

# Project No: 9913/10305 London Borough of Camden Energy and Sustainability Statement

Construction of 5 No. New Flats via Proposed Two Storey Extension with Roof Extension to 130 Chalton Street, London, NW1 1RW

# www.epsgroup.co.uk Tel: 0115 7270599 Email: info@epsgroup.co.uk

SAP Calculations – SBEM Calculations – Renewable Energy Statements – Energy Performance Certificates Air Tightness Testing – Extract Fan Testing – Water Calculations – DEC Assessments













# **Project Contact Details**

## **Client:**

Docklock Limited 55 Loudoun Road St John's Wood London NW8 0DL

## **Architect:**

GBS Architectural Design Lombard Business Park 8 Lombard Road Wimbledon SW19 3TZ

## **Report Prepared By:**

Energy Performance & Sustainability Group Ltd 3C Pelham Court Pelham Road Nottingham NG5 1AP

Tel: 0115 7270599

Lead Consultant: Mr Jamie Holmes MSc, BSc (Hons), Dip DEA OCDEA, Dip NDEA

Issue Details:

| Version | Date       | Author | Checked<br>By | Details                                                |
|---------|------------|--------|---------------|--------------------------------------------------------|
| 1       | 12/03/2020 | JH     | AB            | Issued for Submission                                  |
| 2       | 15/04/2020 | JH     | AB            | Incorporating revisions to proposed<br>building layout |

## **Executive Summary**

This report has been commissioned to support the planning application to construct 5 No. New Flats (1 x 2 Bed, 2 x 1 Bed, 2 x Studio) through a two storey extension with roof extension at 130 Chalton Street, London, NW1 1RW.

The Energy and Sustainability Statement outlines an overall commitment to reducing energy consumption under occupancy through the adoption of energy efficient measures such as enhanced insulation standards, improved heating and lighting efficiencies and the installation of renewable technologies. The methodology used herein is consistent with Approved Document Part L1A (2013) of the Building Regulations and The London Plan 2016.

The report clearly demonstrates that the proposed build specification will ensure that the overall development has a reduced energy demand in comparison to the minimum requirements of Part L1A (2013) of the Building Regulations.

Furthermore, through the installation of solar photovoltaic panels with an overall capacity of 3.30 kWp, the proposed development is predicted to emit at least **26.09%** less regulated carbon dioxide than would ordinarily be permitted by the standard requirements of Part L (2013) of the Building Regulations. The development will also achieve a **21.86%** saving in regulated carbon emissions exclusively through on-site renewable technologies.

The development will also incorporate measures to mitigate future climate change by limiting the risk of summertime overheating and through installing water saving sanitary ware and water outlets

In the circumstances, the proposed development is therefore deemed to comply with policies *CC1*, *CC2* and *CC3* of the *Camden Local Plan (2017)*.

# **Table of Contents**

- 1.0 Introduction
- 2.0 Planning Policy Context
- 3.0 Energy Statement Methodology
- 4.0 Notional Benchmark Energy Calculations
- 5.0 Proposed Energy Strategy and Performance Lean Measures
- 6.0 Proposed Energy Strategy and Performance Clean Measures
- 7.0 Review of Renewable Technologies
- 8.0 Proposed Energy Strategy and Performance Green Measures
- 9.0 Energy Calculation Summary
- 10.0 Overheating Risk Analysis
- 11.0 Water Management Internal Water Consumption
- Appendix 1 Baseline TER Calculations (SAP Derived)
- Appendix 2 Lean DER Calculations (SAP Derived)
- Appendix 3 Proposed (Green) DER Calculations (SAP Derived)
- Appendix 4 SAP Derived Summertime Overheating Analysis
- Appendix 5 Model Water Consumption Calculation

## **1.0 Introduction**

- 1.1 EPS Group have been appointed to provide an Energy & Sustainability Statement to support the planning application to construct 5 No. New Flats (1 x 2 Bed, 2 x 1 Bed, 2 x Studio) through a two storey extension with roof extension at 130 Chalton Street, London, NW1 1RW.
- 1.2 It is anticipated that the proposed flats will need to comply with the requirements of Approved Document Part L1A 2013 of the Building Regulations if planning is permitted.
- 1.3 The proposed development's energy consumption has therefore been assessed using the National Calculations Method (NCM) SAP 2012 (Standard Assessment Procedure) to determine the predicted annual regulated carbon dioxide (CO<sub>2</sub>) emissions of the development and the associated reduction targets.
- 1.4 The following fuel emissions factors have been utilised within the supporting calculations as defined by the updated National Calculations Method (NCM):

| Table 1: NCM Fuel Emission Factors |                                                             |  |
|------------------------------------|-------------------------------------------------------------|--|
| Fuel                               | CO <sub>2</sub> emission factor<br>(kgCO <sub>2</sub> /kWh) |  |
| Natural gas                        | 0.216                                                       |  |
| Grid supplied electricity          | 0.519                                                       |  |
| Grid displaced electricity         | 0.519                                                       |  |

- 1.5 This document should be used for planning purposes only and should be re-assessed and resubmitted at the Building Control stage if alternative building specifications or proposed systems are followed to those outlined within the report.
- 1.6 It is also highlighted that the SAP calculations utilised within the report rely on a number of standard operational parameters which may not ultimately match the actual measures adopted within the finalised building. Whilst they provide a 'like for like' comparison for the purpose of this report, they are not valid for Building Control applications or for the actual operation of the development post completion.
- 1.7 The dimensions for all units that are referenced within this report are based upon SAP measurement conventions which may result in slight differences with other dimensions quoted elsewhere.

# 2.0 Planning Policy Context

## 2.1 National

The National Planning Policy Framework (NPPF) outlines the Government's planning policies for England and how these are expected to be applied by local authorities. Section 14 of this document details how local policies should address climate change through the promotion of energy efficiency and the adoption of low carbon and renewable technologies. It states:

#### "14.0 Meeting the challenge of climate change, flooding and coastal change

148. The planning system should support the transition to a low carbon future in a changing climate, taking full account of flood risk and coastal change. It should help to: shape places in ways that contribute to radical reductions in greenhouse gas emissions, minimise vulnerability and improve resilience; encourage the reuse of existing resources, including the conversion of existing buildings; and support renewable and low carbon energy and associated infrastructure.

#### Planning for climate change

- 149. Plans should take a proactive approach to mitigating and adapting to climate change, taking into account the long-term implications for flood risk, coastal change, water supply, biodiversity and landscapes, and the risk of overheating from rising temperatures. Policies should support appropriate measures to ensure the future resilience of communities and infrastructure to climate change impacts, such as providing space for physical protection measures, or making provision for the possible future relocation of vulnerable development and infrastructure.
- 150. New development should be planned for in ways that:

a) avoid increased vulnerability to the range of impacts arising from climate change. When new development is brought forward in areas which are vulnerable, care should be taken to ensure that risks can be managed through suitable adaptation measures, including through the planning of green infrastructure; and

b) can help to reduce greenhouse gas emissions, such as through its location, orientation and design. Any local requirements for the sustainability of buildings should reflect the Government's policy for national technical standards.

151. To help increase the use and supply of renewable and low carbon energy and heat, plans should:

a) provide a positive strategy for energy from these sources, that maximises the potential for suitable development, while ensuring that adverse impacts are addressed satisfactorily (including cumulative landscape and visual impacts);

*b)* consider identifying suitable areas for renewable and low carbon energy sources, and supporting infrastructure, where this would help secure their development; and

c) identify opportunities for development to draw its energy supply from decentralised, renewable or low carbon energy supply systems and for co-locating potential heat customers and suppliers.

- 152. Local planning authorities should support community-led initiatives for renewable and low carbon energy, including developments outside areas identified in local plans or other strategic policies that are being taken forward through neighbourhood planning.
- 153. In determining planning applications, local planning authorities should expect new development to:

a) comply with any development plan policies on local requirements for decentralised energy supply unless it can be demonstrated by the applicant, having regard to the type of development involved and its design, that this is not feasible or viable; and

*b)* take account of landform, layout, building orientation, massing and landscaping to minimise energy consumption.

154. When determining planning applications for renewable and low carbon development, local planning authorities should:

a) not require applicants to demonstrate the overall need for renewable or low carbon energy, and recognise that even small-scale projects provide a valuable contribution to cutting greenhouse gas emissions; and

b) approve the application if its impacts are (or can be made) acceptable. Once suitable areas for renewable and low carbon energy have been identified in plans, local planning authorities should expect subsequent applications for commercial scale projects outside these areas to demonstrate that the proposed location meets the criteria used in identifying suitable areas."

## 2.2 The London Plan

The London Plan is the overall strategic plan for London detailing a fully integrated economic, environmental, transport and social framework for the development of the city until 2031.

Policy 5.2 of The London Plan March 2016 (Consolidated with Alterations Since 2011) relates to '*Minimising Carbon Dioxide Emissions*' and states:

- *"A. Development proposals should make the fullest contribution to minimising carbon dioxide emissions in accordance with the following energy hierarchy:* 
  - 1. Be lean: use less energy
  - 2. Be clean: supply energy efficiently
  - *3. Be green: use renewable energy*
- B. The Mayor will work with boroughs and developers to ensure that major developments meet the following targets for carbon dioxide emissions reduction in buildings. These targets are expressed as minimum improvements over the Target Emission Rate (TER) outlined in the national Building Regulations leading to zero carbon residential buildings from 2016 and zero carbon non-domestic buildings from 2019.

|             | Improvement on 2010 Building Regulations* |                                          |  |  |
|-------------|-------------------------------------------|------------------------------------------|--|--|
| Year        | Residential buildings                     | Non-domestic buildings                   |  |  |
| 2010 - 2013 | 25 per cent                               | 25 per cent                              |  |  |
| 2013 - 2016 | 40 per cent                               | 40 per cent                              |  |  |
| 2016 - 2019 | Zero carbon                               | As per building regulations requirements |  |  |

### Residential

### (\*Please reference additional April 2014 guidance detailed below)

- C. Major development proposals should include a detailed energy assessment to demonstrate how the targets for carbon dioxide emissions reduction outlined above are to be met within the framework of the energy hierarchy.
- D. As a minimum, energy assessments should include the following details:
  - a) Calculation of the energy demand and carbon dioxide emissions covered by Building Regulations and, separately, the energy demand and carbon dioxide emissions from any other part of the development, including plant or equipment, that are not covered by the Building Regulations (see paragraph 5.22) at each stage of the energy hierarchy.
  - *b) Proposals to reduce carbon dioxide emissions through the energy efficient design of the site, buildings and services.*
  - *c) Proposals to further reduce carbon dioxide emissions*
  - *d) Proposals to further reduce carbon dioxide emissions through the use of on-site renewable energy technologies.*
  - e) The carbon dioxide reduction targets should be met on-site. Where it is clearly demonstrated that the specific targets cannot be fully achieved on-site, any shortfall may be provided off-site or through a cash in lieu contribution to the relevant borough to be ring fenced to secure delivery of carbon dioxide savings elsewhere."

## April 2014 Update to Energy Planning Guidance

Following the introduction of Approved Documents Part L1A and L2A 2013 of the Building Regulations on April 6th 2014, The Greater London Authority issued updated guidance on Energy Planning.

This document states:

"As outlined in the Sustainable, Design and Construction SPG, from 6 April 2014 the Mayor will apply a 35 per cent carbon reduction target beyond Part L 2013 of the Building Regulations - this is deemed to be broadly equivalent to the 40 per cent target beyond Part L 2010 of the Building Regulations, as specified in Policy 5.2 of the London Plan for 2013--2016."

## 2.3 London Borough of Camden

The relevant policies from the *Camden Local Plan (2017)* are detailed below:

## Policy CC1 Climate change mitigation

"The Council will require all development to minimise the effects of climate change and encourage all developments to meet the highest feasible environmental standards that are financially viable during construction and occupation.

We will:

- a. promote zero carbon development and require all development to reduce carbon dioxide emissions through following the steps in the energy hierarchy;
- b. require all major development to demonstrate how London Plan targets for carbon dioxide emissions have been met;
- c. ensure that the location of development and mix of land uses minimise the need to travel by car and help to support decentralised energy networks;
- d. support and encourage sensitive energy efficiency improvements to existing buildings;
- e. require all proposals that involve substantial demolition to demonstrate that it is not possible to retain and improve the existing building; and
- *f. expect all developments to optimise resource efficiency. For decentralised energy networks, we will promote decentralised energy by:*
- *g.* working with local organisations and developers to implement decentralised energy networks in the parts of Camden most likely to support them;
- h. protecting existing decentralised energy networks (e.g. at Gower Street, Bloomsbury, King's Cross, Gospel Oak and Somers Town) and safeguarding potential network routes; and
- i. requiring all major developments to assess the feasibility of connecting to an existing decentralised energy network, or where this is not possible establishing a new network. To ensure that the Council can monitor the effectiveness of renewable and low carbon technologies, major developments will be required to install appropriate monitoring equipment."

### Policy CC2 Adapting to climate change

"The Council will require development to be resilient to climate change.

All development should adopt appropriate climate change adaptation measures such as:

- a. the protection of existing green spaces and promoting new appropriate green infrastructure;
- b. not increasing, and wherever possible reducing, surface water runoff through increasing permeable surfaces and use of Sustainable Drainage Systems;
- c. incorporating bio-diverse roofs, combination green and blue roofs and green walls where appropriate; and
- d. measures to reduce the impact of urban and dwelling overheating, including application of the cooling hierarchy. Any development involving 5 or more residential

units or 500 sqm or more of any additional floorspace is required to demonstrate the above in a Sustainability Statement.

Sustainable design and construction measures The Council will promote and measure sustainable design and construction by:

- e. ensuring development schemes demonstrate how adaptation measures and sustainable development principles have been incorporated into the design and proposed implementation;
- f. encourage new build residential development to use the Home Quality Mark and Passivhaus design standards; e.g. encouraging conversions and extensions of 500 sqm of residential floorspace or above or five or more dwellings to achieve "excellent" in BREEAM domestic refurbishment; and
- h. expecting non-domestic developments of 500 sqm of floorspace or above to achieve "excellent" in BREEAM assessments and encouraging zero carbon in new development from 2019"

### Policy CC3 Water and flooding

*"The Council will seek to ensure that development does not increase flood risk and reduces the risk of flooding where possible.* 

We will require development to:

- a. incorporate water efficiency measures;
- b. avoid harm to the water environment and improve water quality;
- c. consider the impact of development in areas at risk of flooding (including drainage);
- d. incorporate flood resilient measures in areas prone to flooding;
- e. utilise Sustainable Drainage Systems (SuDS) in line with the drainage hierarchy to achieve a greenfield run-off rate where feasible; and
- *f. not locate vulnerable development in flood-prone areas.*

Where an assessment of flood risk is required, developments should consider surface water flooding in detail and groundwater flooding where applicable.

The Council will protect the borough's existing drinking water and foul water infrastructure, including the reservoirs at Barrow Hill, Hampstead Heath, Highgate and Kidderpore"

Further guidance on how compliance with the above policies can be achieved is provided by within Camden's Special Guidance Document entitled *Energy efficiency and adaptation (March 2019).* 

The following exerts are of particular relevance to this Energy & Sustainability Statement:

#### *"5. Renewable energy technologies*

#### KEY MESSAGES

- There are a variety of renewable energy technologies that can be installed to supplement a development's energy needs.
- Developments are to target a 20% reduction in carbon dioxide emissions from on-site renewable energy technologies.

- 5.1 All developments should consider the feasibility of on-site renewable energy generation. Renewable energy generation should only be considered once the earlier stages of the energy hierarchy have been followed and energy demand has been reduced as far as possible.
- 5.2 In areas of poor air quality, there is an expectation of zero emission buildings. Developers should look to prioritise the installation of renewable energy technologies with no polluting emissions. These can be air, ground, or water heat pumps and potentially efficient direct electric 'point of use' heaters to supply a hot water load, unless found to be unfeasible.
- 5.3 As per paragraph 8.11 of the Local Plan, developments (including refurbishments) of 5 or more dwellings and/or 500 sqm or more of any gross internal floorspace must demonstrate a 20% 'Be Green' stage carbon dioxide reduction from renewables. Where feasible the renewables target should be fully met or exceeded, regardless of whether overall carbon dioxide reduction targets have already been met (those for minor new build residential and major applications specified in Table 1) through earlier stages of the energy hierarchy."

### *"7. Energy reduction*

### **KEY MESSAGES**

- All development in Camden is expected to reduce carbon dioxide emissions through the application of the energy hierarchy.
- All new build major development to demonstrate compliance with London Plan targets for carbon dioxide emissions.
- Deep refurbishments (i.e. refurbishments assessed under Building Regulations Part L1A/L2A) should also meet the London Plan carbon reduction targets for new buildings.
- All new build residential development (of 1 9 dwellings) must meet 19% carbon dioxide reduction; and
- Developments of five or more dwellings and/or more than 500sqm of any gross internal floorspace to achieve 20% reduction in carbon dioxide emissions from on-site renewable energy generation
- 7.1 The carbon reduction targets for developments in Camden are outlined in Table 2a and 2b below. This will be updated in line with any subsequent updates to the Local Plan, national and London planning policy.
- 7.2 Part L of the Building Regulations sets out the minimum requirements that buildings must meet relating to the conservation of fuel and power. Developments in Camden are expected to exceed Part L of Building Regulations through the application of the energy hierarchy. Camden's planning policies use Part L calculations as a baseline that should be exceeded. Deep refurbishments (i.e. refurbishments assessed under Building Regulations Part L1A/L2A) should also meet the London Plan carbon reduction targets for new buildings. All other refurbishments should demonstrate quantifiable improvements against the relevant new build baseline, L1A or L2A.

## Carbon offsetting

7.3 Where the London Plan carbon dioxide reduction targets cannot be met on-site (Local Plan paragraph 8.12), we may accept the provision of carbon reduction measures elsewhere in the borough, or secure a S106 financial contribution to Camden's Carbon Offset Fund. The Carbon Offset Fund is used to secure the delivery of carbon reduction projects in Camden. Projects will be connected to those identified in the Council's environmental sustainability plan 'Green Action for Change'.

7.4 Camden Council aligns the price per tonne of carbon with the GLA's pricing strategy. Please note: this is subject to change as further viability studies are undertaken. Details of the current pricing strategy are outlined on our website. Any offsetting project managed by the developer will need to demonstrate like-for-like savings and will need to be additional to any planned projects. Funds cannot be used to support other, existing development proposals to meet carbon reduction targets.

## Table 2a Energy reduction targets, domestic

| Development<br>should comply<br>with these<br>standards /<br>provide this<br>information                                            | Residential New Build (assessed under<br>L1A)                                                                             |                                                                                  |                                                                                           |                                                                                                                                                | ential Refurbis<br>sessed under L                                                                                                              |                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                     | Major<br>(10+ units or<br>>1,000 sqm<br>new floor<br>space)                                                               | Medium<br>(5-9 units,<br>>500sq.m<br>and <1,000<br>sqm new<br>floor space)       | Minor<br>All new<br>dwellings<br>(up<br>to 4 units<br>and <500<br>sqm new<br>floor space) | Major<br>(10+ units<br>or >1,000<br>sqm)                                                                                                       | Medium<br>(5-9 units,<br>>500sq.m<br>and <1,000<br>sqm)                                                                                        | Minor<br>(up to 4<br>units<br>and <500<br>sqm                                                                                                  |
|                                                                                                                                     |                                                                                                                           | Energy and c                                                                     | arbon reductio                                                                            | on targets                                                                                                                                     |                                                                                                                                                |                                                                                                                                                |
| Overall carbon<br>reduction<br>targets:                                                                                             | Zero Carbon<br>(minimum<br>35%<br>reduction<br>beyond Part<br>L on<br>site)<br>(London<br>Plan 5.2,<br>Local Plan<br>CC1) | 19% below<br>Part L of<br>2013<br>Building<br>Regulations<br>(Local Plan<br>CC1) | 19% below<br>Part L of<br>2013<br>Building<br>Regulations<br>(Local Plan<br>CC1)          | Greatest<br>possible<br>reduction -<br>meeting Part<br>L1B for<br>retained<br>thermal<br>elements<br>(London<br>Plan<br>5.4, Local<br>Plan CC1 | Greatest<br>possible<br>reduction -<br>meeting Part<br>L1B for<br>retained<br>thermal<br>elements<br>(London<br>Plan<br>5.4, Local<br>Plan CC1 | Greatest<br>possible<br>reduction -<br>meeting Part<br>L1B for<br>retained<br>thermal<br>elements<br>(London<br>Plan<br>5.4, Local<br>Plan CC1 |
| Reduction in<br>CO2 from onsite<br>renewables<br>(after all other<br>energy<br>efficiency<br>measures have<br>been<br>incorporated) | 20%<br>(London<br>Plan 5.7,<br>Local<br>Plan CC1)                                                                         | 20%<br>(London<br>Plan 5.7,<br>Local Plan<br>CC1)                                | lncorporate<br>renewables<br>where<br>feasible                                            | 20%<br>(London<br>Plan 5.4, 5.7,<br>Local Plan<br>CC1)                                                                                         | 20%<br>(London<br>Plan 5.4, 5.7,<br>Local Plan<br>CC1)                                                                                         | 20%<br>(London<br>Plan 5.4, 5.7,<br>Local Plan<br>CC1)                                                                                         |

## 2.4 Conclusions

On review of the planning policies and associated guidance documents outlined above, it is evident that the proposed scheme will need to achieve a significant reduction in regulated carbon dioxide emissions (CO<sub>2</sub>) by following the principles of the energy hierarchy as detailed within the London Plan.

In particular, a 20% reduction in regulated  $CO_2$  emissions will need to be achieved through the local installation of low carbon or renewable technologies (the green step of the energy hierarchy). In satisfying this stipulation, the development will also comply with the more generalised requirement of policy CC1 which requires a minimum reduction in overall regulated  $CO_2$  emissions of 19% against the requirements of Part L1A 2013 of the Building Regulations.

It is also noted that the proposed scheme will need to take measures to reduce summertime overheating and to ideally avoid the need to provide mechanical cooling. The proposed dwellings will also need to be water efficient whilst also minimising the risks of localised flooding.

## 3.0 Energy Statement Methodology

- 3.1 As detailed within Paragraph 1.3, SAP 2012 has been utilised as an appropriate method for calculating the predicted energy consumption and the associated carbon dioxide emissions for the proposed development across a number of different scenarios.
- 3.2 Where information was unavailable due to the lack of detail ordinarily associated with Building Control specifications, details from previous comparable projects have been utilised. Alternatively, industry standard defaults and assumptions have been adopted and consistently applied across all variant calculations.
- 3.3 In the first instance a set of 'Notional' Baseline SAP Calculations were produced as outlined within Section 4.0 in order to determine the amount of annual regulated carbon dioxide (CO<sub>2</sub>) emissions that would be permitted for the proposed development under the standard requirements of Approved Document Part L1A (2013).
- 3.4 In response to the Energy Hierarchy of the London Plan 2016, a range of conventional energy efficiency improvements are proposed for the development which have then been modelled within SAP in order to produce a set of 'Lean' Energy Calculations as detailed within Section 5.0.
- 3.5 In accordance with the 'Clean' step of the Energy Hierarchy, the feasibility of utilising decentralised energy networks or Combined Heat and Power (CHP) was then reviewed as detailed within Section 6.0.
- 3.6 The suitability of a wide range of renewable technologies have been reviewed for potential inclusion within the development. Supporting calculations are provided within Section 8.0 as a means of quantifying the associated carbon reduction arising from this 'Green' step of the energy hierarchy.

# 4.0 Notional Benchmark Energy Calculations

- 4.1 An initial set of SAP calculations were produced for the proposed development as a means of determining the notional benchmark energy consumption and associated carbon dioxide (CO<sub>2</sub>) emissions that would ordinarily be expected under Part L1A (2013) of the Building Regulations.
- 4.2 The CO<sub>2</sub> emissions arising from the predicted unregulated energy consumption within the proposed development were also calculated in order to determine the full CO<sub>2</sub> footprint of the proposed development as per the requirements of the London Plan.
- 4.3 It is noted that the calculated unregulated carbon emissions are not subject to target reductions required by Policy 5.2 of the London Plan or CC1 & CC2 of the Camden Local Plan.
- 4.4 The calculated Benchmark SAP Calculations are detailed within Table 2 below with a selection of Target Emission Rate (TER) calculation worksheets provided in Appendix 1 for detailed review (all other instances are available by request).

| Table 2: Benchmark Annual Energy Consumption and $CO_2$ Emissions (SAP 2012)       |                       |                                              |                                                                             |                                                                                  |                                                                                    |
|------------------------------------------------------------------------------------|-----------------------|----------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Dwelling                                                                           | Floor<br>Area<br>(m²) | Part L1A<br>Target<br>Emission<br>Rate (TER) | Annual<br>'Baseline'<br>Regulated<br>Energy<br>Consumption<br>(kWhr / Year) | Annual<br>'Baseline'<br>Regulated<br>CO <sub>2</sub><br>Emissions<br>(Kg / Year) | Annual<br>'Baseline'<br>Unregulated<br>CO <sub>2</sub><br>Emissions<br>(Kg / Year) |
| Flat 1                                                                             | 50.49                 | 18.80                                        | 3,959.81                                                                    | 949.05                                                                           | 1,039.93                                                                           |
| Flat 2                                                                             | 37.94                 | 22.38                                        | 3,565.94                                                                    | 848.92                                                                           | 841.16                                                                             |
| Flat 3                                                                             | 50.49                 | 19.25                                        | 4,066.82                                                                    | 972.16                                                                           | 1,039.93                                                                           |
| Flat 4                                                                             | 37.94                 | 22.85                                        | 3,649.38                                                                    | 866.94                                                                           | 841.16                                                                             |
| Flat 5                                                                             | 68.84                 | 20.38                                        | 5,927.64                                                                    | 1,402.69                                                                         | 1,325.23                                                                           |
| Total Regulated Baseline CO <sub>2</sub> Emissions (Kg / Year)                     |                       |                                              |                                                                             |                                                                                  | 5,039.76                                                                           |
| Total Unregulated Baseline CO <sub>2</sub> Emissions (Kg / Year)                   |                       |                                              |                                                                             |                                                                                  | 5,087.41                                                                           |
| Overall (Regulated and Unregulated) Baseline CO <sub>2</sub> Emissions (Kg / Year) |                       |                                              |                                                                             |                                                                                  | 10,127.17                                                                          |
| Total Regulated Baseline Energy Consumption (kWhr / Year)                          |                       |                                              |                                                                             |                                                                                  | 21,169.59                                                                          |

4.5

On review of the above, it is evident that the proposed development would be permitted to emit up to **5,039.76 KgCO<sub>2</sub>/year** under occupancy if it was constructed to the minimum energy performance standards required by Part L1A 2013.

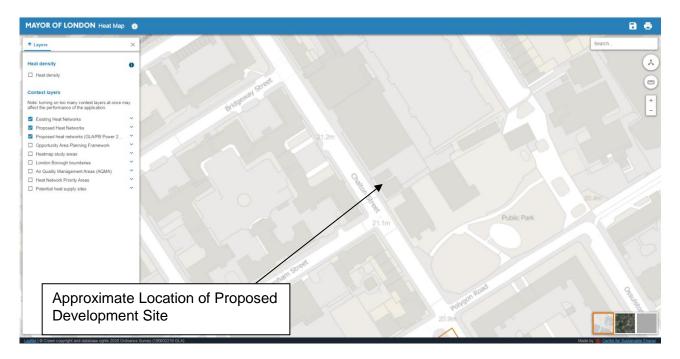
## 5.0 **Proposed Energy Strategy and Performance – Lean Measures**

5.1 In accordance with the 'Lean' principles of the Energy Hierarchy, it is provisionally proposed to adopt the following minimum fabric, heating and lighting standards within the apartments as a means of reducing the overall energy demand of the development by conventional (lean) means:

| Table 3: Proposed 'Lean' Fabric, HVAC and Lighting Standards |                                                         |                                                          |  |  |
|--------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|--|--|
| Element / Feature                                            | Current Part L1A 2013<br>Minimal Acceptable<br>Standard | Proposed Development<br>Target                           |  |  |
| External Wall U-value                                        | 0.30 W/m <sup>2</sup> K                                 | 0.22 W/m <sup>2</sup> K                                  |  |  |
| Separating Walls to Unheated<br>Access Space                 | 0.30 W/m <sup>2</sup> K                                 | 0.22 W/m²K                                               |  |  |
| Party Walls                                                  | 0.20 W/m <sup>2</sup> K                                 | 0.00 W/m²K                                               |  |  |
| Roof Insulated at Rafter                                     | 0.20 W/m <sup>2</sup> K                                 | 0.15 W/m²K                                               |  |  |
| Flat Roof U-value                                            | 0.20 W/m <sup>2</sup> K                                 | 0.15 W/m <sup>2</sup> K                                  |  |  |
| Windows & Rooflights                                         | 2.00 W/m <sup>2</sup> K                                 | 1.40 W/m <sup>2</sup> K                                  |  |  |
| Air Permeability                                             | 10 m³/m³.h                                              | 4.50 m³/m².h                                             |  |  |
| Thermal Bridging                                             | -                                                       | Accredited<br>Construction Details                       |  |  |
| Lighting                                                     | 75% low energy lights                                   | 100% low energy lights                                   |  |  |
| Heating (Gas Combi)                                          | Min 88% (SEDBUK 2009)<br>Efficient Boiler               | 89.6% Efficient Boiler -<br>Ideal Logic Combi ESP1<br>26 |  |  |
| Heating Controls                                             | Programmer,<br>Thermostat & TRVs                        | Delayed Start<br>Thermostat,<br>Programmer and TRVs      |  |  |
| Ventilation                                                  | -                                                       | Intermittent Extract<br>Fans to Kitchens &<br>Bathrooms  |  |  |

- 5.2 The impact of the above 'Lean' measures on the proposed development's overall annual carbon dioxide emissions was determined by updating the Baseline SAP Calculations referenced in Section 4.0.
- 5.3 The results of the Lean Calculations are summarised in Table 4 below with a selection of the Dwelling Emission Rate SAP Worksheets provided in Appendix 2 of this report for detailed review (all other instances are available by request):

| Tab                                                     | Table 4: 'Lean' Annual Energy Consumption and CO <sub>2</sub> Emissions<br>(SAP 2012) |                                                          |                                                                      |                                                                        |  |
|---------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|--|
| Apartment Floor Are<br>(m²)                             |                                                                                       | Part L1A<br>'Lean'<br>Dwelling<br>Emission Rate<br>(DER) | Annual 'Lean'<br>Regulated<br>Energy<br>Consumption<br>(kWhr / Year) | Annual 'Lean'<br>Regulated CO <sub>2</sub><br>Emissions<br>(Kg / Year) |  |
| Flat 1                                                  | 50.49                                                                                 | 17.74                                                    | 3,713.91                                                             | 895.78                                                                 |  |
| Flat 2                                                  | 37.94                                                                                 | 21.51                                                    | 3,415.47                                                             | 815.99                                                                 |  |
| Flat 3                                                  | 50.49                                                                                 | 18.14                                                    | 3,808.03                                                             | 916.10                                                                 |  |
| Flat 4                                                  | 37.94                                                                                 | 21.82                                                    | 3,470.92                                                             | 827.96                                                                 |  |
| Flat 5                                                  | 68.84                                                                                 | 19.05                                                    | 5,505.60                                                             | 1,311.53                                                               |  |
| Total Regulat                                           | 4,767.36                                                                              |                                                          |                                                                      |                                                                        |  |
| Total Regulated 'Lean' Energy Consumption (kWhr / Year) |                                                                                       |                                                          |                                                                      | 19,913.93                                                              |  |


5.4 As a result of adopting the recommended 'Lean' energy efficient measures outlined within paragraph 5.1, the proposed development will have a reduced annual level of regulated CO<sub>2</sub> emissions of **4,767.36 KgCO<sub>2</sub>/year.** This represents a total reduction of **5.40%** in comparison to the Baseline Carbon Dioxide Emissions detailed within Section 4.0.

## 6.0 **Proposed Energy Strategy and Performance – Clean Measures**

6.1 Where feasible, The London Plan 2016 heavily advocates the use of decentralised energy, including district heating and cooling and Combined Heat and Power (CHP). As well as forming the 'Clean' step of the aforementioned Energy Hierarchy, Policy 5.5 - Decentralised Energy Networks states that:

"The Mayor expects 25 per cent of the heat and power used in London to be generated through the use of localised decentralised energy systems by 2025. In order to achieve this target the Mayor prioritises the development of decentralised heating and cooling networks at the development and area wide levels, including larger scale heat transmission networks."

6.2 On consulting the London Heat Map (see below), it is apparent that there is no existing or potential Energy Network within the immediate vicinity of the proposed development and as such any possible connection to an existing or planned network is unviable in this instance.



*Figure 1: Results of the London Heat Map Search within Vicinity of the Development* 

- 6.3 Combined Heat and Power (CHP) units conventionally produce electricity at a localised level from mains gas. In generating electricity in this manner, the technology reduces the losses associated with the inefficient transportation of electricity across the national grid, whilst also producing large quantities of heat as a by-product. This heat can then be harvested and used for the provision of localised heating and hot water.
- 6.4 CHP units are not suitable for all developments as they require sustained heat load demands in order to achieve maximum operating efficiencies. Since there are no economic or sustainability benefits associated with oversizing a CHP installation, a large proportion of smaller developments are often unsuitable for this technology.
- 6.5 On review of the above circumstances coupled with a growing concern on the detrimental impact that CHP equipment can have on urban air quality, the use of this technology within the development is deemed to be unviable.

## 7.0 Review of Renewable Technologies

7.1 In response to the 'Green' requirement of the Energy Hierarchy coupled with the specific requirements of policy CC1 of Camden's Local Plan, a number of different renewable technologies have been reviewed in terms of their overall suitability for inclusion within the proposed development.

