Kentish Town Road

Flood Risk Assessment & Surface Water Drainage Strategy Report

Enrique Madrid MEng		
Dimitris Linardatos BEng MSc CEng MICE FIHE		
26778		
Version 01	Notes/Amendments/Issue Purpose Issued for BIA	
02	Amended for BIA submission	
03	For Planning	
	Dimitris Linarda 26778 Version 01 02	

Cont	ents		Page
1	Introduction		3
2	2.2 Flood Risl2.3 Flood Risl	ssment k from Watercourses and Tidal Flooding k from Groundwater k from Surface Water and Overland Flows k from Reservoirs	4
3	Surface Water Ru3.1Existing R3.2Proposed		8
4		nwater for Later Use Techniques	9
5	Surface Water Ma	aintenance Strategy	12
6	Conclusions		14

Appendices:

Appendix A G	reenfield Calculations
--------------	------------------------

- Appendix B MicroDrainage Calculations (Runoff Volumes)
- Appendix C MicroDrainage Calculations (Attenuation Volumes)
- Appendix D Blue Roof Calculations and Typical Detail (Designed by Others)
- Appendix E Preliminary Drainage Layout
- Appendix F Exceedance Flow Routes
- Appendix G Topographical Survey
- Appendix H Camden SUDS Proforma

1 Introduction

This Flood Risk Assessment (FRA) and surface water strategy report has been produced to address Condition 16 of the Planning Permission and to accompany the Basement Impact Assessment (BIA) for 369-377 Kentish Town Road, London, NW5 2TJ.

This report has been carried out in accordance with the National Planning Policy Framework (NPPF) and the accompanying Planning Practice Guidance (PPG) "Flood Risk and Coastal Change". This report also incorporates advice and guidance from the Environment Agency, the Borough of Camden Strategic Flood Risk Assessment (SFRA) (July 2014) and CIRIA documents.

2 Flood Risk Assessment

2.1 Flood Risk from Watercourses and Tidal Flooding

The EA's indicative floodplain map shows that the site is located in Flood Zone 1 and is not at risk of fluvial flooding and/or tidal. Developments in this flood zone do not have any restrictions, provided they do not increase the risk of flooding elsewhere.

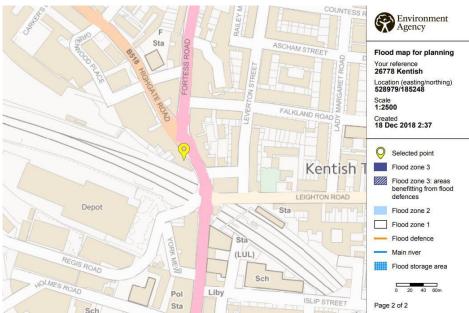


Figure 2.1: Extract from EA Flood Map for Planning

2.2 Flood Risk from Groundwater

Groundwater flooding occurs when water originating from sub-surface permeable strata emerges from the ground, typically after prolonged rainfall.

The "Increased Susceptibility to Elevated Groundwater" map in Camden Council's SFRA indicates that the proposed site is in an area with no recorded historic groundwater flooding and is not susceptible to elevated groundwater levels. An extract from the map is included in Figure 2.2 below.

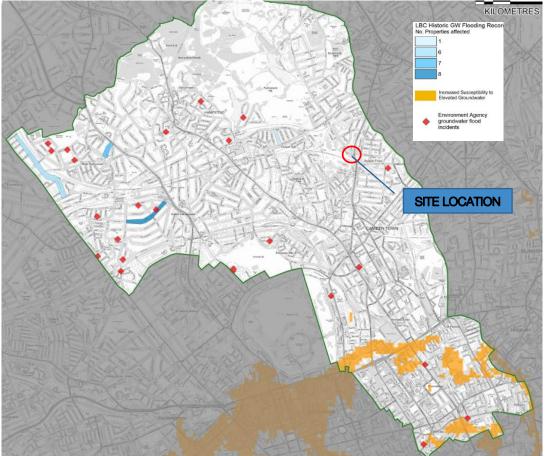


Figure 2.2: Extract from Figure 4e (Camden's SFRA-Appendix B)

In addition to the above, the site-specific investigation report, found clay in all exploratory holes in a depth from 1 to 2 meters below ground level. These findings match the information from the British Geological Survey (BGS) shown in Figure 2.3 below.

Figure 2.3: Extract from BGS Bedrock Geological Map Groundwater flood risk is therefore considered negligible.

2.3 Flood Risk from Surface Water and Overland Flows

Surface water flooding occurs when intense rainfall is unable to soak into the ground or enter a drainage system due to blockages or the capacity of the system being exceeded. Overland flows can also be generated by burst water mains, failed dams and any failure in a system storing or transferring water.

The EA's indicative Surface Water Flooding Map, Figure 2.4, shows that the site is at low risk of surface water flooding.

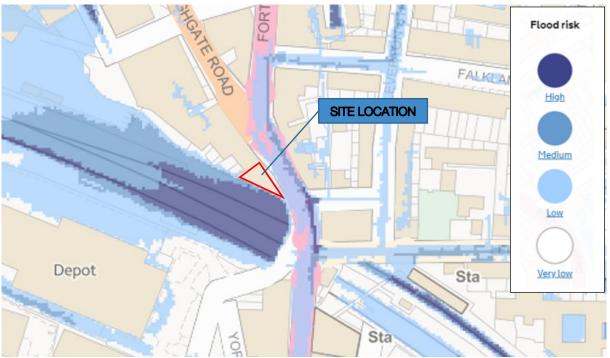


Figure 2.4 Environment Agency Surface Water Flood Risk Map

The site forms a triangle shape bounded to the south by the main railway passing through Kentish Town and to the East by Kentish Town Road.

The map in Figure 2.4 shows that the railway is at high risk of flooding from surface water, however this cannot affect the site as the railway is at a lower level in comparison with the site.

This map also shows that the western side of Kentish Town Road is at low risk of flooding, increasing to high risk at the eastern side of the road.

Therefore, the flood risk from surface water and overland flows is considered low.

2.4 Flood Risk from Reservoirs

The EA provides information on flood risk from reservoirs. The Figure below shows that the site is not at risk of reservoir flooding.

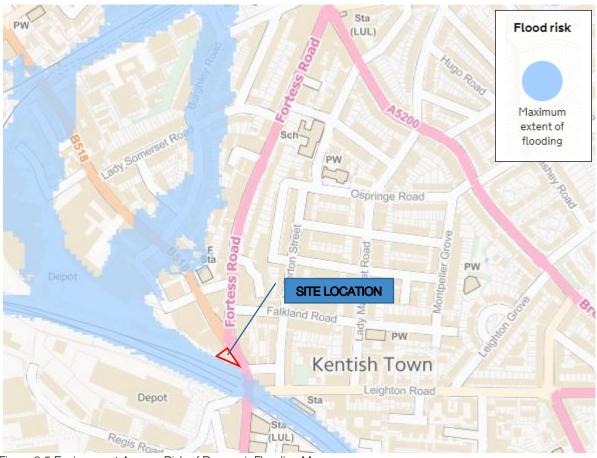


Figure 2.5 Environment Agency Risk of Reservoir Flooding Map

3 Surface Water Run-Off Assessment

3.1 Existing Run-Off

The total site area is approximately 370m² or 0.037 ha, which is all currently impermeable

The existing run-off rate for the 1 in 100-year storm event was calculated using the modified rational method as shown below:

 $Q_x = 2.78 \text{ x i x A}$

Where 'x' is the return period in years, 'A' is the catchment area in ha and 'i' is the rainfall intensity in mm/hr as estimated from Micro Drainage software.

The existing run-off rates for storm events of several different return periods were calculated using the Greenfield Runoff Estimator tool from uksuds.com:

 $\begin{array}{lll} Q_{bar\,gf} &= 0.19 \text{ I/sec} \\ Q_{1\,gf} &= 0.16 \text{ I/sec} \\ Q_{30\,gf} &= 0.42 \text{ I/sec} \\ Q_{100\,gf} &= 0.59 \text{ I/sec} \end{array}$

The Greenfield run-off rates have been calculated by multiplying the 100-year growth curve factor by Q_{bar} . The Greenfield run-off rate is estimated based on a minimum catchment area of 0.1ha. Therefore, the above Greenfield run-ff rates were interpolated for the development area. Refer to Appendix A for information.

3.2 Proposed Run-off

The proposed development will maintain the impermeable areas as existing. An additional allowance for climate change should also be made.

The current EA guidance states that for the years 2070 to 2115 there is a 50% chance the peak rainfall intensity will increase by 20% or more and that there is a 10% change it will increase by 40% or more. In order to decide which allowance to use the vulnerability of the development and the 'built in' resilience measures were considered.

Following the above a 40% increase in the current rainfall has been considered.

The run-off rate from the proposed development was calculated using the modified rational method.

 $Q_{100+40} = 2.78 \times 206.2 \times 0.037 = 21.20$ l/sec

4 SUDS Assessment

In accordance with the London Plan, EA guidelines, the SFRA, and CIRIA documents, surface water run-off should be managed as close to its source as possible. The London Plan states that all new developments should aim to reduce run-off to Greenfield rates "utilising SUDS unless there are practical reasons for not doing so".

The possibility of implementing SUDS at the site was assessed using a hierarchy of preferred surface water management methods. The following paragraphs discuss the various methods in order of that hierarchy and evaluate the site's suitability for each method.

4.1 Store Rainwater for Later Use

Rainwater harvesting promotes the storage and re-use of rainwater collected from roofs and hard surfaced areas. This type of system contributes to the reduction of runoff rates and volumes within a development.

The capacity of rainwater harvesting systems to attenuate rainwater depends on the water use within the building. If there is no activity in the building and the harvester is full, no attenuation will be provided during a subsequent storm event. In the worst-case scenario, the rainwater harvester will provide no attenuation. Therefore, rainwater harvesting systems have not been considered as they will provide no attenuation benefits in the worst-case scenario.

4.2 Infiltration Techniques

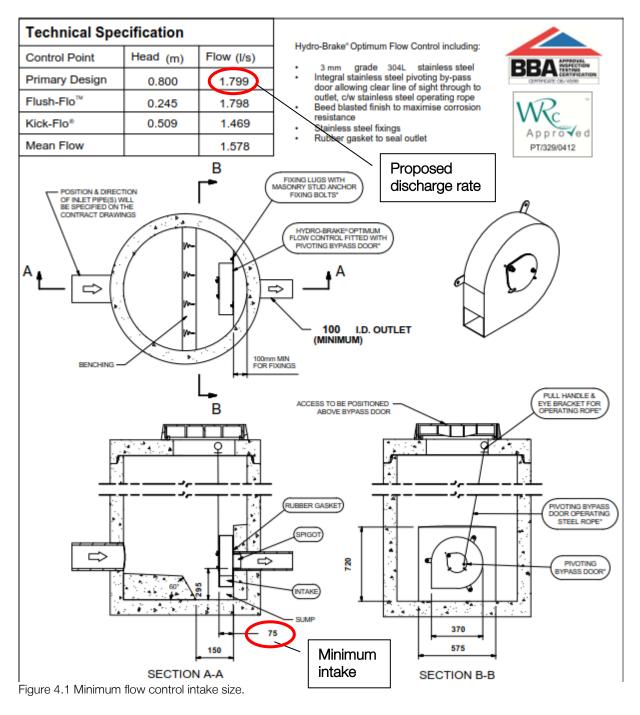
The site investigation confirms that the site is underlain by London Clay which is unsuitable for the use of infiltration techniques. Therefore, infiltration systems are not suitable for this development.

Additionally, the site layout and extents of the building footprint limits the potential for soakaways, as soakaways should be located a minimum of 5 m away from any structural foundations as per Part H of the Building Regulations and BRE 365: Soakaway Design. Furthermore, there are no watercourses in the vicinity of the site. Therefore, the only available option is to drain to the public sewers.

4.3 Attenuation

Where infiltration is not feasible, the next preferred SUDS is attenuation to Greenfield run-off rates. It is preferable to attenuate rainwater in ponds or open water features, opposed to below ground tanks, as these systems provide wider sustainability benefits. However, there is insufficient space within the site boundary to accommodate such systems.

The total roof area is 260 m², of which, approximately 110 m² is proposed for a blue roof system. The proposed discharge rate from the blue roofs will be restricted to 2.0 l/sec via a series of series of orifice outlets. This system (designed by a Blue Roof Specialist) provides approximately 11 m³ attenuation storage and accommodates the 1 in 100-year storm event plus 40% allowance for climate change. Refer to Appendix D for preliminary calculations and typical details.


It is proposed for the blue roofs to connect into tanked permeable paving, which is located in the external hardstanding areas. The volume of attenuation storage within the permeable strata has been designed to accommodate the 1 in 100-year storm event plus 40% allowance for climate change, whilst considering the additional 2 l/sec inflow from the blue roof system. Refer to Appendix C for MicroDrainage calculations.

Attenuating the discharge rate to the Greenfield run-off rates noted in Section 3.1 results in a high risk of flooding from blockages. A flow control of a very small diameter would be required to attenuate surface water to the 1 in 100-year Greenfield run-off rate (0.59 l/sec). Building

Regulations Part H states that surface water pipes should be at least 75mm diameter to reduce the flood risk from blockages.

It is therefore proposed to attenuate the flows from the site using a flow control device with at least 75mm intake opening. Calculations from Hydrobrake International manufacturer show that the discharge rate will need to be limited to a minimum of 1.8 l/sec to guarantee this minimum intake size, as shown on Figure 4.1 below.

A flow control device is proposed to limit surface water run-off from the development to 1.80 l/sec for all storm events – including the design storm with the climate change allowance. This will then discharge into the 1549 mm x 991 mm combined water public sewer located in Kentish Town Road via an existing drainage connection.

The proposed 1.80 l/sec discharge rate achieves a greater than a 50% betterment of the existing 1 in 1-year rainfall event, and a significant betterment of more intense storm events as calculated in Section 3.1.

A CCTV survey is required to confirm the existing drainage depth and arrangement. Reuse of an existing connection (or a new connection) is subject to Section 106 approval from Thames Water.

5 Surface Water Maintenance Strategy

The successful implementation and operation of a SUDS system depends on a robust and clear maintenance strategy being implemented. The following measures should form part of the site's proposed management plan.

All of the SUDS will be maintained by the future owners and will form part of the overall maintenance regime for the site.

