

Report No: 371944

PHOTOGRAPHIC LOG

Client name: Rocco Ventures

Ltd

Site Location: Royal College Street

Photo No. 15

Date: 26-07-19

Direction Photo Taken: South

Description:

Retaining wall to car park outside eastern site boundary

Photo No. 16

Date: 16-08-19

Direction Photo Taken: North

Description:

TP1 – Golden Lion Public House. Masonry wall to public house to the north. Possible footing to northern ATS building to the south.

Report No: 371944

PHOTOGRAPHIC LOG

Client name: Rocco Ventures

Ltd

Site Location: Royal College Street

Photo No. 17

Date: 16-08-19

Direction Photo Taken: North

Description:

TP1 – Golden Lion Public House. Masonry wall to public house to the north. Possible footing to northern ATS building to the south.

Photo No. 18 Date: 16-08-19

Direction Photo Taken:

East

Description:

TP2 – Central ATS building to the top of the picture

Report No: 371944

PHOTOGRAPHIC LOG

Client name: Rocco Ventures

Ltd

Site Location: Royal College Street

Photo No.

Date: 16-08-19

Direction Photo Taken:

East

Description:

TP2 – Central ATS building to the top of the picture

Photo No. 20

Date: 16-08-19

Direction Photo Taken: South

Description:

TP3 – Tyre centre mass concrete footing exposure

APPENDIX G TECHNICAL BACKGROUND

H1 Desk Study

Aquifer designation and Source protection zones

Principal aquifer: layers of rock or drift deposit that have high intergranular and/or fracture permeability (usually providing a high level of water storage). They may support water supply and/or river base flow on a strategic scale.

Secondary A aquifer: permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers.

Secondary B aquifer: predominantly lower permeability layers that may store and yield limited amounts of groundwater due to localised features such as fissures, thin permeable horizons and weathering.

Secondary undifferentiated aquifer: it has not been possible to attribute either a category A or B to a rock type. In most cases this means that it was previously designated as both a minor and non-aquifer in different locations owing to the variable characteristics.

Unproductive' strata: low permeability with negligible significance for water supply or river base flow.

The EA generally adopts a three-fold classification of source protection zones (SPZ) surround abstractions for public water supply. The Site is situated in an area defined as follows:

- Zone 1 or the 'inner protection zone' is located immediately adjacent to the groundwater source and is based on a 50-day travel time from any point below the water table to the source.
 It is designed to protect against the effects of human activity and biological/chemical contaminants that may have an immediate effect on the source
- Zone 2 or the 'outer protection zone' is defined by a 400-day travel time from a point below the water table to the source. The travel time is designed to provide delay and attenuation of slowly degrading pollutants
- Zone 3 or the 'total catchment' is the area around the source within which all groundwater recharge is presumed to be discharged at the source.

Preliminary risk assessment methodology

CLR11 outlines the framework to be followed for risk assessment in the UK. The framework is designed to be consistent with UK legislation and policies including planning. Under CLR11, three stages of risk assessment exist: preliminary, generic quantitative and detailed quantitative. An outline conceptual model should be formed at the preliminary risk assessment stage that collates all the existing information pertaining to a site in text, tabular or diagrammatic form. The outline conceptual model identifies potentially complete (termed possible) contaminant linkages (contaminant–pathway–receptor) and is used as the basis for the design of the site investigation. The outline conceptual model is updated as further information becomes available, for example as a result of the site investigation.

Production of a conceptual model requires an assessment of risk to be made. Risk is a combination of the likelihood of an event occurring and the magnitude of its consequences. Therefore, both the likelihood and the consequences of an event must be taken into account when assessing risk. RSK has adopted guidance provided in CIRIA C552 for use in the production of conceptual models.

The likelihood of an event can be classified on a four-point system using the following terms and definitions based on CIRIA C552:

- highly likely: the event appears very likely in the short term and almost inevitable over the long term or there is evidence at the receptor of harm or pollution
- likely: it is probable that an event will occur or circumstances are such that the event is not inevitable, but possible in the short term and likely over the long term
- low likelihood: circumstances are possible under which an event could occur, but it is not certain even in the long term that an event would occur and it is less likely in the short term
- unlikely: circumstances are such that it is improbable the event would occur even in the long term.

The severity can be classified using a similar system also based on CIRIA C552. The terms and definitions relating to severity are:

- severe: short term (acute) risk to human health likely to result in 'significant harm' as defined by the Environment Protection Act 1990, Part IIA. Short-term risk of pollution of sensitive water resources. Catastrophic damage to buildings or property. Short-term risk to an ecosystem or organism forming part of that ecosystem (note definition of ecosystem in 'Draft Circular on Contaminated Land', DETR 2000)
- medium: chronic damage to human health ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000), pollution of sensitive water resources, significant change in an ecosystem or organism forming part of that ecosystem
- mild: pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000). Damage to sensitive buildings, structures or the environment
- minor: harm, not necessarily significant, but that could result in financial loss or expenditure
 to resolve. Non-permanent human health effects easily prevented by use of personal
 protective clothing. Easily repairable damage to buildings, structures and services.

Once the probability of an event occurring and its consequences have been classified, a risk category can be assigned according to the table below.

		Consequences									
		Severe	Medium	Mild	Minor						
	Highly likely	Very high	High	Moderate	Moderate/low						
Probability	Likely	High	Moderate	Moderate/low	Low						
Prob	Low likelihood	Moderate	Moderate/low	Low	Very low						
	Unlikely	Moderate/low	Low	Very low	Very low						

Definitions of these risk categories are as follows together with an assessment of the further work that may be required:

- very high: there is a high probability that severe harm could occur or there is evidence that severe harm is currently happening. This risk, if realised, could result in substantial liability; urgent investigation and remediation are likely to be required
- high: harm is likely to occur. Realisation of the risk is likely to present a substantial liability.
 Urgent investigation is required. Remedial works may be necessary in the short term and are likely over the long term
- moderate: it is possible that harm could arise, but it is unlikely that the harm would be severe
 and it is more likely that the harm would be relatively mild. Investigation is normally required
 to clarify the risk and determine the liability. Some remedial works may be required in the
 longer term
- low: it is possible that harm could occur, but it is likely that if realised this harm would at worst normally be mild
- very low: there is a low possibility that harm could occur and if realised the harm is unlikely to be severe.

H2 Site Investigation Methodology

Ground gas monitoring

An infrared gas meter was used to measure gas flow, concentrations of carbon dioxide (CO_2) , methane (CH_4) and oxygen (O_2) in percentage by volume, while hydrogen sulphide (H_2S) and carbon monoxide (CO) were recorded in parts per million. Initial and steady state concentrations were recorded. In addition, during the first monitoring round, all wells were screened with a PID to establish if there are any interferences and cross-sensitivity of other hydrocarbons with the infrared gas meter.

Low flow groundwater sampling

Groundwater samples were retrieved using a United States Environment Protection Agency (USEPA) approved low-flow purging and sampling methodology.

The low-flow method relies on moving groundwater through the well screen at approximately the same rate as it flows through the geological formation. This results in a significant reduction in the volume of water extracted before sampling and significantly reduces the amount of disturbance of the water in the monitoring well during purging and sampling. Drawdown levels in the monitoring well and water quality indicator parameters (pH, temperature, electrical conductivity, redox potential and dissolved oxygen) are monitored during low-flow purging and sampling, with stabilisation indicating that purging is complete and sampling can begin. As the flow rate used for purging, in most cases, is the same or only slightly higher than the flow rate used for sampling, and because purging and sampling are conducted as one continuous operation in the field, the process is referred to as low-flow purging and sampling.

H3 Site Investigation Methodology

Statistical assessment

Statistical analysis of the results has been conducted in accordance with *Guidance on Comparing Soil Contamination Data with a Critical Concentration* (CIEH and CL:AIRE, 2008) as detailed in Appendix D.

Statistical analysis is utilised to establish whether the land is suitable for the proposed use under the land use planning system by attempting to answer a key question. For a site being developed the key question is: 'can we confidently say that the level of contamination on this land is low relative to some appropriate measure of risk?' More specifically, this is expressed as 'Is there sufficient evidence that the true mean concentration of the contaminant (μ) is less than the critical concentration (C_c)?', where the critical concentration could be the GAC or a site-specific assessment criterion (SSAC). The true mean (μ) is unknown and therefore a conservative estimate, termed the upper confidence limit (UCL), of this value is derived from the data. The UCL is then compared against the GAC.

In statistical terms the question above is handled through the use of a formal hypothesis – the null hypothesis and the alternate hypothesis. The statistical tests are structured to show (with a defined level of confidence, in this case 95%) which of the two hypotheses is most likely to be true, by determining whether the null hypothesis can be rejected.

For consideration under the planning regime, the null (H_0) and alternative (H_1) hypotheses are presented below.

Null and alternative hypotheses

Hypothesis	Equation	Description
Null (H ₀)	µ ≥ C _c	The true mean concentration is equal to, or greater than, the critical concentration
Alternative (H ₁)	μ < C _c	The true mean concentration is less than the critical concentration

Therefore, if the null hypothesis is accepted for a certain contaminant it can be concluded that its concentration is high relative to the critical concentration, which in the case of this assessment is taken to be the GAC/SSAC and as such the whole site may be classed as being contaminated by a particular substance.

In addition, the statistical guidance provides an outlier test (Grubbs' test) that has been used within this assessment for the identification of 'outliers' or 'hotspots'. The 'outlier' test is conducted before undertaking statistical analysis (and 'outliers' may be removed from the dataset) but **only** where the conceptual model supports this.

The statistical tests applied to the dataset are selected based on whether the data is normally or non-normally distributed. The distribution of the dataset has been assessed using the Shapiro-Wilks normality test. Where the dataset has been found to be normally distributed the one sample t-test is undertaken. Where data has been found to be non-normally distributed Chebyshev's theorem is utilised.

Reuse of suitable materials

The Definition of Waste: Development Industry Code of Practice (CL:AIRE, 2011) (CoP) was developed in consultation with the Environment Agency and development industry to enable the re-use of materials under certain scenarios and subject to demonstrating that specific criteria are met. The current reuse scenarios covered by the CoP comprise

- reuse on the site of origin (with or without treatment)
- direct transfer of clean and natural soils between sites
- use in the development of land other than the site of origin following treatment at an authorised Hub site (including a fixed soil treatment facility).

The importation of made ground soils (irrespective of contamination status) or crushed demolition materials is not permitted currently under the CoP and requires either a standard rules environmental permit or a U1 waste exemption (see below).

In the context of excavated materials used on-sites undergoing development, four factors are considered to be of particular relevance in determining if the material is a waste or when it ceases to be waste:

- the aim of the Waste Framework Directive is not undermined, i.e. if the use of the material will create an unacceptable risk of pollution of the environment or harm to human health it is likely to be waste
- the material is certain to be used
- · the material is suitable for use both chemically and geotechnically
- only the required quantity of material will be used.

The CoP requires the preparation of a materials management plan (MMP) that confirms the above factors will be met. This plan needs to be reviewed by a 'Qualified Person' (QP) who will then issue a declaration form to the EA. As the project progresses, data must be collated and on completion a verification report produced that shows the MMP was followed and describes any changes.

The MMP establishes whether specific materials are classified as waste and how excavated materials will be treated and/or reused in line with the CoP. The MMP is likely to form part of the site waste management plan.

APPENDIX H EXPLORATORY HOLE RECORDS

BOREHOLE LOG

Contract Ref: Start: 14.08.19 Ground Level: Co-ordinates: Sheet: 371944 End: 15.08.19 1 of Samples and In-situ Tests yat Start: 14.08.19 Ground Level: Co-ordinates: Sheet: 1 of	3 laterial graphic egend
Start 14.08.19 Ground Level: Co-ordinates: Sheet 15.08.19 Co-ordinates: Sheet 15.08.19 Co-ordinates: 1 of 15.08.19	3 laterial
Samples and In-situ Tests	laterial Graphic
Depth No Type Results Description of Strata	laterial Graphic
MADE GROUND: Concrete. 0.20 MADE GROUND: Some slightly sandy slightly gravelly CLAY. 0.50 Concrete. 0.50 Concre	raphic
MADE GROUND: Concrete. 0.20 MADE GROUND: Some slightly sandy slightly gravelly CLAY. 0.50 Concrete. 0.50 Concre	- 50114
1.50	
1.50	XX
2.00	\ggg
2.50 5 D	
6.00-6.45 4 SPT 4,5/4,6,6,7 N=23becomes stiff below 6.00m depth.	
6.00-6.45 4 SPT 4,5/4,6,6,7 N=23becomes stiff below 6.00m depth.	XX
6.00-6.45 4 SPT 4,5/4,6,6,7 N=23becomes stiff below 6.00m depth.	
6.00-6.45 4 SPT 4,5/4,6,6,7 N=23becomes stiff below 6.00m depth.	<u>-</u> x^-
6.00-6.45 4 SPT 4,5/4,6,6,7 N=23becomes stiff below 6.00m depth.	X
6.00-6.45 4 SPT 4,5/4,6,6,7 N=23becomes stiff below 6.00m depth.	
6.00-6.45 4 SPT 4,5/4,6,6,7 N=23becomes stiff below 6.00m depth.	x x
	- <u>×</u>
7.00 13 D	
7.50-7.95 14 U 69 blows	x x
8.50 15 D	x
9.00-9.45 5 SPT 4,4/5,5,7,8	X
9.00 16 D N=25 9.60 S	×
Stiff to very stiff, grey silty CLAY. (LONDON CLAY FORMATION)	
occasional pockets of fine selenite crystals below 10.00m depth.	x
- 10.50-10.50 10 0 01 blows	X x
11.50 19 Dincrease in abundance of thin claystone bands to 20.10m.	x x

- v8_07.	09/19 - 09:57 ADJT1
71944 ROYAL COLLEGE STREET.GPJ -	J, Web: www.rs
Version: v8_07 Log CABLE PERCUSSION LOG - A4P 371944 ROY,	2 437500, Fax: 01442 43755
7 Log CABLE PERCUSSIC	dshire, HP3 9RT. Tel: 0144
/8_07_001 Pr	Hemel Hemp
RARY_V8_07.GLB LibVersion: \	ronment L
GINT_LIB	RSK Envi

	ſ	Boring Pro	gress and	Water Ol	oservations	3	Chiselling / Slow Progress			General Remarks				
	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration (hh:mm)	General Remarks				
			Depth	Depth	(mm)	Depth			00:33	1. Inspection pit hand dug to 1.20m depth.				
	14/08/19	08:00	0.00	- 0			20.20	20.20 20.40		Down borehole checks for buried ferrous				
	14/08/19 19:00 11.00 1			1.70	150	Dry				objects carried out during drilling by specialist	ŀ			
'	15/08/19	07:00	11.00	1.70						unexploded ordnance (UXO) officer using	,			
	15/08/19		30.45	1.70	150	Dry				magnetometer at regular intervals to 12.00m				
	10/00/10	10.00	00.10	1.70	100	5.,				depth.				
										3. No groundwater encountered.				
										gramamata amatama				
										All dimensions in metres Scale: 1:67				
	Method Inspection pit +						•	Drilled		Logged SAI Hilly Checked				
	Used: Cable percussion U				d: D a	ando 200	0	Ву:	CJA	By: By: AG	<u>S</u>			

								BOR	EHOLI	EL	.OG	
Contract:							Client:		Boreho	ole:		
Roy	/al (Colle	ge Stre	et, L	ondon		Roo	co Ventures Ltd.		ВН		
Contract Re	f:		S	Start:	14.08.19	Grour	nd Level:	Co-ordinates:	Sheet:			
3	3719	944	E	nd:	15.08.19					2	of 3	
Samp	oles a	and In-s	itu Tests		Water Backfill & Instru-		Dee	anintian of Chapta	Reduced	Depth	Materia Graphic	
Depth	No	Туре	Resul	lts	Wa Back Inst		Des	cription of Strata	Redu	(Thick ness)	Legend	
12.00-12.45	6	SPT	4,5/6,6, N=27			Stiff	to very stiff, grey silt	y CLAY.			<u>x</u>	
12.00	20	D	11-21				LONDON CLAY FORMATION) stratum copied from 9.60m from previous sheet)					
									<u> </u>		<u>x</u>	
13.00	21	D				8			Ē		x	
13.50-13.95	22	U	91 blov	ws					ŧ	-		
									-			
<u>-</u>									Ē			
14.50	23	D							E	-		
15.00-15.45	7	SPT	5,6/7,8,9						E		× _ ×	
15.00	24	D	N=33	3					ŧ	- - -	<u> </u>	
- -									E	-	<u> </u>	
16.00	25	D							Ē		xx	

rsion: Roa			L	epth	Depth	(mm)	Dept	n		(4. 50mm diameter water	standpi	pe (com	plete
v8_07 1, Hem	Date	Time	Вс	rehole	Casing	Borehole Diameter	Wate	From	То	Duration (hh:mm)	General F	≺ema	arks	
001 lel Her	В	oring F	Progre	ss and	Water Ob	servation		Chiselli	ng / Slow	Progress	0			
sion: v8_07_001 PrjVersion: v8_07 Log CABLE PERCUSSION LOG - A4P 371944 ROYAL COLLEGE STREET.GPJ - v8_07. Road, Hemei Hempstead, Herifordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk. 1909/19 - 09:57 ADJT1	23.50	35	D									-	-	
Log CAB, hire, HP3	22.50-22.95	34	U	12	26 blows							- - - - -		xx
LE PERC 9RT. Tel:	22.00	33	D									- - - -	-	
USSION 014424	21.00	32	D		N=50							- - - -	-	xx
LOG . 37500		5 9	SPT	7,8/1	10,12,14,14							<u></u>	<u> </u>	
- A4P 371), Fax: 014 ²	20.50	31	D				g	rey claystone	band fror	n 20.10m to	o 20.50m.		- - - - -	_ x x _ x x
944 ROYAL 42 437550, \	19.50-19.95 19.50	30 30	U D	11	14 blows							- - - - -	(20.85)	xx
COLLEG Neb: www	19.00	29	D										_	x x
E STREI /.rsk.co.u	18.00	28	D		N=49		г	are bioturbation	on noted b	elow 18.00	Im depth.	- - - -		
ET.GPJ ık. 19/	18.00-18.4	5 8	SPT	7,7/1	10,12,13,14								-	xx
- v8_07. 09/19 - 09:57	17.50	27	D									-		xx x
ADJT1	16.50-16.9	5 26	U	9	8 blows							-		<u> </u>
	16.00	25	D											x x _ x _ x
	15.00	24	D		N-33							-	-	
	 15.00-15.4	5 7	SPT		6/7,8,9,9 N=33							Ē	E	× - ×
	14.50	23	D											- ^ - x _ x
	- -											F	-	xx

COLLEGE STRE	eb: www.rsk.co.
) 371944 ROYAL (c: 01442 437550, M
E PERCUSSION LOG - A4P 371944 ROYAL COLLEGE STRE	iire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.c
rjVersion: v8_07 Log CABLE PERCUSSION	ordshire, HP3 9RT.
/ersion	tead, F
?Y_V8_07.GLB LibVersion: v8_07_001 Prj\/	18 Frogmore Road, Heme
GINT_LIBRARY_V8_07.GI	RSK Environment Ltd, 18 F
ਰ	RS

	I	Boring Pro	gress and	Water Ob	servations	3	Chiselling / Slow Progress			General Remarks				
	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration	General Nemarks				
	Date	111110	Depth	Depth	(mm)	Depth	110111	10	(hh:mm)	4. 50mm diameter water standpipe (complete				
								with flush protective or depth on completion. I to 6.00m. 5. 35mm diameter gas si flush protective cover) depth on completion. I	over) installed to 6.00m Response zone 2.00m tandpipe (complete with) installed to 1.00m Response zone 0.50m					
ſ	Method	thod Inspection pit +			Plant			Drilled		Logged SAI Hilly	Checked			
	Used:				Used: Dando 200			Ву:	CJA	By:	Checked By: AGS			

BOREHOLE LOG

0								Oli I				 		
Contract:		Calla.	Ct	4		.		Client:	Daa	V	I 4-d	Boreho	oie:	DUA
Contract Re		~one(ge Str				C==	d Lavali	Roc	Co-ordinates:	es Lta.	Chasti		BH1
				Start:			Grour	id Level:		Co-ordinates:		Sheet:		•
	5/1	944		End:	15.0	8.19							3	of 3
Samp	les a	and In-si	itu Tests		Water	fill & tru- ation			Daa		4-	l cec	Depth	Material Graphic
Depth	No	Туре	Res			Backfill & Instru-				cription of Stra	ıla	Reduced Level	(Thick ness)	Legend
24.00-24.45	10	SPT	8,8/10,1 N=4	1,13,15 49			Stiff	to very stif	f, grey silty	y CLAY.		-		
24.00	36	D					(stra	tum copied	d from 9.60	Om from previou	us sheet)	-	-	× ×
												Ē	Ē	<u>x </u>
25.00	37	D												× ×
25.50-25.95	38	U	156 b	lows								Ē	Ē	
-												_	_	
-												-	-	x
26.50	39	D												<u>× ×</u>
<u>-</u>														xx
27.00-27.44	11	SPT	8,9/11,13 for 65	5mm								Ē	Ē	<u>x</u>
27.00	40	D	N=5	52*										
_ 28.00		D										_	-	
28.00	41	D										-	-	
28.50-28.95	42	U	176 b	lows										x
-												-	-	<u> </u>
												-	-	xx
29.50	43	D												x
- 30.00-30.42	12	SPT	8,10/13,	14 15 8								-	-	
	-	0	for 45	5mm									30.45	×
30.00	44	D	IN-S	00			Bore	hole termi	nated at 3	0.45m depth.			-	
												_		
-												-	-	
-														
_												_	_	
-														
												-		
-												-	-	
<u>-</u>												<u> </u>	-	
-												-	-	
-												Ė	-	
_												Ē	Ē	
- - -												-	-	
-												-	-	

	i	Boring Pro	ogress and	Water O	bservations	3	Chiselling / Slow Progress			General Remarks			
	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration (bb:mm)	Generali	Remarks		
,			Depth	Depth	(mm)	Depth			(hh:mm)	to 1.00m.			
										All dimensions in metres	Scale: 1:67	7	
	Method Inspection pit + Plant						·	Drilled		Logged SAI Hilly	Checked		
	Used: Cable percussion Used:					ando 200	00	Ву:	CJA	By:	Ву:	AGS	

GINT_LIBRARY_V8_07.GLB LibVersion: v8_07_001 PrjVersion: v8_07 | Log CABLE PERCUSSION LOG - A4P | 371944 ROYAL COLLEGE STREET.GPJ - v8_07.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk | 19/09/19 - 09:57 | ADJT1 |

GINT_LIBRARY_V8_07.GLB LibVersion: v8_07_001 PrjVersion: v8_07 | Log CABLE PERCUSSION LOG - A4P | 371944 ROYAL COLLEGE STREET.GPJ - v8_07.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk. | 19/09/19 - 09:57 | ADJT1 |

BOREHOLE LOG

Contract:								Client:					Boreho	le:	
	al (Colleg	ge Stre	eet,	Lond	on			Roc	co Vent	ures Ltd	.			BH2
Contract Re					13.08		Grour	nd Level:		Co-ordinate			Sheet:		
3	719	944		End:	14.08	19								1	of 3
Samp	les a	ınd In-si	tu Tests		er.	rion							Reduced	Depth	
Depth	No	Туре	Resi	ults	Water	Instru- mentation		Description of Strata						(Thick ness)	Graphic Legend
0.20	1	D			2	A	1/	DE GROUN			0.44	ID.	/=	0.08 0.15	
0.50 0.60	2	D PID	0.2p	pm	• • •		MAI San	DE GROUN	D: Brown coarse. G	slightly sar	gular to suba	ravelly CLAY. angular fine to		(1.15)	
1.20-1.65	1	SPT	1,2/1,2 N=	2,2,2			Firm	ı light browr	n silty slig	htly gravelly	v CLAY. Gra	avel is angular	<u> </u>	1.30	<u>xo</u> x
1.20 - 1.50	3 4	D D	14-	- 7	•		to r	ounded find SSIBLE RE	e to coal	se flint, ch	hert and mi	ixed lithology.		(0.90)	X X
2.00-2.45	5	U	38 bl	ows		Firm brown gravelly CLAY. Gravel is angular to rounded fine							-	2.20	<u>x</u>
2.50	6	D					• to	coarse flin VORKED L	t, chert	and mixe	d lithology.	(POSSIBLE		(1.10)	x _ x
3.00-3.45	2	SPT	3,3/4,3 N=										F	3.30	× ×
3.00 3.50	7 8	D D	IN=	14			Firm (LOI	n light browr NDON CLA	n silty CLA Y FORMA	Y. ATION)					X
4.00-4.45	9	U	45 bl	ows			•								xx
4.50	10	D					be	comes dark	k brown gi	ey below 4	.50m depth.		-		<u> </u>
5.00-5.45	3	SPT	4,6/6,1 N=3			}							Ē		
5.00 5.50	11 12	D D	11-	J2			•							(5.00)	x
_ 6.00-6.45	13	U	108 b	lows											
6.50	14	D											-		× ×
													-		× _ ×
- 7.50-7.95 -	4	SPT	5,6/7,1 N=3				be	comes stiff	below 7.5	Om denth			Ė		x
-7.50 -	15	D								•			-	8.30	<u>xx</u>
8.50	16	D					(LOI	to very stiff NDON CLA	Y FORM	CLAY. ATION)					<u>x x x</u>
9.00-9.45	17	U	80 bl	ows									-		
9.50	18	D													xx
10.50-10.95	5	SPT	5,7/7,8	8,8,9									E		xx
-10.50	19	D	N=3	32									-		× - ×
11.50	20	D													- x x

Ė	•										<u> </u>
	Date 13/08/19 13/08/19 14/08/19	Time 08:00 19:00 07:30 13:30	Borehole Depth 0.00 25.95 24.70 30.45	d Water Obe Casing Depth - 3.15 3.15 3.15	Borehole Diameter (mm) 0 150 150 150	Water Depth Dry Dry Dry Dry	Chiselli	To	Progress Duration (hh:mm)	Position checked with Radar, CAT and Gen 2. Inspection pit hand du 3. Down borehole check objects carried out du unexploded ordnance	ny prior to excavation. ug to 1.20m depth. as for buried ferrous uring drilling by specialist
										All dimensions in metres	1101
Method Inspection pit + Used: Cable percussion Used: Dando 20				ando 200		Drilled By:	CJA	Logged SAIhilly By:	Checked By: AG:		

BOREHOLE LOG

Contract:						Client:		Boreho	ıle.	
	al (Colle	ge Street,	Lond	lon		co Ventures Ltd.	Borone		BH2
Contract Re				13.08			Co-ordinates:	Sheet:		
3	3719	944	End:	14.08	3.19				2	of 3
Samo	oles a	ınd In-s	itu Tests	e	<u>~</u> , i⊆			р _. (6	Depth	Material
Depth	No	Туре	Results	Water	Backfill & Instru-	Dese	cription of Strata	Reduced	(Thick ness)	Graphic Legend
12.00-12.45	21	U	125 blows			Stiff to very stiff grey silty (LONDON CLAY FORM)	CLAY.	-	-	<u>xx</u>
12.50	22	D				(stratum copied from 8.30				<u>x _ x</u>
_							fine selenite crystals below 12.00m	-	-	xx
						depth.		[-		xx
13.50-13.95	6	SPT	6,7/7,8,9,9 N=33					Ė		××
13.50	23	D	IN-33					-	-	xx
-								Ė		- ×
14.50	24	D				grey claystone band fro	om 14.40m to 14.80m.	-	-	
15.00-15.45	25	U	134 blows			increase in abundance	of thin claystone bands from 14.80m	_		<u>* _ * _</u>
15.50	26	D				to 16.60m.	•	-		X
_ 15.50 - -	20	U						-	-	<u> </u>
-										<u>x _ x</u>
16.50-16.82	7	SPT	25/31,9,8,2					-	-	xx
			for 15mm N=62*			grey claystone band fro	om 16.60m to 16.90m.	_		xx
16.50	27	D							-	xx
17.50	28	D						-	-	xx
18.00-18.45	29	U	116 blows					-		
10.00 10.40	20	J	1 TO DIOWS					-	-	
								-	-	
_ 19.00	30	D								× _ ×
10 50 10 05		ODT	0.40/40.44.40.49					Ė	(22.15) -	× ×
19.50-19.95	8	SPT	9,10/10,11,12,1 for 70mm	1						<u>xx</u>
19.50	31	D	N=51*			annoinnel mankata ann	I bands of silt below 20.00m depth.	-		xx
20.50	32	D				occasional pockets and	bands of slit below 20.00m depth.	-	-	xx
								_		<u> </u>
21.00-21.45	33	U	119 blows					-	-	× ×
								-	-	
22.00	34	D						-		
	"	ט						Ė		- ×
22.50-22.95	9	SPT	8,9/10,11,13,13 N=47	3				E	-	
- -22.50 - 23.00	35 36	D D	""					-		x
								Ė	-	X X

	Boring Pro	ogress and	Water Ol	servations	6	Chisel	ling / Slow	Progress	General	Domarka
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	From	То	Duration (hh:mm)	General	Remarks
				()						standpipe (complete over) installed to 6.00m Response zone 2.00m
									All dimensions in metres	Scale: 1:67
Method Used:	•	tion pit + ercussio	1		ando 200	0	Drilled By:	CJA	Logged SAIhilly By:	Checked By: AGS

GINT_LIBRARY_V8_07.GLB LibVersion: v8_07_001 PrjVersion: v8_07 | Log_CABLE PERCUSSION LOG - A4P | 371944 ROYAL COLLEGE STREET.GPJ - v8_07.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk. | 19/09/19 - 09:57 | ADJT1 |

BOREHOLE LOG

								T				 		
Contract:	Royal College Street Contract Ref: Sta					.l		Client:	Daa	V		Boreho	ile:	DUO
		>olie(ge Str				Croun	nd Level:	Roc	Co-ordinates		Sheet:		BH2
		244					Gioui	iu Levei.		Co-ordinates	-	Sileet.	2	
	3719				14.0		1					1 70		of 3
Samp	oles a	ınd In-si	tu Tests	3	Water	Backfill & Instru-mentation			Des	cription of Str	ata	Reduced Level	Depth (Thick	Material Graphic
Depth	No	Туре		sults	>	Bac					uiu	Red	ness)	Legend
24.00-24.45	37	U	125 l	olows			Stiff	to very sti	ff grey silty AY FORM	CLAY.		-	-	x
24.50	38	D					(stra	tum copie	d from 8.30	Om from previo	ous sheet)	-		× ×
-												-	_	xx
-												-		xx
25.50-25.95	10	SPT	8,10/10,	12,12,14 48	1							Ē		xx
- -25.50 - 26.00	39 40	D D										-	-	<u> </u>
20.00	40	D										-		x
												Ė		
27.00-27.45	41	U	139 1	olows								E	-	
												-	-	<u>*</u>
												Ē		X
28.00	42	D										-	-	<u>x x</u>
28.50-28.91	11	SPT	8,11/13									-		<u>x </u>
			for 3 N=	80mm 59*								-	-	xx
28.50	43	D											-	xx
29.50	44	D										-		xx
30.00-30.37	12	SPT	10,14/1	7,16,17								-	_	xx
			for 7 N=	'0mm			Dana	bala tama	in ata d at 0	0 45m domin		<u> </u>	30.45	
30.00	45	D					BOILE	enoie term	mateu at s	0.45m depth.		-		
<u> </u>												-	-	
-												-		
												Ē	-	
-												-	-	
												-	_	
												-	_	
-												-	-	
													_	
<u>.</u>												Ė	<u>-</u> -	
												Ė	-	
-												E		
-												-	<u>-</u> -	
-												E		

		Boring Pro	gress and	Water Ob	oservations	3	Chisellir	ng / Slow F	Progress	Conoral Day	marka	
	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration (hh:mm)	General Re	Illaiks	
			Depth	Depth	(mm)	Depth			(flush protective cover) instance depth on completion. Respito 1.00m depth. All dimensions in metres Scal	oonse zone 0.50m	1
	Method	Inspec	tion pit +				-	Drilled		Logged SAlhilly Che	ecked	IJ
,	Used:	Cable n	arcussia	n Use	d: 📭	anda 200	n	3v:	CJA	By: By:		IIA(

TRIAL PIT LOG

Contract:								Client:				Trial Pi	t·	
	Royal College Street, London				don		Ollone.	Roc	co Ventures	s Ltd.	1110111		TP1	
Contract Re			,				Grour	nd Level:		Co-ordinates:		Sheet:		
3	3719	944		End:	15.0	8.19							1	of 1
Samp	oles a	and In-si	tu Tests	<u>'</u>	ē	■			<u>'</u>			ped —	Depth	Material
Depth	No	1		sults	Water	Backfill				cription of Strata		Reduced Level	(Thick ness)	
							MAE	DE GROUNE	D: Aspha	t:			0.08	
-							SAN	DE GROUNE ID. Gravel is concrete, sl	angular	to subrounded t	ly medium to coarse fine to coarse brick,	-	-	
0.50 0.50	1	ES PID	0.0	ppm								-	-	
-												-	(1.12)	
-												-	-	
-												-	1.20	
-								l pit terminate	ed at 1.20	Om depth.		-	-	
-												_	-	

General Remarks

- Checks for buried ferrous objects carried out during excavation by specialist unexploded ordnance (UXO) officer using magnetometer.
 Trial pit remained stable during excavation.
 No groundwater encountered.