## 7.2 Wind Turbine (Column or Roof Mounted)

| • When installed in optimum positions, wind turbines can generate a large amount of renewable electricity, the surplus of which can be exported at financial gain to the national grid via the Feed-in-Tariff scheme. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Not aesthetically pleasing and will not be in keeping with the local                                                                                                                                                |
| area.                                                                                                                                                                                                                 |
| • The site is too sheltered as a result of its general urban location which would result in unreliable and insufficient outputs.                                                                                      |
| • Require on-going maintenance which future occupants may neglect.                                                                                                                                                    |
| • Can produce unacceptable levels of noise to occupants and neighbours.                                                                                                                                               |
| • Strong public resistance to constructing new land based wind turbines                                                                                                                                               |
| • The technology is not deemed as being suitable for use within the proposed development.                                                                                                                             |
|                                                                                                                                                                                                                       |

### 7.3 Solar Photovoltaic

| Benefits                              | <ul> <li>When installed in optimum positions photovoltaic (PV) arrays can generate a large amount of renewable electricity which can be used locally or exported at financial gain to the national grid via the Feed-in-Tariff scheme.</li> <li>Minimal on-going costs &amp; maintenance issues following installation.</li> <li>Easy to integrate into a conventional build specification or retrofit applications</li> <li>The development has a large flat roof area which could facilitate the horizontal installation of panels as a means of minimising the visual impact of the technology. Alternatively angled array stands could be used to help achieve optimal orientation and pitch to maximise generation efficiencies.</li> </ul> |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Site<br>Limitations /<br>Restrictions | <ul> <li>PV panels are not ascetically pleasing and may detract from the visual appearance of the building although this can be minimised by installing the panels in a horizontal position as described above.</li> <li>The adjacent building will cause some overshading to the proposed development's roof which will reduce the generational efficiency of any installed panels</li> </ul>                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Conclusion                            | <ul> <li>It is proposed to use this technology within the development.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

## 7.4 Solar Thermal

| Benefits<br>Site<br>Limitations /<br>Restrictions | <ul> <li>Solar hot water systems can provide an efficient way of contributing to developments overall hot water requirements.</li> <li>Minimal on-going costs &amp; maintenance issues following installation.</li> <li>May be eligible for payments under the Renewable Heat Incentive.</li> <li>As with PV the development benefits from a large flat roof area which could be used to site solar collectors.</li> <li>The amount of CO<sub>2</sub> savings with this technology is restricted as there is no benefit to producing more hot water than is used within a dwelling.</li> <li>Solar collectors are not aesthetically pleasing and may detract from the visual appearance of the development although this could be mitigated by installing panels horizontally.</li> <li>Requires the installation of hot water cylinders / thermal stores which would introduce an additional source of energy loss to the dwellings whilst also potentially restricting useable floor space.</li> <li>The length of pipe runs to thermal stores need to be kept to a minimum.</li> </ul> |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conclusion                                        | <ul> <li>The technology is not deemed as being suitable for use within the<br/>proposed development.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

## 7.5 **Ground Source Heat Pump**

| Benefits                              | <ul> <li>High operating efficiencies (CoPs).</li> <li>Flexible installation options for new build properties including trench and borehole installations</li> <li>Reliable and proven technology.</li> <li>Generally low maintenance costs.</li> <li>No visual impact on the property.</li> <li>Eligible for payments under the Renewable Heat Incentive.</li> </ul> |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site<br>Limitations /<br>Restrictions | <ul><li>Detailed ground surveys required.</li><li>High capital installation costs</li></ul>                                                                                                                                                                                                                                                                          |
| Conclusion                            | • It is not proposed to use this technology within the development.                                                                                                                                                                                                                                                                                                  |

## 7.6 Air Source Heat Pump

| Popofita                                                            | Lich exercise officiencies (CoDe)                                   |  |
|---------------------------------------------------------------------|---------------------------------------------------------------------|--|
| Benefits                                                            | <ul> <li>High operating efficiencies (CoPs).</li> </ul>             |  |
|                                                                     | <ul> <li>Reduced visual impact on the property.</li> </ul>          |  |
|                                                                     | Reliable and proven technology.                                     |  |
|                                                                     | Generally low maintenance costs.                                    |  |
| Site                                                                | • Often require a supplementary immersion heating system.           |  |
| Limitations / • The external units can result in some noise related |                                                                     |  |
| Restrictions                                                        | although this can be limited through the careful selection of       |  |
|                                                                     | particular models with low operating acoustic levels and the        |  |
|                                                                     | potential use of acoustic housing units.                            |  |
| Conclusion                                                          | • It is not proposed to use this technology within the development. |  |

## 7.7 **Biomass Boilers**

| Benefits      | Reliable and proven technology.                                     |
|---------------|---------------------------------------------------------------------|
|               | Eligible for payments under the Renewable Heat Incentive            |
| Site          | Require large storage facilities for the fuel.                      |
| Limitations / | • On-going cleaning, maintenance and management requirements.       |
| Restrictions  | Require regular fuel deliveries.                                    |
|               | Would contribute to poor urban air quality.                         |
| Conclusion    | • The technology is not deemed as being suitable for use within the |
|               | proposed development.                                               |

- 7.8 On review of the above technologies, the use of PV panels is recommended as being the most viable and cost effective technology for use within the proposed development. This will provide a local source of renewable electricity for occupant use as well as providing a significant and affordable reduction in the calculated carbon dioxide emissions.
- 7.9 It is therefore proposed to install a PV array with a minimum output capacity of 3.30 kWp to the flat roof of the proposed development. The panels will be installed in a horizontal plane so that they cannot be seen from street level.
- 7.10 It is expected that the proposed PV array will comprise of 11 x 300W panels requiring approx. 18.70m<sup>2</sup> of roof space.

## 8.0 **Proposed Energy Strategy and Performance – Green Measures**

- 8.1 Having identified the use of photovoltaic panels as being the most suitable renewable technology for use within the development, the 'Lean SAP Calculations detailed in Section 5.0 were updated to incorporate the proposed 3.30 kWp PV Array detailed within paragraphs 7.8 7.10.
- 8.2 The key results of the Proposed (Green) Calculations are summarised in Table 5 below with a selection of the Dwelling Emission Rate SAP Worksheets provided in Appendix 3 of this report for detailed review (all other instances are available by request):

| Table 5: Proposed 'Green' Annual Energy Consumption and $CO_2$ Emissions (SAP 2012) |                                                           |                                                           |                                                                       |                                                                         |  |  |  |  |  |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|--|--|
| Apartment                                                                           | Floor Area<br>(m²)                                        | Part L1A<br>'Green'<br>Dwelling<br>Emission Rate<br>(DER) | Annual 'Green'<br>Regulated<br>Energy<br>Consumption<br>(kWhr / Year) | Annual 'Green'<br>Regulated CO <sub>2</sub><br>Emissions<br>(Kg / Year) |  |  |  |  |  |
| Flat 1                                                                              | 50.49                                                     | 13.50                                                     | 3301.42                                                               | 681.69                                                                  |  |  |  |  |  |
| Flat 2                                                                              | 37.94                                                     | 17.26                                                     | 3105.19                                                               | 654.95                                                                  |  |  |  |  |  |
| Flat 3                                                                              | 50.49                                                     | 13.90                                                     | 3395.54                                                               | 702.02                                                                  |  |  |  |  |  |
| Flat 4                                                                              | 37.94                                                     | 17.58                                                     | 3160.64                                                               | 666.93                                                                  |  |  |  |  |  |
| Flat 5                                                                              | 68.84                                                     | 14.81                                                     | 4942.84                                                               | 1019.46                                                                 |  |  |  |  |  |
| Total Regulat                                                                       | Total Regulated 'Green' CO2 Emissions (Kg / Year)3,725.05 |                                                           |                                                                       |                                                                         |  |  |  |  |  |
| Total Regulat                                                                       | ed 'Green' En                                             | ergy Consumptio                                           | on (kWhr / Year)                                                      | 17,905.63                                                               |  |  |  |  |  |

- 8.3 As a result of installing the renewable technologies specified within Section 7.0 and by also adopting the 'Lean' measures detailed in Section 5.0, it is evident that the proposed development will have a total reduced level of annual regulated CO<sub>2</sub> emissions of **3,725.05 KgCO<sub>2</sub>/year**, this represents a total reduction of **26.09%** beyond the standard requirements of Part L1A 2013 of the Building Regulations.
- 8.4 It is also noted that the development achieves on site CO<sub>2</sub> emissions savings of **21.86%** exclusively from the installation of renewable sources.

# 9.0 Energy Calculation Summary

9.1 The results of the various Energy Calculations detailed within this report are summarised within the tables below:

| Table 6: Carbon Dioxide Emissions after each stage of the Energy<br>Hierarchy |                                       |                                       |  |  |  |  |  |  |
|-------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|--|--|--|--|--|--|
|                                                                               | Carbon dioxide emissions<br>Regulated | (Tonnes CO2 per annum)<br>Unregulated |  |  |  |  |  |  |
| Baseline: Part L 2013 of<br>the Building Regulations<br>Compliant Development | 5.040 (A)                             | 5.087                                 |  |  |  |  |  |  |
| After energy demand<br>reduction                                              | 4.767 (B)                             | 5.087                                 |  |  |  |  |  |  |
| After CHP                                                                     | 4.767 (C)                             | 5.087                                 |  |  |  |  |  |  |
| After renewable energy                                                        | 3.725 (D)                             | 5.087                                 |  |  |  |  |  |  |

| Table 7: Regulated Carbon Dioxide savings from each stage of the Energy<br>Hierarchy |                                    |                   |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------|------------------------------------|-------------------|--|--|--|--|--|--|
|                                                                                      |                                    | n Dioxide savings |  |  |  |  |  |  |
|                                                                                      | (Tonnes CO <sub>2</sub> per annum) | %                 |  |  |  |  |  |  |
| Savings from energy<br>demand reduction                                              | 0.273                              | 5.417             |  |  |  |  |  |  |
| Savings from CHP                                                                     | 0.000                              | 0.000             |  |  |  |  |  |  |
| Savings from renewable<br>energy                                                     | 1.042                              | 21.86             |  |  |  |  |  |  |
| Cumulative On Site<br>Savings                                                        | 1.315                              | 26.09             |  |  |  |  |  |  |

9.2 In the circumstances, the proposed development is therefore deemed to satisfy the requirements of policy *CC1: Policy CC1 Climate change mitigation* of the *Camden Local Plan (2017).* 

# 10.0 Overheating Risk Analysis

- 10.1 Asides from achieving an increased level of energy performance, the proposed dwellings have been designed to mitigate the risks of summertime overheating by adopting internal layouts that facilitate natural cross ventilation. This should provide a passive cooling mechanism which will be particularly effective given that all units will be on or above the third floor level where occupants will be able to securely leave the windows open throughout the day.
- 10.2 The Green SAP Calculations referenced within Section 8 were utilised to perform a preliminary Part L1A Summertime Overheating Risk Analysis (as per Criterion 3 of Part L1A 2013).
- 10.3 The results of the Overheating Check are summarised within Table 8 below, with several example SAP 2012 Overheating Assessments provided within Appendix 4 for detailed review (all other instances are available upon request):


| Table 8: Part L1A 2013 Criterion 3: Summertime Overheating Risk Analysis |                              |                             |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------|------------------------------|-----------------------------|--|--|--|--|--|--|--|
|                                                                          | Floor Area (m <sup>2</sup> ) | Calculated Overheating Risk |  |  |  |  |  |  |  |
| Flat 1                                                                   | 50.49                        | Slight                      |  |  |  |  |  |  |  |
| Flat 2                                                                   | 37.94                        | Slight                      |  |  |  |  |  |  |  |
| Flat 3                                                                   | 50.49                        | Slight                      |  |  |  |  |  |  |  |
| Flat 4                                                                   | 37.94                        | Slight                      |  |  |  |  |  |  |  |
| Flat 5                                                                   | 50.49                        | Slight                      |  |  |  |  |  |  |  |

# 10.4 **On review of the above, it is evident that at this stage of design, the proposed dwellings do not appear to be at significant risk of overheating.**

10.5 It is acknowledged that the Overheating Risk associated with Part L1A 2013 is somewhat limited. It is therefore advised to undertake CIBSE TM59 and TM49 dynamic overheating modelling in conjunction with the detailed design process if planning permission for the development is granted.

## **11.0** Water Management Internal Water Consumption

- 11.1 It is noted that since the proposed development involves the addition of extra storeys to an existing building there will be no increase in surface water runoff as a result of the proposal. The proposals are therefore unlikely to increase the risk of any localised flooding.
- 11.2 The internal water consumption of the dwellings will be reduced through the specification of water saving outlets such as reduced volume / dual flush cisterns, reduced bath capacities and by installing taps and showers with reduced flow rates or inline flow restrictors. This will provide a reduced water consumption of less than or equal to 110 litres per person per day in line with the higher technical standard of Part G of the Building Regulations.
- 11.3 The following provisional specification is proposed for the development's water outlets and sanitary ware which will achieve an internal potable water consumption of **109.27 litres per person per day**. A Water Efficiency Calculation is provided within Appendix 5 of this report for detailed review:
  - Toilets = 5I (Full) and 3I (Part)
  - Basin taps = 4l/min
  - Baths = 170l
  - Showers = 8.5l/min
  - Kitchen taps = 6l/min
- 11.4 The proposed development is therefore deemed to satisfy *Policy CC3 Water and flooding of the Camden Local Plan.*



# Appendix 1:

**Baseline TER Calculations (SAP Derived)** 



#### Project Information Building type Mid-floor flat

| 9913                     |                                                                                                  |                                                                                                          |
|--------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 3 March 2020             |                                                                                                  |                                                                                                          |
| GBS Architectural Design | Project                                                                                          | Flat 1                                                                                                   |
| Lombard Business Park    |                                                                                                  | 130 Chalton Street                                                                                       |
| 8 Lombard Road           |                                                                                                  | London                                                                                                   |
| Wimbledon                |                                                                                                  | NW1 1RX                                                                                                  |
| SW19 3TZ                 |                                                                                                  |                                                                                                          |
|                          | 3 March 2020<br>GBS Architectural Design<br>Lombard Business Park<br>8 Lombard Road<br>Wimbledon | 3 March 2020<br>GBS Architectural Design Project<br>Lombard Business Park<br>8 Lombard Road<br>Wimbledon |

## **EPS** Group

3C Pelham Court Pelham Road Nottingham 0115 7270599 info@epsgroup.co.uk

#### SAP 2012 worksheet for notional dwelling - calculation of target emissions

1. Overall dwelling dimensions

|                           |                               |                        |               |              |      |      | Area<br>(m²) |            | Av. Storey<br>height (m) |      | Volume<br>(m³) |         |            |
|---------------------------|-------------------------------|------------------------|---------------|--------------|------|------|--------------|------------|--------------------------|------|----------------|---------|------------|
|                           | d other floors                | i                      |               |              |      |      | 50.49        |            | 2.40                     |      | 121.1          |         | (3a)       |
| Total floor<br>Dwelling N | area<br>/olume (m³)           |                        |               |              |      |      | 50.49        |            |                          |      | 121.1          |         | (4)<br>(5) |
| 2. Ventilai               | tion rate                     |                        |               |              |      |      |              |            |                          |      | m³ r           | er hour |            |
|                           |                               |                        |               |              |      |      | main + seon  | dary + oth | er                       |      |                | or nour |            |
|                           |                               |                        |               |              |      |      | heating      |            |                          |      |                |         |            |
|                           | f chimneys                    |                        |               |              |      |      | 0 + 0 + 0    |            | x 40                     |      |                | 0.00    | (6a)       |
|                           | f open flues                  |                        |               |              |      |      | 0 + 0 + 0    |            | x 20                     |      |                | 0.00    | (6b)       |
|                           | f intermittent                |                        |               |              |      |      | 2            |            | x 10                     |      |                | 20.00   | (7a)       |
|                           | f passive ve                  |                        |               |              |      |      | 0            |            | x 10                     |      |                | 0.00    | (7b)       |
| Number of                 | f flueless ga                 | s fires                |               |              |      |      | 0            |            | x 40                     |      |                | 0.00    | (7c)       |
|                           |                               |                        |               |              |      |      |              |            |                          |      | Air            | hanges  | per hour   |
| Infiltration              | due to chimi                  | neys, fans ar          | nd flues      |              |      |      |              |            |                          |      |                | 0.17    | (8)        |
|                           | est, result q                 | -                      |               |              |      |      |              |            | 5.00                     |      |                |         | (17)       |
| Air perme                 | ability                       |                        |               |              |      |      |              |            |                          |      |                | 0.42    | (18)       |
| Number of                 | f sides on w                  | hich sheltere          | d             |              |      |      |              |            |                          |      |                | 3.00    | (19)       |
| Shelter fac               | ctor                          |                        |               |              |      |      |              |            |                          |      |                | 0.78    | (20)       |
|                           |                               | ating shelter          |               |              |      |      |              |            |                          |      |                | 0.32    | (21)       |
| Infiltration              | rate modified                 | d for monthly          | wind speed    |              |      |      |              |            |                          |      |                |         |            |
| Jan                       | Feb                           | Mar                    | Apr           | Мау          | Jun  | Jul  | Aug          | Sep        | Oct                      | Nov  | Dec            |         |            |
| 5.10                      | 5.00                          | 4.90                   | 4.40          | 4.30         | 3.80 | 3.80 | 3.70         | 4.00       | 4.30                     | 4.50 | 4.70           |         |            |
|                           |                               |                        |               |              | 1    |      |              |            | и                        |      |                | 52.50   | (22)       |
| Wind Fact                 | or                            |                        |               |              |      |      |              |            |                          |      |                |         |            |
| 1.27                      | 1.25                          | 1.23                   | 1.10          | 1.08         | 0.95 | 0.95 | 0.93         | 1.00       | 1.08                     | 1.13 | 1.18           |         |            |
| Adjusted i                | nfiltration rate              | e (allowing fo         | r shelter an  | t wind sneed | 4)   |      |              |            |                          |      |                | 13.13   | (22a)      |
| 0.41                      | 0.40                          | 0.39                   | 0.35          | 0.35         | 0.31 | 0.31 | 0.30         | 0.32       | 0.35                     | 0.36 | 0.38           |         |            |
| 0.41                      | 0.40                          | 0.39                   | 0.35          | 0.35         | 0.31 | 0.31 | 0.30         | 0.32       | 0.35                     | 0.30 | 0.38           | 4.22    | (22b)      |
|                           | : natural ve<br>iir change ra | ntilation, inter<br>te | mittent extra | ct fans      |      |      |              |            |                          |      |                | 4.ZZ    | (220)      |
| 0.58                      | 0.58                          | 0.58                   | 0.56          | 0.56         | 0.55 | 0.55 | 0.54         | 0.55       | 0.56                     | 0.57 | 0.57           |         | (25)       |
|                           |                               |                        |               |              |      |      |              |            |                          |      |                |         | . ,        |

#### SAP 2012 worksheet for notional dwelling - calculation of target emissions

| 3. Heat los                 | sses and he                  | at loss parai                   | meter          |            |                   |       |                    |         |       |       |       |               |              |
|-----------------------------|------------------------------|---------------------------------|----------------|------------|-------------------|-------|--------------------|---------|-------|-------|-------|---------------|--------------|
| Element                     |                              | Gross                           |                | nings      | Net area          |       | U-value            | Ax      | U     |       |       |               |              |
|                             |                              | area, m <sup>2</sup>            | m²             |            | A, m <sup>2</sup> |       | W/m <sup>2</sup> K | W/K     |       |       |       |               | ()           |
|                             | -                            | ed, air-filled,<br>at (SouthWe  | st)            |            | 1.40              | 00    | 1.33 (1.40         | )       | 1.86  |       |       |               | (27)         |
|                             | -                            | ed, air-filled,<br>at (SouthWe  | st)            |            | 1.40              | 00    | 1.33 (1.40         | )       | 1.86  |       |       |               | (27)         |
| W2                          |                              | ed, air-filled,                 |                |            | 1.4               | 00    | 1.33 (1.40         | )       | 1.86  |       |       |               | (27)         |
| low-E, En=<br>W3            | =0.1, soft co                | at (SouthWe                     | st)            |            |                   |       |                    |         |       |       |       |               |              |
|                             | -                            | ed, air-filled,<br>at (SouthEas | st)            |            | 0.99              | 90    | 1.33 (1.40         | )       | 1.31  |       |       |               | (27)         |
|                             | -                            | ed, air-filled,<br>at (SouthEas | st)            |            | 0.99              | 90    | 1.33 (1.40         | )       | 1.31  |       |       |               | (27)         |
| Window -                    | ÷                            | ed, air-filled,<br>at (SouthEas | st)            |            | 1.20              | 00    | 1.33 (1.40         | )       | 1.59  |       |       |               | (27)         |
| Window -                    | -                            | ed, air-filled,<br>at (SouthWe  | st)            |            | 1.40              | 00    | 1.33 (1.40         | )       | 1.86  |       |       |               | (27)         |
| Window -                    | -                            | ed, air-filled,<br>at (NorthEas | .t)            |            | 1.29              | 90    | 1.33 (1.40)        | )       | 1.71  |       |       |               | (27)         |
| Window -<br>low-E, En=      | -                            | ed, air-filled,<br>at (NorthEas | t)             |            | 0.63              | 20    | 1.33 (1.40         | )       | 0.82  |       |       |               | (27)         |
|                             | =0.1, soft co                | azed, air-fille<br>at (NorthEas |                |            | 1.94              | 40    | 1.(                | 00      | 1.94  |       |       |               | (26)         |
| Walls                       |                              | Jnheated Co                     | ridor          |            | 10.               | 73    | 0.2                | 18      | 1.93  |       |       |               | (29)         |
| Walls                       | 0                            | Jinealeu Cu                     | nuoi           |            | 43.               | 38    | 0.1                | 18      | 7.81  |       |       |               | (29)         |
| External<br>Party wall      |                              |                                 |                |            | 9.                | 38    | 0.0                | 00      | 0.00  |       |       |               |              |
|                             |                              | elements Sig                    | jma A, m²      |            |                   |       |                    |         |       |       |       | 66.74         | (31)         |
|                             | t loss, W/K                  |                                 | <i>/ · · ·</i> |            |                   |       |                    |         |       |       |       | 25.85         | (33)         |
|                             | nass parame<br>nermal bridge | eter, kJ/m <sup>2</sup> K       | (user-specif   | ied TIVIP) |                   |       |                    |         |       |       | 2     | 50.00<br>7.42 | (35)         |
| Total fabric                | •                            | 55                              |                |            |                   |       |                    |         |       |       |       | 7.42<br>33.27 | (36)<br>(37) |
|                             |                              | alculated mo                    | nthly          |            |                   |       |                    |         |       |       |       | 55.27         | (37)         |
| 23.36                       | 23.23                        | 23.10                           | 22.50          | 22.38      | 21.86             | 21.86 | 6 21.7             | 6 22.06 | 22.38 | 22.61 | 22.85 |               | (38)         |
| Heat transf                 | fer coefficier               | it, W/K                         |                |            | ]                 | I     |                    |         |       |       |       |               |              |
| 56.63                       | 56.50                        | 56.37                           | 55.77          | 55.66      | 55.14             | 55.14 | 4 55.0             | 4 55.34 | 55.66 | 55.89 | 56.12 |               |              |
| Heat loss <sub>l</sub>      | parameter (I                 | HLP), W/m²K                     |                |            |                   |       |                    |         |       |       | !     | 55.77         | (39)         |
| 1.12                        | 1.12                         | 1.12                            | 1.10           | 1.10       | 1.09              | 1.09  | 1.09               | 1.10    | 1.10  | 1.11  | 1.11  |               |              |
| HLP (averation of Number of | •                            | onth (Table 1                   | a)             | H          |                   | I     | л                  | η       | N     |       | л     | 1.10          | (40)         |
| Jan                         | Feb                          | Mar                             | Apr            | May        | Jun               | Jul   | Aug                | Sep     | Oct   | Nov   | Dec   |               |              |
| 31                          | 28                           | 31                              | 30             | 31         | 30                | 31    | 31                 | 30      | 31    | 30    | 31    |               |              |
| 51                          |                              | 51                              | 30             |            | 50                | 51    |                    | 30      | 51    |       | 51    |               |              |

| SAP 2012 worksheet for notional dwelling - calcu | lation of target emissions |
|--------------------------------------------------|----------------------------|
| SAF 2012 WOLKSHEELIOL HOUDHALUWEIIING - CAICU    |                            |

|                                      | occupancy,<br>erage hot wa |              | litres ner   | day. Vd aver | ane    |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        | 1<br>74                  |
|--------------------------------------|----------------------------|--------------|--------------|--------------|--------|--------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------------------------|
| Jan                                  | Feb                        | Mar          | Apr          | May          | Jun    | Jul    | Aug    | Sep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oct    | Nov    | Dec                      |
| lot water u                          | usage in litre             | s per day fo | r each mor   | ith          |        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        |                          |
| 82.15                                | 79.16                      | 76.18        | 73.19        | 70.20        | 67.21  | 67.21  | 70.20  | 73.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76.18  | 79.16  | 82.15                    |
| Energy con                           | ntent of hot w             | vater used   |              |              | ][     | ][     |        | ][                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | I      |                          |
| 121.83                               | 106.55                     | 109.95       | 95.86        | 91.98        | 79.37  | 73.55  | 84.40  | 85.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99.53  | 108.65 | 117.98                   |
| Energy cor<br>Distribution           | ntent (annual<br>loss      | )            |              |              |        |        | Я      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ][     | JLJL   | 1175                     |
| 18.27                                | 15.98                      | 16.49        | 14.38        | 13.80        | 11.91  | 11.03  | 12.66  | 12.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.93  | 16.30  | 17.70                    |
| lot water<br>/olume fac<br>emperatur | re factor<br>t from store  | factor (kW   | n/day)       |              |        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        | 0.0<br>0.0<br>0.0<br>0.0 |
| 0.00                                 | 0.00                       | 0.00         | 0.00         | 0.00         | 0.00   | 0.00   | 0.00   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00   | 0.00   | 0.00                     |
| let storage                          | e loss                     | я            | JI           |              | I      |        | л      | JLJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | п.     | лл     |                          |
| 0.00                                 | 0.00                       | 0.00         | 0.00         | 0.00         | 0.00   | 0.00   | 0.00   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00   | 0.00   | 0.00                     |
| Primary lo                           | ss                         |              |              |              |        |        | - A    | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | r.     |                          |
| 0.00                                 | 0.00                       | 0.00         | 0.00         | 0.00         | 0.00   | 0.00   | 0.00   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00   | 0.00   | 0.00                     |
| Combi loss                           | calculated 1               | for each mo  | nth          |              |        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        |                          |
| 41.86                                | 36.44                      | 38.82        | 36.09        | 35.77        | 33.15  | 34.25  | 35.77  | 36.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38.82  | 39.04  | 41.86                    |
| otal heat                            | required for               | water heatin | g calculated | I for each m | ionth  |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        |                          |
| 163.69                               | 142.99                     | 148.77       | 131.95       | 127.75       | 112.52 | 107.80 | 120.17 | 121.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 138.35 | 147.69 | 159.85                   |
|                                      | n water heat               | 7            | -1           | ~~~~         |        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        |                          |
| 163.69                               | 142.99                     | 148.77       | 131.95       | 127.75       | 112.52 | 107.80 | 120.17 | 121.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 138.35 | 147.69 | 159.85                   |
| leat nains                           | from water                 | heating kW   | h/month      |              |        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        | 1623                     |
| 50.97                                | 44.54                      | 46.26        | 40.90        | 39.53        | 34.68  | 33.02  | 37.01  | 37.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42.80  | 45.88  | 49.70                    |
| <i>5. Internal</i><br>Jan            | <i>gains</i>               | Mar          | Apr          | May          | Jun    | Jul    | Aug    | Sep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oct    | Nov    | Dec                      |
|                                      | gains, Watts               |              | r            |              |        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        |                          |
| 85.23                                | 85.23                      | 85.23        | 85.23        | 85.23        | 85.23  | 85.23  | 85.23  | 85.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85.23  | 85.23  | 85.23                    |
| ighting ga                           | lins                       |              | 1            |              | ][     | ][     |        | JL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ][     | ][     |                          |
| 13.27                                | 11.78                      | 9.58         | 7.26         | 5.42         | 4.58   | 4.95   | 6.43   | 8.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.96  | 12.79  | 13.64                    |
| ppliances                            | gains                      | JL           | J            |              | ]      | ]L     | I      | JLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJLJL_JL | N      |        | I                        |
| 148.51                               | 150.05                     | 146.16       | 137.90       | 127.46       | 117.65 | 111.10 | 109.56 | 113.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 121.71 | 132.15 | 141.95                   |
| Cooking ga                           | ains                       | ^            | .n.          |              | л      | л      | ^      | л                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n      | . п.   | - n                      |
| 31.52                                | 31.52                      | 31.52        | 31.52        | 31.52        | 31.52  | 31.52  | 31.52  | 31.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31.52  | 31.52  | 31.52                    |
| oumps and                            | d fans gains               | л            | л            | R            | л      | л      | л      | лл                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | я.     | дд     | лл                       |
| 3.00                                 | 3.00                       | 3.00         | 3.00         | 3.00         | 3.00   | 3.00   | 3.00   | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.00   | 3.00   | 3.00                     |
| .osses e.g                           | g. evaporatio              | n (negative  | values)      |              | -1     |        |        | - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |        |                          |
| -68.18                               | -68.18                     | -68.18       | -68.18       | -68.18       | -68.18 | -68.18 | -68.18 | -68.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -68.18 | -68.18 | -68.18                   |
| Vater heat                           | ing gains                  |              |              |              |        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        |                          |
| 68.51                                | 66.28                      | 62.18        | 56.80        | 53.13        | 48.16  | 44.38  | 49.74  | 51.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 57.53  | 63.73  | 66.79                    |
| otal intern                          | nal gains                  |              |              |              |        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        |                          |
| 281.86                               | 279.68                     | 269.50       | 253.52       | 237.58       | 221.96 | 211.99 | 217.30 | 225.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 241.76 | 260.24 | 273.95                   |

SAP 2012 worksheet for notional dwelling - calculation of target emissions

| 6. Solar gains (calculati                          | ion for Jan    | uary)         |            |                    |          |        |             |        |                             |        |      |
|----------------------------------------------------|----------------|---------------|------------|--------------------|----------|--------|-------------|--------|-----------------------------|--------|------|
|                                                    |                |               |            | Area & Fl          |          |        | g & FF      |        | Shading                     | Gains  |      |
| Window - Double-glazec<br>coat (SouthWest)<br>W1   | l, air-filled, | low-E, En=0   | .1, soft   | 0.9 x 1.40         | )0 36.79 |        | 0.63 x 0.70 |        | 0.77                        | 15.    | .742 |
| Window - Double-glazec<br>coat (SouthWest)         | I, air-filled, | low-E, En=0   | .1, soft   | 0.9 x 1.40         | )0 36.79 |        | 0.63 x 0.70 |        | 0.77                        | 15.    | .742 |
| W2                                                 |                |               |            |                    |          |        |             |        |                             |        |      |
| Window - Double-glazec<br>coat (SouthWest)<br>W3   | l, air-filled, | low-E, En=0   | .1, soft   | 0.9 x 1.40         | )0 36.79 |        | 0.63 x 0.70 |        | 0.77                        | 15.    | .742 |
| Window - Double-glazec<br>coat (SouthEast)<br>W5   | l, air-filled, | low-E, En=0   | .1, soft   | 0.9 x 0.99         | 90 36.79 |        | 0.63 x 0.70 |        | 0.77                        | 11.    | .132 |
| Window - Double-glazed<br>coat (SouthEast)<br>W7   | l, air-filled, | low-E, En=0   | .1, soft   | 0.9 x 0.99         | 90 36.79 |        | 0.63 x 0.70 |        | 0.77                        | 11.    | .132 |
| Window - Double-glazec<br>coat (SouthEast)<br>W6   | I, air-filled, | low-E, En=0   | .1, soft   | 0.9 x 1.20         | )0 36.79 |        | 0.63 x 0.70 |        | 0.77                        | 13.    | .493 |
| Window - Double-glazec<br>coat (SouthWest)<br>W4   | I, air-filled, | low-E, En=0   | .1, soft   | 0.9 x 1.40         | )0 36.79 |        | 0.63 x 0.70 |        | 0.77                        | 15.    | .742 |
| Window - Double-glazed<br>coat (NorthEast)<br>W8   | I, air-filled, | low-E, En=0   | .1, soft   | 0.9 x 1.29         | 11.28    |        | 0.63 x 0.70 |        | 0.77                        | 4.     | .448 |
| Wo<br>Window - Double-glazed<br>coat (NorthEast)   | I, air-filled, | low-E, En=0   | .1, soft   | 0.9 x 0.62         | 20 11.28 |        | 0.63 x 0.70 |        | 0.77                        | 2.     | .137 |
| W9<br>Solid door - Double-glaz<br>coat (NorthEast) | ed, air-fille  | d, low-E, En= | =0.1, soft | 0.9 x 1.94         | 10 0.00  |        | 0.63 x 0.70 |        | 0.77                        | 0.     | .000 |
| Entrance Door<br>Total solar gains, Janua          | arv            |               |            |                    |          |        |             |        |                             | 1      | 05.3 |
| Solar gains                                        | 5              |               |            |                    |          |        |             |        |                             |        |      |
| 105.31 181.58                                      | 254.25         | 324.77        | 372.66     | 373.88             | 358.83   | 322.50 | 278.58      | 202.25 | 126.54                      | 89.87  |      |
| Total gains                                        |                |               | J          |                    |          |        |             |        |                             |        |      |
| 387.17 461.25                                      | 523.75         | 578.29        | 610.24     | 595.84             | 570.82   | 539.80 | 504.20      | 444.01 | 386.78                      | 363.82 |      |
| 307.17 401.23                                      | 525.75         | 576.29        | 010.24     | 595.64             | 570.82   | 559.00 | 504.20      | 444.01 | 300.70                      | 303.02 |      |
| Lighting calculations                              |                |               |            |                    |          |        |             |        |                             |        |      |
| Window - Double-glazec<br>coat (SouthWest)         | I, air-filled, | low-E, En=0   | .1, soft   | Area<br>0.9 x 1.40 | )        |        | g<br>0.80   |        | FF x Shading<br>0.70 x 0.83 | 1      | 0.5  |
| W1<br>Window - Double-glazec<br>coat (SouthWest)   | I, air-filled, | low-E, En=0   | .1, soft   | 0.9 x 1.40         | )        |        | 0.80        |        | 0.70 x 0.83                 |        | 0.5  |
| W2<br>Window - Double-glazed<br>coat (SouthWest)   | I, air-filled, | low-E, En=0   | .1, soft   | 0.9 x 1.40         | )        |        | 0.80        |        | 0.70 x 0.83                 |        | 0.5  |
| W3<br>Window - Double-glazed<br>coat (SouthEast)   | I, air-filled, | low-E, En=0   | .1, soft   | 0.9 x 0.99         | )        |        | 0.80        |        | 0.70 x 0.83                 |        | 0.4  |
| W5<br>Window - Double-glazed<br>coat (SouthEast)   | I, air-filled, | low-E, En=0   | .1, soft   | 0.9 x 0.99         | )        |        | 0.80        |        | 0.70 x 0.83                 |        | 0.4  |
| W7<br>Window - Double-glazec<br>coat (SouthEast)   | I, air-filled, | low-E, En=0   | .1, soft   | 0.9 x 1.20         | )        |        | 0.80        |        | 0.70 x 0.83                 |        | 0.5  |
| Window Double diazor                               | air filled     | low E En-0    | 1 soft     | 00 v 1 /(          | ı        |        | 0.80        |        | 070 v 0.83                  |        | 05   |

(83-1)

(83)

(84)

Window - Double-glazed, air-filled, low-E, En=0.1, soft 0.9 x 1.40 coat (SouthWest)

W4

0.80

0.70 x 0.83

0.59

| Lighting calculations                                   |            |      |              |      |
|---------------------------------------------------------|------------|------|--------------|------|
|                                                         | Area       | g    | FF x Shading |      |
| Window - Double-glazed, air-filled, low-E, En=0.1, soft | 0.9 x 1.29 | 0.80 | 0.70 x 0.83  | 0.54 |
| coat (NorthEast)                                        |            |      |              |      |
| W8                                                      |            |      |              |      |
| Window - Double-glazed, air-filled, low-E, En=0.1, soft | 0.9 x 0.62 | 0.80 | 0.70 x 0.83  | 0.26 |
| coat (NorthEast)                                        |            |      |              |      |
| W9                                                      |            |      |              |      |
| GL = 4.47 / 50.49 = 0.089                               |            |      |              |      |
| C1 = 0.500                                              |            |      |              |      |
| $C_{2} = 0.062$                                         |            |      |              |      |

