br>ital heatii<br>main spa<br>seconda<br>em Ener<br>Feb | at from s<br>at from n<br>ng from<br>ace heat<br>ry/suppl<br>gy Efficie<br>Mar<br>ement (c | econdar<br>nain syst<br>main syst<br>ing syste<br>ementar<br>ency Rat<br>Apr<br>salculate | y/supple<br>tem(s)<br>stem 1<br>em 1<br>y heatin<br>tio<br>May | g systen  | r system<br>n, % | (202) = 1<br>(204) = (2 | - (201) =<br>02) × [1 – |                 | Nov<br>2536.44 | Dec 3671.43               | 1<br>1<br>90.9<br>0<br>4.05 |   |

- **26** | Sustainability and Energy Statement

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

| Total         Control         Control <thcontrol< th=""> <thcontrol< th=""> <thcon< th=""><th>3976.87 3004.43 2418.21 1246.24 4</th><th>)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thcon<></thcontrol<></thcontrol<>                                                                                                                                                                                                                                                                                                                                        | 3976.87 3004.43 2418.21 1246.24 4                                                                                                                                                                                                                                                                                                                           | )             |                                                                                                      |                        |             |                                            |                                    |                          |                                                                                                       |                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------|------------------------|-------------|--------------------------------------------|------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Space heating fuel (secondary), KWh/month<br>((198) m x (2011)) x 100 + (208)       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td></td> <td>417.23</td> <td>0 0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td>_</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                             | 417.23        | 0 0                                                                                                  | 0                      | 0           |                                            |                                    |                          |                                                                                                       | _                                                                                                                                   |
| ([(38)m x (201)] x 100 + (208)         15mm       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                             |               |                                                                                                      | TOLA                   | ii (Kwinyei | ar) –ouni(.                                | (11) <sub>1_5,10_10</sub>          |                          | 19252.66                                                                                              | (21                                                                                                                                 |
| Itsper       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td></td> <td>ionth</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                             | ionth         |                                                                                                      |                        |             |                                            |                                    |                          |                                                                                                       |                                                                                                                                     |
| Value free heating           Unique from water heater (calculated above)           247.89         218.46         220.24         05.22         00.9         170.22         171.85         188.74         212.81         225.38         241.9           fficiency of water heater         80.8         80.8         80.8         80.8         80.28         80.98         90.2         (2           uel for water heating, KWh/month         219.01         200.09         220.58         221.81         122.86         233.85         233.50         233.41         250.47         288.17           Total = Sum(219, =         2802.34         (2         2802.34         (2         2802.34         (2           pace cooling fuel, KWh/month.         221.01         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                             | 0             | 0 0                                                                                                  | 0                      | 0           | 0                                          | 0                                  | 0                        |                                                                                                       |                                                                                                                                     |
| butput from wrater heater (calculated above)         247.26       128.46       220.24       205.22       200.9       179.22       171.85       188.96       188.74       212.81       225.83       241.9         117.00       00.18       90.07       89.84       89.19       87.13       80.8       80.8       80.8       80.26       89.96       90.2       (2         117.00       00.18       90.07       89.84       89.19       87.13       80.8       80.8       80.26       89.96       90.2       (2         117.00       00.18       90.07       89.84       89.19       87.13       80.8       80.8       80.26       89.96       90.2       (2         117.00       10.18       90.07       89.84       20.95       221.81       21.268       233.55       23.61       20.047       269.47       (2         119.00       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · ·                                                                                                                                                                                                                                                                                                                                                   |               |                                                                                                      | Tota                   | il (kWh/yea | ar) =Sum(                                  | 215) <sub>1.5,10.10</sub>          | -                        | 0                                                                                                     | (21                                                                                                                                 |
| 247.36       218.46       229.24       205.22       200.9       179.22       171.85       188.05       188.74       212.81       225.38       241.9         fficiency of water heating       00.7       99.44       99.19       67.13       80.8       80.8       80.8       80.8       80.2       80.9       90.2       (2         uel for water heating, KWh/month       119/m       219/m       218.41       220.47       228.41       220.47       228.17       228.24       255.16       20.00       20.58       221.81       212.66       233.85       233.41       250.47       268.17       2802.34       (2         ippec cooling fuel, KWh/month.       221/m       100.0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td< td=""><td>Vater heating</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vater heating                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                      |                        |             |                                            |                                    |                          |                                                                                                       |                                                                                                                                     |
| fileiency of water heater       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8       80.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                             |               | 22 1718                                                                                              | 188 95                 | 188 74      | 212.81                                     | 225.38                             | 241.0                    |                                                                                                       |                                                                                                                                     |
| 117 pm       90.18       90.07       92.84       80.18       90.2       (2         uel for water heating, KWh/month       121 pm       (30.18       90.2       (2         119 pm       (214) pm       (24) x 100 + (217) mm       120 + (27) + (27) mm       120 + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (27) + (2                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                             | 200.0 110     |                                                                                                      | 100.00                 | 100.14      | 212.01                                     | 220.00                             | 241.0                    | 80.8                                                                                                  | 7(21                                                                                                                                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                       | 87.13 80      | 0.8 80.8                                                                                             | 80.8                   | 80.8        | 89.26                                      | 89.98                              | 90.2                     |                                                                                                       | <br>(21                                                                                                                             |
| 119)me       274.97       242.56       255.16       230.09       203.58       221.81       212.66       233.56       233.57       233.47       280.47       280.47       280.23       (2         Total = Sum(219a),, =       280.24       (2         Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4"Colspan="4">Colspan="4"Colspan="4">Colspan="4"Colspan="4">Colspan="4"Colspan="4"Colspan="4"Colspan="4">Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Colspan="4"Col | uel for water heating, kWh/month                                                                                                                                                                                                                                                                                                                            |               |                                                                                                      |                        |             |                                            |                                    |                          |                                                                                                       |                                                                                                                                     |
| Total = Sum(219a),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                             | 220 50 220    | 04 0404                                                                                              | 20 000 05              | 222 50      | 220.44                                     | 250.47                             | 269.47                   |                                                                                                       |                                                                                                                                     |
| pace cooling fuel, kWh/month.       uture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 214,57 242.30 233.10 230.05 2                                                                                                                                                                                                                                                                                                                               | 230.30 22     | 212.0                                                                                                |                        |             |                                            | 230.47                             | 200.17                   | 2802 34                                                                                               | 7(21                                                                                                                                |
| 221m = (107)m+ (209)         221m = (107)m+ (209)         221m = (107)m+ (209)         21m = (107)m+ (209)         annual totals         manual totals         machanical ventilation - balanced, extract or positive input from outside         central heating pump:         total = Sum(21), at the total = Sum(21), at thet                                                                                                                                                                                                                                                                                                          | pace cooling fuel. kWh/month.                                                                                                                                                                                                                                                                                                                               |               |                                                                                                      |                        |             | 1.12                                       |                                    |                          | 2002.04                                                                                               |                                                                                                                                     |
| Innual totals       Total = Sum(21), $a$ 113.63       122.26         Innual totals       KWhyear       122.26       122.26         pace cooling fuel used       113.63       113.63       113.63         Jacc control fuel used       113.63       113.63       113.63         Jacc control fuel used       113.63       113.63       113.63         Jacc control fuel used       2100.01       (22       220.01       (22         Jacc control fuel used       30       (22       220.01       (22       (22       (20.01)       (22       (22       (22       (22.24)       (21.02)       (21.02)       (21.02)       (21.02)       (22.02.01)       (22.02)       (22.02.01)       (22.02)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (22.02.01)       (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 221)m = (107)m+ (209)                                                                                                                                                                                                                                                                                                                                       |               |                                                                                                      |                        |             |                                            |                                    |                          |                                                                                                       |                                                                                                                                     |
| kWh/year         kWh/year       kWh/year         12622.86       2402.34         12622.86       2402.34         12622.86       2402.34         12622.86       2402.34         12622.86       2402.34         12622.86       2402.34         12622.86       2402.34         12622.86       118.63         Idectricity for pumps, fans and electric keep-hot       2100.01       (22         central heating pump:       30       (22         cotal electricity for the above, kWh/year       sum of (230s)(230g) =       2220.01       (22         idectricity for lighting       1153.03       (22       (22       (21       (230s))       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)       (24)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 221)m= 0 0 0 0                                                                                                                                                                                                                                                                                                                                              | 0 27          | .8 48.7                                                                                              |                        |             |                                            | 0                                  | 0                        |                                                                                                       | _                                                                                                                                   |
| pace heating fuel used, main system 1         1222.68           Vater heating fuel used         2492.34           pace cooling fuel used         1138.33           lectricity for pumps, fans and electric keep-hot         2190.01         (2190.01)           mechanical ventiliation - balanced, extract or positive input from outside         2190.01         (2190.01)           central heating pump:         30         (21000)         (21000)           colat electricity for the above, kWh/year         sum of (2300)(230g) =         2220.01         (21000)           ilectricity for the above, kWh/year         sum of (2300)(230g) =         2220.01         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)         (21000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                             |               |                                                                                                      | Tota                   | il = Sum(2  |                                            |                                    |                          |                                                                                                       | <u> </u>                                                                                                                            |
| Vater heating fuel used       2802.34         pace cooling fuel used       113.83         Jectricity for pumps, fans and electric keep-hot       2190.01         mechanical ventilation - balanced, extract or positive input from outside       2190.01         central heating pump:       30         otal electricity for the above, KWhyear       sum of (200a)(200g) =         lectricity for lighting       2122.01         tz2. CO2 emissions - Individual heating systems including micro-CHP       Emergy         KWh/year       kg CO2/kWh         pace heating (main system 1)       (21) x         opace heating (secondary)       (215) x         opace and water heating       (201) + (262) + (283) + (284) =         pace cooling       (221) x         opace and water heating       (21) x         ipace cooling       (221) x         ipace cooling       (221) x         ipace cooling       (221) x         ipace theating       6519         ipace cooling       (221) x         ipace cooling       (221) x         ipace industric keep-hot       (231) x         ipaciticity for inghting       (232) x         ipaciticity for lighting       (232) x <td></td> <td></td> <td></td> <td></td> <td></td> <td>k</td> <td>Wh/year</td> <td>· .</td> <td></td> <td>r</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                             |               |                                                                                                      |                        |             | k                                          | Wh/year                            | · .                      |                                                                                                       | r                                                                                                                                   |
| page cooling fuel used 118.63<br>lacticity for pumps, fans and electric keep-hot<br>mechanical ventilation - balanced, extract or positive input from outside 2100.01 (2<br>central heating pump: 30 (2<br>total electricity for the above, KWh/year sum of (230a)(230g) = 2220.01 (2<br>lacticity for lighting 1153.03 (2<br>1153.03 (2<br>1153.03 (2)<br>1153.03 (2)<br>1153.03 (2)<br>1153.03 (2)<br>12a. CO2 emissions - Individual heating systems including micro-CHP<br>Emergy Emission factor Emissions<br>kWh/year kg CO2/kWh kg CO2/year<br>page heating (main system 1) (211) x 0.216 = 4158.57 (2<br>page heating (secondary) (215) x 0.519 = 0 (2<br>Vater heating (219) × 0.216 = 4458.57 (2<br>page and water heating (219) × 0.216 = 4458.57 (2<br>page cooling (211) x 0.519 = 58.88 (2<br>lactricity for pumps, fans and electric keep-hot (231) x 0.519 = 1152.19 (2<br>lactricity for lighting (232) x 0.519 = 588.42 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                             |               |                                                                                                      |                        |             |                                            |                                    |                          |                                                                                                       | 4                                                                                                                                   |
| Bectricity for pumps, fans and electric keep-hot       2190.01       (2         mechanical ventilation - balanced, extract or positive input from outside       2190.01       (2         central heating pump:       30       (2         otal electricity for the above, kWh/year       sum of (200s)(20g) =       22220.01       (2         ilectricity for lighting       1153.03       (2         12a. CO2 emissions – Individual heating systems including micro-CHP       Emergy       Emission factor       Emissions         pace heating (main system 1)       (211) x       0.216       =       4158.57       (2         pace heating (secondary)       (215) x       0.519       =       0.216       262.47.47       (2         pace and water heating       (211) x       0.216       =       478.33.27       (2         pace cooling       (221) x       0.519       =       58.98       (2         iectricity for pumps, fans and electric keep-hot       (231) x       0.519       =       1152.19       (2         iectricity for lighting       (232) x       0.519       =       58.98       (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |               |                                                                                                      |                        |             |                                            |                                    |                          | 2892.34                                                                                               |                                                                                                                                     |
| mechanical ventilation - balanced, extract or positive input from outside $2190.01$ $(22)$ central heating pump: $30$ $(22)$ otal electricity for the above, kWh/year       sum of $(220a)_{-}(220g) =$ $2220.01$ $(22)$ Bectricity for lighting       1153.03 $(22)$ $(22)$ $(22)$ $(22)$ 12a. CO2 emissions Individual heating systems including micro-CHP       Energy       Emission factor       Kenssions       Kg CO2/kWh       Kg CO2/kyear $(210) \times$ $0.216$ $=$ $4189.57$ $(22)$ pace heating (secondary)       (215) x $0.216$ $=$ $0.216$ $=$ $0.216$ $=$ $0.216$ $=$ $0.216$ $=$ $0.216$ $=$ $0.216$ $=$ $0.216$ $=$ $0.216$ $=$ $0.216$ $=$ $0.216$ $=$ $0.216$ $=$ $0.216$ $=$ $0.216$ $=$ $0.216$ $=$ $0.216$ $=$ $0.216$ $=$ $0.216$ $=$ $0.216$ $=$ $0.216$ $=$ $0.216$ $=$ $0.216$ $=$ $0.216$ $=$ $0.216$ $=$ $0.216$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                             |               |                                                                                                      |                        |             |                                            |                                    |                          |                                                                                                       |                                                                                                                                     |
| Energy         Emission factor         Emissions           212a. CO2 emissions – Individual heating systems including micro-CHP         Emission factor         Emissions           212a. CO2 emissions – Individual heating systems including micro-CHP         Emission factor         Emissions           212a. CO2 emissions – Individual heating systems including micro-CHP         Emission factor         Emissions           212a. CO2 emissions – Individual heating systems including micro-CHP         Emissions factor         Emissions           212a cheating (main system 1)         (211) x         0.216         =         4418.577         (212)           212a cheating (secondary)         (215) x         0.519         =         0.216         =         642.474         (21)           212a cooling         (221) x         0.519         =         0.216         =         642.474         (21)           212a cooling         (221) x         0.519         =         56.88         (22)         (221)         (231) x         0.519         =         1152.19         (231)         (231) x         0.519         =         1152.19         (232)         (232) x         0.519         =         56.42         (24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lectricity for pumps, fans and electric ke                                                                                                                                                                                                                                                                                                                  |               |                                                                                                      |                        |             |                                            |                                    |                          | 113.63                                                                                                |                                                                                                                                     |
| tight         tight <th< td=""><td></td><td>sep-not</td><td></td><td></td><td></td><td></td><td></td><td></td><td>113.63</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             | sep-not       |                                                                                                      |                        |             |                                            |                                    |                          | 113.63                                                                                                |                                                                                                                                     |
| lectricity for lighting 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                             |               | ve input f                                                                                           | rom outside            |             |                                            |                                    | 2190.01                  | 113.63                                                                                                | (23                                                                                                                                 |
| Iza. CO2 emissions - Individual heating systems including micro-CHP         Emission         Emission factor<br>kg CO2/kWh         Emissions<br>kg CO2/kWh         Emissions<br>kg CO2/kWh           pace heating (main system 1)         (21) x         0.216         =         4198.57         (21)           pace heating (secondary)         (215) x         0.519         =         0         (21)           pace heating (secondary)         (219) x         0.216         =         624.74         (21)           pace and water heating         (201) + (262) + (263) + (264) = (251) x         0.519         =         658.98         (21)           pace cooling         (221) x         0.519         =         1152.19         (21)         (23) x         0.519         =         1152.19         (21)           lectricity for lighting         (232) x         0.519         =         596.42         (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mechanical ventilation - balanced, extra                                                                                                                                                                                                                                                                                                                    |               | ve input f                                                                                           | rom outside            | e           |                                            |                                    |                          | 113.63                                                                                                |                                                                                                                                     |
| Energy<br>kWh/year         Emission factor<br>kg CO2/kWh         Emissions<br>kg CO2/year           pace heating (main system 1)         (21) x         0.216         =         4158.57         (21)           pace heating (secondary)         (215) x         0.519         =         0         (21)           valer heating         (219) x         0.216         =         624.74         (21)           pace and water heating         (21) x         0.216         =         624.74         (21)           pace cooling         (221) x         0.519         =         658.98         (21)           pace cooling         (221) x         0.519         =         558.98         (21)           electricity for jumps, fans and electric keep-hot         (231) x         0.519         =         1152.19         (21)           electricity for lighting         (232) x         0.519         =         598.42         (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mechanical ventilation - balanced, extra<br>central heating pump:                                                                                                                                                                                                                                                                                           |               | ve input f                                                                                           |                        |             | (230g) =                                   |                                    |                          |                                                                                                       | (23                                                                                                                                 |
| kWhyear         kg CO2/kWh         kg CO2/year           pace heating (main system 1)         (211) x         0.216         =         4158.57         (21           pace heating (secondary)         (215) x         0.519         =         0         (21           Vater heating         (219) x         0.216         =         624.74         (21           pace and water heating         (211) x         0.216         =         624.74         (21           pace cooling         (221) x         0.519         =         658.98         (21         (21) x         0.519         =         558.98         (21) x         0.519         =         1152.19         (21) x         0.519         =         1152.19         (21) x         0.519         =         0.519         =         558.42         (21) x         0.519         =         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mechanical ventilation - balanced, extra<br>central heating pump:<br>otal electricity for the above, kWh/year                                                                                                                                                                                                                                               |               | ve input f                                                                                           |                        |             | (230g) =                                   |                                    |                          | 2220.01                                                                                               | (23                                                                                                                                 |
| kWhyear         kg CO2/kWh         kg CO2/year           pace heating (main system 1)         (211) x         0.216         =         4158.57         (21           pace heating (secondary)         (215) x         0.519         =         0         (21           Vater heating         (219) x         0.216         =         624.74         (21           pace and water heating         (211) x         0.216         =         624.74         (21           pace cooling         (221) x         0.519         =         658.98         (21         (21) x         0.519         =         558.98         (21) x         0.519         =         1152.19         (21) x         0.519         =         1152.19         (21) x         0.519         =         0.519         =         558.42         (21) x         0.519         =         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mechanical ventilation - balanced, extra<br>central heating pump:<br>'otal electricity for the above, kWh/year<br>Electricity for lighting                                                                                                                                                                                                                  | act or positi |                                                                                                      | sum                    | of (230a).  | (230g) =                                   |                                    |                          | 2220.01                                                                                               | (23<br>(23<br>](23<br>](23                                                                                                          |
| Jose heating (secondary)         (215) x         0.519         =         0.216         (215) x         0.519         =         0.216         (215) x         (215) x         0.216         (215) x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mechanical ventilation - balanced, extra<br>central heating pump:<br>'otal electricity for the above, kWh/year<br>lectricity for lighting                                                                                                                                                                                                                   | act or positi | including                                                                                            | sum<br>micro-CHF       | of (230a).  |                                            |                                    | 30                       | 2220.01<br>1153.03                                                                                    | (23<br>](23<br>](23                                                                                                                 |
| (219) x         0.216         =         624.74         (2           pace and water heating         (261) + (262) + (263) + (264) =         4783.32         (2           pace cooling         (221) x         0.519         =         58.98           lectricity for pumps, fans and electric keep-hot         (231) x         0.519         =         1152.19           electricity for lighting         (232) x         0.519         =         598.42         (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mechanical ventilation - balanced, extra<br>central heating pump:<br>otal electricity for the above, kWh/year<br>lectricity for lighting                                                                                                                                                                                                                    | act or positi | including<br>Energy                                                                                  | sum<br>micro-CHP       | of (230a).  | Emiss                                      | ion fac                            | 30                       | 2220.01<br>1153.03<br>Emissions                                                                       | (23<br>(23<br>(23<br>(23                                                                                                            |
| pace and water heating         (261) + (262) + (263) + (264) =         (221) *         4763.32         (2           pace cooling         (221) x         0.519         =         6898         (2           lectricity for jumps, fans and electric keep-hot         (231) x         0.519         =         1152.19         (2           lectricity for lighting         (232) x         0.519         =         598.42         (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mechanical ventilation - balanced, extra<br>central heating pump:<br>otal electricity for the above, kWh/year<br>lectricity for lighting<br>12a. CO2 emissions – Individual heating                                                                                                                                                                         | act or positi | including<br>Energy<br>kWh/ye                                                                        | sum<br>micro-CHP       | of (230a).  | Emiss<br>kg CO                             | ion fac<br>2/kWh                   | 30<br>tor                | 2220.01<br>1153.03<br>Emissions<br>kg CO2/ye                                                          | (23<br>](23<br>](23<br>](23<br>]<br>[23<br>]<br>[24]<br>[25]<br>[25]<br>[26]<br>[26]<br>[26]<br>[26]<br>[26]<br>[26]<br>[26]<br>[26 |
| pace and water heating         (261) + (262) + (263) + (264) =         4753.32         (2           pace cooling         (221) x         0.519         =         68.98         (2           lectricity for pumps, fans and electric keep-hot         (231) x         0.519         =         1152.19         (2           lectricity for lighting         (232) x         0.519         =         596.42         (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mechanical ventilation - balanced, extra<br>central heating pump:<br>otal electricity for the above, kWh/year<br>lectricity for lighting<br>12a. CO2 emissions – Individual heating<br>pace heating (main system 1)                                                                                                                                         | act or positi | including<br>Energy<br>kWh/yes<br>(211) x                                                            | sum<br>micro-CHP       | of (230a).  | Emiss<br>kg CO                             | ion fac<br>2/kWh                   | 30<br>tor<br>=           | 2220.01<br>1153.03<br>Emissions<br>kg CO2/ye<br>4158.57                                               | (23<br>](24<br>](24<br>s<br>sar<br>](24                                                                                             |
| appe cooling         (221)         x         0.519         =         58.98         (2           lectricity for pumps, fans and electric keep-hot         (231)         x         0.519         =         1152.19         (2           lectricity for lighting         (232)         x         0.519         =         598.42         (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mechanical ventilation - balanced, extra<br>central heating pump:<br>otal electricity for the above, kWh/year<br>lectricity for lighting<br>12a. CO2 emissions – Individual heating<br>pace heating (main system 1)<br>pace heating (secondary)                                                                                                             | act or positi | including<br>Energy<br>kWh/yea<br>(211) x<br>(215) x                                                 | sum<br>micro-CHP       | of (230a).  | Emiss<br>kg CO                             | <b>ion fac</b><br>2/kWh<br>16      | 30<br>tor<br>=           | 2220.01<br>1153.03<br>Emissions<br>kg CO2/ye<br>4158.57<br>0                                          | (2:<br>](2:<br>](2:<br>s<br>sar<br>](26                                                                                             |
| Lectricity for pumps, fans and electric keep-hot         (231) x         0.519         =         1152.19         (24)           Lectricity for lighting         (232) x         0.519         =         598.42         (24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mechanical ventilation - balanced, extra<br>central heating pump:<br>otal electricity for the above, kWh/year<br>lectricity for lighting<br>12a. CO2 emissions - Individual heatin<br>pace heating (main system 1)<br>pace heating (secondary)<br>/ater heating                                                                                             | act or positi | including<br>Energy<br>kWh/ye:<br>(211) x<br>(215) x<br>(219) x                                      | sum<br>micro-CHF<br>ar | of (230a).  | Emiss<br>kg CO                             | <b>ion fac</b><br>2/kWh<br>16      | 30<br>tor<br>=           | 2220.01<br>1153.03<br>Emissions<br>kg CO2/ye<br>4158.57<br>0<br>624.74                                | (23<br>](23<br>](23<br>sar<br>](26<br>](26                                                                                          |
| Lectricity for lighting         (232) x         0.519         =         598.42         (24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mechanical ventilation - balanced, extra<br>central heating pump:<br>otal electricity for the above, kWh/year<br>lectricity for lighting<br>12a. CO2 emissions - Individual heating<br>pace heating (main system 1)<br>pace heating (secondary)<br>/ater heating<br>pace and water heating                                                                  | act or positi | Energy<br>kWh/ye:<br>(211) x<br>(215) x<br>(219) x<br>(261) + (26                                    | sum<br>micro-CHF<br>ar | of (230a).  | Emiss<br>kg CO<br>0.2<br>0.5<br>0.2        | ion fac<br>2/kWh<br>16<br>19<br>16 | 30<br>tor<br>=<br>=      | 2220.01<br>1153.03<br>Emissions<br>kg CO2/ye<br>4158.57<br>0<br>624.74<br>4783.32                     | (2:<br>(2:<br>(2:<br>(2:<br>sar<br>(2:<br>(2:<br>(2:<br>(2:<br>(2:<br>(2:<br>(2:<br>(2:                                             |
| 0.315 0.3042 (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mechanical ventilation - balanced, extra<br>central heating pump:<br>lotal electricity for the above, kWh/year<br>lectricity for lighting<br>12a. CO2 emissions - Individual heating<br>pace heating (main system 1)<br>pace heating (secondary)<br>Vater heating<br>ipace and water heating<br>ipace cooling                                               | g systems     | Energy<br>kWh/ye.<br>(211) x<br>(215) x<br>(219) x<br>(261) + (26<br>(221) x                         | sum<br>micro-CHF<br>ar | of (230a).  | Emiss<br>kg CO<br>0.2<br>0.5<br>0.2        | ion fac<br>2/kWh<br>16<br>19       | 30<br>tor<br>=<br>=      | 2220.01<br>1153.03<br>Emission:<br>kg CO2/ye<br>4158.57<br>0<br>624.74<br>4783.32<br>58.98            | (23<br>(23<br>(23<br>(23<br>(26<br>(26<br>(26<br>(26)<br>(26)                                                                       |
| otal CO2, kg/year sum of (265)(271) = 6592.9 (27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mechanical ventilation - balanced, extra<br>central heating pump:<br>lotal electricity for the above, kWh/year<br>lectricity for lighting<br>12a. CO2 emissions – Individual heating<br>pace heating (main system 1)<br>pace heating (secondary)<br>Vater heating<br>ipace and water heating<br>ipace cooling<br>lectricity for pumps, fans and electric ke | g systems     | including<br>Energy<br>kWh/ye:<br>(211) x<br>(215) x<br>(219) x<br>(261) + (26<br>(221) x<br>(231) x | sum<br>micro-CHF<br>ar | of (230a).  | Emiss<br>kg CO<br>0.2<br>0.5<br>0.5<br>0.5 | ion fac<br>2/kWh<br>16<br>19<br>16 | 30<br>tor<br>=<br>=<br>= | 2220.01<br>1153.03<br>Emission:<br>kg CO2/ye<br>4158.57<br>0<br>624.74<br>4783.22<br>58.98<br>1152.19 | (23<br>(22<br>(22<br>(23<br>(22<br>(26<br>(26<br>(26)<br>(26)<br>(26)                                                               |

### DER WorkSheet: New dwelling design stage

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

Page 8 of 9

#### DER WorkSheet: New dwelling design stage

(272) + (4) =

Dwelling CO2 Emission Rate El rating (section 14)

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

11.06 (273) 86 (274)

Page 9 of 9

# DRAFT

| Assessor Name:<br>Software Name:                    | Stroma FSAP 2012                                                           | Stroma Nu<br>Software         |                             | ion: 1.0.4.25           |
|-----------------------------------------------------|----------------------------------------------------------------------------|-------------------------------|-----------------------------|-------------------------|
| Address :                                           | ł                                                                          | Property Address: 5B I        | Prince Arthur Road_Be Le    | an                      |
| 1. Overall dwelling dime                            | nsions:                                                                    |                               |                             |                         |
|                                                     |                                                                            | Area(m <sup>2</sup> )         | Av. Height(m)               | Volume(m <sup>3</sup> ) |
| Basement                                            |                                                                            | 177.5 (1a)                    | x 4 (2a) =                  | 710 (3a)                |
| Ground floor                                        |                                                                            | 155 (1b)                      | x 3.1 (2b) =                | 480.5 (3b)              |
| irst floor                                          |                                                                            | 131.9 (1c)                    | x 2.7 (2c) =                | 356.13 (3c)             |
| Second floor                                        |                                                                            | 131.9 (1d)                    | x 2.6 (2d) =                | 342.94 (3d)             |
| otal floor area TFA = (1                            | a)+(1b)+(1c)+(1d)+(1e)+(1                                                  | n) 596.3 (4)                  |                             |                         |
| welling volume                                      |                                                                            | (3a) <sup>,</sup>             | +(3b)+(3c)+(3d)+(3e)+(3n) = | 1889.57 (5)             |
| 2. Ventilation rate:                                |                                                                            |                               |                             |                         |
|                                                     | main seconda<br>heating heating                                            | ry other                      | total                       | m <sup>3</sup> per hour |
| lumber of chimneys                                  | 0 + 0                                                                      | + 0 =                         | 0 x 40 =                    | 0 (6a)                  |
| Number of open flues                                | 0 + 0                                                                      | - +                           | 0 × 20 =                    | 0 (6b)                  |
| Number of intermittent fa                           | ns                                                                         |                               | 4 x 10 =                    | 40 (7a)                 |
| lumber of passive vents                             |                                                                            |                               | 0 × 10 =                    | 0 (7b)                  |
| lumber of flueless gas fi                           | res                                                                        |                               | 0 ×40 =                     | 0 (7c)                  |
|                                                     |                                                                            |                               | Air                         | changes per hour        |
| nfiltration due to chimne                           | ys, flues and fans = (6a)+(6b)+                                            | 7a)+(7b)+(7c) =               | 40 + (5) =                  | 0.02 (8)                |
|                                                     | een carried out or is intended, proce                                      | ed to (17), otherwise continu | ue from (9) to (16)         |                         |
| Number of storeys in the<br>Additional infiltration | ne dwelling (ns)                                                           |                               |                             | 0 (9)                   |
|                                                     |                                                                            |                               | [(9)-1]x0.1 =               |                         |
|                                                     | .25 for steel or timber frame or<br>resent, use the value corresponding to |                               |                             | 0 (11)                  |
| deducting areas of openir                           |                                                                            | o ne greater nan area (and    |                             |                         |
| If suspended wooden f                               | loor, enter 0.2 (unsealed) or 0                                            | 0.1 (sealed), else ente       | r 0                         | 0 (12)                  |
| If no draught lobby, en                             | ter 0.05, else enter 0                                                     |                               |                             | 0 (13)                  |
| Percentage of windows                               | s and doors draught stripped                                               |                               |                             | 0 (14)                  |
| Window infiltration                                 |                                                                            | 0.25 - [0.2 x (14             | + 100] =                    | 0 (15)                  |
| Infiltration rate                                   |                                                                            | (8) + (10) + (11)             | + (12) + (13) + (15) =      | 0 (16)                  |
| Air permeability value,                             | q50, expressed in cubic metr                                               | es per hour per square        | e metre of envelope area    | 5 (17)                  |
| based on air permeabil                              | ity value, then (18) = [(17) + 20]+                                        | (8), otherwise (18) = (16)    |                             | 0.27 (18)               |
| Air permeability value applie                       | s if a pressurisation test has been do                                     | ne or a degree air permeat    | ility is being used         |                         |
| umber of sides sheltere                             | d                                                                          |                               |                             | 2 (19)                  |
| helter factor                                       |                                                                            | (20) = 1 - [0.075             | x (19)] =                   | 0.85 (20)               |
| nfiltration rate incorporat                         | ing shelter factor                                                         | (21) = (18) x (20             | ) =                         | 0.23 (21)               |
| nfiltration rate modified f                         | or monthly wind speed                                                      |                               |                             |                         |
|                                                     |                                                                            |                               |                             |                         |