SUDS		Maintenance	
Element	Maintenance Schedule	Required Action	Typical Frequency
		Inspect all components including, drains, membranes and roof structure for proper operation, integrity of waterproofing and structural stability	Annually and after severe storms
Blue Roofs	Monitoring / Inspections	Inspect drain inlets to ensure unrestricted runoff from the drainage layer to the conveyance or roof drain system	
Blue		Inspect underside of roof for evidence of leakage	
	Regular Maintenance	Remove debris and litter to prevent clogging of inlet drains	Half yearly and annually or as required
	Remedial Actions	If drain inlet has settled, cracked or moved, investigate and repair as appropriate	As required

SUDS	Maintenance			
Element	Maintenance Schedule	Required Action	Typical Frequency	
	Monitoring / Inspections	Initial inspection	Monthly for three months after installation	
		Inspect for evidence of poor operation and/or weed growth – if required, take remedial action	Three-monthly, 48 hours after large storms in first six months	
Permeable Paving		Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually	
aldi		Monitor inspection chambers	Annually	
emes	Regular Maintenance	Brushing and vacuuming -standard cosmetic sweep over whole surface	Once a year after autumn leaf fall	
_ <u> </u>		Rubbish and litter removal	As required	
	Remedial Actions	Remediate any landscaping which through vegetation maintenance or soil slip, has been raised to within 50mm of the level of the paving.	As required	
		Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural		

SUDS	Maintenance		
Element	Maintenance Schedule	Required Action	Typical Frequency
		performance or a hazard to users, and replace lost jointing material	
		Rehabilitation of surface and upper	Every 10 to 15 years
		substructure by remedial sweeping	or as required

Table 5.1 SUDS Maintenance Strategy as taken from the CIRIA SUDS Manual

6 Conclusions

- This Flood Risk Assessment (FRA) and surface water strategy report has been produced to address Condition 16 of the Planning Permission and to accompany the Basement Impact Assessment (BIA) for 369-377 Kentish Town Road, London, NW5 2TJ.
- The site is in Flood Zone 1, an area at low risk of flooding from Rivers and sea. The site is also at low risk of flooding from other sources (Surface water, groundwater, public sewers or reservoirs).
- Therefore, the proposed development has an acceptable flood risk within the terms and requirements of the NPPF.
- Condition 16 of planning permission (application ref: 2019/0910/P) notes that 20m³ attenuation storage is required. The drainage strategy has since been revised according to correspondence with the Local Lead Flood Authority (report ref: 26778 PM LLFA Response_1). The required volume of storage has been exceeded by providing attenuation storage via the blue roof and a permeable paving system.
- A blue roof system is proposed and will provide approximately 11 m³ attenuation storage. This will restrict surface water runoff from the building to 2.0 l/sec via a series of orifice outlets designed by a blue roof specialist. The blue roof will discharge into a tanked permeable paving system at ground level.
- 37.8 m³ attenuation storage via a tanked permeable paving system will be provided for the external hardstanding areas and 2.0 l/sec inflow from the blue roof.
- The proposed surface water run-off rate will be restricted to 1.80 l/sec. This run-off rate will be the limit for all storm events including the design storm with the climate change allowance.
- It is proposed for surface water run-off to discharge into the 1549 mm x 991 mm combined water public sewer located in Kentish Town Road via an existing drainage connection. A CCTV survey is required to confirm the existing drainage depth and arrangement.
- A Section 106 application will be made to the Water Authority for consent to connect to the public sewer.

Appendix A

Greenfield Calculations

Calculated by:	Enrique Rodriguez Madrid
Site name:	26778 Kentish Town
Site location:	NW5 2TJ

This is an estimation of the greenfield runoff rate limits that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the SuDS Manual, C753 (Ciria, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Greenfield runoff estimation for sites

www.uksuds.com | Greenfield runoff tool

Site coordinates

Latitude:	51.55135° N
Longitude:	0.14106° W
Reference:	6507932
Date:	2018-12-18T15:16:49

Methodology	FEH Statistical			
Site characteristics				
Total site area (ha)			0.1	
Methodology				
Qmed estimation meth	nod	Calculate fro	om BFI and SAAR	
BFI and SPR estimation method		Specify BFI manually		
HOST class		N/A		
BFI / BFIHOST		0.2		
Qmed (l/s)		NaN		
Qbar / Qmed Conversion Factor		1.14		

Hydrological characteristics

۱ L

Hydrological characteristics	Default	Edited
SAAR (mm)	641	641
Hydrological region	6	6
Growth curve factor: 1 year	0.85	0.85
Growth curve factor: 30 year	2.3	2.3
Growth curve factor: 100 year	3.19	3.19

Notes:

(1) Is Q_{BAR} < 2.0 l/s/ha?

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consents are usually set at 5.0I/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set in which case blockage work must be addressed by using appropriate drainage elements. (3) Is SPR/SPRHOST ≤ 0.3 ?

Interpolating for a 0.037Ha:
1 in 1=0.16 l/s
1 in 30=0.42 l/s
1 in 100=0.59 l/s

Ì	Greenfield runoff rates	Default	Edited
	Qbar (l/s)	NaN	0.5
i	1 in 1 year (l/s)	NaN	0.42
I	1 in 30 years (l/s)	NaN	1.14
I	1 in 100 years (l/s)	NaN	1.59

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at http://uksuds.com/terms-and-conditions.htm. The outputs from this tool have been used to estimate storage volume requirements. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for use of this data in the design or operational characteristics of any drainage scheme.

Appendix B

MicroDrainage Calculations (Runoff Volumes)

RAINFALL MODELLING FOR POINT DATA AT 528980,185243

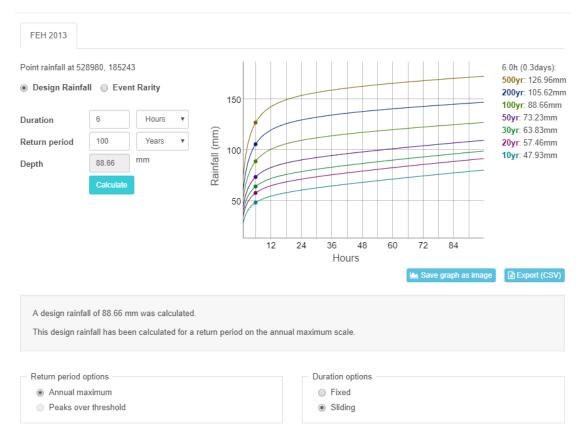


Figure H2.1. Rainfall depths for the 6h storm events (FEH method, from Flood Estimation Handbook Web Service)

🚔 Rural Runoff Ca	alculator	$ \square$ \times
🛎 📖 🔉		
	Greenfield Volume	
Micro Drainage	Greenfield Runoff Volume Input	Results
	Rainfall Model FEH Rainfall Return Period (Years) 1 Storm Duration (mins) 360	PR% 43.83
	Version 1999 ∨ Site GB 528850 184800 TQ 28850 84800 Area (ha) 0.037 C (1km) 0.027 D3 (1km) 0.246 SAAR (mm) Map D1 (1km) 0.331 E (1km) 0.335 CWI 99.240 D2 (1km) 0.318 F (1km) 2.471 SPR Host 41.260 Areal Reduction Factor 1.00 URBEXT 1990 ∨ 0.4164	Greenfield Runoff Volume (m ²) 3.473
IH 124		
ICP SUDS		
ADAS 345		
FEH		
ReFH2		
Greenfield Volume		
Greenfield Volume (ReFH2)		
	ОК	Cancel Help

Figure H2.2. Greenfield Runoff volume calculation (1 in 1-year - 6hr event)

🚆 Rural Runoff Ca	lculator					×
a 111 121						
	Greenfield Volume					
Micro Drainage	Greenfield Runoff Volume Input			Resu	lts	
	Rainfall Model FEH Rainfall V	Return Period (Years) 30 Storm Duration (mins) 36			PR% 46.21	
	Version 1999 ∨ Site GB 528850 184800 TQ 28850 84800 C (28850 84800 C (1km) -0.027 D3 (1km) 0.246 D1 (1km) 0.331 E (1km) 0.335 D2 (1km) 0.318 F (1km) 2.471 Areal Reduction Factor 1.00	SAAR (mm) Map 66 CWI 99 SPR Host 41	037 58 9.240 1.260 4164 Calculate		nfield Run olume (m³) 9.659	
IH 124			Calculate			
ICP SUDS						
ADAS 345						
FEH						
ReFH2						
Greenfield Volume						
Greenfield Volume (ReFH2)						
			ОК	Cancel	Hel	p

🚆 Rural Runoff Ca	lculator			— D	\times
😂 🛄 🐹					
	Greenfield Volume				
Micro Drainage	Greenfield Runoff Volume Input	Results PR%			
	Rainfall Model FEH Rainfall V	Return Period (Years) Storm Duration (mins)	100 360	48.26	
	Version 1999 ∨ Site GB 528850 184800 TQ 28850 84800 C (28850 84800 C (1km) -0.027 D3 (1km) 0.246 D1 (1km) 0.331 E (1km) 0.335 D2 (1km) 0.318 F (1km) 2.471 Areal Reduction Factor 1.00	Area (ha) SAAR (mm) Map CWI SPR Host URBEXT 1990 V	0.037 668 99.240 41.260 0.4164 Calculate	Greenfield R Volume (r 14.293	n³)
IH 124					
ICP SUDS					
ADAS 345					
FEH					
ReFH2					
Greenfield Volume					
Greenfield Volume (ReFH2)					
			ОК	Cancel	Help
	Select maximad Pair	fall Model from the list			

Figure H2.4. Greenfield Runoff volume calculation (1 in 100-year - 6hr event)

Salect required Rainfall Model from the list Figure H2.3. Greenfield Runoff volume calculation (1 in 30-year – 6hr event)

Storm Event	Depth (mm)			0		Difference (m ³) (Proposed - Existing)
1 in 1 yr 6 hour	22.87	370	3.5	8.5	8.5	0
1 in 30 yr 6 hour	63.83	370	9.7	23.6	23.6	0
1 in 100 yr 6 hour	88.66	370	14.3	32.8	32.8	0
1 in 100 yr 6 hour plus 40% cc	124.124	370	20.02	45.9	45.9	0

Figure H2.5. Run-off volumes summary table

Appendix C

MicroDrainage Calculations (Attenuation Volumes)