C2 = 0.962FI = 234

| ΕI | = | 234 |  |
|----|---|-----|--|
|    |   |     |  |
|    |   |     |  |

| -           |                | onsiveness       |                |              |             |          |        |        |          |        |        | -    |
|-------------|----------------|------------------|----------------|--------------|-------------|----------|--------|--------|----------|--------|--------|------|
| Jan         | Feb            | Mar              | Apr            | Мау          | Jun         | Jul      | Aug    | Sep    | Oct      | Nov    | Dec    |      |
| tau         |                |                  |                |              |             |          |        |        |          |        |        | _    |
| 61.91       | 62.06          | 62.20            | 62.87          | 63.00        | 63.59       | 63.59    | 63.71  | 63.36  | 63.00    | 62.74  | 62.47  |      |
| alpha       |                |                  |                |              |             |          |        |        |          |        |        |      |
| 5.13        | 5.14           | 5.15             | 5.19           | 5.20         | 5.24        | 5.24     | 5.25   | 5.22   | 5.20     | 5.18   | 5.16   | ]    |
| Utilisation | factor for ga  | ains for living  | area           | <u>.</u>     |             |          |        |        |          |        |        | -    |
| 0.99        | 0.98           | 0.96             | 0.90           | 0.76         | 0.58        | 0.42     | 0.46   | 0.71   | 0.93     | 0.99   | 1.00   | 7    |
| Mean inte   | ernal tempera  | ature in living  | g area T1      |              | 1           | <u>I</u> |        |        | 1        |        |        | -    |
| 19.95       | 20.15          | 20.41            | 20.71          | 20.90        | 20.98       | 21.00    | 21.00  | 20.95  | 20.69    | 20.26  | 19.91  | 7    |
| Temperat    | ure during h   | eating period    | ls in rest of  | dwelling Th2 | 2           |          |        | ][     | <u> </u> |        |        | _    |
| 19.98       | 19.99          | 19.99            | 20.00          | 20.00        | 20.01       | 20.01    | 20.01  | 20.00  | 20.00    | 20.00  | 19.99  | ]    |
| Utilisation | factor for ga  | ains for rest of | of dwelling    |              | JL          | 1L       | _1     | ][     | ][       | 1L     | !      | _    |
| 0.99        | 0.98           | 0.95             | 0.87           | 0.70         | 0.49        | 0.33     | 0.37   | 0.62   | 0.90     | 0.98   | 0.99   | ٦    |
| Mean inte   | ernal tempera  | iture in the r   | est of dwellir | ng T2        |             |          |        |        |          |        |        | _    |
| 18.60       | 18.89          | 19.27            | 19.67          | 19.91        | 20.00       | 20.01    | 20.01  | 19.97  | 19.66    | 19.06  | 18.55  | ٦    |
|             | ea fraction (2 | 6.09 / 50.49     | )              |              |             |          |        |        |          |        |        | ).52 |
| •           | ernal tempera  |                  | -              | ling)        |             |          |        |        |          |        |        |      |
| 19.30       | 19.54          | 19.86            | 20.21          | 20.42        | 20.51       | 20.52    | 20.52  | 20.48  | 20.19    | 19.68  | 19.25  | 7    |
| Apply adj   | ustment to th  | ne mean inte     | ernal tempera  | ature, where | appropriate |          |        | ]      |          |        |        |      |
| 19.30       | 19.54          | 19.86            | 20.21          | 20.42        | 20.51       | 20.52    | 20.52  | 20.48  | 20.19    | 19.68  | 19.25  | ٦    |
|             |                |                  |                |              |             | [        |        |        |          |        |        | _    |
|             |                |                  |                |              |             |          |        |        |          |        |        |      |
| 8. Space    | heating requ   | uirement         |                |              |             |          |        |        |          |        |        |      |
| Jan         | Feb            | Mar              | Apr            | Мау          | Jun         | Jul      | Aug    | Sep    | Oct      | Nov    | Dec    | ]    |
| Utilisation | factor for ga  | ains             |                |              |             | 1        | A      |        |          |        | R      | _    |
| 0.99        | 0.98           | 0.95             | 0.87           | 0.73         | 0.54        | 0.38     | 0.42   | 0.66   | 0.91     | 0.98   | 0.99   | 1    |
| Useful ga   | ains           |                  | 1              |              | ]           |          |        |        | 1        |        |        | _    |
| 383.39      | 450.81         | 496.18           | 504.54         | 445.62       | 319.23      | 215.21   | 225.24 | 334.43 | 401.89   | 378.71 | 361.14 | 7    |
| Monthly a   | average exte   | ernal tempera    | ature          |              |             |          |        |        |          |        |        | _    |
| 4.30        | 4.90           | 6.50             | 8.90           | 11.70        | 14.60       | 16.60    | 16.40  | 14.10  | 10.60    | 7.10   | 4.20   | 7    |
|             | rate for mea   |                  |                |              |             |          |        |        |          |        |        |      |
| 849.44      | 827.13         | 753.04           | 630.56         | 485.51       | 325.61      | 216.03   | 226.63 | 352.84 | 533.74   | 702.98 | 844.94 | 7    |
|             | of month for   |                  |                |              |             |          |        |        |          |        |        |      |
| 1.00        | 1.00           | 1.00             | 1.00           | 1.00         | -           | -        | 1.     | -      | 1.00     | 1.00   | 1.00   | 7    |
|             | ating require  |                  |                |              |             |          |        |        |          |        |        |      |
| 346.74      | 252.89         | 191.10           | 90.74          | 29.68        | -           | -        |        | -      | 98.10    | 233.47 | 359.95 | ٦    |
|             | 1 / 7 / XV     | I I Y I I U      |                |              |             |          |        |        |          |        |        |      |

Space heating requirement per m<sup>2</sup> (kWh/m<sup>2</sup>/year)

Total space heating requirement per year (kWh/year) (October to May)

1602.66

31.74

(98)

(99)

| 9a. Energy requirements                                                                       |                    |              |                |        |        |        |                  |          | kWh/year       |    |
|-----------------------------------------------------------------------------------------------|--------------------|--------------|----------------|--------|--------|--------|------------------|----------|----------------|----|
| No secondary heating systen<br>Fraction of space heat from r<br>Efficiency of main heating sy | nain system(s)     |              |                |        |        | G      | 1.0000<br>93.40% |          | KWWyCa         | (  |
| Jan Feb Mar                                                                                   | Apr                | Мау          | Jun            | Jul    | Aug    | Sep    | Oct              | Nov      | Dec            |    |
| Space heating requirement                                                                     |                    |              |                |        |        |        |                  |          |                |    |
| 346.74 252.89 191.                                                                            | 0 90.74            | 29.68        | -              | -      | -      | -      | 98.10            | 233.47   | 359.95         | (  |
| Appendix Q - monthly energy                                                                   | saved (main he     | ating system | <u>ו</u><br>1) |        |        |        | Į                | <u>I</u> |                |    |
| 0.00 0.00 0.00                                                                                | 0.00               | 0.00         | -              | -      | -      | -      | 0.00             | 0.00     | 0.00           | (  |
| Space heating fuel (main hea                                                                  | ing system 1)      |              |                |        |        |        |                  |          |                |    |
| 371.24 270.76 204.                                                                            | 97.15              | 31.77        | -              | -      | -      | -      | 105.03           | 249.97   | 385.39         | (  |
| Appendix Q - monthly energy                                                                   | saved (main he     | ating system | ן<br>1 2)      | I      |        |        |                  |          |                |    |
| 0.00 0.00 0.00                                                                                | 0.00               | 0.00         | -              | -      | -      | -      | 0.00             | 0.00     | 0.00           | (. |
| Space heating fuel (main hea                                                                  | ing system 2)      |              |                |        |        |        | 1L               | <u>I</u> |                |    |
| 0.00 0.00 0.00                                                                                | 0.00               | 0.00         | -              | -      | -      | -      | 0.00             | 0.00     | 0.00           | (  |
| Appendix Q - monthly energ                                                                    | saved (seconda     | ary heating  | system)        | R      |        |        | Ų                | ņ        |                |    |
| 0.00 0.00 0.00                                                                                | 0.00               | 0.00         | -              | -      | -      | -      | 0.00             | 0.00     | 0.00           | (. |
| Space heating fuel (secondar                                                                  | /)                 |              | _1             |        |        |        | I(               |          |                |    |
| 0.00 0.00 0.00                                                                                | 0.00               | 0.00         | -              | -      |        | -      | 0.00             | 0.00     | 0.00           | (  |
| Water heating<br>Water heating requirement                                                    |                    |              |                | JL     |        |        | ][               | H        |                |    |
| 163.69 142.99 148.                                                                            | 7 131.95           | 127.75       | 112.52         | 107.80 | 120.17 | 121.50 | 138.35           | 147.69   | 159.85         | (  |
| Efficiency of water heater                                                                    |                    |              |                |        |        |        |                  |          | 80.30          | (. |
| 86.90 86.47 85.6                                                                              | 84.13              | 82.03        | 80.30          | 80.30  | 80.30  | 80.30  | 84.20            | 86.20    | 87.03          | (. |
| Water heating fuel                                                                            |                    |              |                |        |        | I      |                  |          |                |    |
| 188.38 165.36 173.                                                                            | 53 156.84          | 155.74       | 140.12         | 134.25 | 149.65 | 151.31 | 164.31           | 171.33   | 183.66         | (. |
| Annual totals                                                                                 |                    |              |                |        |        |        | I                | <u> </u> | kWh/year       |    |
| Space heating fuel used, mai                                                                  | n system 1         |              |                |        |        |        |                  |          | 1715.91        | () |
| Space heating fuel (secondar                                                                  | ,                  |              |                |        |        |        |                  |          | 0.00           | (  |
| Water heating fuel                                                                            |                    |              |                |        |        |        |                  |          | 1934.58        | (. |
| Electricity for pumps, fans an                                                                | l electric keep-ho | t            |                |        |        |        |                  |          |                | ,  |
| central heating pump<br>boiler with a fan-assisted flu                                        |                    |              |                |        |        |        |                  |          | 30.00          | (  |
| Total electricity for the above                                                               |                    |              |                |        |        |        |                  |          | 45.00<br>75.00 | (  |
| Electricity for lighting (100.009                                                             | 2                  |              |                |        |        |        |                  |          | 234.33         | (  |
| Energy saving/generation tec<br>Appendix Q -                                                  |                    |              |                |        |        |        |                  |          |                | ,  |
| Energy saved or generated                                                                     | 0:                 |              |                |        |        |        |                  |          | 0.000          | (  |
| Energy used ():                                                                               |                    |              |                |        |        |        |                  |          | 0.000          | (  |
| Total delivered energy for all                                                                | uses               |              |                |        |        |        |                  |          | 3959.81        | (  |

10a. Does not apply

11a. Does not apply

#### SAP 2012 worksheet for notional dwelling - calculation of target emissions

#### 12a. Carbon dioxide emissions

|                                | Energy   | Emission factor | Emissions              |       |
|--------------------------------|----------|-----------------|------------------------|-------|
|                                | kWh/year | kg CO2/kWh      | kg CO2/year            |       |
| Space heating, main system 1   | 1715.91  | 0.216           | 370.64                 | (261) |
| Space heating, main system 2   | 0.00     | 0.000           | 0.00                   | (262) |
| Space heating, secondary       | 0.00     | 0.519           | 0.00                   | (263) |
| Water heating                  | 1934.58  | 0.216           | 417.87                 | (264) |
| Space and water heating        |          |                 | 788.51                 | (265) |
| Electricity for pumps and fans | 75.00    | 0.519           | 38.93                  | (267) |
| Electricity for lighting       | 234.33   | 0.519           | 121.62                 | (268) |
| Electricity generated - PVs    | 0.00     | 0.519           | 0.00                   | (269) |
| Electricity generated - µCHP   | 0.00     | 0.000           | 0.00                   | (269) |
| Appendix Q -                   |          |                 |                        |       |
| Energy saved ():               | 0.00     | 0.000           | 0.00                   | (270) |
| Energy used ():                | 0.00     | 0.000           | 0.00                   | (271) |
| Total CO2, kg/year             |          |                 | 949.05                 | (272) |
|                                |          |                 | kalm <sup>2</sup> hoor |       |

|                                                          | kg/m²/year |        |
|----------------------------------------------------------|------------|--------|
| Emissions per m <sup>2</sup> for space and water heating | 15.62      | (272a) |
| Emissions per m <sup>2</sup> for lighting                | 2.41       | (272b) |
| Emissions per m <sup>2</sup> for pumps and fans          | 0.77       | (272c) |
| Target Carbon Dioxide Emission Rate (TER)                | 18.80      | (273)  |
|                                                          |            |        |

 $= (15.6171 \times 1.00) + 2.4087 + 0.7709$ 



#### Project Information Building type Top-floor flat

| Reference<br>Date | 9913<br>15 April 2020                                                                        |         |                                                   |
|-------------------|----------------------------------------------------------------------------------------------|---------|---------------------------------------------------|
| Client            | GBS Architectural Design<br>Lombard Business Park<br>8 Lombard Road<br>Wimbledon<br>SW19 3TZ | Project | Flat 5<br>130 Chalton Street<br>London<br>NW1 1RX |

## **EPS** Group

3C Pelham Court Pelham Road Nottingham 0115 7270599 info@epsgroup.co.uk

#### SAP 2012 worksheet for notional dwelling - calculation of target emissions

1. Overall dwelling dimensions

|                           | 0                               |                  |               |             |      |          | Area<br>(m²) |             | Av. Storey<br>height (m) |      | Volume<br>(m³) |               |            |
|---------------------------|---------------------------------|------------------|---------------|-------------|------|----------|--------------|-------------|--------------------------|------|----------------|---------------|------------|
|                           | other floors                    |                  |               |             |      |          | 68.84        |             | 2.40                     |      | 165.           | 22            | (3a)       |
| Total floor<br>Dwelling v | area<br>olume (m <sup>3</sup> ) |                  |               |             |      |          | 68.84        |             |                          |      | 165.:          | 22            | (4)<br>(5) |
| 2. Ventilati              | tion rate                       |                  |               |             |      |          |              |             |                          |      | m³ ı           | per hou       | r          |
|                           |                                 |                  |               |             |      |          | main + seon  | dary + othe | er                       |      |                |               |            |
|                           |                                 |                  |               |             |      |          | heating      |             |                          |      |                |               |            |
|                           | f chimneys                      |                  |               |             |      |          | 0 + 0 + 0    |             | x 40                     |      |                | 0.00          | ()         |
|                           | open flues                      | f                |               |             |      |          | 0 + 0 + 0    |             | x 20                     |      |                | 0.00          | (***)      |
|                           | intermittent                    |                  |               |             |      |          | 2<br>0       |             | x 10<br>x 10             |      |                | 20.00<br>0.00 | . ,        |
|                           | f passive ve<br>flueless gas    |                  |               |             |      |          | 0            |             | x 10<br>x 40             |      |                | 0.00          | ( )        |
|                           | nucicss gas                     | 5 11105          |               |             |      |          | 0            |             | X 10                     |      |                | 0.00          | 5 (70)     |
|                           |                                 |                  |               |             |      |          |              |             |                          |      | Air            | change        | s per hour |
| Infiltration of           | due to chimr                    | neys, fans ar    | nd flues      |             |      |          |              |             |                          |      |                | 0.12          | 2 (8)      |
| Pressure te               | est, result q                   | 50               |               |             |      |          |              |             | 5.00                     |      |                |               | (17)       |
| Air permea                | 2                               |                  |               |             |      |          |              |             |                          |      |                | 0.37          | ( - )      |
|                           |                                 | hich sheltere    | d             |             |      |          |              |             |                          |      |                | 1.00          | ( )        |
| Shelter fact              |                                 |                  |               |             |      |          |              |             |                          |      |                | 0.93          | . ,        |
|                           |                                 | ating shelter    |               |             |      |          |              |             |                          |      |                | 0.34          | 4 (21)     |
|                           |                                 | I for monthly    | -             | ~           | - )r | -16      |              | - Y         | 10                       |      |                |               |            |
| Jan                       | Feb                             | Mar              | Apr           | Мау         | Jun  | Jul      | Aug          | Sep         | Oct                      | Nov  | Dec            |               |            |
| 5.10                      | 5.00                            | 4.90             | 4.40          | 4.30        | 3.80 | 3.80     | 3.70         | 4.00        | 4.30                     | 4.50 | 4.70           |               |            |
|                           | _!                              | _I               | ]             |             |      |          |              |             | I                        |      | I              | 52.50         | ) (22)     |
| Wind Facto                | or                              |                  |               |             |      |          |              |             |                          |      |                |               |            |
| 1.27                      | 1.25                            | 1.23             | 1.10          | 1.08        | 0.95 | 0.95     | 0.93         | 1.00        | 1.08                     | 1.13 | 1.18           |               |            |
|                           |                                 |                  |               |             |      |          |              |             |                          |      | l              | 13.13         | 3 (22a)    |
| Adjusted in               | filtration rate                 | e (allowing fo   | r shelter and | d wind spee | d)   |          |              |             |                          |      |                |               | . ,        |
| 0.44                      | 0.43                            | 0.42             | 0.38          | 0.37        | 0.33 | 0.33     | 0.32         | 0.34        | 0.37                     | 0.39 | 0.40           |               |            |
|                           |                                 | <u>I</u>         | J             |             |      | <u>I</u> |              |             | ][                       |      |                | 4.50          | ) (22b)    |
| Ventilation               | : natural ver                   | ntilation, inter | mittent extra | ct fans     |      |          |              |             |                          |      |                |               |            |
| Effective ai              | ir change ra                    | te               |               |             |      |          |              |             |                          |      |                |               |            |
| 0.60                      | 0.59                            | 0.59             | 0.57          | 0.57        | 0.55 | 0.55     | 0.55         | 0.56        | 0.57                     | 0.57 | 0.58           |               | (25)       |
| L                         |                                 |                  |               |             |      |          |              |             |                          |      |                |               |            |

#### SAP 2012 worksheet for notional dwelling - calculation of target emissions

| 3. Heat los       | sses and hea                  | at loss parai.       | neter          |         |                   |      |                    |   |       |       |       |       |        |      |
|-------------------|-------------------------------|----------------------|----------------|---------|-------------------|------|--------------------|---|-------|-------|-------|-------|--------|------|
| Element           |                               | Gross                | Oper           | nings   | Net area          |      | U-value            |   | ΑxU   |       |       |       |        |      |
| \\/indow          | Daubla aları                  | area, m <sup>2</sup> | m²             |         | A, m <sup>2</sup> | F.0. | W/m <sup>2</sup> K |   | W/K   | 1 1 0 |       |       |        | (27) |
|                   | Double-glaze<br>=0.1, soft co |                      | t)             |         | 3.15              | 50   | 1.33 (1.40)        |   | 2     | 1.18  |       |       |        | (27) |
| W4                | -0.1, SUIL CU                 | at (NUTTILAS         | ()             |         |                   |      |                    |   |       |       |       |       |        |      |
|                   | Double-glaze                  | ed, air-filled,      |                |         | 0.84              | 40   | 1.33 (1.40)        | ) | -     | 1.11  |       |       |        | (27) |
|                   | =0.1, soft co                 |                      | t)             |         |                   |      |                    |   |       |       |       |       |        | ( )  |
| W5                |                               |                      |                |         |                   |      |                    |   |       |       |       |       |        |      |
| Window -          | Double-glaze                  | ed, air-filled,      |                |         | 1.89              | 90   | 1.33 (1.40)        | ) | 2     | 2.51  |       |       |        | (27) |
|                   | =0.1, soft co                 | at (NorthEas         | t)             |         |                   |      |                    |   |       |       |       |       |        |      |
| W7                |                               |                      |                |         |                   |      |                    |   |       |       |       |       |        | (07) |
|                   | Double-glaze                  |                      | a.t.)          |         | 1.2               | 50   | 1.33 (1.40)        | ) |       | 1.66  |       |       |        | (27) |
| W3                | =0.1, soft coa                | at (Southwes         | Sl)            |         |                   |      |                    |   |       |       |       |       |        |      |
|                   | Double-glaze                  | ed air-filled        |                |         | 1.2               | 50   | 1.33 (1.40)        | 1 |       | 1.66  |       |       |        | (27) |
|                   | =0.1, soft coa                |                      | st)            |         | 1.23              | 50   | 1.55 (1.40)        | , |       | 1.00  |       |       |        | (27) |
| W2                |                               |                      | · · /          |         |                   |      |                    |   |       |       |       |       |        |      |
| Window -          | Double-glaze                  | ed, air-filled,      |                |         | 1.2               | 50   | 1.33 (1.40)        | ) | 1     | 1.66  |       |       |        | (27) |
| low-E, En=        | =0.1, soft coa                | at (SouthWe          | st)            |         |                   |      |                    |   |       |       |       |       |        |      |
| W1                |                               |                      |                |         |                   |      |                    |   |       |       |       |       |        |      |
|                   | - Double-gla                  |                      |                |         | 1.94              | 40   | 1.0                | 0 | Î     | 1.94  |       |       |        | (26) |
|                   | =0.1, soft co                 | at (NorthEas         | t)             |         |                   |      |                    |   |       |       |       |       |        |      |
| Entrance<br>Walls | e Door                        |                      |                |         | 83.:              | 25   | 0.1                | 0 | 1,    | 1.99  |       |       |        | (29) |
| External          | Wall                          |                      |                |         | 03                | 20   | 0.1                | 0 | 14    | +.77  |       |       |        | (29) |
| Walls             |                               |                      |                |         | 13.               | 77   | 0.1                | 8 | -     | 2.48  |       |       |        | (29) |
| Seperati          | ing Wall to U                 | Inheated Cor         | ridor          |         |                   |      |                    |   |       |       |       |       |        |      |
| Flat roofs        |                               |                      |                |         | 64.               | 34   | 0.1                | 3 | 8     | 3.36  |       |       |        | (30) |
| Pitched roo       | ofs insulated                 | between raf          | ters           |         | 6.2               | 21   | 0.1                | 3 | (     | ).81  |       |       |        | (30) |
| Total area        | of external                   | elements Sia         | ma A. m²       |         |                   |      |                    |   |       |       |       |       | 179.14 | (31) |
|                   | at loss, W/K                  | J                    |                |         |                   |      |                    |   |       |       |       |       | 41.34  | (33) |
| Thermal m         | nass parame                   | eter, kJ/m²K         | (user-specifie | ed TMP) |                   |      |                    |   |       |       |       | 4     | 250.00 | (35) |
| Effect of th      | nermal bridge                 | es                   |                |         |                   |      |                    |   |       |       |       |       | 8.96   | (36) |
| Total fabric      |                               |                      |                |         |                   |      |                    |   |       |       |       |       | 50.30  | (37) |
|                   | heat loss ca                  |                      | -              | ·       |                   |      |                    |   |       |       |       |       |        |      |
| 32.48             | 32.28                         | 32.08                | 31.15          | 30.97   | 30.16             | 30.1 | 6 30.0             | 1 | 30.47 | 30.97 | 31.33 | 31.69 |        | (38) |
| Heat transf       | fer coefficien                | t, W/K               |                |         |                   |      |                    |   |       |       |       |       |        |      |
| 82.78             | 82.58                         | 82.38                | 81.45          | 81.27   | 80.46             | 80.4 | 6 80.3             | 1 | 80.77 | 81.27 | 81.63 | 82.00 |        |      |
|                   |                               |                      |                |         |                   |      |                    |   |       |       |       |       | 81.45  | (39) |
|                   | parameter (H                  |                      |                |         |                   |      |                    |   |       |       |       |       |        |      |
| 1.20              | 1.20                          | 1.20                 | 1.18           | 1.18    | 1.17              | 1.17 | 1.17               |   | 1.17  | 1.18  | 1.19  | 1.19  |        |      |
| HLP (aver         |                               |                      |                |         |                   |      |                    |   |       |       |       |       | 1.18   | (40) |
|                   | f days in mo                  | -                    | -              | ·       |                   |      |                    |   |       | 1     |       |       |        |      |
| Jan               | Feb                           | Mar                  | Apr            | Мау     | Jun               | Jul  | Aug                |   | Sep   | Oct   | Nov   | Dec   |        |      |
| 31                | 28                            | 31                   | 30             | 31      | 30                | 31   | 31                 |   | 30    | 31    | 30    | 31    |        |      |
|                   |                               |                      |                |         |                   |      |                    |   |       | ~ ~   |       |       |        |      |

| CAD | 2012 warkshaath  | an mational | disco Ilino a | anlaulation | afternat emploaterna |  |
|-----|------------------|-------------|---------------|-------------|----------------------|--|
| SAP | 2012 WORKSHEELII | n nononai   | awenna -      | Calculation | of target emissions  |  |
|     |                  |             |               |             |                      |  |

|                                      | <i>eating energ</i><br>occupancy, |              | ents           |              |        |        |        |        |        |        | kWh/yea<br>2         | r<br>.22 |
|--------------------------------------|-----------------------------------|--------------|----------------|--------------|--------|--------|--------|--------|--------|--------|----------------------|----------|
|                                      | erage hot wa                      |              | n litres per d | lay Vd,avera | ige    |        |        |        |        |        | 86                   | .87      |
| Jan                                  | Feb                               | Mar          | Apr            | Мау          | Jun    | Jul    | Aug    | Sep    | Oct    | Nov    | Dec                  | ]        |
| Hot water i                          | usage in litre                    | s per day fo | or each mont   | h            |        | ,г     |        |        | Л      |        |                      | 1        |
| 95.56                                | 92.08                             | 88.61        | 85.13          | 81.66        | 78.18  | 78.18  | 81.66  | 85.13  | 88.61  | 92.08  | 95.56                | ]        |
| Energy cor                           | ntent of hot w                    | vater used   |                |              |        | I      |        |        |        |        |                      | 1        |
| 141.71                               | 123.94                            | 127.89       | 111.50         | 106.99       | 92.32  | 85.55  | 98.17  | 99.34  | 115.77 | 126.38 | 137.24               | ]        |
| Energy cor<br>Distribution           | ntent (annual<br>i loss           | )            |                | л            |        |        | Р.     |        |        |        | 1366                 | .79      |
| 21.26                                | 18.59                             | 19.18        | 16.72          | 16.05        | 13.85  | 12.83  | 14.73  | 14.90  | 17.37  | 18.96  | 20.59                | ]        |
| Hot water<br>/olume fac<br>Femperatu | re factor<br>t from store         | factor (kWI  | h/day)         |              |        |        |        |        |        |        | 0.00<br>0.00<br>0.00 | 000      |
| 0.00                                 | 0.00                              | 0.00         | 0.00           | 0.00         | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00                 | ]        |
| Vet storage                          | e loss                            | JLJ          |                |              | _II    | ][     |        |        | ][     |        |                      | 1        |
| 0.00                                 | 0.00                              | 0.00         | 0.00           | 0.00         | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00                 | 1        |
| Primary lo                           | uss                               | JL           | _![            |              |        | IL     |        | I      | IL     | I      |                      | 1        |
| 0.00                                 | 0.00                              | 0.00         | 0.00           | 0.00         | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00                 | ]        |
| Combi loss                           | s calculated 1                    | for each mo  | nth            | ]            |        |        |        | ][     |        |        |                      | 1        |
| 48.69                                | 42.38                             | 45.15        | 41.98          | 41.61        | 38.56  | 39.84  | 41.61  | 41.98  | 45.15  | 45.41  | 48.69                | ]        |
| Fotal heat                           | required for                      | water heatin | g calculated   | for each mo  | onth   | I      |        |        |        |        |                      | 1        |
| 190.40                               | 166.32                            | 173.04       | 153.48         | 148.60       | 130.88 | 125.39 | 139.78 | 141.32 | 160.93 | 171.78 | 185.93               | ]        |
| Output from                          | n water heat                      | er for each  | month, kWh/    | month        |        | Л      |        |        |        |        |                      | 1        |
| 190.40                               | 166.32                            | 173.04       | 153.48         | 148.60       | 130.88 | 125.39 | 139.78 | 141.32 | 160.93 | 171.78 | 185.93               | ]        |
|                                      |                                   |              |                |              |        |        | R      | л.     |        |        | 1887                 | .86      |
| •                                    | from water                        | پ<br>۲       | 1              | 1            |        |        |        |        |        |        | 1                    | 1        |
| 59.29                                | 51.80                             | 53.81        | 47.57          | 45.98        | 40.34  | 38.41  | 43.04  | 43.53  | 49.78  | 53.37  | 57.80                | ]        |
| 5. Internal                          | gains                             |              |                |              |        |        |        |        |        |        |                      |          |
| Jan                                  | Feb                               | Mar          | Apr            | Мау          | Jun    | Jul    | Aug    | Sep    | Oct    | Nov    | Dec                  | ]        |
| Vetabolic (                          | gains, Watts                      |              |                |              |        |        |        |        |        |        |                      |          |
| 110.88                               | 110.88                            | 110.88       | 110.88         | 110.88       | 110.88 | 110.88 | 110.88 | 110.88 | 110.88 | 110.88 | 110.88               | ]        |
| ighting ga                           | ains                              |              |                |              |        |        |        |        |        |        |                      |          |
| 18.61                                | 16.53                             | 13.44        | 10.18          | 7.61         | 6.42   | 6.94   | 9.02   | 12.11  | 15.38  | 17.95  | 19.13                | ]        |
| Appliances                           | gains                             |              |                |              |        |        |        |        |        |        |                      | _        |
| 194.57                               | 196.59                            | 191.51       | 180.67         | 167.00       | 154.15 | 145.56 | 143.55 | 148.63 | 159.47 | 173.14 | 185.99               |          |
| Cooking g                            | ains                              |              |                |              |        |        |        |        |        |        |                      | _        |
| 34.09                                | 34.09                             | 34.09        | 34.09          | 34.09        | 34.09  | 34.09  | 34.09  | 34.09  | 34.09  | 34.09  | 34.09                | ]        |
| Pumps and                            | d fans gains                      |              |                |              |        |        |        |        |        |        |                      |          |
| 3.00                                 | 3.00                              | 3.00         | 3.00           | 3.00         | 3.00   | 3.00   | 3.00   | 3.00   | 3.00   | 3.00   | 3.00                 |          |
| osses e.g                            | g. evaporatio                     | n (negative  | values)        |              |        |        |        |        |        |        |                      | _        |
| -88.71                               | -88.71                            | -88.71       | -88.71         | -88.71       | -88.71 | -88.71 | -88.71 | -88.71 | -88.71 | -88.71 | -88.71               |          |
| Nater heat                           | ing gains                         |              |                |              |        |        |        |        |        |        |                      | _        |
| 79.69                                | 77.09                             | 72.33        | 66.07          | 61.80        | 56.02  | 51.62  | 57.85  | 60.45  | 66.91  | 74.13  | 77.69                | ]        |
| Fotal interr                         | nal gains                         |              |                |              |        |        |        |        |        |        |                      | _        |
| 352.14                               | 349.48                            | 336.54       | 316.19         | 295.67       | 275.86 | 263.39 | 269.69 | 280.46 | 301.02 | 324.48 | 342.08               |          |

SAP 2012 worksheet for notional dwelling - calculation of target emissions

| 6. Solar ga                         | ains (calcula     | ation for Jan    | uary)        |            | Area 0 El                |         |        | ~ ^                   |        | Chodin a        | Caina           |
|-------------------------------------|-------------------|------------------|--------------|------------|--------------------------|---------|--------|-----------------------|--------|-----------------|-----------------|
| Window -<br>coat (North<br>W4       | -                 | ed, air-filled,  | low-E, En=(  | ).1, soft  | Area & Fli<br>0.9 x 3.15 |         |        | g & FF<br>0.63 x 0.70 |        | Shading<br>).77 | Gains<br>10.861 |
|                                     | -                 | ed, air-filled,  | low-E, En=0  | ).1, soft  | 0.9 x 0.84               | 0 11.28 |        | 0.63 x 0.70           | (      | ).77            | 2.896           |
|                                     | •                 | ed, air-filled,  | low-E, En=(  | ).1, soft  | 0.9 x 1.89               | 0 11.28 |        | 0.63 x 0.70           | (      | ).77            | 6.517           |
|                                     | -                 | ed, air-filled,  | low-E, En=0  | ).1, soft  | 0.9 x 1.25               | 0 36.79 |        | 0.63 x 0.70           | (      | ).77            | 14.055          |
|                                     | -                 | ed, air-filled,  | low-E, En=0  | ).1, soft  | 0.9 x 1.25               | 0 36.79 |        | 0.63 x 0.70           | (      | ).77            | 14.055          |
|                                     | -                 | ed, air-filled,  | low-E, En=(  | ).1, soft  | 0.9 x 1.25               | 0 36.79 |        | 0.63 x 0.70           | (      | ).77            | 14.055          |
|                                     | hEast)            | azed, air-filleo | d, Iow-E, Er | =0.1, soft | 0.9 x 1.94               | 0 0.00  |        | 0.63 x 0.70           | (      | ).77            | 0.000           |
|                                     | r gains, Jan      | uary             |              |            |                          |         |        |                       |        |                 | 62.4            |
| Solar gain                          |                   |                  |              | 7          |                          |         |        |                       |        |                 |                 |
| 62.44                               | 113.10            | 172.63           | 243.89       | 300.54     | 310.41                   | 294.25  | 250.15 | 197.02                | 129.82 | 76.02           | 52.64           |
| Total gains                         | - r               | 1                | 1            | 1          |                          | 1       | 1      |                       | 1      | 1               |                 |
| 414.59                              | 462.58            | 509.18           | 560.07       | 596.21     | 586.27                   | 557.64  | 519.83 | 477.48                | 430.84 | 400.50          | 394.72          |
| Lighting c                          | calculations      |                  |              |            |                          |         |        |                       |        |                 |                 |
|                                     |                   |                  |              |            | Area                     |         |        | g                     |        | F x Shading     |                 |
| Window -<br>coat (North<br>W4       | •                 | ed, air-filled,  | low-E, En=(  | ).1, soft  | 0.9 x 3.15               | •       |        | 0.80                  | (      | ).70 x 0.83     | 1.3             |
|                                     | 0                 | ed, air-filled,  | low-E, En=0  | ).1, soft  | 0.9 x 0.84               | ļ       |        | 0.80                  | (      | 0.70 x 0.83     | 0.3             |
| Window -<br>coat (North             | -                 | ed, air-filled,  | low-E, En=0  | ).1, soft  | 0.9 x 1.89               | )       |        | 0.80                  | (      | 0.70 x 0.83     | 0.7             |
| coat (Sout                          | -                 | ed, air-filled,  | low-E, En=0  | ).1, soft  | 0.9 x 1.25               | i       |        | 0.80                  | (      | 0.70 x 0.83     | 0.5             |
| coat (Sout                          | •                 | ed, air-filled,  | low-E, En=(  | ).1, soft  | 0.9 x 1.25               | i       |        | 0.80                  | (      | 0.70 x 0.83     | 0.5             |
| W2<br>Window -<br>coat (South<br>W1 | -                 | ed, air-filled,  | low-E, En=€  | ).1, soft  | 0.9 x 1.25               | i       |        | 0.80                  | (      | ).70 x 0.83     | 0.5             |
|                                     | / 68.84 = 0.<br>0 | 059              |              |            |                          |         |        |                       |        |                 |                 |