TER WorkSheet: New dwelling design stage

#### TER WorkSheet: New dwelling design stage

|                                                                                                                                                                                               | <u> </u>                                                                        |                                          | om Tabl                                             |                             |                                                                                                                             |                                                                                              |                                                                                                                                             |                                                                                   |                                                                                                             |          |                                      | -        |            |                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------|--------------------------------------|----------|------------|------------------------------------------------------------------------------------------------------------------|
| (22)m= 5.1                                                                                                                                                                                    | 5                                                                               | 4.9                                      | 4.4                                                 | 4.3                         | 3.8                                                                                                                         | 3.8                                                                                          | 3.7                                                                                                                                         | 4                                                                                 | 4.3                                                                                                         | 4.5      | 4.7                                  |          |            |                                                                                                                  |
| Wind Factor (2                                                                                                                                                                                | 22a)m =                                                                         | (22)m ÷                                  | 4                                                   |                             |                                                                                                                             |                                                                                              |                                                                                                                                             |                                                                                   |                                                                                                             |          |                                      |          |            |                                                                                                                  |
| 22a)m= 1.27                                                                                                                                                                                   | 1.25                                                                            | 1.23                                     | 1.1                                                 | 1.08                        | 0.95                                                                                                                        | 0.95                                                                                         | 0.92                                                                                                                                        | 1                                                                                 | 1.08                                                                                                        | 1.12     | 1.18                                 | 1        |            |                                                                                                                  |
|                                                                                                                                                                                               |                                                                                 |                                          |                                                     |                             |                                                                                                                             |                                                                                              | (04)                                                                                                                                        | (00)                                                                              |                                                                                                             |          |                                      | -        |            |                                                                                                                  |
| Adjusted infiltr                                                                                                                                                                              | 0.29                                                                            | e (allowi                                | 0.25                                                | 0.25                        | 0.22                                                                                                                        | peed) =                                                                                      | (21a) x                                                                                                                                     | (22a)m                                                                            | 0.25                                                                                                        | 0.26     | 0.27                                 | 1        |            |                                                                                                                  |
| Calculate effe                                                                                                                                                                                |                                                                                 |                                          |                                                     |                             |                                                                                                                             |                                                                                              | 0.21                                                                                                                                        | 0.23                                                                              | 0.25                                                                                                        | 0.20     | 0.27                                 |          |            |                                                                                                                  |
| If mechanic                                                                                                                                                                                   | al ventila                                                                      | tion:                                    |                                                     |                             |                                                                                                                             |                                                                                              |                                                                                                                                             |                                                                                   |                                                                                                             |          |                                      |          | 0          | (23)                                                                                                             |
| lf exhaust air h                                                                                                                                                                              | eat pump u                                                                      | using Appe                               | endix N, (2                                         | 3b) = (23a                  | a) × Fmv (e                                                                                                                 | equation (I                                                                                  | N5)) , othe                                                                                                                                 | rwise (23b                                                                        | o) = (23a)                                                                                                  |          |                                      |          | 0          | (23                                                                                                              |
| If balanced with                                                                                                                                                                              | h heat reco                                                                     | very: effici                             | iency in %                                          | allowing f                  | for in-use f                                                                                                                | actor (fror                                                                                  | n Table 4h                                                                                                                                  | ) =                                                                               |                                                                                                             |          |                                      |          | 0          | (23                                                                                                              |
| a) If balance                                                                                                                                                                                 | ed mecha                                                                        | anical ve                                | ntilation                                           | with he                     | at recov                                                                                                                    | ery (MV                                                                                      | HR) (24a                                                                                                                                    | a)m = (2                                                                          | 2b)m + (                                                                                                    | 23b) × [ | 1 – (23c                             | ) ÷ 100] |            |                                                                                                                  |
| (24a)m= 0                                                                                                                                                                                     | 0                                                                               | 0                                        | 0                                                   | 0                           | 0                                                                                                                           | 0                                                                                            | 0                                                                                                                                           | 0                                                                                 | 0                                                                                                           | 0        | 0                                    |          |            | (24                                                                                                              |
| b) If balance                                                                                                                                                                                 |                                                                                 |                                          |                                                     |                             |                                                                                                                             |                                                                                              | MV) (24b                                                                                                                                    | )m = (2                                                                           | 2b)m + (:                                                                                                   | . ,      |                                      | -        |            |                                                                                                                  |
| (24b)m= 0                                                                                                                                                                                     | 0                                                                               | 0                                        | 0                                                   | 0                           | 0                                                                                                                           | 0                                                                                            | 0                                                                                                                                           | 0                                                                                 | 0                                                                                                           | 0        | 0                                    |          |            | (24                                                                                                              |
| c) If whole h                                                                                                                                                                                 |                                                                                 |                                          |                                                     |                             |                                                                                                                             |                                                                                              |                                                                                                                                             |                                                                                   | - (                                                                                                         |          |                                      |          |            |                                                                                                                  |
|                                                                                                                                                                                               | n < 0.5 ×                                                                       | (23b), t                                 | 0 hen                                               | c) = (23b                   | o); othen                                                                                                                   | wise (24                                                                                     | c) = (22t                                                                                                                                   | 5)m+0                                                                             | .5 × (23b                                                                                                   |          |                                      | 1        |            | (24                                                                                                              |
|                                                                                                                                                                                               |                                                                                 |                                          | -                                                   | -                           |                                                                                                                             |                                                                                              | L ů                                                                                                                                         | -                                                                                 | 0                                                                                                           | 0        | 0                                    |          |            | (24                                                                                                              |
| <li>d) If natural<br/>if (22b)r</li>                                                                                                                                                          | ventilation<br>m = 1, the                                                       |                                          |                                                     |                             |                                                                                                                             |                                                                                              |                                                                                                                                             |                                                                                   | 0.51                                                                                                        |          |                                      |          |            |                                                                                                                  |
| 24d)m= 0.54                                                                                                                                                                                   | 0.54                                                                            | 0.54                                     | 0.53                                                | 0.53                        | 0.52                                                                                                                        | 0.52                                                                                         | 0.52                                                                                                                                        | 0.53                                                                              | 0.53                                                                                                        | 0.53     | 0.54                                 | 1        |            | (24                                                                                                              |
| Effective air                                                                                                                                                                                 | change                                                                          | rate - er                                | nter (24a                                           | ) or (24t                   | ) or (24                                                                                                                    | c) or (24                                                                                    | d) in box                                                                                                                                   | (25)                                                                              | -                                                                                                           |          | -                                    |          |            |                                                                                                                  |
| _                                                                                                                                                                                             | 5-                                                                              |                                          |                                                     | , (                         |                                                                                                                             |                                                                                              |                                                                                                                                             |                                                                                   |                                                                                                             |          |                                      |          |            |                                                                                                                  |
| (25)m= 0.54                                                                                                                                                                                   | 0.54                                                                            | 0.54                                     | 0.53                                                | 0.53                        | 0.52                                                                                                                        | 0.52                                                                                         | 0.52                                                                                                                                        | 0.53                                                                              | 0.53                                                                                                        | 0.53     | 0.54                                 | 1        |            | (25                                                                                                              |
|                                                                                                                                                                                               | 1                                                                               |                                          |                                                     |                             | 0.52                                                                                                                        | 0.52                                                                                         | 0.52                                                                                                                                        | 0.53                                                                              | 0.53                                                                                                        | 0.53     | 0.54                                 | ]        |            | (25                                                                                                              |
| 3. Heat losse                                                                                                                                                                                 | es and he                                                                       | at loss p                                | paramete                                            | er:                         |                                                                                                                             |                                                                                              | 1                                                                                                                                           |                                                                                   |                                                                                                             | 0.53     | 1                                    | ]        |            |                                                                                                                  |
|                                                                                                                                                                                               | 1                                                                               | at loss p                                |                                                     | er:<br>gs                   | 0.52<br>Net Ar                                                                                                              | ea                                                                                           | 0.52<br>U-valı<br>W/m2                                                                                                                      | Je                                                                                | 0.53<br>A X U<br>(W/                                                                                        |          | 0.54<br>k-valu<br>kJ/m <sup>2.</sup> |          | A )<br>kJ/ | Xk                                                                                                               |
| 3. Heat losse                                                                                                                                                                                 | s and he<br>Gros                                                                | at loss p                                | paramete<br>Openin                                  | er:<br>gs                   | Net Ar                                                                                                                      | ea                                                                                           | U-val                                                                                                                                       | Je                                                                                | AXU                                                                                                         |          | k-valu                               |          |            | X k<br>/K                                                                                                        |
| 3. Heat losse                                                                                                                                                                                 | es and he<br>Gros<br>area                                                       | at loss p                                | paramete<br>Openin                                  | er:<br>gs                   | Net Ar<br>A ,r                                                                                                              | ea<br>n²                                                                                     | U-valı<br>W/m2                                                                                                                              | ue<br>K                                                                           | A X U<br>(W/                                                                                                |          | k-valu                               |          |            | X k<br>/K<br>(26                                                                                                 |
| 3. Heat losse<br>ELEMENT<br>Doors                                                                                                                                                             | es and he<br>Gross<br>area                                                      | at loss p                                | paramete<br>Openin                                  | er:<br>gs                   | Net Ar<br>A ,r<br>5.7                                                                                                       | ea<br>m²<br>x                                                                                | U-valı<br>W/m2                                                                                                                              | ue<br>!K<br>=<br>0.04] =                                                          | A X U<br>(W/I<br>5.7                                                                                        |          | k-valu                               |          |            | X k<br>/K<br>(26<br>(27                                                                                          |
| 3. Heat losse<br>ELEMENT<br>Doors<br>Windows Type                                                                                                                                             | es and he<br>Gros<br>area<br>e 1<br>e 2                                         | at loss p                                | paramete<br>Openin                                  | er:<br>gs                   | Net Ar<br>A ,r<br>5.7<br>20.3                                                                                               | ea<br>n <sup>2</sup> x<br>x1<br>x1                                                           | U-vali<br>W/m2                                                                                                                              | ue<br>K<br>0.04] =<br>0.04] =                                                     | A X U<br>(W/<br>5.7<br>26.91                                                                                |          | k-valu                               |          |            | X k<br>/K<br>(26<br>(27<br>(27                                                                                   |
| 3. Heat losse<br>ELEMENT<br>Doors<br>Windows Type                                                                                                                                             | e 1<br>e 2<br>be 1                                                              | at loss p                                | paramete<br>Openin                                  | er:<br>gs                   | Net Ar<br>A ,r<br>5.7<br>20.3<br>53.4                                                                                       | ea<br>m <sup>2</sup> x<br>x1<br>x1<br>x1                                                     | U-valı<br>W/m2<br>1<br>/[1/( 1.4 )+                                                                                                         | ue<br>!K<br>0.04] =<br>0.04] =<br>0.04] =                                         | A X U<br>(W/I<br>5.7<br>26.91<br>70.8                                                                       |          | k-valu                               |          |            | X k<br>/K<br>(26<br>(27<br>(27<br>(27                                                                            |
| 3. Heat losse<br>ELEMENT<br>Doors<br>Windows Type<br>Rooflights Type                                                                                                                          | e 1<br>e 2<br>be 1                                                              | at loss p                                | paramete<br>Openin                                  | er:<br>gs                   | Net Ar<br>A ,r<br>5.7<br>20.3<br>53.4<br>0.8                                                                                | ea<br>m <sup>2</sup><br>x1<br>x1<br>x1<br>x1<br>x1                                           | U-vali<br>W/m2<br>1<br>1[1/(1.4)+<br>1[1/(1.4)+<br>1[1/(1.7)+                                                                               | ue<br>!K<br>0.04] =<br>0.04] =<br>0.04] =                                         | A X U<br>(W/I<br>5.7<br>26.91<br>70.8<br>1.36                                                               |          | k-valu                               |          |            | X k<br>(26<br>(27<br>(27<br>(27                                                                                  |
| 3. Heat losse<br>ELEMENT<br>Doors<br>Windows Type<br>Windows Type<br>Rooflights Typ<br>Rooflights Typ                                                                                         | e 1<br>e 2<br>be 1                                                              | at loss p<br>is<br>(m²)                  | paramete<br>Openin                                  | er:<br>gs<br>²              | Net Ar<br>A,r<br>5.7<br>20.3<br>53.4<br>0.8<br>1.3                                                                          | ea<br>m <sup>2</sup><br>x1<br>x1<br>x1<br>x1<br>x1                                           | U-valı<br>W/m2<br>1<br>/[1/(1.4)+<br>/[1/(1.4)+<br>/[1/(1.7)+                                                                               | ue<br>K<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =                               | A X U<br>(W/<br>5.7<br>26.91<br>70.8<br>1.36<br>2.21                                                        |          | k-valu                               |          |            | X k<br>(26<br>(27<br>(27)<br>(27)<br>(28)                                                                        |
| 3. Heat losse<br>ELEMENT<br>Doors<br>Windows Type<br>Rooflights Typ<br>Rooflights Typ<br>Floor                                                                                                | e 1<br>e 2<br>be 2                                                              | at loss ;<br>is<br>(m <sup>2</sup> )     | Openin<br>rr                                        | er:<br>gs<br>²              | Net Ar<br>A,r<br>5.7<br>20.3<br>53.4<br>0.8<br>1.3<br>177.5<br>216                                                          | ea<br>m <sup>2</sup> x 1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1                     | U-valı<br>W/m2<br>1<br>/[1/(1.4)+<br>/[1/(1.7) +<br>/[1/(1.7) +<br>/[1/(1.7) +<br>0.13<br>0.18                                              | Je<br>K<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =                    | A X U<br>(W/<br>5.7<br>26.91<br>70.8<br>1.36<br>2.21<br>23.075                                              |          | k-valu                               |          |            | X k<br>(26<br>(27)<br>(27)<br>(27)<br>(28)<br>(28)                                                               |
| 3. Heat losse<br>ELEMENT<br>Doors<br>Windows Type<br>Rooflights Typ<br>Rooflights Typ<br>Floor<br>Walls Type1                                                                                 | e and he<br>Gros<br>area<br>e 1<br>e 2<br>oe 1<br>oe 2<br>295.<br>129.2         | at loss p<br>is<br>(m <sup>2</sup> )     | Openin<br>Openin<br>m                               | er:<br>gs<br>²              | Net Ar<br>A,r<br>5.7<br>20.3<br>53.4<br>0.8<br>1.3<br>177.5<br>216<br>129.2                                                 | ea<br>m <sup>2</sup> x 1<br>x 1<br>x 1<br>x 1<br>x 2<br>x 2                                  | U-valı<br>W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/(1.7) +<br>/[1/(1.7) +<br>0.13<br>0.18<br>0.18                                   | ue<br>K<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>1 =<br>1 =                 | A X U<br>(W/I<br>5.7<br>26.91<br>70.8<br>1.36<br>2.21<br>23.075<br>38.88<br>23.26                           |          | k-valu                               |          |            | X k<br>(26<br>(27<br>(27<br>(27)<br>(27)<br>(28)<br>(29)<br>(29)                                                 |
| 3. Heat losse<br>ELEMENT<br>Doors<br>Windows Type<br>Windows Type<br>Rooflights Typ<br>Floor<br>Walls Type1<br>Walls Type2<br>Walls Type3                                                     | e and he<br>Gros<br>area<br>e 1<br>e 2<br>be 1<br>be 2<br>295.<br>[294]<br>226. | at loss p<br>s (m <sup>2</sup> )         | Openin<br>m<br>79.4                                 | er:<br>gs<br>²              | Net Ar<br>A,r<br>5.7<br>20.3<br>53.4<br>0.8<br>1.3<br>177.5<br>216                                                          | ea<br>m <sup>2</sup> x 1<br>x 1<br>x 1<br>x 1<br>x 2<br>x 2                                  | U-vali<br>W/m2<br>1<br>/[1/(1.4)+<br>/[1/(1.7)+<br>/[1/(1.7)+<br>0.13<br>0.18<br>0.18                                                       | Je<br>K<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>=<br>=<br>=<br>=<br>=      | A X U<br>(W/I<br>5.7<br>26.91<br>70.8<br>1.36<br>2.21<br>23.075<br>38.88<br>23.26<br>40.75                  |          | k-valu                               |          |            | X k<br>(26<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)                               |
| 3. Heat losse<br>ELEMENT<br>Doors<br>Windows Type<br>Rooflights Type<br>Rooflights Type1<br>Walls Type1<br>Walls Type2<br>Walls Type3<br>Roof Type1                                           | e 1<br>e 1<br>e 2<br>e 2<br>295.<br>129.1<br>226.<br>136.                       | 4<br>1                                   | 0penin<br>rr<br>79.4<br>0<br>0                      | er:<br>gs<br>²              | Net Ar<br>A, r<br>5.7<br>20.3<br>53.4<br>0.8<br>1.3<br>177.5<br>216<br>129.2<br>226.4<br>134                                | ea<br>m <sup>2</sup> x 1<br>x 1<br>x 1<br>x 1<br>x 2<br>x 2                                  | U-vali<br>W/m2<br>1<br>/[1/(1.4)+<br>/[1/(1.7)+<br>/[1/(1.7)+<br>0.13<br>0.18<br>0.18<br>0.18<br>0.13                                       | Je<br>K<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>=<br>=<br>=<br>=<br>=<br>= | A X U<br>(W/<br>5.7<br>26.91<br>70.8<br>1.36<br>2.21<br>23.075<br>38.88<br>23.26<br>40.75<br>17.42          |          | k-valu                               |          |            | X k<br>(26<br>(27<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29 |
| 3. Heat losse<br>ELEMENT<br>Doors<br>Windows Type<br>Rooflights Typ<br>Floor<br>Walls Type1<br>Walls Type2<br>Walls Type3<br>Roof Type1<br>Roof Type2                                         | e 1<br>e 2<br>be 1<br>226.<br>136.<br>18.5                                      | 4<br>4<br>1<br>9                         | Openin<br>m<br>79.4                                 | er:<br>gs<br>²              | Net Ar<br>A, r<br>5.7<br>20.3<br>53.4<br>0.8<br>1.3<br>177.5<br>216<br>129.2<br>226.4<br>134<br>18.9                        | ea<br>11 <sup>2</sup> x 1<br>1 x1<br>1 x1<br>5 x x<br>2 x x<br>1 x x<br>1 x x                | U-vali<br>W/m2<br>1<br>/[1/(1.4)+<br>/[1/(1.7)+<br>/[1/(1.7)+<br>0.13<br>0.18<br>0.18                                                       | Le<br>K = 0.04] = 0.04] = 0.04] = = 0.04] = = = = = = = = = = =                   | A X U<br>(W/I<br>5.7<br>26.91<br>70.8<br>1.36<br>2.21<br>23.075<br>38.88<br>23.26<br>40.75                  |          | k-valu                               |          |            | X k<br>(26<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29        |
| 3. Heat losse<br>ELEMENT<br>Doors<br>Windows Type<br>Windows Type<br>Rooflights Typ<br>Floor<br>Walls Type 1<br>Walls Type 2<br>Walls Type 3<br>Roof Type 1<br>Roof Type 2<br>Total area of e | e 1<br>e 2<br>e 2<br>295.<br>226.<br>136.<br>136.<br>18.5                       | 4<br>4<br>1<br>9<br>m <sup>2</sup>       | 279.4<br>Openin<br>m<br>0<br>0<br>2.1<br>0          | 97:<br>gs<br>2 <sup>2</sup> | Net Ar<br>A, r<br>5.7<br>20.3<br>53.4<br>0.8<br>1.3<br>177.5<br>216<br>129.2<br>226.4<br>134<br>18.9<br>983.5               | ea<br>m <sup>2</sup> x 1<br>x 1<br>x 1<br>x 1<br>x 2<br>x x<br>x 2<br>x x<br>x 2<br>x x<br>2 | U-valı<br>W/m2<br>1<br>[1/(1/(1.4)+<br>/[1/(1.4)+<br>/[1/(1.7)+<br>/[1/(1.7)+<br>/[1/(1.7)+<br>0.13<br>0.18<br>0.18<br>0.18<br>0.13<br>0.13 | ue<br>K = 0.04] = 0.04] = 0.04] = = = = = = = = = = = = = =                       | A X U<br>(W/I<br>5.7<br>26.91<br>70.8<br>1.36<br>2.21<br>23.075<br>38.88<br>23.26<br>40.75<br>17.42<br>2.46 |          | k-valu<br>kJ/m <sup>2</sup>          |          |            | X k<br>(26<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29        |
| 3. Heat losse<br>ELEMENT<br>Doors<br>Windows Type<br>Rooflights Typ<br>Floor<br>Walls Type1<br>Walls Type2<br>Walls Type3<br>Roof Type1<br>Roof Type2                                         | e 1<br>e 2<br>e 2<br>295.<br>129.2<br>226.<br>136.<br>18.5<br>elements.         | 4<br>1<br>, m <sup>2</sup><br>wws. use e | Openin<br>Openin<br>m<br>79.4<br>0<br>0<br>2.1<br>0 | er:<br>gs<br>2              | Net Ar<br>A,r<br>5.7<br>20.3<br>53.4<br>0.8<br>1.3<br>177.5<br>216<br>129.2<br>226.4<br>134<br>18.9<br>983.5<br>slue calcul | ea<br>m <sup>2</sup> x 1<br>x 1<br>x 1<br>x 1<br>x 2<br>x x<br>x 2<br>x x<br>x 2<br>x x<br>2 | U-valı<br>W/m2<br>1<br>[1/(1/(1.4)+<br>/[1/(1.4)+<br>/[1/(1.7)+<br>/[1/(1.7)+<br>/[1/(1.7)+<br>0.13<br>0.18<br>0.18<br>0.18<br>0.13<br>0.13 | ue<br>K = 0.04] = 0.04] = 0.04] = = = = = = = = = = = = = =                       | A X U<br>(W/I<br>5.7<br>26.91<br>70.8<br>1.36<br>2.21<br>23.075<br>38.88<br>23.26<br>40.75<br>17.42<br>2.46 |          | k-valu<br>kJ/m <sup>2</sup>          |          |            |                                                                                                                  |

Heat capac Thermal m For design as a can be used i Thermal br if details of the (33)m = (40)m = Energy conte (45)m= 192 If instantaneous (46)m= 28.81 Water storag Storage volu If community Otherwise if Water storag a) If manufa Temperature Energy lost f b) If manufa

Page 2 of 8

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

Page 1 of 8

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

## 5B PRINCE ARTHUR ROAD | HAMPSTEAD

#### TER WorkSheet: New dwelling design stage

| pacity         | Cm = S(                           | (Axk)             |                  |                  |                  |                   |                        | ((28)      | .(30) + (32               | 2) + (32a). | (32e) = | 0       | (34)  |
|----------------|-----------------------------------|-------------------|------------------|------------------|------------------|-------------------|------------------------|------------|---------------------------|-------------|---------|---------|-------|
| mass           | parame                            | ter (TMF          | ⊃ = Cm +         | ⊢ TFA) ir        | n kJ/m²K         |                   |                        | Indica     | tive Value:               | Medium      | Ī       | 250     | (35)  |
|                | sments wh<br>ad of a dei          |                   |                  | construct        | ion are no       | t known pr        | ecisely the            | indicative | values of                 | TMP in Ta   | able 1f |         |       |
| bridge         | es : S (L                         | x Y) cal          | culated          | using Ap         | pendix           | к                 |                        |            |                           |             | [       | 49.2    | (36)  |
| f therma       | al bridging                       | are not kn        | iown (36) =      | = 0.05 x (3      | 1)               |                   |                        |            |                           |             |         |         |       |
| oric he        | at loss                           |                   |                  |                  |                  |                   |                        | (33) +     | (36) =                    |             | [       | 301.79  | (37)  |
| on hea         | at loss ca                        | alculated         | d monthly        | у                |                  |                   |                        | (38)m      | = 0.33 × (                | 25)m x (5)  |         |         |       |
| Jan            | Feb                               | Mar               | Apr              | May              | Jun              | Jul               | Aug                    | Sep        | Oct                       | Nov         | Dec     |         |       |
| 338.71         | 337.66                            | 336.64            | 331.82           | 330.92           | 326.73           | 326.73            | 325.95                 | 328.34     | 330.92                    | 332.74      | 334.65  |         | (38)  |
| _              | coefficier                        | <u> </u>          |                  |                  |                  |                   |                        |            | = (37) + (3               | <u> </u>    |         |         |       |
| 640.5          | 639.45                            | 638.43            | 633.62           | 632.72           | 628.52           | 628.52            | 627.75                 | 630.14     | 632.72                    | 634.54      | 636.44  |         | _     |
| s para         | meter (H                          | HLP), W           | /m²K             | -                |                  |                   |                        |            | Average =<br>= (39)m +    |             | .u /12= | 633.61  | (39)  |
| 1.07           | 1.07                              | 1.07              | 1.06             | 1.06             | 1.05             | 1.05              | 1.05                   | 1.06       | 1.06                      | 1.06        | 1.07    |         |       |
| of day         | /s in mor                         | nth (Tab          | le 1a)           |                  |                  |                   |                        |            | Average =                 | Sum(40)     | nº /12= | 1.06    | (40)  |
| Jan            | Feb                               | Mar               | Apr              | May              | Jun              | Jul               | Aug                    | Sep        | Oct                       | Nov         | Dec     |         |       |
| 31             | 28                                | 31                | 30               | 31               | 30               | 31                | 31                     | 30         | 31                        | 30          | 31      |         | (41)  |
| _              |                                   |                   |                  |                  |                  |                   |                        |            |                           |             |         |         |       |
| er heat        | ting ener                         | rgy requ          | irement:         |                  |                  |                   |                        |            |                           |             | kWh/ye  | ear:    |       |
| > 13.9         | upancy, I<br>9, N = 1<br>9, N = 1 |                   | (1 - exp         | (-0.0003         | 49 x (TI         | <b>-A</b> -13.9   | )2)] + 0.(             | 0013 x (   | TFA -13.                  |             | 52      |         | (42)  |
| e annua        | al average                        | hot water         | usage by         |                  | welling is       | designed t        | (25 x N)<br>to achieve |            | se target of              | 11          | 7.73    |         | (43)  |
|                |                                   |                   |                  |                  |                  |                   |                        |            |                           |             |         |         |       |
| Jan            | Feb                               | Mar<br>day for ea | Apr<br>ach month | May<br>Vd,m = fa | Jun<br>ctor from | Jul<br>Table 1c x | Aug<br>(43)            | Sep        | Oct                       | Nov         | Dec     |         |       |
| -              |                                   |                   |                  |                  |                  |                   |                        |            |                           |             |         |         |       |
| 129.5          | 124.8                             | 120.09            | 115.38           | 110.67           | 105.96           | 105.96            | 110.67                 | 115.38     | 120.09                    | 124.8       | 129.5   |         | (44)  |
| ntent of       | hot water                         | used - cal        | culated m        | onthly = 4.      | 190 x Vd,r       | m x nm x D        | OTm / 3600             |            | Total = Su<br>ath (see Ta |             |         | 1412.78 | _(**) |
| 192.05         | 167.97                            | 173.33            | 151.11           | 145              | 125.12           | 115.94            | 133.05                 | 134.64     | 156.9                     | 171.27      | 185.99  |         | _     |
| neous w        | ater heatii                       | ng at point       | of use (no       | hot water        | storage),        | enter 0 in        | boxes (46              |            | Total = Su                | m(45)112 =  | -       | 1852.38 | (45)  |
| 28.81          | 25.2                              | 26                | 22.67            | 21.75            | 18.77            | 17.39             | 19.96                  | 20.2       | 23.54                     | 25.69       | 27.9    |         | (46)  |
| orage<br>volum |                                   | includir          | n anv si         | olar or W        | /WHRS            | storage           | within sa              | ame ves    | sel                       |             | 150     |         | (47)  |
| unity h        | eating a stored                   | ind no ta         | ank in dw        | velling, e       | nter 110         | ) litres in       |                        |            |                           | L           | 130     |         | (47)  |
| nufact         | urer's de                         | eclared I         | oss fact         | or is kno        | wn (kWl          | n/day):           |                        |            |                           | 1.          | 39      |         | (48)  |
| ature f        | actor fro                         | m Table           | 2b               |                  |                  |                   |                        |            |                           | 0.          | 54      |         | (49)  |
|                |                                   |                   | , kWh/ye         |                  | or is not        |                   | (48) x (49)            | ) =        |                           | _           | 75      |         | (50)  |
|                |                                   |                   |                  | ear<br>loss fact | or is not        |                   | (48) x (49)            | ) =        |                           | 0.          | 75      |         | (5    |