	ers			1				Page
Alfred P	lace							
don								
E 7DP								– Micr
e 18/04/	2019 14:5	2		Designed	by bbonha	am		Drai
e BBATTE	ENUATION C	APACIT	Y	Checked b	У			DIGI
ovyze				Source Co	ntrol 201	18.1		
	Summary	of Resu	ults f	<u>or 100 yea</u>	r Return	Period	(+40%)	_
		F	Half Dra	ain Time : 6	4 minutes.			
	Storm	Max	Max	Max	Max	Max	Max	Status
	Event	Level	Depth	Infiltratio	n Control X	E Outflow	Volume	
		(m)	(m)	(l/s)	(l/s)	(1/s)	(m³)	
1 5	min Cummon	20.060	0 0 6 9	0		1 /	C F	O V
	min Summer min Summer			0.0		1.4 1.6	6.5 7.7	ОК
	min Summer			0.0		1.0	8.3	0 K
	min Summer			0.0		1.8	8.4	ОК
	min Summer			0.0		1.7	8.0	ОК
	min Summer			0.0		1.6	7.6	
	min Summer			0.0		1.4		
	min Summer			0.0		1.3	6.2	0 K
	min Summer			0.0		1.2	5.7	
	min Summer			0.0		1.1	5.3	
	min Summer			0.0		1.0	4.6	
	min Summer			0.0		0.8	3.7	
	min Summer			0.0		0.6	2.9	
	min Summer			0.0		0.5	2.4	
	min Summer			0.0		0.4	1.8	ОК
	min Summer			0.0		0.3	1.4	
	min Summer			0.0		0.3	1.2	
8640	min Summer	29.011	0.011	0.0	0.2	0.2	1.0	ΟK
10080	min Summer	29.010	0.010	0.0	0.2	0.2	0.9	ΟK
1 -		29.076	0.076	0.0) 1.5	1.5	7.2	ΟK
15	min Winter							
15	min Winter	Storm	F	Rain Flood	ed Discharg	ge Time-Pe		
15	min Winter	Storm Event		Rain Flood m/hr) Volum		-	ak	
15	min Winter			•- · -	e Volume	-	ak	
15			(m	m/hr) Volum (m³)	e Volume (m³)	-	ak	
15	15	Event	(m nmer 14	m/hr) Volum (m ³) 7.288 0	e Volume (m ³)	(mins	eak)	
15	15 30	Event min Sur	(m nmer 14 nmer 9	m/hr) Volum (m ³) 7.288 0 5.147 0	e Volume (m ³)	(mins	eak) 17	
15	15 30 60	Event min Sur min Sur	(m nmer 14 nmer 9 nmer 5	m/hr) Volum (m ³) 7.288 0 5.147 0 8.456 0	e Volume (m ³) .0 7.	(mins .1 .2 .4	2 ak) 17 30	
15	15 30 60 120	Event min Sur min Sur min Sur	(m nmer 14 nmer 9 nmer 5 nmer 3	m/hr) Volum (m ³) 7.288 0 5.147 0 8.456 0 4.696 0	e Volume (m ³)	(mins .1 .2 .4 .5	2 ak) 17 30 46	
15	15 30 60 120 180 240	Event min Sur min Sur min Sur min Sur min Sur min Sur	(m nmer 14 nmer 9 nmer 5 nmer 3 nmer 2 nmer 2	m/hr) Volum (m ³) 7.288 0 5.147 0 8.456 0 4.696 0 5.247 0 0.040 0	Volume (m³) .0 7 .0 9 .0 11 .0 13 .0 14	(mins .1 .2 .4 .5 .7 1 .6 1	2004 17 30 46 80 14 48	
15	15 30 60 120 180 240 360	Event min Sur min Sur min Sur min Sur min Sur min Sur min Sur	(m nmer 14 nmer 9 nmer 5 nmer 3 nmer 2 nmer 2 nmer 1	m/hr) Volum (m ³) 7.288 0 5.147 0 8.456 0 4.696 0 5.247 0 0.040 0 4.437 0	Volume (m³) .0 7 .0 9 .0 11 .0 13 .0 14 .0 15 .0 16	(mins .1 .2 .4 .5 .7 .6 .1 .6 .1 .6 .1 .8 .2	2004 17 30 46 80 14 48 214	
15	15 30 60 120 180 240 360 480	Event min Sur min Sur min Sur min Sur min Sur min Sur min Sur min Sur	(m nmer 14 nmer 9 nmer 5 nmer 3 nmer 2 nmer 2 nmer 1 nmer 1	m/hr) Volum (m ³) 7.288 0 5.147 0 8.456 0 4.696 0 5.247 0 0.040 0 4.437 0 1.439 0	Volume (m³) .0 7 .0 9 .0 11 .0 13 .0 14 .0 15 .0 16	(mins .1 .2 .4 .5 .7 1 .6 1 .8 2 .8 2	2000 2000 2000 2000 2000 2000 2000 200	
15	15 30 60 120 180 240 360 480 600	Event min Sur min Sur min Sur min Sur min Sur min Sur min Sur min Sur min Sur	(m nmer 14 nmer 9 nmer 5 nmer 3 nmer 2 nmer 2 nmer 1 nmer 1 nmer	m/hr) Volum (m ³) 7.288 0 5.147 0 8.456 0 4.696 0 5.247 0 0.040 0 4.437 0 1.439 0 9.544 0	e Volume (m ³) 0 7 0 9 0 11 0 13 0 14 0 15 0 16 0 17 0 18	(mins .1 .2 .4 .5 .7 1 .6 1 .8 2 .8 2 .6 3	<pre>17 30 46 80 .14 .48 214 276 340</pre>	
15	15 30 60 120 180 240 360 480 600 720	Event min Sur min Sur min Sur min Sur min Sur min Sur min Sur min Sur min Sur	(m nmer 14 nmer 9 nmer 5 nmer 3 nmer 2 nmer 2 nmer 1 nmer 1 nmer nmer	m/hr) Volum (m ³) 7.288 0 5.147 0 8.456 0 4.696 0 5.247 0 0.040 0 4.437 0 1.439 0 9.544 0 8.227 0	e Volume (m ³) 0 7 0 9 0 11 0 13 0 14 0 15 0 16 0 16 0 17 0 18 0 19	(mins .1 .2 .4 .5 .7 1 .6 1 .8 2 .8 2 .6 3 .2 4	234 276 240 200 200 200 200 200 200 200 200 200	
15	15 30 60 120 180 240 360 480 600 720 960	Event min Sur min Sur min Sur min Sur min Sur min Sur min Sur min Sur min Sur min Sur	(m nmer 14 nmer 9 nmer 5 nmer 3 nmer 2 nmer 1 nmer 1 nmer 1 nmer nmer	m/hr) Volum (m ³) 7.288 0 5.147 0 8.456 0 4.696 0 5.247 0 0.040 0 4.437 0 1.439 0 9.544 0 8.227 0 6.505 0	e Volume (m ³) 0 7 0 9 0 11 0 13 0 14 0 15 0 16 0 16 0 17 0 18 0 19 0 20	(mins .1 .2 .4 .5 .7 1 .6 1 .8 2 .8 2 .6 3 .2 4 .2 5	234 276 284 276 284 276 284 276 284 276 284 276 284 276 284 294 295 295 295 295 295 295 295 295 295 295	
15	15 30 60 120 180 240 360 480 600 720 960 1440	Event min Sur min Sur	(m nmer 14 nmer 9 nmer 5 nmer 3 nmer 2 nmer 1 nmer 1 nmer 1 nmer nmer nmer nmer	m/hr) Volum (m³) 7.288 0 5.147 0 8.456 0 4.696 0 5.247 0 0.040 0 4.437 0 1.439 0 9.544 0 8.227 0 6.505 0	e Volume (m ³) 0 7 0 9 0 11 0 13 0 14 0 15 0 16 0 16 0 17 0 18 0 19 0 20 0 21	(mins .1 .2 .4 .5 .7 1 .6 1 .8 2 .8 2 .6 3 .2 4 .2 5 .8 7	234 276 284 28	
15	15 30 60 120 180 240 360 480 600 720 960 1440 2160	Event min Sur min Sur	(m nmer 14 nmer 9 nmer 5 nmer 2 nmer 2 nmer 1 nmer 1 nmer 1 nmer nmer nmer nmer	m/hr) Volum (m³) 7.288 0 5.147 0 8.456 0 4.696 0 5.247 0 0.040 0 4.437 0 1.439 0 9.544 0 8.227 0 6.505 0 3.341 0	Volume (m³) .0 7 .0 9 .0 11 .0 13 .0 14 .0 15 .0 16 .0 17 .0 18 .0 19 .0 20 .0 21 .0 23	(mins .1 .2 .4 .5 .7 .1 .6 .1 .8 .2 .8 .2 .4 .2 .5 .8 .7 .4 .1	2ak) 17 30 46 80 .14 .48 214 276 340 60 228 766 .28	
15	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880	Event min Sur min Sur	(m nmer 14 nmer 9 nmer 5 nmer 3 nmer 2 nmer 1 nmer 1 nmer 1 nmer nmer nmer nmer nmer nmer	m/hr) Volum (m³) 7.288 0 5.147 0 8.456 0 4.696 0 5.247 0 0.040 0 4.437 0 1.439 0 9.544 0 8.227 0 6.505 0 3.341 0 2.635 0	e Volume (m³) .0 7 .0 9 .0 11 .0 13 .0 14 .0 15 .0 16 .0 17 .0 18 .0 19 .0 20 .0 21 .0 23 .0 24	(mins .1 .2 .4 .5 .7 .7 .1 .6 .1 .8 .2 .4 .2 .5 .2 .4 .2 .5 .8 .7 .4 .1 .1 .2 .4 .5 .5 .7 .1 .6 .1 .2 .4 .5 .5 .7 .1 .6 .3 .2 .4 .5 .5 .2 .4 .5 .5 .2 .4 .5 .5 .2 .4 .5 .5 .5 .5 .5 .5 .2 .4 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	234 17 30 46 80 14 48 214 276 340 400 228 766 228 766 228 296	
15	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	Event min Sur min Sur	(m nmer 14 nmer 9 nmer 5 nmer 3 nmer 2 nmer 1 nmer 1 nmer 1 nmer nmer nmer nmer nmer nmer nmer	m/hr) Volum (m³) 7.288 0 5.147 0 8.456 0 4.696 0 5.247 0 0.040 0 4.437 0 1.439 0 9.544 0 8.227 0 6.505 0 3.341 0 2.635 0 1.883 0	Volume (m³) .0 7 .0 9 .0 11 .0 13 .0 14 .0 15 .0 16 .0 17 .0 18 .0 19 .0 20 .0 21 .0 23 .0 24 .0 26	(mins .1 .2 .4 .5 .7 .7 .1 .6 .1 .8 .2 .4 .2 .5 .8 .2 .4 .1 .2 .5 .3 .2 .4 .1 .5 .5 .7 .1 .6 .1 .5 .7 .1 .6 .1 .2 .5 .5 .7 .1 .6 .3 .2 .4 .5 .5 .2 .4 .5 .5 .5 .7 .1 .6 .3 .2 .5 .5 .2 .4 .5 .5 .5 .7 .1 .6 .3 .2 .5 .5 .2 .4 .5 .5 .5 .2 .4 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	234 17 30 46 80 14 48 214 276 340 400 228 766 228 766 228 266 228 296 208	
15	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	Event min Sur min Sur	(m nmer 14 nmer 9 nmer 5 nmer 3 nmer 2 nmer 1 nmer 1 nmer 1 nmer nmer nmer nmer nmer nmer nmer nmer	m/hr) Volum (m³) 7.288 0 5.147 0 8.456 0 4.696 0 5.247 0 0.040 0 4.437 0 1.439 0 9.544 0 8.227 0 6.505 0 3.341 0 2.635 0 1.883 0 1.482 0	e Volume (m³) .0 7 .0 9 .0 11 .0 13 .0 14 .0 15 .0 16 .0 17 .0 18 .0 19 .0 20 .0 21 .0 23 .0 24 .0 26 .0 27	(mins .1 .2 .4 .5 .7 1 .6 1 .8 2 .6 3 .2 4 .2 5 .8 7 .4 11 .6 14 .4 22 .7 29	2ak) 17 30 46 80 14 48 214 276 340 400 528 766 238 766 238 766 238 766 238 766 238 766 238 766 238 766 238 766 238 766 238 766 238 766 238 766 238 766 238 766 238 766 238 766 238 766 236 767 767 767 767 767 767 767 7	
15	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	Event min Sur min Sur	(m nmer 14 nmer 9 nmer 5 nmer 3 nmer 2 nmer 1 nmer 1 nmer 1 nmer nmer nmer nmer nmer nmer nmer nmer nmer	m/hr) Volum (m³) 7.288 0 5.147 0 8.456 0 4.696 0 5.247 0 0.040 0 4.437 0 1.439 0 9.544 0 8.227 0 6.505 0 3.341 0 2.635 0 1.883 0 1.482 0	Volume (m³) .0 7 .0 9 .0 11 .0 13 .0 14 .0 15 .0 16 .0 17 .0 18 .0 19 .0 20 .0 21 .0 23 .0 24 .0 26 .0 27 .0 28	(mins .1 .2 .4 .5 .7 1 .6 1 .8 2 .8 2 .6 3 .2 4 .2 5 .8 7 .4 11 .6 14 .4 22 .7 29 .7 36	234 17 30 46 80 14 48 214 276 340 400 228 266 228 266 228 266 228 266 208 236 572	
15	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	Event min Sur min Sur	(m nmer 14 nmer 9 nmer 5 nmer 3 nmer 2 nmer 1 nmer 1 nmer 1 nmer nmer nmer nmer nmer nmer nmer nmer nmer nmer	m/hr) Volum (m³) 7.288 0 5.147 0 8.456 0 4.696 0 5.247 0 0.040 0 4.437 0 1.439 0 9.544 0 8.227 0 6.505 0 3.341 0 2.635 0 1.883 0 1.482 0 1.230 0	e Volume (m³) .0 7 .0 9 .0 11 .0 13 .0 14 .0 15 .0 16 .0 17 .0 18 .0 19 .0 20 .0 21 .0 23 .0 24 .0 26 .0 27	(mins .1 .2 .4 .5 .7 1 .6 1 .8 2 .8 2 .6 3 .2 4 .2 5 .8 7 .4 11 .6 14 .4 22 .7 29 .7 36 .6 43	2ak) 17 30 46 80 14 48 214 276 340 400 528 766 238 766 238 766 238 766 238 766 238 766 238 766 238 766 238 766 238 766 238 766 238 766 238 766 238 766 238 766 238 766 238 766 238 766 236 767 767 767 767 767 767 767 7	

7 Alfred H	Place								
ondon									
C1E 7DP									– Micro
ate 18/04/	/2019 14:5	2		Desi	gned by	y bbonhan	n		Draina
le BBATTH	ENUATION C	APACITY	<i>_</i>	Chec	ked by				Didini
nnovyze				Sour	ce Cont	rol 2018	3.1		
	Summary	of Resu	lts f	or 10	0 year	Return 1	Period	(+40%)	_
	Storm	Max	Max	M	ax	Max	Max	Max	Status
	Event	Level	-			Control E			
		(m)	(m)	(1	/s)	(1/s)	(1/s)	(m³)	
30) min Winter	29.091	0.091		0.0	1.8	1.8	8.7	ОК
) min Winter				0.0	1.9	1.9	9.3	
) min Winter				0.0	1.9	1.9	9.1	
180) min Winter	29.090	0.090		0.0	1.8	1.8	8.5	ОК
240) min Winter	29.083	0.083		0.0	1.7	1.7	7.9	ОК
360) min Winter	29.072	0.072		0.0	1.4	1.4	6.9	ОК
480) min Winter	29.064	0.064		0.0	1.3	1.3	6.1	ОК
600) min Winter	29.057	0.057		0.0	1.1	1.1	5.4	ОК
720) min Winter	29.051	0.051		0.0	1.0	1.0	4.9	ОК
960) min Winter	29.043	0.043		0.0	0.9	0.9	4.1	ОК
144C) min Winter	29.033	0.033		0.0	0.7	0.7	3.1	ОК
2160) min Winter	29.025	0.025		0.0	0.5	0.5	2.3	ОК
2880) min Winter	29.020	0.020		0.0	0.4	0.4	1.9	ОК
4320) min Winter	29.014	0.014		0.0	0.3	0.3	1.3	ОК
5760) min Winter	29.011	0.011		0.0	0.2	0.2	1.1	ОК
7200) min Winter	29.009	0.009		0.0	0.2	0.2	0.9	ОК
864C) min Winter	29.008	0.008		0.0	0.2	0.2	0.8	ОК
10080) min Winter	29.007	0.007		0.0	0.1	0.1	0.7	ОК
		Storm Event		Rain m/hr)	Flooded Volume	Discharge Volume	• Time-Pe (mins)		
					(m³)	(m³)	(1111)		
	20	min Fili-	tor 0	5 1 4 7					
		min Wir			0.0	10.3		30	
	60	min Wir	ter 5	8.456	0.0	10.3 12.7		30 48	
	60 120	min Wir min Wir	ter 5 ter 3	<mark>8.456</mark> 4.696	0.0	10.3 12.7 15.1		30 48 86	
	60 120 180	min Wir min Wir min Wir	ter 5 ter 3 ter 2	<mark>8.456</mark> 4.696 5.247	0.0 0.0 0.0 0.0	10.3 12.7 15.1 16.5		30 48 86 22	
	60 120 180 240	min Wir min Wir min Wir min Wir	ter 5 ter 3 ter 2 ter 2	8.456 4.696 5.247 0.040	0.0 0.0 0.0 0.0 0.0	10.3 12.7 15.1 16.5 17.5	1	30 48 86 22 58	
	60 120 180 240 360	min Wir min Wir min Wir min Wir min Wir	ter 5 ter 3 ter 2 ter 2 ter 1	8.456 4.696 5.247 0.040 4.437	0.0 0.0 0.0 0.0 0.0 0.0	10.3 12.7 15.1 16.5 17.5 18.9	1	30 48 86 22 58 24	
	60 120 180 240 360 480	min Wir min Wir min Wir min Wir min Wir min Wir	ter 5 ter 3 ter 2 ter 2 ter 1 ter 1	8.456 4.696 5.247 0.040 4.437 1.439	0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.3 12.7 15.1 16.5 17.5 18.9 19.9	1 1 2 2	30 48 86 22 58 24 90	
	60 120 180 240 360 480 600	min Wir min Wir min Wir min Wir min Wir min Wir min Wir	ter 5 ter 3 ter 2 ter 2 ter 1 ter 1 ter 1	8.456 4.696 5.247 0.040 4.437 1.439 9.544	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.3 12.7 15.1 16.5 17.5 18.9 19.9 20.8	1 1 2 2 3	30 48 86 22 58 24 90 54	
	60 120 180 240 360 480 600 720	min Wir min Wir min Wir min Wir min Wir min Wir min Wir min Wir	ter 5 ter 3 ter 2 ter 2 ter 1 ter 1 ter 1 ter ter	8.456 4.696 5.247 0.040 4.437 1.439 9.544 8.227	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.3 12.7 15.1 16.5 17.5 18.9 19.9 20.8 21.5	1 1 2 2 3 4	30 48 86 22 58 24 90 54 18	
	60 120 180 240 360 480 600 720 960	min Wir min Wir min Wir min Wir min Wir min Wir min Wir min Wir min Wir	ter 5 ter 3 ter 2 ter 2 ter 1 ter 1 ter 1 ter ter ter	8.456 4.696 5.247 0.040 4.437 1.439 9.544 8.227 6.505	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.3 12.7 15.1 16.5 17.5 18.9 19.9 20.8 21.5 22.7	1 1 2 2 3 4 5	30 48 86 22 58 24 90 54 18 40	
	60 120 180 240 360 480 600 720 960 1440	<pre>min Wir min Wir</pre>	ter 5 ter 3 ter 2 ter 2 ter 1 ter 1 ter 1 ter ter ter ter	8.456 4.696 5.247 0.040 4.437 1.439 9.544 8.227 6.505 4.665	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.3 12.7 15.1 16.5 17.5 18.9 19.9 20.8 21.5 22.7 24.4	1 1 2 2 3 4 5 7	30 48 86 22 58 24 90 54 18 40 92	
	60 120 180 240 360 480 600 720 960 1440 2160	<pre>min Wir min Wir</pre>	ter 5 ter 3 ter 2 ter 2 ter 1 ter 1 ter 1 ter ter ter ter ter	8.456 4.696 5.247 0.040 4.437 1.439 9.544 8.227 6.505 4.665 3.341	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.3 12.7 15.1 16.5 17.5 18.9 19.9 20.8 21.5 22.7 24.4 26.2	1 1 2 2 3 4 5 7 11	30 48 86 22 58 24 90 54 18 40 92 44	
	60 120 180 240 360 480 600 720 960 1440 2160 2880	<pre>min Wir min Wir</pre>	ter 5 ter 3 ter 2 ter 2 ter 1 ter 1 ter 1 ter ter ter ter ter ter	8.456 4.696 5.247 0.040 4.437 1.439 9.544 8.227 6.505 4.665 3.341 2.635	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.3 12.7 15.1 16.5 17.5 18.9 19.9 20.8 21.5 22.7 24.4 26.2 27.6	1 1 2 2 3 4 5 7 11 5 15	30 48 86 22 58 24 90 54 18 40 92 44 00	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	9 min Wir min Wir	ter 5 ter 3 ter 2 ter 2 ter 1 ter 1 ter 1 ter ter ter ter ter ter ter ter ter ter ter ter ter ter ter ter ter ter	8.456 4.696 5.247 0.040 4.437 1.439 9.544 8.227 6.505 4.665 3.341 2.635 1.883	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.3 12.7 15.1 16.5 17.5 18.9 19.9 20.8 21.5 22.7 24.4 26.2 27.6 29.6	1 1 2 2 3 4 5 7 11 5 15 22	30 48 86 22 58 24 90 54 18 40 92 44 00 08	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	<pre>min Wir min Wir</pre>	ter 5 ter 3 ter 2 ter 2 ter 1 ter 1 ter 1 ter ter ter ter ter ter ter ter ter ter	8.456 4.696 5.247 0.040 4.437 1.439 9.544 8.227 6.505 4.665 3.341 2.635 1.883 1.482	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.3 12.7 15.1 16.5 17.5 18.9 19.9 20.8 21.5 22.7 24.4 26.2 27.6 29.6 31.0	1 1 2 2 3 4 5 7 11 5 15 22 29	30 48 86 22 58 24 90 54 18 40 92 44 00 08 44	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	<pre>min Wir min Wir m</pre>	ter 5 ter 3 ter 2 ter 2 ter 1 ter 1 ter 1 ter ter ter ter ter ter ter ter ter ter ter ter ter ter ter ter	8.456 4.696 5.247 0.040 4.437 1.439 9.544 8.227 6.505 4.665 3.341 2.635 1.883 1.482 1.230	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.3 12.7 15.1 16.5 17.5 18.9 19.9 20.8 21.5 22.7 24.4 26.2 27.6 29.6 31.0 32.2	1 1 2 2 3 4 5 7 11 5 22 29 37	30 48 86 22 58 24 90 54 18 40 92 44 00 08 44 44	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	<pre>min Wir min Wir m</pre>	ter 5 ter 2 ter 2 ter 1 ter 1 ter 1 ter ter ter ter ter ter ter ter ter ter ter ter ter ter ter ter	8.456 4.696 5.247 0.040 4.437 1.439 9.544 8.227 6.505 4.665 3.341 2.635 1.883 1.482 1.230 1.057	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.3 12.7 15.1 16.5 17.5 18.9 19.9 20.8 21.5 22.7 24.4 26.2 27.6 29.6 31.0 32.2 33.2	1 1 2 2 3 4 5 7 11 5 22 29 37 42	30 48 86 22 58 24 90 54 18 40 92 44 00 08 44 44 96	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	<pre>min Wir min Wir m</pre>	ter 5 ter 2 ter 2 ter 1 ter 1 ter 1 ter ter ter ter ter ter ter ter ter ter ter ter ter ter ter ter	8.456 4.696 5.247 0.040 4.437 1.439 9.544 8.227 6.505 4.665 3.341 2.635 1.883 1.482 1.230	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.3 12.7 15.1 16.5 17.5 18.9 19.9 20.8 21.5 22.7 24.4 26.2 27.6 29.6 31.0 32.2	1 1 2 2 3 4 5 7 11 5 22 29 37 42	30 48 86 22 58 24 90 54 18 40 92 44 00 08 44 44	