C2 = 1.030

EI = 329

| Jan           | Feb          | Mar             | Apr            | May         | Jun         | Jul    | Aug    | Sep    | Oct    | Nov    | Dec     |
|---------------|--------------|-----------------|----------------|-------------|-------------|--------|--------|--------|--------|--------|---------|
| 3u            |              | IVIAI           | Дрі            | liviay      | Jun         | Jui    | Aug    | Jeh    | 001    |        | Dec     |
| 57.75         | 57.89        | 58.03           | 58.69          | 58.82       | 59.41       | 59.41  | 59.53  | 59.18  | 58.82  | 58.57  | 58.30   |
| lpha          | 57.07        | 50.05           | 30.07          | 30.02       | 57.41       | 37.41  | 57.55  | 57.10  | 30.02  | 50.57  | 50.50   |
| 4.85          | 4.86         | 4.87            | 4.91           | 4.92        | 4.96        | 4.96   | 4.97   | 4.95   | 4.92   | 4.90   | 4.89    |
|               |              | nins for living |                | 1.72        | 4.70        | 4.70   | 4.77   | 4.75   | 4.72   | 4.70   | 4.07    |
| 1.00          | 1.00         | 0.99            | 0.97           | 0.91        | 0.77        | 0.61   | 0.67   | 0.89   | 0.98   | 1.00   | 1.00    |
|               |              | iture in living | _              |             | 0.77        | 0.01   | 0.07   | 0.07   | 0.70   | 1.00   | 1.00    |
| 19.69         | 19.83        | 20.07           | 20.40          | 20.71       | 20.92       | 20.98  | 20.97  | 20.82  | 20.43  | 20.00  | 19.67   |
|               |              | eating periods  |                |             |             | 20.70  | 20.77  | 20.02  | 20.10  |        | 17.07   |
| 19.92         | 19.92        | 19.92           | 19.93          | 19.94       | 19.95       | 19.95  | 19.95  | 19.94  | 19.94  | 19.93  | 19.93   |
| Jtilisation f |              | ins for rest o  |                |             |             |        |        |        |        |        | 1       |
| 1.00          | 0.99         | 0.99            | 0.96           | 0.88        | 0.68        | 0.48   | 0.54   | 0.83   | 0.97   | 0.99   | 1.00    |
| lean inter    | nal tempera  | ture in the re  | est of dwellin | iq T2       |             |        |        |        |        |        |         |
| 18.18         | 18.38        | 18.73           | 19.22          | 19.64       | 19.89       | 19.94  | 19.93  | 19.79  | 19.26  | 18.64  | 18.15   |
| iving area    | fraction (2  | 6.80 / 68.84)   |                |             |             |        |        |        |        |        | 0       |
| lean inter    | nal tempera  | ture (for the   | whole dwell    | ing)        |             |        |        |        |        |        |         |
| 18.77         | 18.94        | 19.25           | 19.68          | 20.06       | 20.29       | 20.34  | 20.34  | 20.19  | 19.71  | 19.17  | 18.74   |
| pply adjust   | stment to th | ne mean inter   | nal tempera    | ture, where | appropriate |        |        |        |        |        |         |
| 18.77         | 18.94        | 19.25           | 19.68          | 20.06       | 20.29       | 20.34  | 20.34  | 20.19  | 19.71  | 19.17  | 18.74   |
|               |              |                 | ][             |             |             | ]      |        |        |        | ]      |         |
|               |              | . ,             |                |             |             |        |        |        |        |        |         |
| ,             | eating requ  |                 |                | 1           |             |        |        |        |        | - I    |         |
| Jan           | Feb          | Mar             | Apr            | Мау         | Jun         | Jul    | Aug    | Sep    | Oct    | Nov    | Dec     |
|               | actor for ga |                 |                |             |             |        | 0.50   |        |        |        |         |
| 1.00          | 0.99         | 0.98            | 0.96           | 0.88        | 0.72        | 0.53   | 0.59   | 0.84   | 0.97   | 0.99   | 1.00    |
| Jseful gair   |              | 1               | 1              | 1           |             | 1      | 1      | 1      | 1      |        | 1       |
| 413.00        | 459.37       | 501.34          | 536.11         | 524.93      | 419.56      | 294.51 | 305.13 | 402.96 | 417.79 | 397.61 | 393.53  |
|               |              | rnal tempera    | - 1(           | - <b>Y</b>  |             |        |        |        |        |        |         |
| 4.30          | 4.90         | 6.50            | 8.90           | 11.70       | 14.60       | 16.60  | 16.40  | 14.10  | 10.60  | 7.10   | 4.20    |
|               | · ·          | n internal ter  |                | - Y         |             |        |        |        |        |        |         |
| 1197.59       | 1159.42      | 1050.30         | 877.89         | 679.39      | 457.65      | 301.20 | 316.17 | 491.89 | 740.78 | 985.42 | 1192.35 |
| raction of    | month for h  | neating         |                |             |             |        |        |        |        |        |         |
| 1.00          | 1.00         | 1.00            | 1.00           | 1.00        |             |        | 1      | 1      | 1.00   | 1.00   | 1.00    |

 Space heating requirement for each month, kWh/month

 583.74
 470.44
 408.42
 246.08
 114.92
 240.30

 Total space heating requirement per year (kWh/year) (October to May)

Space heating requirement per m<sup>2</sup> (kWh/m<sup>2</sup>/year)

3081.45 (98) 44.76 (99)

423.23

594.32

| 9a. Energ   | y requiremen                   | nts          |               |              |         |        |        |        |        |        | kWh/year     |         |
|-------------|--------------------------------|--------------|---------------|--------------|---------|--------|--------|--------|--------|--------|--------------|---------|
| No secon    | dary heating                   | system sele  | ected         |              |         |        |        |        |        |        | www.yodi     |         |
|             | f space heat                   |              | system(s)     |              |         |        |        |        | 1.0000 |        |              | (202)   |
|             | of main heat                   | ting system  |               |              |         |        |        |        | 93.40% |        |              | (206)   |
| Jan         | Feb                            | Mar          | Apr           | Мау          | Jun     | Jul    | Aug    | Sep    | Oct    | Nov    | Dec          |         |
| Space hea   | ating requiren                 | nent         |               |              |         |        |        |        |        |        |              |         |
| 583.74      | 470.44                         | 408.42       | 246.08        | 114.92       | -       | -      | -      | -      | 240.30 | 423.23 | 594.32       | (98)    |
| Appendix    | Q - monthly                    | energy save  | ed (main he   | ating syster | n 1)    |        |        |        |        |        |              |         |
| 0.00        | 0.00                           | 0.00         | 0.00          | 0.00         | -       | -      | -      | -      | 0.00   | 0.00   | 0.00         | (210)   |
| Space hea   | ating fuel (ma                 | in heating s | ystem 1)      |              |         |        |        |        |        |        |              |         |
| 624.98      | 503.68                         | 437.29       | 263.47        | 123.04       | -       | -      | -      | -      | 257.28 | 453.14 | 636.32       | (211)   |
| Appendix    | Q - monthly                    | energy save  | ed (main he   | ating system | n 2)    |        |        |        |        |        | A            |         |
| 0.00        | 0.00                           | 0.00         | 0.00          | 0.00         | -       | -      | -      | -      | 0.00   | 0.00   | 0.00         | (212)   |
| Space hea   | ating fuel (ma                 | in heating s | ystem 2)      |              |         | JL     |        |        | 1      |        |              |         |
| 0.00        | 0.00                           | 0.00         | 0.00          | 0.00         | -       | -      | -      | -      | 0.00   | 0.00   | 0.00         | (213)   |
| Appendix    | Q - monthly                    | energy sav   | red (seconda  | ary heating  | system) | . Д    |        |        | 1      |        |              |         |
| 0.00        | 0.00                           | 0.00         | 0.00          | 0.00         | -       | -      | -      | -      | 0.00   | 0.00   | 0.00         | (214)   |
| Space hea   | ating fuel (se                 | condary)     | ][            |              |         |        |        |        | ][]    |        |              |         |
| 0.00        | 0.00                           | 0.00         | 0.00          | 0.00         | -       | -      | -      | -      | 0.00   | 0.00   | 0.00         | (215)   |
| Water hear  | ting                           | 1            |               |              | ][      |        | _!     | I      | 1      |        |              |         |
| Water hea   | iting requirem                 | ent          |               |              |         |        |        |        |        |        |              |         |
| 190.40      | 166.32                         | 173.04       | 153.48        | 148.60       | 130.88  | 125.39 | 139.78 | 141.32 | 160.93 | 171.78 | 185.93       | (64)    |
| Efficiency  | of water hea                   | ter          |               | . н.         |         |        |        |        |        |        | 80.3         | 0 (216) |
| 87.69       | 87.52                          | 87.14        | 86.23         | 84.41        | 80.30   | 80.30  | 80.30  | 80.30  | 86.06  | 87.23  | 87.77        | (217)   |
| Water hear  | ting fuel                      |              |               |              |         |        |        |        | 1      |        |              |         |
| 217.14      | 190.03                         | 198.59       | 177.98        | 176.04       | 162.98  | 156.15 | 174.07 | 176.00 | 187.00 | 196.93 | 211.84       | (219)   |
| Annual tot  |                                |              |               |              |         | ,п     |        |        | I      |        | kWh/year     |         |
|             | ating fuel use                 | d, main sys  | item 1        |              |         |        |        |        |        |        | 3299.2       | 0 (211) |
| -           | ating fuel (se                 | -            |               |              |         |        |        |        |        |        | 0.0          | 0 (215) |
| Water hear  | •                              |              |               |              |         |        |        |        |        |        | 2224.7       | 4 (219) |
| 2           | for pumps, fa                  | ans and elec | ctric keep-ho | ot           |         |        |        |        |        |        | 20.0         |         |
|             | ieating pump<br>th a fan-assis | tod fluo     |               |              |         |        |        |        |        |        | 30.0<br>45.0 | ``      |
|             | tricity for the                |              | h/vear        |              |         |        |        |        |        |        | 45.0         |         |
|             | for lighting (1                |              | -             |              |         |        |        |        |        |        | 328.7        | . ,     |
|             | aving/generati                 |              |               |              |         |        |        |        |        |        |              | . ,     |
| Appendix    |                                |              |               |              |         |        |        |        |        |        |              |         |
|             | saved or ger                   | nerated ():  |               |              |         |        |        |        |        |        | 0.00         | •       |
| Energy      | used ():                       |              |               |              |         |        |        |        |        |        | 0.00         | 0 (237a |
| Total deliv | vered energy                   | for all uses |               |              |         |        |        |        |        |        | 5927.6       | 4 (238) |
|             |                                |              |               |              |         |        |        |        |        |        |              | (====)  |

10a. Does not apply

11a. Does not apply


#### SAP 2012 worksheet for notional dwelling - calculation of target emissions

#### 12a. Carbon dioxide emissions

|                                | Energy   | Emission factor | Emissions   |       |
|--------------------------------|----------|-----------------|-------------|-------|
|                                | kWh/year | kg CO2/kWh      | kg CO2/year |       |
| Space heating, main system 1   | 3299.20  | 0.216           | 712.63      | (261) |
| Space heating, main system 2   | 0.00     | 0.000           | 0.00        | (262) |
| Space heating, secondary       | 0.00     | 0.519           | 0.00        | (263) |
| Water heating                  | 2224.74  | 0.216           | 480.54      | (264) |
| Space and water heating        |          |                 | 1193.17     | (265) |
| Electricity for pumps and fans | 75.00    | 0.519           | 38.93       | (267) |
| Electricity for lighting       | 328.71   | 0.519           | 170.60      | (268) |
| Electricity generated - PVs    | 0.00     | 0.519           | 0.00        | (269) |
| Electricity generated - µCHP   | 0.00     | 0.000           | 0.00        | (269) |
| Appendix Q -                   |          |                 |             |       |
| Energy saved ():               | 0.00     | 0.000           | 0.00        | (270) |
| Energy used ():                | 0.00     | 0.000           | 0.00        | (271) |
| Total CO2, kg/year             |          |                 | 1402.69     | (272) |
|                                |          |                 | ka/m²/vear  |       |

|                                                          | kg/m²/year   |
|----------------------------------------------------------|--------------|
| Emissions per m <sup>2</sup> for space and water heating | 17.33 (272a) |
| Emissions per m <sup>2</sup> for lighting                | 2.48 (272b)  |
| Emissions per m <sup>2</sup> for pumps and fans          | 0.57 (272c)  |
| Target Carbon Dioxide Emission Rate (TER)                | 20.38 (273)  |
|                                                          |              |

 $= (17.3325 \times 1.00) + 2.4782 + 0.5654$ 



## Appendix 2:

Lean DER Calculations (SAP Derived)



#### Project Information Building type Mid-floor flat

| Reference | 9913                     |         |                    |
|-----------|--------------------------|---------|--------------------|
| Date      | 3 March 2020             |         |                    |
| Client    | GBS Architectural Design | Project | Flat 1             |
|           | Lombard Business Park    |         | 130 Chalton Street |
|           | 8 Lombard Road           |         | London             |
|           | Wimbledon                |         | NW1 1RX            |
|           | SW19 3TZ                 |         |                    |

### **EPS** Group

3C Pelham Court Pelham Road Nottingham 0115 7270599 info@epsgroup.co.uk

#### SAP 2012 worksheet for New dwelling as built - calculation of dwelling emissions

1. Overall dwelling dimensions

| Fourth and other floors       50.49       2.40       121.18       (3a)         Total floor area       50.49       (4)         Dwelling volume (m³)       121.18       (5)         2. Ventilation rate       m³ per hour |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dwelling volume (m³)       121.18       (5)         2. Ventilation rate       121.18       121.18                                                                                                                       |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
| main + seondary + other                                                                                                                                                                                                 |
| heating                                                                                                                                                                                                                 |
| Number of chimneys 0 + 0 + 0 x 40 0.00 (6a)                                                                                                                                                                             |
| Number of open flues         0 + 0 + 0         x 20         0.00         (6b)                                                                                                                                           |
| Number of intermittent fans2x 1020.00(7a)                                                                                                                                                                               |
| Number of passive vents 0 x 10 0.00 (7b)                                                                                                                                                                                |
| Number of flueless gas fires 0 x 40 0.00 (7c)                                                                                                                                                                           |
| Air changes per hour                                                                                                                                                                                                    |
| Infiltration due to chimneys, fans and flues 0.17 (8)                                                                                                                                                                   |
| Pressure test, result q50 4.50 (17)                                                                                                                                                                                     |
| Air permeability 0.39 (18)                                                                                                                                                                                              |
| Number of sides on which sheltered 3.00 (19)                                                                                                                                                                            |
| Shelter factor 0.78 (20)                                                                                                                                                                                                |
| Infiltration rate incorporating shelter factor 0.30 (21)                                                                                                                                                                |
| Infiltration rate modified for monthly wind speed<br>Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                    |
|                                                                                                                                                                                                                         |
| 5.10         5.00         4.90         4.40         4.30         3.80         3.70         4.00         4.30         4.50         4.70                                                                                  |
| 52.50 (22)<br>Wind Factor                                                                                                                                                                                               |
| 1.27 1.25 1.23 1.10 1.08 0.95 0.95 0.93 1.00 1.08 1.13 1.18                                                                                                                                                             |
| Adjusted infiltration rate (allowing for shelter and wind speed) (22a                                                                                                                                                   |
| 0.39 0.38 0.37 0.33 0.32 0.29 0.29 0.28 0.30 0.32 0.34 0.36                                                                                                                                                             |
| 3.97 (22)                                                                                                                                                                                                               |
| Ventilation : natural ventilation, intermittent extract fans<br>Effective air change rate                                                                                                                               |
| 0.57 0.57 0.57 0.56 0.55 0.54 0.54 0.54 0.55 0.55 0.56 0.56 (25)                                                                                                                                                        |

| <i>3. Heat los</i> .<br>Element | ses and hea                    | <i>t loss paran</i><br>Gross |                   | enings    | Net area |       | U-value     | ΑxU   |       | kappa-value | АхК     |       |
|---------------------------------|--------------------------------|------------------------------|-------------------|-----------|----------|-------|-------------|-------|-------|-------------|---------|-------|
|                                 |                                | area, m²                     | m²                |           | A, m²    |       | W/m²K       | W/K   |       | kJ/m²K      | kJ/K    |       |
| Window - D                      | Double-glazed                  | d, argon fille               | ed,               |           | 0.9      | 10    | 1.33 (1.40) |       | 1.21  |             |         | (27   |
|                                 | 0.1, soft coa                  | t (NorthEast                 | t)                |           |          |       |             |       |       |             |         |       |
| W9                              |                                |                              |                   |           |          |       |             |       |       |             |         |       |
|                                 | Double-glazed                  | -                            |                   |           | 1.8      | 90    | 1.33 (1.40) |       | 2.51  |             |         | (27   |
| low-E, En=0<br>W8               | 0.1, soft coa                  | t (NorthEast                 | i)                |           |          |       |             |       |       |             |         |       |
|                                 | Double-glazed<br>D.1, soft coa | •                            |                   |           | 2.0      | 940   | 1.33 (1.40) |       | 2.70  |             |         | (27   |
|                                 | Double-glazed<br>D.1, soft coa | -                            |                   |           | 1.7      | '50   | 1.33 (1.40) |       | 2.32  |             |         | (27   |
|                                 | Double-glazed<br>D.1, soft coa | -                            |                   |           | 1.4      | 50    | 1.33 (1.40) |       | 1.92  |             |         | (27   |
| Window - D                      | Double-glazed<br>D.1, soft coa | •                            |                   |           | 1.4      | 50    | 1.33 (1.40) |       | 1.92  |             |         | (27   |
| Window - D                      | Double-glazed<br>D.1, soft coa | •                            |                   |           | 2.0      | )40   | 1.33 (1.40) |       | 2.70  |             |         | (27   |
| Window - D                      | Double-glazed<br>D.1, soft coa | -                            |                   |           | 2.0      | 40    | 1.33 (1.40) |       | 2.70  |             |         | (27   |
| Window - D                      | Double-glazed<br>D.1, soft coa | -                            |                   |           | 2.0      | 40    | 1.33 (1.40) |       | 2.70  |             |         | (27   |
| Solid door<br>Entrance          | Door                           |                              |                   |           | 1.9      | 40    | 0.66        |       | 1.28  |             |         | (26   |
| Walls                           |                                |                              |                   |           | 38       | .46   | 0.22        |       | 8.46  | 60.00       | 2307.60 | (29   |
| External<br>Walls               | vvali                          |                              |                   |           | 10       | .73   | 0.22        |       | 2.36  | 0.00        | 0.00    | (29   |
|                                 | ig Wall to Ur                  | heated Cor                   | ridor             |           | 10       | .15   | 0.22        |       | 2.30  | 0.00        | 0.00    | (29   |
| Party wall                      |                                |                              |                   |           | 9        | .38   | 0.00        |       | 0.00  | 70.00       | 656.60  |       |
| Total area (                    | of external e                  | lements Sia                  | maΔ m²            |           |          |       |             |       |       |             | 66.74   | (31   |
| Fabric heat                     |                                | ionionito olg                | ind <i>r</i> , in |           |          |       |             |       |       |             | 32.80   | •     |
|                                 | ass paramet                    | er, kJ/m²K                   | (user-speci       | fied TMP) |          |       |             |       |       |             | 250.00  |       |
|                                 | ermal bridges                  |                              |                   |           |          |       |             |       |       |             | 9.62    |       |
| Total fabric                    | heat loss                      |                              |                   |           |          |       |             |       |       |             | 42.42   | 2 (37 |
| Ventilation                     | heat loss ca                   | lculated mor                 | nthly             |           |          |       |             |       |       |             |         |       |
| 22.96                           | 22.85                          | 22.74                        | 22.20             | 22.11     | 21.64    | 21.64 | 21.56       | 21.82 | 22.11 | 22.31       | 22.52   | (38   |
| Heat transfe                    | er coefficient,                | W/K                          | 11                |           |          |       |             | JL    |       | JI          |         |       |
| 65.39                           | 65.27                          | 65.16                        | 64.63             | 64.53     | 64.06    | 64.06 | 63.98       | 64.24 | 64.53 | 64.73       | 64.94   |       |
|                                 |                                | J                            |                   |           |          |       | I           | ]     |       |             | 64.63   | (39   |
|                                 | arameter (H                    |                              | 1 20              | 1 20      | 1 27     | 1 07  | 1 17        | 1 07  | 1 00  | 1 20        | 1.29    |       |
| 1.30                            | 1.29                           | 1.29                         | 1.28              | 1.28      | 1.27     | 1.27  | 1.27        | 1.27  | 1.28  | 1.28        |         | //0   |
| HLP (avera<br>Number of         | ige)<br>days in mor            | th (Table 1a                 | a)                |           |          |       |             |       |       |             | 1.28    | 3 (40 |
| Jan                             | Feb                            | Mar                          | Apr               | Мау       | Jun      | Jul   | Aug         | Sep   | Oct   | Nov         | Dec     |       |
| Juli                            |                                |                              |                   |           |          |       |             |       |       |             |         |       |

|                         | <i>heating energ</i><br>occupancy, |              | pents         |               |               |        |        |        |        |        | kWh/year<br>1.70 |
|-------------------------|------------------------------------|--------------|---------------|---------------|---------------|--------|--------|--------|--------|--------|------------------|
|                         | verage hot wa                      |              | n litres per  | day Vd,aver   | age           |        |        |        |        |        | 74.68            |
| Jan                     | Feb                                | Mar          | Apr           | Мау           | Jun           | Jul    | Aug    | Sep    | Oct    | Nov    | Dec              |
| ot water                | usage in litre                     | es per day f | or each moi   | nth           | ][            |        |        | ]      |        |        |                  |
| 32.15                   | 79.16                              | 76.18        | 73.19         | 70.20         | 67.21         | 67.21  | 70.20  | 73.19  | 76.18  | 79.16  | 82.15            |
| nergy co                | ontent of hot                      | water used   | N             |               | ]             |        |        | ]      |        |        |                  |
| 121.83                  | 106.55                             | 109.95       | 95.86         | 91.98         | 79.37         | 73.55  | 84.40  | 85.41  | 99.53  | 108.65 | 117.98           |
| nergy co<br>istributior | ontent (annua<br>n loss            | al)          |               |               | /             | H      |        | N      | H      | R      | 1175.05          |
| 18.27                   | 15.98                              | 16.49        | 14.38         | 13.80         | 11.91         | 11.03  | 12.66  | 12.81  | 14.93  | 16.30  | 17.70            |
| store lo                | ss determine                       | d from EN 1  | 13203-2 test  | s, taken fron | n boiler data | record |        |        |        | I      |                  |
|                         | storage volu                       | , ,          |               |               |               |        |        |        |        |        | 0.00             |
|                         | cylinder los                       | s factor (kW | /h/day)       |               |               |        |        |        |        |        | 0.0000           |
| olume fa<br>emperati    | ure factor                         |              |               |               |               |        |        |        |        |        | 0.0000<br>0.0000 |
|                         | st from store                      | (kWh/day)    |               |               |               |        |        |        |        |        | 0.00             |
| otal stora              |                                    |              |               |               |               |        |        |        |        |        |                  |
| 0.00                    | 0.00                               | 0.00         | 0.00          | 0.00          | 0.00          | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00             |
| et storag               | ge loss                            | л            | n             | A             | - J.          |        | ri     |        |        | л      |                  |
| 0.00                    | 0.00                               | 0.00         | 0.00          | 0.00          | 0.00          | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00             |
| rimary lo               | 055                                |              |               |               | 1             | 1      |        | I      | I      |        |                  |
| 0.00                    | 0.00                               | 0.00         | 0.00          | 0.00          | 0.00          | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00             |
| ombi los                | s calculated                       | for each mo  | onth          |               |               |        |        | J      | ][     | I      |                  |
| 3.05                    | 2.75                               | 3.05         | 2.95          | 3.05          | 2.95          | 3.05   | 3.05   | 2.95   | 3.05   | 2.95   | 3.05             |
| otal heat               | t required for                     | water heatir | ng calculated | d for each m  | ionth         |        |        | ]      |        |        |                  |
| 124.87                  | 109.30                             | 113.00       | 98.81         | 95.02         | 82.32         | 76.59  | 87.44  | 88.35  | 102.58 | 111.59 | 121.03           |
| utput fro               | m water hea                        | ter for each | month, kWh    | n/month       | ]             | JL     |        | J      |        |        |                  |
| 124.87                  | 109.30                             | 113.00       | 98.81         | 95.02         | 82.32         | 76.59  | 87.44  | 88.35  | 102.58 | 111.59 | 121.03           |
|                         |                                    |              | Л             |               |               |        |        | J      | ][     | I      | 1210.91          |
| eat gains               | s from water                       | heating, kW  | /h/month      |               |               |        |        |        |        |        |                  |
| 41.27                   | 36.12                              | 37.32        | 32.61         | 31.34         | 27.13         | 25.22  | 28.82  | 29.13  | 33.86  | 36.86  | 39.99            |
|                         |                                    |              |               |               |               |        |        |        |        |        |                  |
| Interna                 | al nains                           |              |               |               |               |        |        |        |        |        |                  |
| Jan                     | Feb                                | Mar          | Apr           | May           | Jun           | Jul    | Aug    | Sep    | Oct    | Nov    | Dec              |
|                         | gains, Watts                       |              | 7.61          |               | 5411          | 501    |        |        | 001    |        | Dee              |
| 35.23                   | 85.23                              | 85.23        | 85.23         | 85.23         | 85.23         | 85.23  | 85.23  | 85.23  | 85.23  | 85.23  | 85.23            |
| ighting g               |                                    | 00.20        | 00.20         |               | 00.20         | 00.20  | 00.20  | 00.20  | 00.20  | 00.20  | 00.20            |
| 13.24                   | 11.76                              | 9.56         | 7.24          | 5.41          | 4.57          | 4.94   | 6.42   | 8.61   | 10.94  | 12.76  | 13.61            |
| ppliances               |                                    | 7.50         | 7.24          | 0.11          | 4.07          | 4.74   | 0.42   | 0.01   | 10.74  | 12.70  | 13.01            |
| 148.51                  | 150.05                             | 146.16       | 137.90        | 127.46        | 117.65        | 111.10 | 109.56 | 113.44 | 121.71 | 132.15 | 141.95           |
| ooking                  |                                    | 140.10       | 137.70        | 127.40        | 117.05        | 111.10 | 107.50 | 113.44 | 121.71 | 132.13 | 141.75           |
| 31.52                   | 31.52                              | 31.52        | 31.52         | 31.52         | 31.52         | 31.52  | 31.52  | 31.52  | 31.52  | 31.52  | 31.52            |
|                         | a fans gains                       |              | 51.52         | 51.52         | 51.52         | 51.52  | 51.52  | 51.52  | 51.52  | 51.52  | 51.52            |
| 3.00                    | 3.00                               | 3.00         | 3.00          | 3.00          | 3.00          | 3.00   | 3.00   | 3.00   | 3.00   | 3.00   | 3.00             |
|                         | .g. evaporatio                     |              |               | 3.00          | 3.00          | 3.00   | 3.00   | 3.00   | 3.00   | 3.00   | 3.00             |
|                         | - ·                                | -            |               | 60.10         | 60.10         | 40.10  | 60.10  | 60.10  | 60.10  | 60.10  | 40.10            |
| -68.18                  | -68.18<br>ating gains              | -68.18       | -68.18        | -68.18        | -68.18        | -68.18 | -68.18 | -68.18 | -68.18 | -68.18 | -68.18           |
|                         |                                    | E0 1/        | 45.00         | 40.10         | 27.40         | 22.00  | 20.74  | 40.47  | AE 51  | E1 00  | E2 7E            |
| 55.47                   | 53.74                              | 50.16        | 45.29         | 42.13         | 37.68         | 33.89  | 38.74  | 40.46  | 45.51  | 51.20  | 53.75            |
| 268.78                  | rnal gains                         | 057.44       | 242.00        | 224 57        | 011.17        | 201 50 | 201 22 | 014.00 | 220.70 | 047 (0 | 2/0.00           |
|                         | 267.12                             | 257.46       | 242.00        | 226.57        | 211.47        | 201.50 | 206.29 | 214.09 | 229.72 | 247.68 | 260.88           |

| 6. Solar ga                           | ains (calculati         | ion for Janu   | iary)        |              | Area & Flu  | x       |        | g & FF      |        | Shading     | Gains            |        |
|---------------------------------------|-------------------------|----------------|--------------|--------------|-------------|---------|--------|-------------|--------|-------------|------------------|--------|
| Window - I<br>coat (North<br>W9       | Double-glazec<br>1East) | l, argon fille | ed, Iow-E, I | En=0.1, soft |             |         |        | 0.63 x 0.70 |        | ).77        | 3.1379           |        |
|                                       | Double-glazec<br>nEast) | l, argon fille | ed, Iow-E, I | En=0.1, soft | 0.9 x 1.890 | ) 11.28 |        | 0.63 x 0.70 | (      | ).77        | 6.5171           |        |
|                                       | Double-glazec<br>hWest) | l, argon fille | ed, Iow-E, I | En=0.1, soft | 0.9 x 2.040 | 36.79   |        | 0.63 x 0.70 | (      | ).77        | 22.9391          |        |
|                                       | Double-glazec<br>nEast) | l, argon fille | ed, Iow-E, I | En=0.1, soft | 0.9 x 1.750 | 36.79   |        | 0.63 x 0.70 | (      | ).77        | 19.6782          |        |
| Window - I<br>coat (South<br>W7       | Double-glazec<br>nEast) | l, argon fille | ed, Iow-E, I | En=0.1, soft | 0.9 x 1.450 | 36.79   |        | 0.63 x 0.70 | (      | ).77        | 16.3048          |        |
| Window - I<br>coat (South<br>W5       | Double-glazec<br>nEast) | l, argon fille | ed, Iow-E, I | En=0.1, soft | 0.9 x 1.450 | ) 36.79 |        | 0.63 x 0.70 | (      | ).77        | 16.3048          |        |
| Window - I<br>coat (South<br>W3       | Double-glazec<br>nWest) | l, argon fille | ed, Iow-E, I | En=0.1, soft | 0.9 x 2.040 | 36.79   |        | 0.63 x 0.70 | (      | ).77        | 22.9391          |        |
| Window - I<br>coat (South<br>W2       | Double-glazec<br>hWest) | l, argon fille | ed, Iow-E, I | En=0.1, soft | 0.9 x 2.040 | ) 36.79 |        | 0.63 x 0.70 | (      | ).77        | 22.9391          |        |
| Window - I<br>coat (South<br>W1       | Double-glazec<br>าWest) | l, argon fille | ed, Iow-E, I | En=0.1, soft | 0.9 x 2.040 | ) 36.79 |        | 0.63 x 0.70 | (      | ).77        | 22.9391          |        |
| Solid door<br>Entrance<br>Total solar | e Door<br>gains, Janua  | ary            |              |              | 0.9 x 1.940 | 0.00    |        | 0.00 x 0.70 | (      | ).77        | 0.0000<br>153.70 | (83-1) |
| Solar gains                           |                         | -              |              |              |             |         |        |             |        |             |                  |        |
| 153.70                                | 265.01                  | 371.12         | 474.12       | 544.08       | 545.88      | 523.90  | 470.83 | 406.65      | 295.19 | 184.68      | 131.16           | (83)   |
| Total gains                           | 5                       |                | N            |              |             | 1       |        |             |        |             |                  |        |
| 422.48                                | 532.13                  | 628.58         | 716.11       | 770.65       | 757.35      | 725.40  | 677.11 | 620.74      | 524.91 | 432.36      | 392.04           | (84)   |
| Lighting ca                           | alculations             |                |              |              | Area        |         |        | g           |        | F x Shadin  | n                |        |
| Window - I<br>coat (North<br>W9       | Double-glazec<br>1East) | l, argon fille | ed, Iow-E, I | En=0.1, soft | 0.9 x 0.91  |         |        | 0.80        |        | 0.70 x 0.83 | 0.38             |        |
|                                       | Double-glazec<br>1East) | l, argon fille | ed, Iow-E, I | En=0.1, soft | 0.9 x 1.89  |         |        | 0.80        | (      | 0.70 x 0.83 | 0.79             |        |
|                                       | Double-glazec<br>1West) | l, argon fille | ed, Iow-E, I | En=0.1, soft | 0.9 x 2.04  |         |        | 0.80        | (      | 0.70 x 0.83 | 0.85             |        |
|                                       | Double-glazec<br>nEast) | l, argon fille | ed, Iow-E, I | En=0.1, soft | 0.9 x 1.75  |         |        | 0.80        | (      | 0.70 x 0.83 | 0.73             |        |
|                                       | Double-glazec<br>nEast) | l, argon fille | ed, Iow-E, I | En=0.1, soft | 0.9 x 1.45  |         |        | 0.80        | (      | 0.70 x 0.83 | 0.61             |        |
|                                       | Double-glazec<br>nEast) | l, argon fille | ed, Iow-E, I | En=0.1, soft | 0.9 x 1.45  |         |        | 0.80        | (      | 0.70 x 0.83 | 0.61             |        |
|                                       | Double-glazec<br>hWest) | l, argon fille | ed, Iow-E, I | En=0.1, soft | 0.9 x 2.04  |         |        | 0.80        | (      | 0.70 x 0.83 | 0.85             |        |
|                                       | Double-glazed           | l, argon fille | ed, low-E, l | En=0.1, soft | 0.9 x 2.04  |         |        | 0.80        | (      | 0.70 x 0.83 | 0.85             |        |

Window - Double-glazed, argon filled, low-E, En=0.1, soft 0.9 x 2. coat (SouthWest) W2

| IPA Designer Version 6 | 03x SAP V    | ersion 992   |  |
|------------------------|--------------|--------------|--|
| icensed to EPS Group   | .057 ; 574 1 | 0131011 7.72 |  |