- 4. Ease of trial pit excavation: easy.5. On completion, trial pit backfilled with arisings.

			All dimension	ons in metres	Scale:	1:11	
Method Used:	Hand dug	Plant Used:	Hand tools	Logged By:	SAlhilly	Checked By:	AGS

TRIAL PIT LOG

Contract:							Client:			Trial Pi	t:	
Roy	Royal College Street, London ct Ref: Start: 15.08.19 371944 End: 16.08.19						F	Roc	co Ventures Ltd.			TP2
Contract Re	f:		Start:	19	Grour	nd Level:		Co-ordinates:	Sheet:			
	3719	944	End:	16.08.	19						1	of 1
Samp	oles a	and In-si	tu Tests	ē	=					ced	Depth	Material
Depth	No	Туре	Results	Water	Backfill			Des	cription of Strata	Reduced Level	(Thick ness)	Graphic Legend
						MAI	DE GROUND: Co	oncr	ete.			
-										-	(0.15)	
-						cors	DE GROUND: Li se SAND. Grave rse flint and rare	el is	yellow brown very gravelly medium to subangular to subrounded fine to ments of brick.	-	0.15	
0.50 0.50	1	ES PID	0.2ppm							-	-	
-										-	_(1.27)	
_										-	-	
-										-	-	
-						Tria	ıl pit terminated a	t 1.4	2m depth.	-	- 1.42	
-										-	-	

General Remarks

- Position checked with Ground Penetrating Radar, CAT and Genny prior to excavation.
 Checks for buried ferrous objects carried out during excavation by specialist unexploded ordnance (UXO) officer using magnetometer.
- 3. Trial pit remained stable during excavation.
- 4. No groundwater encountered.
- 5. Ease of trial pit excavation: difficult.6. On completion, trial pit backfilled with arisings.

			All dimensi	ons in metres	Scale:	1:11	
Method Used:	Hand dug	Plant Used:	Hand tools	Logged By:	SAIhilly	Checked By:	AGS

TRIAL PIT LOG

Contract:	Royal College Street, London				Client:		Trial P	it:				
Roy					don		Ro	occo Ventures Ltd.			TP3	
Contract Re	f:			Start:	15.0	8.19	Grour	nd Level:	Co-ordinates:	Sheet:		
3	3719	944		End:	15.0	8.19					1	of 1
	_	ınd In-si			Water	Backfill		De	escription of Strata	Reduced	Depth (Thick	Graphic
Depth	No	Туре	Res	sults	>	<u> </u>	NAAF		h = 14	8 1	ness)	Legend
							IVIAL	DE GROUND: Asp	nau.		0.09	
-							MAE	DE GROUND: Pir	nk gravelly medium to coarse SAN bangular fine to coarse roadstone.	D.	0.15	
-							MAE	DE GROUND: Yell	ow medium to coarse SAND.		(0.15)	
- 0.00	١,	F0								_	0.30	
0.30 0.30	1	ES PID	0.3	ppm			Grav	DE GROUND: Grevel is angular to crete slate and asp	ey brown gravelly fine to coarse SAN subangular fine to coarse flint, brichhalt.). k, -	(0.25)	
_										-	0.55	
0.60	2	ES					to c	coarse SAND. Gr	k brown grey slightly clayey gravelly finavel is angular to subangular fine	ne to	-	
0.60		PID	0.0	ppm			coar	rse flint, brick, cond	crete and slate.		(0.27)	
											0.00	
							Trial	l pit terminated at 0).82m depth.		0.82	
-										-	-	
_												
-										_	-	
-										-	-	
-										_	-	
-										-	-	
-										_	-	
-										f		

General Remarks

- Position checked with Ground Penetrating Radar, CAT and Genny prior to excavation.
 Checks for buried ferrous objects carried out during excavation by specialist unexploded ordnance (UXO) officer using magnetometer.
- 3. Trial pit remained stable during excavation.
- 4. No groundwater encountered.
- 5. Ease of trial pit excavation: easy.6. On completion, trial pit backfilled with arisings.

			All dimension	ons in metres	Scale:	1:11	
Method Used:	Hand dug	Plant Used:	Hand tools	Logged By:	SAlhilly	Checked By:	AG

Contract:		С	lient:		Window	Sam	ple:		
Royal College Str	reet, London		Roc	co Ventures Ltd.			V	VS'	1
Contract Ref:	Start: 15.08.19	Ground L	Level:	Co-ordinates:	Sheet:				
371944	End: 15.08.19					1	of	1	

31	1944		End:	15.08.19					1	of 1
Progress		Samp	oles / T	rests	Water	Backfill	Description of Strata	Reduced	Depth (Thick	Material Graphic
Window Run	Depth	No	Туре		Wa	Вас		Red	ness)	Legend
-	- 0.04 -		PID	0.7ppm			MADE GROUND: Concrete (slab).	-	- - 0.25	
-	0.40	1	ES	TXJXV			MADE GROUND: Brown very gravelly medium to coarse SAND. Gravel is angular to subangular fine to coarse flint and concrete.		0.50	
-	-						Trial pit terminated at 0.50m depth.	-	-	
-	_							-	_	
-	- -							-	-	
-	-							-	-	
-	- -							-	-	
_	-							E	_	
-	-							-	-	
-	- -							-	-	
-										
-	-							-	-	
-	-							-	-	
-	-							-	-	
-	- [-		
-	-							-	-	
-	-							-	-	
-									-	
-	- -							-	-	
-	- -							-	-	
-	-							-	-	
-	-								-	
-	-							-	-	
								-	-	
-	-							-	-	
	<u> </u>							Ė	_	
	1	1	1	I	1	I		1	I	

-	-							ı
[Orilling Pro	gress and	d Wa	ater Ol	servations	3		
Date	Time	Borehole Depth (m)		asing epth (m)	Borehole Diameter (mm)	Wa De (n	pth	
				Τ		_		щ

General Remarks

- Checks for buried ferrous objects carried out during excavation by specialist unexploded ordnance (UXO) officer using magnetometer.
 Trial pit remained stable during excavation.
- 3. No groundwater encountered.
- 4. Ease of trial pit excavation: moderate.5. On completion, trial pit backfilled with arisings.

1:36 All dimensions in metres Scale:

GEH Inspection pit + Plant Archway Competitor Drilled Logged SAI Hilly Groundworks By: Used: Tracked window 130

Checked

GINT_LIBRARY V8 07.GLB LibVersion: v8 07 001 Pr]Version: v8 07 | Log WINDOW SAMPLE LOG - A4P | 371944 ROYAL COLLEGE STREET.GPJ - v8 07. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk. | 13/09/19 - 16:57 | SA5 |

								VIII 10 0 V	• • • • • • • • • • • • • • • • • • •			
Contract:		•	_			Clie				Windo	v Samp	
	l College	Str						co Ventures L	.td.			WS2
Contract Ref:				15.08.19	Gro	ound Lev	/el:	Co-ordinates:		Sheet:		
37	1944		End:	15.08.19					-		1	of 1
Progress		Sam	oles / T	Tests		r ≅ -i	tion			ced	Depth	Material
Window Run	Depth	No	Туре	Results		Water Backfill & Instru-		Description of Str		Reduced Level	(Thick ness)	Graphic Legend
- - - -	0.30	1	ES PID	TXJXV 0.4ppm		***	spacing rel MADE GR to coarse ∴ subangular	OUND: Reinforced of the mesh - 10mm dia OUND: Light brown SAND. Gravel fine to coarse	gravelly medium is angular to flint, brick and	-	0.20	
- - - -	0.80 _0.80	2	ES PID	TXJXV 0.3ppm			concrete. MADE GF slightly sa	Occasional cobbles ROUND: Dark grey ndy slightly gravelly coarse. Gravel is	brown / black CLAY. Sand is	-	- -(0.70) - - 1.20	
_ 🔺	1.20-1.65	1	SPT	1,1/1,1,1,1 N=4	1			d fine to coarse brid		-	-	<u>x </u>
1.20 - 2.00 (115mm dia) 100% rec	1.40 - 1.40 - 1.60	3 4	ES PID D	TXJXV 0.2ppm			Firm light	brown silty slightly angular to subangula nology. (POSSIBLE	gravelly CLAY. ar fine to coarse E REWORKED	- - -	- - (1.30)	x _ x _ x _ x _ x _ x
	2.00-2.45	2	SPT	2,2/2,3,3,2 N=10	2		becomin	g stiff below 2.00m de	epth.	-	- -	xx
2.00 - 3.00 (98mm dia)	2.30	6	D				Stiff light I	prown slightly sandy	slightly gravelly	-	2.50	x x
100% rec	2.80	7	D				CLAY. Sar to subang	id is fine to coarse. ular fine to coarse E REWORKED LON	Gravel is angular mixed lithology.		(0.50)	
	3.00-3.45	3	SPT	3,3/3,3,4,4 N=14	4		Stiff light b	own silty CLAY. CLAY FORMATION		-	3.00	<u> </u>
3.00 - 4.00 (85mm dia) 100% rec	3.50	8	D							-	(1.00)	X X X
- ₩	-									-	4.00	xx
							recommen	terminated at 4.0 dation of UXO spigh reading on magn	ecialist due to			
_	-									-	_	

I	Orilling Pro	gress and	Water Ob	servations	3					
Date Time Borehole Casing Borehole Depth Depth (m) (m) Borehole Diameter Depth (m) (m) (m)										

Inspection pit +

Tracked window

Method

Used:

General Remarks

- 1. Position checked with Ground Penetrating Radar, CAT and Genny prior to excavation.
- 2. Inspection pit hand dug to 1.20m depth.
 3. Down borehole checks for buried ferrous objects carried out during drilling by specialist unexploded ordnance (UXO) officer using magnetometer at regular intervals to 4.00m depth.

130

4. No groundwater encountered.5. On completion, borehole backfilled with arisings.

1:36 All dimensions in metres Scale: **GEH** Plant Archway Competitor Drilled **SAlhilly** Checked Logged Groundworks By: Ву:

GINT_LIBRARY V8 07.GLB LibVersion: v8 07 001 Pr]Version: v8 07 | Log WINDOW SAMPLE LOG - A4P | 371944 ROYAL COLLEGE STREET.GPJ - v8 07. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk | 13/09/19 - 16:57 | SA5 |

Contract:						Client:				Windo	w Samp	le:
Roya	l College	Str	eet,	London			Roc	co Ventures I	_td.			WS3
Contract Ref:			Start:	15.08.19	Grou	nd Level	:	Co-ordinates:		Sheet:		
37	1944		End:	15.08.19			-				1	of 2
Progress		Sam	oles /	Tests	į	iii ⊗ ation				lced	Depth	Material
Window Run	Depth	No	Туре	Results		Vvater Backfill & Instru- mentation		Description of St	rata	Reduced Level	(Thick ness)	Graphic Legend
=	_							DUND: Asphalt.	/	-	0.08	
-	-						\MADE GR \SAND.	OUND: Yellow me	edium to coarse	' -	0.15 (0.55)	
-	0.40 0.40	1	ES PID	TxVxJ		•.•□.•.	MADE GR	OUND: Grey brow	vn slightly sandy	-	- (0.55)	
- -	- 0.40 -		PID	3.7ppm			Gravel is a	velly CLAY. Sand in Ingular to subangul	ar fine to coarse	-	0.70	
-	0.80	2	ES	TxVxJ			brick, flint fragments.	, concrete, slate Occasional cobbl	and rare shell es of brick and	-	1.00	
-	_0.80		PID	146.6ppm	1		concrete.			-	- 1.00	X X X X
	1.20-1.65	1	SPT	2,1/2,2,2,2	2		gravelly CL	DUND: Dark grey bl AY. Gravel is angu	lar to subrounded	-	-	xx
- 100 000	1.20	3	ES	N=8 TxVxJ			fine to coar odour note	se brick and flint. St	rong hydrocarbon	-	-	x x
1.20 - 2.00 (115mm dia)	1.20 1.50	4	PID D	52.9ppm				orown with dark gre	ev / black staining	-	-	
100% rec	1.50	-	PID	10.2ppm			silty ČLAY.	ū	,	ļ	-	× ×
<u> </u>	_						(LONDON	CLAY FORMATION	l)	Ł	-	<u>x </u>
- ♠	2.00-2.45	2	SPT	2,2/2,3,3,3 N=11	3					-	-	<u> </u>
_		_					black stai	ning stops at 2.10m	depth.	ļ	ļ	
2.00 - 3.00	_ 2.30 _ 2.30	5	ES PID	TxVxJ 35.0ppm						t	t	<u> </u>
(98mm dia) 100% rec	_ 2.50 _ 2.50	6	D PID	2.9ppm						-	-	<u>x x</u>
-	- 2.50		טוו	2.9ppiii						ļ		× ×
<u> </u>	_									Ł	_	
- 🛉	3.00-3.45	3	SPT	3,2/3,3,3,2 N=11	2		hooomoo	slightly sandy with	rara banda and	-	(4.45)	
-	-			14-11			pockets of	fine sand below 3.00	om depth.	ļ.	- (4.43) -	× ×
3.00 - 4.00	-						·		•	t	_	xx
(85mm dia) 100% rec	3.50 3.50	7	D PID	2.3ppm						-	-	× ×
-	- 0.00		1 10	2.000						ļ	-	
T	_									L	-	××
- ♠	4.00-4.45	4	SPT	3,3/3,3,3,3 N=12	3					-	-	<u>xx</u>
	-			11-12						ļ	-	<u> </u>
4.00 - 5.00	_									-	-	
(75mm dia) 100% rec	_ 4.50 _ 4.50	8	D PID	1.6ppm						-	-	x
- 1	- 1.00			1.000						F	-	xx
<u> </u>	_									L	L	<u>x x</u>
-	5.00-5.45	5	SPT	4,4/4,4,4,4 N=16	4					}	-	× ×
-										-	Ē	
-	-						Borehole te	erminated at 5.45m o	denth	-	- 5.45 -	<u>xx</u>
_	<u> </u>						Doronoic te		20pui.	t	_	
-	-									-	-	
-	ļ.									Ļ	Ļ	
-	‡									<u> </u>	-	
1	1		1		1							

1	Orilling Pro	gress and	Water Ob	servations	3
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)
1	I	l l		1	

Plant

Used:

Dando Terrier

Inspection pit +

Tracked window

Method

Used:

General Remarks

- 1. Position checked with Ground Penetrating Radar, CAT and Genny prior to excavation.
- 2. Inspection pit hand dug to 1.20m depth.
 3. Down borehole checks for buried ferrous objects carried out during drilling by specialist unexploded ordnance (UXO) officer using magnetometer at regular intervals to 4.00m depth.
- 4. No groundwater encountered.

All dimensions in metres

5. 35mm diameter standpipe piezometer (complete with flush protective cover)

Scale:

1:36

GEH Drilled Logged SAI Hilly Checked Groundworks By: Ву:

GINT_LIBRARY V8 07.GLB LibVersion: v8 07 001 Pr]Version: v8 07 | Log WINDOW SAMPLE LOG - A4P | 371944 ROYAL COLLEGE STREET.GPJ - v8 07. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk. | 13/09/19 - 16:57 | SA5 |

									O 2			
Contract:						Clien	t:			Windo	w Samp	le:
Roya	l College	Str	eet,	London			Ro	cco Ventures Ltd.	ı			WS3
Contract Ref:			Start:	15.08.19	Grour	d Lev	el:	Co-ordinates:		Sheet:		
371944 End: 15.08.19								2	of 2			
Progress	Progress Samples / Tests		ē	ackfill & Instru-				reduced	Depth			
Window Run	Depth	No	Туре	Results	Water	Backfill Instru-		Description of Strata		Redu	(Thick ness)	Graphic Legend
-	-										-	

GINT_LIBRARY V8 07.GLB LibVersion: v8_07_001 PrjVersion: v8_07 | Log WINDOW SAMPLE LOG - A4P | 371944 ROYAL COLLEGE STREET.GPJ - v8_07.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk. | 13/09/19 - 16:57 | SA5 |

ı	Drilling Pro	gress and	Water Ob	servations	3	
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)	
						in

Inspection pit +

Tracked window

sampling

Method

Used:

General Remarks

installed to 1.00m depth on completion. Response zone 0.50m to 1.00m.

А	II dimensio	ns in metres		Sc	ale:		1:36
	Drilled	GEH	Logge	d	SAI Hilly	,	Checked

Plant Used: Dando Terrier

Groundworks By:
Specialists

Section A-A': (1:12.5)

LEGEND Section Line Brick Concrete Asphalt Made Ground: Pink gravelly medium to coarse SAND. Gravel is angular to subangular fine to coarse roadstone. Made Ground: Yellow medium to coarse SAND. Made Ground: Grey brown gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse flint, brick, concrete slate and asphalt. Made Ground: Dark brown grey slightly clayey gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse flint, brick, concrete and slate. Chkd. 18 Frogmore Road +44 (0) 1442 437550 Hertfordshire Email: info@rsk.co.uk HP3 9RT Web: www.rsk.co.uk United Kingdom **ROCCO VENTURES LTD** Project Title 60-86 ROYAL

COLLEGE STREET, LONDON,

Drawing Title

TRIAL PIT DIAGRAM (TRIAL PIT 3)

ASC 28.08.1	9 AT	28.08.19	AT	19.09.19
AS SHOWN	Orig Size		Dimension m	ns

371944 - R01 (00)

Trial Pit Sections 371944.dwg

TP3

P1

STANDARD PENETRATION TEST SUMMARY TABLE

Contract:							Contract ref:
	al Colle	ne Stra	et Lo	ndon	Clien	Rocco Ventures Ltd.	371944
		Cootin	g Drive	TIGOTI			371344
Exploratory Position ID	Depth (m)		_	Dlavva	_	Test Drive	Comments
1 OSILIOIT ID	(111)	Blows	Pen (mm)	Blows	R (mm)	Result	
BH1	1.20	1,2	150	2,1,2,1		1,2/2,1,2,1	SPT(c)
						N=6	
	2.00	2,2	150	2,2,3,3		2,2/2,2,3,3	
						N=10	
	4.00	3,3	150	4,5,6,6		3,3/4,5,6,6	
						N=21	
	6.00	4,5	150	4,6,6,7		4,5/4,6,6,7	
						N=23	
	9.00	4,4	150	5,5,7,8		4,4/5,5,7,8	
						N=25	
	12.00	4,5	150	6,6,7,8		4,5/6,6,7,8	
						N=27	
	15.00	5,6	150	7,8,9,9		5,6/7,8,9,9	
						N=33	
	18.00	7,7	150	10,12,13,14		7,7/10,12,13,14	
						N=49	
	21.00	7,8	150	10,12,14,14		7,8/10,12,14,14	
						N=50	
	24.00	8,8	150	10,11,13,15		8,8/10,11,13,15	
						N=49	
	27.00	8,9	150	11,13,13,13+	290	8,9/11,13,13,13	
						for 65mm	
						N=52*	
	30.00	8,10	150	13,14,15,8+	270	8,10/13,14,15,8	
						for 45mm	
						N=56*	
BH2	1.20	1,2	150	1,2,2,2		1,2/1,2,2,2	
						N=7	
	3.00	3,3	150	4,3,4,3		3,3/4,3,4,3	
						N=14	
	5.00	4,6	150	6,10,8,8		4,6/6,10,8,8	
						N=32	
		1	1	I		02	

- Tests carried out in general accordance with BS EN ISO 22476-3:2005
 Reported blows are for 75mm penetration unless indicated "+".
 Where full test drive was not achieved, actual penetration (R) and extrapolated N value (N*) reported.
- 4. Tests carried out using a split spoon sampler unless noted as SPT(c) (denotes use of solid cone method) in the comments column.

STANDARD PENETRATION TEST SUMMARY TABLE

Contract:			<u> </u>		Clien	t:	Contract ref:
	al Colle	ae Stre	et. Lo	ndon		Rocco Ventures Ltd.	371944
		Soction	g Drive			Test Drive	0.1044
Exploratory Position ID	Depth (m)	Blows	Pen (mm)	Blows	R (mm)	Result	Comments
BH2	7.50	5,6	150	7,10,9,8		5,6/7,10,9,8	
		-,-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		N=34	
	10.50	5,7	150	7,8,8,9		5,7/7,8,8,9	
						N=32	
	13.50	6,7	150	7,8,9,9		6,7/7,8,9,9	
						N=33	
	16.50	25,0	75	31,9,8,2+	240	25/31,9,8,2	
						for 15mm	
						N=62*	
	19.50	9,10	150	10,11,12,17+	295	9,10/10,11,12,17	
						for 70mm	
						N=51*	
	22.50	8,9	150	10,11,13,13		8,9/10,11,13,13	
						N=47	
	25.50	8,10	150	10,12,12,14		8,10/10,12,12,14	
						N=48	
	28.50	8,11	150	13,15,15,7+	255	8,11/13,15,15,7	
						for 30mm	
						N=59*	
	30.00	10,14	150	17,16,17+,0+	220	10,14/17,16,17	
						for 70mm	
						N=68*	
WS2	1.20	1,1	150	1,1,1,1		1,1/1,1,1,1	
						N=4	
	2.00	2,2	150	2,3,3,2		2,2/2,3,3,2	
						N=10	
	3.00	3,3	150	3,3,4,4		3,3/3,3,4,4	
						N=14	
WS3	1.20	2,1	150	2,2,2,2		2,1/2,2,2,2	
						N=8	
	2.00	2,2	150	2,3,3,3		2,2/2,3,3,3	
1						N=11	

- Tests carried out in general accordance with BS EN ISO 22476-3:2005
 Reported blows are for 75mm penetration unless indicated "+".
 Where full test drive was not achieved, actual penetration (R) and extrapolated N value (N*) reported.
- 4. Tests carried out using a split spoon sampler unless noted as SPT(c) (denotes use of solid cone method) in the comments column.

STANDARD PENETRATION TEST SUMMARY TABLE

Contract:					Clien	t:	Contract ref:
Roy	al Colle	ge Stre	et, Lo	ndon		Rocco Ventures Ltd.	371944
Exploratory	Depth	Seatin	g Drive			Test Drive	
Position ID	(m)	Blows	Pen (mm)	Blows	R (mm)	Result	Comments
WS3	3.00	3,2	150	3,3,3,2		3,2/3,3,3,2	
						N=11	
	4.00	3,3	150	3,3,3,3		3,3/3,3,3,3	
						N=12	
	5.00	4,4	150	4,4,4,4		4,4/4,4,4,4	
						N=16	

- Tests carried out in general accordance with BS EN ISO 22476-3:2005
 Reported blows are for 75mm penetration unless indicated "+".
 Where full test drive was not achieved, actual penetration (R) and extrapolated N value (N*) reported.
- 4. Tests carried out using a split spoon sampler unless noted as SPT(c) (denotes use of solid cone method) in the comments column.

Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

Dynamic sampling uk Itd 5-8 victory parkway victory road Derby **DE24 8ZF**

Hammer Ref:

CJ08

Test Date:

07/06/2019

Report Date:

07/06/2019

File Name:

CJ08.spt

Test Operator:

TP

Instrumented Rod Data

Diameter d_r (mm):

54

Wall Thickness t_r (mm):

6.0

Assumed Modulus Ea (GPa): 208

Accelerometer No.1:

9603

Accelerometer No.2:

6457

Hammer Information

Hammer Mass m (kg):

63.5

Falling Height h (mm):

760

String Length L (m):

15.0

Comments / Location

CJ associates hammer tested at Dynamic

samplings yard.

Calculations

Area of Rod A (mm2):

905

Theoretical Energy E_{theor} (J):

473

Measured Energy E_{meas} (J):

317

Energy Ratio E_r (%):

67

Signed: A.parker.

Title:

Associate Director.

The recommended calibration interval is 12 months

APPENDIX I GROUND GAS MONITORING DATA

Pressures <u>Start</u> <u>End</u> 1024 1024 Start Date End Date **Previous** <u>During</u> **Equipment Used & Remarks** 23/08/19 23/08/19 Round 1 Round 2 02/09/19 02/09/19 1021 1022 Round 3 18/09/19 10127 -18/09/19

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH1	2	35	1	1.00	1.00	0.50 to 1.00	30/12/1899 00:00:15	-	1024	-	DRY	0.3	0.0	20.4	0.0	-	-	-
BH1	2	35	1		1.00	0.50 to 1.00	30 secs	-	1024	-	DRY	0.3	0.0	20.2	0.0	-	-	-
BH1	2	35	1		1.00	0.50 to 1.00	60 secs	-	1024	-	DRY	0.4	0.0	19.9	0.0	-	-	-
BH1	2	35	1		1.00	0.50 to 1.00	90 secs	-	1024	-	DRY	0.5	0.0	19.7	0.0	-	-	-
BH1	2	35	1		1.00	0.50 to 1.00	120 secs	-	1024	-	DRY	0.5	0.0	19.7	0.0	-	-	-
BH1	2	35	1		1.00	0.50 to 1.00	150 secs	-	1024	-	DRY	0.5	0.0	19.7	0.0	-	-	-
BH1	2	35	1	1.00	1.00	0.50 to 1.00	23/08/2019 12:00:00	-	1024	0.0 _(SS)	DRY	0.3	0.0	20.7	0.0	-	-	-
BH1	1	50	2	6.00	5.64	2.00 to 6.00	02/09/2019 10:09:00	-	1022	0.0 _(SS)	3.31	0.1	0.0	20.9	0.0	0.3	0	0
BH1	1	50	2		5.64	2.00 to 6.00	15 secs	-	1022	-	3.31	0.6	0.0	20.3	0.0	0.3	0	0
BH1	1	50	2		5.64	2.00 to 6.00	30 secs	-	1022	-	3.31	0.6	0.0	20.0	0.0	0.3	0	0
BH1	1	50	2		5.64	2.00 to 6.00	60 secs	-	1022	-	3.31	0.7	0.0	19.8	0.0	0.3	0	0
BH1	1	50	2		5.64	2.00 to 6.00	90 secs	-	1022	-	3.31	0.8	0.0	19.8	0.0	0.3	0	0
BH1	1	50	2		5.64	2.00 to 6.00	120 secs	-	1022	-	3.31	0.7	0.0	19.8	0.0	0.3	0	0
BH1	1	50	2		5.64	2.00 to 6.00	180 secs	-	1022	-	3.31	0.7	0.0	19.8	0.0	0.3	0	0
BH1	1	50	2		5.64	2.00 to 6.00	240 secs	-	1022	-	3.31	0.7	0.0	19.8	0.0	0.3	0	0
BH1	1	50	2		5.64	2.00 to 6.00	300 secs	-	1022	-	3.31	0.7	0.0	19.8	0.0	0.3	0	0
BH1	1	50	3	6.00	5.82	2.00 to 6.00	18/09/2019 12:38:00	-	1029	0.0 _(I)	2.69	0.1	0.0	20.9	-	0.2	0	0
BH1	1	50	3			2.00 to 6.00	15 secs	-	-	0.0 _(SS)	-	0.3	0.0	20.6	-	-	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd
18 Frogmore Road
Hemel Hempstead
Hertfordshire
HP3 9RT

Compiled By	Date	Checked By	Date	Contract Ref:
A. Tyle	19/09/19			
ontroot:	-			Page.