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

Page 3 of 8

# A3 | DER/TER Worksheets

#### TER WorkSheet: New dwelling design stage

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

Page 4 of 8

| Hot water stor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | age loss                                                                                                                                                                                       | factor fr                                                                                                                                                                                   | om Tabl                                                                                                                               | e 2 (kWl                                                                                                             | h/litre/da                                                                                                             | ay)                                                                                                             |                                                                                                                  |                                                                                                                                                                                                              |                                                                                                   |                                                                                          | 0                                                                             | 1            | (51                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------|----------------------------|
| f community I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                |                                                                                                                                                                                             | on 4.3                                                                                                                                |                                                                                                                      |                                                                                                                        |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                              |                                                                                                   |                                                                                          |                                                                               |              |                            |
| /olume factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                |                                                                                                                                                                                             |                                                                                                                                       |                                                                                                                      |                                                                                                                        |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                              |                                                                                                   |                                                                                          | 0                                                                             |              | (52                        |
| Femperature 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | factor fro                                                                                                                                                                                     | m Table                                                                                                                                                                                     | 2b                                                                                                                                    |                                                                                                                      |                                                                                                                        |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                              |                                                                                                   |                                                                                          | 0                                                                             |              | (53                        |
| Energy lost fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |                                                                                                                                                                                             | , kWh/ye                                                                                                                              | ear                                                                                                                  |                                                                                                                        |                                                                                                                 | (47) x (51                                                                                                       | ) x (52) x (                                                                                                                                                                                                 | 53) =                                                                                             |                                                                                          | 0                                                                             |              | (54                        |
| Enter (50) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . , .                                                                                                                                                                                          | ·                                                                                                                                                                                           |                                                                                                                                       |                                                                                                                      |                                                                                                                        |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                              |                                                                                                   | 0.                                                                                       | .75                                                                           |              | (58                        |
| Nater storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | loss cal                                                                                                                                                                                       | culated f                                                                                                                                                                                   | or each                                                                                                                               | month                                                                                                                |                                                                                                                        |                                                                                                                 | ((56)m = (                                                                                                       | 55) × (41)                                                                                                                                                                                                   | m                                                                                                 |                                                                                          |                                                                               |              |                            |
| 56)m= 23.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.07                                                                                                                                                                                          | 23.33                                                                                                                                                                                       | 22.58                                                                                                                                 | 23.33                                                                                                                | 22.58                                                                                                                  | 23.33                                                                                                           | 23.33                                                                                                            | 22.58                                                                                                                                                                                                        | 23.33                                                                                             | 22.58                                                                                    | 23.33                                                                         | 1            | (56                        |
| f cylinder contain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s dedicate                                                                                                                                                                                     | d solar sto                                                                                                                                                                                 | rage, (57)                                                                                                                            | m = (56)m                                                                                                            | x [(50) – (                                                                                                            | (H11)] + (5                                                                                                     | 0), else (5                                                                                                      | 7)m = (56)                                                                                                                                                                                                   | m where (                                                                                         | H11) is fro                                                                              | m Append                                                                      | lix H        |                            |
| 57)m= 23.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.07                                                                                                                                                                                          | 23.33                                                                                                                                                                                       | 22.58                                                                                                                                 | 23.33                                                                                                                | 22.58                                                                                                                  | 23.33                                                                                                           | 23.33                                                                                                            | 22.58                                                                                                                                                                                                        | 23.33                                                                                             | 22.58                                                                                    | 23.33                                                                         | 1            | (57                        |
| Primarv circui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t loss (ar                                                                                                                                                                                     | inual) fro                                                                                                                                                                                  | m Table                                                                                                                               | 3                                                                                                                    |                                                                                                                        |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                              |                                                                                                   |                                                                                          | 0                                                                             | i            | (5)                        |
| rimary circui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t loss cal                                                                                                                                                                                     | ,<br>culated t                                                                                                                                                                              | for each                                                                                                                              | month (                                                                                                              | 59)m = (                                                                                                               | (58) ÷ 36                                                                                                       | 5 × (41)                                                                                                         | m                                                                                                                                                                                                            |                                                                                                   | · · · · ·                                                                                |                                                                               |              |                            |
| (modified by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y factor fi                                                                                                                                                                                    | om Tab                                                                                                                                                                                      | le H5 if t                                                                                                                            | here is s                                                                                                            | olar wa                                                                                                                | ter heati                                                                                                       | ng and a                                                                                                         | cylinde                                                                                                                                                                                                      | r thermo                                                                                          | stat)                                                                                    |                                                                               |              |                            |
| 59)m= 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.01                                                                                                                                                                                          | 23.26                                                                                                                                                                                       | 22.51                                                                                                                                 | 23.26                                                                                                                | 22.51                                                                                                                  | 23.26                                                                                                           | 23.26                                                                                                            | 22.51                                                                                                                                                                                                        | 23.26                                                                                             | 22.51                                                                                    | 23.26                                                                         | 1            | (5)                        |
| Combi loss ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lculated                                                                                                                                                                                       | for each                                                                                                                                                                                    | month (                                                                                                                               | (61)m =                                                                                                              | (60) ÷ 3(                                                                                                              | 65 × (41                                                                                                        | )m                                                                                                               |                                                                                                                                                                                                              |                                                                                                   |                                                                                          |                                                                               |              |                            |
| 61)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                              | 0                                                                                                                                                                                           | 0                                                                                                                                     | 0                                                                                                                    | 0                                                                                                                      | 0                                                                                                               | 0                                                                                                                | 0                                                                                                                                                                                                            | 0                                                                                                 | 0                                                                                        | 0                                                                             | 1            | (6                         |
| Fotal heat req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | uired for                                                                                                                                                                                      | water h                                                                                                                                                                                     | aating cs                                                                                                                             | lculated                                                                                                             | l for eac                                                                                                              | h month                                                                                                         | (62)m =                                                                                                          | 0.85 x /                                                                                                                                                                                                     | (15)m +                                                                                           | (46)m +                                                                                  | (57)m +                                                                       | (50)m + (6   | 1)m                        |
| 62)m= 238.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                | 219.92                                                                                                                                                                                      | 196.2                                                                                                                                 | 191.59                                                                                                               | 170.21                                                                                                                 | 162.54                                                                                                          | 179.64                                                                                                           | 179.73                                                                                                                                                                                                       | 203.5                                                                                             | 216.37                                                                                   | 232.59                                                                        | ( <i>33)</i> | (6                         |
| Solar DHW input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |                                                                                                                                                                                             |                                                                                                                                       |                                                                                                                      |                                                                                                                        |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                              |                                                                                                   |                                                                                          |                                                                               |              |                            |
| add additiona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                |                                                                                                                                                                                             |                                                                                                                                       |                                                                                                                      |                                                                                                                        |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                              | Contribut                                                                                         | ION to wate                                                                              | a neaung)                                                                     |              | -                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |                                                                                                                                                                                             | _                                                                                                                                     | _                                                                                                                    |                                                                                                                        | _                                                                                                               | _                                                                                                                | <u> </u>                                                                                                                                                                                                     | 0                                                                                                 | _                                                                                        |                                                                               | 1            |                            |
| 63)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                              | 0                                                                                                                                                                                           | 0                                                                                                                                     | 0                                                                                                                    | 0                                                                                                                      | 0                                                                                                               | 0                                                                                                                | 0                                                                                                                                                                                                            | 0                                                                                                 | 0                                                                                        | 0                                                                             |              | (6                         |
| Dutput from w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                | _                                                                                                                                                                                           |                                                                                                                                       | _                                                                                                                    |                                                                                                                        |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                              |                                                                                                   |                                                                                          |                                                                               |              |                            |
| 54)m= 238.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 210.06                                                                                                                                                                                         | 219.92                                                                                                                                                                                      |                                                                                                                                       |                                                                                                                      |                                                                                                                        |                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                              |                                                                                                   |                                                                                          |                                                                               |              |                            |
| 200.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 210.00                                                                                                                                                                                         | 219.92                                                                                                                                                                                      | 196.2                                                                                                                                 | 191.59                                                                                                               | 170.21                                                                                                                 | 162.54                                                                                                          | 179.64                                                                                                           | 179.73                                                                                                                                                                                                       | 203.5                                                                                             | 216.37                                                                                   | 232.59                                                                        |              |                            |
| 200.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 210.06                                                                                                                                                                                         | 219.92                                                                                                                                                                                      | 196.2                                                                                                                                 | 191.59                                                                                                               | 170.21                                                                                                                 | 162.54                                                                                                          |                                                                                                                  | 179.73<br>out from w                                                                                                                                                                                         | _                                                                                                 |                                                                                          |                                                                               | 2400.9       | ) (6                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |                                                                                                                                                                                             |                                                                                                                                       |                                                                                                                      |                                                                                                                        |                                                                                                                 | Out                                                                                                              | out from w                                                                                                                                                                                                   | ater heate                                                                                        | (annual)                                                                                 | 12                                                                            |              | ) (6                       |
| leat gains fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                                                                                                             |                                                                                                                                       |                                                                                                                      |                                                                                                                        |                                                                                                                 | Out                                                                                                              | out from w                                                                                                                                                                                                   | ater heate                                                                                        | (annual)                                                                                 | 12                                                                            |              |                            |
| leat gains fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m water<br>89.52                                                                                                                                                                               | heating,<br>94.91                                                                                                                                                                           | kWh/m<br>86.32                                                                                                                        | onth 0.2<br>85.49                                                                                                    | 5 <b>′ [0.85</b><br>77.68                                                                                              | × (45)m<br>75.83                                                                                                | Out;<br>+ (61)m<br>81.51                                                                                         | out from wa<br>n] + 0.8 x<br>80.84                                                                                                                                                                           | ater heate<br>( (46)m<br>89.45                                                                    | + (57)m<br>93.02                                                                         | + (59)m                                                                       | ]            |                            |
| Heat gains fro<br>65)m= 101.13<br>include (57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m water<br>89.52<br>m in calo                                                                                                                                                                  | heating,<br>94.91                                                                                                                                                                           | kWh/me<br>86.32<br>of (65)m                                                                                                           | onth 0.25<br>85.49<br>only if c                                                                                      | 5 <b>′ [0.85</b><br>77.68                                                                                              | × (45)m<br>75.83                                                                                                | Out;<br>+ (61)m<br>81.51                                                                                         | out from wa<br>n] + 0.8 x<br>80.84                                                                                                                                                                           | ater heate<br>( (46)m<br>89.45                                                                    | + (57)m<br>93.02                                                                         | + (59)m                                                                       | ]            |                            |
| Heat gains fro<br>65)m= 101.13<br>include (57)<br>5. Internal g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m water<br>89.52<br>m in calc<br>ains (see                                                                                                                                                     | heating,<br>94.91<br>culation o                                                                                                                                                             | kWh/m<br>86.32<br>of (65)m<br>and 5a                                                                                                  | onth 0.25<br>85.49<br>only if c                                                                                      | 5 <b>′ [0.85</b><br>77.68                                                                                              | × (45)m<br>75.83                                                                                                | Out;<br>+ (61)m<br>81.51                                                                                         | out from wa<br>n] + 0.8 x<br>80.84                                                                                                                                                                           | ater heate<br>( (46)m<br>89.45                                                                    | + (57)m<br>93.02                                                                         | + (59)m                                                                       | ]            |                            |
| Heat gains fro<br>65)m= 101.13<br>include (57)<br>5. Internal g<br>Metabo <u>lic gain</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m water<br>89.52<br>m in calo<br>ains (see                                                                                                                                                     | heating,<br>94.91<br>culation o<br>Table 5                                                                                                                                                  | kWh/me<br>86.32<br>of (65)m<br>and 5a                                                                                                 | onth 0.29<br>85.49<br>only if c                                                                                      | 5 ' [0.85<br>77.68<br>ylinder i                                                                                        | × (45)m<br>75.83<br>s in the o                                                                                  | Out;<br>+ (61)m<br>81.51<br>dwelling                                                                             | out from wa<br>a] + 0.8 3<br>80.84<br>or hot w                                                                                                                                                               | ater heater<br>((46)m<br>89.45<br>ater is fr                                                      | (annual)+<br>+ (57)m<br>93.02<br>rom com                                                 | + (59)m<br>99.12<br>munity h                                                  | ]            |                            |
| Heat gains fro<br>35)m= 101.13<br>include (57)<br>5. Internal g<br>Metabolic gain<br>Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m water<br>89.52<br>m in calo<br>ains (see<br>hs (Table<br>Feb                                                                                                                                 | heating,<br>94.91<br>culation of<br>Table 5<br>5), Wat<br>Mar                                                                                                                               | kWh/me<br>86.32<br>of (65)m<br>and 5a<br>ts<br>Apr                                                                                    | onth 0.29<br>85.49<br>only if c                                                                                      | 5 ' [0.85<br>77.68<br>ylinder i<br>Jun                                                                                 | × (45)m<br>75.83<br>s in the o                                                                                  | Out;<br>+ (61)m<br>81.51<br>dwelling<br>Aug                                                                      | out from wa<br>1] + 0.8 3<br>80.84<br>or hot w<br>Sep                                                                                                                                                        | ater heater<br>((46)m<br>89.45<br>ater is fr                                                      | (annual),<br>+ (57)m<br>93.02<br>om com                                                  | + (59)m<br>99.12<br>munity h                                                  | ]            | (6                         |
| teat gains fro<br>55)m= 101.13<br>include (57)<br>5. Internal g<br>Aetabolic gain<br>Jan<br>56)m= 175.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m water<br>89.52<br>Im in calo<br>ains (see<br>rs (Table<br>Feb<br>175.86                                                                                                                      | heating,<br>94.91<br>culation of<br><b>Table 5</b><br>5), Wat<br>Mar<br>175.86                                                                                                              | kWh/m<br>86.32<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86                                                                           | onth 0.29<br>85.49<br>only if c<br>):<br>May<br>175.86                                                               | 5 ' [0.85<br>77.68<br>ylinder i<br>Jun<br>175.86                                                                       | × (45)m<br>75.83<br>s in the o<br>Jul<br>175.86                                                                 | Outp<br>+ (61)m<br>81.51<br>dwelling<br>Aug<br>175.86                                                            | bet from water           a] + 0.8 >           80.84           or hot w           Sep           175.86                                                                                                        | ater heater<br>((46)m<br>89.45<br>ater is fr                                                      | (annual)+<br>+ (57)m<br>93.02<br>rom com                                                 | + (59)m<br>99.12<br>munity h                                                  | ]            | (6                         |
| teat gains fro<br>55)m= 101.13<br>include (57)<br>5. Internal g<br>Aletabolic gain<br>36)m= 175.86<br>ighting gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m water<br>89.52<br>m in calo<br>ains (see<br>s (Table<br>Feb<br>175.86<br>(calcula                                                                                                            | heating,<br>94.91<br>culation o<br><b>Table 5</b><br>5), Wat<br>Mar<br>175.86<br>ted in Ap                                                                                                  | kWh/me<br>86.32<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>opendix                                                               | 0.23<br>85.49<br>only if c<br>:<br>May<br>175.86<br>L, equati                                                        | 5 1 [0.85<br>77.68<br>ylinder i<br>Jun<br>175.86<br>ion L9 o                                                           | × (45)m<br>75.83<br>s in the o<br>Jul<br>175.86<br>r L9a), a                                                    | Outy<br>+ (61)rr<br>81.51<br>dwelling<br>Aug<br>175.86<br>Iso see                                                | 80.84<br>a) + 0.8 3<br>80.84<br>or hot w<br>Sep<br>175.86<br>Table 5                                                                                                                                         | ater heater<br>((46)m<br>89.45<br>ater is fr<br>Oct<br>175.86                                     | (annual),<br>+ (57)m<br>93.02<br>om com<br>Nov<br>175.86                                 | + (59)m<br>99.12<br>munity h<br>Dec<br>175.86                                 | ]            | (6                         |
| teat gains fro<br>55)m= 101.13<br>include (57)<br>5. Internal g<br>Aletabolic gain<br>56)m= 175.86<br>ighting gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m water<br>89.52<br>Im in calo<br>ains (see<br>rs (Table<br>Feb<br>175.86                                                                                                                      | heating,<br>94.91<br>culation of<br><b>Table 5</b><br>5), Wat<br>Mar<br>175.86                                                                                                              | kWh/m<br>86.32<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86                                                                           | onth 0.29<br>85.49<br>only if c<br>):<br>May<br>175.86                                                               | 5 ' [0.85<br>77.68<br>ylinder i<br>Jun<br>175.86                                                                       | × (45)m<br>75.83<br>s in the o<br>Jul<br>175.86                                                                 | Outp<br>+ (61)m<br>81.51<br>dwelling<br>Aug<br>175.86                                                            | bet from water           a] + 0.8 >           80.84           or hot w           Sep           175.86                                                                                                        | ater heater<br>((46)m<br>89.45<br>ater is fr                                                      | (annual),<br>+ (57)m<br>93.02<br>om com                                                  | + (59)m<br>99.12<br>munity h                                                  | ]            | (6                         |
| Heat gains fro<br>65)m= 101.13<br>include (57)<br>5. Internal g<br>Metabolic gain<br>G60)m= 175.86<br>Lighting gains<br>65.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m water<br>89.52<br>m in cald<br>ains (see<br>Feb<br>175.86<br>(calcula<br>57.99                                                                                                               | heating,<br>94.91<br>culation of<br>5), Wat<br>175.86<br>ted in Ap<br>47.16                                                                                                                 | kWh/ma<br>86.32<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>opendix<br>35.7                                                       | 00000000000000000000000000000000000000                                                                               | 5 1 [0.85<br>77.68<br>ylinder i<br>Jun<br>175.86<br>ion L9 o<br>22.53                                                  | × (45)m<br>75.83<br>s in the o<br>Jul<br>175.86<br>r L9a), a<br>24.35                                           | Outp<br>+ (61)m<br>81.51<br>dwelling<br>175.86<br>Iso see<br>31.65                                               | aut from washing         + 0.8 automatic           80.84         or hot washing           or hot washing         Sep           175.86         Table 5           42.48                                        | Oct           175.86           53.93                                                              | (annual),<br>+ (57)m<br>93.02<br>om com<br>Nov<br>175.86                                 | + (59)m<br>99.12<br>munity h<br>Dec<br>175.86                                 | ]            | (6                         |
| Heat gains fro<br>65)m= 101.13<br>include (57)<br>5. Internal g<br>Metabolic gain<br>Jan<br>66)m= 175.86<br>Lighting gains<br>67)m= 65.29<br>Appliances ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m water<br>89.52<br>m in cald<br>ains (see<br>Feb<br>175.86<br>(calcula<br>57.99                                                                                                               | heating,<br>94.91<br>culation of<br>5), Wat<br>175.86<br>ted in Ap<br>47.16                                                                                                                 | kWh/ma<br>86.32<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>opendix<br>35.7                                                       | 00000000000000000000000000000000000000                                                                               | 5 1 [0.85<br>77.68<br>ylinder i<br>Jun<br>175.86<br>ion L9 o<br>22.53                                                  | × (45)m<br>75.83<br>s in the o<br>Jul<br>175.86<br>r L9a), a<br>24.35                                           | Outp<br>+ (61)m<br>81.51<br>dwelling<br>175.86<br>Iso see<br>31.65                                               | aut from washing         + 0.8 automatic           80.84         or hot washing           or hot washing         Sep           175.86         Table 5           42.48                                        | Oct           175.86           53.93                                                              | (annual),<br>+ (57)m<br>93.02<br>om com<br>Nov<br>175.86                                 | + (59)m<br>99.12<br>munity h<br>Dec<br>175.86                                 | ]            | (6<br>(6                   |
| teat gains fro<br>55)m= 101.13<br>include (57)<br>5. Internal g<br>Metabolic gain<br>56)m= 175.86<br>ighting gains<br>57)m= 65.29<br>Appliances ga<br>88)m= 669.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m water<br>89.52<br>m in cald<br>ains (see<br>Feb<br>175.86<br>(calcula<br>57.99<br>iins (calc<br>676.06                                                                                       | heating,<br>94.91<br>sulation of<br><b>Table 5</b><br>5), Wat<br>175.86<br>ted in Ap<br>47.16<br>ulated in<br>658.56                                                                        | kWh/ma<br>86.32<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>opendix<br>35.7<br>Append<br>621.31                                   | May<br>175.86<br>L, equati<br>26.69<br>574.29                                                                        | 5 ' [0.85<br>77.68<br>ylinder i<br>Jun<br>175.86<br>ion L9 o<br>22.53<br>uation L<br>530.1                             | x (45)m<br>75.83<br>s in the o<br>Jul<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58                     | Out;<br>+ (61)m<br>81.51<br>dwelling<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64                        | aut from washing         + 0.8 x           80.84         or hot washing           or hot washing         Sep           175.86         Table 5           42.48         o see Tal           511.13         Sep | ater heater<br>((46)m<br>89.45<br>ater is fr<br>Oct<br>175.86<br>53.93<br>ble 5<br>548.38         | (annual),<br>+ (57)m<br>93.02<br>om com<br>Nov<br>175.86<br>62.95                        | + (59)m<br>99.12<br>munity h<br>Dec<br>175.86                                 | ]            | (6<br>(6                   |
| leat gains fro<br>signa (10.13)<br>include (57)<br>5. Internal g<br>letabolic gains<br>ighting gains<br>ight | m water<br>89.52<br>m in cald<br>ains (see<br>Feb<br>175.86<br>(calcula<br>57.99<br>iins (calc<br>676.06                                                                                       | heating,<br>94.91<br>sulation of<br><b>Table 5</b><br>5), Wat<br>175.86<br>ted in Ap<br>47.16<br>ulated in<br>658.56                                                                        | kWh/ma<br>86.32<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>opendix<br>35.7<br>Append<br>621.31                                   | May<br>175.86<br>L, equati<br>26.69<br>574.29                                                                        | 5 ' [0.85<br>77.68<br>ylinder i<br>Jun<br>175.86<br>ion L9 o<br>22.53<br>uation L<br>530.1                             | x (45)m<br>75.83<br>s in the o<br>Jul<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58                     | Out;<br>+ (61)m<br>81.51<br>dwelling<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64                        | aut from washing         + 0.8 x           80.84         or hot washing           or hot washing         Sep           175.86         Table 5           42.48         o see Tal           511.13         Sep | ater heater<br>((46)m<br>89.45<br>ater is fr<br>Oct<br>175.86<br>53.93<br>ble 5<br>548.38         | (annual),<br>+ (57)m<br>93.02<br>om com<br>Nov<br>175.86<br>62.95                        | + (59)m<br>99.12<br>munity h<br>Dec<br>175.86                                 | ]            | (6<br>(6<br>(6             |
| Jeat gains fro           j5jm=         101.13           include (57)           5. Internal g           Jan           j6jm=         175.86           ighting gains           77m=         65.29           ppllances ga           i8)m=         669.12           cooking gains         60.12           cooking gains         40.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m water<br>89.52<br>m in cala<br>ains (see<br>57.99<br>ins (calcula<br>57.99<br>ins (calcula<br>676.06<br>6 (calcula<br>40.59                                                                  | heating,<br>94.91<br>culation of<br>Table 5<br>5), Wat<br>175.86<br>ted in Ap<br>47.16<br>ulated in<br>658.56<br>ted in A<br>40.59                                                          | kWh/me<br>86.32<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>opendix<br>35.7<br>o Appendix<br>621.31<br>opendix<br>40.59           | May<br>175.86<br>L, equati<br>26.69<br>dix L, equati<br>574.29<br>L, equati                                          | 5 ' [0.85<br>77.68<br>ylinder i<br>Jun<br>175.86<br>ion L9 o<br>22.53<br>uation L<br>530.1<br>ion L15                  | × (45)m<br>75.83<br>s in the o<br>Jul<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58<br>or L15a          | Out;<br>+ (61)m<br>81.51<br>dwelling<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64<br>), also se          | sout from we           a] + 0.8           80.84           or hot w           Sep           175.86           Table 5           42.48           o see Tai           511.13           see Table                 | Oct           175.86           53.93           ble 5           548.38           5                 | (annual),<br>+ (57)m<br>93.02<br>om com<br>Nov<br>175.86<br>62.95<br>595.4               | + (59)m<br>99.12<br>munity h<br>Dec<br>175.86<br>67.1<br>639.59               | ]            | (6<br>(6<br>(6             |
| Jeal gains fro           s5pm=         101.13           include (57)         5. Internal g           Metabolic gain         Jan           36)m=         175.86           sighting gains         57/m=           65.29         Japhines gains           38)m=         66.91           cooking gains         39/m=           40.99         Pumps and fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m water<br>89.52<br>m in cala<br>ains (see<br>57.99<br>ins (calcula<br>57.99<br>ins (calcula<br>676.06<br>6 (calcula<br>40.59                                                                  | heating,<br>94.91<br>culation of<br>Table 5<br>5), Wat<br>175.86<br>ted in Ap<br>47.16<br>ulated in<br>658.56<br>ted in A<br>40.59                                                          | kWh/me<br>86.32<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>opendix<br>35.7<br>o Appendix<br>621.31<br>opendix<br>40.59           | May<br>175.86<br>L, equati<br>26.69<br>dix L, equati<br>574.29<br>L, equati                                          | 5 ' [0.85<br>77.68<br>ylinder i<br>Jun<br>175.86<br>ion L9 o<br>22.53<br>uation L<br>530.1<br>ion L15                  | × (45)m<br>75.83<br>s in the o<br>Jul<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58<br>or L15a          | Out;<br>+ (61)m<br>81.51<br>dwelling<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64<br>), also se          | sout from we           a] + 0.8           80.84           or hot w           Sep           175.86           Table 5           42.48           o see Tai           511.13           see Table                 | Oct           175.86           53.93           ble 5           548.38           5                 | (annual),<br>+ (57)m<br>93.02<br>om com<br>Nov<br>175.86<br>62.95<br>595.4               | + (59)m<br>99.12<br>munity h<br>Dec<br>175.86<br>67.1<br>639.59               | ]            | (6<br>(6<br>(6<br>(6       |
| Jeal gains fro           styme         101.13           sinclude (57)         5. Internal g           Atabolic gain         Jann           36)me         175.86           sighting gains         57/me           52)me         669.12           Zooking gains         59/me           99/me         0.59 (99/me)           99/me         0.59 (99/me)           90/me         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m water<br>89.52<br>m in calc<br>ains (see<br>rs (Table<br>Feb<br>175.86<br>(calcula<br>57.99<br>ins (calc<br>676.06<br>s (calcula<br>40.59<br>ns gains<br>3                                   | heating,<br>94.91<br>culation of<br><b>Table 5</b><br>5), Wat<br>Mar<br>175.86<br>ted in Ap<br>47.16<br>ulated in<br>658.56<br>ited in A<br>40.59<br>(Table 5<br>3                          | kWh/ma<br>86.32<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>opendix<br>35.7<br>Appendix<br>621.31<br>opendix<br>40.59<br>5a)<br>3 | 00000000000000000000000000000000000000                                                                               | 5 1 [0.85<br>77.68<br>ylinder i<br>175.86<br>ion L9 o<br>22.53<br>uation L<br>530.1<br>ion L15<br>40.59<br>3           | x (45)m<br>75.83<br>s in the o<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58<br>or L15a<br>40.59        | Out;<br>+ (61)m<br>81.51<br>dwelling<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64<br>), also se<br>40.59 | sout from we           all + 0.8           80.84           or hot w           Sep           175.86           Table 5           42.48           o see Tal           511.13           se Table           40.59 | Oct         175.86           53.93         5           548.38         5           40.59           | (annual),<br>+ (57)m<br>93.02<br>om com<br>175.86<br>62.95<br>595.4<br>40.59             | + (59)m<br>99.12<br>munity h<br>175.86<br>67.1<br>639.59<br>40.59             | ]            | (6<br>(6<br>(6<br>(6       |
| Heat gains froc           559me         101.13           include (57)         5.           5.         Internal g           detabolic gains         175.86           960me         175.86           960me         65.29           hyppliances ga         590me           65.29         200king gains           599me         66.912           200king gains         669.12           200king gains         64.92           200king gains         609.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m water<br>89.52<br>m in cala<br>ains (see<br>ns (Table<br>Feb<br>175.86<br>(calcula<br>57.99<br>nins (calc<br>676.06<br>a (calcula<br>40.59<br>ns gains<br>3<br>vaporatic                     | heating,<br>94.91<br>culation of<br>Table 5<br>5), Wat<br>Mar<br>175.86<br>ted in Ap<br>47.16<br>ulated in<br>658.56<br>tted in Ar<br>40.59<br>(Table 5<br>3<br>nn (negative)               | kWh/ma<br>86.32<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>ppendix<br>35.7<br>Appendix<br>40.59<br>5a)<br>3<br>tive valu         | onth 0.23<br>85.49<br>only if c<br>:<br>175.86<br>L, equati<br>26.69<br>Jix L, equati<br>40.59<br>L, equati<br>40.59 | 5 1 [0.85<br>77.68<br>ylinder i<br>175.86<br>ion L9 o<br>22.53<br>uation L<br>530.1<br>ion L15<br>40.59<br>3<br>le 5)  | x (45)m<br>75.83<br>s in the o<br>Jul<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58<br>or L15a<br>40.59 | Outp<br>+ (61)m<br>81.51<br>dwelling<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64<br>), also se<br>40.59 | set from work           80.84           or hot w           Sep           175.86           Table 5           42.48           o see Tai           511.13           se Table           40.59           3        | Oct           175.86           53.93           ble 5           548.38           5           40.59 | (annual):<br>+ (57)m<br>93.02<br>om com<br>Nov<br>175.86<br>62.95<br>595.4<br>40.59<br>3 | + (59)m<br>99.12<br>munity h<br>Dec<br>175.86<br>67.1<br>639.59<br>40.59<br>3 | ]            | (6<br>(6<br>(6<br>(6<br>(7 |
| Leat gains froz           65pmc         101.13           include (57)         5           Jan         175.86           detabolic gain         Jan           66pmc         175.86           dphtng gains         66.92           Cooking gains         66.92           Cooking gains and fa         50.90           70pmc         63.92           Pumps and fa         70pmc           70pmc         3           71pmc         -140.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m water<br>89.52<br>m in cala<br>89.52<br>m in cala<br>ains (see<br>reb<br>175.86<br>(calcula<br>57.99<br>tins (calc<br>676.06<br>a (calcula<br>40.59<br>ns gains<br>3<br>vaporatic<br>-140.68 | heating,<br>94.91<br>2014tion of<br>7 Table 5<br>5 ), Wat<br>Mar<br>175.86<br>ted in Ap<br>47.16<br>ulated in Ap<br>47.16<br>ulated in Ap<br>40.59<br>(Table 5<br>3<br>nn (negal<br>-140.68 | kWh/ma<br>86.32<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>opendix<br>35.7<br>Appendix<br>621.31<br>opendix<br>40.59<br>5a)<br>3 | 00000000000000000000000000000000000000                                                                               | 5 1 [0.85<br>77.68<br>ylinder i<br>175.86<br>ion L9 o<br>22.53<br>uation L<br>530.1<br>ion L15<br>40.59<br>3           | x (45)m<br>75.83<br>s in the o<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58<br>or L15a<br>40.59        | Out;<br>+ (61)m<br>81.51<br>dwelling<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64<br>), also se<br>40.59 | sout from we           all + 0.8           80.84           or hot w           Sep           175.86           Table 5           42.48           o see Tal           511.13           se Table           40.59 | Oct         175.86           53.93         5           548.38         5           40.59           | (annual),<br>+ (57)m<br>93.02<br>om com<br>175.86<br>62.95<br>595.4<br>40.59             | + (59)m<br>99.12<br>munity h<br>175.86<br>67.1<br>639.59<br>40.59             | ]            | a) (                       |
| Heat gains froc           655me         101.13           include (57)         5           Internal g         Jan           660me         175.86           660me         670me           652.92         Appliances ga           Appliances ga         669.12           Cooking gains         669.12           Cooking gains         669.12           Cooking gains         60.91           Cooking gains         6.92           Dumps and fa         0.90mg           Onome         3           cosses e.g. et         et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m water<br>89.52<br>m in cala<br>89.52<br>m in cala<br>ains (see<br>reb<br>175.86<br>(calcula<br>57.99<br>tins (calc<br>676.06<br>a (calcula<br>40.59<br>ns gains<br>3<br>vaporatic<br>-140.68 | heating,<br>94.91<br>2014tion of<br>7 Table 5<br>5 ), Wat<br>Mar<br>175.86<br>ted in Ap<br>47.16<br>ulated in Ap<br>47.16<br>ulated in Ap<br>40.59<br>(Table 5<br>3<br>nn (negal<br>-140.68 | kWh/ma<br>86.32<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>ppendix<br>35.7<br>Appendix<br>40.59<br>5a)<br>3<br>tive valu         | onth 0.23<br>85.49<br>only if c<br>:<br>175.86<br>L, equati<br>26.69<br>Jix L, equati<br>40.59<br>L, equati<br>40.59 | 5 1 [0.85<br>77.68<br>ylinder i<br>175.86<br>ion L9 o<br>22.53<br>uation L<br>530.1<br>ion L15<br>40.59<br>3<br>ide 5) | x (45)m<br>75.83<br>s in the o<br>Jul<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58<br>or L15a<br>40.59 | Outp<br>+ (61)m<br>81.51<br>dwelling<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64<br>), also se<br>40.59 | set from work           80.84           or hot w           Sep           175.86           Table 5           42.48           o see Tai           511.13           se Table           40.59           3        | Oct           175.86           53.93           ble 5           548.38           5           40.59 | (annual):<br>+ (57)m<br>93.02<br>om com<br>Nov<br>175.86<br>62.95<br>595.4<br>40.59<br>3 | + (59)m<br>99.12<br>munity h<br>Dec<br>175.86<br>67.1<br>639.59<br>40.59<br>3 | ]            | (6<br>(6<br>(6<br>(6<br>(7 |

#### TER WorkSheet: New dwelling design stage

#### Total internal gains = (66/m + (67/m + (68)m + (69)m + (71)m + (71)m + (72)m (73)m= 948.09 946.02 912.05 855.66 794.64 739.27 705.6 713.6 744.64 801.29 866.3 918.68 6 Solar Solar gains Orientation: Access Factor Area m<sup>2</sup> Flux Table 6a FF Table 6c Gains (W) g\_ Table 6b Table 6d 600.47 1022.81 1399.46 1734 36.79 0.63 0.7 Southeast 53.4 0.63 0.63 0.7 Southeast 53.4 62.67 0.77 53.4 85.75 Southeast 106.25 0.63 53.4 0.63 0.63 0.63 0.63 0.63 0.63 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 1942.22 1928.18 1858.97 1703.62 119.01 118.15 Southeast 0 0.77 53.4 0.77 53.4 Southeast 113.91 53.4 104.39 92.85 69.27 Southeast 0 0.77 53.4 1515.32 1130.43 0.77 53.4 Southeast 53.4 0.77 44.07 0.63 0.7 53.4 31.49 0.63 36.79 0.7 20.3 0.63 0.7 0.7 0.7 0.77 62.67 0.63 388.82 0.77 85.75 532 659.18 20.3 106.25 659.18 738.34 733 706.69 647.63 576.05 429.73 273.41 195.35 20.3 119.01 0.77 20.3 118.15 Southwesto 20.3 0.77 113.91 Southwest 0.77 20.3 104.39 92.85 69.27 Southwesto 0.77 20.3 Southwesto 20.3 0.77 44.07 31.49 Southwest 0.77 20.3 Southwest 0.77 20.3 26 37.03 8.26 Rooflights 0 0.8 Rooflights o 1.3 Rooflights 0 0.8 54 17.15 0.63 0.63 0.63 36.26 30.48 Rooflights 0 70.28 1.3 0.8 Rooflights o 96 Rooflights 0. 1.3 111.87 57.72 0.63 0.8 Rooflights 0 150 47.63 Rooflights o 1.3 159.33 0.7 82.21 Rooflights 0. 0.8 102 0.63 80.08 193.3 0.63

#### TER WorkSheet: New dwelling design stage

| Rooflights 0.9x | 1 | x | 0.8 | x | 200    | x | 0.63 | x | 0.7 | = | 63.5   | (82) |
|-----------------|---|---|-----|---|--------|---|------|---|-----|---|--------|------|
| Rooflights 0.9x | 1 | x | 1.3 | x | 197.35 | x | 0.63 | x | 0.7 | = | 101.82 | (82) |
| Rooflights 0.9x | 1 | x | 0.8 | x | 189    | x | 0.63 | x | 0.7 | = | 60.01  | (82) |
| Rooflights 0.9x | 1 | x | 1.3 | x | 188.08 | x | 0.63 | x | 0.7 | = | 97.04  | (82) |
| Rooflights 0.9x | 1 | x | 0.8 | x | 157    | x | 0.63 | x | 0.7 | = | 49.85  | (82) |
| Rooflights 0.9x | 1 | x | 1.3 | x | 162.62 | x | 0.63 | x | 0.7 | = | 83.9   | (82) |
| Rooflights 0.9x | 1 | x | 0.8 | x | 115    | x | 0.63 | × | 0.7 | = | 36.51  | (82) |
| Rooflights 0.9x | 1 | x | 1.3 | x | 128.66 | x | 0.63 | x | 0.7 | = | 66.39  | (82) |
| Rooflights 0.9x | 1 | x | 0.8 | x | 66     | x | 0.63 | x | 0.7 | = | 20.96  | (82) |
| Rooflights 0.9x | 1 | x | 1.3 | x | 82.24  | x | 0.63 | x | 0.7 | = | 42.44  | (82) |
| Rooflights 0.9x | 1 | x | 0.8 | x | 33     | x | 0.63 | x | 0.7 | = | 10.48  | (82) |
| Rooflights 0.9x | 1 | x | 1.3 | x | 45.75  | x | 0.63 | x | 0.7 | = | 23.61  | (82) |
| Rooflights 0.9x | 1 | x | 0.8 | x | 21     | x | 0.63 | x | 0.7 | = | 6.67   | (82) |
| Rooflights 0.9x | 1 | x | 1.3 | x | 30.74  | x | 0.63 | x | 0.7 | = | 15.86  | (82) |
|                 |   |   |     |   |        |   |      |   |     |   |        | -    |