8c. Space cooling requirement - not applicable

|                                                                                                                       |                                                                                                                                            | ure in living                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | area T1                                               |                                           | 1                       | ų                 | _^          |       | U                                 |                                  | A                                |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|-------------------------|-------------------|-------------|-------|-----------------------------------|----------------------------------|----------------------------------|
| Mean inter                                                                                                            | rnal temperat                                                                                                                              | are in inning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                           |                         |                   |             |       |                                   |                                  |                                  |
| 19.78                                                                                                                 | 20.04                                                                                                                                      | 20.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.69                                                 | 20.90                                     | 20.98                   | 21.00             | 20.99       | 20.94 | 20.65                             | 20.14                            | 19.73                            |
| Temperatu                                                                                                             | re during hea                                                                                                                              | ating periods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in rest of                                            | dwelling Th2                              | 2                       |                   | A           | J     | I                                 |                                  | А                                |
| 19.84                                                                                                                 | 19.85                                                                                                                                      | 19.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.86                                                 | 19.86                                     | 19.87                   | 19.87             | 19.87       | 19.86 | 19.86                             | 19.85                            | 19.85                            |
| Jtilisation                                                                                                           | factor for gain                                                                                                                            | ns for rest o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | f dwelling                                            | A                                         |                         |                   | A           |       |                                   |                                  | A                                |
| 0.99                                                                                                                  | 0.97                                                                                                                                       | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.82                                                  | 0.64                                      | 0.44                    | 0.29              | 0.33        | 0.57  | 0.87                              | 0.98                             | 0.99                             |
| Mean inter                                                                                                            | rnal temperati                                                                                                                             | ure in the re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | st of dwellir                                         | ng T2                                     | <b>,</b>                |                   |             | J     | <u> </u>                          | R                                | А                                |
| 18.76                                                                                                                 | 19.01                                                                                                                                      | 19.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.63                                                 | 19.80                                     | 19.86                   | 19.86             | 19.87       | 19.84 | 19.60                             | 19.12                            | 18.71                            |
| 0                                                                                                                     | a fraction (26<br>rnal temperat                                                                                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       | lina)                                     |                         |                   |             |       |                                   |                                  |                                  |
| 19.29                                                                                                                 | 19.54                                                                                                                                      | 19.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.18                                                 | 20.37                                     | 20.44                   | 20.45             | 20.45       | 20.41 | 20.14                             | 19.65                            | 19.24                            |
|                                                                                                                       | istment to the                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |                                           |                         |                   |             |       |                                   |                                  |                                  |
| 19.14                                                                                                                 | 19.39                                                                                                                                      | 19.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.03                                                 | 20.22                                     | 20.29                   | 20.30             | 20.30       | 20.26 | 19.99                             | 19.50                            | 19.09                            |
| 8 Space                                                                                                               | heating regul                                                                                                                              | irement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                           |                         |                   |             |       |                                   |                                  |                                  |
|                                                                                                                       |                                                                                                                                            | Л                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                           | [                       | 1                 |             | л.    | N                                 |                                  |                                  |
|                                                                                                                       | heating requi                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       | Mau                                       |                         |                   |             |       |                                   | Neu                              |                                  |
| Jan                                                                                                                   | Feb                                                                                                                                        | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Apr                                                   | May                                       | Jun                     | Jul               | Aug         | Sep   | Oct                               | Nov                              | Dec                              |
| Jan<br>Utilisation                                                                                                    | Feb<br>factor for gain                                                                                                                     | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                           |                         |                   |             |       |                                   |                                  |                                  |
| Jan<br>Utilisation<br>0.99                                                                                            | Feb<br>factor for gain<br>0.97                                                                                                             | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Apr 0.82                                              | May<br>0.66                               | Jun<br>0.47             | Jul<br>0.33       | Aug<br>0.37 | Sep   | Oct                               | Nov                              | Dec 0.99                         |
| Jan<br>Utilisation<br>0.99                                                                                            | Feb<br>factor for gain<br>0.97                                                                                                             | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                           |                         |                   |             |       |                                   |                                  |                                  |
| Jan<br>Utilisation<br>0.99<br>Useful gai<br>417.11                                                                    | Feb<br>factor for gain<br>0.97<br>ns<br>514.75                                                                                             | Mar<br>ns<br>0.92<br>580.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.82                                                  | 0.66                                      | 0.47                    | 0.33              | 0.37        | 0.61  | 0.88                              | 0.97                             | 0.99                             |
| Jan<br>Jtilisation<br>0.99<br>Jseful gai<br>417.11<br>Monthly a                                                       | Feb<br>factor for gain<br>0.97<br>ns                                                                                                       | Mar<br>ns<br>0.92<br>580.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.82                                                  | 0.66                                      | 0.47                    | 0.33              | 0.37        | 0.61  | 0.88                              | 0.97                             | 0.99                             |
| Jan<br>Utilisation<br>0.99<br>Useful gai<br>417.11<br>Monthly ar<br>4.30                                              | Feb<br>factor for gai<br>0.97<br>ns<br>514.75<br>verage extern                                                                             | Mar<br>ns<br>0.92<br>580.13<br>nal temperat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.82<br>589.95<br>ture<br>8.90                        | 0.66                                      | 0.47                    | 0.33              | 0.37        | 0.61  | 0.88                              | 0.97                             | 0.99                             |
| Jan<br>Utilisation<br>0.99<br>Useful gai<br>417.11<br>Monthly ar<br>4.30                                              | Feb<br>factor for gain<br>0.97<br>ns<br>514.75<br>verage extern<br>4.90                                                                    | Mar<br>ns<br>0.92<br>580.13<br>nal temperat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.82<br>589.95<br>ture<br>8.90                        | 0.66                                      | 0.47                    | 0.33              | 0.37        | 0.61  | 0.88                              | 0.97                             | 0.99                             |
| Jan<br>Utilisation<br>0.99<br>Useful gai<br>417.11<br>Monthly a<br>4.30<br>Heat loss<br>970.16                        | Feb<br>factor for gain<br>0.97<br>ns<br>514.75<br>verage extern<br>4.90<br>rate for mean                                                   | Mar<br>10.92<br>580.13<br>10.92<br>580.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10 | 0.82<br>589.95<br>ture<br>8.90<br>nperature           | 0.66                                      | 0.47<br>357.95<br>14.60 | 0.33 236.11 16.60 | 0.37        | 0.61  | 0.88 459.66 10.60                 | 0.97 420.47 7.10                 | 0.99<br>388.35<br>4.20           |
| Jan<br>Jtilisation<br>0.99<br>Jseful gai<br>417.11<br>Monthly a<br>4.30<br>Heat loss<br>970.16<br>Fraction of         | Feb         factor for gain         0.97         ns         514.75         verage extern         4.90         rate for mean         945.98 | Mar<br>10.92<br>580.13<br>10.92<br>580.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10.13<br>10 | 0.82<br>589.95<br>ture<br>8.90<br>nperature           | 0.66                                      | 0.47<br>357.95<br>14.60 | 0.33 236.11 16.60 | 0.37        | 0.61  | 0.88 459.66 10.60                 | 0.97 420.47 7.10                 | 0.99<br>388.35<br>4.20           |
| Jan<br>Utilisation<br>0.99<br>Useful gai<br>417.11<br>Monthly a<br>4.30<br>Heat loss<br>970.16<br>Fraction of<br>1.00 | Feb<br>factor for gain<br>0.97<br>ns<br>514.75<br>verage extern<br>4.90<br>rate for mear<br>945.98<br>i month for her                      | Mar<br>10.92<br>580.13<br>10.92<br>580.13<br>10.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.82<br>589.95<br>ture<br>8.90<br>operature<br>719.35 | 0.66<br>510.77<br>11.70<br>549.62<br>1.00 | 0.47<br>357.95<br>14.60 | 0.33 236.11 16.60 | 0.37        | 0.61  | 0.88<br>459.66<br>10.60<br>606.01 | 0.97<br>420.47<br>7.10<br>802.37 | 0.99<br>388.35<br>4.20<br>966.73 |

Heating system responsiveness

Apr

54.25

4.62

0.86

Мау

54.34

4.62

0.71

Jun

54.73

4.65

0.53

Jul

54.73

4.65

0.39

Aug

54.80

4.65

0.43

Sep

54.58

4.64

0.66

Oct

54.34

4.62

0.91

Nov

54.17

4.61

0.98

7. Mean internal temperature

Mar

53.81

4.59

0.94

Temperature during heating periods in the living area, Th1 (°C)

GL = 6.53 / 50.49 = 0.129

W1

Feb

53.72

4.58

0.98

Utilisation factor for gains for living area

EI = 234

Jan

alpha 4.57

0.99

tau 53.62 0.85

21.00

1.00

Dec

53.99

4.60

0.99

(85)

(86)

| 9a. Energy        | v requiremei                 | nts          |               |               |         |          |        |        |        |          | kWh/year       |         |
|-------------------|------------------------------|--------------|---------------|---------------|---------|----------|--------|--------|--------|----------|----------------|---------|
| No second         | lary heating                 | system sel   | ected         |               |         |          |        |        |        |          | KWII/yeai      |         |
|                   | space heat                   |              | system(s)     |               |         |          |        |        | 1.0000 |          |                | (202)   |
|                   | of main heat                 |              |               | 1             |         | - I      |        |        | 90.50% | <b>.</b> |                | (206)   |
| Jan<br>Crease has | Feb                          | Mar          | Apr           | Мау           | Jun     | Jul      | Aug    | Sep    | Oct    | Nov      | Dec            |         |
|                   | ting requiren                | 1            |               |               |         |          |        |        |        |          |                | (2.2)   |
| 411.47            | 289.79                       | 208.80       | 93.17         | 28.91         | -       | -        | -      | -      | 108.88 | 274.97   | 430.32         | (98)    |
|                   | Q - monthly                  |              |               |               | m 1)    |          |        |        |        |          |                |         |
| 0.00              | 0.00                         | 0.00         | 0.00          | 0.00          | -       | -        | -      | -      | 0.00   | 0.00     | 0.00           | (210)   |
| Space hea         | ting fuel (ma                | -            | system 1)     |               |         |          |        |        |        |          |                |         |
| 454.66            | 320.21                       | 230.72       | 102.95        | 31.94         | -       | -        | -      | -      | 120.31 | 303.83   | 475.49         | (211)   |
| Appendix (        | Q - monthly                  | energy save  | ed (main he   | eating system | m 2)    |          |        |        |        |          |                |         |
| 0.00              | 0.00                         | 0.00         | 0.00          | 0.00          | -       | -        | -      | -      | 0.00   | 0.00     | 0.00           | (212)   |
| Space hear        | ting fuel (ma                | in heating s | system 2)     |               |         |          |        | ·      |        |          |                |         |
| 0.00              | 0.00                         | 0.00         | 0.00          | 0.00          | -       | -        | -      | -      | 0.00   | 0.00     | 0.00           | (213)   |
| Appendix (        | Q - monthly                  | energy sav   | red (second   | ary heating   | system) | <u>п</u> |        |        | N      |          |                |         |
| 0.00              | 0.00                         | 0.00         | 0.00          | 0.00          | -       | -        | -      | -      | 0.00   | 0.00     | 0.00           | (214)   |
| Space hea         | iting fuel (se               | condary)     |               |               |         |          |        |        |        |          |                |         |
| 0.00              | 0.00                         | 0.00         | 0.00          | 0.00          | -       | -        | -      | -      | 0.00   | 0.00     | 0.00           | (215)   |
| Water heat        | ing                          |              |               |               | J       |          | I      | J      | ][     | I        |                |         |
| Water heat        | ting requirem                | ent          |               |               |         |          |        |        |        |          |                |         |
| 124.87            | 109.30                       | 113.00       | 98.81         | 95.02         | 82.32   | 76.59    | 87.44  | 88.35  | 102.58 | 111.59   | 121.03         | (64)    |
| Efficiency of     | of water hea                 | ter          |               | R             |         | 1        | R      | я      |        | R        | 87.30          | ) (216) |
| 89.73             | 89.60                        | 89.35        | 88.82         | 88.03         | 87.30   | 87.30    | 87.30  | 87.30  | 88.92  | 89.55    | 89.78          | (217)   |
| Water heat        | ing fuel                     |              |               |               |         |          |        |        |        |          |                |         |
| 139.16            | 121.99                       | 126.47       | 111.24        | 107.95        | 94.29   | 87.74    | 100.16 | 101.21 | 115.36 | 124.61   | 134.81         | (219)   |
| Annual tota       | als                          |              | _, <b></b>    |               |         |          |        |        |        |          | kWh/year       |         |
|                   | ting fuel use                | d, main sys  | tem 1         |               |         |          |        |        |        |          | 2040.11        | 1 (211) |
| -                 | iting fuel (se               | -            |               |               |         |          |        |        |        |          | 0.00           | ) (215) |
| Water heat        | •                            |              |               |               |         |          |        |        |        |          | 1364.99        | 9 (219) |
|                   | for pumps, fa                | ans and ele  | ctric keep-ho | ot            |         |          |        |        |        |          | 20.00          | (220-   |
|                   | eating pump<br>h a fan-assis | tod fluo     |               |               |         |          |        |        |        |          | 30.00<br>45.00 | •       |
|                   | ricity for the               |              | h/vear        |               |         |          |        |        |        |          | 45.00          |         |
|                   | for lighting (1              |              | -             |               |         |          |        |        |        |          | 233.81         |         |
|                   | ving/generati                |              |               |               |         |          |        |        |        |          |                |         |
| Appendix (        | 2 -                          |              |               |               |         |          |        |        |        |          |                |         |
|                   | saved or gei                 | nerated ():  |               |               |         |          |        |        |        |          | 0.000          | •       |
| Energy            | used ():                     |              |               |               |         |          |        |        |        |          | 0.000          | ) (237a |
| Total delive      | ered energy                  | for all uses |               |               |         |          |        |        |        |          | 3713.91        | 1 (238) |

10a. Does not apply

11a. Does not apply

#### 12a. Carbon dioxide emissions

|                                | Energy   | Emission factor | Emissions   |       |
|--------------------------------|----------|-----------------|-------------|-------|
|                                | kWh/year | kg CO2/kWh      | kg CO2/year |       |
| Space heating, main system 1   | 2040.11  | 0.216           | 440.66      | (261) |
| Space heating, main system 2   | 0.00     | 0.000           | 0.00        | (262) |
| Space heating, secondary       | 0.00     | 0.519           | 0.00        | (263) |
| Water heating                  | 1364.99  | 0.216           | 294.84      | (264) |
| Space and water heating        |          |                 | 735.50      | (265) |
| Electricity for pumps and fans | 75.00    | 0.519           | 38.93       | (267) |
| Electricity for lighting       | 233.81   | 0.519           | 121.35      | (268) |
| Electricity generated - PVs    | 0.00     | 0.519           | 0.00        | (269) |
| Electricity generated - µCHP   | 0.00     | 0.000           | 0.00        | (269) |
| Appendix Q -                   |          |                 |             |       |
| Energy saved ():               | 0.00     | 0.000           | 0.00        | (270) |
| Energy used ():                | 0.00     | 0.000           | 0.00        | (271) |
| Total CO2, kg/year             |          |                 | 895.78      | (272) |
|                                |          |                 | ka/m²/voar  |       |

Dwelling Carbon Dioxide Emission Rate (DER)

kg/m²/year 17.74 (273)



#### Project Information Building type Top-floor flat

| Reference<br>Date | 9913<br>15 April 2020    |         |                    |
|-------------------|--------------------------|---------|--------------------|
| Client            | GBS Architectural Design | Project | Flat 5 - Lean      |
| Clicit            | Lombard Business Park    | Појссі  | 130 Chalton Street |
|                   | 8 Lombard Road           |         | London             |
|                   |                          |         |                    |
|                   | Wimbledon                |         | NW1 1RX            |
|                   | SW19 3TZ                 |         |                    |

### **EPS** Group

3C Pelham Court Pelham Road Nottingham 0115 7270599 info@epsgroup.co.uk

#### SAP 2012 worksheet for New dwelling as built - calculation of dwelling emissions

1. Overall dwelling dimensions

| Fourth an<br>Total floor | d other floors<br>r area<br>volume (m³) |                        |               |              |      |      | Area<br>(m²)<br>68.84<br>68.84 |             | Av. Storey<br>height (m)<br>2.40 |      | Volume<br>(m <sup>3</sup> )<br>165.2<br>165.2 |        | (3a)<br>(4)<br>(5) |
|--------------------------|-----------------------------------------|------------------------|---------------|--------------|------|------|--------------------------------|-------------|----------------------------------|------|-----------------------------------------------|--------|--------------------|
| 2. Ventila               | ation rate                              |                        |               |              |      |      |                                |             |                                  |      |                                               |        | _                  |
|                          |                                         |                        |               |              |      |      | main + seo                     | ndary + oth | er                               |      | m, b                                          | er hou | r                  |
|                          |                                         |                        |               |              |      |      | heating                        | nuary + our | CI                               |      |                                               |        |                    |
| Number of                | of chimneys                             |                        |               |              |      |      | 0 + 0 + 0                      |             | x 40                             |      |                                               | 0.00   | ) (6a)             |
|                          | of open flues                           |                        |               |              |      |      | 0 + 0 + 0                      |             | x 20                             |      |                                               | 0.00   | . ,                |
| Number o                 | of intermittent                         | fans                   |               |              |      |      | 2                              | 2           | x 10                             |      |                                               | 20.00  | ) (7a)             |
| Number of                | of passive ve                           | ents                   |               |              |      |      | C                              | )           | x 10                             |      |                                               | 0.00   | ) (7b)             |
| Number o                 | of flueless ga                          | s fires                |               |              |      |      | C                              | )           | x 40                             |      |                                               | 0.00   | ) (7c)             |
|                          |                                         |                        |               |              |      |      |                                |             |                                  |      | Air o                                         | hange  | s per hour         |
| Infiltration             | due to chim                             | neys, fans an          | nd flues      |              |      |      |                                |             |                                  |      |                                               | 0.12   |                    |
|                          | test, result q                          |                        |               |              |      |      |                                |             | 4.50                             |      |                                               |        | (17)               |
| Air perme                |                                         |                        |               |              |      |      |                                |             |                                  |      |                                               | 0.3    |                    |
| -                        | -                                       | hich sheltere          | d             |              |      |      |                                |             |                                  |      |                                               | 1.00   |                    |
| Shelter fa               | ctor                                    |                        |               |              |      |      |                                |             |                                  |      |                                               | 0.93   | 3 (20)             |
| Infiltration             | rate incorpor                           | ating shelter          | factor        |              |      |      |                                |             |                                  |      |                                               | 0.32   | 2 (21)             |
| Infiltration             | rate modified                           | d for monthly          | wind speed    |              |      |      |                                |             |                                  |      |                                               |        |                    |
| Jan                      | Feb                                     | Mar                    | Apr           | Мау          | Jun  | Jul  | Aug                            | Sep         | Oct                              | Nov  | Dec                                           |        |                    |
| 5.10                     | 5.00                                    | 4.90                   | 4.40          | 4.30         | 3.80 | 3.80 | 3.70                           | 4.00        | 4.30                             | 4.50 | 4.70                                          |        |                    |
| Wind Fac                 | tor                                     |                        |               |              |      |      |                                | 1           |                                  |      |                                               | 52.50  | ) (22)             |
| 1.27                     | 1.25                                    | 1.23                   | 1.10          | 1.08         | 0.95 | 0.95 | 0.93                           | 1.00        | 1.08                             | 1.13 | 1.18                                          |        |                    |
|                          |                                         |                        | <u> </u>      |              |      |      |                                |             |                                  |      | ]                                             | 13.13  | 3 (22a)            |
| Adjusted                 | infiltration rate                       | e (allowing fo         | r shelter and | d wind speed | d)   |      |                                |             |                                  |      |                                               |        |                    |
| 0.41                     | 0.40                                    | 0.39                   | 0.35          | 0.34         | 0.30 | 0.30 | 0.30                           | 0.32        | 0.34                             | 0.36 | 0.38                                          |        |                    |
|                          | n : natural ve<br>air change ra         | ntilation, inter<br>te | mittent extra | ict fans     |      |      |                                |             |                                  |      |                                               | 4.20   | ) (22b)            |
| 0.58                     | 0.58                                    | 0.58                   | 0.56          | 0.56         | 0.55 | 0.55 | 0.54                           | 0.55        | 0.56                             | 0.56 | 0.57                                          |        | (25)               |
|                          | R                                       | _л                     |               |              |      |      |                                |             |                                  |      |                                               |        |                    |

| <i>3. Heat los</i><br>Element | sses and he    | <i>at loss paran</i><br>Gross    |             | enings    | Net area |       | U-value     | ΑxU   |          | kappa-value | АхК         |         |
|-------------------------------|----------------|----------------------------------|-------------|-----------|----------|-------|-------------|-------|----------|-------------|-------------|---------|
|                               |                | area, m <sup>2</sup>             | m²          |           | A, m²    |       | W/m²K       | W/K   |          | kJ/m²K      | kJ/K        |         |
|                               | -              | ed, argon fille                  |             |           | 1.2      | 50    | 1.33 (1.40) |       | 1.66     |             |             | (27)    |
|                               | =0.1, soft co  | at (SouthWes                     | st)         |           |          |       |             |       |          |             |             |         |
| W1                            | <b>D</b> 11 1  |                                  |             |           | 4.01     | 50    | 4 00 (4 40) |       |          |             |             | (07)    |
|                               | -              | ed, argon fille<br>at (SouthWes  |             |           | 1.2      | 50    | 1.33 (1.40) |       | 1.66     |             |             | (27)    |
|                               | Double-glaze   | ed, argon fille                  | ed,         |           | 1.2      | 50    | 1.33 (1.40) |       | 1.66     |             |             | (27)    |
|                               | 0              | at (SouthWes                     |             |           |          |       |             |       |          |             |             |         |
| low-E, En=                    |                | ed, argon fille<br>at (NorthEast |             |           | 1.89     | 90    | 1.33 (1.40) |       | 2.51     |             |             | (27)    |
| W7                            | Daubla alam    | ad armon fills                   | a           |           | 0.0      | 10    | 1 22 (1 40) |       | 1 1 1    |             |             | (17)    |
|                               | -              | ed, argon fille<br>at (NorthEasi |             |           | 0.84     | 40    | 1.33 (1.40) |       | 1.11     |             |             | (27)    |
|                               | Double-glaze   | ed, argon fille                  | ed,         |           | 3.1      | 50    | 1.33 (1.40) |       | 4.18     |             |             | (27)    |
|                               | -              | at (NorthEast                    |             |           |          |       | . ,         |       |          |             |             | . ,     |
| W4                            |                |                                  |             |           |          |       |             |       |          |             |             |         |
| Solid door                    |                |                                  |             |           | 1.9      | 40    | 0.66        |       | 1.28     |             |             | (26)    |
| Entrance                      | e Door         |                                  |             |           |          |       |             |       |          |             |             |         |
| Walls<br>External             | Wall           |                                  |             |           | 83.      | 25    | 0.22        |       | 18.31    | 190.00      | 15817.50    | (29)    |
| Walls<br>Seperati             | ing Wall to L  | Inheated Cor                     | ridor       |           | 13.      | 77    | 0.22        |       | 3.03     | 0.00        | 0.00        | (29)    |
| Flat roofs                    |                |                                  |             |           | 64.      | 34    | 0.15        |       | 9.65     | 9.00        | 579.06      | (30)    |
| Pitched roo                   | ofs insulated  | between raf                      | ters        |           | 6.       | 21    | 0.15        |       | 0.93     | 9.00        | 55.89       | (30)    |
| Tatal and                     | -f             | demonstra Cira                   |             |           |          |       |             |       |          |             | 170         | 14 (01) |
|                               | at loss, W/K   | elements Sig                     | ma A, m²    |           |          |       |             |       |          |             | 179.<br>45. | ( )     |
|                               |                | eter, kJ/m²K                     | lusar spaci | fied TMD) |          |       |             |       |          |             | 45.<br>100. | ( )     |
|                               | nermal bridge  |                                  | (user-speci | neu nvn ) |          |       |             |       |          |             | 8.          | . ,     |
| Total fabric                  | 0              | 53                               |             |           |          |       |             |       |          |             | 54.         |         |
|                               |                | alculated mor                    | hthlv       |           |          |       |             |       |          |             | 54.         | 50 (57) |
| 31.80                         | 31.63          | 31.45                            | 30.64       | 30.49     | 29.78    | 29.7  | 8 29.65     | 30.05 | 30.49    | 30.80       | 31.12       | (38)    |
|                               | fer coefficier |                                  | 30.04       | 30.47     | 27.70    | 27.70 | 27.00       | 30.03 | 30.49    | 50.00       | 51.12       | (50)    |
|                               |                |                                  | 1           | 1         |          |       |             |       |          |             |             |         |
| 86.36                         | 86.19          | 86.02                            | 85.20       | 85.05     | 84.34    | 84.34 | 4 84.21     | 84.62 | 85.05    | 85.36       | 85.68       |         |
| Heat loss                     | parameter (I   | HLP), W/m²K                      |             |           |          |       |             |       |          |             | 85.         | 20 (39) |
| 1.25                          | 1.25           | 1.25                             | 1.24        | 1.24      | 1.23     | 1.23  | 1.22        | 1.23  | 1.24     | 1.24        | 1.24        |         |
| HLP (aver                     | age)           | _,                               | л           |           | ]        | ][    |             | JL    | <u> </u> | Л           | 1.          | 24 (40) |
| Number of                     | f days in mo   | onth (Table 1a                   | a)          |           |          |       |             |       |          |             |             |         |
| Jan                           | Feb            | Mar                              | Apr         | May       | Jun      | Jul   | Aug         | Sep   | Oct      | Nov         | Dec         |         |
| 31                            | 28             | 31                               | 30          | 31        | 30       | 31    | 31          | 30    | 31       | 30          | 31          |         |
|                               |                |                                  | LĨ          |           |          |       |             |       |          |             |             |         |

| 4. Water h   | heating energ              | ny requirem   | ents           |             |             |        |          |        |        |        | kWh/year |
|--------------|----------------------------|---------------|----------------|-------------|-------------|--------|----------|--------|--------|--------|----------|
|              | occupancy,                 |               |                |             |             |        |          |        |        |        | 2.2      |
| Annual ave   | erage hot wa               | iter usage ii | n litres per d | ay Vd,avera | age         |        |          |        |        |        | 86.8     |
| Jan          | Feb                        | Mar           | Apr            | Мау         | Jun         | Jul    | Aug      | Sep    | Oct    | Nov    | Dec      |
| lot water    | usage in litre             | s per day fo  | or each mont   | h           |             |        |          |        |        |        |          |
| 95.56        | 92.08                      | 88.61         | 85.13          | 81.66       | 78.18       | 78.18  | 81.66    | 85.13  | 88.61  | 92.08  | 95.56    |
| Energy cor   | ntent of hot v             | water used    | 1              |             |             |        |          |        |        |        |          |
| 141.71       | 123.94                     | 127.89        | 111.50         | 106.99      | 92.32       | 85.55  | 98.17    | 99.34  | 115.77 | 126.38 | 137.24   |
| Energy co    | ntent (annual              | <br>I)        | 1              |             | 1           |        |          |        |        |        | 1366.79  |
| Distribution | n loss                     |               |                |             |             |        |          |        |        |        |          |
| 21.26        | 18.59                      | 19.18         | 16.72          | 16.05       | 13.85       | 12.83  | 14.73    | 14.90  | 17.37  | 18.96  | 20.59    |
| store los    | <br>ss determined          | d from EN 1   | 3203-2 tests   | taken from  | boiler data | record |          |        |        |        |          |
| Hot water    | storage volu               | me (litres)   |                |             |             |        |          |        |        |        | 0.0      |
|              | cylinder loss              | factor (kW    | h/day)         |             |             |        |          |        |        |        | 0.000    |
| /olume fac   |                            |               |                |             |             |        |          |        |        |        | 0.000    |
| emperatu     | re factor<br>st from store | (W/Wb/day)    |                |             |             |        |          |        |        |        | 0.000    |
| Total stora  |                            | (KWII/Udy)    |                |             |             |        |          |        |        |        | 0.0      |
| 0.00         |                            | 0.00          | 0.00           | 0.00        | 0.00        | 0.00   | 0.00     | 0.00   | 0.00   | 0.00   | 0.00     |
| Vet storage  |                            | 0.00          | 0.00           | 0.00        | 0.00        | 0.00   | 0.00     | 0.00   | 0.00   | 0.00   | 0.00     |
| 5            | - Y                        | 0.00          | 0.00           | 0.00        | 0.00        | 0.00   | 0.00     | 0.00   | 0.00   |        | 0.00     |
| 0.00         | 0.00                       | 0.00          | 0.00           | 0.00        | 0.00        | 0.00   | 0.00     | 0.00   | 0.00   | 0.00   | 0.00     |
| Primary lo   | - Y                        | 1             |                |             | -16         |        |          |        |        |        |          |
| 0.00         | 0.00                       | 0.00          | 0.00           | 0.00        | 0.00        | 0.00   | 0.00     | 0.00   | 0.00   | 0.00   | 0.00     |
| Combi loss   | s calculated 1             | for each mo   | onth           |             |             |        |          |        |        |        |          |
| 3.05         | 2.75                       | 3.05          | 2.95           | 3.05        | 2.95        | 3.05   | 3.05     | 2.95   | 3.05   | 2.95   | 3.05     |
| fotal heat   | required for               | water heatin  | g calculated   | for each me | onth        |        |          |        |        | R      |          |
| 144.75       | 126.69                     | 130.94        | 114.45         | 110.03      | 95.27       | 88.60  | 101.21   | 102.29 | 118.82 | 129.32 | 140.28   |
| Dutput fror  | m water heat               | er for each   | month, kWh/    | month       |             |        |          | I      |        |        |          |
| 144.75       | 126.69                     | 130.94        | 114.45         | 110.03      | 95.27       | 88.60  | 101.21   | 102.29 | 118.82 | 129.32 | 140.28   |
|              |                            |               |                |             |             |        |          |        |        |        | 1402.6   |
| leat gains   | from water                 | heating, kW   | 'h/month       |             |             |        |          |        |        |        |          |
| 47.88        | 41.90                      | 43.29         | 37.81          | 36.33       | 31.43       | 29.21  | 33.40    | 33.77  | 39.26  | 42.76  | 46.39    |
|              |                            |               |                | l           |             |        |          |        |        |        |          |
|              |                            |               |                |             |             |        |          |        |        |        |          |
| 5. Internal  | l gains                    |               |                |             |             |        |          |        |        |        |          |
| Jan          | Feb                        | Mar           | Apr            | May         | Jun         | Jul    | Aug      | Sep    | Oct    | Nov    | Dec      |
| Aetabolic g  | gains, Watts               |               | 1              |             |             |        |          |        |        |        |          |
| 110.88       | 110.88                     | 110.88        | 110.88         | 110.88      | 110.88      | 110.88 | 110.88   | 110.88 | 110.88 | 110.88 | 110.88   |
| ighting ga   | ains                       | ]             |                |             |             |        |          | I      | I      | I      |          |
| 18.61        | 16.53                      | 13.44         | 10.18          | 7.61        | 6.42        | 6.94   | 9.02     | 12.11  | 15.38  | 17.95  | 19.13    |
| Appliances   | aains                      | ]             |                |             |             |        |          |        |        |        |          |
| 194.57       | 196.59                     | 191.51        | 180.67         | 167.00      | 154.15      | 145.56 | 143.55   | 148.63 | 159.47 | 173.14 | 185.99   |
| Cooking g    |                            | 171.51        | 100.07         | 107.00      | 134.13      | 143.30 | 143.00   | 140.00 | 137.47 | 175.14 | 100.77   |
|              |                            | 24.00         | 24.00          | 24.00       | 24.00       | 24.00  | 24.00    | 24.00  | 24.00  | 24.00  | 24.00    |
| 34.09        | 34.09                      | 34.09         | 34.09          | 34.09       | 34.09       | 34.09  | 34.09    | 34.09  | 34.09  | 34.09  | 34.09    |
|              | d fans gains               |               |                |             |             |        |          |        |        |        |          |
| 3.00         | 3.00                       | 3.00          | 3.00           | 3.00        | 3.00        | 3.00   | 3.00     | 3.00   | 3.00   | 3.00   | 3.00     |
| osses e.q    | g. evaporatio              | n (negative   | values)        |             |             |        |          |        |        |        |          |
| -88.71       | -88.71                     | -88.71        | -88.71         | -88.71      | -88.71      | -88.71 | -88.71   | -88.71 | -88.71 | -88.71 | -88.71   |
| Vater heat   | ting gains                 |               |                |             |             |        | <i>n</i> |        |        | л      |          |
| 64.35        | 62.35                      | 58.18         | 52.51          | 48.84       | 43.66       | 39.26  | 44.90    | 46.90  | 52.76  | 59.38  | 62.36    |
| Total interr | nal gains                  |               |                |             |             | ]I     | _11      |        | II     |        |          |
| 336.81       | 334.74                     | 322.39        | 302.63         | 282.71      | 263.50      | 251.03 | 256.73   | 266.91 | 286.87 | 309.73 | 326.74   |
|              |                            | " OFF.J/      | 002.00         | 202.11      | 200.00      | 201.00 | 200.75   | 200.71 | 200.07 | 007.75 | 020.17   |

| 6. Solar gains | Icalculation      | for Inniarial |
|----------------|-------------------|---------------|
| 0 SULAI UAILIS | ((.all.1)/all()// | In Janual VI  |

| 6. Solar gains (calculation for January)                                                  |                                       |                |                             |              |
|-------------------------------------------------------------------------------------------|---------------------------------------|----------------|-----------------------------|--------------|
|                                                                                           | Area & Flux                           | g & FF         | Shading                     | Gains        |
| Window - Double-glazed, argon filled, low-E, En=0.1, soft<br>coat (SouthWest)<br>W1       | 0.9 x 1.250 36.79                     | 0.63 x 0.70    | 0.77                        | 14.0558      |
| Window - Double-glazed, argon filled, low-E, En=0.1, soft<br>coat (SouthWest)<br>W2       | 0.9 x 1.250 36.79                     | 0.63 x 0.70    | 0.77                        | 14.0558      |
| Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest)                | 0.9 x 1.250 36.79                     | 0.63 x 0.70    | 0.77                        | 14.0558      |
| W3<br>Window - Double-glazed, argon filled, low-E, En=0.1, soft<br>coat (NorthEast)       | 0.9 x 1.890 11.28                     | 0.63 x 0.70    | 0.77                        | 6.5171       |
| W7<br>Window - Double-glazed, argon filled, low-E, En=0.1, soft<br>coat (NorthEast)       | 0.9 x 0.840 11.28                     | 0.63 x 0.70    | 0.77                        | 2.8965       |
| W5<br>Window - Double-glazed, argon filled, low-E, En=0.1, soft<br>coat (NorthEast)       | 0.9 x 3.150 11.28                     | 0.63 x 0.70    | 0.77                        | 10.8619      |
| W4<br>Solid door                                                                          | 0.9 x 1.940 0.00                      | 0.00 x 0.70    | 0.77                        | 0.0000       |
| Entrance Door<br>Total solar gains, January                                               |                                       |                |                             | 62.44 (83-1) |
| Solar gains                                                                               |                                       |                |                             |              |
| 62.44 113.10 172.63 243.89 300.54                                                         | 310.41 294.25 250.1                   | 5 197.02 129.8 | 76.02                       | 52.64 (83)   |
| Total gains                                                                               | , , , , , , , , , , , , , , , , , , , |                | ,,                          |              |
| 399.25         447.83         495.03         546.52         583.25                        | 573.90 545.28 506.8                   | 8 463.93 416.6 | 9 385.75                    | 379.38 (84)  |
| <i>Lighting calculations</i><br>Window - Double-glazed, argon filled, low-E, En=0.1, soft | Area<br>0.9 x 1.25                    | g<br>0.80      | FF x Shading<br>0.70 x 0.83 | 0.52         |
| coat (SouthWest)<br>W1                                                                    |                                       |                |                             |              |
| Window - Double-glazed, argon filled, low-E, En=0.1, soft<br>coat (SouthWest)<br>W2       | 0.9 x 1.25                            | 0.80           | 0.70 x 0.83                 | 0.52         |
| Window - Double-glazed, argon filled, low-E, En=0.1, soft<br>coat (SouthWest)<br>W3       | 0.9 x 1.25                            | 0.80           | 0.70 x 0.83                 | 0.52         |
| Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthEast)                | 0.9 x 1.89                            | 0.80           | 0.70 x 0.83                 | 0.79         |
| W7<br>Window - Double-glazed, argon filled, low-E, En=0.1, soft<br>coat (NorthEast)       | 0.9 x 0.84                            | 0.80           | 0.70 x 0.83                 | 0.35         |
| W5                                                                                        |                                       |                |                             |              |
| Window - Double-glazed, argon filled, low-E, En=0.1, soft<br>coat (NorthEast)<br>W4       | 0.9 x 3.15                            | 0.80           | 0.70 x 0.83                 | 1.32         |