Royal College Street, London

1 of **5**

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone		Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH1	1	50	3			2.00 to 6.00	30 secs	-	-	-	-	0.4	0.0	20.3	-	-	0	0
BH1	1	50	3			2.00 to 6.00	60 secs	-	-	-	-	0.7	0.0	20.0	-	-	0	0
BH1	1	50	3			2.00 to 6.00	90 secs	-	-	-	-	0.8	0.0	20.0	-	-	0	0
BH1	1	50	3			2.00 to 6.00	120 secs	-	-	-	-	0.8	0.0	20.0	-	-	0	0
BH1	1	50	3			2.00 to 6.00	180 secs	-	-	-	-	0.8	0.0	20.0	-	-	0	0
BH1	1	50	3			2.00 to 6.00	240 secs	-	-	-	-	0.8	0.0	20.1	-	-	0	0
BH1	1	50	3			2.00 to 6.00	300 secs	-	-	-	-	0.7	0.0	20.1	-	-	0	0
BH2	2	35	1	1.00	1.00	0.50 to 1.00	23/08/2019	-	1024	0.0	DRY	0.3	0.0	20.6	0.0	-	-	-
BH2	2	35	1		1.00	0.50 to 1.00	15 secs	-	1024	0.0	DRY	0.3	0.0	20.7	0.0	-	-	-
BH2	2	35	1		1.00	0.50 to 1.00	30 secs	-	1024	0.0	DRY	0.3	0.0	20.7	0.0	-	-	-
BH2	2	35	1		1.00	0.50 to 1.00	60 secs	-	1024	0.0	DRY	0.3	0.0	20.6	0.0	ı	-	-
BH2	2	35	1		1.00	0.50 to 1.00	90 secs	-	1024	0.0	DRY	0.3	0.0	20.6	0.0	-	-	-
BH2	2	35	1		1.00	0.50 to 1.00	120 secs	-	1024	0.0	DRY	0.4	0.0	20.6	0.0	-	-	-
BH2	2	35	1		1.00	0.50 to 1.00	150 secs	-	1024	0.0	DRY	0.4	0.0	20.6	0.0	-	-	-
BH2	1	50	2	6.00	5.72	2.00 to 6.00	02/09/2019 09:05:00	-	1021	0.0 _(I)	3.26	0.2	0.0	20.9	0.0	0.3	0	0
BH2	1	50	2		5.72	2.00 to 6.00	15 secs	-	1021	-0.1 _(SS)	3.26	0.2	0.0	20.6	0.0	0.3	0	0
BH2	1	50	2		5.72	2.00 to 6.00	30 secs	-	1021	-	3.26	0.3	0.0	20.5	0.0	0.3	0	0
BH2	1	50	2		5.72	2.00 to 6.00	60 secs	-	1021	-	3.26	0.3	0.0	20.4	0.0	0.3	0	1
BH2	1	50	2		5.72	2.00 to 6.00	90 secs	-	1021	-	3.26	0.4	0.0	20.4	0.0	0.3	0	1
BH2	1	50	2		5.72	2.00 to 6.00	120 secs	-	1021	-	3.26	0.3	0.0	20.4	0.0	0.3	0	1
BH2	1	50	2		5.72	2.00 to 6.00	190 secs	-	1021	-	3.26	0.3	0.0	20.4	0.0	0.3	0	1
BH2	1	50	2		5.72	2.00 to 6.00	240 secs	-	1021	-	3.26	0.3	0.0	20.4	0.0	0.3	0	1
BH2	1	50	2		5.72	2.00 to 6.00	300 secs	-	1021	-	3.26	0.3	0.0	20.4	0.0	0.3	0	1
BH2	1	50	3	6.00	5.94	2.00 to 6.00	18/09/2019 11:57:00	-	1027	0.0 _(I)	3.48	0.1	0.0	20.9	-	-	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire

HP3 9RT

Compiled By	Date	Checked By	Date	Contract Re
A. Tyle	19/09/19			
Contract:				Page:

Royal College Street, London

2 of **5**

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH2	1	50	3			2.00 to 6.00	15 secs	-	-	0.0 _(SS)	-	0.1	0.0	20.7	-	-	0	0
BH2	1	50	3			2.00 to 6.00	30 secs	-	-	-	-	0.2	0.0	20.6	-	-	0	0
BH2	1	50	3			2.00 to 6.00	60 secs	-	-	-	-	0.2	0.0	20.5	-	-	0	1
BH2	1	50	3			2.00 to 6.00	90 secs	-	-	-	-	0.2	0.0	20.5	-	-	0	1
BH2	1	50	3			2.00 to 6.00	120 secs	-	-	-	-	0.2	0.0	20.5	-	-	0	1
BH2	1	50	3			2.00 to 6.00	190 secs	-	-	-	-	0.2	0.0	20.4	-	-	0	1
BH2	1	50	3			2.00 to 6.00	240 secs	-	-	-	-	0.2	0.0	20.3	-	-	0	1
BH2	1	50	3			2.00 to 6.00	300 secs	-	-	-	-	0.2	0.0	20.3	-	-	0	1
WS2	1	35	2	1.00	0.80	0.50 to 1.00	02/09/2019 09:52:00	-	1022	0.0 _(SS)	DRY	0.1	0.0	20.9	0.0	0.0	0	0
WS2	1	35	2		0.80	0.50 to 1.00	15 secs	-	1022	-	DRY	0.1	0.0	19.8	0.0	0.0	1	0
WS2	1	35	2		0.80	0.50 to 1.00	30 secs	-	1022	-	DRY	0.0	0.0	19.2	0.0	0.0	1	0
WS2	1	35	2		0.80	0.50 to 1.00	60 secs	-	1022	-	DRY	0.0	0.0	19.1	0.0	0.0	1	0
WS2	1	35	2		0.80	0.50 to 1.00	90 secs	-	1022	-	DRY	0.0	0.0	19.1	0.0	0.0	1	0
WS2	1	35	2		0.80	0.50 to 1.00	120 secs	-	1022	-	DRY	0.0	0.0	19.2	0.0	0.0	1	0
WS2	1	35	2		0.80	0.50 to 1.00	180 secs	-	1022	-	DRY	0.0	0.0	19.2	0.0	0.0	1	0
WS2	1	35	2		0.80	0.50 to 1.00	240 secs	-	1022	-	DRY	0.0	0.0	19.2	0.0	0.0	1	0
WS2	1	35	2		0.80	0.50 to 1.00	300 secs	-	1022	-	DRY	0.0	0.0	19.3	0.0	0.0	1	0
WS2	1	35	3	1.00	0.91	0.50 to 1.00	18/09/2019 12:23:00	-	1028	0.0(1)	0.91	0.1	0.0	20.9	-	0.1	0	0
WS2	1	35	3			0.50 to 1.00	15 secs	-	-	0.0 _(SS)	-	0.0	0.0	18.7	-	-	1	0
WS2	1	35	3			0.50 to 1.00	30 secs	-	-	-	-	0.0	0.0	17.4	-	-	1	1
WS2	1	35	3			0.50 to 1.00	60 secs	-	-	-	-	0.0	0.0	17.2	-	-	1	1
WS2	1	35	3			0.50 to 1.00	90 secs	-	-	-	-	0.0	0.0	17.2	-	-	1	1
WS2	1	35	3			0.50 to 1.00	120 secs	-	-	-	-	0.0	0.0	17.2	-	-	1	1
WS2	1	35	3			0.50 to 1.00	180 secs	-	-	-	-	0.0	0.0	17.3	-	-	1	1

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd
18 Frogmore Road
Hemel Hempstead
Hertfordshire
HP3 9RT

Compiled By	Date	Checked By	Date	Contract Ref:
A. Tyl	19/09/19			
Contract:				Page:

Royal College Street, London

3 of **5**

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS2	1	35	3			0.50 to 1.00	240 secs	-	-	-	-	0.0	0.0	17.3	-	-	1	1
WS2	1	35	3			0.50 to 1.00	300 secs	-	-	-	-	0.0	0.0	17.4	-	-	1	1
WS3	1	35	1	1.00	1.00	0.50 to 1.00	23/08/2019	-	1024	0.0	DRY	0.5	0.0	20.8	0.0	-	-	-
WS3	1	35	1		1.00	0.50 to 1.00	15 secs	-	1024	0.0	DRY	0.5	0.0	20.1	0.0	-	-	-
WS3	1	35	1		1.00	0.50 to 1.00	30 secs	_	1024	0.0	DRY	0.5	0.0	20.0	0.0	-	-	-
WS3	1	35	1		1.00	0.50 to 1.00	60 secs	-	1024	0.0	DRY	0.6	0.0	19.8	0.0	-	-	-
WS3	1	35	1		1.00	0.50 to 1.00	90 secs	-	1024	0.0	DRY	0.6	0.0	19.7	0.0	-	-	-
WS3	1	35	1		1.00	0.50 to 1.00	120 secs	-	1024	0.0	DRY	0.6	0.0	19.7	0.0	-	-	-
WS3	1	35	1		1.00	0.50 to 1.00	150 secs	-	1024	0.0	DRY	0.6	0.0	19.7	0.0	-	-	-
WS3	1	35	2	1.00	0.81	0.50 to 1.00	02/09/2019 09:37:00	-	1022	0.0 _(I)	DRY	0.1	0.0	20.9	0.0	0.0	0	0
WS3	1	35	2		0.81	0.50 to 1.00	15 secs	-	1022	0.0 _(SS)	DRY	0.9	0.0	19.9	0.0	0.0	1	0
WS3	1	35	2		0.81	0.50 to 1.00	30 secs	-	1022	-	DRY	0.9	0.0	19.4	0.0	0.0	0	0
WS3	1	35	2		0.81	0.50 to 1.00	60 secs	-	1022	-	DRY	1.0	0.0	19.3	0.0	0.0	0	0
WS3	1	35	2		0.81	0.50 to 1.00	90 secs	-	1022	-	DRY	1.0	0.0	19.3	0.0	0.0	0	0
WS3	1	35	2		0.81	0.50 to 1.00	120 secs	-	1022	-	DRY	1.0	0.0	19.3	0.0	0.0	0	0
WS3	1	35	2		0.81	0.50 to 1.00	180 secs	-	1022	-	DRY	1.0	0.0	19.3	0.0	0.0	0	0
WS3	1	35	2		0.81	0.50 to 1.00	240 secs	-	1022	-	DRY	1.0	0.0	19.3	0.0	0.0	0	0
WS3	1	35	2		0.81	0.50 to 1.00	300 secs	-	1022	-	DRY	1.0	0.0	19.4	0.0	0.0	0	0
WS3	1	35	3	1.00	0.99	0.50 to 1.00	18/09/2019 12:09:00	-	1028	0.0 _(I)	0.99	0.1	0.0	20.9	-	-	0	0
WS3	1	35	3			0.50 to 1.00	15 secs	-	-	0.0 _(SS)	-	0.7	0.0	20.2	-	-	1	0
WS3	1	35	3			0.50 to 1.00	30 secs	-	-	-	-	0.7	0.0	19.9	-	-	0	0
WS3	1	35	3			0.50 to 1.00	60 secs	-	-	-	-	0.8	0.0	19.8	-	-	0	0
WS3	1	35	3			0.50 to 1.00	90 secs	-	-	-	-	0.8	0.0	19.8	-	-	0	0
WS3	1	35	3			0.50 to 1.00	120 secs	-	-	-	-	0.8	0.0	19.7	-	-	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire

HP3 9RT

Compiled By	Date	Checked By	Date	Contract Ref:
A. Tyl	19/09/19			
Contract:				Page:

Royal College Street, London

4 of **5**

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Pressure Pre	atmos essure (mb)	Gas Flow (I/hr)	Water Depth (mbgl)	Dioxide	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS3	1	35	3			0.50 to 1.00	180 secs	-	-	-	-	0.8	0.0	19.7	-	-	0	0
WS3	1	35	3			0.50 to 1.00	240 secs	-	-	-	-	0.7	0.0	19.7	-	-	0	0
WS3	1	35	3			0.50 to 1.00	300 secs	-	-	-	-	0.7	0.0	19.7	-	-	0	0
					·													

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By	Date	Checked By	Date	Contract Ref:
A. Tyl	19/09/19			
Contract:	•			Page:

371944

Royal College Street, London

5 of **5**

APPENDIX J LABORATORY CERTIFICATES FOR SOIL ANALYSIS

Final Test Report

Envirolab Job Number:	19/07826

Issue Number: 1 Date: 3-Sep-19

Client: RSK Environment Ltd Hemel

18 Frogmore Road Hemel Hempstead Hertfordshire

UK HP3 9RT

Project Manager: Andrew Tyler

Project Name: 60 - 86 Royal College Street, London

Project Ref: 371944 Order No: N/A

Date Samples Received: 20-Aug-19
Date Instructions Received: 20-Aug-19
Date Analysis Completed: 2-Sep-19

Notes - Soil analysis

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones > 10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - Genera

This report shall not be reproduced, except in full, without written approval from Envirolab

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supercedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples from outside the European Union and this supercedes any "D" subscripts

For complex, multi-compound analysis, quality control results do not always fall within chart limits for every compound and we have criteria for reporting in these situations.

If results are in italic font they are associated with such quality control failures and may be unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid

Predominant Matrix Codes: 1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample

Secondary Matrix Codes: A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs

IS indicates Insufficient sample for analysis, NDP indicates No Determination Possible and NAD indicates No Asbestos Detected.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

Prepared by:

Melanie Marshall

Laboratory Coordinator

Marshall

Approved by:

Holly Neary-King Client Manager

ildly beary-king

Landfill WAC analysis must not be used for hazardous waste classification purposes. This analysis is only applicable for landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Lab Sample ID Client Sample Number Client Sample ID Depth to Top	Method	ISO17025	MCERTS	19/07826/8	3	Landfill W	aste Acceptance Crite	eria Limits			
Client Sample ID			$\overline{}$			Landfill Waste Acceptance Criteria Limits					
				ES1							
Denth to Ton				WS3							
Dopui to Top				0.4			Stable Non-reactive	Harriston Mart			
Depth to Bottom						Inert Waste Landfill	Hazardous Waste in Non-Hazardous	Hazardous Waste Landfill			
Date Sampled				14/08/2019)		Landfill	Lanum			
Sample Type				Soil - ES							
Sample Matrix Code				5A							
Solid Waste Analysis											
pH (pH Units) _□	A-T-031	N	N	9.20		-	>6	-			
ANC to pH 4 (mol/kg) _D	A-T-ANC	N	N	0.57		-	to be evaluated	to be evaluated			
ANC to pH 6 (mol/kg) _D	A-T-ANC	N	N	0.07		-	to be evaluated	to be evaluated			
Loss on Ignition (%) _D	A-T-030	N	N	6.8		-	-	10			
Total Organic Carbon (%) _D	A-T-032	N	N	3.25		3	5	6			
PAH Sum of 17 (mg/kg) _A	A-T-019	N	N	4.95		100	-	-			
Mineral Oil (mg/kg) _A	A-T-007	N	N	62		500	-	-			
Sum of 7 PCBs (mg/kg) _A	A-T-004	N	N	<0.007		1	-	-			
Sum of BTEX (mg/kg) _A	A-T-022	N	N	<0.01		6					
	71. 022			10:1	10:1		for compliance leachin	a test usina			
Eluate Analysis				mg/l	mg/kg		12457-2 at L/S 10 l/kg (r	-			
Arsenic	A-T-025	N	N	0.016	0.160	0.5	2	25			
Barium	A-T-025	N	N	0.028	0.280	20	100	300			
Cadmium	A-T-025	N	N	<0.001	<0.01	0.04	1	5			
Chromium	A-T-025	N	N	0.003	0.030	0.5	10	70			
Copper	A-T-025	N	N	0.038	0.380	2	50	100			
Mercury	A-T-025	N	N	<0.0005	<0.005	0.01	0.2	2			
Molybdenum	A-T-025	N	N	0.005	0.050	0.5	10	30			
Nickel	A-T-025	N	N	0.003	0.030	0.4	10	40			
Lead	A-T-025	N	N	0.198	1.980	0.5	10	50			
Antimony	A-T-025	N	N	0.004	0.040	0.06	0.7	5			
Selenium	A-T-025	N	N	<0.001	<0.01	0.1	0.5	7			
Zinc	A-T-025	N	N	0.032	0.320	4	50	200			
Chloride	A-T-026	N	N	6	60	800	15000	25000			
Fluoride	A-T-026	N	Ν	0.4	4.0	10	150	500			
Sulphate as SO ₄	A-T-026	N	N	13	128	1000	20000	50000			
Total Dissolved Solids	A-T-035	N	N	73	730	4000	60000	100000			
Phenol Index	A-T-050	N	Ν	<0.01	<0.1	1	•	-			
Dissolved Organic Carbon	A-T-032	N	Ν	<0.2	<200	500	800	1000			
Leach Test Information											
pH (pH Units)	A-T-031	N	N	6.9]						
Conductivity (µS/cm)	A-T-037	N	N	147	l						
				0.229	l						
Mass Sample (kg) Dry Matter (%)	A-T-044		N								

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 19/07826

Issue Number: Date: 03 September, 2019

Client: **RSK Environment Ltd Hemel**

> 18 Frogmore Road Hemel Hempstead

Hertfordshire

UK

HP3 9RT

Project Manager: Andrew Tyler

Project Name: 60 - 86 Royal College Street, London

Project Ref: 371944 Order No: N/A

Date Samples Received: 20/08/19 **Date Instructions Received:** 20/08/19 **Date Analysis Completed:** 02/09/19

Prepared by: Approved by:

Melanie Marshall

Laboratory Coordinator

Holly Neary-King Client Manager

						ect itel. or				
Lab Sample ID	19/07826/1	19/07826/2	19/07826/3	19/07826/4	19/07826/5	19/07826/6	19/07826/7			
Client Sample No	ES1	ES1	ES1	ES1	ES1	ES2	ES3			
Client Sample ID	TP1	BH1	WS1	TP2	WS2	WS2	WS2			
Depth to Top	0.50	0.50	0.40	0.50	0.30	0.80	1.40			
Depth To Bottom									ion	
Date Sampled	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19		Limit of Detection	<u>_</u>
Sample Type	Soil - ES	Soil - ES		t of D	Method ref					
Sample Matrix Code	4AB	8	4AB	4A	4A	5A	5A	Units	Limit	Meth
% Moisture at <40C _A	12.4	8.6	-	6.3	-	-	-	% w/w	0.1	A-T-044
% Stones >10mm _A	30.1	<0.1	17.1	30.8	54.2	6.7	<0.1	% w/w	0.1	A-T-044
pH _D ^{M#}	8.85	12.91	-	11.34	12.33	-	-	pН	0.01	A-T-031s
Total Organic Carbon _D M#	-	-	0.23	-	-	-	0.41	% w/w	0.03	A-T-032s
Arsenic _D ^{M#}	22	6	-	3	4	-	-	mg/kg	1	A-T-024s
Cadmium _D M#	0.8	<0.5	-	<0.5	<0.5	-	-	mg/kg	0.5	A-T-024s
Copper _D ^{M#}	43	24	-	3	22	-	-	mg/kg	1	A-T-024s
Chromium _D ^{M#}	14	48	-	6	11	-	-	mg/kg	1	A-T-024s
Chromium (hexavalent) _D	<1	<1	-	<1	-	-	-	mg/kg	1	A-T-040s
Lead _D ^{M#}	514	72	-	13	17	-	-	mg/kg	1	A-T-024s
Mercury₀	0.78	0.26	-	<0.17	<0.17	-	-	mg/kg	0.17	A-T-024s
Nickel _D ^{M#}	37	41	-	3	9	-	-	mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	<1	-	<1	<1	-	-	mg/kg	1	A-T-024s
Zinc _D ^{M#}	215	58	-	10	26	-	-	mg/kg	5	A-T-024s

	ı	I	ı	I		I				
Lab Sample ID	19/07826/1	19/07826/2	19/07826/3	19/07826/4	19/07826/5	19/07826/6	19/07826/7			
Client Sample No	ES1	ES1	ES1	ES1	ES1	ES2	ES3			
Client Sample ID	TP1	BH1	WS1	TP2	WS2	WS2	WS2			
Depth to Top	0.50	0.50	0.40	0.50	0.30	0.80	1.40			
Depth To Bottom									ion	
Date Sampled	15-Aug-19		Detection	ref						
Sample Type	Soil - ES	,	of	a po						
Sample Matrix Code	4AB	8	4AB	4A	4A	5A	5A	Units	Limit	Method
Asbestos in Soil (inc. matrix)										
Asbestos in soil _D #	NAD	NAD	NAD	NAD	NAD	NAD	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test?	N/A	N/A	N/A	N/A	N/A	N/A	-			

_					Olient i roj	ect Ref: 37	1377			
Lab Sample ID	19/07826/1	19/07826/2	19/07826/3	19/07826/4	19/07826/5	19/07826/6	19/07826/7			
Client Sample No	ES1	ES1	ES1	ES1	ES1	ES2	ES3			
Client Sample ID	TP1	BH1	WS1	TP2	WS2	WS2	WS2			
Depth to Top	0.50	0.50	0.40	0.50	0.30	0.80	1.40			
Depth To Bottom									lon	
Date Sampled	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19		etect	-
Sample Type	Soil - ES	Soil - ES	Soil - ES		Limit of Detection	Method ref				
Sample Matrix Code	4AB	8	4AB	4A	4A	5A	5A	Units	Limit	Meth
PAH-16MS plus Coronene										
Acenaphthene _A ^{M#}	<0.01	<0.01	-	<0.01	-	-	-	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	-	<0.01	-	-	-	mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	<0.02	0.03	-	<0.02	-	-	-	mg/kg	0.02	A-T-019s
Benzo(a)anthracene _A ^{M#}	0.05	0.33	-	<0.04	-	-	-	mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04	0.38	-	<0.04	-	-	-	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A M#	<0.05	0.49	-	<0.05	-	-	-	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A M#	<0.05	0.28	-	<0.05	-	-	-	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A M#	<0.07	0.16	-	<0.07	-	-	-	mg/kg	0.07	A-T-019s
Chrysene _A M#	<0.06	0.36	-	<0.06	-	-	-	mg/kg	0.06	A-T-019s
Coronene _A	0.02	0.10	-	<0.01	-	-	-	mg/kg	0.01	A-T-019s
Dibenzo(ah)anthracene _A M#	<0.04	0.05	-	<0.04	-	-	-	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	<0.08	0.44	-	<0.08	-	-	-	mg/kg	0.08	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	-	<0.01	-	-	-	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.03	0.32	-	<0.03	-	-	-	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03	-	<0.03	-	=	-	mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	0.05	0.11	-	<0.03	-	-	-	mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	<0.07	0.42	-	<0.07	-	-	-	mg/kg	0.07	A-T-019s
Total PAH-16MS plus Coronene _A	0.15	3.47	-	<0.08	-	-	-	mg/kg	0.01	A-T-019s

					Chefit F10j	ect Ref: 37	1344			
Lab Sample ID	19/07826/1	19/07826/2	19/07826/3	19/07826/4	19/07826/5	19/07826/6	19/07826/7			
Client Sample No	ES1	ES1	ES1	ES1	ES1	ES2	ES3			
Client Sample ID	TP1	BH1	WS1	TP2	WS2	WS2	WS2			
Depth to Top	0.50	0.50	0.40	0.50	0.30	0.80	1.40			
Depth To Bottom									lon	
Date Sampled	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19		etecti	.
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		of Do	od re
Sample Matrix Code	4AB	8	4AB	4A	4A	5A	5A	Units	Limit of Detection	Method ref
Speciated PCB-EC7 & WHO12										
PCB BZ 28A ^{M#}	-	-	<0.002	-	-	-	-	mg/kg	0.002	A-T-004s
PCB BZ 52 _A M#	-	-	<0.002	-	-	-	-	mg/kg	0.002	A-T-004s
PCB BZ 81 _A	-	-	<0.005	-	-	-	-	mg/kg	0.005	A-T-004s
PCB BZ 101 _A M#	-	-	<0.004	-	-	-	-	mg/kg	0.004	A-T-004s
PCB BZ 105 _A	-	-	<0.005	-	-	-	-	mg/kg	0.005	A-T-004s
PCB BZ 114 _A	-	-	<0.005	-	-	-	-	mg/kg	0.005	A-T-004s
PCB BZ 118 _A M#	-	-	<0.007	-	-	-	-	mg/kg	0.007	A-T-004s
PCB BZ 123 _A	-		<0.005	=	-	·		mg/kg	0.005	A-T-004s
PCB BZ 126 _A	-		<0.005	=	-	·		mg/kg	0.005	A-T-004s
PCB BZ 138 _A M#	-		<0.006	-		=	=	mg/kg	0.006	A-T-004s
PCB BZ 153 _A M#	-	-	<0.004	-	-	-	-	mg/kg	0.004	A-T-004s
PCB BZ 156 _A	-	-	<0.005	-	-	-	-	mg/kg	0.005	A-T-004s
PCB BZ 157 _A	-	-	<0.005	-	-	-	-	mg/kg	0.005	A-T-004s
PCB BZ 167 _A	-	-	<0.005	-	-	-	-	mg/kg	0.005	A-T-004s
PCB BZ 169 _A	-	-	<0.005	-	-	-	-	mg/kg	0.005	A-T-004s
PCB BZ 180 _A M#	-	-	<0.004	-	-	-	-	mg/kg	0.004	A-T-004s
PCB BZ 189 _A	-	-	<0.005	-	-	-	-	mg/kg	0.005	A-T-004s
PCB BZ 77 _A	-	-	<0.005	-	-	-	-	mg/kg	0.005	A-T-004s
Total Speciated PCB-EC7 & WHO12 _A	-	-	<0.007	-	-	-	-	mg/kg	0.002	A-T-004s
TPH Total with ID + GC Trace										
TPH total (>C6-C40) _A ^{M#}	30	176	-	<10	-	-	-	mg/kg	10	A-T-007s
TPH FID Chromatogram _A	Appended	Appended	-	Appended	-	-	-			A-T-007s
TPH ID (for FID characterisations) _A	Concentratio n too low to identify	Possible PAHs and other unknown heavier hydrocarbon s	-	Concentratio n too low to identify	-	-	-			A-T-007s

						ect Kei. 31				
Lab Sample ID	19/07826/1	19/07826/2	19/07826/3	19/07826/4	19/07826/5	19/07826/6	19/07826/7			
Client Sample No	ES1	ES1	ES1	ES1	ES1	ES2	ES3			
Client Sample ID	TP1	BH1	WS1	TP2	WS2	WS2	WS2			
Depth to Top	0.50	0.50	0.40	0.50	0.30	0.80	1.40			
Depth To Bottom									uo	
Date Sampled	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19		etecti	.
Sample Type	Soil - ES	Soil - ES		Limit of Detection	Method ref					
Sample Matrix Code	4AB	8	4AB	4A	4A	5A	5A	Units	Limit	Meth
voc										
DichlorodifluoromethaneA	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Chloromethane _A	-	-	-	-	-	<10	-	μg/kg	10	A-T-006s
Vinyl Chloride (Chloroethene) _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Bromomethane _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Chloroethane _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Trichlorofluoromethane _A #	-	-	-	-	-	<4	-	μg/kg	1	A-T-006s
1,1-Dichloroethene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Carbon Disulphide _A #	-	-	-	-	-	1	-	μg/kg	1	A-T-006s
Dichloromethane _A	-	-	-	-	-	<5	-	μg/kg	5	A-T-006s
trans 1,2-Dichloroethene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,1-Dichloroethane _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
cis 1,2-Dichloroethene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
2,2-Dichloropropane _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Bromochloromethane _A #	-	-	-	-	-	<5	-	μg/kg	5	A-T-006s
Chloroform _A #	-	-	1	1	-	<1	-	μg/kg	1	A-T-006s
1,1,1-Trichloroethane _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,1-Dichloropropene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Carbon Tetrachloride _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,2-Dichloroethane _A #	-	-	-	-	-	<2	-	μg/kg	2	A-T-006s
Benzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Trichloroethene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,2-Dichloropropane _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Dibromomethane _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Bromodichloromethane _A #	-	-	-	-	-	<10	-	μg/kg	10	A-T-006s
cis 1,3-Dichloropropene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Toluene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
trans 1,3-Dichloropropene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,1,2-Trichloroethane _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,3-Dichloropropane _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Tetrachloroethene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Dibromochloromethane _A #	-	-	-	-	-	<3	-	μg/kg	3	A-T-006s
1,2-Dibromoethane _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s

