Consider INITIAL evaluation of Lightwell construction:

For INITIAL evaluation calcs, ASSUME:

No groundwater present.

London CLAY soil.

Lightwell construction to be reinforced concrete. (NB: Final construction may be reinforced brickwork/blockwork on reinforced concrete slab.)

"Backfill to wall stems to be granular FILL.

10kN/m² surface surcharge.

Consider weight of Lightwell (per m run):

Base slab = $3.1 \times 0.3 \times 24 \text{kN/m}^3 = 22.32 \text{kN/m}$

ka = 0.39

Wall stem = $2.2 \times 0.3 \times 24 \text{kN/m}^3 = 15.84 \text{kN/m}$

Backfill = $2.2 \times 0.3 \times 18 \text{kN/m}^3 = 11.88 \text{kN/m}$

i.e. Total Weight = 50.04kN/m

Say, 3100 wide

Take moments at and above u/s slab/existing basement wall :

 $22.34 \times 1.55 + 15.84 \times 2.65 + 11.88 \times 2.95 - 32.50$ = say, 79kNm/m

Hence.

Resultant at 79/50.04 = 1.579m from existing basement wall.

Therefore, eccentricity (e) = 1.550 - 1.579 = -0.029m from C/L base slab

Thus, $q_{ref(atter Meyerhof)} = 50.04/(3.1 - (2 \times 0.029))$ = say, 16.5kN/m²/m Consider moments above u/s of base for Active Force (per m run) :

 $34.13 \times 0.952 =$ say, 32.50kNm/m

By Inspection, Bearing Capacity of London CLAY and structural adequacy of lightwell construction OK!