Price & Myers		Page 3
37 Alfred Place		
London		
WC1E 7DP		Micco
Date 18/04/2019 14:52	Designed by bbonham	Micro Drainage
File BBATTENUATION CAPACITY	Checked by	Diamaye
Innovyze	Source Control 2018.1	
Ra	infall Details	
Rainfall Model Return Period (years)	FSR Winter Storms Y 100 Cv (Summer) 0.7	
	and and Wales Cv (Winter) 0.8	
M5-60 (mm)	20.600 Shortest Storm (mins)	15
Ratio R	0.438 Longest Storm (mins) 100	
Summer Storms	Yes Climate Change % +	40
Tin	ne Area Diagram	
Tota	al Area (ha) 0.026	
Ti	me (mins) Area	
Fr	om: To: (ha)	
	0 4 0.026	

Price & Myers						Page 4
37 Alfred Place						
London						
WC1E 7DP						Micro
Date 18/04/2019 14:52	D	esigne	d by bbonh	nam		Drainage
File BBATTENUATION CAPACITY-	c	hecked	by			Diamage
Innovyze	S	ource	Control 20	018.1		
	Mo	del De	<u>tails</u>			
Storago	ic Onli	no Cour	r Level (m)	30 000		
Storage	13 01111		T Dever (III)	50.000		
Cel	lular	Storad	<u>e Structu</u>	re		
			m) 29.000			
Infiltration Coeffic Infiltration Coeffic				Pord	osity 0.95	0
	orene or	-uc (m/ i				
Depth (m) Area (m²) Inf	f. Area	(m²) D	epth (m) Are	ea (m²) I	nf. Area	(m²)
0.000 100.0		0.0	0.101	0.0		0.0
0.100 100.0		0.0				
	<u>Pump</u> (utflov	<u>Control</u>			
	Invert	Level	(m) 29.000			
	INVELC	DEVET	(III) 25.000			
	Depth	(m) Fl	ow (l/s)			
	0	100	2.0000			
	0	.100	2.0000			
	©1982	-2018	Innovyze			

cice & Myers							Page 1
Newman Street		2677	78 Kent	ish To	wn Road		
ndon							
T 1LT							Micco
te 24/04/2019 11:	15	Desi	lgned b	V EM			— Micro
le BBAttenuation			cked by				Draina
	capacity .				010 1		
Solutions		Sour	cce Con	trol 2	018.1		
Cummo res	of Result	a for 1		Dotur	n Dorio	d (+40	101
Summary			-			<u>u (+40</u>	<u>) () () () () () () () () () () () () ()</u>
	Hali	E Drain Ti	ime : 11	minute	s.		
Storm	Max Max	Max		Max	Max	Max	Status
Event	Level Depth	Infiltra	ation Co	ntrol Σ	Outflow	Volume	
	(m) (m)	(1/s) (1/s)	(1/s)	(m³)	
15 min Summer	9.817 0.217		0.0	1.8	1.8	1.6	Flood Risk
30 min Summer	9.829 0.229)	0.0	1.8	1.8		Flood Risk
60 min Summer	9.811 0.211		0.0	1.8	1.8	1.5	Flood Risk
120 min Summer	9.757 0.157		0.0	1.8	1.8		Flood Risk
180 min Summer	9.708 0.108	}	0.0	1.8	1.8	0.4	Flood Risk
240 min Summer	9.683 0.083	5	0.0	1.7	1.7	0.2	O K
360 min Summer	9.663 0.063	5	0.0	1.3	1.3	0.1	O K
480 min Summer	9.654 0.054		0.0	1.0	1.0	0.1	O K
600 min Summer	9.648 0.048	}	0.0	0.9	0.9	0.1	O K
720 min Summer	9.644 0.044		0.0	0.7	0.7	0.1	O K
960 min Summer	9.638 0.038	}	0.0	0.6	0.6	0.0	O K
1440 min Summer	9.632 0.032		0.0	0.4	0.4	0.0	O K
2160 min Summer			0.0	0.3	0.3	0.0	
2880 min Summer			0.0	0.2	0.2	0.0	
4320 min Summer			0.0	0.2	0.2	0.0	
5760 min Summer			0.0	0.1	0.1	0.0	
7200 min Summer			0.0	0.1	0.1	0.0	
8640 min Summer			0.0	0.1	0.1	0.0	
10080 min Summer 15 min Winter			0.0	0.1	0.1		
is min Winter	9.03/ U.23/		0.0	1.8	1.8	1.9	Flood Risk
	Storm	Rain			arge Time		
	Event	(mm/hr)	Volume (m³)	Volu (m³	-	lns)	
	15 min Summe:	r 147.288	0.0)	2.6	14	
	30 min Summe:				3.4	23	
	60 min Summe:				4.3	40	
	20 min Summe:				5.2	70	
	30 min Summe:				5.7	98	
	40 min Summe:				6.1	126	
	60 min Summe:				6.6	184	
	30 min Summe:				7.0	244	
	00 min Summe:				7.3	306	
	20 min Summe:				7.5	366	
	60 min Summe:				7.9	484	
	40 min Summe:				8.5	724	
21	60 min Summe:	r 3.341	0.0)	9.0	1096	
	80 min Summe				9.4	1468	

8640 min Summer 1.057

15 min Winter 147.288

2880 min Summer

4320 min Summer

5760 min Summer

7200 min Summer

10080 min Summer

2.635

1.883

1.482

1.230

0.929

0.0

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2018 Innovyze

1468

2148

2936

3544

4256

5088

15

9.4 9.9

10.1

10.3

10.4

10.4

2.9

rice & Myers								Page 2
0 Newman Street			2677	8 Kent	ish To	wn Road		
London								
W1T 1LT								Micco
Date 24/04/2019	11.15		Desi	gned by	7 FM			— Micro
		2		-	-			Drainac
File BBAttenuati	on capac	ıty		ked by				-
XP Solutions			Sour	ce Cont	trol 20	J18.1		
Summ	ary of R	esults	for 10	<u>)0 year</u>	Retur	n Perio	d (+40	<u>)응)</u>
Storm	Max	Max	Max	M	lax	Max	Max	Status
Event	Level	Depth I	nfiltra	tion Cor	ntrol Σ	Outflow	Volume	
	(m)	(m)	(1/s)) (1	/s)	(l/s)	(m³)	
20 min 11-	nter 9.846	0 246		0.0	1.8	1.8	2 0	Flood Risk
	nter 9.816			0.0	1.8	1.8		Flood Risk
120 min Wir				0.0	1.8	1.8		Flood Risk
180 min Wir				0.0	1.6	1.6		
240 min Wir				0.0	1.3	1.3	0.1	
360 min Wir				0.0	0.9	0.9	0.1	
480 min Wir				0.0	0.7	0.7	0.1	
600 min Wir				0.0	0.6	0.6	0.1	
720 min Wir	nter 9.636	0.036		0.0	0.5	0.5	0.0	ΟK
960 min Wir	nter 9.632	0.032		0.0	0.4	0.4	0.0	0 K
1440 min Wir	nter 9.626	0.026		0.0	0.3	0.3	0.0	0 K
2160 min Wir	nter 9.622	0.022		0.0	0.2	0.2	0.0	0 K
2880 min Wir	nter 9.620	0.020		0.0	0.2	0.2	0.0	0 K
4320 min Wir	nter 9.616	0.016		0.0	0.1	0.1	0.0	O K
5760 min Wir	nter 9.615	0.015		0.0	0.1	0.1	0.0	O K
7200 min Wir	nter 9.613	0.013		0.0	0.1	0.1	0.0	0 K
8640 min Wir	nter 9.612	0.012		0.0	0.1	0.1	0.0	0 K
10080 min Wir	nter 9.611	0.011		0.0	0.1	0.1	0.0	O K
	Stor	n	Rain	Flooded	Discha	rge Time	-Peak	
	Even	t ((mm/hr)	Volume	Volum	ne (mi	ns)	
				(m³)	(m³)			
	30 min	Winter	95.147	0.0		3.9	25	
	60 min	Winter	58.456	0.0		4.9	42	

				2 - 2 0 a - 9 0		
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
			95.147		3.9	25
60	min	Winter	58.456	0.0	4.9	42
120	min	Winter	34.696	0.0	5.9	72
180	min	Winter	25.247	0.0	6.5	96
240	min	Winter	20.040	0.0	6.9	126
360	min	Winter	14.437	0.0	7.5	182
480	min	Winter	11.439	0.0	7.9	250
600	min	Winter	9.544	0.0	8.2	306
720	min	Winter	8.227	0.0	8.5	366
960	min	Winter	6.505	0.0	9.0	498
1440	min	Winter	4.665	0.0	9.6	722
2160	min	Winter	3.341	0.0	10.2	1048
2880	min	Winter	2.635	0.0	10.7	1428
4320	min	Winter	1.883	0.0	11.2	2184
5760	min	Winter	1.482	0.0	11.6	2840
7200	min	Winter	1.230	0.0	11.8	3712
8640	min	Winter	1.057	0.0	11.9	4160
10080	min	Winter	0.929	0.0	12.0	4792

Price & Myers		Page 3
30 Newman Street	26778 Kentish Town Road	
London		
W1T 1LT		Micro
Date 24/04/2019 11:15	Designed by EM	- Micro Drainage
File BBAttenuation capacity	Checked by DL	Diamaye
XP Solutions	Source Control 2018.1	
Ra	infall Details	
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms Y 100 Cv (Summer) 0.7 and and Wales Cv (Winter) 0.8 20.600 Shortest Storm (mins) 0.438 Longest Storm (mins) 100 Yes Climate Change % +	50 40 15
Tin	ne Area Diagram	
Tota	al Area (ha) 0.011	
	ime (mins) Area om: To: (ha)	
	0 4 0.011	

Price & Myers						Page 4
30 Newman Street		26778 Ke	entish T	own Road		
ondon						
IT 1LT						Micco
Date 24/04/2019 11:	15	Designed	d bv EM			Micro
File BBAttenuation			-			Drainac
KP Solutions	capacity .		Control	2018 1		
		Source (2010.1		
		<u>Model Det</u>	ails			
	Storage is	Online Cover	r Level (m	n) 10.000		
	Poro	us Car Park	Struct	ure		
Infiltration Co	oefficient Ba	se (m/hr) 0.0	0000		Width (m)	1.5
Membrar	ne Percolation	(, ,	1000		Length (m)	
	Max Percolat		26.3 2 0 Dama		ope (1:X)	
	Sale	ty Factor Porosity	2.0 Depr	ession sto Vaporation	(mm/day)	5 3
		Level (m) 9			Depth (m)	
	Hudro-Brak	e® Optimum	Outflow	Control		
	<u>ilyaro bra</u>		OUCTION			
		nit Reference		073-1800-0	0.350-1800 0.350	
		sign Head (m) gn Flow (l/s)			1.8	
	Dest	Flush-Flo™		Ca	lculated	
				e upstrear		
		Application			Surface	
	S	ump Available	2		Yes	
		Diameter (mm)			73	
		ert Level (m)			9.600	
	-	Diameter (mm) Diameter (mm)			100 1200	
		Points		Flow (l/s		
	Design Point		0.350			
	Design Foinc	Flush-Flo™				
		Kick-Flo®				
	Mean Flow ove		-	1.		
The hydrological cal	culations hav	e been based	on the He	ad/Dischar	rge relatio	onship for t
Hydro-Brake® Optimum	as specified	. Should and	other type	of contro	ol device d	other than a
Hydro-Brake Optimum® invalidated	be utilised	then these st	corage rou	iting calcu	llations wi	LII De
Depth (m) Flow (l/s)) Depth (m) H	flow (l/s) De	pth (m) F	low (1/s)	Depth (m)	Flow (l/s)
0.100 1.8	3 1.200	3.2	3.000	4.8	7.000	7.3
0.200 1.	7 1.400	3.4	3.500	5.2	7.500	7.6
0.300 1.	7 1.600	3.6	4.000	5.5	8.000	7.8
0.400 1.		3.8	4.500	5.9	8.500	8.1
0.500 2.3		4.0	5.000	6.2	9.000	8.3
0.600 2.3		4.2	5.500	6.5	9.500	8.5
0.800 2.		4.4	6.000	6.8		
1.000 2.1	9 2.600	4.5	6.500	7.1		
		1982-2018 I				

rice & Myers							Page 1
0 Newman Street		267	78 Kent	ish Tow	n Road	L	
ondon							
IT 1LT							Micco
ate 24/04/2019 11:	13	Des	igned b	v EM			Micro
ile BBcascade.CAS			cked by	_			Drainag
	7			trol 20	10 1		
XP Solutions		Soui	rce Con	trol 20	18.1		
Cascade Summary of	Results fo	or BBAtt	enuatio	on capad	city -	Exter	nal areas.SRC
	The e has			0+61	w To Ov		m-
	Upstr Struct			OULIIO	w 18 0V	eriiow	10
BBAtten	uation capac:	ity-Blue	roof.SRC	X (N	one)	(Nor	ne)
	Half	Drain T	ime : 23	minutes.			
Storm	Max Max	Max	м	lax	Max	Max	Status
Event	Level Depth	Infiltra	tion Con	trol Σ O	utflow	Volume	
	(m) (m)	(1/s)) (1	/s) (1/s)	(m³)	
15 min Summer	9 853 0 252		0.0	1.8	1.8	· · ·	Flood Risk
30 min Summer			0.0	1.8	1.8		Flood Risk
60 min Summer			0.0	1.8	1.8		Flood Risk
120 min Summer			0.0	1.8			Flood Risk
180 min Summer			0.0	1.8			Flood Risk
240 min Summer			0.0	1.8	1.8		Flood Risk
360 min Summer			0.0	1.8			Flood Risk
480 min Summer			0.0	1.8			Flood Risk
600 min Summer			0.0	1.8	1.8		
720 min Summer			0.0	1.7	1.0		
960 min Summer			0.0	1.4	1.4		
1440 min Summer			0.0	1.4	1.4		
2160 min Summer			0.0	0.9	0.9		
2880 min Summer			0.0	0.9	0.9		
4320 min Summer				0.5	0.7		
5760 min Summer			0.0				
			0.0	0.4	0.4		ОК
7200 min Summer	9.629 0.029		0.0	0.4	0.4	0.0	0 K
	Storm	Rain	Flooded	Discharg	je Time	-Peak	
	Event	(mm/hr)	Volume (m³)	Volume (m³)	(mi	.ns)	
1	15 min Summer	147.288	0.0	9.	. 7	18	
3	30 min Summer	95.147	0.0	12.	. 7	34	
6	50 min Summer	58.456	0.0	15.	. 7	64	
12	20 min Summer	34.696	0.0	18.	. 7	116	
18	30 min Summer	25.247	0.0	20.	. 5	146	
24	10 min Summer	20.040	0.0	21.	. 7	178	
36	50 min Summer	14.437	0.0	23.	. 4	234	
48	30 min Summer	11.439	0.0	24.	. 8	286	
60)0 min Summer	9.544	0.0	25.	. 8	326	
72	20 min Summer	8.227	0.0	26.	. 7	376	
96	50 min Summer	6.505	0.0	28.	. 2	502	
144	10 min Summer	4.665	0.0	30.	. 3	736	
216	50 min Summer	3.341	0.0	32.	. 4	1120	
288	30 min Summer	2.635	0.0	34.	. 0	1460	
432	20 min Summer	1.883	0.0	36.	. 2	2192	
576	50 min Summer	1.482	0.0	37.	. 8	2928	
720)0 min Summer	1.230	0.0	39.	. 0	3656	