-						ect Kei. 37				
Lab Sample ID	19/07826/1	19/07826/2	19/07826/3	19/07826/4	19/07826/5	19/07826/6	19/07826/7			
Client Sample No	ES1	ES1	ES1	ES1	ES1	ES2	ES3			
Client Sample ID	TP1	BH1	WS1	TP2	WS2	WS2	WS2			
Depth to Top	0.50	0.50	0.40	0.50	0.30	0.80	1.40			
Depth To Bottom									ion	
Date Sampled	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19		Limit of Detection	J
Sample Type	Soil - ES	Soil - ES	·o	t of D	Method ref					
Sample Matrix Code	4AB	8	4AB	4A	4A	5A	5A	Units	Limi	Meth
Chlorobenzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,1,1,2-Tetrachloroethane _A	=	-	=	-	=	<1	=	μg/kg	1	A-T-006s
Ethylbenzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
m & p Xylene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
o-Xylene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Styrene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Bromoform _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Isopropylbenzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,1,2,2-Tetrachloroethane _A	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,2,3-Trichloropropane _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Bromobenzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
n-Propylbenzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
2-Chlorotoluene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,3,5-Trimethylbenzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
4-Chlorotoluene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
tert-Butylbenzene _A #	-	-	-	-	-	<2	-	μg/kg	2	A-T-006s
1,2,4-Trimethylbenzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
sec-Butylbenzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
4-Isopropyltoluene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,3-Dichlorobenzene _A	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,4-Dichlorobenzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
n-Butylbenzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,2-Dichlorobenzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,2-Dibromo-3-chloropropane (DCBP)A	-	-	-	-	-	<2	-	μg/kg	2	A-T-006s
1,2,4-Trichlorobenzene _A	=	-	=	-	=	<3	=	μg/kg	3	A-T-006s
Hexachlorobutadiene _A #	-	-	-	-	=	<1	-	μg/kg	1	A-T-006s
1,2,3-Trichlorobenzene _A	-	-	-	-	-	<3	-	μg/kg	3	A-T-006s

_					onone i roj	'				
Lab Sample ID	19/07826/8	19/07826/9	19/07826/10	19/07826/11	19/07826/12	19/07826/13	19/07826/14			
Client Sample No	ES1	ES2	ES3	ES4	ES1	ES2	ES1			
Client Sample ID	WS3	WS3	WS3	WS3	TP3	TP3	BH2			
Depth to Top	0.40	0.80	1.20	2.30	0.30	0.60	0.60			
Depth To Bottom									ion	
Date Sampled	14-Aug-19	14-Aug-19	15-Aug-19	15-Aug-19	14-Aug-19	14-Aug-19	13-Aug-19		Limit of Detection	J
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		t of D	Method ref
Sample Matrix Code	5A	5A	5A	5A	4A	5AB	5AB	Units	Li mi	Meth
% Moisture at <40C _A	-	-	19.5	-	-	-	20.8	% w/w	0.1	A-T-044
% Stones >10mm _A	13.9	3.3	3.7	9.2	21.7	24.2	<0.1	% w/w	0.1	A-T-044
pH _D M#	9.20	=	8.35	=	-	8.70	8.60	рН	0.01	A-T-031s
Total Organic Carbon _D ^{M#}	3.25	2.53	-	0.08	0.61	-	-	% w/w	0.03	A-T-032s
Arsenic _D ^{M#}	-	-	7	-	-	17	29	mg/kg	1	A-T-024s
Cadmium _D M#	-	-	0.8	-	-	1.4	0.8	mg/kg	0.5	A-T-024s
Copper _D M#	-	-	15	-	-	99	104	mg/kg	1	A-T-024s
Chromium _D ^{M#}	-	=	47	=	-	24	28	mg/kg	1	A-T-024s
Chromium (hexavalent) _D	-	1	<1	1	i	-	<1	mg/kg	1	A-T-040s
Lead _D ^{M#}	-	1	20	1	i	487	302	mg/kg	1	A-T-024s
Mercury₀	-	-	<0.17	-	-	1.73	1.73	mg/kg	0.17	A-T-024s
Nickel _D ^{M#}	-	-	26	-	-	23	22	mg/kg	1	A-T-024s
Selenium _D ^{M#}	-	-	<1	-	-	<1	<1	mg/kg	1	A-T-024s
Zinc _D ^{M#}	-	-	56	-	-	666	124	mg/kg	5	A-T-024s

G										
Lab Sample ID	19/07826/8	19/07826/9	19/07826/10	19/07826/11	19/07826/12	19/07826/13	19/07826/14			
Client Sample No	ES1	ES2	ES3	ES4	ES1	ES2	ES1			
Client Sample ID	WS3	WS3	WS3	WS3	TP3	TP3	BH2			
Depth to Top	0.40	0.80	1.20	2.30	0.30	0.60	0.60			
Depth To Bottom									ion	
Date Sampled	14-Aug-19	14-Aug-19	15-Aug-19	15-Aug-19	14-Aug-19	14-Aug-19	13-Aug-19		Limit of Detection	ref
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		t of D	a poi
Sample Matrix Code	5A	5A	5A	5A	4A	5AB	5AB	Units	Limi	Method
Asbestos in Soil (inc. matrix)										
Asbestos in soil _D #	-	NAD	NAD	-	NAD	-	NAD			A-T-045
Asbestos ACM - Suitable for Water Absorption Test?	-	N/A	N/A	-	N/A	-	N/A			

=						ect itel. or				
Lab Sample ID	19/07826/8	19/07826/9	19/07826/10	19/07826/11	19/07826/12	19/07826/13	19/07826/14			
Client Sample No	ES1	ES2	ES3	ES4	ES1	ES2	ES1			
Client Sample ID	WS3	WS3	WS3	WS3	TP3	TP3	BH2			
Depth to Top	0.40	0.80	1.20	2.30	0.30	0.60	0.60			
Depth To Bottom									ion	
Date Sampled	14-Aug-19	14-Aug-19	15-Aug-19	15-Aug-19	14-Aug-19	14-Aug-19	13-Aug-19		etect	<u>_</u>
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		Limit of Detection	Method ref
Sample Matrix Code	5A	5A	5A	5A	4A	5AB	5AB	Units	Limit	Meth
PAH-16MS plus Coronene										
Acenaphthene _A ^{M#}	-	-	<0.01	-	-	-	<0.01	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	-	-	<0.01	-	-	-	<0.01	mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	-	-	<0.02	-	-	-	<0.02	mg/kg	0.02	A-T-019s
Benzo(a)anthracene _A ^{M#}	-	-	<0.04	-	-	-	<0.04	mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A ^{M#}	-	-	<0.04	-	-	-	<0.04	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	-	-	<0.05	-	-	-	<0.05	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A M#	-	-	<0.05	-	-	-	<0.05	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	-	-	<0.07	-	-	-	<0.07	mg/kg	0.07	A-T-019s
Chrysene _A M#	-	-	<0.06	-	-	-	<0.06	mg/kg	0.06	A-T-019s
Coronene _A	-	-	<0.01	-	-	-	<0.01	mg/kg	0.01	A-T-019s
Dibenzo(ah)anthracene _A M#	-	-	<0.04	-	-	-	<0.04	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	-	-	<0.08	-	-	-	<0.08	mg/kg	0.08	A-T-019s
Fluorene _A ^{M#}	-	-	<0.01	-	-	-	<0.01	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	-	-	<0.03	-	-	-	<0.03	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	-	-	<0.03	-	-	-	<0.03	mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	-	-	<0.03	-	-	-	<0.03	mg/kg	0.03	A-T-019s
Pyrene _A M#	-	-	<0.07	-	-	-	<0.07	mg/kg	0.07	A-T-019s
Total PAH-16MS plus Coronene _A	-	-	<0.08	-	-	-	<0.08	mg/kg	0.01	A-T-019s

				•	00111011 01				
19/07826/8	19/07826/9	19/07826/10	19/07826/11	19/07826/12	19/07826/13	19/07826/14			
ES1	ES2	ES3	ES4	ES1	ES2	ES1			
WS3	WS3	WS3	WS3	TP3	TP3	BH2			
0.40	0.80	1.20	2.30	0.30	0.60	0.60			
								no	
14-Aug-19	14-Aug-19	15-Aug-19	15-Aug-19	14-Aug-19	14-Aug-19	13-Aug-19		tecti	
Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		of De	od re
5A	5A	5A	5A	4A	5AB	5AB	Units	Limit	Method ref
-	-	-	-	-	<0.002	-	mg/kg	0.002	A-T-004s
-	-	-	-	-	<0.002	-	mg/kg	0.002	A-T-004s
-	-	-	-	-	<0.005	-	mg/kg	0.005	A-T-004s
-	-	-	-	-	<0.004	-	mg/kg	0.004	A-T-004s
-	-	-	=	-	<0.005	-	mg/kg	0.005	A-T-004s
-	-	-	-	-	<0.005	-	mg/kg	0.005	A-T-004s
-	-	-	-	-	<0.007	-	mg/kg	0.007	A-T-004s
-	-	-	-	-	<0.005	-	mg/kg	0.005	A-T-004s
-	-	-	-	-	<0.005	-	mg/kg	0.005	A-T-004s
-	-	-	-	-	<0.006	-	mg/kg	0.006	A-T-004s
-	-	-	=	-	<0.004	-	mg/kg	0.004	A-T-004s
-	-	-	=	-	<0.005	-	mg/kg	0.005	A-T-004s
-	-	-	=	-	<0.005	-	mg/kg	0.005	A-T-004s
-	-	-	=	-	<0.005	-	mg/kg	0.005	A-T-004s
-	-	-	=	-	<0.005	-	mg/kg	0.005	A-T-004s
-	-	-	-	-	<0.004	-	mg/kg	0.004	A-T-004s
-	-	-	=	-	<0.005	-	mg/kg	0.005	A-T-004s
-	=	-	=	=	<0.005	=	mg/kg	0.005	A-T-004s
-	=	-	=	-	<0.007	-	mg/kg	0.002	A-T-004s
-	-	84	-	-	-	<10	mg/kg	10	A-T-007s
-	-	Appended	-	-	-	Appended			A-T-007s
-	-	Possible kerosene	-	-	-	N/A			A-T-007s
	ES1 WS3 0.40 14-Aug-19 Soil - ES 5A	ES1 ES2 WS3 WS3 0.40 0.80 14-Aug-19 14-Aug-19 Soil - ES Soil - ES 5A 5A	ES1 ES2 ES3 WS3 WS3 WS3 0.40 0.80 1.20 14-Aug-19 15-Aug-19 Soil - ES Soil - ES 5A 5A 5A - - - - - <td< td=""><td>ES1 ES2 ES3 ES4 WS3 WS3 WS3 WS3 0.40 0.80 1.20 2.30 14-Aug-19 14-Aug-19 15-Aug-19 15-Aug-19 Soil - ES Soil - ES Soil - ES Soil - ES 5A 5A 5A 5A 5A 5A -</td><td> 19/07826/8 19/07826/9 19/07826/10 19/07826/11 19/07826/12 ES1</td><td> 19/07826/8 19/07826/9 19/07826/10 19/07826/11 19/07826/12 19/07826/13 ES1 ES2 ES3 ES4 ES1 ES2 ES3 WS3 WS3 TP3 TP3 </td><td>E81 E82 E83 E84 E81 E82 E81 WS3 WS3 WS3 TP3 TP3 BH2 0.40 0.80 1.20 2.30 0.30 0.60 0.60 14-Aug-19 14-Aug-19 15-Aug-19 14-Aug-19 14-Aug-19 13-Aug-19 Soil - ES 5A 5A 5A 5A 5A 5A 5A - - - - - <0.002</td> - - - - - <0.002</td<>	ES1 ES2 ES3 ES4 WS3 WS3 WS3 WS3 0.40 0.80 1.20 2.30 14-Aug-19 14-Aug-19 15-Aug-19 15-Aug-19 Soil - ES Soil - ES Soil - ES Soil - ES 5A 5A 5A 5A 5A 5A -	19/07826/8 19/07826/9 19/07826/10 19/07826/11 19/07826/12 ES1	19/07826/8 19/07826/9 19/07826/10 19/07826/11 19/07826/12 19/07826/13 ES1 ES2 ES3 ES4 ES1 ES2 ES3 WS3 WS3 TP3 TP3	E81 E82 E83 E84 E81 E82 E81 WS3 WS3 WS3 TP3 TP3 BH2 0.40 0.80 1.20 2.30 0.30 0.60 0.60 14-Aug-19 14-Aug-19 15-Aug-19 14-Aug-19 14-Aug-19 13-Aug-19 Soil - ES 5A 5A 5A 5A 5A 5A 5A - - - - - <0.002	19/07826/8 19/07826/9 19/07826/10 19/07826/11 19/07826/12 19/07826/13 19/07826/14 ES1 ES2 ES1 ES1 ES2 ES1 ES1 ES2 ES1 ES1 ES2 ES1 ES1 ES1 ES2 ES1 ES1 ES1 ES2 ES1 ES1 ES1 ES1 ES1 ES1 ES1 ES1 ES1 ES2 ES1 ES2 ES1 ES1	1910782868

						ect Kei. 37				
Lab Sample ID	19/07826/8	19/07826/9	19/07826/10	19/07826/11	19/07826/12	19/07826/13	19/07826/14			
Client Sample No	ES1	ES2	ES3	ES4	ES1	ES2	ES1			
Client Sample ID	WS3	WS3	WS3	WS3	TP3	TP3	BH2			
Depth to Top	0.40	0.80	1.20	2.30	0.30	0.60	0.60			
Depth To Bottom									on	
Date Sampled	14-Aug-19	14-Aug-19	15-Aug-19	15-Aug-19	14-Aug-19	14-Aug-19	13-Aug-19		stecti	_
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		of De	od re
Sample Matrix Code	5A	5A	5A	5A	4A	5AB	5AB	Units	Limit of Detection	Method ref
voc										
Dichlorodifluoromethane _A	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Chloromethane _A	-	<10	-	-	-	-	-	μg/kg	10	A-T-006s
Vinyl Chloride (Chloroethene) _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Bromomethane _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Chloroethane _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Trichlorofluoromethane _A #	-	<4	-	-	-	-	-	μg/kg	1	A-T-006s
1,1-Dichloroethene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Carbon Disulphide _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Dichloromethane _A	-	<5	-	-	-	-	-	μg/kg	5	A-T-006s
trans 1,2-Dichloroethene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,1-Dichloroethane _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
cis 1,2-Dichloroethene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
2,2-Dichloropropane _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Bromochloromethane _A #	-	<5	-	-	-	-	-	μg/kg	5	A-T-006s
Chloroform _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,1,1-Trichloroethane _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,1-Dichloropropene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Carbon Tetrachloride _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,2-Dichloroethane _A #	-	<2	-	-	-	-	-	μg/kg	2	A-T-006s
Benzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Trichloroethene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,2-Dichloropropane _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Dibromomethane _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Bromodichloromethane _A #	-	<10	-	-	-	-	-	μg/kg	10	A-T-006s
cis 1,3-Dichloropropene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Toluene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
trans 1,3-Dichloropropene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,1,2-Trichloroethane _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,3-Dichloropropane _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Tetrachloroethene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Dibromochloromethane _A #	-	<3	-	-	-	-	-	μg/kg	3	A-T-006s
1,2-Dibromoethane _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s

					Ciletit F10	ect Ref: 37	1344			
Lab Sample ID	19/07826/8	19/07826/9	19/07826/10	19/07826/11	19/07826/12	19/07826/13	19/07826/14			
Client Sample No	ES1	ES2	ES3	ES4	ES1	ES2	ES1			
Client Sample ID	WS3	WS3	WS3	WS3	TP3	TP3	BH2			
Depth to Top	0.40	0.80	1.20	2.30	0.30	0.60	0.60			
Depth To Bottom									uo	
Date Sampled	14-Aug-19	14-Aug-19	15-Aug-19	15-Aug-19	14-Aug-19	14-Aug-19	13-Aug-19		stecti	
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		Limit of Detection	Method ref
Sample Matrix Code	5A	5A	5A	5A	4A	5AB	5AB	Units	Limit	Meth
Chlorobenzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,1,1,2-Tetrachloroethane _A	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Ethylbenzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
m & p Xylene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
o-Xylene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Styrene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Bromoform _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Isopropylbenzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,1,2,2-Tetrachloroethane _A	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,2,3-Trichloropropane _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Bromobenzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
n-Propylbenzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
2-Chlorotoluene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,3,5-Trimethylbenzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
4-Chlorotoluene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
tert-Butylbenzene _A #	-	<2	-	-	-	-	-	μg/kg	2	A-T-006s
1,2,4-Trimethylbenzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
sec-Butylbenzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
4-Isopropyltoluene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,3-Dichlorobenzene _A	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,4-Dichlorobenzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
n-Butylbenzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,2-Dichlorobenzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,2-Dibromo-3-chloropropane (DCBP)A	-	<2	-	-	=	=	-	μg/kg	2	A-T-006s
1,2,4-Trichlorobenzene _A	-	<3	-	-	-	-	-	μg/kg	3	A-T-006s
Hexachlorobutadiene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,2,3-Trichlorobenzene _A	-	<3	-	-	-	-	-	μg/kg	3	A-T-006s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900μS/cm @ 25°C / 11550μS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Client: RSK Environment Ltd Hemel, 18 Frogmore Road, Hemel Hempstead, Project No:

Hertfordshire, UK, HP3 9RT

Project: 60 - 86 Royal College Street, London

Clients Project No: 371944

oject No: 19/07826

Date Received: 20/08/2019 (am)

Cool Box Temperatures (°C): 16.0, 15.6

NO DEVIATIONS IDENTIFIED

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 19/08021

Issue Number: Date: 09 September, 2019

Client: **RSK Environment Ltd Hemel**

> 18 Frogmore Road Hemel Hempstead

Hertfordshire

UK

HP3 9RT

Project Manager: Andrew Tyler

Project Name: Royal College Street, London

Project Ref: 371944 Order No: N/A

Date Samples Received: 27/08/19 **Date Instructions Received:** 27/08/19 **Date Analysis Completed:** 09/09/19

Prepared by: Approved by:

Melanie Marshall

Holly Neary-King **Laboratory Coordinator** Client Manager

						,001 11011 01				
Lab Sample ID	19/08021/1	19/08021/2	19/08021/3	19/08021/4	19/08021/5	19/08021/6	19/08021/7			
Client Sample No										
Client Sample ID	WS2	WS3	BH1	BH1	BH2	BH2	BH1			
Depth to Top	3.50	4.50	8.50	18.00	12.50	24.50	2.00			
Depth To Bottom			9.00	18.45	13.00	25.00	2.45		ion	
Date Sampled	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19		etect	-
Sample Type	Soil - D	Soil - D		Limit of Detection	Method ref					
Sample Matrix Code	5A	5A	5A	5A	5A	5A	5A	Units	Limit	Meth
% Stones >10mm _A	<0.1	<0.1	<0.1	<0.1	<0.1	3.1	<0.1	% w/w	0.1	A-T-044
pH BRE _D M#	8.07	7.67	7.69	8.15	7.88	8.23	8.27	pН	0.01	A-T-031s
Ammonium NH4 BRE (water sol 2:1) _D	=	-	-	-	-	-	<1.00	mg/l	1	A-T-033s
Chloride BRE, SO4 equiv. (water sol 2:1) _D ^{M#}	-	-	-	-	-	-	14	mg/l	7	A-T-026s
Nitrate BRE, SO4 equiv. (water sol 2:1) _D	-	-	-	-	-	-	<0.4	mg/l	0.4	A-T-026s
Sulphate BRE (water sol 2:1) _D M#	192	2240	2380	678	714	712	124	mg/l	10	A-T-026s
Sulphate BRE (acid sol) _D M#	0.04	0.97	1.94	0.22	0.15	0.22	0.05	% w/w	0.02	A-T-028s
Sulphur BRE (total) _D	0.02	0.31	0.61	0.69	0.38	0.75	0.05	% w/w	0.01	A-T-024s
Magnesium BRE (water sol 2:1) _D	=	-	-	-	-	-	24	mg/l	1	A-T-SOLMETS

				ject itel. or			
Lab Sample ID	19/08021/8						
Client Sample No							
Client Sample ID	BH2						
Depth to Top	0.50						
Depth To Bottom	1.20					ion	
Date Sampled	15-Aug-19					Limit of Detection	Method ref
Sample Type	Soil - D						
Sample Matrix Code	5A				Units		
% Stones >10mm _A	0.6				% w/w	0.1	A-T-044
pH BRE _D M#	8.01				рН	0.01	A-T-031s
Ammonium NH4 BRE (water sol 2:1) _D	<1.00				mg/l	1	A-T-033s
Chloride BRE, SO4 equiv. (water sol 2:1) _D ^{M#}	<7				mg/l	7	A-T-026s
Nitrate BRE, SO4 equiv. (water sol 2:1) _D	1.8				mg/l	0.4	A-T-026s
Sulphate BRE (water sol 2:1) _D ^{M#}	<10				mg/l	10	A-T-026s
Sulphate BRE (acid sol) _D M#	0.06				% w/w	0.02	A-T-028s
Sulphur BRE (total) _D	0.04				% w/w	0.01	A-T-024s
Magnesium BRE (water sol 2:1) _D	2				mg/l	1	A-T-SOLMETS

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900μS/cm @ 25°C / 11550μS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Client: RSK Environment Ltd Hemel, 18 Frogmore Road, Hemel Hempstead,

Hertfordshire, UK, HP3 9RT

Project: Royal College Street, London

Clients Project No: 371944

Project No: 19/08021

Date Received: 27/08/2019 (am)

Cool Box Temperatures (°C): 19.3

NO DEVIATIONS IDENTIFIED

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

APPENDIX K LABORATORY CERTIFICATES FOR GEOTECHNICAL ANALYSIS

STRUCTURAL SOILS LTD TEST REPORT

Report No. 584118-01 (00) 1774

Date 10-September-2019 Contract Royal College Street, London

Client RSK

Address 18 Frogmore Rd

Apsley

Hemel Hempstead Hertfordshire HP3 9RT

For the Attention of Sammy Al Hilly

Samples submitted by client 21-August-2019 Client Reference 371944
Testing Started 21-August-2019 Client Order No. n/a
Testing Completed 09-September-2019 Instruction Type Written

Tests marked 'Not UKAS Accredited' in this report are not included in the UKAS Accreditation Schedule for our Laboratory.

UKAS Accredited Tests

1.01	Moisture Content (oven drying method) BS1377:Part 2:1990:clause 3.2 (superceded)*
1.03	Liquid Limit (one point method) & Plastic Limit BS1377:Part 2:1990,clause 4.4/5.3*
5.04	Undrained shear strength triaxial compression without pore pressure measurement
	(definitive method) 100mm diameter specimens BS1377:Part 7:1990,clause 8.4*
4.01	One-dimensional consolidation BS1377:Part 5:1990,clause 3.5 (superseded)*

Please Note: Remaining samples will be retained for a period of one month from today and will then be disposed of . Test were undertaken on samples 'as received' unless otherwise stated.

Opinions and interpretations expressed in this report are outside the scope of accreditation for this laboratory.

Structural Soils Ltd 18 Frogmore Rd Hemel Hempstead HP3 9RT Tel.01442 416661 e-mail dimitris.xirouchakis@soils.co.uk

1 of 1

QMF 26.00_Reports_Hemel_Rev 00 584118 RSK

24/01/2016

^{*} This clause of BS1377 is no longer the most up to date method due to the publication of ISO17892

GINT_LIBRARY V8 07.GLB LibVersion: v8 07 001 PrjVersion: v8 07 | GricTextL - LAB VERIFICATION REPORT - V02 - 44P | 584118 ROYAL COLLEGE STREET, LONDON - RSK 371944.GPJ - v8 07. Structural Solis Lid, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 262323, Fax: 01442 262683, Web: www.soils.co.uk, Email: ask@soils.co.uk, | 10/09/19 - 13:09 | SC1

TESTING VERIFICATION CERTIFICATE

1774

The test results included in this report are certified as:-

ISSUE STATUS: FINAL

In accordance with the Structural Soils Ltd Laboratory Quality Management System, results sheets and summaries of results issued by the laboratory are checked by an approved signatory. The integrity of the test data and results are ensured by control of the computer system employed by the laboratory as part of the Software Verification Program as detailed in the Laboratory Quality Manual.

This testing verification certificate covers all testing compiled on or before the following datetime: **06/09/2019 08:46:34**.

Testing reported after this date is not covered by this Verification Certificate.

A.D. fre

Approved Signatory

Alan Frost (Deputy Laboratory Manager)

(Head Office)
Bristol Laboratory
Unit 1A, Princess Street
Bedminster
Bristol
BS3 4AG

Castleford Laboratory
The Potteries, Pottery Street
Castleford
West Yorkshire
WF10 1NJ

Hemel Laboratory 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT Tonbridge Laboratory
Anerley Court, Half Moon Lane
Hildenborough
Tonbridge
TN11 9HU

STRUCTURAL SOILS LTD

Contract:

Job No:

Royal College Street, London

GINT_LIBRARY V8 07.GLB LibVersion: v8 07 001 PrjVersion: v8 07 | GricTextL - LAB VERIFICATION REPORT - V02 - 44P | 584118 ROYAL COLLEGE STREET, LONDON - RSK 371944.GPJ - v8 07. Structural Solis Lid, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 262323, Fax: 01442 262683, Web: www.soils.co.uk, Email: ask@soils.co.uk, | 10/09/19 - 13:09 | SC1

TESTING VERIFICATION CERTIFICATE

1774

The test results included in this report are certified as:-

ISSUE STATUS: FINAL

In accordance with the Structural Soils Ltd Laboratory Quality Management System, results sheets and summaries of results issued by the laboratory are checked by an approved signatory. The integrity of the test data and results are ensured by control of the computer system employed by the laboratory as part of the Software Verification Program as detailed in the Laboratory Quality Manual.

This testing verification certificate covers all testing compiled on or before the following datetime: 10/09/2019 12:19:03.

Testing reported after this date is not covered by this Verification Certificate.

56

Approved Signatory
Sharon Cairns (Laboratory Manager)

(Head Office)
Bristol Laboratory
Unit 1A, Princess Street
Bedminster
Bristol
BS3 4AG

Castleford Laboratory
The Potteries, Pottery Street
Castleford
West Yorkshire
WF10 1NJ

Hemel Laboratory 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT Tonbridge Laboratory
Anerley Court, Half Moon Lane
Hildenborough
Tonbridge
TN11 9HU

STRUCTURAL SOILS LTD

Contract:

Job No:

Royal College Street, London

SUMMARY OF SOIL CLASSIFICATION TESTS

In accordance with clauses 3.2,4.3,4.4,5.3,5.4,7.2,8.2,8.3 of BS1377:Part 2:1990

Exploratory Position ID	Sample Ref	Sample Type	Depth (m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425um	Description of Sample
BH1		U	10.50	25	73	29	44	100	Dark brown silty CLAY with rare selenite crystals
BH1		U	13.50	21	72	31	41	100	Dark brown silty CLAY with rare selenite crystals
BH1		U	22.50	25	73	24	49	100	Dark brown silty CLAY
BH2		U	4.00	31	74	30	44	100	Brown silty CLAY
BH2		U	18.00	26	72	28	44	100	Dark brown silty CLAY with rare selenite crystals
BH2		U	24.00	20	72	24	48	100	Dark brown slightly silty CLAY

	STRUCTURAL SOILS LTD
--	-------------------------

Contract: Contract Ref:

Royal College Street, London

PLASTICITY CHART - PI Vs LL
In accordance with BS5930:2015
Testing in accordance with BS1377-2:1990

	Sample Identification			BS Test	Preparation	MC	LL	PL	PI	<425um	Lab location
	Exploratory Position ID	Sample	Depth (m)	Method #	Method +	%	%	%	%	%	Lab lo
•	BH1	U	10.50	3.2/4.4/5.3/5.4	4.2.4	25	73	29	44	100	Н
\blacksquare	BH1	U	13.50	3.2/4.4/5.3/5.4	4.2.4	21	72	31	41	100	Н
	BH1	U	22.50	3.2/4.4/5.3/5.4	4.2.4	25	73	24	49	100	Н
*	BH2	U	4.00	3.2/4.4/5.3/5.4	4.2.4	31	74	30	44	100	Н
•	BH2	U	18.00	3.2/4.4/5.3/5.4	4.2.4	26	72	28	44	100	Н
0	BH2	U	24.00	3.2/4.4/5.3/5.4	4.2.4	20	72	24	48	100	Н
											Ш

Tested in accordance with the following clauses of BS1377-2:1990.

- 3.2 Moisture Content
- 4.3 Cone Penetrometer Method
- 4.4 One Point Cone Penetrometer Method
- 4.6 One Point Casagrande Method
- 5.3 Plastic Limit Method 5.4 Plasticity Index

- + Tested in accordance with the following clauses of BS1377-2:1990.
- 4.2.3 Natural State
- 4.2.4 Wet Sieved

Key: * = Non-standard test, NP = Non plastic.