Page 5 of 8

Useful gains, hmGm , W = (94)m x (84)m (95)m= 1804.9 2409.17 2922.2 3332.16 3441.38 2944.1 2143.94 2205.89 2704.08 2408.41 1892.04 1650.27 
 Monthly average external temperature from Table 8

 (96)m=
 4.3
 4.9
 6.5
 8.9
 11.7
 14.6
 16.6
 16.4
 14.1
 10.6
 7.1
 4.2
 Heat loss rate for mean internal temperature, Lm , W =[(39]m x [(93)m-(96)m] [97]me 89512 869764 788538 6593.22 5084.51 4421.71 2224.63 2340.65 3665.22 5530.64 7372.51 8937.21 
28496.12 Space heating requirement in kWh/m²/year 47.79 9a. Energy requirem ents – Individual heating s Space heating: Fraction of space heat from secondary/supp Fraction of space heat from main system(s) (202) = 1 - (201) = Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] = Efficiency of main space heating system 1 iciency of seconda pplementary heating system, Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec e heating requirement (calculated above) 5316.85 4225.85 3692.6 2347.97 1222.48 0 0 0 0 0 2322.9 4 3945.94 5421.49 511.19 1307.47 0 0 0 0 2484.4 4220.25 5798.38 5686.47 4519.63 3949.31 2 30477.13 (211 Space heating fuel (secondary = {[(98)m x (201)]} x 100 + (208) (215)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Water heating 
 Output from water heater (calculated above)

 238.65
 210.06
 219.92
 196.2
 191.59
 170.21
 162.54
 179.64
 179.73
 203.5
 216.37
 232.59
 Efficiency of water I 79.8 (217)m= 89.98 89.93 89.82 89.57 88.89 79.8 79.8 79.8 79.8 89.53 89.87 90 Fuel for water b 
 (219)m = [0.4]m x 100 + (217)m

 [265:22] 233.58
 244.84
 219.04
 215.55
 213.3
 203.68
 225.11
 225.22
 227.29
 240.74
 258.42
 Annual totals Space heating fuel used, main system 1 kWh/year 30477.13 Water heating fuel used 2772 Electricity for pumps, fans and electric keep-hot central heating pump: 30 (2300

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

#### TER WorkSheet: New dwelling design stage

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

Page 7 of 8

### TER WorkSheet: New dwelling design stage

| boiler with a fan-assisted flue                         |                       | 45 |         | (230e) |
|---------------------------------------------------------|-----------------------|----|---------|--------|
| Total electricity for the above, kWh/year               | sum of (230a)(230g) = |    | 75      | (231)  |
| Electricity for lighting                                |                       |    | 1153.03 | (232)  |
| 12a. CO2 emissions - Individual heating systems includi | ng micro-CHP          |    |         |        |

|                                                   | Energy<br>kWh/year              | Emission factor<br>kg CO2/kWh | Emissions<br>kg CO2/year |
|---------------------------------------------------|---------------------------------|-------------------------------|--------------------------|
| Space heating (main system 1)                     | (211) x                         | 0.216 =                       | 6583.06 (261)            |
| Space heating (secondary)                         | (215) x                         | 0.519 =                       | 0 (263)                  |
| Water heating                                     | (219) x                         | 0.216 =                       | 598.75 (264)             |
| Space and water heating                           | (261) + (262) + (263) + (264) = |                               | 7181.81 (265)            |
| Electricity for pumps, fans and electric keep-hot | (231) x                         | 0.519 =                       | 38.93 (267)              |
| Electricity for lighting                          | (232) x                         | 0.519 =                       | 598.42 (268)             |
| Total CO2, kg/year                                | sum                             | n of (265)(271) =             | 7819.16 (272)            |
|                                                   |                                 |                               |                          |

TER = 13.11 (273)

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

#### DER WorkSheet: New dwelling design stage

| Assessor Name:<br>Software Name:                          | Stroma ESA         | 2 2012               |            | Stroma<br>Softwar  |          |                  | Vorsio        | n: 1 0 4 25             |            |
|-----------------------------------------------------------|--------------------|----------------------|------------|--------------------|----------|------------------|---------------|-------------------------|------------|
| sonware Namé:                                             | Stroma FSA         | 2012                 |            |                    |          |                  | oad Be Gree   |                         |            |
| Address :                                                 |                    |                      | openty /   | iddi(33. 3         | 011      | ICC Anna IN      |               |                         |            |
| 1. Overall dwelling dime                                  | nsions:            |                      |            |                    |          |                  |               |                         |            |
|                                                           |                    |                      | Area       | (m²)               |          | Av. Height       | :(m)          | Volume(m <sup>3</sup> ) | _          |
| Basement                                                  |                    |                      | 1          | 7.5 (1             | a) x     | 4                | (2a) =        | 710                     | (3a)       |
| Ground floor                                              |                    |                      | 1          | 55 <mark>(1</mark> | b) x     | 3.1              | (2b) =        | 480.5                   | (3b)       |
| First floor                                               |                    |                      | 1:         | 1.9 (1             | c) x     | 2.7              | (2c) =        | 356.13                  | (3c)       |
| Second floor                                              |                    |                      | 1:         | 1.9 (1             | d) x     | 2.6              | (2d) =        | 342.94                  | <br>(3d)   |
| Total floor area TFA = (1                                 | a)+(1b)+(1c)+(1c   | i)+(1e)+(1n)         | 5          | 6.3 (4             | )        | L                |               |                         | -          |
| Dwelling volume                                           |                    |                      |            | (                  | 3a)+(3t  | )+(3c)+(3d)+(3   | e)+(3n) =     | 1889.57                 | (5)        |
| 2. Ventilation rate:                                      |                    |                      |            |                    |          |                  |               |                         | -          |
|                                                           | main<br>heating    | secondary<br>heating | , ,        | other              |          | total            |               | m <sup>3</sup> per hour |            |
| Number of chimneys                                        |                    | + 0                  | ] • [      | 0                  | = [      | 0                | x 40 =        | 0                       | (6a)       |
| Number of open flues                                      | 0                  | + 0                  | i•7        | 0                  | = [      | 0                | x 20 =        | 0                       | (6b)       |
| Number of intermittent fa                                 | ns                 |                      |            |                    | ř        | 0                | x 10 =        | 0                       | (7a)       |
| Number of passive vents                                   |                    |                      |            |                    | ř        | 0                | x 10 =        | 0                       | ц<br>П(7ь) |
| Number of flueless gas fi                                 | res                |                      |            |                    | l i      | 0                | x 40 =        | 0                       | (7c)       |
|                                                           |                    |                      |            |                    |          |                  | 1             |                         | J          |
|                                                           |                    |                      |            |                    |          |                  | Air ch        | nanges per hou          | ur         |
| Infiltration due to chimne                                | ys, flues and fan  | s = (6a)+(6b)+(7a    | i)+(7b)+(7 | c) =               | Г        | 0                | + (5) =       | 0                       | (8)        |
| If a pressurisation test has b                            |                    | intended, proceed    | to (17), o | therwise cor       | tinue fi | rom (9) to (16)  |               |                         | -          |
| Number of storeys in the<br>Additional infiltration       | ne dwelling (ns)   |                      |            |                    |          |                  |               | 0                       | (9)        |
|                                                           | 05 (               |                      |            |                    |          |                  | [(9)-1]x0.1 = | 0                       | (10)       |
| Structural infiltration: 0<br>if both types of wall are p |                    |                      |            |                    |          | lucuon           |               | 0                       | (11)       |
| deducting areas of openir                                 |                    |                      |            |                    |          |                  |               |                         |            |
| If suspended wooden f                                     | loor, enter 0.2 (u | insealed) or 0.1     | l (seale   | d), else er        | nter 0   |                  |               | 0                       | (12)       |
| If no draught lobby, en                                   | ter 0.05, else en  | ter 0                |            |                    |          |                  |               | 0                       | (13)       |
| Percentage of windows                                     | s and doors drau   | ght stripped         |            |                    |          |                  |               | 0                       | (14)       |
| Window infiltration                                       |                    |                      |            | ).25 - [0.2 x      | (14) + 1 | 100] =           |               | 0                       | (15)       |
| Infiltration rate                                         |                    |                      |            | 8) + (10) + (      | 11) + (  | 12) + (13) + (15 | ) =           | 0                       | (16)       |
| Air permeability value,                                   | q50, expressed     | in cubic metres      | per ho     | ur per squ         | are m    | netre of enve    | lope area     | 3                       | (17)       |
| If based on air permeabil                                 | ity value, then (1 | 8) = [(17) + 20]+(8) | , otherwis | e (18) = (16       | )        |                  |               | 0.15                    | (18)       |
| Air permeability value applie                             |                    | lest has been done   | or a deg   | ee air perm        | eability | is being used    |               |                         | _          |
| Number of sides sheltere                                  | d                  |                      |            |                    |          |                  |               | 2                       | (19)       |
| Shelter factor                                            |                    |                      |            | 20) = 1 - [0.      |          | 19)] =           |               | 0.85                    | (20)       |
| Infiltration rate incorporat                              | ing shelter facto  | r                    |            | 21) = (18) x       | (20) =   |                  |               | 0.13                    | (21)       |
|                                                           |                    |                      |            |                    |          |                  |               |                         | _          |
| Infiltration rate modified f                              | or monthly wind    | speed                |            |                    |          |                  |               |                         |            |

### DER WorkSheet: New dwelling design stage

| (22)m= 5.1                                                                                                                                                        | 5                                                                                      | 4.9                                                        | 4.4                   | 4.3       | 3.8                                                                                                 | 3.8                                                                               | 3.7                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.3                                                                                               | 4.5                                   | 4.7                |        |                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------|-----------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------|--------------------|--------|--------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                   |                                                                                        |                                                            |                       |           |                                                                                                     |                                                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                       |                    |        |                                                                                                              |
| Wind Factor (2                                                                                                                                                    |                                                                                        | <u>`</u>                                                   |                       |           |                                                                                                     |                                                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                       |                    |        |                                                                                                              |
| (22a)m= 1.27                                                                                                                                                      | 1.25                                                                                   | 1.23                                                       | 1.1                   | 1.08      | 0.95                                                                                                | 0.95                                                                              | 0.92                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.08                                                                                              | 1.12                                  | 1.18               |        |                                                                                                              |
| Adjusted infiltra                                                                                                                                                 | ation rate                                                                             | e (allow                                                   | ina for st            | nelter an | nd wind s                                                                                           | speed) =                                                                          | (21a) x                                                                                                                                  | (22a)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   |                                       |                    |        |                                                                                                              |
| 0.16                                                                                                                                                              | 0.16                                                                                   | 0.16                                                       | 0.14                  | 0.14      | 0.12                                                                                                | 0.12                                                                              | 0.12                                                                                                                                     | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.14                                                                                              | 0.14                                  | 0.15               |        |                                                                                                              |
| Calculate effect                                                                                                                                                  |                                                                                        |                                                            | rate for t            | he appli  | cable ca                                                                                            | ise                                                                               |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                       |                    |        |                                                                                                              |
| If mechanica                                                                                                                                                      |                                                                                        |                                                            |                       |           |                                                                                                     |                                                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                       | ļ                  | 0.5    | (23a                                                                                                         |
| If exhaust air he                                                                                                                                                 |                                                                                        |                                                            |                       |           |                                                                                                     |                                                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | o) = (23a)                                                                                        |                                       | ļ                  | 0.5    | (23b                                                                                                         |
| If balanced with                                                                                                                                                  |                                                                                        |                                                            | -                     | -         |                                                                                                     |                                                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                       | L                  | 73.1   | (230                                                                                                         |
| a) If balance                                                                                                                                                     |                                                                                        |                                                            |                       |           |                                                                                                     | <u> </u>                                                                          |                                                                                                                                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>                                                                                          | <u> </u>                              | <u> </u>           | ÷ 100] | (24-                                                                                                         |
| (24a)m= 0.3                                                                                                                                                       | 0.29                                                                                   | 0.29                                                       | 0.27                  | 0.27      | 0.26                                                                                                | 0.26                                                                              | 0.25                                                                                                                                     | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.27                                                                                              | 0.28                                  | 0.28               |        | (24a                                                                                                         |
| b) If balance                                                                                                                                                     |                                                                                        | -                                                          | -                     |           |                                                                                                     |                                                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   | -                                     |                    |        |                                                                                                              |
| (24b)m= 0                                                                                                                                                         | 0                                                                                      | 0                                                          | 0                     | 0         | 0                                                                                                   | 0                                                                                 | 0                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                 | 0                                     | 0                  |        | (245                                                                                                         |
| <li>c) If whole he<br/>if (22b)m</li>                                                                                                                             |                                                                                        |                                                            |                       |           |                                                                                                     |                                                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E - (22)                                                                                          |                                       |                    |        |                                                                                                              |
| (24c)m= 0                                                                                                                                                         | 0.5 ×                                                                                  | (230), (                                                   | 0                     | c) = (230 | o), other                                                                                           | Wise (24                                                                          | c) = (22t                                                                                                                                | 5) m + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .5 × (250                                                                                         | 0                                     |                    |        | (240                                                                                                         |
|                                                                                                                                                                   |                                                                                        |                                                            | Ľ                     |           | <u> </u>                                                                                            | - ·                                                                               |                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |                                       |                    |        | (24)                                                                                                         |
| <li>d) If natural v<br/>if (22b)m</li>                                                                                                                            |                                                                                        |                                                            |                       |           |                                                                                                     |                                                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.51                                                                                              |                                       |                    |        |                                                                                                              |
| (24d)m= 0                                                                                                                                                         | 0                                                                                      | 0                                                          | 0                     | 0         | 0                                                                                                   | 0                                                                                 | 0                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                 | 0                                     | 0                  |        | (240                                                                                                         |
| Effective air                                                                                                                                                     | change                                                                                 | rate - er                                                  | nter (24a             | ) or (24  | ) or (24                                                                                            | c) or (24                                                                         | d) in box                                                                                                                                | x (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   |                                       |                    |        |                                                                                                              |
| (25)m= 0.3                                                                                                                                                        | 0.29                                                                                   | 0.29                                                       | 0.27                  | 0.27      | 0.26                                                                                                | 0.26                                                                              | 0.25                                                                                                                                     | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.27                                                                                              | 0.28                                  | 0.28               |        | (25)                                                                                                         |
| 3. Heat losses                                                                                                                                                    | and he                                                                                 | at loss                                                    | paramat               |           |                                                                                                     |                                                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                       |                    | _      |                                                                                                              |
| J. Heat lusses                                                                                                                                                    | s anu ne                                                                               |                                                            |                       |           |                                                                                                     |                                                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                       |                    |        | AXk                                                                                                          |
| FIEMENT                                                                                                                                                           | Gros                                                                                   |                                                            |                       |           | Net Ar                                                                                              | ea                                                                                | U-valı                                                                                                                                   | ue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AXU                                                                                               |                                       | k-value            |        |                                                                                                              |
| ELEMENT                                                                                                                                                           | Gros<br>area                                                                           |                                                            | Openin<br>r           |           | Net Ar<br>A ,r                                                                                      |                                                                                   | U-valı<br>W/m2                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A X U<br>(W/                                                                                      | K)                                    | k-value<br>kJ/m²·K |        | kJ/K                                                                                                         |
| ELEMENT<br>Doors                                                                                                                                                  |                                                                                        |                                                            |                       |           |                                                                                                     |                                                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   | K)                                    |                    |        | kJ/K<br>(26)                                                                                                 |
|                                                                                                                                                                   | area                                                                                   |                                                            |                       |           | A ,i                                                                                                | m <sup>2</sup>                                                                    | W/m2                                                                                                                                     | 2K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (W/                                                                                               | K)                                    |                    |        |                                                                                                              |
| Doors                                                                                                                                                             | area                                                                                   |                                                            |                       |           | A ,i<br>5.7                                                                                         | m <sup>2</sup> x                                                                  | W/m2                                                                                                                                     | 2K<br>=<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (W/                                                                                               | K)                                    |                    |        | (26)<br>(27)                                                                                                 |
| Doors<br>Windows Type                                                                                                                                             | area<br>1<br>2                                                                         |                                                            |                       |           | A ,1                                                                                                | m <sup>2</sup> x x <sup>1</sup>                                                   | W/m2<br>1<br>/[1/( 1.3 )+                                                                                                                | 2K<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (W/I<br>5.7<br>25.09                                                                              | <)                                    |                    |        | (26)<br>(27)<br>(27)                                                                                         |
| Doors<br>Windows Type<br>Windows Type                                                                                                                             | area<br>1<br>2<br>e 1                                                                  |                                                            |                       |           | A ,1<br>5.7<br>20.3<br>53.4                                                                         | m <sup>2</sup> x x <sup>1</sup> x <sup>1</sup> x <sup>1</sup>                     | W/m2<br>1<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+                                                                                                | 2K<br>0.04] =<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (W/I<br>5.7<br>25.09<br>65.99                                                                     | \$<br>_<br>_<br>_<br>_<br>_<br>_<br>_ |                    |        | (26)<br>(27)<br>(27)<br>(27)                                                                                 |
| Doors<br>Windows Type<br>Windows Type<br>Rooflights Type                                                                                                          | area<br>1<br>2<br>e 1                                                                  |                                                            |                       |           | A ,1<br>5.7<br>20.3<br>53.4<br>0.8                                                                  | m <sup>2</sup> x<br>x1<br>x1<br>x1<br>x1<br>x1                                    | W/m2<br>1<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/(1.3) +                                                                                 | 2K<br>0.04] =<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (W/I<br>5.7<br>25.09<br>65.99<br>1.04                                                             | \[                                    |                    |        | (26)<br>(27)<br>(27)<br>(27)                                                                                 |
| Doors<br>Windows Type<br>Windows Type<br>Rooflights Type<br>Rooflights Type                                                                                       | area<br>1<br>2<br>e 1                                                                  | (m²)                                                       |                       |           | A ,1<br>5.7<br>20.3<br>53.4<br>0.8<br>1.3                                                           | m <sup>2</sup> x<br>x1<br>x1<br>x1<br>x1<br>x1                                    | W/m2<br>1<br>/[1/(1.3)+<br>/[1/(1.3)+<br>/[1/(1.3)+<br>/[1/(1.3)+                                                                        | 2K<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (W/I<br>5.7<br>25.09<br>65.99<br>1.04<br>1.69                                                     |                                       |                    |        | (26)<br>(27)<br>(27)<br>(27)<br>(27)                                                                         |
| Doors<br>Windows Type<br>Windows Type<br>Rooflights Type<br>Rooflights Type<br>Floor                                                                              | area<br>1<br>2<br>e 1<br>e 2                                                           | (m²)                                                       | п                     |           | A ,1<br>5.7<br>20.3<br>53.4<br>0.8<br>1.3<br>177.5                                                  | m <sup>2</sup> x 1<br>x 1<br>x 1<br>x 1<br>x 1<br>x 1<br>x 1<br>x 1<br>x 1<br>x 1 | W/m2<br>1<br>/[1/(1.3)+<br>/[1/(1.3)+<br>/[1/(1.3)+<br>/[1/(1.3)+<br>0.1                                                                 | K<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (W/l<br>5.7<br>25.09<br>65.99<br>1.04<br>1.69<br>17.75<br>32.4                                    |                                       |                    |        | (26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)                                                         |
| Doors<br>Windows Type<br>Windows Type<br>Rooflights Type<br>Rooflights Type<br>Floor<br>Walls Type 1                                                              | area<br>1<br>2<br>e 1<br>e 2<br>295.                                                   | (m²)                                                       | - π<br>79.4           |           | A ,1<br>5.7<br>20.3<br>53.4<br>0.8<br>1.3<br>177.4<br>216<br>129.2                                  | m <sup>2</sup> x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x                              | W/m2<br>1<br>(1/(1.3)+<br>(1/(1.3)+<br>(1/(1.3)+<br>(1/(1.3)+<br>0.1<br>0.1<br>0.15<br>0.14                                              | 'K       0.04]       0.04]       0.04]       0.04]       0.04]       =       0.04]       =       =       =       =       =       =       =       =       =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (W/I<br>5.7<br>25.09<br>65.99<br>1.04<br>1.69<br>17.75<br>32.4<br>18.03                           |                                       |                    |        | (26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)                                                 |
| Doors<br>Windows Type<br>Windows Type<br>Rooflights Type<br>Rooflights Type<br>Floor<br>Walls Type1<br>Walls Type2<br>Walls Type3                                 | area<br>1<br>2<br>e 1<br>e 2<br>295<br>226.                                            | (m <sup>2</sup> )                                          | 79.4                  |           | A ,1<br>5.7<br>20.3<br>53.4<br>0.8<br>1.3<br>177.3<br>216<br>129.2<br>226.4                         | m <sup>2</sup> x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x                              | W/m2<br>1<br>(1/(1.3)+<br>(1/(1.3)+<br>(1/(1.3)+<br>(1/(1.3)+<br>0.1<br>0.15<br>0.14<br>0.15                                             | K<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>=<br>=<br>=<br>=<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (W/I<br>5.7<br>25.09<br>65.99<br>1.04<br>1.69<br>17.75<br>32.4<br>18.03<br>33.96                  |                                       |                    |        | (26)<br>(27)<br>(27)<br>(27b<br>(27b<br>(27b<br>(28)<br>(28)<br>(29)<br>(29)<br>(29)                         |
| Doors<br>Windows Type<br>Windows Type<br>Rooflights Type<br>Rooflights Type<br>Floor<br>Walls Type1<br>Walls Type2<br>Walls Type3<br>Roof Type1                   | area<br>1<br>2<br>e 1<br>e 2<br>295.<br>129.2<br>226.<br>136.                          | (m <sup>2</sup> )                                          | 79.4<br>0<br>0        |           | A, , 1<br>5.7<br>20.3<br>53.4<br>0.8<br>1.3<br>177.4<br>216<br>129.2<br>226.4                       | m <sup>2</sup> x 1 x1 x1 x1 x1 x1 x1 x1 x1 x2 x x4 x x                            | W/m2<br>1<br>(1/(1.3)+<br>(1/(1.3)+<br>(1/(1.3)+<br>(1/(1.3)+<br>0.1<br>0.15<br>0.14<br>0.15<br>0.14<br>0.15                             | K       =         0.04]       =         0.04]       =         0.04]       =         0.04]       =         0.04]       =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (W/I<br>5.7<br>25.09<br>65.99<br>1.04<br>1.69<br>17.75<br>32.4<br>18.03<br>33.96<br>17.42         |                                       |                    |        | (26)<br>(27)<br>(27)<br>(27b<br>(27b<br>(28)<br>(29)<br>(29)<br>(29)<br>(29)                                 |
| Doors<br>Windows Type<br>Rooflights Type<br>Rooflights Type<br>Floor<br>Walls Type1<br>Walls Type2<br>Walls Type3<br>Roof Type1<br>Roof Type2                     | area<br>1<br>2<br>e 1<br>e 2<br>295.<br>129.1<br>226.<br>136.<br>18.9                  | 4<br>22<br>4<br>9                                          | 79.4                  |           | A ,1<br>5.7<br>20.3<br>53.4<br>0.8<br>1.3<br>177.3<br>216<br>129.2<br>226.4<br>134<br>18.9          | m <sup>2</sup> x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x                              | W/m2<br>1<br>(1/(1.3)+<br>(1/(1.3)+<br>(1/(1.3)+<br>(1/(1.3)+<br>0.1<br>0.15<br>0.14<br>0.15                                             | :K       =         :0.04]       =         :0.04]       =         0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       = <td:0.04]< td="">       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =         :0.04]       =</td:0.04]<>                                                                                                                                                                                                                          | (W/I<br>5.7<br>25.09<br>65.99<br>1.04<br>1.69<br>17.75<br>32.4<br>18.03<br>33.96                  |                                       |                    |        | (26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)<br>(30)<br>(30) |
| Doors<br>Windows Type<br>Rooflights Type<br>Rooflights Type<br>Floor<br>Walls Type1<br>Walls Type2<br>Walls Type3<br>Roof Type1<br>Roof Type2<br>Total area of el | area<br>1<br>2<br>e 1<br>e 2<br>295.<br>129.<br>226.<br>136.<br>18.5<br>lements        | 4<br>22<br>4<br>1<br>9<br>0, m <sup>2</sup>                | 79.4<br>0<br>2.1      |           | A ,1<br>5.7<br>20.3<br>53.4<br>0.8<br>1.3<br>177.3<br>216<br>129.2<br>226.4<br>134<br>18.9<br>983.5 | m <sup>2</sup> x 1<br>x 1<br>x 1<br>x 1<br>x 1<br>x 2<br>x 2<br>x 2               | W/m2<br>1<br>[1/(1.3)+<br>[1/(1.3)+<br>[1/(1.3)+<br>[1/(1.3)+<br>[1/(1.3)+<br>[1/(1.3)+<br>[0.1]<br>0.15<br>0.14<br>0.15<br>0.13<br>0.13 | :K         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04] <td>(W/I<br/>5.7<br/>25.09<br/>65.99<br/>1.04<br/>1.69<br/>17.75<br/>32.4<br/>18.03<br/>33.96<br/>17.42<br/>2.46</td> <td></td> <td>kJ/m²-K</td> <td></td> <td>(26)<br/>(27)<br/>(27)<br/>(27)<br/>(27)<br/>(28)<br/>(29)<br/>(29)<br/>(29)<br/>(29)<br/>(29)<br/>(29)<br/>(30)<br/>(30)</td> | (W/I<br>5.7<br>25.09<br>65.99<br>1.04<br>1.69<br>17.75<br>32.4<br>18.03<br>33.96<br>17.42<br>2.46 |                                       | kJ/m²-K            |        | (26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)<br>(30)<br>(30) |
| Doors<br>Windows Type<br>Rooflights Type<br>Rooflights Type<br>Floor<br>Walls Type1<br>Walls Type2<br>Walls Type3<br>Roof Type1<br>Roof Type2                     | area<br>1<br>2<br>e 1<br>e 2<br>295.<br>129.2<br>136.<br>18.5<br>lements<br>roof windo | 4<br>22<br>4<br>.1<br>9<br>., m <sup>2</sup><br>ows, use e | 79.4<br>0<br>2.1<br>0 |           | A ,1<br>5.7<br>20.3<br>53.4<br>0.8<br>1.3<br>177.3<br>216<br>129.2<br>226.4<br>134<br>18.9<br>983.5 | m <sup>2</sup> x 1<br>x 1<br>x 1<br>x 1<br>x 1<br>x 2<br>x 2<br>x 2               | W/m2<br>1<br>[1/(1.3)+<br>[1/(1.3)+<br>[1/(1.3)+<br>[1/(1.3)+<br>[1/(1.3)+<br>[1/(1.3)+<br>[0.1]<br>0.15<br>0.14<br>0.15<br>0.13<br>0.13 | :K         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04] <td>(W/I<br/>5.7<br/>25.09<br/>65.99<br/>1.04<br/>1.69<br/>17.75<br/>32.4<br/>18.03<br/>33.96<br/>17.42<br/>2.46</td> <td></td> <td>kJ/m²-K</td> <td></td> <td>(26)<br/>(27)<br/>(27)<br/>(27b<br/>(27b<br/>(28)<br/>(29)<br/>(29)<br/>(29)<br/>(29)</td>                                     | (W/I<br>5.7<br>25.09<br>65.99<br>1.04<br>1.69<br>17.75<br>32.4<br>18.03<br>33.96<br>17.42<br>2.46 |                                       | kJ/m²-K            |        | (26)<br>(27)<br>(27)<br>(27b<br>(27b<br>(28)<br>(29)<br>(29)<br>(29)<br>(29)                                 |

Heat capacit Thermal mass can be used in a design asse can be used in a design asse can be used in a design asse for design asse a design asse a design asse a design asse Heat transfer (30)me 185.2 Heat transfer (30)me 0.76 Number of d (40)me 0.76 Number of d (41)me 1.7 Assumed con if TFA > 1; if of TFA = 1; i

Page 2 of 9

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

Page 8 of 8

Page 1 of 9

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

## 5B PRINCE ARTHUR ROAD | HAMPSTEAD

### DER WorkSheet: New dwelling design stage

| ((28)(30) + (32) + (32a)(32e) =                  | 0 (34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Indicative Value: Medium                         | 250 (35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| e indicative values of TMP in Table 1f           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                  | 19.2 (36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (33) + (36) = 2                                  | 70.59 (37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (38)m = 0.33 × (25)m x (5)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sep Oct Nov Dec                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 163.37 169.33 173.31 177.29                      | (38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (39)m = (37) + (38)m                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 433.96 439.92 443.9 447.87                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Average = Sum(39):/12= 44<br>(40)m = (39)m + (4) | 11.41 (39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.73 0.74 0.74 0.75                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Average = Sum(40) 1.12 /12=                      | ).74 (40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sep Oct Nov Dec                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 30 31 30 31                                      | (41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| kWh/year:                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                  | (42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                  | (43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sep Oct Nov Dec                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 115 38 120 09 124 8 129 5                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                  | 12.78 (44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0 kWh/month (see Tables 1b, 1c, 1d)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 134.64 156.9 171.27 185.99                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                  | 52.38 (45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ) to (61)                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 20.2 23.54 25.69 27.9                            | (46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                  | (47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ame vessel 150                                   | (47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ers) enter '0' in (47)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.95                                             | (48)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                  | (40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                  | (43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.05                                             | (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                  | Indicative Value: Medium         2           e indicative values of TMP in Table if         4           (33) + (36) =         227           (38)m = 0.33 + (25)m x (5)         5           Sep Oct Nov Dec         173.21           (39)m = (37) + (38)m         447.87           Average = Sum(39), - : /12=         44           (40)m = (30)m + (4)         0.74         0.75           Average = Sum(39), - : /12=         0           Sep Oct Nov Dec         30         31           30         31         30         31           Whypest:         3.52         0           36         117.73         185.99           Total = Sum(4), - : =         14           115.38         120.09         124.8           Total = Sum(4), - : =         14           134.4         158.9         171.27           Total = Sum(4), - : =         14           134.4         158.9         171.27           Total = Sum(4), - : =         14 |