Price & Myers		Page 2
30 Newman Street	26778 Kentish Town Road	
London		
W1T 1LT		Mirro
Date 24/04/2019 11:13	Designed by EM	Drainage
File BBcascade.CASX	Checked by DL	Diamage
XP Solutions	Source Control 2018.1	

Cascade Summary of Results for BBAttenuation capacity - External areas.SRCX

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
8640	min Summ	er 9.627	0.027	0.0	0.3	0.3	0.0	O K
10080	min Summ	er 9.625	0.025	0.0	0.3	0.3	0.0	O K
15	min Wint	er 9.876	0.276	0.0	1.8	1.8	2.6	Flood Risk
30	min Wint	er 9.921	0.321	0.0	1.8	1.8	3.5	Flood Risk
60	min Wint	er 9.954	0.354	0.0	1.8	1.8	4.2	Flood Risk
120	min Wint	er 9.961	0.361	0.0	1.8	1.8	4.4	Flood Risk
180	min Wint	er 9.940	0.340	0.0	1.8	1.8	3.9	Flood Risk
240	min Wint	er 9.913	0.313	0.0	1.8	1.8	3.3	Flood Risk
360	min Wint	er 9.827	0.227	0.0	1.8	1.8	1.7	Flood Risk
480	min Wint	er 9.717	0.117	0.0	1.8	1.8	0.5	Flood Risk
600	min Wint	er 9.682	0.082	0.0	1.7	1.7	0.2	O K
720	min Wint	er 9.673	0.073	0.0	1.5	1.5	0.2	O K
960	min Wint	er 9.662	0.062	0.0	1.2	1.2	0.1	O K
1440	min Wint	er 9.651	0.051	0.0	1.0	1.0	0.1	O K
2160	min Wint	er 9.642	0.042	0.0	0.7	0.7	0.1	O K
2880	min Wint	er 9.637	0.037	0.0	0.6	0.6	0.0	O K
4320	min Wint	er 9.631	0.031	0.0	0.4	0.4	0.0	O K
5760	min Wint	er 9.627	0.027	0.0	0.3	0.3	0.0	O K
7200	min Wint	er 9.625	0.025	0.0	0.3	0.3	0.0	0 K
8640	min Wint	er 9.623	0.023	0.0	0.2	0.2	0.0	0 K
10080	min Wint	er 9.622	0.022	0.0	0.2	0.2	0.0	0 K

	torn vent		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)	
8640 m	min	Summer	1.057	0.0	40.0	4360	
10080 m	min	Summer	0.929	0.0	40.8	5088	
15 m	min	Winter	147.288	0.0	10.9	19	
30 m	min	Winter	95.147	0.0	14.3	36	
60 m	min	Winter	58.456	0.0	17.6	64	
120 m	min	Winter	34.696	0.0	21.0	118	
180 m	min	Winter	25.247	0.0	23.0	158	
240 m	min	Winter	20.040	0.0	24.3	190	
360 m	min	Winter	14.437	0.0	26.3	254	
480 m	min	Winter	11.439	0.0	27.8	292	
600 m	min	Winter	9.544	0.0	29.0	332	
720 m	min	Winter	8.227	0.0	30.0	398	
			6.505		31.6	520	
1440 m	min	Winter	4.665	0.0	34.0	748	
2160 m	min	Winter	3.341	0.0	36.4	1104	
			2.635		38.2	1496	
			1.883		40.8		
		Winter			42.6	2944	
		Winter			44.0	3584	
			1.057		45.1	4432	
10080 m	min	Winter	0.929	0.0	46.0	4976	
		©	L982-20	18 Inno	vyze		

Price & Myers Page 3 30 Newman Street 26778 Kentish Town Road London WIT 1LT Date 24/04/2019 11:13 Designed by EM File BBcascade.CASX Checked by DL XP Solutions Source Control 2018.1 Cascade Rainfall Details for BEAttenuation capacity - External areas.SF Rainfall Model FSR Winter Storms Yes Return Period (years) 100 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 20.600 Shortest Storm (mins) 15 Ratio R 0.438 Longest Storm (mins) 10000 Summer Storms Yes Climate Change % +40 Time Area Diagram Total Area (ha) 0.011 Time (mins) Area From: To: (ha) 0 4 0.011	age
London WIT 1LT Date 24/04/2019 11:13 File BBcascade.CASX XP Solutions Checked by DL XP Solutions Cascade Rainfall Details for BBAttenuation capacity - External areas.SF Rainfall Model Rainfall Model Region England and Wales Return Period (years) Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 20.600 Shortest Storm (mins) 15 Ratio R 0.438 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +40 Time Area Diagram Total Area (ha) 0.011 Time (mins) Area From: To: (ha)	
WIT 1LT Designed by EM Designed by EM File BBcascade.CASX Checked by DL Designed by EM XP Solutions Source Control 2018.1 Source Control 2018.1 Cascade Rainfall Details for BBAttenuation capacity - External areas.SF Rainfall Model FSR Winter Storms Yes Return Period (years) 100 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 20.600 Shortest Storm (mins) 15 Ratio R 0.438 Longest Storm (mins) 15 Summer Storms Yes Climate Change % +40 Time Area Diagram Total Area (ha) 0.011 Time (mins) Area From: To: (ha)	
Date 24/04/2019 11:13 Designed by EM File BBcascade.CASX Checked by DL XP Solutions Source Control 2018.1 Cascade Rainfall Details for BBAttenuation capacity - External areas.SF Rainfall Model FSR Return Period (years) 100 M5-60 (mm) 20.600 Shortest Storm (mins) Summer Storms Yes Climate Change % +40 Time Area Diagram Total Area (ha) 0.011 Time (mins) Area From: To:	
XP Solutions Source Control 2018.1 Cascade Rainfall Details for BBAttenuation capacity - External areas.SF Rainfall Model FSR Winter Storms Yes Return Period (years) 100 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 20.600 Shortest Storm (mins) 15 Ratio R 0.438 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +40 Time Area Diagram Total Area (ha) 0.011 Time (mins) Area From: To: (ha)	
XP Solutions Source Control 2018.1 Cascade Rainfall Details for BBAttenuation capacity - External areas.SF Rainfall Model FSR Winter Storms Yes Return Period (years) 100 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 20.600 Shortest Storm (mins) 15 Ratio R 0.438 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +40 Time Area Diagram Total Area (ha) 0.011 Time (mins) Area From: To: (ha)	
Cascade Rainfall Details for BBAttenuation capacity - External areas.SP Rainfall Model FSR Winter Storms Yes Return Period (years) 100 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 20.600 Shortest Storm (mins) 15 Ratio R 0.438 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +40 Time Area Diagram Total Area (ha) 0.011 Time (mins) Area From: To: (ha)	RCX
Rainfall ModelFSRWinter StormsYesReturn Period (years)100Cv (Summer)0.750Region England and WalesCv (Winter)0.840M5-60 (mm)20.600Shortest Storm (mins)15Ratio R0.438Longest Storm (mins)10080Summer StormsYesClimate Change %+40Time Area DiagramTotal Area (ha)0.011Time (mins)AreaFrom:To:(ha)	RCX
Return Period (years) 100 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 20.600 Shortest Storm (mins) 15 Ratio R 0.438 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +40 <u>Time Area Diagram</u> Total Area (ha) 0.011 Time (mins) Area From: To: (ha)	
Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 20.600 Shortest Storm (mins) 15 Ratio R 0.438 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +40 <u>Time Area Diagram</u> Total Area (ha) 0.011 <u>Time (mins) Area</u> From: To: (ha)	
M5-60 (mm) Ratio R Summer Storms 20.600 Shortest Storm (mins) 15 0.438 Longest Storm (mins) 10080 Yes Climate Change % +40 <u>Time Area Diagram</u> Total Area (ha) 0.011 <u>Time (mins) Area</u> From: To: (ha)	
Ratio R Summer Storms 0.438 Longest Storm (mins) 10080 Yes Climate Change % +40 <u>Time Area Diagram</u> Total Area (ha) 0.011 Time (mins) Area From: To: (ha)	
Summer Storms Yes Climate Change % +40 <u>Time Area Diagram</u> Total Area (ha) 0.011 <u>Time (mins) Area</u> <u>From: To: (ha)</u>	
Total Area (ha) 0.011 Time (mins) Area From: To: (ha)	
Time (mins) Area From: To: (ha)	
From: To: (ha)	
0 4 0.011	
0 4 0.011	
©1982-2018 Innovyze	

Price & Myers				E	Page 4
0 Newman Street	26778 Ke	entish Town	Road		
ondon					
71T 1LT					Micro
Date 24/04/2019 11:13	Designed	d by EM			
'ile BBcascade.CASX	Checked	by DL			Draina
IP Solutions	Source (Control 201	8.1		
-	r BBAttenuation is Online Cover prous Car Park	r Level (m) 1		rnal are	<u>as.SRCX</u>
Infiltration Coefficient	Base (m/hr) 0.0	0000	Wi	dth (m)	1.5
Membrane Percola		1000		gth (m)	
		26.3	-	e (1:X) 1	
S	afety Factor Porosity		ion Stora pration (1		5 3
Inve	rt Level (m)	-		oth (m) 0	
Hydro-B	rake® Optimum	Outflow Co	<u>ntrol</u>		
	Unit Reference	MD-SHE-0073-	-1800-035	0-1800	
	Design Head (m)			0.350	
D	esign Flow (l/s) Flush-Flo™		Calc	1.8 ulated	
		e Minimise u			
	Application	-		urface	
	Sump Available			Yes	
	Diameter (mm) Invert Level (m)			73 9.600	
Minimum Outlet Pi				100	
Suggested Manho	ole Diameter (mm)			1200	
Cont	rol Points	Head (m) Flo	w (l/s)		
Design Po:	int (Calculated)	0.350	1.8		
	Flush-Flo™ Kick-Flo®		1.8		
Mean Flow	Kick-Flo® over Head Range		1.6 1.5		
The hydrological calculations Hydro-Brake® Optimum as specif Hydro-Brake Optimum® be utilis invalidated	ied. Should and	other type of	control	device oth	ner than
Depth (m) Flow (1/s) Depth (m		pth (m) Flow	(1/s) Dep	oth (m) F	low (l/s)
0.100 1.8 1.20		3.000	4.8	7.000	7.3
0.200 1.7 1.40 0.300 1.7 1.60		3.500 4.000	5.2	7.500 8.000	7.
0.400 1.9 1.80		4.500	5.9	8.500	8.3
0.500 2.1 2.00	00 4.0	5.000	6.2	9.000	8.3
0.600 2.3 2.20		5.500	6.5	9.500	8.
0.800 2.6 2.40 1.000 2.9 2.60		6.000 6.500	6.8 7.1		
	1		I		

Appendix D

Blue Roof Calculations and Typical Detail (Designed by Others)

BLUE ROOF STORAGE AND OUTFLOW SUMMARY

PRIVATE & CONFIDENTIAL - NOT FOR DISTRIBUTION

Project Name:	369-377 Kentish Town Road, London NW5 2TJ - 5th fl terrace
Prepared for:	Price & Myers
Date:	13/03/2020
ABG Project ID:	20221 Calculator version: 1.26
Prepared by:	Kirstin, 01484 354844, kirstin@abgltd.com
Notes/description:	Ballast or paved surface finish, with PV panels - TBC. Pedestrian/amenity access only.
	Warm roof/inverted roof/un-insulated podium, construction, with zero falls - TBC.

Input Parameters - Rainfall Information (F	lood Studies Report 1975)		
Return period:	100 years	As supplied	by Client
Allowance for Climate Change:	40 %	As supplied	by Client
Location selected for FSR data:	London (NW)		
Input Parameters - Roof Information			
Total catchment area:	170 m ²	As supplied	by Client
Attenuation area:	58 m ²	As supplied	by Client
Maximum allowable runoff:	1.7 l/s	As supplied	by Client
Output - Rainfall Calculation			
Duration	Т	ime to Empty	Restricted Outflow (I/s)
15 mins	1 ho	ur and 20 minutes	1.5
30 mins	1 ho	ur and 30 minutes	1.7
1 hour	1 ho	ur and 30 minutes	1.7
2 hours	1 ho	ur and 20 minutes	1.4
4 hours	0 ho	urs and 40 minutes	0.8
6 hours	0 ho	urs and 10 minutes	0.3
10 hours	0 hc	ours and 0 minutes	0.1
24 hours	0 hc	ours and 0 minutes	0.1
48 hours	0 hc	ours and 0 minutes	0.0

Total attenuation required: 6.4 m³ Half empty time: 0 hours and 40 minutes.

Output - Recommended Blue Roof System System Name: ABG blueroof VF HD 130mm Description: No.of control positions TBC by design team, and also with the structural engineer's deflection analysis. Potential additional (visual) overflow positions should also be considered by the design team. Total attenuation capacity: 6.5 m³ Number of Blue Roof outlets: 2

1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.

2. Further details on the theories used in this estimate are available upon request from ABG. The values given for the performance of the system relate to testing, modelling and analysis of our systems obtained from laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes to our systems without notice at any time.

3. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.

4. This estimate is specific to the characteristics of ABG products/systems and is not applicable to other competitor products. The substitution of the whole or any component of this design for a material supplied from another source renders this estimate invalid.

5. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

creative

geosynthetic engineering UK t 01484 852096 e geo@abgltd.com Export t+44(0)1484 852250 e export@abgltd.com www.abgltd.com

1. DEFINITIONS

'Consultant' means ABG Geosynthetics Ltd and its legal successors. 'Client' means the person, firm, company or organisation for whom the Consultant is performing the Services. 'Agreement' means the contract referred to in Clause 2. 'Services' means the services to be performed by the Consultant in accordance with the proposal from the Consultant. 'Project' means the project or works for which the Client has commissioned the Services.

2. GENERAL

Unless and until a formal agreement is entered into, the Client's acceptance of the proposal for Services from the Consultant or a request for some or all the Services to be performed by the Consultant, shall constitute a binding

consultant, shan constitute a binding

contract between the Client and the Consultant which contract will be subject to any terms and conditions contained or referred to in the aforementioned proposal and these terms and conditions. In the event of any conflict, the terms and conditions in the proposal shall prevail over these terms and conditions. The Agreement so formed shall supersede all previous understandings, commitments or agreements whether written or oral between the Client and the Consultant relating to the subject matter hereof. No person or entity shall have any rights in relation to this

commitments or agreements whether written or oral between the Lient and the Consultant relating to the subject matter hereot. No person or entity shall have any rights in relation to this Agreement, whether as third parties or otherwise, save the parties to this Agreement. Should any term or condition of this Agreement be held to be unenforceable or invalid by the courts of any jurisdiction to which it is subject then such term or condition shall be disregarded and the remaining terms and conditions shall remain in full force and effect.