Lab location: B = Bristol (BS3 4AG), C = Castleford (WF10 1NJ), H = Hemel Hempstead (HP3 9RT), T = Tonbridge (TN11 9HU)

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By Date **SHARON CAIRNS** 10/09/19 50 Contract Contract Ref:

Royal College Street, London

UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH1 Sample Ref: Sample Type: Depth (m): 5.00

Description: Brown mottled dark brown silty CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.27		
	Height	(mm)	210.97		
	Moisture Content	(%)	29		
	Bulk Density	(Mg/m³)	1.92		
	Dry Density	(Mg/m³)	1.49		
TEST DETAILS	Membrane Thickness	(mm)	0.12		
	Rate of Axial Displacement	(%/min)	1.00		
	Cell Pressure	(kPa)	100		
	Membrane Correction	(kPa)	0.15		
	Corrected Deviator Stress	(kPa)	179		
	Undrained Shear Strength	(kPa)	89		
	Strain at Failure	(%)	4.7		
	Mode of Failure		Brittle		

Compiled By				
Johnstee	JONATH	AN BAKER	10/09/19	
Contract	Contract	Ref:		

Contract Ref:

Royal College Street, London

GINT_LIBRARY_V8_07.GLB LibVersion: v8_07_001 PŋVersion: v8_07 | Graph L - TRIAXIAL - BS - A4P | 584118 ROYAL COLLEGE STREET, LONDON - RSK 371944.GPJ - v8_07. Structural Soils Lid, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hempstead, Hertfordshire, HP3 9RT. Tel: 01442-262323, Fax: 01442-262683, Web: www.soils.co.uk, Email: ask@soils.co.uk | 10/09/19 - 12:50 | SC1 |

UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: **BH1** Sample Ref: - Sample Type: **U** Depth (m): **10.50**

Description: Dark brown silty CLAY with rare selenite crystals

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	102.41		
	Height	(mm)	210.16		
	Moisture Content	(%)	27		
	Bulk Density	(Mg/m³)	2.02		
	Dry Density	(Mg/m³)	1.60		
TEST DETAILS	Membrane Thickness	(mm)	0.23		
	Rate of Axial Displacement	(%/min)	0.90		
	Cell Pressure	(kPa)	210		
	Membrane Correction	(kPa)	0.37		
	Corrected Deviator Stress	(kPa)	283		
	Undrained Shear Strength	(kPa)	142		
	Strain at Failure	(%)	6.7		
	Mode of Failure		Brittle		

Com	piled By	Date
Jethoker	JONATHAN BAKER	10/09/19

Contract

Contract Ref:

584118

AGS

Royal College Street, London

UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: **BH1** Sample Ref: - Sample Type: **U** Depth (m): **13.50**

Description: Dark brown silty CLAY with rare selenite crystals

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	101.86		
	Height	(mm)	212.65		
	Moisture Content	(%)	26		
	Bulk Density	(Mg/m ³)	2.02		
	Dry Density	(Mg/m ³)	1.60		
TEST DETAILS	Membrane Thickness	(mm)	0.20		
	Rate of Axial Displacement	(%/min)	0.94		
	Cell Pressure	(kPa)	270		
	Membrane Correction	(kPa)	0.20		
	Corrected Deviator Stress	(kPa)	414		
	Undrained Shear Strength	(kPa)	207		
	Strain at Failure	(%)	3.8		
	Mode of Failure		Brittle		

Compiled By		
Johnster	JONATHAN BAKER	10/09/19
Contract	Contract Ref:	

Royal College Street, London

584118

AGS

GINT_LIBRARY_V8_07.GLB LibVersion: v8_07_001 PŋVersion: v8_07 | Graph L - TRIAXIAL - BS - A4P | 584118 ROYAL COLLEGE STREET, LONDON - RSK 371944.GPJ - v8_07. Structural Soils Lid, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442-262323, Fax: 01442-262683, Web: www.soils.co.uk, Email: ask@soils.co.uk | 10/09/19 - 12:51 | SC1 |

UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH1 Sample Ref: Sample Type: Depth (m): 16.50

Description: Dark brown silty CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	101.44		
	Height	(mm)	211.57		
	Moisture Content	(%)	30		
	Bulk Density	(Mg/m³)	1.97		
	Dry Density	(Mg/m³)	1.51		
TEST DETAILS	Membrane Thickness	(mm)	0.36		
	Rate of Axial Displacement	(%/min)	0.90		
	Cell Pressure	(kPa)	330		
	Membrane Correction	(kPa)	0.41		
	Corrected Deviator Stress	(kPa)	263		
	Undrained Shear Strength	(kPa)	131		
	Strain at Failure	(%)	4.2		
	Mode of Failure		Brittle		

Compiled By		
Johnster	JONATHAN BAKER	10/09/19
Contract	Contract Ref:	•

Royal College Street, London

GINT_LIBRARY V8 07.GLB LibVersion: v8 07 001 PrjVersion: v8 07 | Graph L - TRIAXIAL - BS - A4P | 584118 ROYAL COLLEGE STREET, LONDON - RSK 371944.GPJ - v8 07. Structural Soils Lid, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442-262323, Fax: 01442-262683, Web: www.soils.co.uk, Email: ask@soils.co.uk | 10/09/19 - 12:51 | SC1 |

UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: **BH1** Sample Ref: - Sample Type: **U** Depth (m): **19.50**

Description: Dark brown silty CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.19		
	Height	(mm)	206.29		
	Moisture Content	(%)	28		
	Bulk Density	(Mg/m³)	1.98		
	Dry Density	(Mg/m³)	1.54		
TEST DETAILS	Membrane Thickness	(mm)	0.11		
	Rate of Axial Displacement	(%/min)	1.02		
	Cell Pressure	(kPa)	390		
	Membrane Correction	(kPa)	0.10		
	Corrected Deviator Stress	(kPa)	383		
	Undrained Shear Strength	(kPa)	192		
	Strain at Failure	(%)	3.4		
	Mode of Failure		Brittle		

Compiled By		Date
Jethater	JONATHAN BAKER	10/09/19

Contract

Contract Ref:

Royal College Street, London

GINT_LIBRARY_V8_07.GLB LibVersion: v8_07_001 PŋVersion: v8_07 | Graph L - TRIAXIAL - BS - A4P | 584118 ROYAL COLLEGE STREET, LONDON - RSK 371944.GPJ - v8_07. Structural Soils Lid, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hempstead, Hertfordshire, HP3 9RT. Tel: 01442-262323, Fax: 01442-262683, Web: www.soils.co.uk, Email: ask@soils.co.uk | 10/09/19 - 12:51 | SC1 |

UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: **BH1** Sample Ref: - Sample Type: **U** Depth (m): **22.50**

Description: Dark brown silty CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	102.69		
	Height	(mm)	209.99		
	Moisture Content	(%)	24		
	Bulk Density	(Mg/m³)	2.05		
	Dry Density	(Mg/m³)	1.66		
TEST DETAILS	Membrane Thickness	(mm)	0.36		
	Rate of Axial Displacement	(%/min)	0.86		
	Cell Pressure	(kPa)	450		
	Membrane Correction	(kPa)	0.41		
	Corrected Deviator Stress	(kPa)	708		
	Undrained Shear Strength	(kPa)	354		
	Strain at Failure	(%)	4.3		
	Mode of Failure		Brittle		

Compiled By		Date
Jethoker	JONATHAN BAKER	10/09/19
2 1 1		•

Contract

Contract Ref:

Royal College Street, London

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH1 Sample Ref: Sample Type: Depth (m): 28.50

Description: Dark brown silty CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	102.41		
	Height	(mm)	211.93		
	Moisture Content	(%)	26		
	Bulk Density	(Mg/m³)	2.03		
	Dry Density	(Mg/m³)	1.62		
TEST DETAILS	Membrane Thickness	(mm)	0.24		
	Rate of Axial Displacement	(%/min)	0.94		
	Cell Pressure	(kPa)	570		
	Membrane Correction	(kPa)	0.43		
	Corrected Deviator Stress	(kPa)	286		
	Undrained Shear Strength	(kPa)	143		
	Strain at Failure	(%)	7.6		
	Mode of Failure		Compound		

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By Jollacker

JONATHAN BAKER 10/09/19

584118

Contract

Royal College Street, London

Contract Ref:

Date

GINT_LIBRARY_V8_07.GLB LibVersion: v8_07_001 PŋVersion: v8_07 | Graph L - TRIAXIAL - BS - A4P | 584118 ROYAL COLLEGE STREET, LONDON - RSK 371944.GPJ - v8_07.
Structural Soils Lid, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442-262323, Fax: 01442-262683, Web: www.soils.co.uk, Email: ask@soils.co.uk | 10/09/19 - 12:52 | SC1 |

UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH2 Sample Ref: Sample Type: Depth (m): 4.00

Description: Brown silty CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	101.02		
	Height	(mm)	209.13		
	Moisture Content	(%)	31		
	Bulk Density	(Mg/m³)	2.00		
	Dry Density	(Mg/m ³)	1.53		
TEST DETAILS	Membrane Thickness	(mm)	0.20		
	Rate of Axial Displacement	(%/min)	52.12		
	Cell Pressure	(kPa)	80		
	Membrane Correction	(kPa)	0.26		
	Corrected Deviator Stress	(kPa)	165		
	Undrained Shear Strength	(kPa)	82		
	Strain at Failure	(%)	4.8		
	Mode of Failure		Brittle		

Compiled By		Date
J. dbaker	JONATHAN BAKER	10/09/19

Contract

Contract Ref:

GINT_LIBRARY_V8_07.GLB LibVersion: v8_07_001 PŋVersion: v8_07 | Graph L - TRIAXIAL - BS - A4P | 584118 ROYAL COLLEGE STREET, LONDON - RSK 371944.GPJ - v8_07. Structural Soils Lid, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442-262323, Fax: 01442-262683, Web: www.soils.co.uk, Email: ask@soils.co.uk | 10/09/19 - 12:52 | SC1 |

UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: **BH2** Sample Ref: - Sample Type: **U** Depth (m): **6.00**

Description: Brown silty CLAY (with occasional gypsum)

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	102.88		
	Height	(mm)	168.32		
	Moisture Content	(%)	28		
	Bulk Density	(Mg/m³)	2.32		
	Dry Density	(Mg/m³)	1.81		
TEST DETAILS	Membrane Thickness	(mm)	0.30		
	Rate of Axial Displacement	(%/min)	1.19		
	Cell Pressure	(kPa)	120		
	Membrane Correction	(kPa)	0.64		
	Corrected Deviator Stress	(kPa)	187		
	Undrained Shear Strength	(kPa)	93		
	Strain at Failure	(%)	9.5		
	Mode of Failure		Brittle		

Comp	Compiled By	
Johnster	JONATHAN BAKER	10/09/19
Contract	Contract Ref:	

Royal College Street, London

584118

AGS

TRIAXIAL COMPRESSION TEST In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH2 Sample Ref: Sample Type: Depth (m): 9.00

Description: Brown silty CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	101.04		
	Height	(mm)	211.42		
	Moisture Content	(%)	30		
	Bulk Density	(Mg/m³)	2.01		
	Dry Density	(Mg/m³)	1.54		
TEST DETAILS	Membrane Thickness	(mm)	0.23		
	Rate of Axial Displacement	(%/min)	1.04		
	Cell Pressure	(kPa)	180		
	Membrane Correction	(kPa)	0.32		
	Corrected Deviator Stress	(kPa)	161		
	Undrained Shear Strength	(kPa)	81		
	Strain at Failure	(%)	5.2		
	Mode of Failure		Brittle		

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By Date Jobaker JONATHAN BAKER 10/09/19

Contract

Contract Ref:

584118

Royal College Street, London

UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: **BH2** Sample Ref: Sample Type: Depth (m): 12.00

Description: Brown silty CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	102.92		
	Height	(mm)	210.13		
	Moisture Content	(%)	28		
	Bulk Density	(Mg/m³)	1.97		
	Dry Density	(Mg/m³)	1.54		
TEST DETAILS	Membrane Thickness	(mm)	0.12		
	Rate of Axial Displacement	(%/min)	1.00		
	Cell Pressure	(kPa)	240		
	Membrane Correction	(kPa)	0.24		
	Corrected Deviator Stress	(kPa)	285		
	Undrained Shear Strength	(kPa)	142		
	Strain at Failure	(%)	8.6		
	Mode of Failure		Compound		

Compiled By		Date	
Johnstee	JONATHAN BAKER		10/09/19
Contract Contract Ref:			

Contract Ref:

Royal College Street, London

GINT_LIBRARY_V8_07.GLB LibVersion: v8_07_001 PŋVersion: v8_07 | Graph L - TRIAXIAL - BS - A4P | 584118 ROYAL COLLEGE STREET, LONDON - RSK 371944.GPJ - v8_07. Structural Soils Lid, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hempstead, Hertfordshire, HP3 9RT. Tel: 01442-262323, Fax: 01442-262683, Web: www.soils.co.uk, Email: ask@soils.co.uk | 10/09/19 - 12:53 | SC1 |

UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: **BH2** Sample Ref: - Sample Type: **U** Depth (m): **15.00**

Description: Dark brown silty CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	100.98		
	Height	(mm)	204.89		
	Moisture Content	(%)	28		
	Bulk Density	(Mg/m ³)	1.99		
	Dry Density	(Mg/m ³)	1.56		
TEST DETAILS	Membrane Thickness	(mm)	0.11		
	Rate of Axial Displacement	(%/min)	1.12		
	Cell Pressure	(kPa)	300		
	Membrane Correction	(kPa)	0.15		
	Corrected Deviator Stress	(kPa)	369		
	Undrained Shear Strength	(kPa)	185		
	Strain at Failure	(%)	4.9		
	Mode of Failure		Brittle		

Compi	Compiled By	
Jethoker	JONATHAN BAKER	10/09/19

Contract

Royal College Street, London

Contract Ref:

UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: **BH2** Sample Ref: - Sample Type: **U** Depth (m): **18.00**

Description: Dark brown silty CLAY with rare selenite

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	101.69		
	Height	(mm)	186.00		
	Moisture Content	(%)	26		
	Bulk Density	(Mg/m³)	1.99		
	Dry Density	(Mg/m³)	1.58		
TEST DETAILS	Membrane Thickness	(mm)	0.11		
	Rate of Axial Displacement	(%/min)	1.13		
	Cell Pressure	(kPa)	360		
	Membrane Correction	(kPa)	0.06		
	Corrected Deviator Stress	(kPa)	246		
	Undrained Shear Strength	(kPa)	123		
	Strain at Failure	(%)	1.9		
	Mode of Failure		Brittle		

Cor	npiled By	Date
Johnher	JONATHAN BAKER	10/09/19
2 1 1	0 1 10 1	

Contract

Royal College Street, London

Contract Ref:

GINT_LIBRARY_V8_07.GLB LibVersion: v8_07_001 PŋVersion: v8_07 | Graph L - TRIAXIAL - BS - A4P | 584118 ROYAL COLLEGE STREET, LONDON - RSK 371944.GPJ - v8_07. Structural Soils Lid, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442-262323, Fax: 01442-262683, Web: www.soils.co.uk, Email: ask@soils.co.uk | 10/09/19 - 12:54 | SC1 |

UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: **BH2** Sample Ref: - Sample Type: **U** Depth (m): **24.00**

Description: Dark brown slightly silty CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	102.01		
	Height	(mm)	211.27		
	Moisture Content	(%)	20		
	Bulk Density	(Mg/m³)	2.11		
	Dry Density	(Mg/m³)	1.75		
TEST DETAILS	Membrane Thickness	(mm)	0.20		
	Rate of Axial Displacement	(%/min)	0.85		
	Cell Pressure	(kPa)	480		
	Membrane Correction	(kPa)	0.43		
	Corrected Deviator Stress	(kPa)	686		
	Undrained Shear Strength	(kPa)	343		
	Strain at Failure	(%)	9.5		
	Mode of Failure		Plastic		

Cor	npiled By	Date
Johnher	JONATHAN BAKER	10/09/19
2 1 1	0 1 10 1	

Contract

Contract Ref:

584118

Royal College Street, London

GINT_LIBRARY_V8_07.GLB LibVersion: v8_07_001 PŋVersion: v8_07 | Graph L - TRIAXIAL - BS - A4P | 584118 ROYAL COLLEGE STREET, LONDON - RSK 371944.GPJ - v8_07. Structural Soils Lid, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442-262323, Fax: 01442-262683, Web: www.soils.co.uk, Email: ask@soils.co.uk | 10/09/19 - 12:54 | SC1 |

UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH2 Sample Ref: Sample Type: Depth (m): 27.00

Description: Dark brown slightly silty CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	102.76		
	Height	(mm)	211.13		
	Moisture Content	(%)	22		
	Bulk Density	(Mg/m ³)	2.06		
	Dry Density	(Mg/m³)	1.68		
TEST DETAILS	Membrane Thickness	(mm)	0.23		
	Rate of Axial Displacement	(%/min)	0.99		
	Cell Pressure	(kPa)	540		
	Membrane Correction	(kPa)	0.23		
	Corrected Deviator Stress	(kPa)	941		
	Undrained Shear Strength	(kPa)	471		
	Strain at Failure	(%)	3.8		
	Mode of Failure		Brittle		

Compiled By					
Johnster	JONA	THAN BAKER	10/09/19		
Contract	Contr	act Ref:			

GINT_LIBRARY_V8_07.GLB LibVersion: v8_07_001 PrjVersion: v8_07 | Graph L - 1D CONSOL DL -1- A4P | 584118 ROYAL COLLEGE STREET, LONDON - RSK 371944.GPJ - v8_07. Structural Solis Ltd, Branch Office - Bristol Lab: 1a Princess Street, Bedminster, Bristol, BS3 4AG. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk, | 06/09/19 - 08:43 | AF3 |

	-									
Moisture Content (%) : 28 Bulk Density (Mg/m³) : 1.99 Dry Density (Mg/m³) : 1.55 Void Ratio : 0.7052	Moisture Content (%) : Bulk Density (Mg/m³) : Dry Density (Mg/m³) : Void Ratio :	25 2.12 1.70 0.5677								
Specimen Details										
Description	Height (mm)	: 18.93								
	Diameter (mm)	: 74.94								
Greyish brown CLAY	Particle Density (Mg/m³) (assumed)	2.65								
	Swelling Pressure (kPa)	: NA								

Test Results											
Pressure Range (kPa)	Mv (m²/MN)	Cv (m²/yr)	Voids Ratio								
0 - 150		Swelling	0.6913								
150 - 300 300 - 600	0.098 0.083	4.8 2.7	0.6665 0.6252								
600 - 300	NA	NA	0.6446								
300 - 600 600 - 1200	0.045 0.056	4.9 2.4	0.6224 0.5677								
600 - 1200	0.056	2.4	0.5677								

Notes: Method of time-setting used: **T90**. Temperature range during test (degC): **19.8 - 22.5**.

STRUCTURAL SOILS
1a Princess Street
Bedminster
Bristol
BS3 4AG

Initial Specimen Condition

	Compi	led By	Date
Francesca	Bennett	FRANCESCA BENNETT	06/09/19

Contract

Contract Ref:

584118

Royal College Street, London

Final Specimen Condition

GINT_LIBRARY_V8_07.GLB LibVersion: v8_07_001 PrjVersion: v8_07 | Graph L - 1D CONSOL DL -1- A4P | 584118 ROYAL COLLEGE STREET, LONDON - RSK 371944.GPJ - v8_07. Structural Solis Ltd, Branch Office - Bristol Lab: 1a Princess Street, Bedminster, Bristol, BS3 4AG. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk, | 06/09/19 - 08:43 | AF3 |

0.50 ___

1000

Pressure (kPa)

Initial Specime	en C	ondition	Final Specimen Condition					
Moisture Content (%)	:	25	Moisture Content (%)	:	22			
Bulk Density (Mg/m ³)	:	2.02	Bulk Density (Mg/m ³)	:	2.15			
Dry Density (Mg/m³)	:	1.62	Dry Density (Mg/m³)	:	1.76			
Void Ratio	:	0.6350	Void Ratio	:	0.5092			
			·					

Description Height (mm) 20.14 Dark grey silty CLAY Diameter (mm) 74.97 Particle Density (Mg/m³) 2.65 (assumed) Swelling Pressure (kPa) NA	Void Ratio	:	0.6350	Void Ratio :		0.5092
Diameter (mm) : 74.97 Particle Density (Mg/m³) : 2.65 (assumed)			Specimen	Details		
Dark grey silty CLAY Particle Density (Mg/m³) : 2.65 (assumed)	Descrip	tion		• ,	:	
Swelling Pressure (kPa) : NA	Dark grey silty CLA	Y		Particle Density (Mg/m³)	:	
				Swelling Pressure (kPa)	:	NA

		Test Re	sults			
	Pressure Range (kPa)	Mv (m ² /MN)	Cv (m²/yr)	Voids Ratio		
	O ()	,	, , ,			
	0 - 420	0.037	8.4	0.6094		
	420 - 840	0.039	1.5	0.5830		
	840 - 1680	0.026	1.4	0.5483		
	1680 - 840	NA	NA	0.5631		
	840 - 1680	0.012	3.1	0.5468		
	1680 - 3360	0.014	2.9	0.5092		

10000

Notes: Method of time-setting used: **T90.** Temperature range during test (degC): **20 - 22.5.**

STRUCTURAL SOILS 1a Princess Street Bedminster Bristol BS3 4AG

	Compi	led By	Date
Francesca	Bennett	FRANCESCA BENNETT	06/09/19

Contract

Contract Ref:

Royal College Street, London

APPENDIX L GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH

Generic assessment criteria for human health: commercial scenario

Background

RSK's generic assessment criteria (GAC) were initially prepared following the publication by the Environment Agency (EA) of soil guideline value (SGV) and toxicological (TOX) reports, and associated publications in 2009⁽¹⁾. RSK GAC were updated following the publication of GAC by LQM/CIEH in 2009⁽²⁾. RSK GAC are periodically revised when updated information on toxicological, land use or receptor parameters is published.

Updates to the RSK GAC

In 2014, the publication of Category 4 Screening Levels (C4SL)^(3,4), as part of the Defra-funded research project SP1010, included modifications to certain exposure assumptions documented within EA Science Report SC050221/SR3 (herein after referred to as SR3)⁽⁵⁾ used in the generation of SGVs.

C4SL were published for six substances (cadmium, arsenic, benzene, benzo(a)pyrene, chromium VI and lead) for a sandy loam soil type with 6% soil organic matter, based on a low level of toxicological concern (LLTC; see Section 2.3 of research project report SP1010⁽³⁾). Where a C4SL has been published, the RSK GAC duplicates the C4SL published values using all input parameters within the SP1010 final project report⁽³⁾ and associated appendices⁽⁶⁾, and adopts them as GAC for these six substances.

For all other substances the only C4SL exposure modification relevant to a commercial end use are daily inhalation rates.

The RSK GAC have also been revised with updated toxicology published by LQM/CIEH in 2015⁽⁷⁾ or by the USEPA⁽¹⁴⁾, where a C4SL has not been published.

RSK GAC derivation for metals and organic compounds

Model selection

Soil assessment criteria (SAC) were calculated using the Contaminated Land Exposure Assessment (CLEA) tool v1.071, supporting EA guidance^(5,8,9) and revised exposure scenarios published for the C4SL⁽³⁾. The SAC are also termed GAC.

Pathway selection

In accordance with SR3⁽⁵⁾ the commercial scenario considers risks to a female worker who works from the age of 16 to 65 years. It should be noted that this end use is not suitable for a workplace nursery but may be appropriate for a sports centre or shopping centre where children are present. In accordance with Box 3.5, SR3⁽⁵⁾ the pathways considered for production of the SAC in the commercial scenario are

- direct soil and dust ingestion
- dermal contact with soil both indoors and outdoors
- indoor air inhalation from soil and vapour and outdoor inhalation of soil and vapour.

With respect to volatilisation, the CLEA model assumes a simple linear partitioning of a chemical in the soil between the sorbed, dissolved and vapour phase⁽⁹⁾. The upper boundaries of this partitioning are represented by the maximum aqueous solubility and pure saturated vapour concentration of the chemical. The CLEA model estimates saturated soil concentrations where these limits are reached⁽⁹⁾. The CLEA software uses a traffic light system to identify when individual and/or combined assessment criteria exceed the lower of either the aqueous- or vapour-based soil saturation limits. Model output cells are flagged red where the saturated soil concentration has been exceeded and the contribution of the indoor and outdoor vapour pathway to total exposure is greater than 10%. In this case, further consideration of the following is required⁽⁹⁾:

- Free phase contamination may be present.
- Exposure from the vapour pathways will be over-predicted by the model, as in reality the vapour phase concentration will not increase at concentrations above saturation limits
- Where the vapour pathway contribution is greater than 90%, it is unlikely the relevant health criteria value (HCV) will be exceeded at soil concentrations at least a factor of ten higher than the relevant HCV.

Where the vapour pathway is the predominant pathway (contributes greater than 90% of exposure) or the only exposure route considered and the cell is highlighted red (SAC exceeds saturation limit), the risk based on the assumed conceptual model is likely to be negligible as the vapour risk is assumed to be tolerable at maximum possible soil concentrations. In such circumstances, the vapour pathway exposure should be considered based on the presence of free phase or non-aqueous phase liquid sources and the measured concentrations of volatile organic compounds (VOC) in the vapour phase. Screening could be considered based on setting the SAC as the modelled soil saturation limits. However, as stated within the CLEA handbook⁽⁹⁾, this is likely to not be practical in many cases because of the very low saturation limits and, in any case, is highly conservative.

It should also be noted that for mixtures of compounds, free phase may be present where soil (or groundwater) concentrations are well below saturation limits for individual compounds.

Where the vapour pathway is only one of the exposure pathways considered, an additional approach can then be utilised as detailed within Section 4.12 of the CLEA model handbook⁽⁹⁾, which explains how to calculate an effective assessment criterion manually.

SR3⁽⁵⁾ states that, as a general rule of thumb, it is recognised that estimating vapour phase concentrations from dissolved and sorbed phase contamination by petroleum hydrocarbons are at least a factor of ten higher than those likely to be measured on-site. RSK has therefore applied an empirical subsurface to indoor air correction factor of 10 into the CLEA model chemical database for all petroleum hydrocarbon fractions (including BTEX, trimethylbenzenes and the polycyclic aromatic hydrocarbons (PAH) naphthalene, acenaphthene and acenaphthylene) to reduce this conservatism.

Input selection

The most up-to-date published chemical and toxicological data was obtained from EA Report SC050021/SR7⁽¹⁰⁾, the EA TOX⁽¹⁾ reports, the C4SL SP1010 project report and associated appendices^(3,6), the 2015 LQM/CIEH report⁽⁷⁾ or the USEPA IRIS database⁽¹⁴⁾. Where a C4SL has been published, the RSK GAC have duplicated the C4SL published values using all input parameters within the SP1010 final project report⁽³⁾ and associated appendices⁽⁶⁾, and has

adopted them as GAC for these six substances. Toxicological and specific chemical parameters for 1,2,4-trimethylbenzene, methyl tertiary-butyl ether (MTBE), 1,1,2-trichlorethane, 1,1-dichloroethene, 1,2-dichloropropane, 2-chloronaphthalene, chloroethane, chloromethane, cis 1,2-dichloroethene, dichloromethane, hexachloroethane and trans 1,2-dichloroethene were obtained from the CL:AIRE Soil Generic Assessment Criteria report⁽¹¹⁾.

For TPH, aromatic hydrocarbons C_5 – C_8 were not modelled, as this range comprises benzene (>EC5-EC7) and toluene (>EC7-EC8), which are modelled separately.

Physical parameters

For the commercial end use, the CLEA default pre-1970s three-storey office building was used. SR3⁽⁵⁾ notes this commercial building type to be the most conservative in terms of protection from vapour intrusion. The default input building parameters presented in Table 3.10 of SR3⁽⁵⁾ have been used.

The parameters for a sandy loam soil type were used in line with Table 4.4 of SR3⁽⁵⁾. This includes a value of 6% for the percentage of soil organic matter (SOM) within the soil. In RSK's experience, this is rather high for many sites. To avoid undertaking site-specific risk assessments for this SOM, RSK has produced an additional set of GAC for SOM of 1% and 2.5% for all substances using the CLEA tool.

Summary of modifications to the default CLEA SR3⁽⁵⁾ input parameters for a commercial land use

In summary, the RSK commercial GAC were produced using the default input parameters for soil properties, the air dispersion model, building properties and the vapour model detailed in SR3⁽⁵⁾. Modifications to the default SR3⁽⁵⁾ exposure scenarios based on the C4SL exposure scenarios⁽³⁾ are presented in Table 2 below. The sole modification to the default commercial input parameters is the updated inhalation rate.

The final selected GAC are presented by pathway in Table 3 with the combined GAC in Table 4.