C2 = 1.030

EI = 329

|                                                                                                                     | Feb                                                                                   | Mar                                                                               | Apr                                         | May         | lun               | Jul               | A.u.a       | Sep               | Oct               | Nov                    | Dee                    |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------|-------------|-------------------|-------------------|-------------|-------------------|-------------------|------------------------|------------------------|
| Jan<br>au                                                                                                           | Feb                                                                                   | war                                                                               | Apr                                         | Мау         | Jun               | Jui               | Aug         | Sep               | Oci               | NOV                    | Dec                    |
| 22.14                                                                                                               | 22.19                                                                                 | 22.23                                                                             | 22.44                                       | 22.48       | 22.67             | 22.67             | 22.71       | 22.60             | 22.48             | 22.40                  | 22.32                  |
| alpha                                                                                                               | 22.17                                                                                 | 22.25                                                                             | 22.44                                       | 22.40       | 22.07             | 22.07             | 22.71       | 22.00             | 22.40             | 22.40                  | 22.52                  |
| 2.48                                                                                                                | 2.48                                                                                  | 2.48                                                                              | 2.50                                        | 2.50        | 2.51              | 2.51              | 2.51        | 2.51              | 2.50              | 2.49                   | 2.49                   |
|                                                                                                                     | factor for ga                                                                         |                                                                                   |                                             | ]           |                   |                   | 1           |                   |                   |                        |                        |
| 0.97                                                                                                                | 0.96                                                                                  | 0.94                                                                              | 0.89                                        | 0.81        | 0.69              | 0.57              | 0.61        | 0.79              | 0.91              | 0.96                   | 0.97                   |
| Mean inte                                                                                                           | rnal tempera                                                                          | ture in living                                                                    | area T1                                     |             |                   |                   |             |                   |                   |                        |                        |
| 18.36                                                                                                               | 18.60                                                                                 | 19.03                                                                             | 19.63                                       | 20.20       | 20.64             | 20.85             | 20.81       | 20.45             | 19.73             | 18.94                  | 18.31                  |
| Temperati                                                                                                           | ure during he                                                                         | eating period                                                                     | s in rest of d                              | welling Th2 | IL<br>}<br>-      | I                 |             | ][                | <u> </u>          | JÍ                     |                        |
| 19.88                                                                                                               | 19.88                                                                                 | 19.88                                                                             | 19.89                                       | 19.89       | 19.90             | 19.90             | 19.90       | 19.90             | 19.89             | 19.89                  | 19.88                  |
| Utilisation                                                                                                         | factor for ga                                                                         | ins for rest c                                                                    | f dwelling                                  | л           | н                 | Л                 | н           | J.                | )I                | н                      | я                      |
| 0.96                                                                                                                | 0.95                                                                                  | 0.93                                                                              | 0.87                                        | 0.77        | 0.62              | 0.46              | 0.51        | 0.73              | 0.89              | 0.95                   | 0.97                   |
| Mean inte                                                                                                           | rnal tempera                                                                          | ture in the re                                                                    | est of dwelling                             | g T2        | JL                |                   |             | л                 | JL                | R                      |                        |
| 17.47                                                                                                               | 17.71                                                                                 | 18.14                                                                             | 18.73                                       | 19.27       | 19.67             | 19.83             | 19.81       | 19.52             | 18.84             | 18.06                  | 17.43                  |
| •                                                                                                                   | a fraction (2                                                                         |                                                                                   |                                             |             |                   |                   |             |                   |                   |                        | 0.3                    |
| 17.82                                                                                                               | 18.06                                                                                 | 18.49                                                                             | whole dwelli<br>19.08                       | 19.64       | 20.05             | 20.23             | 20.20       | 19.88             | 19.18             | 18.41                  | 17.77                  |
|                                                                                                                     |                                                                                       |                                                                                   | rnal temperat                               |             |                   | 20.23             | 20.20       | 19.00             | 19.10             | 10.41                  | 17.77                  |
|                                                                                                                     | 17.91                                                                                 | 18.34                                                                             | 18.93                                       | 19.49       | 19.90             | 20.08             | 20.05       | 19.73             | 19.03             | 18.26                  | 17.62                  |
| 17 67                                                                                                               | 11.71                                                                                 | 10.54                                                                             | 10.75                                       | 17.47       | 17.70             | 20.00             | 20.05       | 17.75             | 17.05             | 10.20                  | 17.02                  |
| 17.67                                                                                                               |                                                                                       |                                                                                   |                                             | 0           |                   |                   |             |                   |                   |                        |                        |
| 17.67                                                                                                               |                                                                                       |                                                                                   |                                             | -           |                   |                   |             |                   |                   |                        |                        |
|                                                                                                                     | heating requ                                                                          | lirement                                                                          |                                             |             |                   |                   |             |                   |                   |                        |                        |
|                                                                                                                     | heating requ                                                                          | <i>uirement</i><br>Mar                                                            | Apr                                         | Мау         | Jun               | Jul               | Aug         | Sep               | Oct               | Nov                    | Dec                    |
| <i>8. Space .</i><br>Jan                                                                                            |                                                                                       | Mar                                                                               | Apr                                         | Мау         | Jun               | Jul               | Aug         | Sep               | Oct               | Nov                    | Dec                    |
| <i>8. Space .</i><br>Jan                                                                                            | Feb                                                                                   | Mar                                                                               | Apr<br>0.85                                 | May<br>0.76 | Jun<br>0.62       | Jul<br>0.48       | Aug<br>0.52 | Sep<br>0.72       | Oct<br>0.87       | Nov<br>0.93            | Dec 0.96               |
| <i>8. Space .</i><br>Jan<br>Utilisation<br>0.95                                                                     | Feb<br>factor for ga                                                                  | Mar                                                                               |                                             |             |                   |                   |             |                   |                   |                        |                        |
| <i>8. Space .</i><br>Jan<br>Utilisation<br>0.95                                                                     | Feb<br>factor for ga                                                                  | Mar                                                                               |                                             |             |                   |                   |             |                   |                   |                        |                        |
| <i>8. Space .</i><br>Jan<br>Utilisation<br>0.95<br>Useful ga<br>379.92                                              | Feb<br>factor for ga<br>0.94<br>ins                                                   | Mar<br>ins<br>0.91<br>448.83                                                      | 0.85                                        | 0.76        | 0.62              | 0.48              | 0.52        | 0.72              | 0.87              | 0.93                   | 0.96                   |
| <i>8. Space .</i><br>Jan<br>Utilisation<br>0.95<br>Useful ga<br>379.92                                              | Feb<br>factor for ga<br>0.94<br>ins<br>418.99                                         | Mar<br>ins<br>0.91<br>448.83                                                      | 0.85                                        | 0.76        | 0.62              | 0.48              | 0.52        | 0.72              | 0.87              | 0.93                   | 0.96                   |
| <i>8 Space</i> Jan<br>Utilisation<br>0.95<br>Useful ga<br>379.92<br>Monthly a<br>4.30                               | Feb<br>factor for ga<br>0.94<br>ins<br>418.99<br>average exte                         | Mar<br>ins<br>0.91<br>448.83<br>mal tempera<br>6.50                               | 0.85<br>464.89<br>ture<br>8.90              | 0.76        | 0.62              | 0.48              | 0.52        | 0.72              | 0.87              | 0.93                   | 0.96                   |
| <i>8. Space I.</i><br>Jan<br>Utilisation<br>0.95<br>Useful ga<br>379.92<br>Monthly a<br>4.30                        | Feb<br>factor for ga<br>0.94<br>ins<br>418.99<br>average exte<br>4.90                 | Mar<br>ins<br>0.91<br>448.83<br>mal tempera<br>6.50                               | 0.85<br>464.89<br>ture<br>8.90              | 0.76        | 0.62              | 0.48              | 0.52        | 0.72              | 0.87              | 0.93                   | 0.96                   |
| <i>8. Space .</i><br>Jan<br>Utilisation<br>0.95<br>Useful ga<br>379.92<br>Monthly a<br>4.30<br>Heat loss<br>1154.41 | Feb<br>factor for ga<br>0.94<br>ins<br>418.99<br>average exte<br>4.90<br>rate for mea | Mar<br>ins<br>0.91<br>448.83<br>rnal tempera<br>6.50<br>n internal ter<br>1018.42 | 0.85<br>464.89<br>ture<br>8.90<br>nperature | 0.76        | 0.62 356.63 14.60 | 0.48 260.97 16.60 | 0.52        | 0.72 336.05 14.10 | 0.87 363.86 10.60 | 0.93<br>360.57<br>7.10 | 0.96<br>362.94<br>4.20 |

Total space heating requirement per year (kWh/year) (October to May)

280.70

163.74

Space heating requirement per m<sup>2</sup> (kWh/m<sup>2</sup>/year)

471.71

576.22

423.78

8c. Space cooling requirement - not applicable

263.04

426.04

585.67

3190.90

46.35

(98)

(99)

| 9a. Energ   | ny requiremen        | nts           |               |             |         |        |        |        |                  |        | kWh/year   |         |
|-------------|----------------------|---------------|---------------|-------------|---------|--------|--------|--------|------------------|--------|------------|---------|
| No secon    | dary heating         | system sel    | ected         |             |         |        |        |        |                  |        | Kvvii/yedi |         |
|             | of space heat        |               | system(s)     |             |         |        |        |        | 1.0000<br>90.50% |        |            | (202)   |
|             | of main hea          |               |               | Mari        | 1       |        | A      |        |                  |        | Du         | (206)   |
| Jan         | Feb                  | Mar           | Apr           | Мау         | Jun     | Jul    | Aug    | Sep    | Oct              | Nov    | Dec        |         |
| -           | ating requirer       | - I-          |               | 1           | 1       |        | -1     |        |                  |        | 505 (3     | (00)    |
| 576.22      | 471.71               | 423.78        | 280.70        | 163.74      | -       | -      | -      | -      | 263.04           | 426.04 | 585.67     | (98)    |
|             | Q - monthly          |               | -1            |             | m 1)    |        |        |        |                  |        |            | (0.1.0) |
| 0.00        | 0.00                 | 0.00          | 0.00          | 0.00        | -       | -      | -      | -      | 0.00             | 0.00   | 0.00       | (210)   |
| -           | ating fuel (ma       | -             | -             |             |         |        |        |        | 10               |        |            |         |
| 636.70      | 521.23               | 468.26        | 310.16        | 180.93      | -       | -      | -      | -      | 290.65           | 470.76 | 647.15     | (211)   |
|             | Q - monthly          |               | -1            |             | m 2)    | Ir     |        |        | 1                | 1      |            |         |
| 0.00        | 0.00                 | 0.00          | 0.00          | 0.00        | -       | -      | -      | -      | 0.00             | 0.00   | 0.00       | (212)   |
| Space hea   | ating fuel (ma       | ain heating s | system 2)     |             |         |        |        |        |                  |        |            |         |
| 0.00        | 0.00                 | 0.00          | 0.00          | 0.00        | -       | -      | -      | -      | 0.00             | 0.00   | 0.00       | (213)   |
| Appendix    | Q - monthly          | energy sav    | ved (second   | ary heating | system) |        |        |        |                  |        |            |         |
| 0.00        | 0.00                 | 0.00          | 0.00          | 0.00        | -       | -      | -      | -      | 0.00             | 0.00   | 0.00       | (214    |
| Space hea   | ating fuel (se       | econdary)     |               |             |         |        |        |        |                  |        |            |         |
| 0.00        | 0.00                 | 0.00          | 0.00          | 0.00        | -       | -      | -      | -      | 0.00             | 0.00   | 0.00       | (215)   |
| Water hear  |                      |               |               |             |         |        |        | ·      |                  |        |            |         |
| Water hea   | ating requirem       | ient          |               |             |         |        |        |        |                  |        |            |         |
| 144.75      | 126.69               | 130.94        | 114.45        | 110.03      | 95.27   | 88.60  | 101.21 | 102.29 | 118.82           | 129.32 | 140.28     | (64)    |
| Efficiency  | of water hea         | iter          |               |             |         |        |        |        |                  |        | 87.30      | •       |
| 89.84       | 89.80                | 89.72         | 89.55         | 89.19       | 87.30   | 87.30  | 87.30  | 87.30  | 89.48            | 89.73  | 89.86      | (217)   |
| Water hear  | iting fuel           |               |               |             |         |        |        |        |                  |        |            |         |
| 161.12      | 141.07               | 145.94        | 127.80        | 123.37      | 109.13  | 101.48 | 115.94 | 117.17 | 132.79           | 144.12 | 156.10     | (219)   |
| Annual tot  | tals                 | _л            |               |             |         |        |        |        |                  |        | kWh/year   |         |
| -           | ating fuel use       | -             | tem 1         |             |         |        |        |        |                  |        | 3525.85    | · · ·   |
| -           | ating fuel (se       | econdary)     |               |             |         |        |        |        |                  |        | 0.00       | •       |
| Water hear  | for pumps, fa        | ans and ele   | ctric keen-ho | ht          |         |        |        |        |                  |        | 1576.04    | 4 (219) |
| -           | neating pump         |               |               |             |         |        |        |        |                  |        | 30.00      | 0 (230  |
| boiler wit  | ith a fan-assis      | sted flue     |               |             |         |        |        |        |                  |        | 45.00      | 0 (230  |
|             | tricity for the      |               | 2             |             |         |        |        |        |                  |        | 75.00      | •       |
|             | for lighting (       |               |               |             |         |        |        |        |                  |        | 328.71     | 1 (232) |
| Appendix    | aving/generat<br>0 - |               | Julie2        |             |         |        |        |        |                  |        |            |         |
|             | saved or ge          | nerated ():   |               |             |         |        |        |        |                  |        | 0.000      | ) (236  |
|             | used ():             | v             |               |             |         |        |        |        |                  |        | 0.000      |         |
| Total deliv | vered energy         | for all uses  |               |             |         |        |        |        |                  |        | 5505.60    | 0 (238) |
|             |                      |               |               |             |         |        |        |        |                  |        |            |         |

10a. Does not apply


11a. Does not apply

#### 12a. Carbon dioxide emissions

|                                | Energy   | Emission factor | Emissions   |       |
|--------------------------------|----------|-----------------|-------------|-------|
|                                | kWh/year | kg CO2/kWh      | kg CO2/year |       |
| Space heating, main system 1   | 3525.85  | 0.216           | 761.58      | (261) |
| Space heating, main system 2   | 0.00     | 0.000           | 0.00        | (262) |
| Space heating, secondary       | 0.00     | 0.519           | 0.00        | (263) |
| Water heating                  | 1576.04  | 0.216           | 340.43      | (264) |
| Space and water heating        |          |                 | 1102.01     | (265) |
| Electricity for pumps and fans | 75.00    | 0.519           | 38.93       | (267) |
| Electricity for lighting       | 328.71   | 0.519           | 170.60      | (268) |
| Electricity generated - PVs    | 0.00     | 0.519           | 0.00        | (269) |
| Electricity generated - µCHP   | 0.00     | 0.000           | 0.00        | (269) |
| Appendix Q -                   |          |                 |             |       |
| Energy saved ():               | 0.00     | 0.000           | 0.00        | (270) |
| Energy used ():                | 0.00     | 0.000           | 0.00        | (271) |
| Total CO2, kg/year             |          |                 | 1311.53     | (272) |
|                                |          |                 |             |       |
|                                |          |                 | 1 / 2/      |       |

Dwelling Carbon Dioxide Emission Rate (DER)

kg/m²/year 19.05 (273)



## Appendix 3:

**Proposed Green DER Calculations (SAP Derived)** 



#### Project Information Building type Mid-floor flat

| Reference<br>Date | 9913<br>15 April 2020                                                                        |         |                                                           |
|-------------------|----------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------|
| Client            | GBS Architectural Design<br>Lombard Business Park<br>8 Lombard Road<br>Wimbledon<br>SW19 3TZ | Project | Flat 1 - Green<br>130 Chalton Street<br>London<br>NW1 1RX |

### **EPS** Group

3C Pelham Court Pelham Road Nottingham 0115 7270599 info@epsgroup.co.uk

#### SAP 2012 worksheet for New dwelling as built - calculation of dwelling emissions

1. Overall dwelling dimensions

| Fourth and other floors       50.49       2.40       121.18       (3a)         Total floor area       50.49       (4)         Dwelling volume (m³)       121.18       (5)         2. Ventilation rate       m³ per hour | b)<br>a)<br>b) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Dwelling volume (m³)       121.18       (5)         2. Ventilation rate       121.18       121.18                                                                                                                       | b)<br>a)<br>b) |
|                                                                                                                                                                                                                         | b)<br>a)<br>b) |
|                                                                                                                                                                                                                         | b)<br>a)<br>b) |
| main + seondary + other                                                                                                                                                                                                 | b)<br>a)<br>b) |
| heating                                                                                                                                                                                                                 | b)<br>a)<br>b) |
| Number of chimneys 0 + 0 + 0 x 40 0.00 (6                                                                                                                                                                               | a)<br>b)       |
| Number of open flues         0 + 0 + 0         x 20         0.00         (6                                                                                                                                             | b)             |
| Number of intermittent fans2x 1020.00(7)                                                                                                                                                                                |                |
| Number of passive vents         0         x 10         0.00         (7)                                                                                                                                                 | ()             |
| Number of flueless gas fires 0 x 40 0.00 (7                                                                                                                                                                             | 0)             |
| Air changes per ho                                                                                                                                                                                                      | ur             |
| Infiltration due to chimneys, fans and flues 0.17 (8                                                                                                                                                                    |                |
| Pressure test, result q50 4.50 (1                                                                                                                                                                                       | 7)             |
| Air permeability 0.39 (1                                                                                                                                                                                                | 8)             |
| Number of sides on which sheltered 3.00 (1                                                                                                                                                                              |                |
| Shelter factor 0.78 (2                                                                                                                                                                                                  |                |
| Infiltration rate incorporating shelter factor 0.30 (2<br>Infiltration rate modified for monthly wind speed                                                                                                             | 1)             |
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                         |                |
| 5.10         5.00         4.40         4.30         3.80         3.70         4.00         4.30         4.70                                                                                                            |                |
| 52.50 (2                                                                                                                                                                                                                | 2)             |
| Wind Factor                                                                                                                                                                                                             | ,              |
| 1.27         1.25         1.23         1.10         1.08         0.95         0.93         1.00         1.08         1.13         1.18                                                                                  |                |
| Adjusted infiltration rate (allowing for shelter and wind speed) 13.13 (2                                                                                                                                               | 2a)            |
| 0.39 0.38 0.37 0.33 0.32 0.29 0.29 0.28 0.30 0.32 0.34 0.36                                                                                                                                                             |                |
| 3.97 (2                                                                                                                                                                                                                 | 2b)            |
| Ventilation : natural ventilation, intermittent extract fans<br>Effective air change rate                                                                                                                               |                |
| 0.57 0.57 0.57 0.56 0.55 0.54 0.54 0.54 0.55 0.55 0.56 0.56 (2                                                                                                                                                          | 5)             |

| <i>3. Heat loss</i><br>Element    | es and nea     | <i>TIOSS paran</i><br>Gross<br>area, m² |                   | nings   | Net area<br>A, m² |       | U-value<br>W/m²K | A x<br>W/K |       | kappa-value<br>kJ/m²K | A x K<br>kJ/K |        |
|-----------------------------------|----------------|-----------------------------------------|-------------------|---------|-------------------|-------|------------------|------------|-------|-----------------------|---------------|--------|
| Window - Do                       | nubla alazar   |                                         |                   |         | A, III-<br>2.04   |       | 1.33 (1.40)      | VV/N       | 2.70  | KJ/III <sup>2</sup> N | KJ/ N         | (2     |
| low-E, En=0.<br>W1                | -              | -                                       |                   |         | 2.04              | 10    | 1.55 (1.40)      |            | 2.70  |                       |               | (2     |
| Window - De                       | ouble-glazed   | t, argon fille                          | ed.               |         | 2.04              | 10    | 1.33 (1.40)      |            | 2.70  |                       |               | (2     |
| low-E, En=0.<br>W2                | -              | -                                       |                   |         | 2101              |       |                  |            | 2.7.0 |                       |               | (-     |
| Window - Do<br>low-E, En=0.<br>W3 | -              | -                                       |                   |         | 2.04              | 10    | 1.33 (1.40)      |            | 2.70  |                       |               | (2     |
| Window - Do<br>low-E, En=0<br>W5  | -              | -                                       |                   |         | 1.45              | 50    | 1.33 (1.40)      |            | 1.92  |                       |               | (2     |
| Window - Do<br>low-E, En=0<br>W7  | -              | -                                       |                   |         | 1.45              | 50    | 1.33 (1.40)      |            | 1.92  |                       |               | (2     |
| Window - Do<br>low-E, En=0<br>W6  | -              | -                                       |                   |         | 1.75              | 50    | 1.33 (1.40)      |            | 2.32  |                       |               | (2     |
| Window - Do<br>low-E, En=0<br>W4  | •              | •                                       |                   |         | 2.04              | 10    | 1.33 (1.40)      |            | 2.70  |                       |               | (2     |
| Window - Do<br>low-E, En=0<br>W8  | -              | -                                       |                   |         | 1.89              | 90    | 1.33 (1.40)      |            | 2.51  |                       |               | (2     |
| Window - Do<br>low-E, En=0        | -              | -                                       |                   |         | 0.91              | 0     | 1.33 (1.40)      |            | 1.21  |                       |               | (2     |
| W9                                |                | . (                                     | ,                 |         |                   |       |                  |            |       |                       |               |        |
| Solid door                        |                |                                         |                   |         | 1.94              | 10    | 0.66             | )          | 1.28  |                       |               | (2     |
| Entrance I                        | Door           |                                         |                   |         |                   |       |                  |            |       |                       |               |        |
| Walls                             |                |                                         |                   |         | 38.4              | 46    | 0.22             | 2          | 8.46  | 60.00                 | 2307.60       | (2     |
| External V                        | Vall           |                                         |                   |         |                   |       |                  |            |       |                       |               | -      |
| Walls                             | r Wall to Lir  | booted Cor                              | ridor             |         | 10.7              | /3    | 0.2              | 2          | 2.36  | 0.00                  | 0.00          | (2     |
| Party wall                        | j wali to ui   | heated Corr                             | IUUI              |         | 9.3               | 38    | 0.0              | )          | 0.00  | 70.00                 | 656.60        |        |
| Total area o                      | f ovtornal o   | lomonts Sia                             | maΔm <sup>2</sup> |         |                   |       |                  |            |       |                       | 64            | .74 (3 |
| Fabric heat                       |                | iements olgi                            | ina 70, m         |         |                   |       |                  |            |       |                       |               |        |
| Thermal ma                        |                | er, kJ/m²K                              | (user-specifi     | ed TMP) |                   |       |                  |            |       |                       | 250           |        |
| Effect of the                     | rmal bridges   | 5                                       |                   |         |                   |       |                  |            |       |                       | ç             | .62 (3 |
| Total fabric I                    |                |                                         |                   |         |                   |       |                  |            |       |                       | 42            | .42 (3 |
| Ventilation h                     | eat loss ca    | lculated mor                            | nthly             |         |                   |       |                  |            |       |                       |               |        |
| 22.96                             | 22.85          | 22.74                                   | 22.20             | 22.11   | 21.64             | 21.64 | 21.56            | 21.82      | 22.1  | 1 22.31               | 22.52         | (3     |
| Heat transfer                     | r coefficient, | W/K                                     |                   |         |                   |       |                  |            |       |                       |               | _      |
| 65.39                             | 65.27          | 65.16                                   | 64.63             | 64.53   | 64.06             | 64.06 | 63.98            | 64.24      | 64.5  | 3 64.73               | 64.94         | ]      |
| Heat loss pa                      | arameter (H    | LP), W/m²K                              |                   |         |                   |       |                  |            |       |                       | 64            | .63 (3 |
| 1.30                              | 1.29           | 1.29                                    | 1.28              | 1.28    | 1.27              | 1.27  | 1.27             | 1.27       | 1.28  | 1.28                  | 1.29          | ]      |
| HLP (average<br>Number of d       | je)            |                                         |                   |         | ][                | _I    | I                |            | ]     |                       |               | .28 (4 |
|                                   |                |                                         |                   | Morr    | lun               | 1.1.1 | A                | Car        | 0     | Neu                   | Dec           | Т      |
| Jan                               | Feb            | Mar                                     | Apr               | May     | Jun               | Jul   | Aug              | Sep        | Oct   | Nov                   | Dec           |        |
| 31                                | 28             | 31                                      | 30                | 31      | 30                | 31    | 31               | 30         | 31    | 30                    | 31            |        |

|                         | <i>heating energ</i><br>occupancy, |              | pents         |               |               |        |        |        |        |        | kWh/year<br>1.70 |
|-------------------------|------------------------------------|--------------|---------------|---------------|---------------|--------|--------|--------|--------|--------|------------------|
|                         | verage hot wa                      |              | n litres per  | day Vd,aver   | age           |        |        |        |        |        | 74.68            |
| Jan                     | Feb                                | Mar          | Apr           | Мау           | Jun           | Jul    | Aug    | Sep    | Oct    | Nov    | Dec              |
| ot water                | usage in litre                     | es per day f | or each moi   | nth           | ][            |        |        | ]      |        |        |                  |
| 32.15                   | 79.16                              | 76.18        | 73.19         | 70.20         | 67.21         | 67.21  | 70.20  | 73.19  | 76.18  | 79.16  | 82.15            |
| nergy co                | ontent of hot                      | water used   | N             |               | ]             |        |        | ]      |        |        |                  |
| 121.83                  | 106.55                             | 109.95       | 95.86         | 91.98         | 79.37         | 73.55  | 84.40  | 85.41  | 99.53  | 108.65 | 117.98           |
| nergy co<br>istributior | ontent (annua<br>n loss            | al)          |               |               | /             | H      |        | N      | H      | R      | 1175.05          |
| 18.27                   | 15.98                              | 16.49        | 14.38         | 13.80         | 11.91         | 11.03  | 12.66  | 12.81  | 14.93  | 16.30  | 17.70            |
| store lo                | ss determine                       | d from EN 1  | 13203-2 test  | s, taken fron | n boiler data | record |        |        |        | I      |                  |
|                         | storage volu                       | , ,          |               |               |               |        |        |        |        |        | 0.00             |
|                         | cylinder los                       | s factor (kW | /h/day)       |               |               |        |        |        |        |        | 0.0000           |
| olume fa<br>emperati    | ure factor                         |              |               |               |               |        |        |        |        |        | 0.0000<br>0.0000 |
|                         | st from store                      | (kWh/day)    |               |               |               |        |        |        |        |        | 0.00             |
| otal stora              |                                    |              |               |               |               |        |        |        |        |        |                  |
| 0.00                    | 0.00                               | 0.00         | 0.00          | 0.00          | 0.00          | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00             |
| et storag               | ge loss                            | л            | n             | A             |               |        | ri     |        |        | л      |                  |
| 0.00                    | 0.00                               | 0.00         | 0.00          | 0.00          | 0.00          | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00             |
| rimary lo               | 055                                |              |               |               | 1             | 1      |        | I      | I      |        |                  |
| 0.00                    | 0.00                               | 0.00         | 0.00          | 0.00          | 0.00          | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00             |
| ombi los                | s calculated                       | for each mo  | onth          |               |               |        |        | J      | ][     | I      |                  |
| 3.05                    | 2.75                               | 3.05         | 2.95          | 3.05          | 2.95          | 3.05   | 3.05   | 2.95   | 3.05   | 2.95   | 3.05             |
| otal heat               | t required for                     | water heatir | ng calculated | d for each m  | ionth         |        |        | ]      |        |        |                  |
| 124.87                  | 109.30                             | 113.00       | 98.81         | 95.02         | 82.32         | 76.59  | 87.44  | 88.35  | 102.58 | 111.59 | 121.03           |
| utput fro               | m water hea                        | ter for each | month, kWh    | n/month       | ]             | JL     |        | J      |        |        |                  |
| 124.87                  | 109.30                             | 113.00       | 98.81         | 95.02         | 82.32         | 76.59  | 87.44  | 88.35  | 102.58 | 111.59 | 121.03           |
|                         |                                    |              | Л             |               |               |        |        | J      | ][     | I      | 1210.91          |
| eat gains               | s from water                       | heating, kW  | /h/month      |               |               |        |        |        |        |        |                  |
| 41.27                   | 36.12                              | 37.32        | 32.61         | 31.34         | 27.13         | 25.22  | 28.82  | 29.13  | 33.86  | 36.86  | 39.99            |
|                         |                                    |              |               |               |               |        |        |        |        |        |                  |
| Interna                 | al nains                           |              |               |               |               |        |        |        |        |        |                  |
| Jan                     | Feb                                | Mar          | Apr           | May           | Jun           | Jul    | Aug    | Sep    | Oct    | Nov    | Dec              |
|                         | gains, Watts                       |              | 7.61          |               | 5411          | 501    |        |        | 001    |        | Dee              |
| 35.23                   | 85.23                              | 85.23        | 85.23         | 85.23         | 85.23         | 85.23  | 85.23  | 85.23  | 85.23  | 85.23  | 85.23            |
| ighting g               |                                    | 00.20        | 00.20         |               | 00.20         | 00.20  | 00.20  | 00.20  | 00.20  | 00.20  | 00.20            |
| 13.24                   | 11.76                              | 9.56         | 7.24          | 5.41          | 4.57          | 4.94   | 6.42   | 8.61   | 10.94  | 12.76  | 13.61            |
| ppliances               |                                    | 7.50         | 7.24          | 0.11          | 4.07          | 4.74   | 0.42   | 0.01   | 10.74  | 12.70  | 13.01            |
| 148.51                  | 150.05                             | 146.16       | 137.90        | 127.46        | 117.65        | 111.10 | 109.56 | 113.44 | 121.71 | 132.15 | 141.95           |
| ooking                  |                                    | 140.10       | 137.70        | 127.40        | 117.05        | 111.10 | 107.50 | 113.44 | 121.71 | 132.13 | 141.75           |
| 31.52                   | 31.52                              | 31.52        | 31.52         | 31.52         | 31.52         | 31.52  | 31.52  | 31.52  | 31.52  | 31.52  | 31.52            |
|                         | a fans gains                       |              | 51.52         | 51.52         | 51.52         | 51.52  | 51.52  | 51.52  | 51.52  | 51.52  | 51.52            |
| 3.00                    | 3.00                               | 3.00         | 3.00          | 3.00          | 3.00          | 3.00   | 3.00   | 3.00   | 3.00   | 3.00   | 3.00             |
|                         | .g. evaporatio                     |              |               | 3.00          | 3.00          | 3.00   | 3.00   | 3.00   | 3.00   | 3.00   | 3.00             |
|                         | - ·                                | -            |               | 60.10         | 60.10         | 40.10  | 60.10  | 60.10  | 60.10  | 60.10  | 40.10            |
| -68.18                  | -68.18<br>ating gains              | -68.18       | -68.18        | -68.18        | -68.18        | -68.18 | -68.18 | -68.18 | -68.18 | -68.18 | -68.18           |
|                         |                                    | E0 1/        | 45.00         | 40.10         | 27.40         | 22.00  | 20.74  | 40.47  | AE 51  | E1 00  | E2 7E            |
| 55.47                   | 53.74                              | 50.16        | 45.29         | 42.13         | 37.68         | 33.89  | 38.74  | 40.46  | 45.51  | 51.20  | 53.75            |
| 268.78                  | rnal gains                         | 057.44       | 242.00        | 224 57        | 011.17        | 201 50 | 201 22 | 014.00 | 220 70 | 047 (0 | 2/0.00           |
|                         | 267.12                             | 257.46       | 242.00        | 226.57        | 211.47        | 201.50 | 206.29 | 214.09 | 229.72 | 247.68 | 260.88           |

| 6. Solar ga                   | ains (calculat         | tion for Janu  | iary)         |             | Area & Flu         | IX      |        | g & FF      |        | Shading                  | Gains   |        |
|-------------------------------|------------------------|----------------|---------------|-------------|--------------------|---------|--------|-------------|--------|--------------------------|---------|--------|
| Window -<br>coat (South<br>W1 | -                      | d, argon fille | d, low-E, Er  | 1=0.1, soft | 0.9 x 2.040        |         |        | 0.63 x 0.70 |        | 0.77                     | 22.9391 |        |
|                               | -                      | d, argon fille | d, low-E, Er  | 1=0.1, soft | 0.9 x 2.040        | 0 36.79 |        | 0.63 x 0.70 |        | 0.77                     | 22.9391 |        |
|                               | •                      | d, argon fille | d, low-E, Er  | 1=0.1, soft | 0.9 x 2.040        | 0 36.79 |        | 0.63 x 0.70 |        | 0.77                     | 22.9391 |        |
|                               | -                      | d, argon fille | d, low-E, Er  | 1=0.1, soft | 0.9 x 1.450        | 0 36.79 |        | 0.63 x 0.70 |        | 0.77                     | 16.3048 |        |
|                               | -                      | d, argon fille | d, low-E, Er  | 1=0.1, soft | 0.9 x 1.450        | 0 36.79 |        | 0.63 x 0.70 |        | 0.77                     | 16.3048 |        |
|                               | •                      | d, argon fille | d, low-E, Er  | 1=0.1, soft | 0.9 x 1.750        | 0 36.79 |        | 0.63 x 0.70 |        | 0.77                     | 19.6782 |        |
|                               | -                      | d, argon fille | d, low-E, Er  | 1=0.1, soft | 0.9 x 2.040        | 0 36.79 |        | 0.63 x 0.70 |        | 0.77                     | 22.9391 |        |
|                               | •                      | d, argon fille | d, low-E, Er  | 1=0.1, soft | 0.9 x 1.890        | 0 11.28 |        | 0.63 x 0.70 |        | 0.77                     | 6.5171  |        |
|                               | -                      | d, argon fille | d, low-E, Er  | 1=0.1, soft | 0.9 x 0.910        | 0 11.28 |        | 0.63 x 0.70 |        | 0.77                     | 3.1379  |        |
| Solid door<br>Entrance        | e Door<br>gains, Janu  | arv            |               |             | 0.9 x 1.940        | 0.00    |        | 0.00 x 0.70 |        | 0.77                     | 0.0000  | (83-1) |
| Solar gains                   |                        | ary.           |               |             |                    |         |        |             |        |                          |         | (00.1) |
| 153.70                        | 265.01                 | 371.12         | 474.12        | 544.08      | 545.88             | 523.90  | 470.83 | 406.65      | 295.19 | 184.68                   | 131.16  | (83)   |
| Total gains                   | <br>S                  |                |               | I           |                    |         |        |             |        | I                        |         |        |
| 422.48                        | 532.13                 | 628.58         | 716.11        | 770.65      | 757.35             | 725.40  | 677.11 | 620.74      | 524.91 | 432.36                   | 392.04  | (84)   |
| Window -<br>coat (South<br>W1 |                        | -              |               |             | Area<br>0.9 x 2.04 |         |        | g<br>0.80   |        | FF x Shad<br>0.70 x 0.83 | 3 0.85  |        |
| Window -<br>coat (South<br>W2 | -                      | d, argon fille | .d, low-E, Er | 1=0.1, soft | 0.9 x 2.04         |         |        | 0.80        |        | 0.70 x 0.83              | 3 0.85  |        |
| Window -<br>coat (South<br>W3 | -                      | d, argon fille | d, low-E, Er  | 1=0.1, soft | 0.9 x 2.04         |         |        | 0.80        |        | 0.70 x 0.83              | 3 0.85  |        |
| Window -<br>coat (South<br>W5 | -                      | d, argon fille | d, low-E, Er  | ı=0.1, soft | 0.9 x 1.45         |         |        | 0.80        |        | 0.70 x 0.83              | 3 0.61  |        |
| Window -<br>coat (South<br>W7 | -                      | d, argon fille | d, low-E, Er  | ı=0.1, soft | 0.9 x 1.45         |         |        | 0.80        |        | 0.70 x 0.83              | 3 0.61  |        |
| Window -<br>coat (South<br>W6 | Double-glaze<br>hEast) | d, argon fille | d, low-E, Er  | ı=0.1, soft | 0.9 x 1.75         |         |        | 0.80        |        | 0.70 x 0.83              | 3 0.73  |        |
| Window -<br>coat (South<br>W4 | Double-glaze<br>hWest) | d, argon fille | d, low-E, Er  | ı=0.1, soft | 0.9 x 2.04         |         |        | 0.80        |        | 0.70 x 0.83              | 3 0.85  |        |
| Window -                      |                        |                |               |             |                    |         |        |             |        |                          |         |        |