3. PERFORMANCE OF SERVICES AND SCOPE

The Consultant shall perform the Services using the degree of skill care and diligence to be expected from a consultant experienced in the provision of services of similar scope size and complexity. The Consultant shall use reasonable endeavours to complete the Services within the time or programme agreed but shall not be responsible for any delay beyond the reasonable control of the Consultant.

The fee contained in the proposal is for the scope of services as defined therein. If not already contained in the proposal the Consultant and the Client shall agree as an initial activity an integrated project services programme to

include the activities of all the parties to the Project relevant to the Services to be supplied by the Consultant. The

aforesaid programme shall show the key dates for final information and the delivery of such to the Consultant so as to enable the Consultant to carry out the services in an efficient once through manner to achieve the programme delivery dates for the Services.

The Consultant provides various services including Design and Product use advice which is distinct from a Design Service. The Design Service may or may not attract a fee.

Where the Consultant's services are of an advisory nature and dependent upon the degree of information and release thereof by the Client then the Client agrees that any reliance placed on the services by the Client shall take due account of such constraints.

4. CONFIDENTIALITY AND INTELLECTUAL PROPERTY RIGHTS

i. The Consultant and the Client shall keep confidential all information pertaining to the Services.

ii. Copyright for all reports, documents and the like produced by the Consultant in the performance of the Services

shall remain vested with the Consultant but the Consultant shall grant an irrevocable royalty free license to the Client to use such reports, documents and the like for any purpose in connection with the Project.

5. LIABILITY

i. The Consultant shall be liable to pay compensation to the Client arising out of or in connection with this

Agreement only if a breach of the duty of care in Clause 3 is established against the Consultant.

ii. Notwithstanding any other term to the contrary in this Agreement or any related document and whether the cause of action for any claim arises under or in connection with the Agreement in contract or in tort, in negligence or for breach of statutory duty or otherwise the Consultant shall have no liability to the Client in respect of any claim for loss or damage arising from acts of war or terrorism or arising from flooding, burst water mains or failed drainage or arising from any incidence of toxic mould or asbestos but otherwise in relation to any cause of action as aforesaid the total liability of the Consultant in the aggregate for all claims shall be limited to a sum equivalent to ten (10) times the fee payable under this Agreement or £50,000, whichever is the lesser, or such other sum as may be expressly stated in the Consultant is proposal, and further but without prejudice to the aforesaid limit of liability of the Consultant shall be limited to sum or sums as it would be just and equitable for the Consultant to pay having regard to the Consultant's responsibility for the same and on the basis that all other parties appointed or to be appointed by the Client to perform related services in connection with the Project shall be deemed to have provided undertakings on terms no less onerous than this Agreement and shall be deemed to have paid to the Client such contribution as it would be just and equitable for the Client to such as regonsibility for any loss or damage and providing that it shall be deemed that such other parties have not limited or excluded their liability to react or presend in any way which may be rejudical to the Consultant's liability under this clause. Nothing in this clause shall be deemed to a regonsal and providing that it shall be deemed to a prove any any any any any be rejudical to the Consultant's liability under this clause. Shall be deemed to accure the approximation of the consultant's liability to redeth or personal injury.

iii. The Client shall indemnify and keep indemnified the Consultant from and against all claims, demands,

proceedings, damages, costs and expenses arising out of or in connection with this Agreement or the Project

arising from acts of terrorism or arising otherwise in excess of the liability of the Consultant under this

Agreement or which may be made in respect of events occurring after the expiry of the period of liability stated

in this Agreement.

iv. No action or proceedings under or in connection with this Agreement shall be commenced against the Consultant after the expiry of one year from completion of the Services.

v. ABG Geosynthetics Ltd is not responsible for consequential, indirect or incidental losses.

6. INSURANCE

The Consultant shall arrange Professional Indemnity Insurance cover for the amount stated in Clause 5(ii). The Consultant will use all reasonable endeavours to maintain Professional Indemnity Insurance cover for the period stated in 5(iv) above, providing such insurance remains available to the Consultant at commercially reasonable rates.

7. CLIENT'S OBLIGATIONS

The Client shall supply, without charge and in such time so as not to delay or disrupt the performance of the Consultant in carrying out the Services, all necessary and relevant information, in his possession or available to him from his other agents or consultants and all necessary approvals or consents. Any deviation on any information from the proposal shall be confirmed in writing and any attendant consequential fees will be forwarded for approval by the Client before any changes are made. The Consultant shall not be liable for any consequential delays on site. Every reasonable effort will be made to mitigate against delays, however no liability for losses and costs will be accepted. The approval or consent by the Client to the Services shall not relieve the Consultant from any liability under this Agreement. All work undertaken by the Consultant must be ratified and signed off by the Client.

8. PAYMENT

i. The Client shall pay the Consultant for the Services in accordance with the proposal and this Agreement. If the Consultant performs any additional services or if the Services are delayed or disrupted for reasons beyond the

reasonable control of the Consultant then the Consultant shall be entitled to such additional fees as are fair and

reasonable in the circumstances. The Consultant may render an invoice at monthly intervals for services properly

performed. The agreed invoice, or in the event of a dispute the undisputed element, shall be paid within 28 days of receipt of the invoice by the Client. Any invoice paid after this period will attract interest at 3% above the base

rate of the central bank of the country of the currency of payment along with any collection costs which may occur. ii. The Client shall not withhold any payment of any sum or part of a sum due to the Consultant under this Agreement by reason of claims or alleged claims against the Consultant unless the amount to be withheld has been agreed between the Client and the Consultant as due to the Client or such sum arises from an award in adjudication, arbitration or litigation in favour of the Client and arises under or in connection with the Agreement. Save as aforesaid all rights of set off at common law, in equity or otherwise which the Client may otherwise be

entitled to exercise are hereby expressly excluded.

9. TERMINATION

If a party is in breach of a material term of this Agreement and despite written notice from the other party fails to

remedy such breach within 30 days or such other period as may be agreed between the parties, then the other party shall be entitled to terminate this Agreement forthwith. The Consultant may seek to recoup costs incurred for works completed prior to termination.

10. DISPUTE RESOLUTION

Any dispute between the parties that cannot be settled by mutual agreement shall be referred for final settlement to the arbitration of a person agreed between the parties or failing such agreement appointed upon the application of either party by the President of the Chartered Institute of Arbitrators and the said arbitration shall be carried out in accordance with the Construction Industry Model Arbitration Rules 1998 or such other version current at the time of the referral under this clause. Where the Agreement is subject to a governing law other than that of England and Wales then any dispute between the parties that cannot be settled by mutual agreement shall be finally settled by arbitration in accordance with the VICITRAL Arbitration Rules by one arbitrator appointed in compliance with the said Rules. In either case such rules as appropriate are deemed to be incorporated into this Agreement by reference.

11. COMPLIANCE WITH LAWS

This Agreement shall be governed by and construed in accordance with the law of England and Wales unless stated

otherwise in the proposal for services from the Consultant.

Changes to the above terms and conditions will only be considered if agreed in writing as part of the appointment process prior to ABG Geosynthetics commencing work.

BLUE ROOF STORAGE AND OUTFLOW SUMMARY

PRIVATE & CONFIDENTIAL - NOT FOR DISTRIBUTION

Project Name:	369-377 Kentish Town Ro	ad, London NW5 2TJ - Roof		
Prepared for:	Price & Myers			
Date:	13/03/2020			
ABG Project ID:	20221	Calculator version:	1.26	
Prepared by:	Kirstin, 01484 354844, kirstin@abgltd.com			
Notes/description:	Ballast or paved surface finish, with PV panels - TBC. Maintenance or pedestrian access only. Warm roof/inverted roof/un-insulated podium, construction, with zero falls - TBC.			

Input Parameters - Rainfall Information (F	lood Studies Report 1975)		
Return period:	100 years	As supplied l	by Client
Allowance for Climate Change:	40 %	As supplied	by Client
Location selected for FSR data:	London (NW)		
Input Parameters - Roof Information			
Total catchment area:	53 m ²	As supplied l	by Client
Attenuation area:	53 m ²	As supplied	by Client
Maximum allowable runoff:	0.5 l/s	As supplied	by Client
Output - Rainfall Calculation			
Duration	Tin	ne to Empty	Restricted Outflow (I/s)
15 mins	2 hour	s and 40 minutes	0.3
30 mins	3 hour	s and 10 minutes	0.3
1 hour	3 hour	s and 20 minutes	0.3
2 hours	3 hour	s and 20 minutes	0.3
4 hours	2 hour	s and 40 minutes	0.2
6 hours	2 hou	rs and 0 minutes	0.2
10 hours	0 hour	s and 40 minutes	0.1
24 hours	0 hou	rs and 0 minutes	0.0
48 hours	0 hou	rs and 0 minutes	0.0

Total attenuation required: 2.7 m³ Half empty time: 1 hours and 0 minutes.

Output - Recommended Blue Roof System System Name: ABG blueroof VF HD 80mm Description: No.of control positions TBC by design team, and also with the structural engineer's deflection analysis. Potential additional (visual) overflow positions should also be considered by the design team. Total attenuation capacity: 3.4 m³ Number of Blue Roof outlets: 2

1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.

2. Further details on the theories used in this estimate are available upon request from ABG. The values given for the performance of the system relate to testing, modelling and analysis of our systems obtained from laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes to our systems without notice at any time.

3. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.

4. This estimate is specific to the characteristics of ABG products/systems and is not applicable to other competitor products. The substitution of the whole or any component of this design for a material supplied from another source renders this estimate invalid.

5. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

creative

geosynthetic engineering UK t 01484 852096 e geo@abgltd.com Export t+44(0)1484 852250 e export@abgltd.com www.abgltd.com

1. DEFINITIONS

'Consultant' means ABG Geosynthetics Ltd and its legal successors. 'Client' means the person, firm, company or organisation for whom the Consultant is performing the Services. 'Agreement' means the contract referred to in Clause 2. 'Services' means the services to be performed by the Consultant in accordance with the proposal from the Consultant. 'Project' means the project or works for which the Client has commissioned the Services.

2. GENERAL

Unless and until a formal agreement is entered into, the Client's acceptance of the proposal for Services from the Consultant or a request for some or all the Services to be performed by the Consultant, shall constitute a binding

consultant, shan constitute a binding

contract between the Client and the Consultant which contract will be subject to any terms and conditions contained or referred to in the aforementioned proposal and these terms and conditions. In the event of any conflict, the terms and conditions in the proposal shall prevail over these terms and conditions. The Agreement so formed shall supersede all previous understandings, commitments or agreements whether written or oral between the Client and the Consultant relating to the subject matter hereof. No person or entity shall have any rights in relation to this

commitments or agreements whether written or oral between the Lient and the Consultant relating to the subject matter hereot. No person or entity shall have any rights in relation to this Agreement, whether as third parties or otherwise, save the parties to this Agreement. Should any term or condition of this Agreement be held to be unenforceable or invalid by the courts of any jurisdiction to which it is subject then such term or condition shall be disregarded and the remaining terms and conditions shall remain in full force and effect.

3. PERFORMANCE OF SERVICES AND SCOPE

The Consultant shall perform the Services using the degree of skill care and diligence to be expected from a consultant experienced in the provision of services of similar scope size and complexity. The Consultant shall use reasonable endeavours to complete the Services within the time or programme agreed but shall not be responsible for any delay beyond the reasonable control of the Consultant.

The fee contained in the proposal is for the scope of services as defined therein. If not already contained in the proposal the Consultant and the Client shall agree as an initial activity an integrated project services programme to

include the activities of all the parties to the Project relevant to the Services to be supplied by the Consultant. The

aforesaid programme shall show the key dates for final information and the delivery of such to the Consultant so as to enable the Consultant to carry out the services in an efficient once through manner to achieve the programme delivery dates for the Services.

The Consultant provides various services including Design and Product use advice which is distinct from a Design Service. The Design Service may or may not attract a fee.

Where the Consultant's services are of an advisory nature and dependent upon the degree of information and release thereof by the Client then the Client agrees that any reliance placed on the services by the Client shall take due account of such constraints.

4. CONFIDENTIALITY AND INTELLECTUAL PROPERTY RIGHTS

i. The Consultant and the Client shall keep confidential all information pertaining to the Services.

ii. Copyright for all reports, documents and the like produced by the Consultant in the performance of the Services

shall remain vested with the Consultant but the Consultant shall grant an irrevocable royalty free license to the Client to use such reports, documents and the like for any purpose in connection with the Project.

5. LIABILITY

i. The Consultant shall be liable to pay compensation to the Client arising out of or in connection with this

Agreement only if a breach of the duty of care in Clause 3 is established against the Consultant.

ii. Notwithstanding any other term to the contrary in this Agreement or any related document and whether the cause of action for any claim arises under or in connection with the Agreement in contract or in tort, in negligence or for breach of statutory duty or otherwise the Consultant shall have no liability to the Client in respect of any claim for loss or damage arising from acts of war or terrorism or arising from flooding, burst water mains or failed drainage or arising from any incidence of toxic mould or asbestos but otherwise in relation to any cause of action as aforesaid the total liability of the Consultant in the aggregate for all claims shall be limited to a sum equivalent to ten (10) times the fee payable under this Agreement or £50,000, whichever is the lesser, or such other sum as may be expressly stated in the Consultant is proposal, and further but without prejudice to the aforesaid limit of liability of the Consultant shall be limited to sum or sums as it would be just and equitable for the Consultant to pay having regard to the Consultant's responsibility for the same and on the basis that all other parties appointed or to be appointed by the Client to perform related services in connection with the Project shall be deemed to have provided undertakings on terms no less onerous than this Agreement and shall be deemed to have paid to the Client such contribution as it would be just and equitable for the Client to such as regonsibility for any loss or damage and providing that it shall be deemed that such other parties have not limited or excluded their liability to react or presend in any way which may be rejudical to the Consultant's liability under this clause. Nothing in this clause shall be deemed to a regonsal and providing that it shall be deemed to a prove any any any any any be rejudical to the Consultant's liability under this clause. Shall be deemed to accure the approximation of the consultant's liability to redeth or personal injury.

iii. The Client shall indemnify and keep indemnified the Consultant from and against all claims, demands,

proceedings, damages, costs and expenses arising out of or in connection with this Agreement or the Project

arising from acts of terrorism or arising otherwise in excess of the liability of the Consultant under this

Agreement or which may be made in respect of events occurring after the expiry of the period of liability stated

in this Agreement.

iv. No action or proceedings under or in connection with this Agreement shall be commenced against the Consultant after the expiry of one year from completion of the Services.

v. ABG Geosynthetics Ltd is not responsible for consequential, indirect or incidental losses.

6. INSURANCE

The Consultant shall arrange Professional Indemnity Insurance cover for the amount stated in Clause 5(ii). The Consultant will use all reasonable endeavours to maintain Professional Indemnity Insurance cover for the period stated in 5(iv) above, providing such insurance remains available to the Consultant at commercially reasonable rates.

7. CLIENT'S OBLIGATIONS

The Client shall supply, without charge and in such time so as not to delay or disrupt the performance of the Consultant in carrying out the Services, all necessary and relevant information, in his possession or available to him from his other agents or consultants and all necessary approvals or consents. Any deviation on any information from the proposal shall be confirmed in writing and any attendant consequential fees will be forwarded for approval by the Client before any changes are made. The Consultant shall not be liable for any consequential delays on site. Every reasonable effort will be made to mitigate against delays, however no liability for losses and costs will be accepted. The approval or consent by the Client to the Services shall not relieve the Consultant from any liability under this Agreement. All work undertaken by the Consultant must be ratified and signed off by the Client.