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

Page 3 of 9

# A3 | DER/TER Worksheets

#### DER WorkSheet: New dwelling design stage

Page 4 of 9

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

| lot water stor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | age loss                                                                                                                                                                                                                                                                                                                                         | factor fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | om Tabl                                                                                                                                  | e 2 (kW                                                                                                                                              | h/litre/da                                                                                                             | iy)                                                                                                             |                                                                                                                       |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                  |                                                                                           | 0                                                                         |         |       | (51)                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------|-------|-------------------------------------------------------------|
| f community h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on 4.3                                                                                                                                   |                                                                                                                                                      |                                                                                                                        |                                                                                                                 |                                                                                                                       |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                  |                                                                                           |                                                                           |         |       |                                                             |
| /olume factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                          |                                                                                                                                                      |                                                                                                                        |                                                                                                                 |                                                                                                                       |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                  |                                                                                           | 0                                                                         |         |       | (52)                                                        |
| emperature f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                          |                                                                                                                                                      |                                                                                                                        |                                                                                                                 |                                                                                                                       |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                  |                                                                                           | 0                                                                         |         |       | (53                                                         |
| Energy lost fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , kWh/ye                                                                                                                                 | ear                                                                                                                                                  |                                                                                                                        |                                                                                                                 | (47) x (51                                                                                                            | ) x (52) x (                                                                                                                                                                                                             | 53) =                                                                                                                                                                                                                            |                                                                                           | 0                                                                         |         |       | (54                                                         |
| Enter (50) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                          |                                                                                                                                                      |                                                                                                                        |                                                                                                                 |                                                                                                                       |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                  | 1.                                                                                        | 05                                                                        |         |       | (55                                                         |
| Vater storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | loss cal                                                                                                                                                                                                                                                                                                                                         | culated f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | or each                                                                                                                                  | month                                                                                                                                                |                                                                                                                        |                                                                                                                 | ((56)m = (                                                                                                            | 55) × (41)                                                                                                                                                                                                               | m                                                                                                                                                                                                                                |                                                                                           |                                                                           |         |       |                                                             |
| 56)m= 32.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29.48                                                                                                                                                                                                                                                                                                                                            | 32.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31.59                                                                                                                                    | 32.64                                                                                                                                                | 31.59                                                                                                                  | 32.64                                                                                                           | 32.64                                                                                                                 | 31.59                                                                                                                                                                                                                    | 32.64                                                                                                                                                                                                                            | 31.59                                                                                     | 32.64                                                                     |         |       | (56                                                         |
| cylinder contain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s dedicated                                                                                                                                                                                                                                                                                                                                      | d solar sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rage, (57)                                                                                                                               | m = (56)m                                                                                                                                            | x [(50) – (                                                                                                            | H11)] + (5                                                                                                      | 0), else (5                                                                                                           | 7)m = (56)                                                                                                                                                                                                               | m where (                                                                                                                                                                                                                        | H11) is fro                                                                               | m Append                                                                  | ix H    |       |                                                             |
| 57)m= 32.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29.48                                                                                                                                                                                                                                                                                                                                            | 32.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31.59                                                                                                                                    | 32.64                                                                                                                                                | 31.59                                                                                                                  | 32.64                                                                                                           | 32.64                                                                                                                 | 31.59                                                                                                                                                                                                                    | 32.64                                                                                                                                                                                                                            | 31.59                                                                                     | 32.64                                                                     |         |       | (57                                                         |
| Primary circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | loss (an                                                                                                                                                                                                                                                                                                                                         | inual) fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | om Table                                                                                                                                 | 3                                                                                                                                                    |                                                                                                                        |                                                                                                                 |                                                                                                                       |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                  |                                                                                           | 0                                                                         |         |       | (58                                                         |
| rimary circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                          |                                                                                                                                                      | 59)m = (                                                                                                               | (58) + 36                                                                                                       | 5 × (41)                                                                                                              | m                                                                                                                                                                                                                        |                                                                                                                                                                                                                                  | · · · · ·                                                                                 |                                                                           |         |       |                                                             |
| (modified by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | factor fr                                                                                                                                                                                                                                                                                                                                        | om Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | le H5 if t                                                                                                                               | here is s                                                                                                                                            | solar wat                                                                                                              | ter heati                                                                                                       | ng and a                                                                                                              | cylinde                                                                                                                                                                                                                  | r thermo                                                                                                                                                                                                                         | stat)                                                                                     |                                                                           |         |       |                                                             |
| 59)m= 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.01                                                                                                                                                                                                                                                                                                                                            | 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22.51                                                                                                                                    | 23.26                                                                                                                                                | 22.51                                                                                                                  | 23.26                                                                                                           | 23.26                                                                                                                 | 22.51                                                                                                                                                                                                                    | 23.26                                                                                                                                                                                                                            | 22.51                                                                                     | 23.26                                                                     |         |       | (59                                                         |
| combi loss ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lculated.                                                                                                                                                                                                                                                                                                                                        | for each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | month (                                                                                                                                  | (61)m =                                                                                                                                              | (60) ± 36                                                                                                              | 85 x (41                                                                                                        | )m                                                                                                                    |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                  |                                                                                           |                                                                           |         |       |                                                             |
| 61)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                        | 01)11-                                                                                                                                               | 00) + 30                                                                                                               | 0                                                                                                               | 0                                                                                                                     | 0                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                | 0                                                                                         | 0                                                                         | 1       |       | (61                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ŭ                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                          |                                                                                                                                                      |                                                                                                                        | -                                                                                                               |                                                                                                                       |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                  |                                                                                           |                                                                           | (50)    | (04)  |                                                             |
| otal heat req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  | 229.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                          | 200.9                                                                                                                                                | 179.22                                                                                                                 | 171.85                                                                                                          | (62)m =<br>188.95                                                                                                     | 0.85 × (                                                                                                                                                                                                                 | (45)m +<br>212.81                                                                                                                                                                                                                | · /                                                                                       | . ,                                                                       | (59)m + | (61)m |                                                             |
| 247.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 205.22                                                                                                                                   |                                                                                                                                                      |                                                                                                                        |                                                                                                                 |                                                                                                                       |                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                | 225.38                                                                                    | 241.9                                                                     |         |       | (6:                                                         |
| olar DHW input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                          |                                                                                                                                                      |                                                                                                                        |                                                                                                                 |                                                                                                                       |                                                                                                                                                                                                                          | r contribut                                                                                                                                                                                                                      | ion to wate                                                                               | er heating)                                                               |         |       |                                                             |
| add additiona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                          | _                                                                                                                                                    |                                                                                                                        | _                                                                                                               | _                                                                                                                     | <u> </u>                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                |                                                                                           |                                                                           |         |       |                                                             |
| 63) <b>m</b> = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                        | 0                                                                                                                                                    | 0                                                                                                                      | 0                                                                                                               | Ó                                                                                                                     | 0                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                | 0                                                                                         | 0                                                                         |         |       | (6:                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                          |                                                                                                                                                      |                                                                                                                        |                                                                                                                 |                                                                                                                       |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                  |                                                                                           |                                                                           |         |       |                                                             |
| Dut <mark>put fro</mark> m w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ater hea                                                                                                                                                                                                                                                                                                                                         | ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                          | _                                                                                                                                                    |                                                                                                                        |                                                                                                                 |                                                                                                                       |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                  |                                                                                           |                                                                           |         |       |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ater hea<br>218.46                                                                                                                                                                                                                                                                                                                               | ter<br>229.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 205.22                                                                                                                                   | 200.9                                                                                                                                                | 179.22                                                                                                                 | 171.85                                                                                                          | 188.95                                                                                                                | 188.74                                                                                                                                                                                                                   | 212.81                                                                                                                                                                                                                           | 225.38                                                                                    | 241.9                                                                     |         |       | _                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 205.22                                                                                                                                   | 200.9                                                                                                                                                | 179.22                                                                                                                 | 171.85                                                                                                          |                                                                                                                       | 188.74<br>but from w                                                                                                                                                                                                     |                                                                                                                                                                                                                                  |                                                                                           |                                                                           | 2510    | .62   | (64                                                         |
| 64)m= 247.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 218.46                                                                                                                                                                                                                                                                                                                                           | 229.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                          |                                                                                                                                                      |                                                                                                                        |                                                                                                                 | Out                                                                                                                   | out from w                                                                                                                                                                                                               | ater heater                                                                                                                                                                                                                      | (annual)                                                                                  | -12                                                                       | _       | .62   | (6                                                          |
| 64)m= 247.96<br>leat gains fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 218.46                                                                                                                                                                                                                                                                                                                                           | 229.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                          |                                                                                                                                                      |                                                                                                                        |                                                                                                                 | Out                                                                                                                   | out from w                                                                                                                                                                                                               | ater heater                                                                                                                                                                                                                      | (annual)                                                                                  | -12                                                                       | _       | .62   | ٦.                                                          |
| 64)m= 247.96<br>leat gains fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 218.46<br>m water<br>96.25                                                                                                                                                                                                                                                                                                                       | 229.24<br>heating,<br>102.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | kWh/m<br>93.53                                                                                                                           | onth 0.2<br>92.94                                                                                                                                    | 5 <b>1 [0.85</b><br>84.88                                                                                              | × (45)m<br>83.28                                                                                                | Out;<br>+ (61)n<br>88.96                                                                                              | out from wa<br>n] + 0.8 x<br>88.05                                                                                                                                                                                       | ater heater<br>k [(46)m<br>96.9                                                                                                                                                                                                  | + (57)m<br>100.23                                                                         | + (59)m                                                                   | ]       | .62   | ٦.                                                          |
| 64)m= 247.96<br>leat gains fro<br>55)m= 108.58<br>include (57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 218.46<br>m water<br>96.25<br>m in calc                                                                                                                                                                                                                                                                                                          | 229.24<br>heating,<br>102.36<br>culation o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | kWh/me<br>93.53<br>of (65)m                                                                                                              | onth 0.2<br>92.94<br>only if c                                                                                                                       | 5 <b>1 [0.85</b><br>84.88                                                                                              | × (45)m<br>83.28                                                                                                | Out;<br>+ (61)n<br>88.96                                                                                              | out from wa<br>n] + 0.8 x<br>88.05                                                                                                                                                                                       | ater heater<br>k [(46)m<br>96.9                                                                                                                                                                                                  | + (57)m<br>100.23                                                                         | + (59)m                                                                   | ]       | .62   | ٦.                                                          |
| 64)m= 247.96<br>leat gains fro<br>65)m= 108.58<br>include (57)<br>5. Internal ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 218.46<br>m water<br>96.25<br>m in calc<br>ains (see                                                                                                                                                                                                                                                                                             | 229.24<br>heating,<br>102.36<br>culation of<br>Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kWh/m<br>93.53<br>of (65)m<br>and 5a                                                                                                     | onth 0.2<br>92.94<br>only if c                                                                                                                       | 5 <b>1 [0.85</b><br>84.88                                                                                              | × (45)m<br>83.28                                                                                                | Out;<br>+ (61)n<br>88.96                                                                                              | out from wa<br>n] + 0.8 x<br>88.05                                                                                                                                                                                       | ater heater<br>k [(46)m<br>96.9                                                                                                                                                                                                  | + (57)m<br>100.23                                                                         | + (59)m                                                                   | ]       | .62   | ٦.                                                          |
| 4)m= 247.96<br>leat gains fro<br>55m= 108.58<br>include (57)<br>5. Internal gain<br>letabolic gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 218.46<br>m water<br>96.25<br>m in calc<br>ains (see<br>as (Table                                                                                                                                                                                                                                                                                | 229.24<br>heating,<br>102.36<br>culation of<br>Table 5<br>5), Wat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kWh/m<br>93.53<br>of (65)m<br>and 5a<br>ts                                                                                               | onth 0.2<br>92.94<br>only if c                                                                                                                       | 5 ' [0.85<br>84.88<br>ylinder is                                                                                       | × (45)m<br>83.28<br>s in the o                                                                                  | Out;<br>+ (61)m<br>88.96<br>dwelling                                                                                  | out from wa<br>a] + 0.8 3<br>88.05<br>or hot w                                                                                                                                                                           | ater heater<br>k [(46)m<br>96.9<br>vater is fr                                                                                                                                                                                   | (annual),<br>+ (57)m<br>100.23<br>rom com                                                 | + (59)m<br>106.57<br>munity h                                             | ]       | .62   | ٦.                                                          |
| 4)m= 247.96<br>leat gains fro<br>(5)m= 108.58<br>include (57)<br>5. Internal ge<br>letabolic gain<br>Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 218.46<br>m water<br>96.25<br>m in calc<br>ains (see<br>is (Table<br>Feb                                                                                                                                                                                                                                                                         | 229.24<br>heating,<br>102.36<br>culation of<br>Table 5<br>5), Wat<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | kWh/mo<br>93.53<br>of (65)m<br>and 5a<br>ts<br>Apr                                                                                       | onth 0.2<br>92.94<br>only if c<br>:<br>May                                                                                                           | 5 <sup>-</sup> [0.85<br>84.88<br>ylinder is<br>Jun                                                                     | × (45)m<br>83.28<br>s in the o                                                                                  | Outp<br>+ (61)m<br>88.96<br>dwelling<br>Aug                                                                           | out from wa<br>n] + 0.8 x<br>88.05<br>or hot w<br>Sep                                                                                                                                                                    | eter heater<br>((46)m<br>96.9<br>Pater is fr<br>Oct                                                                                                                                                                              | (annual)+<br>+ (57)m<br>100.23<br>om com                                                  | + (59)m<br>106.57<br>munity h                                             | ]       | .62   | (6                                                          |
| 44m= 247.96<br>4eat gains fro<br>55)m= 108.58<br>include (57)<br>5. Internal gi<br>4etabolic gain<br>Jan<br>175.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 218.46<br>m water<br>96.25<br>m in calc<br>ains (see<br>as (Table<br>Feb<br>175.86                                                                                                                                                                                                                                                               | 229.24<br>heating,<br>102.36<br>culation o<br>Table 5<br>5), Wat<br>Mar<br>175.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kWh/m<br>93.53<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86                                                                              | onth 0.23<br>92.94<br>only if c<br>):<br>May<br>175.86                                                                                               | 5 ' [0.85<br>84.88<br>ylinder is<br>Jun<br>175.86                                                                      | × (45)m<br>83.28<br>s in the o<br>Jul<br>175.86                                                                 | Out;<br>+ (61)m<br>88.96<br>dwelling<br>Aug<br>175.86                                                                 | Set from washing         + 0.8 >           88.05         or hot w           Sep         175.86                                                                                                                           | ater heater<br>k [(46)m<br>96.9<br>vater is fr                                                                                                                                                                                   | (annual),<br>+ (57)m<br>100.23<br>rom com                                                 | + (59)m<br>106.57<br>munity h                                             | ]       | .62   | (6                                                          |
| 34)m=         247.96           feat gains fro         108.58           include (57)         108.58           5. Internal gi         108.58           Metabolic gain         Jan           175.86         175.86           ighting gains         135.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 218.46<br>m water<br>96.25<br>m in calc<br>ains (see<br>s (Table<br>Feb<br>175.86<br>(calculat                                                                                                                                                                                                                                                   | 229.24<br>heating,<br>102.36<br>culation of<br><b>Table 5</b><br>5), Wat<br>Mar<br>175.86<br>ted in Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kWh/mo<br>93.53<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>opendix                                                                  | 00000000000000000000000000000000000000                                                                                                               | 5 1 [0.85<br>84.88<br>ylinder is<br>Jun<br>175.86<br>ion L9 or                                                         | × (45)m<br>83.28<br>s in the o<br>Jul<br>175.86<br>r L9a), a                                                    | Outp<br>+ (61)m<br>88.96<br>dwelling<br>dwelling<br>175.86<br>Iso see                                                 | 24t from wa<br>1 + 0.8 ><br>88.05<br>or hot w<br>Sep<br>175.86<br>Table 5                                                                                                                                                | ater heater<br>((46)m<br>96.9<br>ater is fr<br>Oct<br>175.86                                                                                                                                                                     | (annual)<br>+ (57)m<br>100.23<br>om com<br>Nov<br>175.86                                  | + (59)m<br>106.57<br>munity h<br>Dec<br>175.86                            | ]       | .62   | (6                                                          |
| 34)m=         247.96           leat gains fro         108.58           include (57)         108.58           5. Internal ge         Jan           175.86         Jan           ighting gains         65.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 218.46<br>m water<br>96.25<br>m in calc<br>ains (see<br>s (Table<br>Feb<br>175.86<br>(calculat<br>57.99                                                                                                                                                                                                                                          | 229.24<br>heating,<br>102.36<br>culation of<br>5), Wat<br>Mar<br>175.86<br>ted in Ap<br>47.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | kWh/ma<br>93.53<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>opendix<br>35.7                                                          | 00000000000000000000000000000000000000                                                                                                               | 5 1 [0.85<br>84.88<br>ylinder is<br>Jun<br>175.86<br>ion L9 of<br>22.53                                                | × (45)m<br>83.28<br>s in the o<br>Jul<br>175.86<br>r L9a), a<br>24.35                                           | Outp<br>+ (61)m<br>88.96<br>dwelling<br>4welling<br>175.86<br>Iso see<br>31.65                                        | at from washing         + 0.8           88.05         88.05           or hot washing         Sep           175.86         Table 5           42.48         42.48                                                          | aler heater           96.9           vater is fr           Oct           175.86           53.93                                                                                                                                  | (annual)+<br>+ (57)m<br>100.23<br>om com                                                  | + (59)m<br>106.57<br>munity h                                             | ]       | 62    | (6                                                          |
| 34)m=         247.96           leat gains fro         108.58           include (57)         108.58           5. Internal ge         Jan           175.86         Jan           ighting gains         65.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 218.46<br>m water<br>96.25<br>m in calc<br>ains (see<br>s (Table<br>Feb<br>175.86<br>(calculat<br>57.99                                                                                                                                                                                                                                          | 229.24<br>heating,<br>102.36<br>culation of<br>5), Wat<br>Mar<br>175.86<br>ted in Ap<br>47.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | kWh/ma<br>93.53<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>opendix<br>35.7                                                          | 00000000000000000000000000000000000000                                                                                                               | 5 1 [0.85<br>84.88<br>ylinder is<br>Jun<br>175.86<br>ion L9 of<br>22.53                                                | × (45)m<br>83.28<br>s in the o<br>Jul<br>175.86<br>r L9a), a<br>24.35                                           | Outp<br>+ (61)m<br>88.96<br>dwelling<br>4welling<br>175.86<br>Iso see<br>31.65                                        | at from washing         + 0.8           88.05         88.05           or hot washing         Sep           175.86         Table 5           42.48         42.48                                                          | aler heater           96.9           vater is fr           Oct           175.86           53.93                                                                                                                                  | (annual)<br>+ (57)m<br>100.23<br>om com<br>Nov<br>175.86                                  | + (59)m<br>106.57<br>munity h<br>Dec<br>175.86                            | ]       | .62   | (6                                                          |
| 34)m=         247.96           leat gains fro         108.58           include (57)         108.58           include (57)         5. Internal ge           108.58         175.86           ighting gains         65.29           ppliances gai         36.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 218.46<br>m water<br>96.25<br>m in calc<br>ains (see<br>s (Table<br>Feb<br>175.86<br>(calculat<br>57.99                                                                                                                                                                                                                                          | 229.24<br>heating,<br>102.36<br>culation of<br>5), Wat<br>Mar<br>175.86<br>ted in Ap<br>47.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | kWh/ma<br>93.53<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>opendix<br>35.7                                                          | 00000000000000000000000000000000000000                                                                                                               | 5 1 [0.85<br>84.88<br>ylinder is<br>Jun<br>175.86<br>ion L9 of<br>22.53                                                | × (45)m<br>83.28<br>s in the o<br>Jul<br>175.86<br>r L9a), a<br>24.35                                           | Outp<br>+ (61)m<br>88.96<br>dwelling<br>4welling<br>175.86<br>Iso see<br>31.65                                        | at from washing         + 0.8           88.05         88.05           or hot washing         Sep           175.86         Table 5           42.48         42.48                                                          | aler heater           96.9           vater is fr           Oct           175.86           53.93                                                                                                                                  | (annual)<br>+ (57)m<br>100.23<br>om com<br>Nov<br>175.86                                  | + (59)m<br>106.57<br>munity h<br>Dec<br>175.86                            | ]       | .62   | (6<br>(6                                                    |
| 4)m 247.96<br>leat gains fro<br>(5)m 108.58<br>include (57)<br>5. Internal g<br>letabolic gains<br>(6)m 175.86<br>ighting gains<br>(7)m 65.29<br>ppliances ga<br>(8)m 669.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 218.46<br>m water<br>96.25<br>m in calc<br>ains (see<br>s (Table<br>Feb<br>175.86<br>(calculat<br>57.99<br>ins (calc<br>676.06                                                                                                                                                                                                                   | 229.24<br>heating,<br>102.36<br>culation of<br>Table 5<br>5), Wat<br>Mar<br>175.86<br>ted in Ap<br>47.16<br>ulated in<br>658.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/m<br>93.53<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>opendix<br>35.7<br>Append<br>621.31                                       | 00000000000000000000000000000000000000                                                                                                               | 5 ' [0.85<br>84.88<br>ylinder is<br>Jun<br>175.86<br>ion L9 oi<br>22.53<br>uation L<br>530.1                           | × (45)m<br>83.28<br>s in the o<br>Jul<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58                     | Out;<br>+ (61)rr<br>88.96<br>dwelling<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64                            | aut from washing         + 0.8 automodel           88.05         or hot washing           0r hot washing         Sep           175.86         Table 5           42.48         o see Tal           511.13         Stat.13 | Oct           175.86           53.93           ble 5           548.38                                                                                                                                                            | (annual),<br>+ (57)m<br>100.23<br>om com<br>Nov<br>175.86<br>62.95                        | + (59)m<br>106.57<br>munity h<br>Dec<br>175.86<br>67.1                    | ]       | .62   | (6<br>(6                                                    |
| 4) m 247.96<br>eat gains fro<br>(5) m 108.58<br>include (57)<br>5. Internal gr<br>letabolic gain<br>46 m 65.29<br>ppliances ga<br>88 m 669.12<br>cooking gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 218.46<br>m water<br>96.25<br>m in calc<br>ains (see<br>s (Table<br>Feb<br>175.86<br>(calculat<br>57.99<br>ins (calc<br>676.06                                                                                                                                                                                                                   | 229.24<br>heating,<br>102.36<br>culation of<br>Table 5<br>5), Wat<br>Mar<br>175.86<br>ted in Ap<br>47.16<br>ulated in<br>658.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/m<br>93.53<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>opendix<br>35.7<br>Append<br>621.31                                       | 00000000000000000000000000000000000000                                                                                                               | 5 ' [0.85<br>84.88<br>ylinder is<br>Jun<br>175.86<br>ion L9 oi<br>22.53<br>uation L<br>530.1                           | × (45)m<br>83.28<br>s in the o<br>Jul<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58                     | Out;<br>+ (61)rr<br>88.96<br>dwelling<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64                            | aut from washing         + 0.8 automodel           88.05         or hot washing           0r hot washing         Sep           175.86         Table 5           42.48         o see Tal           511.13         Stat.13 | Oct           175.86           53.93           ble 5           548.38                                                                                                                                                            | (annual),<br>+ (57)m<br>100.23<br>om com<br>Nov<br>175.86<br>62.95                        | + (59)m<br>106.57<br>munity h<br>Dec<br>175.86<br>67.1                    | ]       | .62   | )<br>(6<br>(6                                               |
| 4)m         247.96           leat gains from the second  | 218.46<br>m water<br>96.25<br>m in calc<br>ains (see<br>ss (Table<br>Feb<br>175.86<br>(calculat<br>57.99<br>ins (calc<br>676.06<br>(calculat<br>40.59                                                                                                                                                                                            | 229.24<br>heating,<br>102.36<br>ulation of<br>Table 5<br>5), Wat<br>Mar<br>175.86<br>ted in Ap<br>47.16<br>ulated in<br>658.56<br>ted in A<br>40.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | kWh/me<br>93.53<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>opendix<br>35.7<br>o Appendix<br>621.31<br>opendix<br>40.59              | 00000000000000000000000000000000000000                                                                                                               | 5 ' [0.85<br>84.88<br>ylinder is<br>Jun<br>175.86<br>ion L9 of<br>22.53<br>uation L<br>530.1<br>ion L15                | × (45)m<br>83.28<br>s in the o<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58<br>or L15a)                | Out;<br>+ (61)rr<br>88.96<br>dwelling<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64<br>), also se              | and from ward           and from ward           88.05           or hot ward           Sep           175.86           Table 5           42.48           see Tail           511.13           ce Table                      | Oct           175.86           53.93           ble 5           548.38                                                                                                                                                            | (annual),<br>+ (57)m<br>100.23<br>om com<br>Nov<br>175.86<br>62.95<br>595.4               | + (59)m<br>106.57<br>munity h<br>Dec<br>175.86<br>67.1<br>639.59          | ]       | .62   | (6<br>(6<br>(6                                              |
| 44/11         247.96           teat gains from the second secon | 218.46<br>m water<br>96.25<br>m in calc<br>ains (see<br>ss (Table<br>Feb<br>175.86<br>(calculat<br>57.99<br>ins (calc<br>676.06<br>(calculat<br>40.59                                                                                                                                                                                            | 229.24<br>heating,<br>102.36<br>ulation of<br>Table 5<br>5), Wat<br>Mar<br>175.86<br>ted in Ap<br>47.16<br>ulated in<br>658.56<br>ted in A<br>40.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | kWh/me<br>93.53<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>opendix<br>35.7<br>o Appendix<br>621.31<br>opendix<br>40.59              | 00000000000000000000000000000000000000                                                                                                               | 5 ' [0.85<br>84.88<br>ylinder is<br>Jun<br>175.86<br>ion L9 of<br>22.53<br>uation L<br>530.1<br>ion L15                | × (45)m<br>83.28<br>s in the o<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58<br>or L15a)                | Out;<br>+ (61)rr<br>88.96<br>dwelling<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64<br>), also se              | and from ward           and from ward           88.05           or hot ward           Sep           175.86           Table 5           42.48           see Tail           511.13           ce Table                      | Oct           175.86           53.93           ble 5           548.38                                                                                                                                                            | (annual),<br>+ (57)m<br>100.23<br>om com<br>Nov<br>175.86<br>62.95<br>595.4               | + (59)m<br>106.57<br>munity h<br>Dec<br>175.86<br>67.1<br>639.59          | ]       | .62   | ].<br>(6<br>(6<br>(6                                        |
| 4)m         247.96           leat gains fro         108.58           include (57)         include (57)           5. Internal gi         Jan           16)m         175.86           16jhting gains         7/m           65.29         669.12           cooking gains         9/m           40.00         40.59           umps and fa         0/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 218.46<br>m water<br>96.25<br>m in calc<br>ains (see<br>s (Table<br>Feb<br>175.86<br>(calculat<br>57.99<br>ins (calc<br>676.06<br>(calculat<br>40.59<br>ns gains<br>0                                                                                                                                                                            | 229.24<br>heating,<br>102.36<br>culation of<br>Table 5<br>5), Wat<br>Mar<br>175.86<br>ted in Ap<br>47.16<br>ulated in<br>658.56<br>ted in A<br>40.59<br>(Table 5<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | kWh/m<br>93.53<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>opendix<br>35.7<br>Appendix<br>621.31<br>opendix<br>40.59<br>o<br>a)<br>0 | 00000000000000000000000000000000000000                                                                                                               | 5 ' [0.85<br>84.88<br>ylinder is<br>Jun<br>175.86<br>ion L 9 or<br>22.53<br>uation L<br>530.1<br>ion L15<br>40.59<br>0 | × (45)m<br>83.28<br>s in the o<br>Jul<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58<br>or L15a<br>40.59 | Outp<br>+ (61)m<br>88.96<br>dwelling<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64<br>y, also se<br>40.59      | set from we           1 + 0.8           88.05           or hot w           Sep           175.86           Table 5           42.48           o see Tal           511.13           se Table           40.59                | Oct         175.86           53.93         548.38           5         40.59                                                                                                                                                      | (annual):<br>+ (57)m<br>100.23<br>om com<br>Nov<br>175.86<br>62.95<br>595.4<br>40.59      | + (59)m<br>106.57<br>munity h<br>Dec<br>175.86<br>67.1<br>639.59<br>40.59 | ]       | .62   | 」.<br>(6<br>(6<br>(6                                        |
| 44 min         247.96           44 min         247.96           44 min         247.96           108.58         108.58           include (57)         108.58           include (57)         5.1           5.         Internal gr           4 betabolic qains         3           36 min         75.86           90 ppliances ga         9           90 pm         669.12           10.59         10.59           10 mps and fa         0.59           10 mps and fa         0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 218.46<br>m water<br>96.25<br>m in calc<br>ins (see<br>s (Table<br>Feb<br>175.86<br>(calculat<br>57.99<br>ins (calc<br>676.06<br>(calculat<br>40.59<br>ms gains<br>0<br>aporatio                                                                                                                                                                 | 229.24<br>heating,<br>102.36<br>tulation of<br>5), Wat<br>175.86<br>ted in Ap<br>47.16<br>ulated in Ap<br>47.16<br>ulated in A<br>658.56<br>tted in A<br>40.59<br>(Table 5<br>0<br>nn (negative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | kWh/m<br>93.53<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>ppendix<br>35.7<br>Appendix<br>40.59<br>5a)<br>0<br>tive valu             | onth 0.29<br>92.94<br>only if c<br>):<br><u>May</u><br>175.86<br>L, equati<br>26.69<br>dix L, equati<br>40.59<br>L, equati<br>40.59<br>0<br>es) (Tab | 5 10.85<br>84.88<br>ylinder is<br>175.86<br>ion L9 oi<br>22.53<br>uation L<br>530.1<br>ion L15<br>40.59<br>0<br>e 5)   | × (45)m<br>83.28<br>s in the o<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58<br>or L15a<br>40.59        | Out;<br>+ (61)m<br>88.96<br>dwelling<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64<br>), also se<br>40.59<br>0 | out from work           1 + 0.8 or           88.05           or hot w           Sep           175.86           Table 5           42.48           o see Tai           511.13           ce Table           40.59           | Atter         heate           Atter         heate           ((46)m)         96.9           9ater is fr         Oct           175.86         53.93           ble 5         548.38           5         40.59           0         0 | (annual),<br>+ (57)m<br>100.23<br>om com<br>Nov<br>175.86<br>62.95<br>595.4<br>40.59<br>0 | + (59)m<br>106.57<br>munity P<br>175.86<br>67.1<br>639.59<br>40.59<br>0   | ]       | .62   | ]<br>(6<br>(6<br>(6<br>(6                                   |
| 84 nic         247.96           Heat gains fro         55           include (57)         5.           55         include (57)           5.         Internal gr           Aetabolic gain         175.66           36jm         108.58           98jm         669.12           200king gains         59m           98jm         669.12           200king gains         60.59           90mm         40.59           90umps and fa         700m           0         0.59855           711m         -140.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 218.46<br>m water<br>96.25<br>m in calc<br>ins (see<br>s (Table<br>Feb<br>175.86<br>(calculat<br>57.99<br>ins (calc<br>676.06<br>(calculat<br>676.06<br>(calculat<br>676.06<br>(calculat<br>90)<br>s (calculat<br>676.06<br>(calculat<br>90)<br>s (calculat<br>90)<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90 | 229.24<br>heating,<br>102.36<br><b>Called Solution</b><br><b>Table 5</b><br><b>5</b> ), Wat<br>Mar<br>175.86<br>ted in Aç<br>47.16<br>ulated in Aç<br>47.16<br>ulated in Aç<br>40.59<br>(Table 5<br>0<br>0<br>n (negal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kWh/m<br>93.53<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>opendix<br>35.7<br>Appendix<br>621.31<br>opendix<br>40.59<br>o<br>a)<br>0 | 00000000000000000000000000000000000000                                                                                                               | 5 ' [0.85<br>84.88<br>ylinder is<br>Jun<br>175.86<br>ion L 9 or<br>22.53<br>uation L<br>530.1<br>ion L15<br>40.59<br>0 | × (45)m<br>83.28<br>s in the o<br>Jul<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58<br>or L15a<br>40.59 | Outp<br>+ (61)m<br>88.96<br>dwelling<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64<br>y, also se<br>40.59      | set from we           1 + 0.8           88.05           or hot w           Sep           175.86           Table 5           42.48           o see Tal           511.13           se Table           40.59                | Oct         175.86           53.93         548.38           5         40.59                                                                                                                                                      | (annual):<br>+ (57)m<br>100.23<br>om com<br>Nov<br>175.86<br>62.95<br>595.4<br>40.59      | + (59)m<br>106.57<br>munity h<br>Dec<br>175.86<br>67.1<br>639.59<br>40.59 | ]       | .62   | ے۔<br>(6)<br>(6)<br>(6)<br>(6)<br>(7)                       |
| Heat gains fro           55/m*         108.58           include (57)         5.           5.         Internal g           Metabolic gain         175.86           ighting gains         67/m*           65.29         409.12           SB/m*         66.99           Cooking gains         69.12           Cooking gains         509/m*           40.59         Pumps and fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 218.46<br>m water<br>96.25<br>m in calc<br>ins (see<br>s (Table<br>Feb<br>175.86<br>(calculat<br>57.99<br>ins (calc<br>676.06<br>(calculat<br>676.06<br>(calculat<br>676.06<br>(calculat<br>90)<br>s (calculat<br>676.06<br>(calculat<br>90)<br>s (calculat<br>90)<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90 | 229.24<br>heating,<br>102.36<br><b>Call Call of Call of Call of Call of Call of Call<br/>of Call of Call of Call of Call of Call of Call<br/>of Call of C</b> | kWh/m<br>93.53<br>of (65)m<br>and 5a<br>ts<br>Apr<br>175.86<br>ppendix<br>35.7<br>Appendix<br>40.59<br>5a)<br>0<br>tive valu             | onth 0.29<br>92.94<br>only if c<br>):<br><u>May</u><br>175.86<br>L, equati<br>26.69<br>dix L, equati<br>40.59<br>L, equati<br>40.59<br>0<br>es) (Tab | 5 10.85<br>84.88<br>ylinder is<br>175.86<br>ion L9 oi<br>22.53<br>uation L<br>530.1<br>ion L15<br>40.59<br>0<br>e 5)   | × (45)m<br>83.28<br>s in the o<br>175.86<br>r L9a), a<br>24.35<br>13 or L1<br>500.58<br>or L15a<br>40.59        | Out;<br>+ (61)m<br>88.96<br>dwelling<br>175.86<br>Iso see<br>31.65<br>3a), also<br>493.64<br>), also se<br>40.59<br>0 | out from work           1 + 0.8 or           88.05           or hot w           Sep           175.86           Table 5           42.48           o see Tai           511.13           ce Table           40.59           | Atter         heate           Atter         heate           ((46)m)         96.9           9ater is fr         Oct           175.86         53.93           ble 5         548.38           5         40.59           0         0 | (annual),<br>+ (57)m<br>100.23<br>om com<br>Nov<br>175.86<br>62.95<br>595.4<br>40.59<br>0 | + (59)m<br>106.57<br>munity P<br>175.86<br>67.1<br>639.59<br>40.59<br>0   | ]       | .62   | ](64<br>(63<br>(64)<br>(64)<br>(64)<br>(77)<br>(77)<br>(77) |