Figure 1: Conceptual model for CLEA commercial scenario

Table 1: Exposure assessment parameters for commercial scenario – inputs for CLEA model

Parameter	Value	Justification
Land use	Commercial	Chosen land use
Receptor	Female worker	Taken as female adult exposed over 49 years from age 16 to 65 years, Box 3.5, SR3 ⁽⁵⁾
Building	Office (pre- 1970)	Key generic assumption given in Box 3.5, SR3 ⁽⁵⁾ . Pre-1970s three-storey office building chosen as it is the most conservative in terms of protection from vapour intrusion (Section 3.4.6, SR3 ⁽⁵⁾)
Soil type	Sandy loam	Most common UK soil type (Section 4.3.1, Table 4.4, SR3 ⁽⁵⁾)
Start age class (AC)	17	AC corresponding to key generic assumption that the critical receptor is a working female adult
End AC	17	exposed over a 49-year period from age 16 to 65 years. Assumption given in Box 3.5, SR3 ⁽⁵⁾
6 SOM (%)		Representative of sandy loam according to EA guidance note dated January 2009 entitled 'Changes We Have Made to the CLEA Framework Documents' (13)
	1	To provide SAC for sites where SOM < 6% as often
	2.5	observed by RSK
рН	7	Model default

Commercial Input GAC 2018 01 T25656

Table 2: Commercial – modified receptor inputs

Parameter	Unit	Value	Justification
Inhalation rate (AC17)	m³ day⁻¹	15.7	Mean value USEPA, 2011 ⁽¹²⁾ ; Table 3.2, SP1010 ⁽³⁾

References

- Environment Agency (2009), 'Science Reports SC050021 SGV and TOX reports for:
 benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium,
 phenol, dioxins, furans and dioxin-like PCBs'; 'Supplementary information for the derivation
 of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic,
 cadmium, phenol, dioxins, furans and dioxin-like PCBs', and 'Contaminants in soil: updated
 collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene,
 xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like
 PCBs'. Available at: https://www.gov.uk/government/publications/land-contamination-soil-guideline-values-sgvs (accessed 4 February 2015)
- 2. Nathanial, C. P., McCaffrey, C., Ashmore, M., Cheng, Y., Gillet, A. G., Ogden, R. C. and Scott, D. (2009), *LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment*, second edition (Nottingham: Land Quality Press).
- 3. Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination', Revision 2, DEFRA research project SP1010.
- 4. Department for Environment, Food and Rural Affairs (Defra) (2014), 'SP1010: Development of Category 4 Screening Levels for assessment of land affected by contamination Policy Companion Document', Revision 2.
- 5. Environment Agency (2009), Science Report SC050021/SR3. Updated technical background to the CLEA model (Bristol: Environment Agency).
- 6. Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Appendices C to H). DEFRA research project SP1010'.
- 7. Nathanial, C. P., McCaffrey, C., Gillet, A. G., Ogden, R. C. and Nathanial, J. F. (2015), *The LQM/CIEH S4ULs for Human Health Risk Assessment* (Nottingham: Land Quality Press).
- 8. Environment Agency (2009), *Human health toxicological assessment of contaminants in soil. Science Report Final SC050021/SR2* (Bristol: Environment Agency).
- 9. Environment Agency (2009), *Science Report SC050021/SR4 CLEA Software (version 1.05) Handbook* (Bristol: Environment Agency).
- 10. Environment Agency (2008), *Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values* (Bristol: Environment Agency).
- 11. CL:AIRE (2010), Soil Generic Assessment Criteria for Human Health Risk Assessment (London: CL:AIRE).
- 12. USEPA (2011), *Exposure factors handbook*, EPA/600/R-090/052F (Washington, DC: Office of Research and Development).
- 13. Environment Agency (2009), 'Changes made to the CLEA framework documents after the three-month evaluation period in 2008', released January 2009.
- 14. USEPA (2010). Hydrogen cyanide and cyanide salts. Integrated Risk Information Systems (IRIS) Chemical Assessment Summary. September 2010. https://www.epa.gov/iris (accessed 9 December 2015)

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - COMMERCIAL

	N _O	SAC appropri	iate to pathway SC	OM 1% (ma/ka)		SAC annean	riate to pathway SON	1 2 5% (ma/ka)		SAC approx	riate to pathway S	OM 6% (ma/ka)	I
Compound	otes	Oral	Inhalation	Combined	Soil saturation limit	Oral	Inhalation	Combined	Soil saturation limit	Oral	Inhalation	Combined	Soil saturation limit
Compound	o,	Orai	IIIIalation	Combined	(mg/kg)	Orai	IIIIaiatioii	Combined	(mg/kg)	Orai	IIIIaiation	Combined	(mg/kg)
Metals													
Arsenic	(a,b)	6.35E+02	1.25E+03	NR	NR	6.35E+02	1.25E+03	NR	NR	6.35E+02	1.25E+03	NR	NR
Cadmium	(a)	7.73E+02	8.57E+02	4.10E+02	NR	7.73E+02	8.57E+02	4.10E+02	NR	7.73E+02	8.57E+02	4.10E+02	NR
Chromium (III) - trivalent	(c)	3.31E+05	8.57E+03	NR	NR	3.31E+05	8.57E+03	NR	NR	3.31E+05	8.57E+03	NR	NR
Chromium (VI) - hexavalent	(a,d)	9.62E+02	4.91E+01	NR	NR	9.62E+02	4.91E+01	NR	NR	9.62E+02	4.91E+01	NR	NR
Copper	\-/-/	1.89E+05	8.96E+04	6.83E+04	NR	1.89E+05	8.96E+04	6.83E+04	NR	1.89E+05	8.96E+04	6.83E+04	NR
Lead	(a)	2.32E+03	NR	NR	NR	2.32E+03	NR	NR	NR	2.32E+03	NR	NR	NR
Elemental Mercury (Hg ⁰)	(d)	NR	1.54E+01	NR	4.31E+00	NR	3.26E+01	NR	1.07E+01	NR	5.80E+01	NR	2.58E+01
Inorganic Mercury (Hg ²⁺)	(ω)	1.18E+03	1.97E+04	1.12E+03	NR	1.18E+03	1.97E+04	1.12E+03	NR NR	1.18E+03	1.97E+04	1.12E+03	NR
Methyl Mercury (Hg ⁴⁺)		3.38E+02	2.13E+03	2.92E+02	7.33E+01	3.38E+02	3.87E+03	3.11E+02	1.42E+02	3.38E+02	7.33E+03	3.23E+02	3.04E+02
Nickel	(d)	3.06E+03	9.83E+02	NR	NR	3.06E+03	9.83E+02	NR	NR	3.06E+03	9.83E+02	NR	NR
Selenium	(b)	1.23E+04	9.63E+02	NR NR	NR	1.23E+04	9.63E+02 NR	NR	NR NR	1.23E+04	NR	NR	NR NR
Zinc	(b)	7.35E+05	1.97E+08	NR NR	NR	7.35E+05	1.97E+08	NR	NR NR	7.35E+05	1.97E+08	NR	NR
Cyanide (free)	(0)	6.56E+02	7.51E+04	6.53E+02	NR	6.56E+02	7.51E+04	6.53E+02	NR	6.56E+02	7.51E+04	6.53E+02	NR
Cyanide (iree)		6.36E+02	7.31E+04	0.33E+02	IND	6.36E+02	7.51E+04	6.33E+02	IND	0.30E+U2	7.51E+04	0.55E+02	IND
Valatila Organia Campaunda													
Volatile Organic Compounds Benzene	(a)	1.09E+03	2.79E+01	2.72E+01	1.22E+03	1.09E+03	5.19E+01	4.96E+01	2.26E+03	1.09E+03	1.08E+02	9.80E+01	4.71E+03
	(a)					4.24E+05	1.43E+05	1.07E+05		4.24E+05	3.24E+05		
Toluene	+	4.24E+05	6.49E+04	5.63E+04	8.69E+02	1.91E+05	1.38E+04	1.28E+04	1.92E+03	1.91E+05	3.21E+04	1.84E+05	4.36E+03
Ethylbenzene	+	1.91E+05 3.43E+05	5.89E+03 6.26E+03	5.71E+03 6.15E+03	5.18E+02 6.25E+02	3.43E+05	1.47E+04	1.41E+04	1.22E+03 1.47E+03	3.43E+05	3.44E+04	2.75E+04 3.12E+04	2.84E+03 3.46E+03
Xylene - m	+	3.43E+05				3.43E+05					3.65E+04	3.30E+04	2.62E+03
Xylene - o	1	3.43E+05 3.43E+05	6.73E+03 6.03E+03	6.60E+03 5.92E+03	4.78E+02	3.43E+05 3.43E+05	1.57E+04 1.41E+04	1.50E+04 1.36E+04	1.12E+03 1.35E+03	3.43E+05 3.43E+05	3.65E+04 3.28E+04	3.00E+04 3.00E+04	2.62E+03 3.17E+03
Xylene - p	1	3.43E+05 3.43E+05	6.03E+03	5.92E+03 5.92E+03	5.76E+02 6.25E+02	3.43E+05 3.43E+05	1.41E+04 1.41E+04	1.36E+04 1.36E+04	1.47E+03	3.43E+05 3.43E+05	3.28E+04 3.28E+04	3.00E+04 3.00E+04	3.17E+03 3.46E+03
Total xylene	+								-				
Methyl tertiary-Butyl ether (MTBE)	-	5.72E+05	7.58E+03	7.48E+03	2.04E+04	5.72E+05	1.23E+04	1.21E+04	3.31E+04	5.72E+05	2.34E+04	2.24E+04	6.27E+04
1,1,1,2 Tetrachloroethane	+	1.10E+04	1.09E+02	1.08E+02	2.60E+03	1.10E+04	2.53E+02	2.47E+02	6.02E+03	1.10E+04	5.88E+02	5.59E+02	1.40E+04
1,1,2,2-Tetrachloroethane	+	1.10E+04	2.81E+02	2.74E+02	2.67E+03	1.10E+04	5.75E+02	5.46E+02	5.46E+03	1.10E+04	1.26E+03	1.13E+03	1.20E+04
1,1,1-Trichloroethane		1.14E+06	6.60E+02	6.60E+02	1.43E+03	1.14E+06	1.35E+03	1.35E+03	2.92E+03	1.14E+06	2.96E+03	2.95E+03	6.39E+03
1,1,2 Trichloroethane		7.62E+03	9.02E+01	8.91E+01	4.03E+03	7.62E+03	1.84E+02	1.80E+02	8.21E+03	7.62E+03	4.02E+02	3.82E+02	1.80E+04
1,1-Dichloroethene		8.76E+04	2.43E+01	2.43E+01	2.23E+03	8.76E+04	4.30E+01	4.30E+01	3.94E+03	8.76E+04	8.68E+01	8.67E+01	7.94E+03
1,2-Dichloroethane		2.29E+02	6.73E-01	6.71E-01	3.41E+03	2.29E+02	9.71E-01	9.67E-01	4.91E+03	2.29E+02	1.67E+00	1.65E+00	8.43E+03
1,2,4-Trimethylbenzene		NR	3.29E+02	NR	4.74E+02	NR	6.41E+02	NR	1.16E+03	NR	1.04E+03	NR	2.76E+03
1,3,5-Trimethylbenzene	(e)	NR	NR	NR	2.30E+02	NR	NR	NR	5.52E+02	NR	NR	NR	1.30E+03
1,2-Dichloropropane	\perp	2.57E+04	3.14E+00	3.13E+00	1.19E+03	2.57E+04	5.54E+00	5.54E+00	2.11E+03	2.57E+04	1.11E+01	1.11E+01	4.24E+03
Carbon Tetrachloride (tetrachloromethane)		7.62E+03	2.87E+00	2.87E+00	1.52E+03	7.62E+03	6.29E+00	6.28E+00	3.32E+03	7.62E+03	1.43E+01	1.42E+01	7.54E+03
Chloroethane	\perp	NR	9.01E+02	NR	2.61E+03	NR	1.22E+03	NR	3.54E+03	NR	1.97E+03	NR	5.71E+03
Chloromethane		NR	9.54E-01	NR	1.91E+03	NR	1.11E+00	NR	2.24E+03	NR	1.49E+00	NR	2.99E+03
Cis 1,2 Dichloroethene	\vdash	1.36E+01	NR	NR	3.94E+03	2.29E+01	NR	NR	6.61E+03	4.44E+01	NR	NR	1.29E+04
Dichloromethane		9.04E+03	2.63E+02	2.57E+02	7.27E+03	9.04E+03	3.50E+02	3.39E+02	9.68E+03	9.04E+03	5.53E+02	5.26E+02	1.53E+04
Tetrachloroethene		1.12E+04	1.86E+01	1.86E+01	4.24E+02	1.12E+04	4.17E+01	4.16E+01	9.51E+02	1.12E+04	9.57E+01	9.49E+01	2.18E+03
Trans 1,2 Dichloroethene		3.23E+04	2.07E+01	NR	3.42E+03	3.23E+04	3.74E+01	NR	6.17E+03	3.23E+04	7.63E+01	NR	1.26E+04
Trichloroethene		9.53E+02	1.23E+00	1.23E+00	1.54E+03	9.53E+02	2.58E+00	2.57E+00	3.22E+03	9.53E+02	5.72E+00	5.69E+00	7.14E+03
Vinyl Chloride (chloroethene)		2.67E+01	5.95E-02	5.94E-02	1.36E+03	2.67E+01	7.70E-02	7.67E-02	1.76E+03	2.67E+01	1.18E-01	1.17E-01	2.69E+03
Semi-Volatile Organic Compounds	, ,			1	1							T	all .
2-Chloronaphthalene	+	1.53E+05	3.71E+02	3.70E+02	1.14E+02	1.53E+05	9.07E+02	9.02E+02	2.80E+02	1.53E+05	2.13E+03	2.10E+03	6.69E+02
Acenaphthene	\perp	1.10E+05	2.75E+06	1.06E+05	5.70E+01	1.10E+05	5.36E+06	1.08E+05	1.41E+02	1.10E+05	8.83E+06	1.08E+05	3.36E+02
Acenaphthylene	\perp	1.10E+05	2.68E+06	1.05E+05	8.61E+01	1.10E+05	5.23E+06	1.07E+05	2.12E+02	1.10E+05	8.65E+06	1.08E+05	5.06E+02
Anthracene		5.49E+05	1.13E+07	5.23E+05	1.17E+00	5.49E+05	2.35E+07	5.36E+05	2.91E+00	5.49E+05	4.13E+07	5.42E+05	6.96E+00
Benzo(a)anthracene		2.84E+02	4.08E+02	1.67E+02	1.71E+00	2.84E+02	4.47E+02	1.74E+02	4.28E+00	2.84E+02	4.67E+02	1.76E+02	1.03E+01
Benzo(a)pyrene	(a)	7.68E+01	2.04E+02	5.58E+01	9.11E-01	7.68E+01	2.09E+02	5.61E+01	2.28E+00	7.68E+01	2.11E+02	5.63E+01	5.46E+00
Benzo(b)fluoranthene		7.13E+01	1.17E+02	4.43E+01	1.22E+00	7.13E+01	1.20E+02	4.47E+01	3.04E+00	7.13E+01	1.21E+02	4.49E+01	7.29E+00

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - COMMERCIAL

SAC appropriate to pathway SOM 1% (mg/kg) Oral Inhalation Combined			Soil saturation limit	SAC appropri	iate to pathway SOM	Soil saturation limit SAC appropriate to pathway SOM 6% (mg/k			OM 6% (mg/kg)	Soil saturation limi			
Compound	tes	Oral	Inhalation	Combined	(mg/kg)	Oral	Inhalation	Combined	(mg/kg)	Oral	Inhalation	Combined	(mg/kg)
Benzo(g,h,i)perylene		6.29E+03	1.05E+04	3.93E+03	1.54E-02	6.29E+03	1.06E+04	3.95E+03	3.85E-02	6.29E+03	1.07E+04	3.96E+03	9.23E-02
Benzo(k)fluoranthene		1.88E+03	3.11E+03	1.17E+03	6.87E-01	1.88E+03	3.17E+03	1.18E+03	1.72E+00	1.88E+03	3.21E+03	1.19E+03	4.12E+00
Chrysene		5.67E+02	8.89E+02	3.46E+02	4.40E-01	5.67E+02	9.25E+02	3.52E+02	1.10E+00	5.67E+02	9.47E+02	3.55E+02	2.64E+00
Dibenzo(a,h)anthracene		5.67E+00	9.32E+00	3.53E+00	3.93E-03	5.67E+00	9.52E+00	3.55E+00	9.82E-03	5.67E+00	9.64E+00	3.57E+00	2.36E-02
Fluoranthene		2.29E+04	1.89E+06	2.26E+04	1.89E+01	2.29E+04	2.72E+06	2.27E+04	4.73E+01	2.29E+04	3.32E+06	2.27E+04	1.13E+02
Fluorene		7.31E+04	4.55E+05	6.30E+04	3.09E+01	7.31E+04	1.06E+06	6.84E+04	7.65E+01	7.31E+04	2.24E+06	7.08E+04	1.83E+02
Hexachloroethane		2.09E+01	NR	NR	8.17E+00	4.98E+01	NR	NR	2.01E+01	1.11E+02	NR	NR	4.81E+01
Indeno(1,2,3-cd)pyrene		8.10E+02	1.31E+03	5.01E+02	6.13E-02	8.10E+02	1.35E+03	5.06E+02	1.53E-01	8.10E+02	1.37E+03	5.09E+02	3.68E-01
Naphthalene		3.64E+04	1.87E+03	1.78E+03	7.64E+01	3.64E+04	4.39E+03	3.92E+03	1.83E+02	3.64E+04	9.94E+03	7.81E+03	4.32E+02
Phenanthrene		2.28E+04	5.35E+05	2.19E+04	3.60E+01	2.28E+04	1.09E+06	2.24E+04	8.96E+01	2.28E+04	1.86E+06	2.25E+04	2.14E+02
Pyrene		5.49E+04	4.47E+06	5.42E+04	2.20E+00	5.49E+04	6.46E+06	5.44E+04	5.49E+00	5.49E+04	7.91E+06	5.45E+04	1.32E+01
Phenol		1.10E+06	2.65E+04	2.59E+04	2.42E+04	1.10E+06	3.04E+04	2.96E+04	3.81E+04	1.10E+06	3.46E+04	3.35E+04	7.03E+04
Total petroleum hydrocarbons	1 1		I	I			I	T				I	
Aliphatic hydrocarbons EC5-EC6		4.77E+06	3.19E+03	3.19E+03	3.04E+02	4.77E+06	5.86E+03	5.86E+03	5.58E+02	4.77E+06	1.21E+04	1.21E+04	1.15E+03
Aliphatic hydrocarbons >EC6-EC8		4.77E+06	7.79E+03	7.78E+03	1.44E+02	4.77E+06	1.74E+04	1.74E+04	3.22E+02	4.77E+06	3.97E+04	3.96E+04	7.36E+02
Aliphatic hydrocarbons >EC8-EC10		9.53E+04	2.02E+03	2.00E+03	7.77E+01	9.53E+04	4.91E+03	4.85E+03	1.90E+02	9.53E+04	1.17E+04	1.13E+04	4.51E+02
Aliphatic hydrocarbons >EC10-EC12		9.53E+04	9.97E+03	9.69E+03	4.75E+01	9.53E+04	2.47E+04	2.29E+04	1.18E+02	9.53E+04	5.89E+04	4.73E+04	2.83E+02
Aliphatic hydrocarbons >EC12-EC16		9.53E+04	8.26E+04	5.88E+04	2.37E+01	9.53E+04	2.04E+05	8.17E+04	5.91E+01	9.53E+04	4.81E+05	9.02E+04	1.42E+02
Aliphatic hydrocarbons >EC16-EC35	(b)	1.58E+06	NR	NR	8.48E+00	1.75E+06	NR	NR	2.12E+01	1.83E+06	NR	NR	5.09E+01
Aliphatic hydrocarbons >EC35-EC44	(b)	1.58E+06	NR	NR	8.48E+00	1.75E+06	NR	NR	2.12E+01	1.83E+06	NR	NR	5.09E+01
Aromatic hydrocarbons >EC8-EC10		3.81E+04	3.55E+03	3.46E+03	6.13E+02	3.81E+04	8.66E+03	8.11E+03	1.50E+03	3.81E+04	2.05E+04	1.70E+04	3.58E+03
Aromatic hydrocarbons >EC10-EC12		3.81E+04	1.92E+04	1.62E+04	3.64E+02	3.81E+04	4.69E+04	2.79E+04	8.99E+02	3.81E+04	1.10E+05	3.42E+04	2.15E+03
Aromatic hydrocarbons >EC12-EC16		3.81E+04	2.02E+05	3.62E+04	1.69E+02	3.81E+04	4.76E+05	3.73E+04	4.19E+02	3.81E+04	1.03E+06	3.78E+04	1.00E+03
Aromatic hydrocarbons >EC16-EC21	(b)	2.82E+04	NR	NR	5.37E+01	2.83E+04	NR	NR	1.34E+02	2.84E+04	NR	NR	3.21E+02
Aromatic hydrocarbons >EC21-EC35	(b)	2.84E+04	NR	NR	4.83E+00	2.84E+04	NR	NR	1.21E+01	2.84E+04	NR	NR	2.90E+01
Aromatic hydrocarbons >EC35-EC44	(b)	2.84E+04	NR	NR	4.83E+00	2.84E+04	NR	NR	1,21E+01	2.84E+04	NR	NR	2.90E+01

Notes:

EC - equivalent carbon. GrAC - groundwater screening value. SAC - soil screening value.

The CLEA model output is colour coded depending upon whether the soil saturation limit has been exceeded.

Calculated SAC exceeds soil saturation limit and may significantly affect the interpretation of any exceedances as the contribution of the indoor and outdoor vapour pathway to total exposure is

Calculated SAC exceeds soil saturation limit but the exceedance will not affect the SAC significantly as the contribution of the indoor and outdoor vapour pathway to total exposure is <10%.

Calculated SAC does not exceed the soil saturation limit.

The SAC for organic compounds are dependant upon soil organic matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994.

SAC for TPH fractions, PAHs napthalene, acenaphthene and acenaphthylene, BTEX and trimethylbenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway (Section 10.1.1, SR3)

(a) SAC for arsenic, benzene, benzo(a)pyrene, cadmium, chromium VI and lead are derived using the C4SL toxicology data.

(b) SAC for selenium should not include the inhalation pathway as no expert group HCV has been derived; aliphatic and aromatic hydrocarbons > EC16 should not include inhalation pathway due to their non-volatile nature and inhalation exposure being minimal (oral, dermal and inhalation exposure is compared to the oral HCV); arsenic should only be based on oral contribution (rather than combined) owing to the relative small contribution from inhalation in accordance with the SGV report. The Oral SAC should be adopted for zinc and benzo(a)pyrene.

(c) SAC for CrIII should be based on the lower of the oral and inhalation SAC (see LQM/CIEH 2015 Section 6.8)

(d) SAC for elemental mercury, chromium VI and nickel should be based on the inhalation pathway only.

(e) SAC for 1,3,5-trimethylbenzene is not recorded owing to the lack of toxicological data, SAC for 1,2,4 trimethylbenzene may be used.

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - COMMERCIAL

an Health Generic Assessment Criteria for Commercial Scenario

Human Health Generic Assessment Criteria			
Compound	SAC for Soil SOM 1% (mg/kg)	SAC for Soil SOM 2.5% (mg/kg)	SAC for Soil SOM 6% (mg/kg)
compound	(IIIg/kg)	(ilig/kg)	(IIIg/kg)
Metals			
Arsenic Cadmium	640 410	640 410	640 410
Chromium (III) - trivalent	8,600	8,600	8,600
Chromium (VI) - hexavalent	49	49	49
Copper	68,000	68,000	68,000
Lead	2,300	2,300	2,300
Elemental Mercury (Hg ⁰) Inorganic Mercury (Hg ²⁺)	15 (4) 1,120	33 (11) 1,120	58 (26) 1,120
Methyl Mercury (Hg ⁴⁺)	290 (73)	310 (142)	320
Nickel	980	980	980
Selenium	12,000	12,000	12,000
Zinc	740,000	740,000	740,000
Cyanide (free)	650	650	650
Volatile Organic Compounds			
Benzene	27	50	98
Toluene	56,000 (869)	107,000 (1,916)	184,000 (4,357)
Ethylbenzene Xylene - m	6,000 (518) 6,200 (625)	13,000 (1,216) 14,100 (1,474)	27,000 (2,844) 31,200 (3,457)
Xylene - o	6,600 (478)	15,000 (1,120)	33,000 (2,618)
Xylene - p	5,900 (576)	13,600 (1,353)	30,000 (3,167)
Total xylene	5,900 (625)	13,600 (1,474)	30,000 (3,457)
Methyl tertiary-Butyl ether (MTBE) 1,1,1,2 Tetrachloroethane	7,500	12,100 250	22,400 560
1,1,2,2-Tetrachloroethane	270	550 550	1,130
1,1,1-Trichloroethane	700	1,300	3,000
1,1,2 Trichloroethane	89	180	382
1,1-Dichloroethene	24	43 0.97	87 1.65
1,2-Dichloroethane 1,2,4-Trimethylbenzene	0.67 330	640	1.65 1,040
1,3,5-Trimethylbenzene	NR	NR	NR
1,2-Dichloropropane	3	6	11
Carbon Tetrachloride (tetrachloromethane)	2.9	6.3	14.2
Chloromethane Chloromethane	901	1,223	1,972 1.5
Cis 1,2 Dichloroethene	1.0	1.1	44
Dichloromethane	257	339	526
Tetrachloroethene	20	40	90
Trichloroethene	1	3	6
Trans 1,2 Dichloroethene Trichloroethene	21	37 3	76 6
Vinyl Chloride (chloroethene)	0.06	0.08	0.12
Semi-Volatile Organic Compounds			
2-Chloronaphthalene	370 (114)	902 (280)	2,098 (669)
Acenaphthene Acenaphthylene	110,000 110,000	110,000	110,000 110,000
Anthracene	520,000	110,000 540,000	540,000
Benzo(a)anthracene	170	170	180
Benzo(a)pyrene	77	77	77
Benzo(b)fluoranthene	44	45	45
Benzo(g,h,i)perylene Benzo(k)fluoranthene	3,900 1,200	3,900 1,200	4,000 1,200
Chrysene	350	350	350
Dibenzo(a,h)anthracene	3.5	3.6	3.6
Fluoranthene	23,000	23,000	23,000
Fluorene Hexachloroethane	63,000 (31) 21 (8)	68,000 50 (20)	71,000 111 (48)
Indeno(1,2,3-cd)pyrene	500	50 (20)	510
Naphthalene	1,800 (76)	3,900 (183)	7,800 (432)
Phenanthrene	22,000	22,000	23,000
Pyrene Phenol	54,000 440*	54,000 690*	54,000
Prierioi	440	090	1,300*
Total Petroleum Hydrocarbons			
Aliphatic hydrocarbons EC ₅ -EC ₆	3,200 (304)	5,900 (558)	12,100 (1,150)
Aliphatic hydrocarbons >EC ₆ -EC ₈	7,800 (144)	17,400 (322)	39,600 (736)
Aliphatic hydrocarbons >EC ₈ -EC ₁₀	2,000 (78)	4,800 (190)	11,300 (451)
Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂	9,700 (48)	22,900 (118)	47,300 (283)
Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆	59,000 (24)	82,000 (59)	90,000 (142)
Aliphatic hydrocarbons >EC ₁₆ -EC ₃₅	1,000,000**	1,000,000**	1,000,000**
Aliphatic hydrocarbons >EC ₃₅ -EC ₄₄	1,000,000**	1,000,000**	1,000,000**
Aromatic hydrocarbons >EC ₈ -EC ₁₀	3,500 (613)	8,100 (1,503)	17,000 (3,580)
Aromatic hydrocarbons >EC ₁₀ -EC ₁₂	16,000 (364)	28,000 (899)	34,000 (2,150)
Aromatic hydrocarbons >EC ₁₂ -EC ₁₆	36,000 (169)	37,000	38,000
Aromatic hydrocarbons >EC ₁₆ -EC ₂₁	28,000	28,000	28,000
Aromatic hydrocarbons >EC ₂₁ -EC ₃₅	28,000	28,000	28,000
Aromatic hydrocarbons >EC ₃₅ -EC ₄₄	28,000	28,000	28,000
	•		
Minerals			
Asbestos	No asbestos detected with	ID or <0.001% dry weight	
Notes:			

- Notes:

 "Generic assessment criteria not calculated owing to low volatility of substance and therefore no pathway, or an absence of toxicological data.

 NR SAC for 1,3,5-trimethylbenzene is not recorded owing to the lack of toxicological data, SAC for 1,2,4 trimethylbenzene may be used

 EC equivalent carbon. GrAC groundwater assessment criteria.

 "The GAC for Phenol is based on a threshold which is protective of direct contact (COS00021/Phenol SGV report)

 "Denoted SAC calculated exceeds 100% contaminant, hence 100% (1,000,000mg/kg) has been taken as SAC

- The SAC for organic compounds are dependent on Soil Organic Matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994.
- SAC for TPH fractions, PAHs napthalene, acenaphthene and acenaphthylene, BTEX and trimethylbenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway, section 10.1.1, SR3.

(VALUE IN BRACKETS)

RSK has adopted an approach for petroleum hydrocarbons in accordance with LOM/CIEH whereby the concentration modelled for each petroleum hydrocarbon fraction has been tabulated as the SAC with the corresponding solubility or vapour saturation limits given in brackets.

APPENDIX M GENERIC ASSESSMENT CRITERIA FOR POTABLE WATER SUPPLY PIPES

A range of pipe materials is available and careful selection, design and installation is required to ensure that water supply pipes are satisfactorily installed and meet the requirements of the Water Supply (Water Fittings) Regulations 1999 in England and Wales, the Byelaws 2000 in Scotland and the Northern Ireland Water Regulations. The regulations include a requirement to use only suitable materials when laying water pipes and laying water pipes without protection is not permitted at contaminated sites. The water supply company has a statutory duty to enforce the regulations.