8. PAYMENT

i. The Client shall pay the Consultant for the Services in accordance with the proposal and this Agreement. If the Consultant performs any additional services or if the Services are delayed or disrupted for reasons beyond the

reasonable control of the Consultant then the Consultant shall be entitled to such additional fees as are fair and

reasonable in the circumstances. The Consultant may render an invoice at monthly intervals for services properly

performed. The agreed invoice, or in the event of a dispute the undisputed element, shall be paid within 28 days of receipt of the invoice by the Client. Any invoice paid after this period will attract interest at 3% above the base

rate of the central bank of the country of the currency of payment along with any collection costs which may occur. ii. The Client shall not withhold any payment of any sum or part of a sum due to the Consultant under this Agreement by reason of claims or alleged claims against the Consultant unless the amount to be withheld has been agreed between the Client and the Consultant as due to the Client or such sum arises from an award in adjudication, arbitration or litigation in favour of the Client and arises under or in connection with the Agreement. Save as aforesaid all rights of set off at common law, in equity or otherwise which the Client may otherwise be

entitled to exercise are hereby expressly excluded.

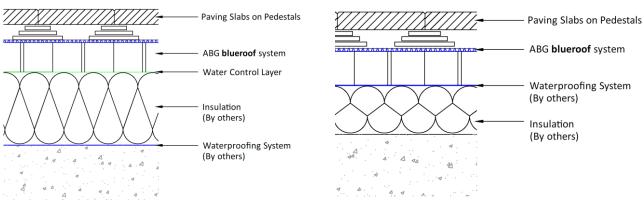
9. TERMINATION

If a party is in breach of a material term of this Agreement and despite written notice from the other party fails to

remedy such breach within 30 days or such other period as may be agreed between the parties, then the other party shall be entitled to terminate this Agreement forthwith. The Consultant may seek to recoup costs incurred for works completed prior to termination.

10. DISPUTE RESOLUTION

Any dispute between the parties that cannot be settled by mutual agreement shall be referred for final settlement to the arbitration of a person agreed between the parties or failing such agreement appointed upon the application of either party by the President of the Chartered Institute of Arbitrators and the said arbitration shall be carried out in accordance with the Construction Industry Model Arbitration Rules 1998 or such other version current at the time of the referral under this clause. Where the Agreement is subject to a governing law other than that of England and Wales then any dispute between the parties that cannot be settled by mutual agreement shall be finally settled by arbitration in accordance with the VICITRAL Arbitration Rules by one arbitrator appointed in compliance with the said Rules. In either case such rules as appropriate are deemed to be incorporated into this Agreement by reference.


11. COMPLIANCE WITH LAWS

This Agreement shall be governed by and construed in accordance with the law of England and Wales unless stated

otherwise in the proposal for services from the Consultant.

Changes to the above terms and conditions will only be considered if agreed in writing as part of the appointment process prior to ABG Geosynthetics commencing work.

blueroof System Range D

Inverted Roof Construction

Warm Roof Construction

ABG **blueroof** systems provide a constant drainage path, SuDS attenuation, filtration and controlled release of stormwater, combining all the key elements of a good SuDS design. The storage element of the system must be used in conjunction with the 'blue roof' restrictor chamber. These chambers are bespoke to each project in order to help achieve the project engineer's maximum discharge rates, and to suit the required build-up and final use of the podium/roof area. ABG's 'blue roofs' are generally used for zero falls, inverted/warm roof and podium applications, under a mix of hard and soft landscaped finishes. Other combinations of ABG **blueroof** systems and most surface finishes are available. Please refer to ABG's Technical team for project/system specific advice & 'blue roof' SuDS calculations.

	ABG blueroof VF HD								
System Properties		58mm	80mm	108mm	130mm	158mm	180mm		
Thickness at 2kPa	(mm)	58	80	108	130	158	180	±10%	EN ISO 9863-1
Maximum saturated weight	(kg/m²)	58	80	108	130	158	180	approx.	EN ISO 9864
Stormwater attenuation volume	(l/m²)	50	65	97	113	145	160		
Growing medium recharge value	(l/m²)	25	25	25	25	25	25		Per 100mm depth
Drainable void space	%	86	81	90	87	92	89		
Resistance to weathering		Gre	eater thai	n 60% ret	ained ten	sile stren	gth		EN 12224
Resistance to chemicals				Exce	llent				EN 14030
Upper Filter/Separator Properties	;								
Pore size 0 ₉₀	(µm)			12	20			±30%	EN ISO 12956
Breakthrough head	(mm)			()			nominal	BS 6906 Part 3
CBR puncture resistance	(N)			16	00			-20%	EN ISO 12236
Dynamic perforation cone drop	(mm)			3	2			+20%	EN ISO 13433
Type and material				d and hea of polypro				oolypropyl 1 ²	ene

'Blue roof' system use & compatible surface finishes

Suitable for ABG Load Class 2 (Pedestrians, cycles and light vehicles, MUGAs, medium sized plant installations). Landscaped, paved or permeable resin-bound gravel finishes.

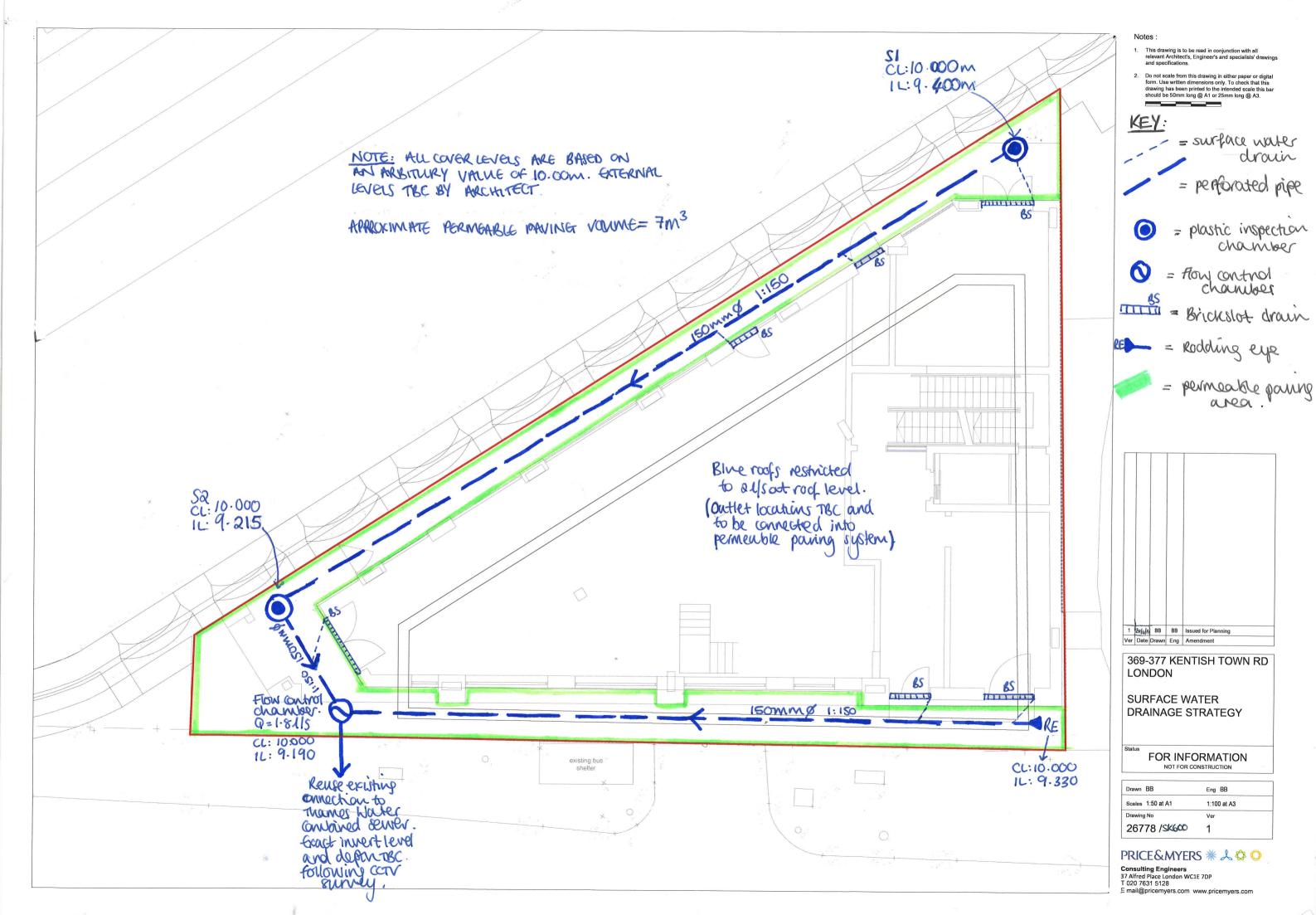
Notes

1. The values given are indicative and correspond to nominal results obtained in our laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes without notice at any time.

2. Any additional installations such as plant/services, PV panels, paved areas or additional vehicular/traffic access, must be discussed with ABG prior to their installation/use.

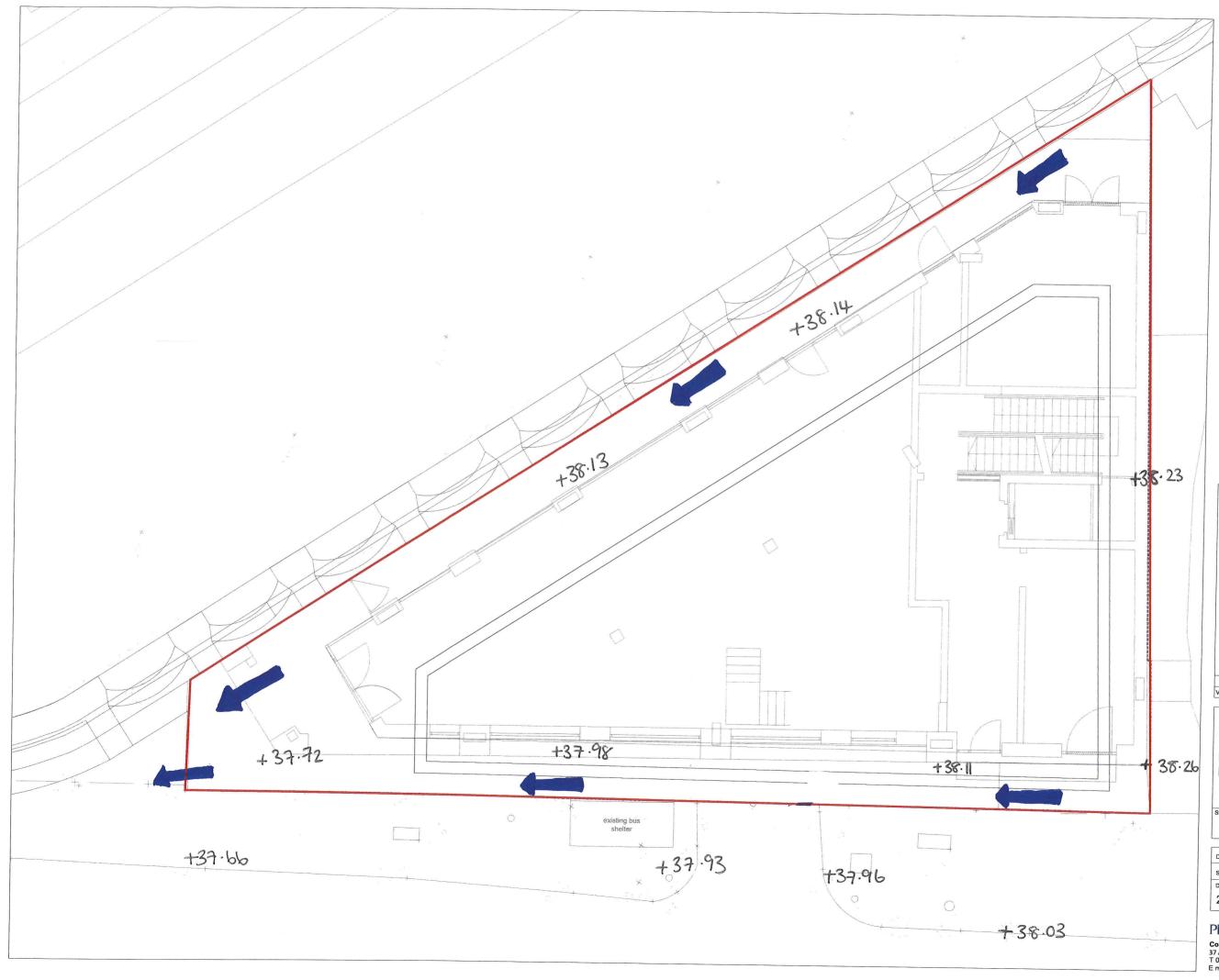
3. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

4. Can be used in conjunction with rainwater harvesting & grey water recycling systems. Any petrochemical pollution waste discharged from the system to be treated by others.


ABG blueroof System Range D - Rev 1.01 DATASHEET

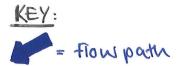
abg ltd. E7 Meltham Mills Rd, Meltham, West Yorkshire, HD9 4DS UK t 01484 852096 e geo@abgltd.com Export t+44(0)1484 852250 e export@abgltd.com www.abgltd.com

creative geosynthetic engineering


Appendix E

Preliminary Drainage Layout

Appendix F


Exceedance Flow Routes

Notes :

- This drawing is to be read in conjunction with all relevant Architect's, Engineer's and specialists' drawings and specifications.
- Do not scale from this drawing in either paper or digital form. Use written dimensions only. To check that this drawing has been printed to the intended scale this bar should be 50mm long @ A1 or 25mm long @ A3.

Health & Safety : All specific drawing notes are to be read in conjunction with the project "Information Pack" and "Site Rules".