#### DER WorkSheet: New dwelling design stage

#### Total internal gains = (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m (73)m= 956.11 953.03 919.06 862.67 801.65 746.29 712.61 720.61 751.65 808.31 873.31 925.69 6 Solar Solar gain: Orientation: Access Factor Area m² Flux Table 6a FF Table 6c Gains (W) g\_ Table 6b Table 6d 1 able 6c 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Description 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 (vv) 600.47 1022.81 1399.46 1734 1942.22 1928.18 1858.97 1703.82 1515.32 1513.043 710.22 Southeast 36.79 53.4 62.67 85.75 Southeast 53.4 0.77 53.4 Southeast 53.4 106.25 0.77 119.01 119.01 118.15 113.91 104.39 92.85 69.27 144.07 Southeast 0 0.77 53.4 0.77 53.4 Southeast 53.4 0.77 53.4 53.4 53.4 Southeast 0 0.77 0.77 Southeast 0.77 08.21 44.07 31.49 36.79 62.67 85.75 106.25 0.63 x 53.4 x 53.4 x 20.3 719.22 228.27 0.63 0.77 20.3 0.63 0.65 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 388.82 ( 532 ( 662.16 ( 733.34 ( 735.35 ( 647.63 ( 576.05 ( 273.41 ( 195.35 ( 9.1 ( 8.16 ( 0.77 20.3 20.3 20.3 119.01 118.15 113.91 0.77 20.3 20.3 Southwesto 0.77 20.3 20.3 20.3 20.3 20.3 20.3 113.91 104.39 92.85 69.27 44.07 31.49 26 37.03 54 Southwest 0.77 Southwesto 0.77 Southwest 0.77 Southwest 0.77 Southwesto 0.77 0.8 Rooflights 0 Rooflights 0 Rooflights 0 0.8 70.28 96 111.87 8.16 17.27 14.52 27.49 Rooflights 0 1.3 Rooflights 0 1.3 0.8 1.3 Rooflights 0. 150 22.68 39.15 Rooflights 0 Rooflights 0 Rooflights 0. 0.8 192 0.3 20.03 193.3 1.3 0.3

#### DER WorkSheet: New dwelling design stage

| Rooflights 0.9x | 1 | x | 0.8 | x | 200    | x | 0.3 | x | 0.7 | = | 30.24 | (82) |
|-----------------|---|---|-----|---|--------|---|-----|---|-----|---|-------|------|
| Rooflights 0.9x | 1 | x | 1.3 | x | 197.35 | x | 0.3 | x | 0.7 | = | 48.49 | (82) |
| Rooflights 0.9x | 1 | x | 0.8 | x | 189    | x | 0.3 | x | 0.7 | = | 28.58 | (82) |
| Rooflights 0.9x | 1 | x | 1.3 | x | 188.08 | x | 0.3 | x | 0.7 | = | 46.21 | (82) |
| Rooflights 0.9x | 1 | x | 0.8 | x | 157    | x | 0.3 | x | 0.7 | = | 23.74 | (82) |
| Rooflights 0.9x | 1 | x | 1.3 | x | 162.62 | x | 0.3 | x | 0.7 | = | 39.95 | (82) |
| Rooflights 0.9x | 1 | x | 0.8 | x | 115    | x | 0.3 | x | 0.7 | = | 17.39 | (82) |
| Rooflights 0.9x | 1 | x | 1.3 | x | 128.66 | x | 0.3 | x | 0.7 | = | 31.61 | (82) |
| Rooflights 0.9x | 1 | x | 0.8 | x | 66     | x | 0.3 | x | 0.7 | = | 9.98  | (82) |
| Rooflights 0.9x | 1 | x | 1.3 | x | 82.24  | x | 0.3 | x | 0.7 | = | 20.21 | (82) |
| Rooflights 0.9x | 1 | x | 0.8 | x | 33     | x | 0.3 | x | 0.7 | = | 4.99  | (82) |
| Rooflights 0.9x | 1 | x | 1.3 | x | 45.75  | x | 0.3 | × | 0.7 | = | 11.24 | (82) |
| Rooflights 0.9x | 1 | x | 0.8 | x | 21     | x | 0.3 | x | 0.7 | = | 3.18  | (82) |
| Rooflights 0.9x | 1 | x | 1.3 | x | 30.74  | x | 0.3 | × | 0.7 | = | 7.55  | (82) |
|                 |   |   |     |   |        |   |     |   |     |   |       |      |



Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

Page 5 of 9

Page 6 of 9

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

#### DER WorkSheet: New dwelling design stage

| of   | l agine    | hmGm       | W = (0,   | 4)m x (84             | ()m       |           |           |            |            |             |           |             |          |       |
|------|------------|------------|-----------|-----------------------|-----------|-----------|-----------|------------|------------|-------------|-----------|-------------|----------|-------|
| n=   | <u> </u>   |            | · · ·     | 3263.46               | <u> </u>  | 2433.58   | 1632.86   | 1707.33    | 2470.91    | 2383.54     | 1881.84   | 1645.61     |          | (95)  |
|      |            |            |           | perature              |           |           |           |            |            |             |           |             |          |       |
| n=   | 4.3        | 4.9        | 6.5       | 8.9                   | 11.7      | 14.6      | 16.6      | 16.4       | 14.1       | 10.6        | 7.1       | 4.2         |          | (96)  |
| at   | loss rate  | e for me   | an intern | al tempe              | erature,  | Lm,W:     | =[(39)m : | x [(93)m   | – (96)m    | ]           |           |             |          |       |
| n=   | 7326.81    | 7023.72    | 6271.15   | 5078.28               | 3824.78   | 2496.93   | 1636.96   | 1716.09    | 2734.77    | 4308.69     | 5899      | 7248.37     |          | (97)  |
|      |            |            |           | r each n              |           | Wh/mon    | th = 0.02 | 4 x [(97   | )m – (95   |             |           |             |          |       |
| n=   | 4113.58    | 3114.3     | 2518.44   | 1306.67               | 440.52    | 0         | 0         | 0          | 0          | 1432.32     | 2892.36   | 4168.45     |          | _     |
|      |            |            |           |                       |           |           |           | Tota       | l per year | (kWh/year   | ) = Sum(9 | 8),_58.12 = | 19986.63 | (98)  |
| ac   | e heatin   | g require  | ement in  | kWh/m <sup>2</sup>    | /year     |           |           |            |            |             |           |             | 33.52    | (99)  |
| . S  | pace co    | oling rea  | quiremer  | nt                    |           |           |           |            |            |             |           |             |          | _     |
| Ilcu | lated fo   | r June, .  | July and  | August.               | See Tal   | ble 10b   | _         |            |            |             |           | _           |          |       |
|      | Jan        | Feb        | Mar       | Apr                   | May       | Jun       | Jul       | Aug        | Sep        | Oct         | Nov       | Dec         |          |       |
| at   | loss rate  | e Lm (ca   | lculated  | using 25              | 5°C inter | rnal tem  | perature  | and ext    | ernal ten  | nperatur    | e from 1  | able 10)    |          |       |
| )m=  |            | 0          | 0         | 0                     | 0         | 4041.85   | 3181.88   | 3252.77    | 0          | 0           | 0         | 0           |          | (100) |
|      |            | tor for lo | oss hm    |                       |           |           |           |            |            |             |           | ,           |          |       |
| )m=  |            | 0          | 0         | 0                     | 0         | 0.91      | 0.96      | 0.94       | 0          | 0           | 0         | 0           |          | (101) |
|      |            | <u> </u>   | <u> </u>  | (100)m x              | <u> </u>  | _         |           |            |            |             |           |             |          |       |
| )m=  |            | 0          | 0         | 0                     | 0         |           | 3062.25   | 3069.69    | 0          | 0           | 0         | 0           |          | (102) |
|      | <u> </u>   | gains ca   | _         | for appli             | cable we  | _         | ř –       |            | -          |             |           |             |          | (103) |
| )m=  | 0          | 0          | 0         | 0                     | 0         | 4284.57   | 4123.49   | 1 N N      | 0          | 0           | 0         | 0           |          | (103) |
|      |            |            |           | r montn,<br>< 3 × (98 |           | iweiling, | continue  | ous ( kvi  | (n) = 0.0  | 24 X [(10   | /3)m – (  | 102)m]3     | (41)m    |       |
| )m=  | <u> </u>   | 0          | 0         | 0                     | 0         | 450.39    | 789.56    | 600.89     | 0          | 0           | 0         | 0           |          |       |
|      |            |            | -         |                       |           |           |           |            | Total      | = Sum(      | 104)      | =           | 1840.84  | (104) |
| lec  | d fraction | n          |           |                       |           |           |           |            | f C =      | cooled      | area ÷ (- | 4) =        | 1        | (105) |
| rmi  | ittency f  | actor (Ta  | able 10b  | )                     |           |           |           |            |            |             |           |             |          | -     |
| )m=  | 0          | 0          | 0         | 0                     | 0         | 0.25      | 0.25      | 0.25       | 0          | 0           | 0         | 0           |          | _     |
|      |            |            |           |                       |           |           |           |            | Total      | = Sum(      | 104)      | -           | 0        | (106) |
|      | <u> </u>   | <u> </u>   | -         | month =               | r`        | <u> </u>  | <u> </u>  | _          |            |             |           |             |          |       |
| )m=  | 0          | 0          | 0         | 0                     | 0         | 112.6     | 197.39    | 150.22     | 0<br>Total | 0<br>- Sum( | 0         | 0           | 100.01   | -     |
|      |            |            |           |                       |           |           |           |            |            | = Sum(      | 1017)     | -           | 460.21   | (107) |
|      |            |            |           | (Wh/m²/y              | ·         |           |           |            | • •        | ) ÷ (4) =   | _         |             | 0.77     | (108) |
|      | ~ ~ ~      |            | nts – Ind | ividual h             | eating s  | ystems i  | ncluding  | micro-C    | CHP)       |             |           |             |          |       |
|      | e heatir   |            |           |                       |           | menter    |           |            |            |             |           |             |          | 7000  |
|      |            |            |           | econdar               |           | mentary   |           |            | (204)      |             |           |             | 0        | (201) |
|      |            |            |           | nain syst             | . ,       |           |           | (202) = 1  |            |             |           |             | 1        | (202) |
| acti | on of to   | tal heati  | ng from   | main sys              | stem 1    |           |           | (204) = (2 | 02) × [1 – | (203)] =    |           |             | 1        | (204) |
| icie | ency of I  | main spa   | ace heat  | ing syste             | em 1      |           |           |            |            |             |           |             | 377.16   | (206) |
| icie | ency of    | seconda    | ry/suppl  | ementar               | y heating | g systen  | n, %      |            |            |             |           |             | 0        | (208) |
| oli  | ng Syste   | em Ener    | gy Effici | ency Rat              | tio       |           |           |            |            |             |           |             | 4.05     | (209) |
|      | Jan        | Feb        | Mar       | Apr                   | Mav       | Jun       | Jul       | Aug        | Sep        | Oct         | Nov       | Dec         | kWh/ye   | ar    |
| ac   |            |            |           | alculate              | /         |           |           |            |            |             |           |             |          |       |
|      |            | <u> </u>   | 2518.44   |                       | 440.52    | 0         | 0         | 0          | 0          | 1432.32     | 2892.36   | 4168.45     |          |       |
|      | ·          |            |           |                       |           |           |           |            |            |             |           | • • • •     |          |       |

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

Page 7 of 9

### DER WorkSheet: New dwelling design stage

| 1090.67 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 825.72                                                                                                                | 4)] } x 1<br>667.73                                                  | 346.45                                           | 116.8                     | 0                                                                             | 0                                                                                                | 0         | 0                    | 379.76                                                              | 766.87                             | 1105.21                       | 1                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|---------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------|----------------------|---------------------------------------------------------------------|------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1090.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 023.72                                                                                                                | 007.73                                                               | 340.43                                           | 110.0                     |                                                                               | 0                                                                                                |           | -                    | ar) =Sum(2                                                          |                                    |                               | 5299.21                                                                                                                                          | (211)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Space heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                       |                                                                      |                                                  | month                     |                                                                               |                                                                                                  |           |                      | -,                                                                  |                                    |                               | 3288.21                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 215)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                     | 0                                                                    | 0                                                | 0                         | 0                                                                             | 0                                                                                                | 0         | 0                    | 0                                                                   | 0                                  | 0                             | 1                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                       |                                                                      |                                                  |                           |                                                                               |                                                                                                  | Tota      | l (kWh/yea           | ar) =Sum(2                                                          | 15), <sub>5,10</sub> , 13          | -                             | 0                                                                                                                                                | (215)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Vater heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                       |                                                                      |                                                  |                           |                                                                               |                                                                                                  |           |                      |                                                                     |                                    |                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Dutput from wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                       |                                                                      |                                                  |                           |                                                                               |                                                                                                  |           |                      |                                                                     |                                    |                               | 1                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 218.46                                                                                                                | 229.24                                                               | 205.22                                           | 200.9                     | 179.22                                                                        | 171.85                                                                                           | 188.95    | 188.74               | 212.81                                                              | 225.38                             | 241.9                         |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| fficiency of wat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                       | 119.34                                                               | 119.34                                           | 119.34                    | 119.34                                                                        | 119.34                                                                                           | 119.34    | 119.34               | 119.34                                                              | 119.34                             | 119.34                        | 119.34                                                                                                                                           | (216)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| uel for water he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                       |                                                                      |                                                  | 119.34                    | 119.34                                                                        | 119.34                                                                                           | 119.34    | 119.34               | 119.34                                                              | 119.34                             | 119.34                        |                                                                                                                                                  | (217)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 219)m = (64)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                       |                                                                      |                                                  |                           |                                                                               |                                                                                                  |           |                      |                                                                     |                                    |                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 219)m= 207.77 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 183.06                                                                                                                | 192.09                                                               | 171.96                                           | 168.34                    | 150.18                                                                        | 144                                                                                              | 158.33    | 158.15               | 178.32                                                              | 188.85                             | 202.7                         | ]                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                       |                                                                      |                                                  |                           |                                                                               |                                                                                                  | Tota      | I = Sum(2            | 19a) <sub>112</sub> =                                               |                                    |                               | 2103.75                                                                                                                                          | (219)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| pace cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                       |                                                                      | nth.                                             |                           |                                                                               |                                                                                                  |           |                      |                                                                     |                                    |                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 221)m = (107)m<br>221)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n+ (209                                                                                                               | 0                                                                    | 0                                                | 0                         | 27.8                                                                          | 48.74                                                                                            | 37.09     | 0                    | 0                                                                   | 0                                  | 0                             | 1                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                                                                                              | 0                                                                    | Ŭ                                                |                           | 27.0                                                                          | 40.74                                                                                            |           | I = Sum(2            |                                                                     |                                    | -                             | 113.63                                                                                                                                           | (221)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| nnual totals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                       |                                                                      |                                                  |                           |                                                                               |                                                                                                  |           |                      |                                                                     | -                                  |                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                       |                                                                      |                                                  |                           |                                                                               |                                                                                                  |           |                      |                                                                     |                                    |                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uel use                                                                                                               | d main                                                               | system                                           | 1                         |                                                                               |                                                                                                  |           |                      | k)                                                                  | Nh/year                            | r                             | kWh/yea                                                                                                                                          | ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| pace heating fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                       |                                                                      | system                                           | 1                         |                                                                               |                                                                                                  |           |                      | k)                                                                  | Wh/year                            | r                             | 5299.21                                                                                                                                          | ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Space heating fu<br>Vater heating fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uel used                                                                                                              | £                                                                    | system                                           | 1                         |                                                                               |                                                                                                  |           |                      | k)                                                                  | Wh/year                            | r                             | 5299.21<br>2103.75                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Space heating fu<br>Vater heating fu<br>Space cooling fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | uel usec<br>uel usec                                                                                                  | d<br>d                                                               |                                                  |                           |                                                                               |                                                                                                  |           |                      | K)                                                                  | Wh/year                            | r                             | 5299.21                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| pace heating fu<br>Vater heating fu<br>pace cooling fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uel usec<br>uel usec                                                                                                  | d<br>d                                                               |                                                  |                           | t                                                                             |                                                                                                  |           |                      | k)                                                                  | Wh/year                            | r                             | 5299.21<br>2103.75                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Space heating fu<br>Vater heating fu<br>Space cooling fu<br>Electricity for put                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uel useo<br>uel useo<br>imps, fa                                                                                      | d<br>d<br>ins and                                                    | electric                                         | keep-ho                   |                                                                               | nput fror                                                                                        | n outside |                      | k)                                                                  | Wh/year                            | 2190.01                       | 5299.21<br>2103.75                                                                                                                               | ar<br><br><br>(230a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Nutural totals<br>Space heating fu<br>Vater heating fu<br>Space cooling fu<br>Electricity for pui<br>mechanical ver<br>'otal electricity f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | uel used<br>uel used<br>imps, fa<br>ntilation                                                                         | d<br>Ins and<br>I - balan                                            | electric l                                       | keep-ho<br>ract or p      |                                                                               | nput from                                                                                        |           |                      | k)<br>(230g) =                                                      |                                    |                               | 5299.21<br>2103.75                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| pace heating fu<br>Vater heating fu<br>ipace cooling fu<br>ilectricity for pu<br>mechanical ver<br>'otal electricity f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uel used<br>uel used<br>imps, fa<br>ntilation<br>for the a                                                            | d<br>Ins and<br>I - balan                                            | electric l                                       | keep-ho<br>ract or p      |                                                                               | nput from                                                                                        |           |                      |                                                                     |                                    |                               | 5299.21<br>2103.75<br>113.63                                                                                                                     | <br><br>(230a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Space heating fu<br>Vater heating fu<br>Space cooling fu<br>Electricity for pul<br>mechanical ver<br>"otal electricity f<br>Electricity for ligh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uel used<br>uel used<br>imps, fa<br>ntilation<br>for the a<br>hting                                                   | d<br>Ins and<br>I - balan<br>above, k                                | electric l<br>iced, ext<br>kWh/yea               | keep-ho<br>ract or p<br>r | ositive i                                                                     |                                                                                                  | sum       | of (230a).           |                                                                     |                                    |                               | 5299.21<br>2103.75<br>113.63<br>2190.01                                                                                                          | (230)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Space heating fu<br>Vater heating fu<br>Space cooling fu<br>Electricity for pu<br>mechanical ver<br>'otal electricity f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | uel used<br>uel used<br>imps, fa<br>ntilation<br>for the a<br>hting                                                   | d<br>Ins and<br>I - balan<br>above, k                                | electric l<br>iced, ext<br>kWh/yea               | keep-ho<br>ract or p<br>r | ems inclu                                                                     | uding mi                                                                                         | sum       | of (230a).           | (230g) =                                                            |                                    | 2190.01                       | 5299.21<br>2103.75<br>113.63<br>2190.01<br>1153.03                                                                                               | (230a<br>(231)<br>(232)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| pace heating fu<br>Vater heating fu<br>ipace cooling fu<br>ilectricity for pul<br>mechanical ver<br>iotal electricity f<br>ilectricity for ligh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uel used<br>uel used<br>imps, fa<br>ntilation<br>for the a<br>hting                                                   | d<br>Ins and<br>I - balan<br>above, k                                | electric l<br>iced, ext<br>kWh/yea               | keep-ho<br>ract or p<br>r | ems inclu<br>En                                                               | uding mi                                                                                         | sum       | of (230a).           | (230g) =<br>Emiss                                                   | ion fac                            | 2190.01                       | 5299.21<br>2103.75<br>113.63<br>2190.01<br>2190.01<br>1153.03                                                                                    | (230a<br>(231)<br>(232)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| pace heating fu<br>Vater heating fu<br>pace cooling fu<br>ilectricity for pui<br>mechanical ver<br>iotal electricity fo<br>ilectricity for light<br>12a. CO2 emis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | uel used<br>uel used<br>imps, fa<br>ntilation<br>for the a<br>hting<br>ssions –                                       | d<br>ins and<br>i - balan<br>above, H                                | electric l<br>iced, ext<br>kWh/yea<br>ual heati  | keep-ho<br>ract or p<br>r | ems inclu<br>En<br>kW                                                         | uding mi<br>Iergy<br>/h/year                                                                     | sum       | of (230a).           | (230g) =<br>Emiss<br>kg CO2                                         | ion fac                            | 2190.01                       | 5299.21<br>2103.75<br>113.63<br>2190.01<br>1153.03<br>Emission<br>kg CO2/yt                                                                      | (230a<br>(231)<br>(232)<br>(232)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Space heating fu<br>Vater heating fu<br>Space cooling fu<br>Electricity for pui<br>mechanical ver<br>"otal electricity for<br>Electricity for ligh<br>12a. CO2 emis<br>Space heating (r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | uel used<br>uel used<br>imps, fa<br>ntilation<br>for the a<br>hting<br>ssions –                                       | d<br>ins and<br>i - balan<br>above, F<br>Individ                     | electric l<br>iced, ext<br>kWh/yea<br>ual heati  | keep-ho<br>ract or p<br>r | ems inclu<br>En<br>kW<br>(21                                                  | uding mi<br>lergy<br>/h/year<br>1) x                                                             | sum       | of (230a).           | (230g) =<br>Emiss<br>kg CO2                                         | ion fac<br>2/kWh                   | 2190.01<br>tor<br>=           | 5299.21<br>2103.75<br>113.63<br>2190.01<br>1153.03<br>Emission<br>kg CO2/yt<br>2750.29                                                           | (230a<br>(231)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Space heating fu<br>Vater heating fu<br>Space cooling fu<br>Electricity for pui<br>mechanical ver<br>"otal electricity for<br>Electricity for ligh<br>12a. CO2 emis<br>Space heating (f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | uel used<br>uel used<br>imps, fa<br>ntilation<br>for the a<br>hting<br>ssions –                                       | d<br>ins and<br>i - balan<br>above, F<br>Individ                     | electric l<br>iced, ext<br>kWh/yea<br>ual heati  | keep-ho<br>ract or p<br>r | ems inclu<br>Ems<br>kW<br>(21)<br>(21)                                        | uding mi<br>lergy<br>/h/year<br>1) x<br>5) x                                                     | sum       | of (230a).           | (230g) =<br>Emiss<br>kg CO2<br>0.5                                  | ion fac<br>2/kWh                   | 2190.01<br>tor<br>=<br>=      | 5290.21<br>2103.75<br>113.63<br>2190.01<br>1153.03<br>Emission<br>kg CO2/yy<br>2750.29<br>0                                                      | (230)<br>(231)<br>(232)<br>(232)<br>(232)<br>(232)<br>(263)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| pace heating fu<br>Vater heating fu<br>ipace cooling fu<br>lectricity for pui<br>mechanical ver<br>otal electricity for light<br>12a CO2 emis<br>ipace heating (r<br>ipace heating (r<br>Vater heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uel used<br>uel used<br>imps, fa<br>ntilation<br>for the a<br>hting<br>ssions –                                       | d<br>ins and<br>a - balan<br>above, k<br>Individ<br>(stem 1)<br>ary) | electric l<br>iced, ext<br>kWh/yea<br>ual heati  | keep-ho<br>ract or p<br>r | ems incl<br>Em<br>kW<br>(21<br>(21)<br>(21)                                   | uding mi<br>ergy<br>/h/year<br>1) x<br>5) x<br>9) x                                              | sum       | of (230a).           | (230g) =<br>Emiss<br>kg CO2                                         | ion fac<br>2/kWh                   | 2190.01<br>tor<br>=           | 5290.21<br>2403.75<br>113.63<br>2190.01<br>1153.03<br>Emission<br>kg CO2/yr<br>2750.29<br>0<br>1091.85                                           | (230)<br>(231)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(233)<br>(264)<br>(264)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| pace heating fu<br>Vater heating fu<br>pace cooling fu<br>lectricity for pu<br>mechanical ver<br>otal electricity for ligit<br>lectricity for ligit<br>pace heating (<br>pace heating (<br>vater heating<br>pace and wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | uel used<br>uel used<br>imps, fa<br>ntilation<br>for the a<br>hting<br>ssions –                                       | d<br>ins and<br>a - balan<br>above, k<br>Individ<br>(stem 1)<br>ary) | electric l<br>iced, ext<br>kWh/yea<br>ual heati  | keep-ho<br>ract or p<br>r | ems inclu<br>En<br>kW<br>(21)<br>(21)<br>(21)<br>(21)<br>(26)                 | uding mi<br>lergy<br>/h/year<br>1) x<br>5) x<br>9) x<br>1) + (262)                               | sum       | of (230a).           | (230g) =<br>Emiss<br>kg CO2<br>0.5 <sup>+</sup><br>0.5 <sup>+</sup> | ion fac<br>2/kWh<br>19             | 2190.01<br>tor<br>=<br>=      | 5299.21<br>2100.75<br>113.63<br>2190.01<br>1153.03<br>Emission<br>kg CO2/yl<br>2750.29<br>0<br>1091.85<br>3842.14                                | (230)<br>(231)<br>(232)<br>(232)<br>(232)<br>(232)<br>(261)<br>(263)<br>(264)<br>(264)<br>(265)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| pace heating fr.<br>Vater heating fu<br>lectricity for pur<br>mechanical veri<br>otal electricity for ligit<br>lectricity for ligit<br>lactricity for ligit<br>lactricity for ligit<br>lactricity for ligit<br>pace heating (r.<br>Vater heating<br>pace and wate<br>pace cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | uel used<br>under used<br>imps, fa<br>ntilation<br>for the a<br>hting<br>ssions<br>(main sy<br>second<br>er heatir    | d<br>ins and<br>i - balan<br>above, F<br>Individ<br>ystem 1<br>ary)  | electric l<br>icced, ext<br>kWh/yea<br>ual heati | keep-ho<br>ract or p<br>r | ems incluent<br>Em<br>kW<br>(21)<br>(21)<br>(21)<br>(26)<br>(22)              | uding mi<br>ergy<br>/h/year<br>1) x<br>5) x<br>9) x<br>1) + (262)<br>1) x                        | sum       | of (230a).           | (230g) =<br>Emiss<br>kg CO:<br>0.5<br>0.5<br>0.5                    | ion fac<br>2/kWh<br>19             | 2190.01<br>tor<br>=<br>=<br>= | 5299.21<br>2100.75<br>113.63<br>2190.01<br>1153.03<br>Emission<br>kg CO2/yl<br>2750.29<br>0<br>1091.85<br>3842.14<br>59.98                       | (230)<br>(231)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(230)<br>(230)<br>(230)<br>(230)<br>(231)<br>(231)<br>(231)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(23)<br>(23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| pace heating fr.<br>/ater heating fu<br>lactricity for pur<br>mechanical veri<br>total electricity of<br>lactricity for lactricity of<br>lactricity for light<br>12a CO2 emission<br>pace heating (:<br>/ater heating (:<br>/at | uel used<br>imps, fa<br>ntilation<br>for the a<br>hting<br>ssions –<br>risecond<br>er heatir<br>imps, fa              | d<br>ins and<br>i - balan<br>above, F<br>Individ<br>ystem 1<br>ary)  | electric l<br>icced, ext<br>kWh/yea<br>ual heati | keep-ho<br>ract or p<br>r | ems inclu<br>Em<br>kW<br>(21)<br>(21)<br>(21)<br>(22)<br>(22)<br>(22)<br>(23) | <b>uding mi</b><br><b>lergy</b><br>/h/year<br>1) x<br>5) x<br>9) x<br>1) + (262)<br>1) x<br>1) x | sum       | of (230a).           | (230g) =<br>Emiss<br>kg CO2<br>0.5 <sup>+</sup><br>0.5 <sup>+</sup> | ion fac<br>2/kWh<br>19             | 2190.01<br>tor<br>=<br>=<br>= | 5299.21<br>2100.75<br>113.63<br>2190.01<br>1153.03<br>Emission<br>kg CO2/yl<br>2750.29<br>0<br>1091.85<br>3842.14                                | (230)<br>(231)<br>(231)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(241)<br>(263)<br>(264)<br>(265)<br>(266)<br>(267)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| pace heating fr.<br>/ater heating fu<br>pace cooling fr.<br>lectricity for pur<br>mechanical ver<br>otal electricity of<br>lectricity for light<br>12a. CO2 emis<br>pace heating (r.<br>pace heating (r.<br>pace heating (r.<br>pace heating pace and wale<br>pace cooling<br>lectricity for light                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | uel used<br>uel used<br>imps, fa<br>ntilation<br>for the a<br>ssions –<br>'main sy<br>second<br>er heatir<br>imps, fa | d<br>ins and<br>i - balan<br>above, F<br>Individ<br>ystem 1<br>ary)  | electric l<br>icced, ext<br>kWh/yea<br>ual heati | keep-ho<br>ract or p<br>r | ems inclu<br>Em<br>kW<br>(21)<br>(21)<br>(21)<br>(22)<br>(22)<br>(22)<br>(23) | uding mi<br>ergy<br>/h/year<br>1) x<br>5) x<br>9) x<br>1) + (262)<br>1) x                        | sum       | of (230a).<br>264) = | (230g) =<br>Emisss<br>kg CO2<br>0.55<br>0.55<br>0.55                | ion fac<br>2/kWh<br>19<br>19<br>19 | 2190.01<br>tor<br>=<br>=<br>= | 5299.21<br>2100.75<br>113.63<br>2190.01<br>1153.03<br>Emission<br>kg CO2/yl<br>2750.29<br>0<br>1091.85<br>3842.14<br>59.98                       | (230)<br>(231)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(233)<br>(241)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(243)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245)<br>(245) |
| pace heating fu<br>Vater heating fu<br>ipace cooling fu<br>dectricity for pui<br>mechanical ver<br>otal electricity for<br>light ectricity for ligh<br>12a. CO2 emis<br>ipace heating (f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | uel used<br>uel used<br>imps, fa<br>ntilation<br>for the a<br>ssions –<br>'main sy<br>second<br>er heatir<br>imps, fa | d<br>ins and<br>i - balan<br>above, F<br>Individ<br>ystem 1<br>ary)  | electric l<br>icced, ext<br>kWh/yea<br>ual heati | keep-ho<br>ract or p<br>r | ems inclu<br>Em<br>kW<br>(21)<br>(21)<br>(21)<br>(22)<br>(22)<br>(22)<br>(23) | <b>uding mi</b><br><b>lergy</b><br>/h/year<br>1) x<br>5) x<br>9) x<br>1) + (262)<br>1) x<br>1) x | sum       | of (230a).<br>264) = | Emiss<br>kg CO2<br>0.5<br>0.5<br>0.5                                | ion fac<br>2/kWh<br>19<br>19<br>19 | 2190.01<br>tor<br>=<br>=<br>= | 5299.21<br>2190.01<br>2190.01<br>113.63<br>2190.01<br>1153.03<br>Emission<br>kg CO2/yt<br>2750.29<br>0<br>1091.85<br>3842.14<br>58.38<br>1138.62 | (230)<br>(231)<br>(231)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(232)<br>(241)<br>(263)<br>(264)<br>(265)<br>(266)<br>(267)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Page 8 of 9

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

# DRAFT

#### DER WorkSheet: New dwelling design stage

El rating (section 14)