W8

| Living area fraction (26.09 / 50.49)               |       |       |       |       |       |       |       |          |       |  |
|----------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|----------|-------|--|
| Mean internal temperature (for the whole dwelling) |       |       |       |       |       |       |       |          |       |  |
| 19.29                                              | 19.54 | 19.86 | 20.18 | 20.37 | 20.44 | 20.45 | 20.45 | 20.41    | 20.14 |  |
|                                                    |       |       |       |       |       |       | ·     | <i>n</i> |       |  |

| 19.29        | 19.54       | 19.86       | 20.18        | 20.37        | 20.44      | 20.45 | 20.45 | 20.41 | 20.14 | 19.65 | 19.24 | (92) |
|--------------|-------------|-------------|--------------|--------------|------------|-------|-------|-------|-------|-------|-------|------|
| Apply adjust | ment to the | mean intern | al temperatu | ire, where a | ppropriate |       |       |       |       |       |       |      |
| 19.14        | 19.39       | 19.71       | 20.03        | 20.22        | 20.29      | 20.30 | 20.30 | 20.26 | 19.99 | 19.50 | 19.09 | (93) |

| '             | 5 /             |               |              |                   |            |            |        |        |        |        |         |
|---------------|-----------------|---------------|--------------|-------------------|------------|------------|--------|--------|--------|--------|---------|
| Jan           | Feb             | Mar           | Apr          | May               | Jun        | Jul        | Aug    | Sep    | Oct    | Nov    | Dec     |
| Utilisation f | factor for gair | ns            | 1            |                   |            |            |        | JL     |        |        |         |
| 0.99          | 0.97            | 0.92          | 0.82         | 0.66              | 0.47       | 0.33       | 0.37   | 0.61   | 0.88   | 0.97   | 0.99    |
| Useful gaiı   | ns              |               | 1            |                   |            |            |        |        |        |        |         |
| 417.11        | 514.75          | 580.13        | 589.95       | 510.77            | 357.95     | 236.11     | 247.89 | 376.35 | 459.66 | 420.47 | 388.35  |
| Monthly av    | verage exterr   | nal temperat  | ture         |                   | _!         |            |        |        |        |        |         |
| 4.30          | 4.90            | 6.50          | 8.90         | 11.70             | 14.60      | 16.60      | 16.40  | 14.10  | 10.60  | 7.10   | 4.20    |
| Heat loss r   | ate for mean    | internal terr | perature     | 8                 |            | - <b>I</b> |        | n      | R      |        |         |
| 970.16        | 945.98          | 860.77        | 719.35       | 549.62            | 364.35     | 236.99     | 249.41 | 395.62 | 606.01 | 802.37 | 966.73  |
| Fraction of   | month for he    | ating         | 1            |                   | _/         |            |        | I.     | N      |        |         |
| 1.00          | 1.00            | 1.00          | 1.00         | 1.00              | -          | -          | -      | -      | 1.00   | 1.00   | 1.00    |
| Space hea     | ting requirem   | ent for each  | month, kW    | h/month           |            |            |        |        |        |        |         |
| 411.47        | 289.79          | 208.80        | 93.17        | 28.91             | -          | -          | -      | -      | 108.88 | 274.97 | 430.32  |
| Total space   | e heating rec   | quirement pe  | er year (kWł | ,<br>/year) (Octo | ber to May | )          |        | 1      |        | JL     | 1846.30 |
|               |                 |               |              |                   |            |            |        |        |        |        |         |

Page 5 of 7

Space heating requirement per m<sup>2</sup> (kWh/m<sup>2</sup>/year)

8c. Space cooling requirement - not applicable

|                                                           | Area       |
|-----------------------------------------------------------|------------|
| Window - Double-glazed, argon filled, low-E, En=0.1, soft | 0.9 x 0.91 |
| coat (NorthEast)                                          |            |

W9

GL = 6.53 / 50.49 = 0.129

C1 = 0.500

C2 = 0.960

EI = 234

| Heating                | system resp                  | onsiveness             |               |              |             |           |        |        |        |        | 1.00   | ) |
|------------------------|------------------------------|------------------------|---------------|--------------|-------------|-----------|--------|--------|--------|--------|--------|---|
| Jan                    | Feb                          | Mar                    | Apr           | Мау          | Jun         | Jul       | Aug    | Sep    | Oct    | Nov    | Dec    |   |
| tau                    |                              |                        |               |              |             |           |        |        |        |        |        |   |
| 53.62                  | 53.72                        | 53.81                  | 54.25         | 54.34        | 54.73       | 54.73     | 54.80  | 54.58  | 54.34  | 54.17  | 53.99  |   |
| alpha                  |                              |                        |               |              |             |           |        |        |        |        |        |   |
| 4.57                   | 4.58                         | 4.59                   | 4.62          | 4.62         | 4.65        | 4.65      | 4.65   | 4.64   | 4.62   | 4.61   | 4.60   |   |
| Utilisation            | n factor for ga              | ains for living        | area          | λ            |             |           | n      |        |        |        |        |   |
| 0.99                   | 0.98                         | 0.94                   | 0.86          | 0.71         | 0.53        | 0.39      | 0.43   | 0.66   | 0.91   | 0.98   | 0.99   |   |
| Mean inte              | ernal tempera                | ature in living        | area T1       |              | N           | 1         |        | J      | ][     | I      |        |   |
| 19.78                  | 20.04                        | 20.36                  | 20.69         | 20.90        | 20.98       | 21.00     | 20.99  | 20.94  | 20.65  | 20.14  | 19.73  |   |
| Temperat               | ture during he               | eating period          | s in rest of  | dwelling Th  | 2           | JLJLJLJLJ | - I    |        | 1L     | I      |        |   |
| 19.84                  | 19.85                        | 19.85                  | 19.86         | 19.86        | 19.87       | 19.87     | 19.87  | 19.86  | 19.86  | 19.85  | 19.85  |   |
| Utilisation            | n factor for ga              | ains for rest of       | of dwelling   |              | I           | 1         | I      | I      | 1L     |        |        |   |
| 0.99                   | 0.97                         | 0.93                   | 0.82          | 0.64         | 0.44        | 0.29      | 0.33   | 0.57   | 0.87   | 0.98   | 0.99   |   |
| Mean inte              | ernal tempera                | iture in the r         | est of dwelli | ng T2        | I           | [         |        | ]      |        | I      |        |   |
| 18.76                  | 19.01                        | 19.33                  | 19.63         | 19.80        | 19.86       | 19.86     | 19.87  | 19.84  | 19.60  | 19.12  | 18.71  |   |
| Living are             | ea fraction (2               | 6.09 / 50.49           | )             |              | I           | <u> </u>  | _!     |        | Į      | I      | 0.52   |   |
| Mean inte              | ernal tempera                | ature (for the         | whole dwe     | lling)       |             |           |        |        |        |        |        |   |
| 19.29                  | 19.54                        | 19.86                  | 20.18         | 20.37        | 20.44       | 20.45     | 20.45  | 20.41  | 20.14  | 19.65  | 19.24  |   |
| Apply adj              | justment to th               | ne mean inte           | rnal temper   | ature, where | appropriate | 1         |        |        | 1      |        |        |   |
| 19.14                  | 19.39                        | 19.71                  | 20.03         | 20.22        | 20.29       | 20.30     | 20.30  | 20.26  | 19.99  | 19.50  | 19.09  |   |
| <i>8. Space</i><br>Jan | <i>e heating requ</i><br>Feb | <i>uirement</i><br>Mar | Apr           | Мау          | Jun         | Jul       | Aug    | Sep    | Oct    | Nov    | Dec    |   |
| Utilisation            | n factor for ga              | ains                   |               |              |             |           |        |        |        |        |        |   |
| 0.99                   | 0.97                         | 0.92                   | 0.82          | 0.66         | 0.47        | 0.33      | 0.37   | 0.61   | 0.88   | 0.97   | 0.99   |   |
| Useful ga              | ains                         |                        |               |              | I           |           |        | I      |        | I      |        |   |
| 417.11                 | 514.75                       | 580.13                 | 589.95        | 510.77       | 357.95      | 236.11    | 247.89 | 376.35 | 459.66 | 420.47 | 388.35 |   |
| Monthly                | average exte                 | rnal tempera           | ature         |              |             |           | _!     |        |        | _!     |        |   |
| 4.30                   | 4.90                         | 6.50                   | 8.90          | 11.70        | 14.60       | 16.60     | 16.40  | 14.10  | 10.60  | 7.10   | 4.20   |   |
|                        | s rate for mea               |                        |               |              | I           | I         |        |        | IL     | I      |        |   |
| 970.16                 | 945.98                       | 860.77                 | 719.35        | 549.62       | 364.35      | 236.99    | 249.41 | 395.62 | 606.01 | 802.37 | 966.73 |   |
|                        | of month for I               |                        |               |              |             | [         |        |        | I      | I      |        |   |
| 1.00                   | 1.00                         | 1.00                   | 1.00          | 1.00         | -           | -         | -      | -      | 1.00   | 1.00   | 1.00   |   |
|                        | eating require               |                        |               |              | I           |           | _!     |        |        |        |        |   |
| •                      | 280 70                       |                        |               | 28.91        |             |           |        |        | 108.88 | 274 97 | 430.32 |   |

36.57

(99)

FF x Shading

0.70 x 0.83

g 0.80

| 9a. Energy             | requireme          | nts                        |              |              |         |       |        |        |                                              |        | White           |                |
|------------------------|--------------------|----------------------------|--------------|--------------|---------|-------|--------|--------|----------------------------------------------|--------|-----------------|----------------|
| Fraction of            | space heat         | system sele                |              |              |         |       |        |        | 1.0000                                       |        | kWh/year        | (202)          |
|                        | ~                  | ting system                | 1            | 1            | 7/      |       | -1     | - V    | 0.50%                                        |        |                 | (206)          |
| Jan                    | Feb                | Mar                        | Apr          | Мау          | Jun     | Jul   | Aug    | Sep    | Oct                                          | Nov    | Dec             |                |
|                        | ting requirer      | 1                          | 1            |              | 1       | -1    |        | 1      | -16                                          | 10     |                 |                |
| 411.47                 | 289.79             | 208.80                     | 93.17        | 28.91        | -       | -     | -      | -      | 108.88                                       | 274.97 | 430.32          | (98)           |
| Appendix (             | 2 - monthly        | energy save                | ed (main he  | ating system | 1)      |       |        |        |                                              |        |                 |                |
| 0.00                   | 0.00               | 0.00                       | 0.00         | 0.00         | -       | -     | -      | -      | 0.00                                         | 0.00   | 0.00            | (210)          |
| Space heat             | ting fuel (ma      | ain heating s              | ystem 1)     |              |         |       |        |        |                                              |        |                 |                |
| 454.66                 | 320.21             | 230.72                     | 102.95       | 31.94        | -       | -     | -      | -      | 120.31                                       | 303.83 | 475.49          | (211)          |
| Appendix (             | 2 - monthly        | energy save                | ed (main he  | ating system | 2)      |       |        |        |                                              |        |                 |                |
| 0.00                   | 0.00               | 0.00                       | 0.00         | 0.00         | -       | -     | -      | -      | 0.00                                         | 0.00   | 0.00            | (212)          |
| Space heat             | ting fuel (ma      | ain heating s              | ystem 2)     | 2            |         |       | A      | - JL   | <u>,                                    </u> | 1      |                 |                |
| 0.00                   | 0.00               | 0.00                       | 0.00         | 0.00         | -       | -     | -      | -      | 0.00                                         | 0.00   | 0.00            | (213)          |
| Appendix (             | 2 - monthly        | energy sav                 | ed (seconda  | ry heating   | system) | JI    |        |        |                                              |        |                 |                |
| 0.00                   | 0.00               | 0.00                       | 0.00         | 0.00         | -       | -     | -      | -      | 0.00                                         | 0.00   | 0.00            | (214)          |
| Space hea              | ting fuel (se      | econdary)                  |              |              | ]       | ]I    |        |        |                                              |        |                 |                |
| 0.00                   | 0.00               | 0.00                       | 0.00         | 0.00         | -       | -     | -      | -      | 0.00                                         | 0.00   | 0.00            | (215)          |
| Water heat             | ing                |                            | JL           |              | 1       |       | _!     |        |                                              |        |                 |                |
| Water heat             | ing requirem       | nent                       |              |              |         |       |        |        |                                              |        |                 |                |
| 124.87                 | 109.30             | 113.00                     | 98.81        | 95.02        | 82.32   | 76.59 | 87.44  | 88.35  | 102.58                                       | 111.59 | 121.03          | (64)           |
| Efficiency of          | of water hea       | iter                       | <u>n</u>     |              | Л       | R     | A      | Л      | U                                            | ļ.     | 87.30           | (216)          |
| 89.73                  | 89.60              | 89.35                      | 88.82        | 88.03        | 87.30   | 87.30 | 87.30  | 87.30  | 88.92                                        | 89.55  | 89.78           | (217)          |
| Water heat             | ing fuel           | _яя                        |              |              | 1       |       | A      |        |                                              |        |                 |                |
| 139.16                 | 121.99             | 126.47                     | 111.24       | 107.95       | 94.29   | 87.74 | 100.16 | 101.21 | 115.36                                       | 124.61 | 134.81          | (219)          |
| Annual tota            | l                  |                            |              |              | ,       |       |        | 101.21 | 110.00                                       | 121.01 | kWh/year        |                |
| •                      | ting fuel (se      | ed, main syst              | em i         |              |         |       |        |        |                                              |        | 2040.11<br>0.00 | (211)<br>(215) |
| Water heat             | -                  | ,oondary)                  |              |              |         |       |        |        |                                              |        | 1364.99         |                |
| Electricity f          | for pumps, f       | ans and elec               | tric keep-ho | t            |         |       |        |        |                                              |        |                 |                |
|                        | eating pump        |                            |              |              |         |       |        |        |                                              |        | 30.00           | ( )            |
|                        | h a fan-assis      |                            | haar         |              |         |       |        |        |                                              |        | 45.00           | . ,            |
|                        | -                  | above, kWh<br>100.00% fixe | -            |              |         |       |        |        |                                              |        | 75.00<br>233.81 |                |
| 5                      |                    | ion technolo               | -            |              |         |       |        |        |                                              |        | 233.01          | (232)          |
| 0,                     | 00                 | 950.616 x 0                | •            |              |         |       |        |        |                                              |        | 412.491         |                |
| PVs 0.8                | 0 x 0.000 x        | 0.000 x 0.50               | 00           |              |         |       |        |        |                                              |        | 0.000           |                |
| PVs 0.8                | 0 x 0.000 x        | 0.000 x 0.50               | 00           |              |         |       |        |        |                                              |        | 0.000           |                |
| Annondiv (             | ۰<br>۲             |                            |              |              |         |       |        |        |                                              |        | 412.491         | (233)          |
| Appendix C<br>Energy s | 2 -<br>saved or ge | nerated ∆.                 |              |              |         |       |        |        |                                              |        | 0.000           | (236a)         |
| Energy I               | -                  |                            |              |              |         |       |        |        |                                              |        | 0.000           | . ,            |
|                        |                    | for all uses               |              |              |         |       |        |        |                                              |        | 3301.42         |                |

10a. Does not apply

11a. Does not apply

#### 12a. Carbon dioxide emissions

|                                | Energy   | Emission factor | Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|--------------------------------|----------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                | kWh/year | kg CO2/kWh      | kg CO2/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| Space heating, main system 1   | 2040.11  | 0.216           | 440.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (261) |
| Space heating, main system 2   | 0.00     | 0.000           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (262) |
| Space heating, secondary       | 0.00     | 0.519           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (263) |
| Water heating                  | 1364.99  | 0.216           | 294.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (264) |
| Space and water heating        |          |                 | 735.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (265) |
| Electricity for pumps and fans | 75.00    | 0.519           | 38.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (267) |
| Electricity for lighting       | 233.81   | 0.519           | 121.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (268) |
| Electricity generated - PVs    | -412.49  | 0.519           | -214.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (269) |
| Electricity generated - µCHP   | 0.00     | 0.000           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (269) |
| Appendix Q -                   |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| Energy saved ():               | 0.00     | 0.000           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (270) |
| Energy used ():                | 0.00     | 0.000           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (271) |
| Total CO2, kg/year             |          |                 | 681.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (272) |
|                                |          |                 | light and light |       |

Dwelling Carbon Dioxide Emission Rate (DER)

kg/m²/year 13.50 (273)



#### Project Information Building type Top-floor flat

| Reference<br>Date | 9913<br>15 April 2020                                                                        |         |                                                           |
|-------------------|----------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------|
| Client            | GBS Architectural Design<br>Lombard Business Park<br>8 Lombard Road<br>Wimbledon<br>SW19 3TZ | Project | Flat 5 - Green<br>130 Chalton Street<br>London<br>NW1 1RX |

### EPS Group

3C Pelham Court Pelham Road Nottingham 0115 7270599 info@epsgroup.co.uk

#### SAP 2012 worksheet for New dwelling as built - calculation of dwelling emissions

1. Overall dwelling dimensions

|              | d albar flaara                                                  |                 |               |          |      |      | Area<br>(m²)   |             | Av. Storey<br>height (m) |      | Volume<br>(m <sup>3</sup> ) | 10     | (2.5)              |
|--------------|-----------------------------------------------------------------|-----------------|---------------|----------|------|------|----------------|-------------|--------------------------|------|-----------------------------|--------|--------------------|
| Total floor  | d other floors<br><sup>.</sup> area<br>volume (m <sup>3</sup> ) | i               |               |          |      |      | 68.84<br>68.84 |             | 2.40                     |      | 165.2<br>165.2              |        | (3a)<br>(4)<br>(5) |
| 2. Ventila   | ntion rate                                                      |                 |               |          |      |      |                |             |                          |      | m³ r                        | er hou | r                  |
|              |                                                                 |                 |               |          |      |      | main + seor    | ndary + oth | er                       |      |                             |        |                    |
|              |                                                                 |                 |               |          |      |      | heating        |             |                          |      |                             |        |                    |
| Number of    | of chimneys                                                     |                 |               |          |      |      | 0 + 0 + 0      |             | x 40                     |      |                             | 0.00   | ) (6a)             |
| Number o     | f open flues                                                    |                 |               |          |      |      | 0 + 0 + 0      |             | x 20                     |      |                             | 0.00   | ( )                |
|              | f intermittent                                                  |                 |               |          |      |      | 2              |             | x 10                     |      |                             | 20.00  | · · ·              |
|              | of passive ve                                                   |                 |               |          |      |      | 0              |             | x 10                     |      |                             | 0.00   | . ,                |
| Number o     | f flueless gas                                                  | s fires         |               |          |      |      | 0              |             | x 40                     |      |                             | 0.00   | ) (7c)             |
|              |                                                                 |                 |               |          |      |      |                |             |                          |      | Air                         | hange  | s per hour         |
| Infiltration | due to chimi                                                    | nevs, fans an   | nd flues      |          |      |      |                |             |                          |      | 7.11 \                      | 0.12   | -                  |
|              | test, result q                                                  | -               |               |          |      |      |                |             | 4.50                     |      |                             |        | (17)               |
| Air perme    | -                                                               |                 |               |          |      |      |                |             |                          |      |                             | 0.35   |                    |
| Number o     | of sides on w                                                   | hich sheltere   | d             |          |      |      |                |             |                          |      |                             | 1.00   | ) (19)             |
| Shelter fac  | ctor                                                            |                 |               |          |      |      |                |             |                          |      |                             | 0.93   | 3 (20)             |
| Infiltration | rate incorpor                                                   | ating shelter t | factor        |          |      |      |                |             |                          |      |                             | 0.32   | 2 (21)             |
| Infiltration | rate modified                                                   | d for monthly   | wind speed    |          |      |      |                |             |                          |      |                             |        |                    |
| Jan          | Feb                                                             | Mar             | Apr           | Мау      | Jun  | Jul  | Aug            | Sep         | Oct                      | Nov  | Dec                         |        |                    |
| 5.10         | 5.00                                                            | 4.90            | 4.40          | 4.30     | 3.80 | 3.80 | 3.70           | 4.00        | 4.30                     | 4.50 | 4.70                        |        |                    |
| Wind Fact    | tor                                                             |                 |               |          |      |      |                | I           |                          |      |                             | 52.50  | ) (22)             |
| 1.27         | 1.25                                                            | 1.23            | 1.10          | 1.08     | 0.95 | 0.95 | 0.93           | 1.00        | 1.08                     | 1.13 | 1.18                        |        |                    |
| L            | JI                                                              | JL              | 11            |          | 1(   | I    |                | ][          |                          | ][   |                             | 13.13  | 3 (22a)            |
| Adjusted i   | infiltration rate                                               | e (allowing fo  |               | -        | ed)  |      |                |             |                          |      |                             |        |                    |
| 0.41         | 0.40                                                            | 0.39            | 0.35          | 0.34     | 0.30 | 0.30 | 0.30           | 0.32        | 0.34                     | 0.36 | 0.38                        |        |                    |
|              | n : natural ve<br>air change ra                                 |                 | mittent extra | ict fans |      |      |                |             |                          |      |                             | 4.20   | ) (22b)            |
| 0.58         | 0.58                                                            | 0.58            | 0.56          | 0.56     | 0.55 | 0.55 | 0.54           | 0.55        | 0.56                     | 0.56 | 0.57                        |        | (25)               |
| L            |                                                                 |                 |               |          |      |      | A              |             |                          |      |                             |        |                    |

| <i>3. Heat los</i><br>Element | sses and he    | <i>at loss paran</i><br>Gross    |             | enings    | Net area |       | U-value     | ΑxU   |          | kappa-value | АхК         |         |
|-------------------------------|----------------|----------------------------------|-------------|-----------|----------|-------|-------------|-------|----------|-------------|-------------|---------|
|                               |                | area, m <sup>2</sup>             | m²          |           | A, m²    |       | W/m²K       | W/K   |          | kJ/m²K      | kJ/K        |         |
|                               | -              | ed, argon fille                  |             |           | 1.2      | 50    | 1.33 (1.40) |       | 1.66     |             |             | (27)    |
|                               | =0.1, soft co  | at (SouthWes                     | st)         |           |          |       |             |       |          |             |             |         |
| W1                            | <b>D</b> 11 1  |                                  |             |           | 4.01     | 50    | 4 00 (4 40) |       |          |             |             | (07)    |
|                               | -              | ed, argon fille<br>at (SouthWes  |             |           | 1.2      | 50    | 1.33 (1.40) |       | 1.66     |             |             | (27)    |
|                               | Double-glaze   | ed, argon fille                  | ed,         |           | 1.2      | 50    | 1.33 (1.40) |       | 1.66     |             |             | (27)    |
|                               | 0              | at (SouthWes                     |             |           |          |       |             |       |          |             |             |         |
| low-E, En=                    |                | ed, argon fille<br>at (NorthEast |             |           | 1.89     | 90    | 1.33 (1.40) |       | 2.51     |             |             | (27)    |
| W7                            | Daubla alam    | ad armon fills                   | a           |           | 0.0      | 10    | 1 22 (1 40) |       | 1 1 1    |             |             | (17)    |
|                               | -              | ed, argon fille<br>at (NorthEasi |             |           | 0.84     | 40    | 1.33 (1.40) |       | 1.11     |             |             | (27)    |
|                               | Double-glaze   | ed, argon fille                  | ed,         |           | 3.1      | 50    | 1.33 (1.40) |       | 4.18     |             |             | (27)    |
|                               | -              | at (NorthEast                    |             |           |          |       | . ,         |       |          |             |             | . ,     |
| W4                            |                |                                  |             |           |          |       |             |       |          |             |             |         |
| Solid door                    |                |                                  |             |           | 1.9      | 40    | 0.66        |       | 1.28     |             |             | (26)    |
| Entrance                      | e Door         |                                  |             |           |          |       |             |       |          |             |             |         |
| Walls<br>External             | Wall           |                                  |             |           | 83.      | 25    | 0.22        |       | 18.31    | 190.00      | 15817.50    | (29)    |
| Walls<br>Seperati             | ing Wall to L  | Inheated Cor                     | ridor       |           | 13.      | 77    | 0.22        |       | 3.03     | 0.00        | 0.00        | (29)    |
| Flat roofs                    |                |                                  |             |           | 64.      | 34    | 0.15        |       | 9.65     | 9.00        | 579.06      | (30)    |
| Pitched roo                   | ofs insulated  | between raf                      | ters        |           | 6.       | 21    | 0.15        |       | 0.93     | 9.00        | 55.89       | (30)    |
| Tatal and                     | -f             | demonstra Cira                   |             |           |          |       |             |       |          |             | 170         | 14 (01) |
|                               | at loss, W/K   | elements Sig                     | ma A, m²    |           |          |       |             |       |          |             | 179.<br>45. | ( )     |
|                               |                | eter, kJ/m²K                     | lusar spaci | fied TMD) |          |       |             |       |          |             | 45.<br>100. | ( )     |
|                               | nermal bridge  |                                  | (user-speci | neu nvn ) |          |       |             |       |          |             | 8.          | . ,     |
| Total fabric                  | 0              | 53                               |             |           |          |       |             |       |          |             | 54.         |         |
|                               |                | alculated mor                    | hthlv       |           |          |       |             |       |          |             | 54.         | 50 (57) |
| 31.80                         | 31.63          | 31.45                            | 30.64       | 30.49     | 29.78    | 29.7  | 8 29.65     | 30.05 | 30.49    | 30.80       | 31.12       | (38)    |
|                               | fer coefficier |                                  | 30.04       | 30.47     | 27.70    | 27.70 | 27.00       | 30.03 | 30.49    | 50.00       | 51.12       | (50)    |
|                               |                |                                  | 1           | 1         |          |       |             |       |          |             |             |         |
| 86.36                         | 86.19          | 86.02                            | 85.20       | 85.05     | 84.34    | 84.34 | 4 84.21     | 84.62 | 85.05    | 85.36       | 85.68       |         |
| Heat loss                     | parameter (I   | HLP), W/m²K                      |             |           |          |       |             |       |          |             | 85.         | 20 (39) |
| 1.25                          | 1.25           | 1.25                             | 1.24        | 1.24      | 1.23     | 1.23  | 1.22        | 1.23  | 1.24     | 1.24        | 1.24        |         |
| HLP (aver                     | age)           | _,                               | л           |           | ]        | ][    |             | JL    | <u> </u> | Л           | 1.          | 24 (40) |
| Number of                     | f days in mo   | onth (Table 1a                   | a)          |           |          |       |             |       |          |             |             |         |
| Jan                           | Feb            | Mar                              | Apr         | May       | Jun      | Jul   | Aug         | Sep   | Oct      | Nov         | Dec         |         |
| 31                            | 28             | 31                               | 30          | 31        | 30       | 31    | 31          | 30    | 31       | 30          | 31          |         |
|                               |                |                                  | LĨ          |           |          |       |             |       |          |             |             |         |

| 4. Water h   | heating energ              | ny requirem   | ents           |             |             |        |          |        |        |        | kWh/year |
|--------------|----------------------------|---------------|----------------|-------------|-------------|--------|----------|--------|--------|--------|----------|
|              | occupancy,                 |               |                |             |             |        |          |        |        |        | 2.2      |
| Annual ave   | erage hot wa               | iter usage ii | n litres per d | ay Vd,avera | age         |        |          |        |        |        | 86.8     |
| Jan          | Feb                        | Mar           | Apr            | Мау         | Jun         | Jul    | Aug      | Sep    | Oct    | Nov    | Dec      |
| lot water    | usage in litre             | s per day fo  | or each mont   | h           |             |        |          |        |        |        |          |
| 95.56        | 92.08                      | 88.61         | 85.13          | 81.66       | 78.18       | 78.18  | 81.66    | 85.13  | 88.61  | 92.08  | 95.56    |
| Energy cor   | ntent of hot v             | water used    | 1              |             |             |        |          |        |        |        |          |
| 141.71       | 123.94                     | 127.89        | 111.50         | 106.99      | 92.32       | 85.55  | 98.17    | 99.34  | 115.77 | 126.38 | 137.24   |
| Energy co    | ntent (annual              | <br>l)        | 1              |             | 1           |        |          |        |        |        | 1366.79  |
| Distribution | n loss                     |               |                |             |             |        |          |        |        |        |          |
| 21.26        | 18.59                      | 19.18         | 16.72          | 16.05       | 13.85       | 12.83  | 14.73    | 14.90  | 17.37  | 18.96  | 20.59    |
| store los    | <br>ss determined          | d from EN 1   | 3203-2 tests   | taken from  | boiler data | record |          |        |        |        |          |
| Hot water    | storage volu               | me (litres)   |                |             |             |        |          |        |        |        | 0.0      |
|              | cylinder loss              | factor (kW    | h/day)         |             |             |        |          |        |        |        | 0.000    |
| /olume fac   |                            |               |                |             |             |        |          |        |        |        | 0.000    |
| emperatu     | re factor<br>st from store | (W/Wb/day)    |                |             |             |        |          |        |        |        | 0.000    |
| Total stora  |                            | (KWII/Udy)    |                |             |             |        |          |        |        |        | 0.0      |
| 0.00         |                            | 0.00          | 0.00           | 0.00        | 0.00        | 0.00   | 0.00     | 0.00   | 0.00   | 0.00   | 0.00     |
| Vet storage  |                            | 0.00          | 0.00           | 0.00        | 0.00        | 0.00   | 0.00     | 0.00   | 0.00   | 0.00   | 0.00     |
| 5            | - Y                        | 0.00          | 0.00           | 0.00        | 0.00        | 0.00   | 0.00     | 0.00   | 0.00   |        | 0.00     |
| 0.00         | 0.00                       | 0.00          | 0.00           | 0.00        | 0.00        | 0.00   | 0.00     | 0.00   | 0.00   | 0.00   | 0.00     |
| Primary lo   | - Y                        | 1             |                |             | -16         |        |          |        |        |        |          |
| 0.00         | 0.00                       | 0.00          | 0.00           | 0.00        | 0.00        | 0.00   | 0.00     | 0.00   | 0.00   | 0.00   | 0.00     |
| Combi loss   | s calculated 1             | for each mo   | onth           |             |             |        |          |        |        |        |          |
| 3.05         | 2.75                       | 3.05          | 2.95           | 3.05        | 2.95        | 3.05   | 3.05     | 2.95   | 3.05   | 2.95   | 3.05     |
| fotal heat   | required for               | water heatin  | g calculated   | for each me | onth        |        |          |        |        | R      |          |
| 144.75       | 126.69                     | 130.94        | 114.45         | 110.03      | 95.27       | 88.60  | 101.21   | 102.29 | 118.82 | 129.32 | 140.28   |
| Dutput fror  | m water heat               | er for each   | month, kWh/    | month       |             |        |          | I      |        |        |          |
| 144.75       | 126.69                     | 130.94        | 114.45         | 110.03      | 95.27       | 88.60  | 101.21   | 102.29 | 118.82 | 129.32 | 140.28   |
|              |                            |               |                |             |             |        |          |        |        |        | 1402.6   |
| leat gains   | from water                 | heating, kW   | 'h/month       |             |             |        |          |        |        |        |          |
| 47.88        | 41.90                      | 43.29         | 37.81          | 36.33       | 31.43       | 29.21  | 33.40    | 33.77  | 39.26  | 42.76  | 46.39    |
|              |                            |               |                | l           |             |        |          |        |        |        |          |
|              |                            |               |                |             |             |        |          |        |        |        |          |
| 5. Internal  | l gains                    |               |                |             |             |        |          |        |        |        |          |
| Jan          | Feb                        | Mar           | Apr            | May         | Jun         | Jul    | Aug      | Sep    | Oct    | Nov    | Dec      |
| Aetabolic g  | gains, Watts               |               | 1              |             |             |        |          |        |        |        |          |
| 110.88       | 110.88                     | 110.88        | 110.88         | 110.88      | 110.88      | 110.88 | 110.88   | 110.88 | 110.88 | 110.88 | 110.88   |
| ighting ga   | ains                       | ]             |                |             |             |        |          | I      | I      | I      |          |
| 18.61        | 16.53                      | 13.44         | 10.18          | 7.61        | 6.42        | 6.94   | 9.02     | 12.11  | 15.38  | 17.95  | 19.13    |
| Appliances   | aains                      | ]             |                |             |             |        |          |        |        |        |          |
| 194.57       | 196.59                     | 191.51        | 180.67         | 167.00      | 154.15      | 145.56 | 143.55   | 148.63 | 159.47 | 173.14 | 185.99   |
| Cooking g    |                            | 171.51        | 100.07         | 107.00      | 134.13      | 143.30 | 143.00   | 140.00 | 137.47 | 175.14 | 100.77   |
|              |                            | 24.00         | 24.00          | 24.00       | 24.00       | 24.00  | 24.00    | 24.00  | 24.00  | 24.00  | 24.00    |
| 34.09        | 34.09                      | 34.09         | 34.09          | 34.09       | 34.09       | 34.09  | 34.09    | 34.09  | 34.09  | 34.09  | 34.09    |
|              | d fans gains               |               |                |             |             |        |          |        |        |        |          |
| 3.00         | 3.00                       | 3.00          | 3.00           | 3.00        | 3.00        | 3.00   | 3.00     | 3.00   | 3.00   | 3.00   | 3.00     |
| osses e.q    | g. evaporatio              | n (negative   | values)        |             |             |        |          |        |        |        |          |
| -88.71       | -88.71                     | -88.71        | -88.71         | -88.71      | -88.71      | -88.71 | -88.71   | -88.71 | -88.71 | -88.71 | -88.71   |
| Vater heat   | ting gains                 |               |                |             |             |        | <i>n</i> |        |        | л      |          |
| 64.35        | 62.35                      | 58.18         | 52.51          | 48.84       | 43.66       | 39.26  | 44.90    | 46.90  | 52.76  | 59.38  | 62.36    |
| Total interr | nal gains                  |               |                |             |             | ]I     | _11      |        | II     |        |          |
| 336.81       | 334.74                     | 322.39        | 302.63         | 282.71      | 263.50      | 251.03 | 256.73   | 266.91 | 286.87 | 309.73 | 326.74   |
|              |                            | " OFF.J/      | 002.00         | 202.11      | 200.00      | 201.00 | 200.75   | 200.71 | 200.07 | 007.75 | 020.17   |

| 6. Solar gains | Icalculation      | for Inniarial |
|----------------|-------------------|---------------|
| 0 SULAI UAILIS | ((.all.1)/all()// | In Janual VI  |

| 6. Solar gains (calculation for January)                                                  |                                       |                |                             |              |
|-------------------------------------------------------------------------------------------|---------------------------------------|----------------|-----------------------------|--------------|
|                                                                                           | Area & Flux                           | g & FF         | Shading                     | Gains        |
| Window - Double-glazed, argon filled, low-E, En=0.1, soft<br>coat (SouthWest)<br>W1       | 0.9 x 1.250 36.79                     | 0.63 x 0.70    | 0.77                        | 14.0558      |
| Window - Double-glazed, argon filled, low-E, En=0.1, soft<br>coat (SouthWest)<br>W2       | 0.9 x 1.250 36.79                     | 0.63 x 0.70    | 0.77                        | 14.0558      |
| Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (SouthWest)                | 0.9 x 1.250 36.79                     | 0.63 x 0.70    | 0.77                        | 14.0558      |
| W3<br>Window - Double-glazed, argon filled, low-E, En=0.1, soft<br>coat (NorthEast)       | 0.9 x 1.890 11.28                     | 0.63 x 0.70    | 0.77                        | 6.5171       |
| W7<br>Window - Double-glazed, argon filled, low-E, En=0.1, soft<br>coat (NorthEast)       | 0.9 x 0.840 11.28                     | 0.63 x 0.70    | 0.77                        | 2.8965       |
| W5<br>Window - Double-glazed, argon filled, low-E, En=0.1, soft<br>coat (NorthEast)       | 0.9 x 3.150 11.28                     | 0.63 x 0.70    | 0.77                        | 10.8619      |
| W4<br>Solid door                                                                          | 0.9 x 1.940 0.00                      | 0.00 x 0.70    | 0.77                        | 0.0000       |
| Entrance Door<br>Total solar gains, January                                               |                                       |                |                             | 62.44 (83-1) |
| Solar gains                                                                               |                                       |                |                             |              |
| 62.44 113.10 172.63 243.89 300.54                                                         | 310.41 294.25 250.1                   | 5 197.02 129.8 | 76.02                       | 52.64 (83)   |
| Total gains                                                                               | , , , , , , , , , , , , , , , , , , , |                | ,,                          |              |
| 399.25         447.83         495.03         546.52         583.25                        | 573.90 545.28 506.8                   | 8 463.93 416.6 | 9 385.75                    | 379.38 (84)  |
| <i>Lighting calculations</i><br>Window - Double-glazed, argon filled, low-E, En=0.1, soft | Area<br>0.9 x 1.25                    | g<br>0.80      | FF x Shading<br>0.70 x 0.83 | 0.52         |
| coat (SouthWest)<br>W1                                                                    |                                       |                |                             |              |
| Window - Double-glazed, argon filled, low-E, En=0.1, soft<br>coat (SouthWest)<br>W2       | 0.9 x 1.25                            | 0.80           | 0.70 x 0.83                 | 0.52         |
| Window - Double-glazed, argon filled, low-E, En=0.1, soft<br>coat (SouthWest)<br>W3       | 0.9 x 1.25                            | 0.80           | 0.70 x 0.83                 | 0.52         |
| Window - Double-glazed, argon filled, low-E, En=0.1, soft coat (NorthEast)                | 0.9 x 1.89                            | 0.80           | 0.70 x 0.83                 | 0.79         |
| W7<br>Window - Double-glazed, argon filled, low-E, En=0.1, soft<br>coat (NorthEast)       | 0.9 x 0.84                            | 0.80           | 0.70 x 0.83                 | 0.35         |
| W5                                                                                        |                                       |                |                             |              |
| Window - Double-glazed, argon filled, low-E, En=0.1, soft<br>coat (NorthEast)<br>W4       | 0.9 x 3.15                            | 0.80           | 0.70 x 0.83                 | 1.32         |