Contaminants in the ground can pose a risk to human health by permeating potable water supply pipes. To fulfil their statutory obligation, UK water supply companies require robust evidence from developers to demonstrate either that the ground in which new plastic supply pipes will be laid is free from specific contaminants, or that the proposed remedial strategy will mitigate any existing risk. If these requirements cannot be demonstrated to the satisfaction of the relevant water company, it becomes necessary to specify an alternative pipe material on the whole development or in specific zones.

In 2010, UK Water Industry Research (UKWIR) published *Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites* (Report Ref. No. 10/WM/03/21). This report reviewed previously published industry guidelines and threshold concentrations adopted by individual water supply companies.

The focus of the UKWIR research project was to develop clear and concise procedures, which provide consistency in the pipe selection decision process. It was intended to provide guidance that can be used to ensure compliance with current regulations and to prevent water supply pipe failing prematurely due to the presence of contamination.

The report concluded that in most circumstances only organic contaminants pose a potential risk to plastic pipe materials and Table 3.1 of the report provides threshold concentrations for polyethylene (PE) and polyvinyl chloride (PVC) pipes for the organic contaminants of concern. The report also makes recommendations for the procedures to be adopted in the design of site investigations and sampling strategies, and the assessment of data, to ensure that the ground through which water supply pipes will be laid is adequately characterised.

Risks to water supply pipes have therefore been assessed against the threshold concentrations for PE and PVC pipe specified in Table 3.1 of Report 10/WM/03/21, which have been adopted as the GAC for this linkage and are reproduced in Table A3 below.

Since water supply pipes are typically laid at a minimum depth of 0.75 m below finished ground levels, sample results from depths between 0.5 m and 1.5 m below finished level are generally considered suitable for assessing risks to water supply. Samples outside these depths can be used, providing the stratum is the same as that in which water supply pipes are likely to be located. The report specifies that sampling should characterise the ground conditions to a minimum of 0.5 m below the proposed depth of the pipe.

It should be noted that the assessment provided in this report is a guide and the method of assessment and recommendations should be checked with the relevant water supply company.

Table Q1: Generic assessment criteria for water supply pipes

		Pipe materia	ıl
		GAC (mg/kg)
	Parameter group	PE	PVC
1	Extended VOC suite by purge and trap or head space and GC-MS with TIC (Not including compounds within group 1a)	0.5	0.125
1a	BTEX + MTBE	0.1	0.03
2	SVOCs TIC by purge and trap or head space and GC-MS with TIC (aliphatic and aromatic C_5 – C_{10}) (Not including compounds within group 2e and 2f)	2	1.4
2e	Phenols	2	0.4
2f	Cresols and chlorinated phenols	2	0.04
3	Mineral oil C ₁₁ –C ₂₀	10	Suitable
4	Mineral oil C ₂₁ –C ₄₀	500	Suitable
5	Corrosive (conductivity, redox and pH)	Suitable	Suitable
Spec	ific suite identified as relevant following site investigation		
2a	Ethers	0.5	1
2b	Nitrobenzene	0.5	0.4
2c	Ketones	0.5	0.02
2d	Aldehydes	0.5	0.02
6	Amines	Not suitable	Suitable

Notes: where indicated as 'suitable', the material is considered resistant to permeation or degradation and no threshold concentration has been specified by UKWIR.

APPENDIX N GQRA DATA SCREENING TABLES – SOILS

Project code: 371944 Royal College Street, London

SOM: 2.5%

Project code: 371944 Royal College Street, London

Project name Royal College	Street, London					
Project code 371944						
Client name Rocco Ventur	es					
Address						
NGR						
Land use Commercial S	cenario					
SOM 2.5%						
GAC version 2018_01						
			Lah sample ID 1	10/07826/8 10/	07826/0 10	/07826/10 10

SOM 2.5%													
GAC version 2018_01													
									Lab sample IE	19/07826/8	19/07826/9	19/07826/10	19/07826/11
								C	lient sample IE	WS3	WS3	WS3	WS3
									Depth to top	0.4	0.8	1.2	2.3
								De	epth to bottom	ı			
									Date sampled	14/08/19	14/08/19	15/08/19	15/08/19
Analyte	Unit	GAC	T1	Max	Min		Count	# Detec	cts # Non-det	e			
Metals and Inorganics													
Arsenic	mg/kg	640)	2	9	3		7	7 ()		7	
Cadmium	mg/kg	410)	1.	4 < 0.5			7	4 3	3		0.8	
Chromium	mg/kg	8600) 49	9 4	8	6		7	7 ()		47	
Chromium (hexavalent)	mg/kg	49)		<1			5	0 5	5		<1	
Copper	mg/kg	68000)	10	4	3		7	7 (15	
Lead	mg/kg	2300)	51	4	13		7	7 (20	
Mercury	mg/kg	1120	33	3 1.7	3 < 0.17	,		7	4 3	3		<0.17	
Nickel	mg/kg	980)	4	1	3		7	7 ()		26	
Selenium	mg/kg	12000)		<1			7	0	7		<1	
Zinc	mg/kg	740000)	66	6	10		7	7 ()		56	
Asbestos	J. J												
Asbestos in soil								10	0 10)	NAD	NAD	
Petroleum Hydrocarbons													
TPH total (>C6-C40)	mg/kg			17	6 <10			5	3 2	2		84	
TPH ID (for FID characterisations)	<i>0,</i> 0							5				Possible kero	sene
TPH FID Chromatogram								5				Appended	
Polycyclic aromatic hydrocarbons													
Acenaphthene	mg/kg	110000)		< 0.01			5	0 5	5		<0.01	
Acenaphthylene	mg/kg	110000			< 0.01			5	0 5			<0.01	
Anthracene	mg/kg	540000		0.0	3 < 0.02			5	1 4	l .		<0.02	
Benzo(a)anthracene	mg/kg	170			3 < 0.04			5	2 3	3		<0.04	
Benzo(a)pyrene	mg/kg	77			8 < 0.04			5	1 4	l .		<0.04	
Benzo(b)fluoranthene	mg/kg	45			9 < 0.05			5		l .		<0.05	
Benzo(ghi)perylene	mg/kg	3900)		8 < 0.05			5	1 4	l .		<0.05	
Benzo(k)fluoranthene	mg/kg	1200			6 < 0.07			5	1 4	l.		<0.07	
Chrysene	mg/kg	350			6 < 0.06			5	1 4	l .		<0.06	
Dibenzo(ah)anthracene	mg/kg	3.6			5 < 0.04			5		l .		<0.04	
Fluoranthene	mg/kg	23000			4 < 0.08			5	1 4	l.		<0.08	
Fluorene	mg/kg	68000			< 0.01			5	0 5	5		<0.01	
Indeno(123-cd)pyrene	mg/kg	510		0.3	2 < 0.03			5		В		<0.03	
Naphthalene	mg/kg	3900			< 0.03			5		5		<0.03	
Phenanthrene	mg/kg	22000			1 < 0.03			5		3		<0.03	
Pyrene	mg/kg	54000			2 < 0.07			5	_	1		<0.07	
Total PAH-16MS plus Coronene	mg/kg				7 < 0.08			5		В		<0.08	
Volatile Organic Compounds (VOC)	G, ···G			2.1.									
1,1,1,2-Tetrachloroethane	mg/kg	250)		<0.00	1		2	0 2	2	<0.001		
1,1,1-Trichloroethane	mg/kg	1300			<0.00			2			<0.001		
1,1,2,2-Tetrachloroethane	mg/kg	550			<0.00			2		2	<0.001		
1,1,2-Trichloroethane	mg/kg	180			<0.00			2		2	<0.001		
1,1-Dichloroethane	mg/kg	100			<0.00			2		2	<0.001		
1,1-Dichloroethene	mg/kg	43	1		<0.00			2		2	<0.001		
1,1-Dichloropropene	mg/kg	7.			<0.00			2		2	<0.001		
1,2,3-Trichlorobenzene	mg/kg				<0.00			2		2	<0.001		

WS2

									SOM: 2.5%
ab sample ID 19/07826/2	19/07826/14 19/07826/1	19/07826/4	19/07826/12	19/07826/13	19/07826/3	19/07826/5	19/07826/6	19/07826/7	

WS1

WS2

WS2

TP3 TP3

							Client sample ID B								WS2		VS2
							Depth to top	0.5	0.6	0.5	0.5	0.3	0.6	0.4	0.3	0.8	1.4
							Depth to bottom										
							Date sampled	15/08/19	13/08/19	15/08/19	15/08/19	14/08/19	14/08/19	15/08/19	15/08/19	15/08/19	15/08/19
Analyte	Unit	GAC T	1	Max Min	Count		Detects # Non-detect	ts								.0.004	
1,2,3-Trichloropropane	mg/kg			<0.001		2	0 2									<0.001	
1,2,4-Trichlorobenzene	mg/kg			<0.003		2	0 2									<0.003	
1,2,4-Trimethylbenzene	mg/kg	640		<0.001		2	0 2									<0.001	
1,2-Dibromo-3-chloropropane	mg/kg			<0.002		2	0 2									<0.002	
1,2-Dibromoethane	mg/kg			<0.001		2	0 2									<0.001	
1,2-Dichlorobenzene	mg/kg			<0.001		2	0 2									<0.001	
1,2-Dichloroethane	mg/kg	0.97		<0.002		2	0 2									<0.002	
,,2-Dichloropropane	mg/kg	6		<0.001		2	0 2									<0.001	
.,3,5-Trimethylbenzene	mg/kg	640		<0.001		2	0 2									<0.001	
.,3-Dichlorobenzene	mg/kg			<0.001		2	0 2									<0.001	
.,3-Dichloropropane	mg/kg			<0.001		2	0 2									<0.001	
.,4-Dichlorobenzene	mg/kg			<0.001		2	0 2									<0.001	
2,2-Dichloropropane	mg/kg			<0.001		2	0 2									<0.001	
2-Chlorotoluene	mg/kg			<0.001		2	0 2									<0.001	
I-Chlorotoluene	mg/kg			<0.001		2	0 2									<0.001	
1-Isopropyltoluene	mg/kg			<0.001		2	0 2									<0.001	
Benzene	mg/kg	50		<0.001		2	0 2									<0.001	
Bromobenzene	mg/kg			< 0.001		2	0 2									<0.001	
Bromochloromethane	mg/kg			< 0.005		2	0 2									<0.005	
Bromodichloromethane	mg/kg			< 0.01		2	0 2									<0.01	
Bromoform	mg/kg			< 0.001		2	0 2									<0.001	
Bromomethane	mg/kg			< 0.001		2	0 2									<0.001	
Carbon Disulphide	mg/kg			0.001 < 0.001		2	1 1									0.001	
Carbon Tetrachloride	mg/kg	6.3		<0.001		2	0 2									<0.001	
Chlorobenzene	mg/kg			<0.001		2	0 2									<0.001	
Chloroethane	mg/kg	1223		<0.001		2	0 2									<0.001	
Chloroform	mg/kg			<0.001		2	0 2									<0.001	
Chloromethane	mg/kg	1.1		<0.01		2	0 2									<0.01	
is 1,2-Dichloroethene	mg/kg	23		<0.001		2	0 2									<0.001	
is 1,3-Dichloropropene	mg/kg			<0.001		2	0 2									<0.001	
Dibromochloromethane	mg/kg			<0.003		2	0 2									<0.003	
Dibromomethane	mg/kg			<0.001		2	0 2									<0.001	
Dichlorodifluoromethane	mg/kg			<0.001		2	0 2									<0.001	
Dichloromethane	mg/kg	339		<0.005		2	0 2									<0.005	
Ethylbenzene	mg/kg	13000	1216	<0.001		2	0 2									<0.001	
Hexachlorobutadiene	mg/kg	13000	1210	<0.001		2	0 2									<0.001	
sopropylbenzene	mg/kg			<0.001		2	0 2									<0.001	
n & p Xylene	mg/kg	13600	1353	<0.001		2	0 2									<0.001	
n-Butylbenzene	mg/kg	13000	1333	<0.001		2	0 2									<0.001	
n-Propylbenzene				<0.001		2	0 2									<0.001	
p-Xylene	mg/kg	15000	1120	<0.001		2	0 2									<0.001	
	mg/kg	13000	1120														
ec-Butylbenzene	mg/kg			<0.001		2	0 2									<0.001	
Styrene	mg/kg			<0.001		2	0 2									<0.001	
ert-Butylbenzene	mg/kg			<0.002		2	0 2									<0.002	
etrachloroethene	mg/kg	40		<0.001		2	0 2									<0.001	
oluene	mg/kg	107000	1916	<0.001		2	0 2									<0.001	
rans 1,2-Dichloroethene	mg/kg	37		<0.001		2	0 2									<0.001	
rans 1,3-Dichloropropene	mg/kg			<0.001		2	0 2									<0.001	
richloroethene	mg/kg	3		<0.001		2	0 2									<0.001	
richlorofluoromethane	mg/kg			<0.004		2	0 2									<0.004	
/inyl Chloride	mg/kg	0.08		<0.001		2	0 2									<0.001	
PCBs PCBs																	
PCB BZ 101	mg/kg			< 0.004		2	0 2							<0.004			
PCB BZ 105	mg/kg			<0.005		2	0 2							<0.005			
PCB BZ 114	mg/kg			<0.005		2	0 2							<0.005			
PCB BZ 118	mg/kg			< 0.007		2	0 2					<	< 0.007	< 0.007			

Client sample ID BH1 BH2

TP1 TP2

Project code: 371944 Royal College Street, London

								Lab sample ID	19/07826/8	19/07826/9	19/07826/10	19/07826/11
								Client sample ID	WS3	WS3	WS3	WS3
								Depth to top	0.4	0.8	1.2	2.3
								Depth to bottom				
								Date sampled	14/08/19	14/08/19	15/08/19	15/08/19
Analyte	Unit	GAC	T1	Max	Min	Count		ects # Non-det	e			
1,2,3-Trichloropropane	mg/kg				<0.001		2	0 2		<0.001		
1,2,4-Trichlorobenzene	mg/kg				<0.003		2	0 2		<0.003		
1,2,4-Trimethylbenzene	mg/kg	640)		<0.001		2	0 2		<0.001		
1,2-Dibromo-3-chloropropane	mg/kg				<0.002		2	0 2		<0.002		
1,2-Dibromoethane	mg/kg				<0.001		2	0 2		<0.001		
1,2-Dichlorobenzene	mg/kg				<0.001		2	0 2		<0.001		
1,2-Dichloroethane	mg/kg	0.97	1		<0.002		2	0 2		<0.002		
1,2-Dichloropropane	mg/kg	6			<0.001		2	0 2		<0.001		
1,3,5-Trimethylbenzene	mg/kg	640)		<0.001		2	0 2		<0.001		
1,3-Dichlorobenzene	mg/kg				<0.001		2	0 2		<0.001		
1,3-Dichloropropane	mg/kg				<0.001		2	0 2		< 0.001		
1,4-Dichlorobenzene	mg/kg				<0.001		2	0 2		< 0.001		
2,2-Dichloropropane	mg/kg				< 0.001		2	0 2		< 0.001		
2-Chlorotoluene	mg/kg				<0.001		2	0 2		<0.001		
4-Chlorotoluene	mg/kg				<0.001		2	0 2		<0.001		
4-Isopropyltoluene	mg/kg				<0.001		2	0 2		<0.001		
Benzene	mg/kg	50			< 0.001		2	0 2		< 0.001		
Bromobenzene	mg/kg				< 0.001		2	0 2		< 0.001		
Bromochloromethane	mg/kg				<0.005		2	0 2		< 0.005		
Bromodichloromethane	mg/kg				< 0.01		2	0 2		<0.01		
Bromoform	mg/kg				< 0.001		2	0 2		< 0.001		
Bromomethane	mg/kg				< 0.001		2	0 2		< 0.001		
Carbon Disulphide	mg/kg			0.001	<0.001		2	1 1		<0.001		
Carbon Tetrachloride	mg/kg	6.3			< 0.001		2	0 2		< 0.001		
Chlorobenzene	mg/kg				< 0.001		2	0 2		< 0.001		
Chloroethane	mg/kg	1223			< 0.001		2	0 2		< 0.001		
Chloroform	mg/kg				< 0.001		2	0 2		<0.001		
Chloromethane	mg/kg	1.1			< 0.01		2	0 2		<0.01		
cis 1,2-Dichloroethene	mg/kg	23	3		< 0.001		2	0 2		<0.001		
cis 1,3-Dichloropropene	mg/kg				<0.001		2	0 2		<0.001		
Dibromochloromethane	mg/kg				< 0.003		2	0 2		< 0.003		
Dibromomethane	mg/kg				<0.001		2	0 2		<0.001		
Dichlorodifluoromethane	mg/kg				< 0.001		2	0 2		<0.001		
Dichloromethane	mg/kg	339)		<0.005		2	0 2		<0.005		
Ethylbenzene	mg/kg	13000			<0.001		2	0 2		<0.001		
Hexachlorobutadiene	mg/kg				<0.001		2	0 2		<0.001		
Isopropylbenzene	mg/kg				<0.001		2	0 2		<0.001		
m & p Xylene	mg/kg	13600	1353		<0.001		2	0 2		<0.001		
n-Butylbenzene	mg/kg				<0.001		2	0 2		<0.001		
n-Propylbenzene	mg/kg				<0.001		2	0 2		<0.001		
o-Xylene	mg/kg	15000	1120		<0.001		2	0 2		<0.001		
sec-Butylbenzene	mg/kg				<0.001		2	0 2		<0.001		
Styrene	mg/kg				<0.001		2	0 2		<0.001		
tert-Butylbenzene	mg/kg				<0.001		2	0 2		<0.001		
Tetrachloroethene	mg/kg	40			<0.002		2	0 2		<0.001		
Toluene	mg/kg	107000			<0.001		2	0 2		<0.001		
trans 1,2-Dichloroethene	mg/kg	37			<0.001		2	0 2		<0.001		
trans 1,3-Dichloropropene	mg/kg	37			<0.001		2	0 2		<0.001		
Trichloroethene	mg/kg	3			<0.001		2	0 2		<0.001		
Trichlorofluoromethane	mg/kg				<0.001		2	0 2		<0.001		
Vinyl Chloride	mg/kg	0.08			<0.004		2	0 2		<0.001		
PCBs	1116/116	0.00			10.001					.0.001		
PCB BZ 101	mg/kg				<0.004		2	0 2				
PCB BZ 105	mg/kg				<0.004		2	0 2				
PCB BZ 114	mg/kg				<0.005		2	0 2				
PCB BZ 118	mg/kg				<0.003		2	0 2				

Royal College Street, London

SOM: 2.5% Lab sample ID 19/07826/2 19/07826/14 19/07826/1 19/07826/4 19/07826/4 19/07826/12 19/07826/13 19/07826/3 19/07826/5 19/07826/6 19/07826/7

								Client sample ID E	3H1	BH2	TP1	TP2	TP3	TP3	WS1	WS2	WS2	WS2
								Depth to top	0.5	0.6	0.5	0.5	0.3	0.6	0.4	0.3	0.8	1.4
								Depth to bottom										
								Date sampled	15/08/19	13/08/19	15/08/19	15/08/19	14/08/19	14/08/19	15/08/19	15/08/19	15/08/19	15/08/19
Analyte	Unit	GAC	T1	Max	Min	Count	# De	etects # Non-detec	ts									
PCB BZ 123	mg/kg				<0.005		2	0 2						< 0.005	<0.005			
PCB BZ 126	mg/kg				<0.005		2	0 2						< 0.005	< 0.005			
PCB BZ 138	mg/kg				<0.006		2	0 2						< 0.006	<0.006			
PCB BZ 153	mg/kg				<0.004		2	0 2						< 0.004	< 0.004			
PCB BZ 156	mg/kg				<0.005		2	0 2						< 0.005	<0.005			
PCB BZ 157	mg/kg				<0.005		2	0 2						< 0.005	<0.005			
PCB BZ 167	mg/kg				<0.005		2	0 2						< 0.005	<0.005			
PCB BZ 169	mg/kg				<0.005		2	0 2						< 0.005	<0.005			
PCB BZ 180	mg/kg				< 0.004		2	0 2						< 0.004	< 0.004			
PCB BZ 189	mg/kg				<0.005		2	0 2						< 0.005	<0.005			
PCB BZ 28	mg/kg				<0.002		2	0 2						<0.002	<0.002			
PCB BZ 52	mg/kg				<0.002		2	0 2						<0.002	<0.002			
PCB BZ 77	mg/kg				<0.005		2	0 2						< 0.005	<0.005			
PCB BZ 81	mg/kg				<0.005		2	0 2						<0.005	<0.005			
Other analytes																		
% Moisture	% w/w			20.8	6.	3	5	5 0	8.6	20.8	12.4	6.3						
% Stones >10mm	% w/w			54.2	<0.1		14	11 3 <	0.1	<0.1	30.1	30.8	21.7	24.2	17.1	54.2	6.7	<0.1
Coronene	mg/kg			0.1	<0.01		5	2 3	0.1	<0.01	0.02	<0.01						
рН	рН			12.91	8.3	5	8	8 0	12.91	8.6	8.85	11.34		8.7		12.33		
Total Organic Carbon	% w/w			3.25		8	6	6 0					0.61		0.23			0.41
Converted to SOM (x / 0.58)	% w/w			5.603448	0.13793	1	6	6 0					1.05172414		0.39655172			0.70689655
Total Speciated PCB-EC7 & WHO12	mg/kg				< 0.007		2	0 2						< 0.007	< 0.007			

Land use: Commercial Scenario

SOM: 2.5%

								Client sample II	WS3	WS3	WS3	WS3
								Depth to to	0.4	0.8	1.2	2.3
								Depth to botton	1			
								Date sample	14/08/19	14/08/19	15/08/19	15/08/19
Analyte	Unit	GAC	T1	Max	Min	Count	#	Detects # Non-det	e			
PCB BZ 123	mg/kg				<0.005		2	0	2			
PCB BZ 126	mg/kg				<0.005		2	0	2			
PCB BZ 138	mg/kg				<0.006		2	0	2			
PCB BZ 153	mg/kg				< 0.004		2	0	2			
PCB BZ 156	mg/kg				<0.005		2	0	2			
PCB BZ 157	mg/kg				< 0.005		2	0	2			
PCB BZ 167	mg/kg				<0.005		2	0	2			
PCB BZ 169	mg/kg				< 0.005		2	0	2			
PCB BZ 180	mg/kg				< 0.004		2	0	2			
PCB BZ 189	mg/kg				<0.005		2	0	2			
PCB BZ 28	mg/kg				< 0.002		2	0	2			
PCB BZ 52	mg/kg				< 0.002		2	0	2			
PCB BZ 77	mg/kg				<0.005		2	0	2			
PCB BZ 81	mg/kg				<0.005		2	0	2			
Other analytes												
% Moisture	% w/w			20.8	6.3	3	5	5			19.5	
% Stones >10mm	% w/w			54.2	<0.1		14	11	13.9	3.3	3.7	9.2
Coronene	mg/kg			0.1	<0.01		5	2	3		< 0.01	
рН	рН			12.91	8.35	5	8	8	9.2		8.35	
Total Organic Carbon	% w/w			3.25	0.08	3	6	6	3.25	2.53		0.08
Converted to SOM (x / 0.58)	% w/w			5.603448	0.137931	L	6	6	5.60344828	4.36206897		0.13793103
Total Speciated PCB-EC7 & WHO12	mg/kg				<0.007		2	0	2			

Lab sample ID 19/07826/8 19/07826/9 19/07826/10 19/07826/11

APPENDIX O WM3 ASSESSMENT

371944 60 - 86 Royal College Street, London

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

TP/WS/BH		TP1	BH1	WS1	TP2	WS2	WS2	WS2	WS3	WS3
Depth (m)		0.50	0.50	0.40	0.50	0.30	0.80	1.40	0.40	0.80
Envirolab reference										
	<u>.</u>								ı	
% Moisture	%	12.4	8.6		6.3					
pH (soil)		8.85	12.91		11.34	12.33			9.20	
pH (leachate)										
Arsenic Cadmium	mg/kg mg/kg	22 0.8	6 <0.5		3 <0.5	4 <0.5				
Copper	mg/kg	43	24		3	22				
CrVI or Chromium	mg/kg	14	48		6	11				
Lead Mercury	mg/kg mg/kg	514 0.78	72 0.26		13 <0.17	17 <0.17				
Nickel	mg/kg	37	41		3	9				
Selenium	mg/kg	<1	<1		<1	<1				
Zinc	mg/kg	215	58		10	26				
Barium Beryllium	mg/kg mg/kg									
Vanadium	mg/kg									
Cobalt	mg/kg									
Manganese Molybdenum	mg/kg mg/kg									
Antimony	mg/kg									
Aluminium	mg/kg									
Bismuth CrIII	mg/kg mg/kg	1				1				
Iron	mg/kg	1								
Strontium	mg/kg	1				1				
Tellurium Thallium	mg/kg mg/kg	1								
Titanium	mg/kg	1				1				
Tungsten	mg/kg	ļ								
Ammoniacal N ws Boron	mg/kg mg/kg	1				1				
PAH (Input Total PAH OR individua		1	1	ı		1		ı	ı	
Acenaphthene	mg/kg	<0.01	<0.01		<0.01	1				
Acenaphthylene	mg/kg	<0.01	<0.01		<0.01					
Anthracene	mg/kg	<0.02	0.03		<0.02					
Benzo(a)anthracene	mg/kg	0.05	0.33		<0.04					
Benzo(a)pyrene Benzo(b)fluoranthene	mg/kg mg/kg	<0.04 <0.05	0.38 0.49		<0.04 <0.05					
Benzo(ghi)perylene	mg/kg	<0.05	0.28		<0.05					
Benzo(k)fluoranthene	mg/kg	<0.07	0.16		<0.07					
Chrysene	mg/kg	<0.06	0.36		<0.06					
Dibenzo(ah)anthracene Fluoranthene	mg/kg mg/kg	<0.04 <0.08	0.05 0.44		<0.04 <0.08					
Fluorene	mg/kg	<0.01	<0.01		<0.01					
Indeno(123cd)pyrene	mg/kg	0.03	0.32		<0.03					
Naphthalene	mg/kg	<0.03	<0.03		<0.03					
Phenanthrene Pyrene	mg/kg mg/kg	0.05 <0.07	0.11 0.42		<0.03 <0.07					
Coronene	mg/kg	0.02	0.10		<0.01					
Total PAHs (16 or 17)	mg/kg	0.15	3.47		<0.08					
TPH	•									
Petrol	mg/kg									
Diesel Lube Oil	mg/kg mg/kg									
			1			1				
Crude Oil	mg/kg	<u> </u>	<u>I</u>	<u>I</u>	1	<u>1</u> 1	1	<u>I</u>	<u>I</u>	
White Spirit / Kerosene Creosote	mg/kg mg/kg	1				 				
Unknown TPH with ID	mg/kg					1				
Unknown TPHCWG	mg/kg									
Total Sulphide	mg/kg					1				
Complex Cyanide	mg/kg									
Free (or Total) Cyanide Thiocyanate	mg/kg	 				 				
Elemental/Free Sulphur	mg/kg mg/kg	 				<u> </u>				
Phenois Input Total Phenois HPLC		•	•			•				
results.	•	1	1	1	•	1	•	1	1	
Phenol	mg/kg	1								
Cresols Xylenols	mg/kg mg/kg	1								
Resourcinol	mg/kg	1				1				
Phenols Total by HPLC	mg/kg					j				
BTEX Input Total BTEX OR individu			ı	Г	1	T .	1	Г	Г	1
Benzene Toluene	mg/kg mg/kg	1				1				
Ethylbenzene	mg/kg	1				1				
Xylenes	mg/kg									
Total BTEX	mg/kg									
PCBs (POPs)	•									
PCBs Total (eg EC7/WHO12)	mg/kg			<0.007		<u> </u>				
PBBs (POPs)	•		1	r	1	1	1	r	1	,
Hexabromobiphenyl (Total or	malke	1				1				
PBB153; 2,2',4,4',5,5'- if only available)	mg/kg	1				1				
	1	1	1	1	1		1	1		

Haswaste, developed by Dr. lain Haslock

371944 60 - 86 Royal College Street, London

TP/WS/BH
Depth (m)
Envirolab reference

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

WS3

Depth (m)		0.50	0.50	0.40	0.50	0.30	0.80	1.40	0.40	0.80
Envirolab reference										
POPs Dioxins and Furans Input To OR individual Dioxin and Furan resi										
2,3,7,8-TeCDD	mg/kg		I	1		1		I		
1,2,3,7,8-PeCDD										
	mg/kg									
1,2,3,4,7,8-HxCDD	mg/kg									
1,2,3,6,7,8-HxCDD	mg/kg									
1,2,3,7,8,9-HxCDD	mg/kg									
1,2,3,4,6,7,8-HpCDD	mg/kg									
OCDD	mg/kg									
2,3,7,8-TeCDF	mg/kg									
1,2,3,7,8-PeCDF	mg/kg									
2,3,4,7,8-PeCDF	mg/kg									
1,2,3,4,7,8-HxCDF	mg/kg									
1,2,3,6,7,8-HxCDF	mg/kg									
2,3,4,6,7,8-HxCDF	mg/kg									
1,2,3,7,8,9-HxCDF	mg/kg									
1,2,3,4,6,7,8-HpCDF	mg/kg									
1,2,3,4,7,8,9-HpCDF	mg/kg									
OCDF	mg/kg									
Total Dioxins and Furans	mg/kg									
				•		•	U	1	U	
Some Pesticides (POPs unless of										
Aldrin	mg/kg									
α Hexachlorocyclohexane (alpha-										
HCH) (leave empty if total HCH	mg/kg									
results used)										
β Hexachlorocyclohexane (beta- HCH) (leave empty if total HCH	mg/kg									
results used) α Cis-Chlordane (alpha) OR Total Chlordane	mg/kg									
δ Hexachlorocyclohexane (delta- HCH) (leave empty if total HCH	mg/kg									
results used)										
Dieldrin	mg/kg									
Endrin	mg/kg									
χ Hexachlorocyclohexane (gamma-										
HCH) (lindane) OR Total HCH	mg/kg									
Heptachlor	mg/kg									
Hexachlorobenzene	mg/kg									
o,p'-DDT (leave empty if total DDT										
results used)	mg/kg									
p,p'-DDT OR Total DDT	mg/kg									
χ Trans-Chlordane (gamma)										
(leave empty if total Chlordane results used)	mg/kg									
Chlordecone (kepone)	mg/kg									
Pentachlorobenzene	mg/kg			1		1				
Mirex	mg/kg									
Toxaphene (camphechlor)	mg/kg									
	9.19	<u> </u>	<u>l</u>					<u>l</u>		l l
Tin	1		1	1		1	1	1	1	1
Tin (leave empty if Organotin and Tin excl Organotin results used)	mg/kg									
Organotin	•									U
	malle									
Dibutyltin; DiBT	mg/kg									
Tributyltin; TriBT	mg/kg									
	99			1		1				
Triphenyltin; TriPT	mg/kg									
Tetrabutyltin; TeBT	mg/kg	 	-	1		1		-		-
	ту/ку	L	l	l		l		l		l .
Tin excluding Organotin	Í		I	1		1		I		
Tin excl Organotin	mg/kg									

Haswaste, developed by Dr. lain Haslock

371944 60 - 86 Royal College Street, London

TP/WS/BH Depth (m) Envirolab reference

Asbestos in Soil
Asbestos detected in Soil (enter Y or N)

Asbestos % Composition in Soil
(Matrix Loose Fibres or Microscopic Identifiable Pieces only)

Thresholds
Y

See "Carc HP7 % Asbestos in Soil (Fibres)" below

Carcinogenic HP7 % Asbestos in Soil (fibres or micro pieces)

Please be advised, if the calculation cell is "0.00000" DOES NOT MEAN asbestos testing has been undertaken and the result is zero.