### TER WorkSheet: New dwelling design stage

| Assessor Name:<br>Software Name                         | Stroma FSAP 2012                   | Stroma N<br>Software                    |                          | Versio      | n: 1.0.4.25            |               |
|---------------------------------------------------------|------------------------------------|-----------------------------------------|--------------------------|-------------|------------------------|---------------|
| Continuite Maine.                                       |                                    | Property Address: 5B                    |                          |             |                        |               |
| Address :                                               |                                    | , , , , , , , , , , , , , , , , , , , , |                          |             |                        |               |
| 1. Overall dwelling dime                                | ensions:                           |                                         |                          |             |                        |               |
|                                                         |                                    | Area(m <sup>2</sup> )                   | Av. Height(n             | 1)          | Volume(m <sup>3</sup>  | )             |
| Basement                                                |                                    | 177.5 (1a)                              | x 4                      | (2a) =      | 710                    | (3a)          |
| Ground floor                                            |                                    | 155 (1b)                                | x 3.1                    | (2b) =      | 480.5                  |               |
| First floor                                             |                                    | 131.9 (1c)                              | x 2.7                    | (2c) =      | 356.13                 |               |
| Second floor                                            |                                    | 131.9 (1d)                              | x 2.6                    | (2d) =      | 342.94                 | <br>(3d)      |
| Total floor area TFA = (1                               | a)+(1b)+(1c)+(1d)+(1e)+.           | (1n) 596.3 (4)                          |                          |             |                        | _             |
| Dwelling volume                                         |                                    | (3a)                                    | )+(3b)+(3c)+(3d)+(3e)+   | (3n) =      | 1889.57                | (5)           |
| 2. Ventilation rate:                                    |                                    |                                         |                          |             |                        | -             |
|                                                         | main seco<br>heating hea           | ndary other                             | total                    |             | m <sup>3</sup> per hou | r             |
| Number of chimneys                                      | 0 +                                |                                         | = 0                      | x 40 =      | 0                      | (6a           |
| Number of open flues                                    | 0 +                                | • • •                                   | - 0                      | x 20 =      | 0                      | (6b           |
| Number of intermittent fa                               | ins                                |                                         | 4                        | x 10 =      | 40                     |               |
| Number of passive vents                                 | 5                                  |                                         | 0                        | x 10 =      | 0                      | <b>_</b> [76] |
| Number of flueless gas f                                | ires                               |                                         | 0                        | x 40 =      | 0                      | -<br> (70)    |
|                                                         |                                    |                                         |                          | Air ch      | anges per ho           | ur            |
| Infiltration due to chimne                              | eys, flues and fans = (6a)+(       | 6b)+(7a)+(7b)+(7c) =                    | 40                       | + (5) =     | 0.02                   | (8)           |
|                                                         | been carried out or is intended, p | roceed to (17), otherwise contin        | nue from (9) to (16)     |             |                        | _             |
| Number of storeys in t                                  | he dwelling (ns)                   |                                         |                          |             | 0                      | (9)           |
| Additional infiltration                                 |                                    |                                         | -                        | 9)-1]x0.1 = | 0                      | (10)          |
|                                                         | 0.25 for steel or timber fram      |                                         |                          |             | 0                      | (11)          |
| if both types of wall are p<br>deducting areas of openi | resent, use the value correspon    | ding to the greater wall area (aft      | er                       |             |                        |               |
|                                                         | floor, enter 0.2 (unsealed)        | or 0.1 (sealed), else ente              | er O                     | 1           | 0                      | 7(12)         |
| If no draught lobby, er                                 |                                    |                                         |                          | 1           | 0                      |               |
| • •                                                     | s and doors draught strip          | bed                                     |                          | ł           | 0                      |               |
| Window infiltration                                     |                                    | 0.25 - [0.2 x (14                       | 4) + 100] =              | ł           | 0                      |               |
| Infiltration rate                                       |                                    | (8) + (10) + (11                        | ) + (12) + (13) + (15) = | -           | 0                      | 1(16          |
|                                                         | q50, expressed in cubic r          |                                         |                          |             | 5                      |               |
|                                                         | lity value, then (18) = [(17) +    |                                         | e mere or envelop        | ic aica     | 0.27                   |               |
|                                                         | es if a pressurisation test has be |                                         | hiliby is bains used     | 1           | 0.27                   |               |
|                                                         |                                    | an oono or a vegree air perifiea        | owny is being baed       | 1           | 2                      | 7(19          |
| Number of sides shelter                                 |                                    | (20) = 1 - [0.07                        | 5 x (19)] =              | -           | 2                      | (19)          |
| Number of sides shelter<br>Shelter factor               |                                    | 1                                       |                          |             | 0.00                   | =             |
| Shelter factor                                          | ting shelter factor                | $(21) = (18) \times (2)$                | 0) =                     |             | 0.22                   |               |
|                                                         | •                                  | (21) = (18) x (2                        | 0) =                     | l           | 0.23                   | (21)          |

Monthly a Wind Fact: (22a)m<sup>-1</sup>: Adjusted ir 0: Calculated f if mecha if exhaust if bala (24b)m<sup>-0</sup> 0: If who if (24c)m<sup>-0</sup> 0: If (24c)m<sup>-0</sup> 0:

Doors Windows 1 Windows 1 Rooflights Rooflights Floor Walls Type Walls Type Walls Type Roof Type Roof Type Roof Type Total area \* for windows \*\* include the Fabric hea

Page 9 of 9

88 (274)

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

Page 1 of 8

## 5B PRINCE ARTHUR ROAD | HAMPSTEAD

### TER WorkSheet: New dwelling design stage

| verage     | wind s       | speed fr  | om Tabl       | e 7        |               |            |                         |                  |              |             |                                  |        |               |
|------------|--------------|-----------|---------------|------------|---------------|------------|-------------------------|------------------|--------------|-------------|----------------------------------|--------|---------------|
| 5.1        | 5            | 4.9       | 4.4           | 4.3        | 3.8           | 3.8        | 3.7                     | 4                | 4.3          | 4.5         | 4.7                              |        |               |
|            |              |           |               |            |               |            |                         |                  |              |             |                                  |        |               |
| tor (22a   | a)m = (      | (22)m ÷   | 4             |            |               |            |                         |                  |              |             |                                  |        |               |
| 1.27       | 1.25         | 1.23      | 1.1           | 1.08       | 0.95          | 0.95       | 0.92                    | 1                | 1.08         | 1.12        | 1.18                             |        |               |
| infiltrati | on rate      | e (allowi | ng for sh     | elter an   | d wind s      | peed) =    | = (21a) x               | (22a)m           |              |             |                                  |        |               |
| 0.29       | 0.29         | 0.28      | 0.25          | 0.25       | 0.22          | 0.22       | 0.21                    | 0.23             | 0.25         | 0.26        | 0.27                             |        |               |
|            |              |           | rate for t    | he appli   | cable ca      | se         |                         |                  |              |             |                                  |        |               |
| anical v   |              |           |               |            |               |            |                         |                  |              |             | ļ                                | 0      | (23a)         |
|            |              |           |               |            |               |            | (N5)) , othe            |                  | ) = (23a)    |             | ļ                                | 0      | (23b)         |
|            |              | 1         | -             | 5          |               | `          | m Table 4h              | ,                |              |             | ļ                                | 0      | (23c)         |
|            |              |           |               | _          | _             |            |                         | <u> </u>         | · · ·        |             | 1 – (23c)                        | ÷ 100] |               |
| 0          | 0            | 0         | 0             | 0          | 0             | 0          | 0                       | 0                | 0            | 0           | 0                                |        | (24a)         |
| lanced     | mecha        | nical ve  | entilation    | without    | heat rec      | covery (   | MV) (24t                | )m = (22         | 2b)m + (     | 23b)        |                                  |        |               |
| 0          | 0            | 0         | 0             | 0          | 0             | 0          | 0                       | 0                | 0            | 0           | 0                                |        | (24b)         |
| ole hou    | se ext       | ract ven  | tilation c    | or positiv | e input v     | ventilati  | on from o               | outside          |              |             |                                  |        |               |
| 22b)m <    | : 0.5 ×      | (23b), t  | hen (24d      | c) = (23b  | ); otherv     | vise (24   | 4c) = (22b              | o) m + 0.        | .5 × (23t    | )           |                                  |        |               |
| 0          | 0            | 0         | 0             | 0          | 0             | 0          | 0                       | 0                | 0            | 0           | 0                                |        | (24c)         |
|            |              |           |               |            |               |            | ion from  <br>0.5 + [(2 |                  | 0.51         |             |                                  |        |               |
| · -        | 0.54         | 0.54      | 0.53          | 0.53       | 0.52          | 0.52       | 0.52                    | 0.53             | 0.53         | 0.53        | 0.54                             |        | (24d)         |
| e air ch   | ange         | rate - er | nter (24a     | ) or (24b  | ) or (24      | c) or (24  | 4d) in bo               | x (25)           |              |             |                                  |        |               |
|            | 0.54         | 0.54      | 0.53          | 0.53       | 0.52          | 0.52       | 0.52                    | 0.53             | 0.53         | 0.53        | 0.54                             |        | (25)          |
|            |              | _         |               |            |               |            |                         |                  |              |             |                                  |        |               |
|            |              |           | paramete      |            | <u> </u>      |            |                         |                  |              |             |                                  |        |               |
| NT         | Gros<br>area |           | Openin        |            | Net Ar<br>A,r |            | U-val<br>W/m2           |                  | A X U<br>(W/ | ĸ           | k-value<br>k.l/m <sup>2</sup> ·k |        | A X k<br>kJ/K |
|            | arca         | ()        |               |            | 5.7           | <br>x      |                         |                  | 5.7          |             | Ko/III I                         |        | (26)          |
| Type 1     |              |           |               |            | <u> </u>      |            | 1/[1/( 1.4 )+           | 0.041            |              | =           |                                  |        | (27)          |
|            |              |           |               |            | 20.3          |            |                         |                  | 26.91        | 4           |                                  |        |               |
| Type 2     |              |           |               |            | 53.4          |            | 1/[1/( 1.4 )+           |                  | 70.8         | _           |                                  |        | (27)          |
| s Type '   | 1            |           |               |            | 0.8           |            | 1/[1/(1.7) +            |                  | 1.36         |             |                                  |        | (27b)         |
| s Type 2   | 2            |           |               |            | 1.3           | x          | 1/[1/(1.7) +            | 0.04] =          | 2.21         |             |                                  |        | (27b)         |
|            |              |           |               |            | 177.5         | 5 <b>x</b> | 0.13                    | =                | 23.075       |             |                                  |        | (28)          |
| be1        | 295.4        | 4         | 79.4          |            | 216           | x          | 0.18                    | =                | 38.88        |             |                                  |        | (29)          |
| be2        | 129.2        | 2         | 0             |            | 129.2         | 2 X        | 0.18                    | =                | 23.26        | i F         |                                  | ¬ ר    | (29)          |
| be3        | 226.4        | 4         | 0             | =          | 226.4         | ×          | 0.18                    |                  | 40.75        | i F         |                                  | 7 F    | (29)          |
| be1 [      | 136.         | 1         | 2.1           | =          | 134           | <b>-</b> × | 0.13                    | = - i            | 17.42        | f i         |                                  | i –    | (30)          |
| be2 [      | 18.9         |           |               | =          | 18.9          | $\dashv$   | 0.13                    | ╡ <sub>╸</sub> ╎ | 2.46         | = 1         |                                  | = =    | (30)          |
| a of eler  |              |           | <u> </u>      |            | 983.5         | -          |                         |                  | 2.40         |             |                                  |        | (31)          |
|            |              |           | ffective with | ndow U-v=  |               |            | a formule 1             | /1(1/L-yak       | ie)+0.041 =  | is aiven in | paragraph                        | 32     | (31)          |
|            |              |           | iternal wall  |            |               | 2.30 0304  | J                       |                  | , . 0.0496   | - 3         | , Li ogi apri                    |        |               |
| at loss,   | W/K =        | S (A x    | U)            |            |               |            | (26)(30                 | ) + (32) =       |              |             | [                                | 252.59 | (33)          |
|            |              |           |               |            |               |            |                         |                  |              |             |                                  |        |               |
|            |              |           |               |            |               |            |                         |                  |              |             |                                  |        |               |

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

Page 2 of 8



#### TER WorkSheet: New dwelling design stage



#### Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51) If community heating see section 4.3 Volume factor from Table 2a Temperature factor from Table 2b 0 (53) Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) (54) (55) 0 Enter (50) or (54) in (55) Water storage loss calculated for each month ((56)m = (55) x (41) (56)m= 23.33 21.07 23.33 22.58 23.33 22.58 23.33 23.33 22.58 23.33 22.58 23.33 (56) (57)m= 23.33 21.07 23.33 22.58 23.33 22.58 23.33 23.33 22.58 23.33 22.58 23.33 (58) Primary circuit loss (annual) from Table 3 Primary circuit loss calculated for each month (59)m = (58) + 365 × (41)m dified by factor from Table H5 if there is solar wate (59)m= 23.26 21.01 23.26 22.51 23.26 22.51 23.26 23.26 23.26 22.51 23.26 22.51 23.26 (59) Combi loss calculated for each month (61)m = (60) + 365 × (41)m (61)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td Total heat required for water heating calculated for each month (62)m = 0.85 × (45)m + (46)m + (57)m + (59)m + (61)m (62)m= 238.65 210.06 219.92 196.2 191.59 170.21 162.54 179.64 179.73 203.5 216.37 232.59 Optimization Direct (C) <thDirect (C)</th> Direct (C) Direct (63) rom water he 238.65 210.06 219.92 196.2 191.59 170.21 162.54 179.64 179.73 203.5 216.37 232.59 2400. onth 0.25 ' [0.85 × (45)m + (61)m] + 0.8 x [(46)m + (57)m + (59)m ] (65)m= 101.13 89.52 94.91 86.32 85.49 77.68 75.83 81.51 80.84 89.45 93.02 99.12 (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66) m= 175.86 175.86 175.86 175.86 175.86 175.86 175.86 175.86 175.86 175.86 175.86 175.86 175.86 175.86 ng gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 Light = 65.29 57.99 47.16 35.7 26.69 22.53 24.35 31.65 42.48 53.93 62.95 67.1 (67) Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Taure 5 (68)m= 668.12 676.06 658.56 621.31 574.29 530.1 500.58 483.64 511.13 548.38 595.4 639.59 (68) Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)me 40.59 40.59 40.59 40.59 40.59 40.59 40.59 40.59 (69) Pumps and fans gains (Table 5a = 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 (70) Losses e.g. evaporation (negative values) (Table 5) (71)m= 140.68 -140.68 -140.68 -140.68 -140.68 -140.68 -140.68 -140.68 -140.68 -140.68 -140.68 -140.68 -140.68 (71) Water heating gains (Table 5) (72)m= 133.93 133.21 127.56 119.89 114.9 107.88 101.92 109.56 112.28 120.22 129.2 133.21 (72)

Page 4 of 8

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

Page 3 of 8

TER WorkSheet: New dwelling design stage

#### TER WorkSheet: New dwelling design stage

| Total interna<br>(73)m= 949.0 | 9 946.02        | 912.05     | 855.66      | 794.64   | 73    | 9.27 705.6       | 7      | 13.6    | 744.64        | 801.2    | 9 866.3        | 918.68 | 1            | (73 |
|-------------------------------|-----------------|------------|-------------|----------|-------|------------------|--------|---------|---------------|----------|----------------|--------|--------------|-----|
| 6. Solar gai                  | ns:             |            |             |          |       | _                |        |         |               | -        |                |        | 1            |     |
| Solar gains are               | e calculated u  | using sola | r flux from | Table 6a | and a | associated eq    | uation | s to co | onvert to th  | ie appli | cable orientat | ion.   |              |     |
| Orientation:                  | Access Fable 6d | actor      | Area<br>m²  |          |       | Flux<br>Table 6a |        | т       | g_<br>able 6b |          | FF<br>Table 6c |        | Gains<br>(W) |     |
| Southeast 0.9x                | 0.77            | x          | 53          | .4       | × [   | 36.79            | x      |         | 0.63          | x        | 0.7            | =      | 600.47       | (77 |
| Southeast 0.9x                | 0.77            | ×          | 53          | .4       | ×     | 62.67            | ×      |         | 0.63          | x        | 0.7            | =      | 1022.81      | (77 |
| Southeast 0.9x                | 0.77            | x          | 53          | .4       | × [   | 85.75            | x      |         | 0.63          | ×        | 0.7            | =      | 1399.46      | (77 |
| Southeast 0.9x                | 0.77            | x          | 53          | .4       | × [   | 106.25           | x      |         | 0.63          | x        | 0.7            | =      | 1734         | (77 |
| Southeast 0.9x                |                 | x          | 53          | .4       | × [   | 119.01           | x      |         | 0.63          | x        | 0.7            | =      | 1942.22      | (77 |
| Southeast 0.9x                | 0.77            | x          | 53          | .4       | × [   | 118.15           | x      |         | 0.63          | x        | 0.7            | =      | 1928.18      | (77 |
| Southeast 0.9x                | 0.77            | x          | 53          | .4       | × [   | 113.91           | x      |         | 0.63          | ×        | 0.7            | =      | 1858.97      | (77 |
| Southeast 0.9x                | 0.77            | ×          | 53          | .4       | × [   | 104.39           | ×      |         | 0.63          | ×        | 0.7            | =      | 1703.62      | (77 |
| Southeast 0.9x                | L 0.11          | ×          | 53          | .4       | × [   | 92.85            | ×      |         | 0.63          | ×        | 0.7            | =      | 1515.32      | (77 |
| Southeast 0.9x                |                 | x          | 53          | .4       | ×     | 69.27            | ×      |         | 0.63          | ×        | 0.7            | =      | 1130.43      | (77 |
| Southeast 0.9x                |                 | ×          | 53          | .4       | ×     | 44.07            | ×      |         | 0.63          | ×        | 0.7            | -      | 719.22       | (77 |
| Southeast 0.9x                | 0.11            | ×          | -53         | .4       | ×     | 31.49            | ×      |         | 0.63          | ×        | 0.7            | -      | 513.87       | (77 |
| Southwest <mark>0.9x</mark>   | _               | ×          | 20          | .3       | ×     | 36.79            |        |         | 0.63          | ×        | 0.7            | =      | 228.27       | (79 |
| Southwest <mark>0.9x</mark>   |                 | ×          | 20          | .3       | ×     | 62.67            |        |         | 0.63          | ×        | 0.7            | =      | 388.82       | (79 |
| Southwest <mark>0.9x</mark>   | 0.77            | ×          | 20          | .3       | ×     | 85.75            |        |         | 0.63          | ×        | 0.7            | -      | 532          | (79 |
| Southwest <mark>0.9x</mark>   | 0.11            | ×          | 20          | .3       | ×     | 106.25           |        |         | 0.63          | ×        | 0.7            | =      | 659.18       | (79 |
| Southwest0.9x                 |                 | ×          | 20          | .3       | ×     | 119.01           |        |         | 0.63          | ×        | 0.7            | =      | 738.34       | (79 |
| Southwesto.9x                 | 0.11            | ×          | 20          | .3       | ×     | 118.15           |        |         | 0.63          | ×        | 0.7            | =      | 733          | (79 |
| Southwest <sub>0.9x</sub>     |                 | x          | 20          | .3       | ×     | 113.91           |        |         | 0.63          | ×        | 0.7            | =      | 706.69       | (79 |
| Southwesto.9x                 |                 | x          | 20          | .3       | ×     | 104.39           |        |         | 0.63          | ×        | 0.7            | =      | 647.63       | (79 |
| Southwesto.9x                 |                 | x          | 20          | .3       | ×     | 92.85            |        |         | 0.63          | ×        | 0.7            | =      | 576.05       | (79 |
| Southwesto.9x                 |                 | x          | 20          | .3       | ×     | 69.27            |        |         | 0.63          | ×        | 0.7            | =      | 429.73       | (79 |
| Southwest <mark>o.9x</mark>   |                 | x          | 20          | .3       | ×     | 44.07            |        |         | 0.63          | ×        | 0.7            | =      | 273.41       | (79 |
| Southwesto.9x                 |                 | ×          | 20          | .3       | × [   | 31.49            |        |         | 0.63          | ×        | 0.7            | =      | 195.35       | (79 |
| Rooflights 0.9x               | 1               | x          | 0.          | 8        | ×     | 26               | ×      |         | 0.63          | ×        | 0.7            | =      | 8.26         | (82 |
| Rooflights 0.9x               | <u> </u>        | ×          | 1.          | 3        | × [   | 37.03            | _ ×    |         | 0.63          | ×        | 0.7            | =      | 19.11        | (82 |
| Rooflights 0.9x               | <u> </u>        | ×          | 0.          | 8        | × [   | 54               | _ ×    |         | 0.63          | ×        | 0.7            | =      | 17.15        | (82 |
| Rooflights 0.9x               |                 | ×          | 1.          | 3        | × [   | 70.28            | _ ×    |         | 0.63          | ×        | 0.7            | =      | 36.26        | (82 |
| Rooflights 0.9x               | 1               | ×          | 0.          | 8        | × [   | 96               | ×      |         | 0.63          | ×        | 0.7            | =      | 30.48        | (82 |
| Rooflights 0.9x               | <u> </u>        | ×          | 1.          | 3        | × [   | 111.87           | ×      |         | 0.63          | ×        | 0.7            | =      | 57.72        | (82 |
| Rooflights 0.9x               | 1               | ×          | 0.          | 8        | × [   | 150              | ×      |         | 0.63          | ×        | 0.7            | =      | 47.63        | (82 |
| Rooflights 0.9x               | 1               | x          | 1.          | 3        | × [   | 159.33           | x      |         | 0.63          | x        | 0.7            | =      | 82.21        | (82 |
| Rooflights 0.9x               | <u> </u>        | x          | 0.          | 8        | ×[    | 192              | ×      |         | 0.63          | x        | 0.7            | =      | 60.96        | (82 |
| Rooflights 0.9x               | 1               | x          | 1.          | 3        | хĒ    | 193.3            | ×      |         | 0.63          | ×        | 0.7            | =      | 99.74        | (82 |

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

Solar ga (83)m= 4 Total ga (84)m= 1 7. Mean Tempe Utilisati (86)m= Mean in (87)m= Tempera (88)m= Utilisatic Mean in (90)m= 1 Mean int (92)m= 1 Apply ac (93)m= 1 8. Spac Set Ti to the utilis