C2 = 1.030

EI = 329

|                                                                                                                     | Feb                                                                                   | Mar                                                                               | Apr                                         | May         | lun               | Jul               | A.u.a       | Sep               | Oct               | Nov                    | Dee                    |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------|-------------|-------------------|-------------------|-------------|-------------------|-------------------|------------------------|------------------------|
| Jan<br>au                                                                                                           | Feb                                                                                   | war                                                                               | Apr                                         | Мау         | Jun               | Jui               | Aug         | Sep               | Oci               | NOV                    | Dec                    |
| 22.14                                                                                                               | 22.19                                                                                 | 22.23                                                                             | 22.44                                       | 22.48       | 22.67             | 22.67             | 22.71       | 22.60             | 22.48             | 22.40                  | 22.32                  |
| alpha                                                                                                               | 22.17                                                                                 | 22.25                                                                             | 22.44                                       | 22.40       | 22.07             | 22.07             | 22.71       | 22.00             | 22.40             | 22.40                  | 22.52                  |
| 2.48                                                                                                                | 2.48                                                                                  | 2.48                                                                              | 2.50                                        | 2.50        | 2.51              | 2.51              | 2.51        | 2.51              | 2.50              | 2.49                   | 2.49                   |
|                                                                                                                     | factor for ga                                                                         |                                                                                   |                                             | ]           |                   |                   | 1           |                   |                   |                        |                        |
| 0.97                                                                                                                | 0.96                                                                                  | 0.94                                                                              | 0.89                                        | 0.81        | 0.69              | 0.57              | 0.61        | 0.79              | 0.91              | 0.96                   | 0.97                   |
| Mean inte                                                                                                           | rnal tempera                                                                          | ture in living                                                                    | area T1                                     |             |                   |                   |             |                   |                   |                        |                        |
| 18.36                                                                                                               | 18.60                                                                                 | 19.03                                                                             | 19.63                                       | 20.20       | 20.64             | 20.85             | 20.81       | 20.45             | 19.73             | 18.94                  | 18.31                  |
| Temperati                                                                                                           | ure during he                                                                         | eating period                                                                     | s in rest of d                              | welling Th2 | IL<br>}<br>-      | I                 |             | ][                | <u> </u>          | JÍ                     |                        |
| 19.88                                                                                                               | 19.88                                                                                 | 19.88                                                                             | 19.89                                       | 19.89       | 19.90             | 19.90             | 19.90       | 19.90             | 19.89             | 19.89                  | 19.88                  |
| Utilisation                                                                                                         | factor for ga                                                                         | ins for rest c                                                                    | f dwelling                                  | л           | н                 | Л                 | н           | J.                | )I                | н                      | я                      |
| 0.96                                                                                                                | 0.95                                                                                  | 0.93                                                                              | 0.87                                        | 0.77        | 0.62              | 0.46              | 0.51        | 0.73              | 0.89              | 0.95                   | 0.97                   |
| Mean inte                                                                                                           | rnal tempera                                                                          | ture in the re                                                                    | est of dwelling                             | g T2        | JL                |                   |             | л                 | JL                | R                      |                        |
| 17.47                                                                                                               | 17.71                                                                                 | 18.14                                                                             | 18.73                                       | 19.27       | 19.67             | 19.83             | 19.81       | 19.52             | 18.84             | 18.06                  | 17.43                  |
| •                                                                                                                   | a fraction (2                                                                         |                                                                                   |                                             |             |                   |                   |             |                   |                   |                        | 0.3                    |
| 17.82                                                                                                               | 18.06                                                                                 | 18.49                                                                             | whole dwelli<br>19.08                       | 19.64       | 20.05             | 20.23             | 20.20       | 19.88             | 19.18             | 18.41                  | 17.77                  |
|                                                                                                                     |                                                                                       |                                                                                   | rnal temperat                               |             |                   | 20.23             | 20.20       | 19.00             | 19.10             | 10.41                  | 17.77                  |
|                                                                                                                     | 17.91                                                                                 | 18.34                                                                             | 18.93                                       | 19.49       | 19.90             | 20.08             | 20.05       | 19.73             | 19.03             | 18.26                  | 17.62                  |
| 17 67                                                                                                               | 11.71                                                                                 | 10.54                                                                             | 10.75                                       | 17.47       | 17.70             | 20.00             | 20.05       | 17.75             | 17.05             | 10.20                  | 17.02                  |
| 17.67                                                                                                               |                                                                                       |                                                                                   |                                             | 0           |                   |                   |             |                   |                   |                        |                        |
| 17.67                                                                                                               |                                                                                       |                                                                                   |                                             | -           |                   |                   |             |                   |                   |                        |                        |
|                                                                                                                     | heating requ                                                                          | lirement                                                                          |                                             |             |                   |                   |             |                   |                   |                        |                        |
|                                                                                                                     | heating requ                                                                          | <i>uirement</i><br>Mar                                                            | Apr                                         | Мау         | Jun               | Jul               | Aug         | Sep               | Oct               | Nov                    | Dec                    |
| <i>8. Space .</i><br>Jan                                                                                            |                                                                                       | Mar                                                                               | Apr                                         | Мау         | Jun               | Jul               | Aug         | Sep               | Oct               | Nov                    | Dec                    |
| <i>8. Space .</i><br>Jan                                                                                            | Feb                                                                                   | Mar                                                                               | Apr<br>0.85                                 | May<br>0.76 | Jun<br>0.62       | Jul<br>0.48       | Aug<br>0.52 | Sep<br>0.72       | Oct<br>0.87       | Nov<br>0.93            | Dec 0.96               |
| <i>8. Space .</i><br>Jan<br>Utilisation<br>0.95                                                                     | Feb<br>factor for ga                                                                  | Mar                                                                               |                                             |             |                   |                   |             |                   |                   |                        |                        |
| <i>8. Space .</i><br>Jan<br>Utilisation<br>0.95                                                                     | Feb<br>factor for ga                                                                  | Mar                                                                               |                                             |             |                   |                   |             |                   |                   |                        |                        |
| <i>8. Space .</i><br>Jan<br>Utilisation<br>0.95<br>Useful ga<br>379.92                                              | Feb<br>factor for ga<br>0.94<br>ins                                                   | Mar<br>ins<br>0.91<br>448.83                                                      | 0.85                                        | 0.76        | 0.62              | 0.48              | 0.52        | 0.72              | 0.87              | 0.93                   | 0.96                   |
| <i>8. Space .</i><br>Jan<br>Utilisation<br>0.95<br>Useful ga<br>379.92                                              | Feb<br>factor for ga<br>0.94<br>ins<br>418.99                                         | Mar<br>ins<br>0.91<br>448.83                                                      | 0.85                                        | 0.76        | 0.62              | 0.48              | 0.52        | 0.72              | 0.87              | 0.93                   | 0.96                   |
| <i>8 Space</i> Jan<br>Utilisation<br>0.95<br>Useful ga<br>379.92<br>Monthly a<br>4.30                               | Feb<br>factor for ga<br>0.94<br>ins<br>418.99<br>average exte                         | Mar<br>ins<br>0.91<br>448.83<br>mal tempera<br>6.50                               | 0.85<br>464.89<br>ture<br>8.90              | 0.76        | 0.62              | 0.48              | 0.52        | 0.72              | 0.87              | 0.93                   | 0.96                   |
| <i>8. Space I.</i><br>Jan<br>Utilisation<br>0.95<br>Useful ga<br>379.92<br>Monthly a<br>4.30                        | Feb<br>factor for ga<br>0.94<br>ins<br>418.99<br>average exte<br>4.90                 | Mar<br>ins<br>0.91<br>448.83<br>mal tempera<br>6.50                               | 0.85<br>464.89<br>ture<br>8.90              | 0.76        | 0.62              | 0.48              | 0.52        | 0.72              | 0.87              | 0.93                   | 0.96                   |
| <i>8. Space .</i><br>Jan<br>Utilisation<br>0.95<br>Useful ga<br>379.92<br>Monthly a<br>4.30<br>Heat loss<br>1154.41 | Feb<br>factor for ga<br>0.94<br>ins<br>418.99<br>average exte<br>4.90<br>rate for mea | Mar<br>ins<br>0.91<br>448.83<br>rnal tempera<br>6.50<br>n internal ter<br>1018.42 | 0.85<br>464.89<br>ture<br>8.90<br>mperature | 0.76        | 0.62 356.63 14.60 | 0.48 260.97 16.60 | 0.52        | 0.72 336.05 14.10 | 0.87 363.86 10.60 | 0.93<br>360.57<br>7.10 | 0.96<br>362.94<br>4.20 |

Total space heating requirement per year (kWh/year) (October to May)

280.70

163.74

Space heating requirement per m<sup>2</sup> (kWh/m<sup>2</sup>/year)

471.71

576.22

423.78

8c. Space cooling requirement - not applicable

263.04

426.04

585.67

3190.90

46.35

(98)

(99)

| 9a. Energy              | v requireme        | nts                          |              |             |           |        |        |        |        |        | kWbboor            |           |
|-------------------------|--------------------|------------------------------|--------------|-------------|-----------|--------|--------|--------|--------|--------|--------------------|-----------|
| Fraction of             | space heat         | system sele                  |              |             |           |        |        |        | 1.0000 |        | kWh/year           | (202)     |
| -                       | of main hea        |                              | 0            | 1.4         | 1         |        |        |        | 90.50% | New    |                    | (206)     |
| Jan<br>Space boo        | Feb                | Mar                          | Apr          | Мау         | Jun       | Jul    | Aug    | Sep    | Oct    | Nov    | Dec                |           |
|                         | ting requirer      | 1                            | 200 70       | 1/0 74      | 1         | -16    | 1      |        | 0/2.04 | 424.04 | F0F (7             | (00)      |
| 576.22                  | 471.71             | 423.78                       | 280.70       | 163.74      | - 1)      | -      | -      | -      | 263.04 | 426.04 | 585.67             | (98)      |
|                         | -,                 | energy save                  | -            | 7 <b></b>   | י ו)<br>ר | -1     | 1      |        |        |        |                    | (010)     |
| 0.00                    | 0.00               | 0.00                         | 0.00         | 0.00        | -         | -      | -      | -      | 0.00   | 0.00   | 0.00               | (210)     |
|                         |                    | ain heating s                |              | 1 4 9 9 9 9 | 1         | -16    | -1     |        |        |        |                    | (011)     |
| 636.70                  | 521.23             | 468.26                       | 310.16       | 180.93      | -         | -      | -      | -      | 290.65 | 470.76 | 647.15             | (211)     |
|                         | -                  | energy save                  | Jr.          |             | 1 2)      |        | -1     |        |        |        |                    | (21.2)    |
| 0.00                    | 0.00               | 0.00                         | 0.00         | 0.00        | -         | -      | -      | -      | 0.00   | 0.00   | 0.00               | (212)     |
| r                       | 10                 | ain heating s                | 10           |             | 1         | -16    |        |        |        |        |                    |           |
| 0.00                    | 0.00               | 0.00                         | 0.00         | 0.00        | -         | -      | -      | -      | 0.00   | 0.00   | 0.00               | (213)     |
|                         | -                  | energy sav                   | -)r          |             | system)   |        |        |        |        |        |                    |           |
| 0.00                    | 0.00               | 0.00                         | 0.00         | 0.00        | -         | -      | -      | -      | 0.00   | 0.00   | 0.00               | (214)     |
| Space hea               | ting fuel (se      | econdary)                    |              |             |           |        |        |        |        |        |                    |           |
| 0.00                    | 0.00               | 0.00                         | 0.00         | 0.00        | -         | -      | -      | -      | 0.00   | 0.00   | 0.00               | (215)     |
| Water heat              | -                  |                              |              |             |           |        |        |        |        |        |                    |           |
|                         | ing requirem       | - V                          | 1            | v           | 1         |        | - Y    |        |        |        |                    |           |
| 144.75                  | 126.69             | 130.94                       | 114.45       | 110.03      | 95.27     | 88.60  | 101.21 | 102.29 | 118.82 | 129.32 | 140.28             | (64)      |
|                         | of water hea       | iter                         |              | M           |           | - Jr   |        |        |        |        | .3                 | · · /     |
| 89.84                   | 89.80              | 89.72                        | 89.55        | 89.19       | 87.30     | 87.30  | 87.30  | 87.30  | 89.48  | 89.73  | 89.86              | (217)     |
| Water heat              | ing fuel           |                              |              |             |           |        |        |        |        |        |                    |           |
| 161.12                  | 141.07             | 145.94                       | 127.80       | 123.37      | 109.13    | 101.48 | 115.94 | 117.17 | 132.79 | 144.12 | 156.10             | (219)     |
|                         | ting fuel use      | ed, main syst                | tem 1        | A           | Л         |        |        | Л      |        |        | kWh/year<br>3525.8 | · · ·     |
| Space hea<br>Water heat | ting fuel (se      | econdary)                    |              |             |           |        |        |        |        |        | 0.0<br>1576.0      | ( )       |
|                         | 0                  | ans and elec                 | tric keep-ho | t           |           |        |        |        |        |        | 1570.0             | (217)     |
| -                       | eating pump        |                              |              |             |           |        |        |        |        |        | 30.0               | 00 (230c) |
|                         | h a fan-assis      |                              |              |             |           |        |        |        |        |        | 45.0               | . ,       |
|                         | -                  | above, kWh                   | -            |             |           |        |        |        |        |        | 75.0               | . ,       |
|                         |                    | 100.00% fixe<br>ion technolo | -            |             |           |        |        |        |        |        | 328.7              | /1 (232)  |
|                         |                    | 950.616 x 0                  | -            |             |           |        |        |        |        |        | 562.76             | 5         |
|                         |                    | 0.000 x 0.50                 |              |             |           |        |        |        |        |        | 0.00               |           |
| PVs 0.8                 | 0 x 0.000 x        | 0.000 x 0.50                 | 00           |             |           |        |        |        |        |        | 0.00               |           |
|                         | 2                  |                              |              |             |           |        |        |        |        |        | 562.76             | 5 (233)   |
| Appendix (              | ) -<br>saved or ge | nerated A.                   |              |             |           |        |        |        |        |        | 0.00               | )0 (236a) |
| Energy                  | -                  | norated V.                   |              |             |           |        |        |        |        |        | 0.00               |           |
|                         |                    | for all uses                 |              |             |           |        |        |        |        |        | 4942.8             |           |
|                         |                    |                              |              |             |           |        |        |        |        |        |                    |           |

10a. Does not apply


11a. Does not apply

#### 12a. Carbon dioxide emissions

|                                | Energy   | Emission factor | Emissions   |       |
|--------------------------------|----------|-----------------|-------------|-------|
|                                | kWh/year | kg CO2/kWh      | kg CO2/year |       |
| Space heating, main system 1   | 3525.85  | 0.216           | 761.58      | (261) |
| Space heating, main system 2   | 0.00     | 0.000           | 0.00        | (262) |
| Space heating, secondary       | 0.00     | 0.519           | 0.00        | (263) |
| Water heating                  | 1576.04  | 0.216           | 340.43      | (264) |
| Space and water heating        |          |                 | 1102.01     | (265) |
| Electricity for pumps and fans | 75.00    | 0.519           | 38.93       | (267) |
| Electricity for lighting       | 328.71   | 0.519           | 170.60      | (268) |
| Electricity generated - PVs    | -562.76  | 0.519           | -292.07     | (269) |
| Electricity generated - µCHP   | 0.00     | 0.000           | 0.00        | (269) |
| Appendix Q -                   |          |                 |             |       |
| Energy saved ():               | 0.00     | 0.000           | 0.00        | (270) |
| Energy used ():                | 0.00     | 0.000           | 0.00        | (271) |
| Total CO2, kg/year             |          |                 | 1019.46     | (272) |
|                                |          |                 | ka/m²/vear  |       |

Dwelling Carbon Dioxide Emission Rate (DER)

kg/m²/year 14.81 (273)



## Appendix 4:


## SAP Derived Summertime Overheating Analysis

#### SAP 2012 Overheating Assessment for New dwelling as built

| Dwelling type<br>Number of storeys<br>Cross ventilation possible<br>Region<br>Front of dwelling faces | 1<br>Ye<br>Th<br>Se | id-floor flat<br>es<br>names Valley<br>outhWest     |              |               |       |     |  |
|-------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------|--------------|---------------|-------|-----|--|
| Overshading<br>Overhangs                                                                              |                     | verage or unknown (20-60 % sk<br>is detailed below) | (y blocked)  |               |       |     |  |
| Thermal mass parameter                                                                                |                     | 50.00 (user defined)                                |              |               |       |     |  |
| Night ventilation                                                                                     | N                   |                                                     |              |               |       |     |  |
| Ventilation rate during hot weather                                                                   | (ach) 6.            | 00 (Windows fully open)                             |              |               |       |     |  |
| Summer ventilation heat loss coeff                                                                    | icient              |                                                     |              | 239.93        | (P1)  |     |  |
| Transmission heat loss coefficient                                                                    |                     |                                                     |              | 42.42         | (37)  |     |  |
| Summer heat loss coefficient                                                                          |                     |                                                     |              | 282.35        | (P2)  |     |  |
| Overhangs                                                                                             |                     |                                                     | 7 1          |               |       |     |  |
| Orientation                                                                                           |                     | Ratio                                               | Z_overhangs  | Overhang type |       |     |  |
| NorthEast<br>NorthEast                                                                                |                     | -                                                   | 1.00         | None          |       |     |  |
| SouthWest                                                                                             |                     | -                                                   | 1.00<br>1.00 | None<br>None  |       |     |  |
| SouthEast                                                                                             |                     | -                                                   | 1.00         | None          |       |     |  |
| SouthEast                                                                                             |                     | -                                                   | 1.00         | None          |       |     |  |
| SouthEast                                                                                             |                     |                                                     | 1.00         | None          |       |     |  |
| SouthWest                                                                                             |                     | -                                                   | 1.00         | None          |       |     |  |
| SouthWest                                                                                             |                     | -                                                   | 1.00         | None          |       |     |  |
| SouthWest                                                                                             |                     | -                                                   | 1.00         | None          |       |     |  |
| Solar shading                                                                                         |                     |                                                     |              |               |       |     |  |
| Orientation                                                                                           | Z blinds            | Solar access                                        | Overhangs    | Z summer      |       |     |  |
| NorthEast                                                                                             | 1.00                | 0.90                                                | 1.000        | 0.900         | (P8)  |     |  |
| NorthEast                                                                                             | 1.00                | 0.90                                                | 1.000        | 0.900         | (P8)  |     |  |
| SouthWest                                                                                             | 1.00                | 0.90                                                | 1.000        | 0.900         | (P8)  |     |  |
| SouthEast                                                                                             | 1.00                | 0.90                                                | 1.000        | 0.900         | (P8)  |     |  |
| SouthEast                                                                                             | 1.00                | 0.90                                                | 1.000        | 0.900         | (P8)  |     |  |
| SouthEast                                                                                             | 1.00                | 0.90                                                | 1.000        | 0.900         | (P8)  |     |  |
| SouthWest                                                                                             | 1.00                | 0.90                                                | 1.000        | 0.900         | (P8)  |     |  |
| SouthWest                                                                                             | 1.00                | 0.90                                                | 1.000        | 0.900         | (P8)  |     |  |
| SouthWest                                                                                             | 1.00                | 0.90                                                | 1.000        | 0.900         | (P8)  |     |  |
| Solar gains (calculation for July)                                                                    |                     |                                                     |              |               |       |     |  |
| Orientation                                                                                           | Area                | Flux                                                | g & FF       | Shading       | Gains |     |  |
| NorthEast                                                                                             | 0.9 x 0.9           |                                                     | 0.63 x 0.70  | 0.90          |       | 30  |  |
| NorthEast                                                                                             | 0.9 x 1.8           |                                                     | 0.63 x 0.70  | 0.90          |       | 62  |  |
| SouthWest                                                                                             | 0.9 x 2.0           |                                                     | 0.63 x 0.70  | 0.90          |       | 83  |  |
| SouthEast                                                                                             | 0.9 x 1.7           |                                                     | 0.63 x 0.70  | 0.90          |       | 71  |  |
| SouthEast                                                                                             | 0.9 x 1.4           |                                                     | 0.63 x 0.70  | 0.90          |       | 59  |  |
| SouthEast                                                                                             | 0.9 x 1.4           |                                                     | 0.63 x 0.70  | 0.90          |       | 59  |  |
| SouthWest                                                                                             | 0.9 x 2.0           |                                                     | 0.63 x 0.70  | 0.90          |       | 83  |  |
| SouthWest                                                                                             | 0.9 x 2.0           |                                                     | 0.63 x 0.70  | 0.90          |       | 83  |  |
| SouthWest                                                                                             | 0.9 x 2.0           | )4 113.91                                           | 0.63 x 0.70  | 0.90          |       | 83  |  |
| Total                                                                                                 |                     |                                                     |              |               |       | 612 |  |

#### SAP 2012 Overheating Assessment for New dwelling as built

| Dwelling type<br>Number of storeys<br>Cross ventilation possible<br>Region<br>Front of dwelling faces<br>Overshading<br>Overhangs<br>Thermal mass parameter<br>Night ventilation<br>Ventilation rate during hot weather ( | 1<br>Ye:<br>Tha<br>Sou<br>Ave<br>(as<br>100<br>No | p-floor flat<br>s<br>imes Valley<br>ithWest<br>irage or unknown (20-60 % sky<br>detailed below)<br>i.00 (user defined)<br>0 (Windows fully open) | / blocked)                                                  |                                                           |                                                           |                                      |                                                    |                              |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--------------------------------------|----------------------------------------------------|------------------------------|--|
| Summer ventilation heat loss coeffi<br>Transmission heat loss coefficient<br>Summer heat loss coefficient                                                                                                                 | cient                                             |                                                                                                                                                  |                                                             |                                                           | 327.13<br>54.56<br>381.69                                 | (P1)<br>(37)<br>(P2)                 |                                                    |                              |  |
| Overhangs<br>Orientation<br>NorthEast<br>NorthEast<br>SouthWest<br>SouthWest<br>SouthWest                                                                                                                                 |                                                   | Ratio<br>-<br>-<br>-<br>-<br>-                                                                                                                   | Z_overhangs<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | Ove<br>Noi<br>Noi<br>Noi<br>Noi<br>Noi<br>Noi             | ne<br>ne<br>ne                                            |                                      |                                                    |                              |  |
| Solar shading<br>Orientation<br>NorthEast<br>NorthEast                                                                                                                                                                    | Z blinds<br>1.00<br>1.00                          | Solar access<br>0.90<br>0.90                                                                                                                     | Overhangs<br>1.000<br>1.000                                 |                                                           | summer<br>0.900<br>0.900                                  | (P8)<br>(P8)                         |                                                    |                              |  |
| NorthEast<br>SouthWest<br>SouthWest<br>SouthWest                                                                                                                                                                          | 1.00<br>1.00<br>1.00<br>1.00                      | 0.90<br>0.90<br>0.90<br>0.90                                                                                                                     | 1.000<br>1.000<br>1.000<br>1.000                            |                                                           | 0.900<br>0.900<br>0.900<br>0.900<br>0.900                 | (P8)<br>(P8)<br>(P8)<br>(P8)<br>(P8) |                                                    |                              |  |
| Solar gains (calculation for July)<br>Orientation<br>NorthEast<br>NorthEast<br>NorthEast                                                                                                                                  | Area<br>0.9 x 3.15<br>0.9 x 0.84<br>0.9 x 1.89    | 91.10                                                                                                                                            | g & FF<br>0.63 x 0.70<br>0.63 x 0.70<br>0.63 x 0.70         | Sha                                                       | ading<br>0.90<br>0.90<br>0.90                             | (                                    | Gains                                              | 103<br>27<br>62              |  |
| SouthWest<br>SouthWest<br>SouthWest<br>Total                                                                                                                                                                              | 0.9 x 1.25<br>0.9 x 1.25<br>0.9 x 1.25            | 113.91<br>113.91                                                                                                                                 | 0.63 x 0.70<br>0.63 x 0.70<br>0.63 x 0.70                   |                                                           | 0.90<br>0.90<br>0.90                                      |                                      |                                                    | 51<br>51<br>51<br>344        |  |
| Solar gains<br>Internal gains<br>Total summer gains<br>Summer gain/loss ratio<br>External temperature (Thames Vall<br>Thermal mass temperature increment<br>Threshold temperature                                         | ent (TMP=10                                       | 0.0)                                                                                                                                             |                                                             | Jun<br>363<br>385<br>747<br>1.96<br>15.4<br>1.30<br>18.66 | Jul<br>344<br>369<br>713<br>1.87<br>17.8<br>1.30<br>20.97 | Aug                                  | 292<br>377<br>669<br>1.75<br>17.8<br>1.30<br>20.85 | (P3)<br>(P5)<br>(P6)<br>(P7) |  |
| Likelihood of high internal temperatu<br>Assessment of likelihood of high int                                                                                                                                             |                                                   | rature                                                                                                                                           |                                                             | Not sig.                                                  | Slight<br>Slight                                          | Slight                               |                                                    |                              |  |



## Appendix 5:

Model Water Consumption Calculation

#### Water Efficiency Calculator for New Dwellings (V1e)

Flat 1, 130 Chalton Street

1

# Project Details Adress/Reference Number of Bedrooms



9913

Case Reference Occupancy for Calculation Purposes

Appliance/Useage Details

#### Taps (Excluding Kitchen Taps)

| Tap Fitting Type          | Flow Rate  | Quantity | Total per    |
|---------------------------|------------|----------|--------------|
|                           | Litres/Min | (No.)    | Fitting type |
| Bathroom Mixer            | 4.00       |          | 1 4.00       |
|                           |            |          | 0.00         |
|                           |            |          | 0.00         |
|                           |            |          | 0.00         |
|                           |            |          | 0.00         |
|                           |            |          | 0.00         |
| Total No. of Fittings (No | .)         |          | 1            |
| Total Flow (I/s)          |            |          | 4.00         |
| Maximum Flow (I/s)        |            |          | 4.00         |
| Average Flow (I/s)        |            |          | 4.00         |
| Weighted Average Flow     | / (I/s)    |          | 2.80         |
| Flow for Calculation (I/s | ;)         |          | 4.00         |

#### Baths

| Bath Type                       | Capacity to<br>Overflow | Quantity<br>(No.) | Total per<br>Fitting type |
|---------------------------------|-------------------------|-------------------|---------------------------|
| Bath                            | 170.00                  | 1                 | 170.00                    |
|                                 |                         |                   | 0.00                      |
|                                 |                         |                   | 0.00                      |
|                                 |                         |                   | 0.00                      |
| Total No. of Fittings (No       | ).)                     | 1                 | -                         |
| Total Capacity (I)              |                         |                   | 170.00                    |
| Maximum Capacity (I)            |                         |                   | 170.00                    |
| Average Capacity (I)            |                         |                   | 170.00                    |
| Weighted Average Capa           | acity (I)               |                   | 119.00                    |
| <b>Capacity for Calculation</b> | n (l)                   |                   | 170.00                    |

#### Dishwashers

|                                   | L per Place<br>Setting | Quantity<br>(No.) | Total per<br>Fitting type |
|-----------------------------------|------------------------|-------------------|---------------------------|
| None                              |                        |                   | 0.00                      |
|                                   |                        |                   | 0.00                      |
| Total No. of Fittings (No         | .)                     | 0                 |                           |
| Total Consumption (I)             |                        |                   | 1.25                      |
| Maximum Consumption (I)           |                        |                   | 1.25                      |
| Average Consumption (I/s)         |                        |                   | 1.25                      |
| Weighted Average Consumption (I)  |                        |                   | 0.88                      |
| Consumption for Calculation (I/s) |                        |                   | 1.25                      |

#### **Kitchen Taps**

| Tap Fitting Type              | Flow Rate<br>Litres/Min | Quantity<br>(No.) | Total per<br>Fitting type |  |
|-------------------------------|-------------------------|-------------------|---------------------------|--|
| Kitchen Mixer                 | 6.00                    | 1                 | 6.00                      |  |
|                               |                         |                   | 0.00                      |  |
|                               |                         |                   | 0.00                      |  |
| Total No. of Fittings (No.) 1 |                         |                   |                           |  |
| Total Flow (I/s)              | 6.00                    |                   |                           |  |
| Maximum Flow (I/s)            | 6.00                    |                   |                           |  |
| Average Flow (I/s)            | 6.00                    |                   |                           |  |
| Weighted Average Flow         | 4.20                    |                   |                           |  |
| Flow for Calculation (I/s     | 5)                      |                   | 6.00                      |  |

#### Showers Shower fitting Flow Rate Quantity Total per

| •                          |            |       |              |  |
|----------------------------|------------|-------|--------------|--|
| Туре                       | Litres/Min | (No.) | Fitting type |  |
| Bath Shower Mixer          | 8.50       | 1     | 8.50         |  |
|                            |            |       | 0.00         |  |
|                            |            |       | 0.00         |  |
|                            |            |       | 0.00         |  |
|                            |            |       | 0.00         |  |
|                            |            |       | 0.00         |  |
| Total No. of Fittings (No  | .)         | 1     | •            |  |
| Total Flow (I/s)           |            |       | 8.50         |  |
| Maximum Flow (I/s)         | 8.50       |       |              |  |
| Average Flow (I/s)         | 8.50       |       |              |  |
| Weighted Average Flow      | 5.95       |       |              |  |
| Flow for Calculation (I/s) |            |       |              |  |

#### WCs

| WC Туре            | Full Flush<br>Volume | Part Flush<br>Volume | Quantity<br>(No) |   |
|--------------------|----------------------|----------------------|------------------|---|
| Dual Flush Cistern | 5.00                 | 3.00                 |                  | 1 |
|                    |                      |                      |                  |   |
|                    |                      |                      |                  |   |
|                    |                      |                      |                  |   |
|                    |                      |                      |                  |   |

Total number of fittings Average effective flushing volume

0.00

#### **Washing Machines**

| Washing Machine<br>Type           | L per Kg<br>Dry Load | Quantity<br>(No.) | Total per<br>Fitting type |
|-----------------------------------|----------------------|-------------------|---------------------------|
|                                   |                      |                   | 0.00                      |
|                                   |                      |                   | 0.00                      |
| Total No. of Fittings (I          | C                    | )                 |                           |
| Total Consumption (I)             |                      |                   | 8.17                      |
| Maximum Consumption (I)           |                      |                   | 8.17                      |
| Average Consumption (I/s)         |                      |                   | 8.17                      |
| Weighted Average Consumption (I)  |                      |                   | 5.72                      |
| Consumption for Calculation (I/s) |                      |                   | 8.17                      |

**Other Fittings** 

| Waste Disposal Y/N          | N |
|-----------------------------|---|
| Water softner               |   |
| Consumption beyond 4% l/p/d |   |

Use of grey water and harvested rainwater

| Total Grey water from WHB taps (I)    |        |
|---------------------------------------|--------|
| Total Availble Grey Water Supply (I)  | 111.69 |
| Possible Demand (I)                   | 66.67  |
| Grey/Rain Installed Capacity (I)      |        |
| Figure for Calculation lit/person/day | 0.00   |

#### Water Use Assessment

| Installation Type                | Unit           | Capacity/<br>Flow Rate | Use Factor | Fixed use (l/p/day) | Total Use<br>(I/p/day) |                                        |
|----------------------------------|----------------|------------------------|------------|---------------------|------------------------|----------------------------------------|
| WC Single Flush                  | Volume (I)     | 0.00                   | 4.42       |                     |                        | 1                                      |
| WC Dual Flush                    | Full Flush (I) | 5.00                   | 1.46       | 0.00                | 7.30                   |                                        |
|                                  | Pt Flush (I)   | 3.00                   | 2.96       | 0.00                | 8.88                   |                                        |
| WC's (Multiple)                  | Volume (I)     | 0.00                   | 4.42       | 0.00                | 0.00                   |                                        |
| Taps Exc. Kitchen                | Flow Rate      | 4.00                   | 1.58       | 1.58                | 7.90                   |                                        |
| Bath (shower present)            | (l/s)          | 170.00                 | 0.11       | 0.00                | 18.70                  |                                        |
| Shower (bath present)            | (l/s)          | 8.50                   | 4.37       | 0.00                | 37.15                  |                                        |
| Bath Only                        | (I)            | 0.00                   | 0.50       | 0.00                | 0.00                   |                                        |
| Shower Only                      | (l/s)          | 0.00                   | 5.60       | 0.00                | 0.00                   |                                        |
| Kitchen Taps                     | (l/s)          | 6.00                   | 0.44       | 10.36               | 13.00                  |                                        |
| Washing Machines                 | (l/kgdry)      | 8.17                   | 2.10       | 0.00                | 17.16                  | << Note - these may be default values. |
| Dishwashers                      | (l/place)      | 1.25                   | 3.60       | 0.00                | 4.50                   | << You can change them by entering     |
| Waste Disposal                   | (l/s)          | 0.00                   | 3.08       | 0.00                | 0.00                   | the actual applicances in the          |
| Water Softner                    | (l/s)          | 0.00                   | 1.00       | 0.00                | 0.00                   | appropriate sections above             |
| <b>Total Calculated Water</b>    | Use (l/p/day)  |                        |            |                     | 114.58                 |                                        |
| Grey/RainWater Reused            | I (I)          |                        |            |                     | 0.00                   |                                        |
| Normalisation Factor             | (Factor)       |                        |            |                     | 0.91                   |                                        |
| Total Consumption CSH (I/p/day)  |                |                        |            | 104.27              |                        |                                        |
| External Water Use Allowance (I) |                |                        | 5.00       |                     |                        |                                        |
| Total Comsumption Pa             | rt G (l/p/day) |                        |            |                     | 109.27                 |                                        |
| Assesment Result                 |                |                        |            |                     | PASS                   |                                        |