Asbestos Identifiable Pieces visible with the naked eye detected in the Soil (enter Y or N)

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

TP1	BH1	WS1	TP2	WS2	WS2	WS2	WS3	WS3
0.50	0.50	0.40	0.50	0.30	0.80	1.40	0.40	0.80
	•				•	•		
		If A	Asbestos in Soil above i	s "V" the soil is Hazard	lous Waste HP5 and H	P7		
		"/	ASDESIOS III OOII ADOVE I	3 1, 1116 3011 13 1142410	lous Waste III 5 and II	1		
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
If Ashestos in Soil abo	ove is "Y", but Asbestos	% above is "<0.1%", the	e soil is Non Hazardous	Waste. You can only	use Ashestos % results	where loose fibres or n	nicro pieces are only pr	esent. You cannot us
	, , , , , , , , , , , , , , , , , , , ,			when visual identifiable			, , , ,	

If visual identifiable pieces of asbestos are present, you cannot use Asbestos % results and the whole soil sample is Hazardous Waste HP5 and HP7 Construction material containing Asbestos 17 06 05.

Therefore, if Asbestos in Soil above is "Y", the Asbestos % above is "C.1.1%", but the Asbestos Identifiable Pieces visible with the naked eye is "V", the soil is Hazardous Waste.

Identifiable Pieces are Cement, Fragments, Board, Rope etc. ie anything ACM that is not Loose Fibres.

All visual asbestos pieces need to be removed leaving only fibres (or micro pieces) with an Asbestos % Composition in Soil result of <0.1% for the soil to become non-hazardous waste.

			All visual a	spestos pieces need to	be removed leaving on	ly fibres (or micro piece	s) with an Asbestos % (composition in Soil rest	all of <0.1% for the soil	to become non-nazardo	ous waste.
Hazardous Property	Thresholds	Cut Off Value			If cells below turn y	ellow and the text tur	ns red, the samples s	hould be classified as	s Hazardous Waste.		
Corrosive HP8	≥5%	<1%	0.00490	0.00915	0.00000	0.00145	0.00264	0.00000	0.00000	0.00000	0.00000
Irritant HP4	≥10%	<1%	0.00680	0.00320	0.00000	0.00069	0.00301	0.00000	0.00000	0.00000	0.00000
Irritant HP4	≥20%	<1%	#VALUE!	#VALUE!	0.00000	#VALUE!	0.00430	0.00000	0.00000	0.00000	0.00000
Specifc Target Organ Toxicity HP5	≥1%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Specifc Target Organ Toxicity HP5	≥20%		0.00001	0.00032	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Specifc Target Organ Toxicity HP5	≥1%		0.00655	0.00842	0.00000	0.00108	0.00211	0.00000	0.00000	0.00000	0.00000
Specifc Target Organ Toxicity HP5	≥10%		#VALUE!	#VALUE!	0.00000	#VALUE!	#VALUE!	0.00000	0.00000	0.00000	0.00000
Aspiration Toxicity HP5	≥10%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥0.1%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥0.25%	<0.1%	0.00261	0.00075	0.00000	#VALUE!	#VALUE!	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥5%	<0.1%	#VALUE!	#VALUE!	0.00000	#VALUE!	#VALUE!	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥25%	<1%	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥0.25%	<0.1%	0.00007	0.00002	0.00000	#VALUE!	#VALUE!	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥2.5%	<0.1%	0.00235	0.00842	0.00000	0.00108	0.00211	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥15%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥55%	<1%	0.00007	#VALUE!	0.00000	#VALUE!	#VALUE!	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥0.1%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥0.5%	<0.1%	0.00249	#VALUE!	0.00000	#VALUE!	#VALUE!	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥3.5%	<0.1%	#VALUE!	#VALUE!	0.00000	#VALUE!	#VALUE!	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥22.5%	<1%	0.05583	0.01663	0.00000	0.00210	0.00600	0.00000	0.00000	0.00000	0.00000
Carcinogenic HP7	≥0.1%		0.04503	0.00842	0.00000	0.00122	0.00211	0.00000	0.00000	0.00000	0.00000
Carcinogenic HP7	≥0.1%		0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
Carcinogenic HP7	≥1%		0.00001	0.00032	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Carcinogenic HP7 Unknown TPH with ID	≥1,000mg/kg		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Carcinogenic HP7 b(a)p marker test (Unknown TPH with ID only) Cell only applicable if TPH >1,000mg/kg	≥0.01%		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
pH Corrosive HP8 pH (soil or leachate)	H8 ≥11.5		8.85	12.91	0.00	11.34	12.33	0.00	0.00	9.20	0.00
pH Corrosive HP8 pH (soil or leachate)	H8 ≤2		8.85	12.91	0.00	11.34	12.33	0.00	0.00	9.20	0.00
Toxic for Reproduction HP10	≥0.3%		0.04503	0.00757	0.00000	0.00122	0.00182	0.00000	0.00000	0.00000	0.00000
Toxic for Reproduction HP10	≥3%		0.00235	0.00842	0.00000	0.00108	0.00211	0.00000	0.00000	0.00000	0.00000
Mutagenic HP11	≥0.1%		0.00235	0.00842	0.00000	0.00108	0.00211	0.00000	0.00000	0.00000	0.00000
Mutagenic HP11 Unknown TPH with ID	≥1,000mg/kg		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mutagenic HP11 b(a)p marker test (Unknown TPH with ID only) Cell only applicable if TPH >1,000mg/kg	≥0.01%		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Mutagenic HP11	≥1%	1	0.00655	0.00757	0.00000	0.00057	0.00182	0.00000	0.00000	0.00000	0.00000
Produces Toxic Gases HP12 Sulphide	≥1,400mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Produces Toxic Gases HP12 Cyanide	≥1,200mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Produces Toxic Gases HP12 Thiocyanate	≥2,600mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HP13 Sensitising	≥10%		0.00655	0.00842	0.00000	0.00108	0.00211	0.00000	0.00000	0.00000	0.00000

371944 60 - 86 Royal College Street, London

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

TP/WS/BH Depth (m) Envirolab reference			TP1 0.50	BH1 0.50	WS1 0.40	TP2 0.50	WS2 0.30	WS2 0.80	WS2 1.40	WS3 0.40	WS3 0.80
Ecotoxic HP14 amended v6	≥25%	<0.1%	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	0.0000	0.0000	0.0000	0.00000
Ecotoxic HP14 amended v6	≥25%	«0.1% (except Be, V, Te, TI, Petrol, Diesel, Crude OI, Kerosene, White Spirit, Crosote, TPH, TTPHCWG, Phenol, Cresols, CampON, Thiocyante, Tolluene, Ethybenzene , Xylene + BTEX 1%).	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	0.0000	0.0000	0.0000	0.00000
Ecotoxic HP14 amended v6	≥25%	<0.1% (except Be, V, Te, T, Petrol, Diesel, Crude Oil, Kerosene, White Spirit, Crosote, TPH, TPHCWG, Phenol, Cresols, Xylenols, T-Phenols, CompCN, Thiocyanate, Tollene, Eltrylbenzene , Xylene + BTEX 1%).	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	0.0000	0.0000	0.0000	0.0000
Persistent Organic Pollutant (PCB, PBB or POP Pesticides)	>0.005%		0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
Persistent Organic Pollutant (Total Dioxins+Furans)	>0.0000015%		0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.000000000	0.000000000	0.000000000	0.000000000
Persistent Organic Pollutant (Individual Dioxins+Furans)	>0.0000015%		0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.000000000	0.0000000000	0.000000000

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

371944 60 - 86 Royal College Street, London

TP/WS/BH]	WS3	WS3	TP3	TP3	BH2			
Depth (m)		1.20	2.30	0.30	0.60	0.60			
Envirolab reference									
	ı								
% Moisture	%	19.5				20.8			
pH (soil)	Ī	8.35			8.70	8.60			
pH (leachate)									
Arsenic	mg/kg	7			17	29			
Cadmium Copper	mg/kg mg/kg	0.8 15			1.4 99	0.8 104			
CrVI or Chromium	mg/kg	47			24	28			
Lead	mg/kg	20			487	302			
Mercury Nickel	mg/kg mg/kg	<0.17 26			1.73 23	1.73 22			
Selenium	mg/kg	<1			<1	<1			
Zinc	mg/kg	56			666	124			
Barium	mg/kg								
Beryllium Vanadium	mg/kg mg/kg								
Cobalt	mg/kg								
Manganese	mg/kg								
Molybdenum Antimony	mg/kg mg/kg								
Aluminium	mg/kg								
Bismuth	mg/kg	1		1					
CrIII Iron	mg/kg mg/kg	1		1					
Strontium	mg/kg	1		1					
Tellurium	mg/kg	1		1					
Thallium Titanium	mg/kg mg/kg								
Tungsten	mg/kg								
Ammoniacal N	mg/kg								
ws Boron	mg/kg								
PAH (Input Total PAH OR individual Acenaphthene	mg/kg	<0.01	1	T	I	<0.01	I	1	I
Acenaphthylene	mg/kg	<0.01				<0.01			
Anthracene	mg/kg	<0.02				<0.02			
Benzo(a)anthracene	mg/kg	<0.04				<0.04			
Benzo(a)pyrene	mg/kg	<0.04				<0.04			
Benzo(b)fluoranthene Benzo(ghi)perylene	mg/kg mg/kg	<0.05 <0.05				<0.05 <0.05			
Benzo(k)fluoranthene	mg/kg	<0.07				<0.07			
Chrysene	mg/kg	<0.06				<0.06			
Dibenzo(ah)anthracene Fluoranthene	mg/kg	<0.04				<0.04			
Fluorene	mg/kg mg/kg	<0.08 <0.01				<0.08 <0.01			
Indeno(123cd)pyrene	mg/kg	<0.03				<0.03			
Naphthalene	mg/kg	<0.03				<0.03			
Phenanthrene	mg/kg	<0.03 <0.07				<0.03 <0.07			
Pyrene Coronene	mg/kg mg/kg	<0.01				<0.01			
Total PAHs (16 or 17)	mg/kg	<0.08				<0.08			
ТРН	<u>-</u> '								
Petrol	mg/kg								
Diesel	mg/kg								
Lube Oil	mg/kg		1	1	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>
Crude Oil	mg/kg	<u></u>		<u> </u>					
White Spirit / Kerosene	mg/kg	<u> </u>	 	 					
Creosote Unknown TPH with ID	mg/kg mg/kg	1	 	 				1	
Unknown TPHCWG			<u> </u>	1	i I	<u>. </u>	l I		<u>. </u>
Total Sulphide	mg/kg mg/kg		1	<u> </u>					
Complex Cyanide	mg/kg		<u></u>	<u> </u>					
Free (or Total) Cyanide	mg/kg								
Thiocyanate Elemental/Free Sulphur	mg/kg								
Phenois Input Total Phenois HPLC	mg/kg COR individual Phenol		I	1		l			l
results.								 	
Phenol	mg/kg								
Cresols	mg/kg	1		1					
Xylenols Resourcinol	mg/kg mg/kg	1		1					
Phenols Total by HPLC	mg/kg		1	1					
BTEX Input Total BTEX OR individ	ual BTEX results.			•					
Benzene	mg/kg								
Toluene Ethylbenzene	mg/kg mg/kg			1					
Xylenes	mg/kg	1		1					
Total BTEX	mg/kg								
PCBs (POPs)		· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	 	
PCBs Total (eg EC7/WHO12)	mg/kg				<0.007				
PBBs (POPs)	_								
Hexabromobiphenyl (Total or	_	1		1					
PBB153; 2,2',4,4',5,5'- if only	mg/kg	1]					
available)	l	L	1	1	1	l		1	l

0.60

Haswaste, developed by Dr. lain Haslock

371944 60 - 86 Royal College Street, London

TP/WS/BH
Depth (m)
Envirolab reference

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

0.60

Depth (m)		1.20	2.30	0.30	0.60	0.60						
Envirolab reference												
	1											
POPs Dioxine and Eurane Input T	POPs Dioxins and Furans Input Total Dioxins and Furans											
FOR Individual Dioxin and Furan results.												
		-	1	1		1	1			Υ		
2,3,7,8-TeCDD	mg/kg											
1,2,3,7,8-PeCDD	mg/kg									i		
1,2,3,4,7,8-HxCDD	mg/kg									i		
1,2,3,6,7,8-HxCDD	mg/kg											
1,2,3,7,8,9-HxCDD	mg/kg											
1,2,3,4,6,7,8-HpCDD	mg/kg											
OCDD	mg/kg											
2,3,7,8-TeCDF	mg/kg											
1,2,3,7,8-PeCDF	mg/kg											
2,3,4,7,8-PeCDF	mg/kg											
1,2,3,4,7,8-HxCDF	mg/kg									i		
										i		
1,2,3,6,7,8-HxCDF	mg/kg											
2,3,4,6,7,8-HxCDF	mg/kg											
1,2,3,7,8,9-HxCDF	mg/kg											
1,2,3,4,6,7,8-HpCDF	mg/kg									i		
1,2,3,4,7,8,9-HpCDF	mg/kg											
OCDF	mg/kg									1		
Total Dioxins and Furans		 								 		
וטומו טוטאוווא מווע דעומווא	mg/kg	L	l	l	l	l	l			<u>. </u>		
Some Pesticides (POPs unless of	therwise stated\											
Some resticides (FOFS unless of	illei wise stateu)											
Aldrin	mg/kg											
α Hexachlorocyclohexane (alpha-	9/119		1	1	†	 	1			<u> </u>		
HCH) (leave empty if total HCH	mg/kg											
results used)												
β Hexachlorocyclohexane (beta-												
HCH) (leave empty if total HCH	mg/kg											
results used)												
α Cis-Chlordane (alpha) <i>OR Total</i>												
	mg/kg											
Chlordane	0 0											
δ Hexachlorocyclohexane (delta-												
HCH) (leave empty if total HCH	mg/kg											
results used)												
Dieldrin	mg/kg											
Endrin	mg/kg											
χ Hexachlorocyclohexane (gamma-												
HCH) (lindane) <i>OR</i> Total HCH	mg/kg											
non) (indane) on rotarrion												
Heptachlor	mg/kg											
Hexachlorobenzene	mg/kg											
o,p'-DDT (leave empty if total DDT	mg/kg											
	mg/kg											
results used)												
p,p'-DDT OR Total DDT	mg/kg											
χ Trans-Chlordane (gamma)		1	1	1			1			1		
(leave empty if total Chlordane	mg/kg									1		
results used)	J.19									1		
	1											
Chlordecone (kepone)	mg/kg		<u> </u>			<u> </u>						
Pentachlorobenzene	mg/kg					1						
Mirex	mg/kg											
Toxaphene (camphechlor)	mg/kg		1	1	1	1	1					
	ilig/kg	·			l	l						
Tin												
	1											
Tin (leave empty if Organotin and	mg/kg									1		
Tin excl Organotin results used)	mg/kg									1		
	I	L	l	l	L	L	l			L		
Organotin	-											
Dibutyltin; DiBT	mg/kg				1	1				1		
Disatyitiii, Dib i	ilig/kg				<u></u>					L		
Tributulting TriDT	ma/!											
Tributyltin; TriBT	mg/kg		<u> </u>			1						
Triphopulting TriDT	"											
Triphenyltin; TriPT	mg/kg									1		
Tetrabutyltin; TeBT	mg/kg											
Tin excluding Organotin		·						i .				
	1				1	ı						
Tin excl Organotin	mg/kg	Ī	Ī	Ī	1	1	Ī			1		
	l	<u> </u>	I	I	l	l	l					

Haswaste, developed by Dr. lain Haslock

371944 60 - 86 Royal College Street, London

TP/WS/BH Depth (m) Envirolab reference

Asbestos in Soil
Asbestos detected in Soil (enter Y or N)

Asbestos % Composition in Soil (Matrix Loose Fibres or Microscopic Identifiable Pieces only)

Carcinogenic HP7 % Asbestos in Soil (fibres or micro pieces)

Please be advised, if the calculation cell is "0.00000" DOES NOT MEAN asbestos testing has been undertaken and the result is zero.

Asbestos Identifiable Pieces visible with the naked eye detected in the Soil (enter Y or N)

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

WS3	WS3	TP3	TP3	BH2				
1.20	2.30	0.30	0.60	0.60				
		16 /	Ashastas in Sail ahaya	is "Y", the soil is Hazard	ous Wasta UDE and U	97		
	1	" /	ASDESIOS III SOII ADOVE I	s T, trie soil is nazaro	ous waste nro and n	F/	I	
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
If Asbestos in Soil abo	ve is "Y", but Asbestos	% above is "<0.1%", the	e soil is Non Hazardous	Waste. You can only	use Asbestos % results	where loose fibres or n	nicro pieces are only pre	esent. You cannot use
	,	,	Asbestos % results	when visual identifiable	pieces are present.	1		1

If visual identifiable pieces of asbestos are present, you cannot use Asbestos % results and the whole soil sample is Hazardous Waste HP5 and HP7 Construction material containing Asbestos 17 06 05.

Therefore, if Asbestos in Soil above is "Y", the Asbestos % above is "C.1.1%", but the Asbestos Identifiable Pieces visible with the naked eye is "V", the soil is Hazardous Waste.

Identifiable Pieces are Cement, Fragments, Board, Rope etc. ie anything ACM that is not Loose Fibres.

All visual asbestos pieces need to be removed leaving only fibres (or micro pieces) with an Asbestos % Composition in Soil result of <0.1% for the soil to become non-hazardous waste.

				sbestos pieces need to	····· • • • • • • • • • • • • • • • • •	, (,				
Hazardous Property	Thresholds	Cut Off Value			If cells below turn y	ellow and the text tur	ns red, the samples s	hould be classified a	s Hazardous Waste.		
Corrosive HP8	≥5%	<1%	0.00801	0.00000	0.00000	0.00685	0.00729	0.00000	0.00000	0.00000	0.00000
Irritant HP4	≥10%	<1%	0.00211	0.00000	0.00000	0.01343	0.01234	0.00000	0.00000	0.00000	0.00000
Irritant HP4	≥20%	<1%	#VALUE!	0.00000	0.00000	0.01583	#VALUE!	0.00000	0.00000	0.00000	0.00000
Specifc Target Organ Toxicity HP5	≥1%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Specifc Target Organ Toxicity HP5	≥20%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Specifc Target Organ Toxicity HP5	≥1%		0.00726	0.00000	0.00000	0.00465	0.00426	0.00000	0.00000	0.00000	0.00000
Specifc Target Organ Toxicity HP5	≥10%		#VALUE!	0.00000	0.00000	#VALUE!	#VALUE!	0.00000	0.00000	0.00000	0.00000
Aspiration Toxicity HP5	≥10%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥0.1%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥0.25%	<0.1%	#VALUE!	0.00000	0.00000	0.00242	0.00317	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥5%	<0.1%	#VALUE!	0.00000	0.00000	#VALUE!	#VALUE!	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥25%	<1%	#VALUE!	0.00000	0.00000	#VALUE!	#VALUE!	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥0.25%	<0.1%	#VALUE!	0.00000	0.00000	0.00017	0.00014	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥2.5%	<0.1%	0.00726	0.00000	0.00000	0.00461	0.00426	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥15%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥55%	<1%	0.00006	0.00000	0.00000	0.00014	0.00006	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥0.1%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥0.5%	<0.1%	#VALUE!	0.00000	0.00000	0.00492	0.00446	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥3.5%	<0.1%	#VALUE!	0.00000	0.00000	#VALUE!	#VALUE!	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥22.5%	<1%	0.00720	0.00000	0.00000	0.06453	0.03675	0.00000	0.00000	0.00000	0.00000
Carcinogenic HP7	≥0.1%		0.00726	0.00000	0.00000	0.04870	0.02392	0.00000	0.00000	0.00000	0.00000
Carcinogenic HP7	≥0.1%		0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
Carcinogenic HP7	≥1%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Carcinogenic HP7 Unknown TPH with ID	≥1,000mg/kg		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Carcinogenic HP7 b(a)p marker test (Unknown TPH with ID only) Cell only applicable if TPH >1,000mg/kg	≥0.01%		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
pH Corrosive HP8 pH (soil or leachate)	H8 ≥11.5		8.35	0.00	0.00	8.70	8.60	0.00	0.00	0.00	0.00
pH Corrosive HP8 pH (soil or leachate)	H8 ≤2		8.35	0.00	0.00	8.70	8.60	0.00	0.00	0.00	0.00
Toxic for Reproduction HP10	≥0.3%		0.00423	0.00000	0.00000	0.04870	0.02392	0.00000	0.00000	0.00000	0.00000
Toxic for Reproduction HP10	≥3%		0.00726	0.00000	0.00000	0.00461	0.00426	0.00000	0.00000	0.00000	0.00000
Mutagenic HP11	≥0.1%		0.00726	0.00000	0.00000	0.00461	0.00426	0.00000	0.00000	0.00000	0.00000
Mutagenic HP11 Unknown TPH with ID	≥1,000mg/kg		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mutagenic HP11 b(a)p marker test (Unknown TPH with ID only) Cell only applicable if TPH >1,000mg/kg	≥0.01%		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Mutagenic HP11	≥1%	1	0.00423	0.00000	0.00000	0.00465	0.00352	0.00000	0.00000	0.00000	0.00000
Produces Toxic Gases HP12 Sulphide	≥1,400mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Produces Toxic Gases HP12 Cyanide	≥1,200mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Produces Toxic Gases HP12 Thiocyanate	≥2,600mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HP13 Sensitising	≥10%		0.00726	0.00000	0.00000	0.00465	0.00426	0.00000	0.00000	0.00000	0.00000

371944 60 - 86 Royal College Street, London

TP/WS/BH

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

Depth (m) Envirolab reference			1.20	2.30	0.30	0.60	0.60				
Ecotoxic HP14 amended v6	≥25%	<0.1%	#VALUE!	0.0000	0.0000	#VALUE!	#VALUE!	0.0000	0.0000	0.0000	0.00000
Ecotoxic HP14 amended v6	≥25%	<0.1% (except Be, V, Te, Tl, Petrol, Diesel, Crude Oil, Kerosene, White Spirit, Crosote, TPH, TPHCWG, Phenol, Cresols, Xylenols, T- Phenols, CompCN, Thiocyanate, Tolluene, Ethylbenzene Xylene + BTEX 1%).	#VALUE!	0.0000	0.0000	#VALUE!	#VALUE!	0.0000	0.0000	0.0000	0.00000
Ecotoxic HP14 amended v6	≥25%	<0.1% (except Be, V, Te, TI, Petrol, Diesel, Crude Oil, Kerosene, White Spirit, Crosote, TPH, TPHCWG, Phenol, Cresols, Xylenols, T- Phenols, CompCN, Thiocyanate, Tolluene, Ethylbenzene , Xylene + BTEX 1%).	#VALUE!	0.0000	0.0000	#VALUE!	#VALUE!	0.0000	0.0000	0.0000	0.00000
Persistent Organic Pollutant (PCB, PBB or POP Pesticides)	>0.005%		0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
Persistent Organic Pollutant (Total Dioxins+Furans) Persistent Organic Pollutant	>0.0000015%		0.0000000000	0.0000000000	0.0000000000	0.000000000	0.0000000000	0.0000000000	0.000000000	0.000000000	0.0000000000
(Individual Dioxins+Furans)	>0.0000015%]	0.000000000	0.000000000	0.0000000000	0.0000000000	0.000000000	0.000000000	0.000000000	0.0000000000	0.0000000000

APPENDIX P ARCHIVE DRAWINGS

FEET.

Directions for Making Plan.

Plan-8 feet to an inch. The plan to be in ink, and the drains are to be shown in .ed. Existing drains in blue-

SCALE OF $\overset{\circ}{\underline{\hspace{-0.05cm}\mid}}$ $\overset{\circ}{\underline{\hspace{-0.05cm}\mid}}$ $\overset{\circ}{\underline{\hspace{-0.05cm}\mid}}$ N.B.-The Plan must show all the following particulars, viz :-A. Water Closels. B. Rain Water Pipes. C. Sinks to Yards and Area. D. Sinks to Kitchens, Sculleries, and Washhouses. E. Ventilating Pipes. F. Interceptor Supran Trap. Depth of Sewer below surface of Street 10 % Depth of basement floor χ

Situation of Premises. 60/70, REVAL COLLEG STREET, ST. PRIVILEMS.

Whether under Intimation

Whether New Building, Yes .

Depth of Sewer below, Mr Depth of Basement Floor below Street. Nore. Size of Sewer. Hor Andreaser 19' 1"

Position of Sewer to be shown on Plan. Condition of Outlet in Sewer. Condition of Outlet on Premises. DRAINGER TO DISCHARGE INTO EXISTING SYSTEM IN CHARGE ADJOINING PROPERTY. paper, good value an sublet This is a your commercion, which was made on

SHELL-MEX AND B.P. LTD Distributors for the Shell and BP Groups

LONDON DIVISION

P.O. BOX NO. 197, NUMBER ONE KINGSWAT

The Public Health Department, Metropolitan Borough of St. Paneras, Town Hell, Buston Road, LOTDEN, F.W.1.

J Date 121 am ant, 2161.

Deur Sira.

H.O. TRAINING OBTIRE : FO/TO, NOV.L COLLEGE TT.,

Polloging the criter's recent meeting with your Fr. Paught so enclose, in Augherto, forms and drawings illustrating our proposals for the drawings of the shown presides.

de rhould be ploused to receive your . Trevil of them -

Yours faithfully, for THEEL-MEN and B.F. 120. 1. J. 9 4xcc

ENGINDER : 10 DOT DIVISION.

The plans and sections must be indelibly made on a furnable ematerial to scale, preferable one first to eight text, and must despoted in Valentaea, and silven, amongst when things, the whold of this preferations and the position of exchange luthings in these insi, any proposed new building or new w.c. in light pink (otherwise clearly shown as new), existing drains in thus, and proposed drains in red, also the position of the compans, the mannes of the streams and numbers of the lenions immediately adjoining the premise, the levies that the proposed drains are consistent of the companies of the streams of the streams, and inclinations of the proposed draining (reducting sections along the first of the drains, the full of the drains bearing the streams of the drains that the stream of the

INITIAL LETTERS FOR REFERENCE

S=Sink. L=Lavatory. R-Bath WP=Wastepipe RWP=Rainwater Pipe. G=Gully.

Tap=Drawtap over. WC -- Water-closet. H-Reinal SP ... Soilpipe V=Vent or Vent Pipe. MH=: Manhole or Inspection Chamber.

T=Trap or Syphon Trap. FAI = Fresh Air Inlet CA=Clearing Arm. PA = Plunging Arm. WH=Washhouse. Sc=Scullery.

Grd=Ground. Fir=Floor (e.g. Bt. Fir. 1st Fir., &c.). Open space, open under, open over, to be stated.

10. 7 4271 10.411 20.811 83371

Plans and Sections and existing drain openings examined and Date. Public Health Inspector and Date Windowsk

Drainage completed as approved and Date

Public Health Inspector and Date

of Bichang. Medical Officer of Health.

Plans of proposed drainage approved.

1542