Page 5 of 8

32 | Sustainability and Energy Statement

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

#### TER WorkSheet: New dwelling design stage

| Rooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                 | ×L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                                                                                           | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | x                                                                                                | 0.7                                                                                             | =                                                                                 | 63.5             | (82)                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------|----------------------------------------------|
| Rooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                 | × [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 197.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>x</b>                                                                                                                    | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                                                                                                | 0.7                                                                                             | =                                                                                 | 101.82           | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                 | × [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>x</b>                                                                                                                    | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                                                                                                | 0.7                                                                                             | =                                                                                 | 60.01            | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                 | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 188.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>x</b>                                                                                                                    | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                                                                                                | 0.7                                                                                             | =                                                                                 | 97.04            | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                 | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>x</b>                                                                                                                    | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                                                                                                | 0.7                                                                                             | =                                                                                 | 49.85            | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                 | ×Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 162.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                           | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                                                                                                | 0.7                                                                                             | =                                                                                 | 83.9             | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                 | ×Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                                                                                           | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                                                                                                | 0.7                                                                                             | =                                                                                 | 36.51            | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                 | ×Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 128.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                           | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                                                                                                | 0.7                                                                                             | =                                                                                 | 66.39            | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                 | ×Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x                                                                                                                           | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                                                                                                | 0.7                                                                                             | =                                                                                 | 20.96            | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                 | ×Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 82.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x                                                                                                                           | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                                                                                                | 0.7                                                                                             | =                                                                                 | 42.44            | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                 | ×Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x                                                                                                                           | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                                                                                                | 0.7                                                                                             | =                                                                                 | 10.48            | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                 | ×Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x                                                                                                                           | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                                                                                                | 0.7                                                                                             | =                                                                                 | 23.61            | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                                                                                                                 | ×Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x                                                                                                                           | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                                                                                                | 0.7                                                                                             |                                                                                   | 6.67             | (82)                                         |
| Rooflights 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                                                                                                                 | ×Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x                                                                                                                           | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                                                                                                | 0.7                                                                                             | -                                                                                 | 15.86            | (82)                                         |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                  |                                                                                                 |                                                                                   |                  |                                              |
| Solar gains in w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | atts. calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | for each m                                                                                                                                                                                                                                                                                                                                                                                                                                              | nonth                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (83)m                                                                                                                       | = Sum(74)m .                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (82)m                                                                                            |                                                                                                 |                                                                                   |                  |                                              |
| (83)m= 856.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1465.05 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2523.01 28                                                                                                                                                                                                                                                                                                                                                                                                                                              | 341.26                                                                                                                                            | 2826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.5 2722.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2485                                                                                                                        | .01 2194.27                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1623.                                                                                            | 55 1026.71                                                                                      | 731.75                                                                            | 1                | (83)                                         |
| Total gains - int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ternal and so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | olar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (84)m = (7                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73)m +                                                                                                                                            | - (83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )m , watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                |                                                                                                 |                                                                                   | 1                |                                              |
| (84)m= 1805.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2411.07 2931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3378.67 36                                                                                                                                                                                                                                                                                                                                                                                                                                              | 635.9                                                                                                                                             | 3565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .78 3428.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3198                                                                                                                        | .61 2938.91                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2424.                                                                                            | 35 1893.02                                                                                      | 1650.43                                                                           | 1                | (84)                                         |
| 7 Magaintan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | haating                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                  |                                                                                                 |                                                                                   | ,                |                                              |
| 7. Mean intern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                  |                                                                                                 |                                                                                   | _                |                                              |
| Temperature d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ole 9,                                                                                                                      | 1h1 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |                                                                                                 |                                                                                   | 21               | (85)                                         |
| Utilisation facto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | for li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ving area,                                                                                                                                                                                                                                                                                                                                                                                                                                              | h1,m                                                                                                                                              | (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Table 9a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                  |                                                                                                 |                                                                                   |                  |                                              |
| Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | May                                                                                                                                               | Ju                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n Jul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                  |                                                                                                 |                                                                                   |                  |                                              |
| Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Feb Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                     | May                                                                                                                                               | JU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | in Jui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A                                                                                                                           | ug Sep                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Oc                                                                                               | Nov                                                                                             | Dec                                                                               |                  |                                              |
| (86)m= 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Feb Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.97                                                                                                                                              | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Al<br>0.8                                                                                                                   | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0c                                                                                               | 1 Nov                                                                                           | Dec<br>1                                                                          |                  | (86)                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.99 (                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.97                                                                                                                                              | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8                                                                                                                         | 3 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                |                                                                                                 |                                                                                   |                  | (86)                                         |
| (86)m= 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.99 0                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.97                                                                                                                                              | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 0.74<br>steps 3 to 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8                                                                                                                         | 3 0.96<br>able 9c)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                | 1                                                                                               |                                                                                   | ]<br>1           | (86)<br>(87)                                 |
| (86)m= 1<br>Mean internal<br>(87)m= 19.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1<br>temperature<br>19.74 19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | in 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.99 0<br>iving area<br>20.31 2                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.97<br>T1 (fo<br>20.62                                                                                                                           | 0.8<br>llow<br>20.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 0.74<br>steps 3 to 7<br>36 20.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.8<br>7 in T<br>20.9                                                                                                       | 3 0.96<br>able 9c)<br>95 20.75                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                | 1                                                                                               | 1                                                                                 | ]                |                                              |
| (86)m= 1<br>Mean internal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1<br>temperature<br>19.74 19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e in li<br>99<br>1g pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.99 (<br>iving area<br>20.31 2<br>eriods in re                                                                                                                                                                                                                                                                                                                                                                                                         | 0.97<br>T1 (fo<br>20.62                                                                                                                           | 0.8<br>llow<br>20.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 0.74<br>steps 3 to 7<br>36 20.96<br>ling from Ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.8<br>7 in T<br>20.9                                                                                                       | able 9c)<br>5 20.75<br>9, Th2 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                | 1<br>3 19.89                                                                                    | 1                                                                                 | ]<br>]<br>1      |                                              |
| (86)m= 1<br>Mean internal 1<br>(87)m= 19.58<br>Temperature 0<br>(88)m= 20.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 1<br>temperature<br>19.74 19.9<br>luring heatin<br>20.02 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e in 1<br>99<br>1g pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.99 (<br>iving area<br>20.31 2<br>eriods in re<br>20.03 2                                                                                                                                                                                                                                                                                                                                                                                              | 0.97<br>T1 (fo<br>20.62<br>est of c<br>20.03                                                                                                      | 0.8<br>100w<br>20.8<br>dwell<br>20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9 0.74<br>steps 3 to 7<br>36 20.96<br>ling from Ta<br>04 20.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.8<br>7 in T<br>20.9<br>able 9<br>20.0                                                                                     | able 9c)<br>5 20.75<br>9, Th2 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.3                                                                                             | 1<br>3 19.89                                                                                    | 1<br>19.55                                                                        | ]<br>]<br>]      | (87)                                         |
| (86)m= 1<br>Mean internal 1<br>(87)m= 19.58<br>Temperature 0<br>(88)m= 20.02<br>Utilisation fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 1<br>temperature<br>19.74 19.9<br>luring heatin<br>20.02 20.0<br>or for gains 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | in l<br>99<br>1g pe<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.99 (<br>iving area<br>20.31 2<br>eriods in re<br>20.03 2<br>est of dwel                                                                                                                                                                                                                                                                                                                                                                               | 0.97<br>T1 (fo<br>20.62<br>est of c<br>20.03                                                                                                      | 0.8<br>100w<br>20.8<br>dwell<br>20.0<br>n2,m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 0.74<br>steps 3 to 7<br>36 20.96<br>ling from Ta<br>34 20.04<br>(see Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.8<br>7 in T<br>20.1<br>able 9<br>20.1<br>9a)                                                                              | 0.96           able 9c)           95         20.75           9, Th2 (°C)           94         20.04                                                                                                                                                                                                                                                                                                                                                                    | 1<br>20.3<br>20.0                                                                                | 1<br>3 19.89<br>3 20.03                                                                         | 1<br>19.55<br>20.03                                                               | ]<br>]<br>]      | (87)                                         |
| (86)m= 1<br>Mean internal 1<br>(87)m= 19.58<br>Temperature 0<br>(88)m= 20.02<br>Utilisation factr<br>(89)m= 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1         1           temperature         19.74         19.54           luring heatin         20.02         20.02           or for gains 1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in l<br>ig pe<br>ig pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.99 (<br>iving area<br>20.31 2<br>eriods in re<br>20.03 2<br>est of dwel<br>0.99 (                                                                                                                                                                                                                                                                                                                                                                     | 0.97<br>T1 (fo<br>20.62<br>est of c<br>20.03<br>elling, h<br>0.95                                                                                 | 0.8<br>10w<br>20.8<br>dwell<br>20.0<br>n2,m<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9         0.74           steps 3 to 7         36           20.96         31           ling from Ta         4           20.04         (see Table           3         0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8<br>7 in T<br>20.9<br>able 9<br>20.0<br>9a)<br>0.6                                                                       | able 9c)           35         20.75           9, Th2 (°C)           04         20.04           8         0.93                                                                                                                                                                                                                                                                                                                                                          | 1<br>20.3<br>20.0                                                                                | 1<br>3 19.89                                                                                    | 1<br>19.55                                                                        | ]<br>]<br>]      | (87)                                         |
| (86)m= 1<br>Mean internal<br>(87)m= 19.58<br>Temperature of<br>(88)m= 20.02<br>Utilisation factr<br>(89)m= 1<br>Mean internal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1         1           temperature         19.74         19.5           luring heatin         20.02         20.0           or for gains 1         1         1           temperature         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | in l<br>in l<br>ig pe<br>ig pe<br>ig pe<br>in t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.99 (<br>iving area<br>20.31 2<br>eriods in re<br>20.03 2<br>est of dwel<br>0.99 (<br>he rest of d                                                                                                                                                                                                                                                                                                                                                     | 0.97<br>T1 (fo<br>20.62<br>est of c<br>20.03<br>elling, h<br>0.95<br>dwellir                                                                      | 0.8<br>0.8<br>20.8<br>dwell<br>20.0<br>n2,m<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0         0.74           steps 3 to 7         36           36         20.96           1ing from Ta         20.04           (see Table         3           3         0.61           2 (follow steepend)         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.8<br>7 in T<br>20.9<br>able 9<br>20.0<br>9a)<br>0.6<br>eps 3                                                              | able 9c)           35         20.75           36         20.75           37         Th2 (°C)           36         0.93           8         0.93           to 7 in Tabl                                                                                                                                                                                                                                                                                                 | 1<br>20.3<br>20.0<br>1<br>e 9c)                                                                  | 1<br>3 19.89<br>3 20.03<br>1                                                                    | 1<br>19.55<br>20.03                                                               |                  | (87)<br>(88)<br>(89)                         |
| (86)m= 1<br>Mean internal 1<br>(87)m= 19.58<br>Temperature 0<br>(88)m= 20.02<br>Utilisation factr<br>(89)m= 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1         1           temperature         19.74         19.54           luring heatin         20.02         20.02           or for gains 1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in l<br>in l<br>ig pe<br>ig pe<br>ig pe<br>in t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.99 (<br>iving area<br>20.31 2<br>eriods in re<br>20.03 2<br>est of dwel<br>0.99 (<br>he rest of d                                                                                                                                                                                                                                                                                                                                                     | 0.97<br>T1 (fo<br>20.62<br>est of c<br>20.03<br>elling, h<br>0.95                                                                                 | 0.8<br>10w<br>20.8<br>dwell<br>20.0<br>n2,m<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0         0.74           steps 3 to 7         36           36         20.96           1ing from Ta         20.04           (see Table         3           3         0.61           2 (follow steepend)         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.8<br>7 in T<br>20.9<br>able 9<br>20.0<br>9a)<br>0.6                                                                       | 3         0.96           able 9c)         95           95         20.75           9, Th2 (°C)         04           20.04         20.04           8         0.93           to 7 in Tabl         11           01         19.8                                                                                                                                                                                                                                            | 1<br>20.3<br>20.0<br>1<br>e 9c)<br>19.2                                                          | 1<br>3 19.89<br>3 20.03<br>1<br>18.55                                                           | 1<br>19.55<br>20.03<br>1<br>18.05                                                 | ]<br>]<br>]<br>] | (87)<br>(88)<br>(89)<br>(90)                 |
| (86)m= 1<br>Mean internal<br>(87)m= 19.58<br>Temperature of<br>(88)m= 20.02<br>Utilisation factr<br>(89)m= 1<br>Mean internal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1         1           temperature         19.74         19.5           luring heatin         20.02         20.0           or for gains 1         1         1           temperature         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | in l<br>in l<br>ig pe<br>ig pe<br>ig pe<br>in t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.99 (<br>iving area<br>20.31 2<br>eriods in re<br>20.03 2<br>est of dwel<br>0.99 (<br>he rest of d                                                                                                                                                                                                                                                                                                                                                     | 0.97<br>T1 (fo<br>20.62<br>est of c<br>20.03<br>elling, h<br>0.95<br>dwellir                                                                      | 0.8<br>0.8<br>20.8<br>dwell<br>20.0<br>n2,m<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0         0.74           steps 3 to 7         36           36         20.96           1ing from Ta         20.04           (see Table         3           3         0.61           2 (follow steepend)         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.8<br>7 in T<br>20.9<br>able 9<br>20.0<br>9a)<br>0.6<br>eps 3                                                              | 3         0.96           able 9c)         95           95         20.75           9, Th2 (°C)         04           20.04         20.04           8         0.93           to 7 in Tabl         11           01         19.8                                                                                                                                                                                                                                            | 1<br>20.3<br>20.0<br>1<br>e 9c)<br>19.2                                                          | 1<br>3 19.89<br>3 20.03<br>1                                                                    | 1<br>19.55<br>20.03<br>1<br>18.05                                                 | 0.13             | (87)<br>(88)<br>(89)                         |
| (86)m= 1<br>Mean internal<br>(87)m= 19.58<br>Temperature of<br>(88)m= 20.02<br>Utilisation factr<br>(89)m= 1<br>Mean internal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1         1           temperature         19.74           19.74         19.5           luring heatin         20.02           20.02         20.00           or for gains 1         1           1         1           temperature         18.32           18.32         18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e in l<br>99<br>ng pe<br>02<br>for n<br>1 in t<br>59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.99         (           viving area         20.31         2           20.31         2         2           eriods in re         20.03         2           est of dwel         0.99         (           0.99         (         0           19.16         1                                                                                                                                                                                               | 0.97<br>T1 (fo<br>20.62<br>est of c<br>20.03<br>est of c<br>20.03<br>est of c<br>20.03<br>duelling, h<br>0.95<br>dwellir<br>19.61                 | 0.8<br>100<br>20.8<br>20.8<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9         0.74           steps 3 to 7         36           20.96         36           ing from Ta         34           20.04         (see Table           3         0.61           2         (follow stee)           3         20.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8<br>7 in T<br>20.9<br>able 9<br>20.0<br>9a)<br>0.6<br>eps 3<br>20.0                                                      | 3         0.96           able 9c)         35         20.75           35         20.75         30           36         20.04         20.04           36         0.93         10.7           37         119.8         6                                                                                                                                                                                                                                                  | 1<br>20.3<br>20.0<br>1<br>e 9c)<br>19.2                                                          | 1<br>3 19.89<br>3 20.03<br>1<br>18.55                                                           | 1<br>19.55<br>20.03<br>1<br>18.05                                                 | 0.13             | (87)<br>(88)<br>(89)<br>(90)                 |
| (86)m= 1<br>Mean internal<br>(87)m= 19.58<br>Temperature c<br>(88)m= 20.02<br>Utilisation factr<br>(89)m= 1<br>Mean internal<br>(90)m= 18.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1         1           temperature         19.74           19.74         19.5           luring heatin         20.02           20.02         20.00           or for gains 1         1           1         1           temperature         18.32           18.32         18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e in l<br>99<br>19 pe<br>22<br>for r<br>59<br>e in t<br>59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.99         0           iving area         20.31         2           eriods in re         20.03         2           eriods in re         20.03         2           est of dwel         0.99         0           he rest of d         19.16         1           the whole         1         1                                                                                                                                                           | 0.97<br>T1 (fo<br>20.62<br>est of c<br>20.03<br>est of c<br>20.03<br>est of c<br>20.03<br>duelling, h<br>0.95<br>dwellir<br>19.61                 | 0.8<br>100<br>20.8<br>20.8<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9         0.74           steps 3 to 7         36           100 from Ta         20.96           101 g from Ta         20.04           14         20.04           (see Table         3           3         0.61           22 (follow stee         33           20.02         =           fLA × T1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8<br>7 in T<br>20.9<br>able 9<br>20.0<br>9a)<br>0.6<br>eps 3<br>20.0                                                      | 3         0.96           able 9c)         35         20.75           35         20.75         0.9           36         20.75         0.9           37         7         172 (°C)           38         0.93         0.93           36         7         in Table           37         19.8         f           -         fLA) × T2         7                                                                                                                            | 1<br>20.3<br>20.0<br>1<br>e 9c)<br>19.2                                                          | 1<br>3 19.89<br>3 20.03<br>1<br>18.55<br>ving area + (4                                         | 1<br>19.55<br>20.03<br>1<br>18.05                                                 | 0.13             | (87)<br>(88)<br>(89)<br>(90)                 |
| (86)m=         1           Mean internal         (87)m=           (87)m=         19.58           Temperature of (88)m=         20.02           Utilisation factr         (89)m=           (89)m=         1           Mean internal         (90)m=           (80)m=         16.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1         1           temperature         19.74         19.92           luring heatin         20.02         20.0           or for gains l         1         1           temperature         18.32         18.6           temperature         18.32         18.6           temperature         18.5         18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e in l<br>99<br>ng pe<br>02<br>for n<br>e in t<br>99<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.99         0           iving area         20.31         2           eriods in re         20.03         2           eriods in re         20.03         2           est of dwel         0.99         0           he rest of d         19.16         1           the whole         19.31         1                                                                                                                                                       | 0.97<br>T1 (fo<br>20.62<br>est of c<br>20.03<br>elling, h<br>0.95<br>dwellin<br>19.61<br>19.74                                                    | 0.8<br>20.8<br>20.8<br>dwell<br>20.0<br>0.8<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9         0.74           steps 3 to 7         36           16         20.96           110         from Tz           14         20.04           (see Table           3         0.61           2         (follow stee)           13         20.02           =         fLA × T1           14         20.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8<br>7 in T<br>20.9<br>20.0<br>9a)<br>0.6<br>20.0<br>9a)<br>20.0<br>+ (1.2<br>20.0                                        | 3         0.96           able 9c)         35         20.75           3, Th2 (°C)         34         20.04           8         0.93         10           10         19.8         f           - fLA) × T2         13         19.92                                                                                                                                                                                                                                       | 1<br>20.3<br>20.0<br>1<br>e 9c)<br>19.2<br>LA = Li<br>19.3                                       | 1<br>3 19.89<br>3 20.03<br>1<br>18.55<br>ving area + (4<br>4 18.72                              | 1<br>19.55<br>20.03<br>1<br>18.05<br>4) =                                         | 0.13             | (87)<br>(88)<br>(89)<br>(90)<br>(91)         |
| (86)m=         1           Mean internal         (87)m=           (87)m=         19.58           Temperature c         (88)m=           (88)m=         20.02           Utilisation fact         (89)m=           (90)m=         1           Mean internal         (90)m=           Mean internal         (92)m=           Mean internal         (92)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1         1           temperature         19.74         19.92           luring heatin         20.02         20.0           or for gains l         1         1           temperature         18.32         18.6           temperature         18.32         18.6           temperature         18.5         18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in 1<br>in 1   | 0.99         0           ving area         20.31         2           20.31         2         2           eriods in re         20.03         2           est of dwel         0.99         0           he rest of d         19.16         1           rthe whole         19.31         1           internal ter         1         1                                                                                                                       | 0.97<br>T1 (fo<br>20.62<br>est of c<br>20.03<br>elling, h<br>0.95<br>dwellin<br>19.61<br>19.74                                                    | 0.8<br>20.8<br>20.8<br>dwell<br>20.0<br>0.8<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9         0.74           steps 3 to 7         36           166         20.96           101         20.04           102         20.04           103         0.61           2         (follow stee)           103         20.02           =         fLA × T1           104         20.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8<br>7 in T<br>20.9<br>20.0<br>9a)<br>0.6<br>20.0<br>9a)<br>20.0<br>+ (1.2<br>20.0                                        | 3         0.96           able 9c)         35         20.75           3, Th2 (°C)         34         20.04           8         0.93         10         7 in Tabl           11         19.8         f         -           - fLA) × T2         13         19.92         where approx                                                                                                                                                                                      | 1<br>20.3<br>20.0<br>1<br>e 9c)<br>19.2<br>LA = Li<br>19.3                                       | 1<br>3 19.89<br>3 20.03<br>1<br>18.55<br>ving area + (+<br>4 18.72                              | 1<br>19.55<br>20.03<br>1<br>18.05<br>4) =                                         | ]<br>]<br>       | (87)<br>(88)<br>(89)<br>(90)<br>(91)         |
| (86)m=         1           Mean internal         (87)m=           (87)m=         19.58           Temperature c         (88)m=           (88)m=         20.02           Utilisation facts         (89)m=           (89)m=         1           Mean internal         (90)m=           (90)m=         18.09           Mean internal         (92)m=           (92)m=         18.28           Apply adjustm         Majustm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1         1           temperature         19.7           19.7         19.5           turing heatin         20.02           20.02         20.0           or for gains the           1         1           1         1           1         1           temperature         18.32           18.32         18.6           temperature         18.5           18.5         18.8           ent to the me         18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in 1<br>in 1   | 0.99         0           ving area         20.31         2           20.31         2         2           eriods in re         20.03         2           est of dwel         0.99         0           he rest of d         19.16         1           rthe whole         19.31         1           internal ter         1         1                                                                                                                       | 0.97<br>T1 (fo<br>20.62<br>est of c<br>20.03<br>elling, h<br>0.95<br>dwellin<br>19.61<br>e dwell<br>19.74<br>emperation                           | 0.8<br>20.8<br>20.8<br>20.0<br>12,m<br>0.8<br>19.9<br>19.9<br>19.9<br>19.9<br>20.0<br>20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9         0.74           steps 3 to 7         36           166         20.96           101         20.04           102         20.04           103         0.61           2         (follow stee)           103         20.02           =         fLA × T1           104         20.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8<br>7 in T<br>20.9<br>able 9<br>20.0<br>9a)<br>0.6<br>eps 3<br>20.0<br>+ (1<br>20.2<br>20.0<br>+ (1<br>20.0              | 3         0.96           able 9c)         35         20.75           3, Th2 (°C)         34         20.04           8         0.93         10         7 in Tabl           11         19.8         f         -           - fLA) × T2         13         19.92         where approx                                                                                                                                                                                      | 1<br>20.3:<br>20.0:<br>1<br>19.2<br>LA = Li<br>19.34                                             | 1<br>3 19.89<br>3 20.03<br>1<br>18.55<br>ving area + (+<br>4 18.72                              | 1<br>19.55<br>20.03<br>1<br>18.05<br>4) =<br>18.24                                | ]<br>]<br>       | (87)<br>(88)<br>(89)<br>(90)<br>(91)<br>(92) |
| (86)min         1           Mean internal         (87)min           (87)min         19.58           Temperature 0;         (88)min           (88)min         20.02           Utilisation facti         (89)min           (89)min         1           Mean internal         (90)min           (80)min         18.00           Mean internal         (90)min           (82)min         18.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1         1           11         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111         1           111 <td< td=""><td>ean<br/>in li<br/>in l</td><td>0.99         0           iving area         20.31         2           eriods in re         20.31         2           eriods in re         20.31         2           eriods in re         20.31         2           est of dwel         0.99         0           he rest of d         19.16         1           19.31         1         internal te           19.31         1         1</td><td>0.97<br/>T1 (fo<br/>20.62<br/>eest of c<br/>20.03<br/>dwelling, h<br/>19.61<br/>e dwell<br/>19.74<br/>e dwell<br/>19.74</td><td>0.8<br/>0.8<br/>0.8<br/>0.8<br/>0.8<br/>0.8<br/>0.8<br/>0.8</td><td>9         0.74           steps 3 to 7         7           86         20.96           ing from Ta         20.04           14         20.04           (see Table         3           3         0.61           2         (follow steps)           3         20.02           =         fLA × T1           V4         20.14           from Table           14         20.14</td><td>0.8<br/>7 in T<br/>20.9<br/>9a)<br/>0.6<br/>eps 3<br/>20.0<br/>+ (1.<br/>20.1<br/>20.1<br/>20.1<br/>20.1<br/>20.1<br/>20.1<br/>20.1<br/>20</td><td>3         0.96           able 9c)         35         20.75           35         20.75         36           7, Th2 (°C)         34         20.04           8         0.93         10         7 in Table           10         19.8         r         r           - fLA) × T2         13         19.92         where approx           13         19.92         19.92         19.92</td><td>1<br/>20.3:<br/>20.0:<br/>1<br/>e 9c)<br/>19.2<br/>LA = Li<br/>19.3-<br/>19.3-</td><td>1<br/>3 19.89<br/>3 20.03<br/>1<br/>18.55<br/>ving area + (4<br/>4 18.72<br/>3<br/>4 18.72</td><td>1<br/>19.55<br/>20.03<br/>1<br/>18.05<br/>4) =<br/>18.24<br/>18.24</td><td>]</td><td>(87)<br/>(88)<br/>(89)<br/>(90)<br/>(91)<br/>(92)</td></td<> | ean<br>in li<br>in l                                                                                                 | 0.99         0           iving area         20.31         2           eriods in re         20.31         2           eriods in re         20.31         2           eriods in re         20.31         2           est of dwel         0.99         0           he rest of d         19.16         1           19.31         1         internal te           19.31         1         1                                                                  | 0.97<br>T1 (fo<br>20.62<br>eest of c<br>20.03<br>dwelling, h<br>19.61<br>e dwell<br>19.74<br>e dwell<br>19.74                                     | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9         0.74           steps 3 to 7         7           86         20.96           ing from Ta         20.04           14         20.04           (see Table         3           3         0.61           2         (follow steps)           3         20.02           =         fLA × T1           V4         20.14           from Table           14         20.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8<br>7 in T<br>20.9<br>9a)<br>0.6<br>eps 3<br>20.0<br>+ (1.<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20 | 3         0.96           able 9c)         35         20.75           35         20.75         36           7, Th2 (°C)         34         20.04           8         0.93         10         7 in Table           10         19.8         r         r           - fLA) × T2         13         19.92         where approx           13         19.92         19.92         19.92                                                                                        | 1<br>20.3:<br>20.0:<br>1<br>e 9c)<br>19.2<br>LA = Li<br>19.3-<br>19.3-                           | 1<br>3 19.89<br>3 20.03<br>1<br>18.55<br>ving area + (4<br>4 18.72<br>3<br>4 18.72              | 1<br>19.55<br>20.03<br>1<br>18.05<br>4) =<br>18.24<br>18.24                       | ]                | (87)<br>(88)<br>(89)<br>(90)<br>(91)<br>(92) |
| (80)m=         1           Mean internal         (87)m=           (87)m=         19.58           Temperature c         (88)m=           (88)m=         20.02           Utilisation fact         (89)m=           (90)m=         1           Mean internal         (90)m=           (90)m=         18.29           Apply adjustme         18.28           3. Space heati         18.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1         1           temperature         19.4           19.74         19.5           luring heatin         20.02           20.02         20.0           or for gains to         1           1         1           temperature         18.32           18.5         18.6           18.5         18.6           ng requirem         18.5           ng requirem         18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e in l<br>ing pe<br>ing pe<br>ing te<br>in t<br>in t   | 0.99 (0<br>iving area<br>20.31 2<br>eriods in re<br>20.03 2<br>est of dwel<br>0.99 (0<br>he rest of d<br>19.16 1<br>                                                                                                                                                                                                                                                                                                                                    | 0.97<br>T1 (fo<br>20.62<br>est of c<br>20.03<br>illing, h<br>19.61<br>e dwellin<br>19.61<br>e dwellin<br>19.74<br>empera<br>19.74                 | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9         0.74           steps 3 to 7         7           86         20.96           ing from Ta         20.04           14         20.04           (see Table         3           3         0.61           2         (follow steps)           3         20.02           =         fLA × T1           V4         20.14           from Table           14         20.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8<br>7 in T<br>20.9<br>9a)<br>0.6<br>eps 3<br>20.0<br>+ (1.<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20 | 3         0.96           able 9c)         35         20.75           35         20.75         36           7, Th2 (°C)         34         20.04           8         0.93         10         7 in Table           10         19.8         r         r           - fLA) × T2         13         19.92         where approx           13         19.92         19.92         19.92                                                                                        | 1<br>20.3:<br>20.0:<br>1<br>e 9c)<br>19.2<br>LA = Li<br>19.3-<br>19.3-                           | 1<br>3 19.89<br>3 20.03<br>1<br>18.55<br>ving area + (4<br>4 18.72<br>3<br>4 18.72              | 1<br>19.55<br>20.03<br>1<br>18.05<br>4) =<br>18.24<br>18.24                       | ]                | (87)<br>(88)<br>(89)<br>(90)<br>(91)<br>(92) |
| (85)min 1<br>Mean internal<br>(87)min 19.58<br>Temperature 0;<br>(88)min 20.02<br>Utilisation factr<br>(89)min 1<br>Mean internal<br>(90)min 18.09<br>Mean internal<br>(92)min 18.28<br>3.59ace headt<br>Set Ti to the min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1         1           temperature         19.4           19.74         19.5           luring heatin         20.02           20.02         20.0           or for gains to         1           1         1           temperature         18.32           18.5         18.6           18.5         18.6           ng requirem         18.5           ng requirem         18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e in t<br>in t | 0.99         0           viving area         20.31         2           20.03         2         2           eriods in re         20.03         2           est of dwel         0.99         0           0.99         0         0           he rest of d         19.16         1           1         1         1           19.31         1         1           19.31         1         1           upperature c         upperature c         upperature c | 0.97<br>T1 (fo<br>20.62<br>est of c<br>20.03<br>illing, h<br>19.61<br>e dwellin<br>19.61<br>e dwellin<br>19.74<br>empera<br>19.74                 | 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9         0.74           steps 3 to 5         20.96           ling from Ta         20.04           (see Table         3           3         0.61           2 (follow stet         3           4         20.14           from Table         2           14         20.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.8<br>7 in T<br>20.9<br>9a)<br>0.6<br>eps 3<br>20.0<br>+ (1.<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20 | 3         0.96           able 9c)         35         20.75           35         20.75         36         20.75           36         20.75         30         Th2 (°C)           36         0.93         30         30           37         7 in Tabl         11         19.8           9         - fLA) × T2         13         19.92           where approx         13         19.92           e 9b, so that         9b, so that         9b                           | 1<br>20.3:<br>20.0:<br>1<br>e 9c)<br>19.2<br>LA = Li<br>19.3-<br>19.3-                           | 1<br>3 19.89<br>3 20.03<br>1<br>18.55<br>ving area + (*<br>4 18.72<br>5<br>4 18.72<br>(76)m and | 1<br>19.55<br>20.03<br>1<br>18.05<br>4) =<br>18.24<br>18.24                       | ]                | (87)<br>(88)<br>(89)<br>(90)<br>(91)<br>(92) |
| (86)min         1           Mean internal         (87)min           (87)min         19.58           Temperature 0         (88)min           (88)min         20.02           Utilisation facti         (89)min           (89)min         1           Mean internal         (90)min           (80)min         18.09           Mean internal         (90)min           (82)min         18.28           Apply adjustmin         (93)min           Seq Ti to the mit the utilisation for the mit the uti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1         1           1         1           1         1           1         1           1         20.02           20.02         20.0           or for gains ling           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ean<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for))))))))))))))))))))))))))))))))))))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.99         0           viving area         20.31         2           20.31         2         2           eriods in re         20.03         2           est of dwel         0.99         0           he rest of d         19.16         1           19.31         1         1           internal te         19.31         1           sperature c         sing Table         Apr                                                                      | 0.97<br>T1 (fo<br>20.62<br>esst of o<br>20.03<br>illing, h<br>0.95<br>dwellin<br>19.61<br>e dwell<br>19.74<br>e dwell<br>19.74<br>obtaine<br>e 9a | 0.8<br>0.8<br>20.8<br>20.6<br>20.0<br>0.2,m<br>0.8<br>0.8<br>19.9<br>20.0<br>19.9<br>20.0<br>19.9<br>20.0<br>19.9<br>20.0<br>19.9<br>20.0<br>19.9<br>20.0<br>19.9<br>20.0<br>19.9<br>19.9<br>20.0<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19 | 9         0.74           steps 3 to 5         20.96           ling from Ta         20.04           (see Table         3           3         0.61           2 (follow stet         33           2 (follow stet         33           2 (follow stet         34           2 (follow stet         35           3 (follow stet         36           3 (follow stet         36 | 0.8<br>7 in T<br>20.9<br>able 9<br>20.0<br>9a)<br>0.6<br>eps 3<br>20.0<br>+ (1.1<br>20.1<br>20.1<br>20.1<br>Table           | 3         0.96           able 9c)         35         20.75           35         20.75         36           36         20.75         30           37         172 (°C)         34         20.04           8         0.93         30         37           3         10.7         in Table         36           -         fLA) × T2         13         19.92           where approx         13         19.92         a           9b, so that         a         b         a | 1<br>20.3:<br>20.0:<br>1<br>19.2<br>19.2<br>19.3<br>19.3<br>19.3<br>19.3<br>19.3<br>19.3<br>19.3 | 1<br>3 19.89<br>3 20.03<br>1<br>18.55<br>ving area + (*<br>4 18.72<br>5<br>4 18.72<br>(76)m and | 1<br>19.55<br>20.03<br>1<br>18.05<br>4) =<br>18.24<br>18.24<br>18.24<br>d re-cale | ]                | (87)<br>(88)<br>(89)<br>(90)<br>(91)<br>(92) |
| (86)m=<br>Mean internal<br>(87)m=<br>1.58<br>Temperature c<br>(88)m=<br>20.02<br>Utilisation fact<br>(90)m=<br>1.<br>Mean internal<br>(90)m=<br>1.22<br>Mean internal<br>(90)m=<br>1.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.22<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3 | 1         1           1         1           1         1           1         1           1         20.02           20.02         20.0           or for gains ling           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ean<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for<br>(for))))))))))))))))))))))))))))))))))))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.99         (           ving area         20.31         2           eriods in re         20.03         2           eriods in re         20.03         2           est of dwel         0.99         (           0.99         (         0           he rest of d         19.16         1           19.31         1         internal te           19.31         1         1           normal terrature or using Table         Apr                         | 0.97<br>T1 (fo<br>20.62<br>esst of o<br>20.03<br>illing, h<br>0.95<br>dwellin<br>19.61<br>e dwell<br>19.74<br>e dwell<br>19.74<br>obtaine<br>e 9a | 0.8<br>0.8<br>20.8<br>20.6<br>20.0<br>0.2,m<br>0.8<br>0.8<br>19.9<br>20.0<br>19.9<br>20.0<br>19.9<br>20.0<br>19.9<br>20.0<br>19.9<br>20.0<br>19.9<br>20.0<br>19.9<br>20.0<br>19.9<br>19.9<br>20.0<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19 | 9         0.74           steps 3 to b         20.96           ing from Ta         20.04           (see Table         3           3         0.61           2 (follow ster         13           20.02         =           # LA × T1         20.14           from Table         20.14           it step 11 of         it step 11 of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.8<br>7 in T<br>20.9<br>able 9<br>20.0<br>9a)<br>0.6<br>eps 3<br>20.0<br>+ (1.1<br>20.1<br>20.1<br>20.1<br>Table           | 3         0.96           able 9c)         20.75           35         20.75           36         20.75           37         172 (°C)           34         20.04           8         0.93           to 7 in Tabl         11           11         19.8           - fLA) × T2         13           13         19.92           where appr           13         19.92           e 9b, so tha           4g         Sep                                                        | 1<br>20.3:<br>20.0:<br>1<br>19.2<br>19.2<br>19.3<br>19.3<br>19.3<br>19.3<br>19.3<br>19.3<br>19.3 | 1<br>3 19.89<br>3 20.03<br>1<br>18.55<br>ving area + (*<br>4 18.72<br>5<br>4 18.72<br>(76)m and | 1<br>19.55<br>20.03<br>1<br>18.05<br>4) =<br>18.24<br>18.24<br>18.24<br>d re-cale | ]                | (87)<br>(88)<br>(89)<br>(90)<br>(91)<br>(92) |

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

Page 6 of 8

#### TER WorkSheet: New dwelling design stage

#### Useful gains, hmGm., W = (94)m x (84)m (66)m 1804.8 2408.17 2922.2 3332.16 3441.38 2944.1 2143.94 2205.89 2704.08 2408.41 1892.04 1650.27 Monthly average external temperature from Table 8 (66)m+ 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.8 7.1 4.2 Heat loss rate for mean intermal temperature, I.m., W =(103)m x (103)m (103)m- (96)m) (97)m 8951.2 8907.64 7855.38 6593.22 5084.51 3421.71 2244.83 2340.45 3665.22 5530.64 7372.51 8937.21 Space heating requirement for each month, kWh/month = 0.024 x (197)m - (95)m) x (41)m (98)m= 5316.85 4255.85 3892.62 2347.97 1222.48 0 0 0 2322.94 3445.94 5421.40 (95) (96) (97) 28496.12 Total per year (k Space heating requirement in kWh/m²/year 47.79 9a. Energy requirements – Individual heating systems incl Space heating: Fraction of space heat from secondary/supplementary system Fraction of space heat from main system(s) (202) = 1 - (201) = Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] = Efficiency of main space heating system 1 93.5 Efficiency of secondary/supplementary heating system, % Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec theating requirement (calculated above) 5316.85 4225.45 3492.6 2347.97 1222.46 0 0 0 0 2322.94 3445.64 5421.49 (211) {[(98)m x (204)] } x 1 5686.47 4519.63 3949.31 2511.19 1307.47 0 0 0 0 24<mark>84.43</mark> 4220.25 5798.38 30477.13 (211) Space heating fuel (secondary) Splate International Unit (Sectional 7), NTINIARAN = ((R9) m, 2(201)) × 100 + (208) (215)me 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td 0 (215 Water heating Zase5 210.06 219.92 196.2 191.59 170.21 162.54 179.64 179.73 203.5 216.37 232.59 Efficiency of water heater 79.8 (217)m= 89.98 89.93 89.82 89.57 88.89 79.8 79.8 79.8 79.8 89.53 89.87 90 Fuel for water l C19/m 265.22 233.58 244.84 219.04 215.55 213.3 203.68 225.11 225.22 227.29 240.74 258.42 Annual totals Space heating fuel used, main system 1 kWh/year 30477.13 Water heating fuel used 2772 Electricity for pumps, fans and electric keep-hot central heating pump: 30 (230c)

Page 7 of 8

Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

#### TER WorkSheet: New dwelling design stage

| boiler with a fan-assisted flue<br>Total electricity for the above, kWh/year | sum of (230a                    | a)(230g) =        | (230)        |
|------------------------------------------------------------------------------|---------------------------------|-------------------|--------------|
| Electricity for lighting                                                     |                                 |                   | 1153.03 (232 |
| , , , ,                                                                      | e includie e misse CLID         |                   | 1133.03      |
| 12a. CO2 emissions – Individual heating system                               | s including micro-CHP           |                   |              |
|                                                                              | Energy                          | Emission factor   | Emissions    |
|                                                                              | kWh/year                        | kg CO2/kWh        | kg CO2/year  |
| Space heating (main system 1)                                                | (211) x                         | 0.216 =           | 6583.06 (261 |
| Space heating (secondary)                                                    | (215) x                         | 0.519 =           | 0 (263)      |
| Water heating                                                                | (219) x                         | 0.216             | 598.75 (264  |
| Space and water heating                                                      | (261) + (262) + (263) + (264) = |                   | 7181.81 (265 |
| Electricity for pumps, fans and electric keep-hot                            | (231) x                         | 0.519 =           | 38.93 (267   |
| Electricity for lighting                                                     | (232) x                         | 0.519 =           | 598.42 (268  |
| Total CO2, kg/year                                                           |                                 | n of (265)(271) = | 7819.16 (272 |

TER - DRAF (273)

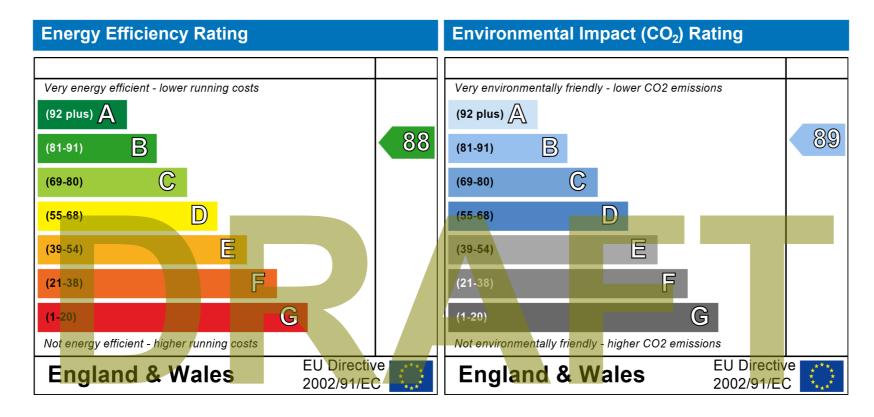
Stroma FSAP 2012 Version: 1.0.4.25 (SAP 9.92) - http://www.stroma.com

Page 8 of 8

# 5B PRINCE ARTHUR ROAD | HAMPSTEAD

# Appendix A4 Energy Performance Certificate (EPC).

# **A4** | Energy Performance Certificate (EPC)


# **Predicted Energy Assessment**



Dwelling type: Date of assessment: Produced by: Total floor area: Detached House 27 April 2020 Stroma Certification 596.3 m<sup>2</sup>

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.



The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be. The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

## 5B PRINCE ARTHUR ROAD | HAMPSTEAD

Sustainability and Energy Statement | 35

Appendix A5 General Notes.

# A5 | General Notes

- A5.1 The report is based on information available at the time of the writing and discussions with the client during any project meetings. Where any data supplied by the client or from other sources have been used, it has been assumed that the information is correct. No responsibility can be accepted by Iceni Projects Ltd for inaccuracies in the data supplied by any other party.
- A5.2 The review of planning policy and other requirements does not constitute a detailed review. Its purpose is as a guide to provide the context for the development and to determine the likely requirements of the Local Authority.
- A5.3 No site visits have been carried out, unless otherwise specified.
- A5.4 This report is prepared and written in the context of an agreed scope of work and should not be used in a different context. Furthermore, new information, improved practices and changes in guidance may necessitate a re-interpretation of the report in whole or in part after its original submission.
- A5.5 The copyright in the written materials shall remain the property of Iceni Projects Ltd but with a royalty-free perpetual licence to the client deemed to be granted on payment in full to Iceni Projects Ltd by the client of outstanding amounts.
- A5.6 The report is provided for sole use by the client and is confidential to them and their professional advisors. No responsibility whatsoever for the contents of the report will be accepted to any person other than the client, unless otherwise agreed.
- A5.7 These terms apply in addition to the Iceni Projects Ltd "Standard Terms of Business" (or in addition to another written contract which may be in place instead thereof) unless specifically agreed in writing. (In the event of a conflict between these terms and the said Standard Terms of Business, the said Standard Terms of Business shall prevail). In the absence of such a written contract, the Standard Terms of Business will apply.

## 5B PRINCE ARTHUR ROAD | HAMPSTEAD



Archaeology | Delivery | Design | Engagement | Heritage | Impact Management | Planning Sustainable Development | Townscape | Transport

Edinburgh: 11 Alva Street, Edinburgh, EH2 4PH Glasgow : 177 West George Street | Glasgow | G2 2LB London : Da Vinci House | 44 Saffron Hill | London | EC1N 8FH Manchester : This is The Space | 68 Quay Street | Manchester | M3 3EJ

www.iceniprojects.com | in iceni-projects | y iceniprojects | @ iceniprojects