1	2404.18	BB	BB	Issued for Planning
Ver	Date	Drawn	Eng	Amendment

369-377 KENTISH TOWN RD LONDON

EXCEEDANCE FLOW PATH DIAGRAM

Status FOR INFORMATION

Drawn BB	Eng BB	
Scales 1:50 at A1	1:100 at A3	
Drawing No	Ver	
26778 / SK601	1	

PRICE & MYERS * 🙏 🕸 ଠ

Consulting Engineers 37 Alfred Place London WC1E 7DP T 020 7631 5128 E mail@pricemyers.com www.pricemyers.com

Appendix G

Topographical Survey

	Ν
	Survey Control Details.
	Stn. Eastings. Northings. Level. HC1. 529000.683 185254.073 37.835
	HC2. 529008.346 185241.941 37.608
	OS Note:
	Some services may have been omitted due to parked vehicles. The Ordnance Survey tile is to be used as a guide only.
	OS Buildings Surveyed Buildings This survey has been orientated to the Ordnance Survey (O.S) National Grid (OSGB36) via Global Navigational Satellite Systems (GNSS) and the O.S. Active Network (OS Net).
	A true OSGB36 coordinate has been established near to the site centre via a transformation using the OSTN02 & OSGM02 transformation models. The survey has been correlated to this point and a further one
	or more OSGB36 points established to create a true O.S. bearing for angle orientation. No scale factor has been applied to the survey therefore the coordinates shown are arbitrary & not true O.S. Coordinates
	which have a scale factor applied. Please refer to Survey Station Table to enable establishment of the on-site grid.
	Buildings Overhead Cable Inspection chamber Boll Bollard Wall Concrete edge Piny Pipe invert IB Illuminiated bollard
	Kerb line Tarmac edge Gy Guily Bin Rubbish bin Line marking Grass verge Bg Back guily Vp Vent pipe Drop kerb Canopy/Overhang Dp Down pipe Grl Ground light Centre line Varge Pipe Pipe above ground Lbox Letter box
	1 Station and Name MH Manhole Ldr Ladder 1 0.0.000 Station Level WL Water level Sty Stile FI Flood light IFL Internal floor level Image: Street / Bush / Sapling Lp Lamp post THL Threshold level
	Area of Undergrowth Tp Telegraph post Sp Sign post C Woodland Ti Traffic light BH Borehole R: Ridge Level Bus Bus stop ELC Electric
	E: Eaves Level Sv Stop valve BT British Telecom F: Flat Roof Level St Stop tap Cbox Control box Gate Er Earth rod TT Tactile Fence types: Wm Water meter BP Brick paved INW Interwoven Core Core table
	IR Iron Railings Av Air valve CVR Cover WM Wire Mesh ICU Undentified inspection IC Inspection chamber PIR Post & Rail Wo Wash out R/wall Retaining wall
	PiW Post & Wire Re Rodding eye UTL Unable to lift Cil Chain Link BB Belisha beacon TCL Tree canopy level WIP Wooden Panels CTV Cable tv G: Gifth CiP Concrete Panels Mir Marker post MG Multi gifth
	SIP Steel Palisade So Soffit CL: Cover level
7	Rev Date Description Drawn Q. Ref.
	greenhatch -
	 Topographical Surveys Site Engineering Utility / CCTV Surveys Revit & BIM Models
	Duffield Road Little Eaton Derby
	DE21 5DR Tel (01332) 830044 Fax (01332) 830055 admin@greenhatch-group.co.uk www.greenhatch-group.co.uk
	St Albans Newcastle Poland Unit B, The Courtyard Alban Park 24 Riverside Studios Amethyst Road ul. Panewnicka 91 40-761 Katowice Poland St Albans Hertfordshire Newcastle Bus. Park Newcastle-U-Tyne NE4 77L Poland
	t. (01727) 854481 t. (01912) 736391 t. 0048 32 202 2292 www.greenhatch.pl
	De Metz Forbes Knight Architects Ltd
	PROJECT
	Kentish Town Road London NW5 2TJ
न 	Topographical
	Survey SCALE DATE A1@ 1: 100 18.10.17
	A1@ 1: 100 18.10.17 DRAWN QUALITY REF HC GH1727
	Level datum OS GPS Grid orientation OS GPS
	Job number 28520 Drawing No. Rev.
	28520_01_PS 0
	Comments
	This plan should only be used for its original purpose. Greenhatch Group accepts no responsibility for this plan if supplied to any party other than the original client.
	purpose. Greenhatch Group accepts no responsibility for this plan if supplied to any party other than the original client. All dimensions should be checked on site prior to design and construction. Drainage information (where applicable) has been
	purpose. Greenhatch Group accepts no responsibility for this plan if supplied to any party other than the original client. All dimensions should be checked on site prior to design and construction.

Appendix H

Camden SUDS Proforma

Advice Note on contents of a Surface Water Drainage Statement

London Borough of Camden

1. Introduction

- 1.1 The Government has strengthened planning policy on the provision of sustainable drainage and new consultation arrangements for 'major' planning applications will come into force from 6 April 2015 as defined in the <u>Written</u> <u>Ministerial Statement</u> (18th Dec 2014).
- 1.2 The new requirements make Lead Local Flood Authorises statutory consultees with respect to flood risk and SuDS for all major applications. Previously the Environment Agency had that statutory responsibility for sites above 1ha in flood zone 1.
- 1.3 Therefore all 'major' planning applications submitted from 6 April 2015 are required demonstrate compliance with this policy and we'd encourage this is shown in a **Surface Water Drainage Statement**.
- 1.4 The purpose of this advice note is to set out what information should be included in such statements.

2. Requirements

- 2.1 It is essential that the type of Sustainable Drainage System (SuDS) for a site, along with **details of its extent and position**, is identified within the planning application to clearly demonstrate that the proposed SuDS can be accommodated within the development.
- 2.2 It will now not be acceptable to leave the design of SuDs to a later stage to be dealt with by planning conditions.
- 2.3 The NPPF paragraph 103 requires that developments do not increase flood risk elsewhere, and gives priority to the use of SuDS. Major developments must include SuDS for the management of run-off, unless demonstrated to be inappropriate. The proposed minimum standards of operation must be appropriate and as such, a maintenance plan should be included within the Surface Water Drainage Statement, clearly demonstrating that the SuDS have been designed to ensure that the maintenance and operation requirements are economically proportionate Planning Practice Guidance suggests that this should be considered by reference to the costs that would be incurred by consumers for the use of an effective drainage system connecting directly to a public sewer.
- 2.4 Camden Council will use planning conditions or obligations to ensure that there are clear arrangements in place for ongoing maintenance over the lifetime of the development.
- 2.5 Within Camden, SuDS systems must be designed in accordance with London Plan policy 5.13. This requires that developments should utilise sustainable urban drainage systems (SUDS) unless there are practical reasons for not doing so, and should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible in line with the following drainage hierarchy:

UNCLASSIFIED

- 1 store rainwater for later use
- 2 use infiltration techniques, such as porous surfaces in non-clay areas
- 3 attenuate rainwater in ponds or open water features for gradual release
- 4 attenuate rainwater by storing in tanks or sealed water features for gradual release
- 5 discharge rainwater direct to a watercourse
- 6 discharge rainwater to a surface water sewer/drain
- 7 discharge rainwater to the combined sewer.
- 2.6 The hierarchy above seeks to ensure that surface water run-off is controlled as near to its source as possible to mimic natural drainage systems and retain water on or near to the site, in contrast to traditional drainage approaches, which tend to pipe water off-site as quickly as possible.
- 2.7 Before disposal of surface water to the public sewer is considered all other options set out in the drainage hierarchy should be exhausted. When no other practicable alternative exists to dispose of surface water other than the public sewer, the Water Company or its agents should confirm that there is adequate spare capacity in the existing system taking future development requirements into account.
- 2.8 Best practice guidance within the <u>non-statutory technical standards</u> for the design, maintenance and operation of sustainable drainage systems will also need to be followed. Runoff volumes from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event must be constrained to a value as close as is reasonably practicable to the **greenfield runoff volume** for the same event.
- 2.9 <u>Camden Development Policy 23</u> (Water) requires developments to reduce pressure on combined sewer network and the risk of flooding by limiting the rate of run-off through sustainable urban drainage systems. This policy also requires that developments in areas known to be at risk of surface water flooding are designed to cope with being flooded. <u>Camden's SFRA</u> surface water flood maps, updated SFRA figures 6 (LFRZs), and 4e (increased susceptibility to elevated groundwater), as well as the <u>Environment Agency</u> <u>updated flood maps for surface water (ufmfsw)</u>, should be referred to when determining whether developments are in an area at risk of flooding.
- 2.10 <u>Camden Planning Guidance 3</u> (CPG3) requires developments to achieve a greenfield run off rate once SuDS have been installed. Where it can be demonstrated that this is not feasible, a minimum 50% reduction in run off rate across the development is required. Further guidance on how to reduce the risk of flooding can be found in CPG3 paragraphs 11.4-11.8.
- 2.11 Where an application is part of a larger site which already has planning permission it is essential that the new proposal does not compromise the drainage scheme already approved.

3. Further information and guidance

- 3.1 Applicants are strongly advised to discuss their proposals with the Lead Local Flood Authority at the pre-application stage to ensure that an acceptable SuDS scheme is submitted.
- 3.2 For general clarification of these requirements please Camden's Local Planning Authority or Lead Local Flood Authority

UNCLASSIFIED

Surface Water Drainage Pro-forma for new developments

This pro-forma accompanies our advice note on surface water drainage. Developers should complete this form and submit it to the Local Planning Authority, referencing from where in their submission documents this information is taken. The pro-forma is supported by the <u>Defra/EA guidance on Rainfall Runoff Management</u> and uses the storage calculator on <u>www.UKsuds.com</u>. This pro-forma is based on current industry best practice and focuses on ensuring surface water drainage proposals meet national and local policy requirements. The pro-forma should be considered alongside other supporting SuDS Guidance.

1. Site Details

Site	
Address & post code or LPA reference	
Grid reference	
Is the existing site developed or Greenfield?	
Is the development in a LFRZ or in an area known to be at risk of surface or ground water flooding? If yes, please demonstrate how this is managed, in line with DP23?	
Total Site Area served by drainage system (excluding open space) (Ha)*	

* The Greenfield runoff off rate from the development which is to be used for assessing the requirements for limiting discharge flow rates and attenuation storage from a site should be calculated for the area that forms the drainage network for the site whatever size of site and type of drainage technique. Please refer to the Rainfall Runoff Management document or CIRIA manual for detail on this.

2. Impermeable Area

	Existing	Proposed	Difference	Notes for developers
	_		(Proposed-Existing)	
Impermeable area (ha)				If the proposed amount of impermeable surface is greater, then runoff rates and volumes
				will increase. Section 6 must be filled in. If proposed impermeability is equal or less than
				existing, then section 6 can be skipped and section 7 filled in.
Drainage Method			N/A	If different from the existing, please fill in section 3. If existing drainage is by infiltration and
(infiltration/sewer/watercourse)				the proposed is not, discharge volumes may increase. Fill in section 6.

3. Proposing to Discharge Surface Water via

	Yes	No	Evidence that this is possible	Notes for developers
Existing and proposed				Please provide MicroDrainage calculations of existing and proposed run-off rates and
MicroDrainage calculations				volumes in accordance with a recognised methodology or the results of a full infiltration test
				(see line below) if infiltration is proposed.
Infiltration				e.g. soakage tests. Section 6 (infiltration) must be filled in if infiltration is proposed.
To watercourse				e.g. Is there a watercourse nearby?
To surface water sewer				Confirmation from sewer provider that sufficient capacity exists for this connection.
Combination of above				e.g. part infiltration part discharge to sewer or watercourse. Provide evidence above.
Has the drainage proposal had regard to the SuDS				Evidence must be provided to demonstrate that the proposed Sustainable Drainage strategy has had regard to the SuDS hierarchy as outlined in Section 2.5 above.
hierarchy?				
Layout plan showing where				Please provide plan reference numbers showing the details of the site layout showing
the sustainable drainage				where the sustainable drainage infrastructure will be located on the site. If the development
infrastructure will be				is to be constructed in phases this should be shown on a separate plan and confirmation
located on site.				should be provided that the sustainable drainage proposal for each phase can be
				constructed and can operate independently and is not reliant on any later phase of
				development.

4. Peak Discharge Rates – This is the maximum flow rate at which storm water runoff leaves the site during a particular storm event.

	Existing Rates (I/s)	Proposed Rates (I/s)	Difference (I/s) (Proposed- Existing)	% Difference (difference /existing x 100)	Notes for developers
Greenfield QBAR		N/A	N/A	N/A	QBAR is approx. 1 in 2 storm event. Provide this if Section 6 (QBAR) is proposed.
1 in 1					Proposed discharge rates (with mitigation) should aim to be equivalent to greenfield rates
1 in 30					for all corresponding storm events. As a minimum, peak discharge rates must be reduced
1in 100					by 50% from the existing sites for all corresponding rainfall events.
1 in 100 plus climate change	N/A				The proposed 1 in 100 +CC peak discharge rate (with mitigation) should aim to be equivalent to greenfield rates. As a minimum, proposed 1 in 100 +CC peak discharge rate
onnaco onange					must be reduced by 50% from the existing 1 in 100 runoff rate sites.

5. Calculate additional volumes for storage –The total volume of water leaving the development site. New hard surfaces potentially restrict the amount of stormwater that can go to the ground, so this needs to be controlled so not to make flood risk worse to properties downstream.

	Greenfield runoff volume (m ³)	Existing Volume (m ³)	Proposed Volume (m ³)	Difference (m ³) (Proposed-Existing)	Notes for developers
1 in 1					Proposed discharge volumes (with mitigation) should be constrained to a value as close as is
1 in 30					reasonably practicable to the greenfield runoff volume wherever practicable and as a
1in 100 6 hour					minimum should be no greater than existing volumes for all corresponding storm events. Any increase in volume increases flood risk elsewhere. Where volumes are increased section 6
					must be filled in.
1 in 100 6 hour plus climate change					The proposed 1 in 100 +CC discharge volume should be constrained to a value as close as is reasonably practicable to the greenfield runoff volume wherever practicable. As a minimum, to mitigate for climate change the proposed 1 in 100 +CC volume discharge from site must be no greater than the existing 1 in 100 storm event. If not, flood risk increases under climate change.

6. Calculate attenuation storage – Attenuation storage is provided to enable the rate of runoff from the site into the receiving watercourse to be limited to an acceptable rate to protect against erosion and flooding downstream. The attenuation storage volume is a function of the degree of development relative to the greenfield discharge rate.

	Notes for developers
Storage Attenuation volume (Flow rate control) required to	Volume of water to attenuate on site if discharging at a greenfield run off rate.
meet greenfield run off rates (m ³)	Can't be used where discharge volumes are increasing
Storage Attenuation volume (Flow rate control) required to	Volume of water to attenuate on site if discharging at a 50% reduction from
reduce rates by 50% (m ³)	existing rates. Can't be used where discharge volumes are increasing
Storage Attenuation volume (Flow rate control) required to	Volume of water to attenuate on site if discharging at a rate different from the
meet [OTHER RUN OFF RATE (as close to greenfield rate as	above – please state in 1 st column what rate this volume corresponds to. On
possible] (m ³)	previously developed sites, runoff rates should not be more than three times the
	calculated greenfield rate. Can't be used where discharge volumes are
	increasing
Storage Attenuation volume (Flow rate control) required to	Volume of water to attenuate on site if discharging at existing rates. Can't be
retain rates as existing (m ³)	used where discharge volumes are increasing
Percentage of attenuation volume stored above ground,	Percentage of attenuation volume which will be held above ground in
	swales/ponds/basins/green roofs etc. If 0, please demonstrate why.

7. How is Storm Water stored on site?

Storage is required for the additional volume from site but also for holding back water to slow down the rate from the site. This is known as attenuation storage and long term storage. The idea is that the additional volume does not get into the watercourses, or if it does it is at an exceptionally low rate. You can either infiltrate the stored water back to ground, or if this isn't possible hold it back with on site storage. Firstly, can infiltration work on site?

		Notes for developers
	State the Site's Geology and known Source	Avoid infiltrating in made ground. Infiltration rates are highly variable
Infiltration Protection Zones (SPZ) a		and refer to Environment Agency website to identify and source
		protection zones (SPZ)
	Are infiltration rates suitable?	Infiltration rates should be no lower than 1x10 ⁻⁶ m/s.
	State the distance between a proposed infiltration Need 1m (min) between the base of the infiltration	
	device base and the ground water (GW) level	table to protect Groundwater quality & ensure GW doesn't enter
		infiltration devices. Avoid infiltration where this isn't possible.

	Were infiltration rates obtained by desk study or infiltration test?	Infiltration rates can be estimated from desk studies at most stages of the planning system if a back up attenuation scheme is provided
	Is the site contaminated? If yes, consider advice from others on whether infiltration can happen.	Advice on contaminated Land in Camden can be found on our supporting documents <u>webpage</u> Water should not be infiltrated through land that is contaminated. The Environment Agency may provide bespoke advice in planning consultations for contaminated sites that should be considered.
In light of the above, is infiltration feasible?	Yes/No? If the answer is No, please identify how the storm water will be stored prior to release	If infiltration is not feasible how will the additional volume be stored?. The applicant should then consider the following options in the next section.

Storage requirements

The developer must confirm that either of the two methods for dealing with the amount of water that needs to be stored on site.

Option 1 Simple – Store both the additional volume and attenuation volume in order to make a final discharge from site at the greenfield run off rate. This is preferred if no infiltration can be made on site. This very simply satisfies the runoff rates and volume criteria.

Option 2 Complex – If some of the additional volume of water can be infiltrated back into the ground, the remainder can be discharged at a very low rate of 2 l/sec/hectare. A combined storage calculation using the partial permissible rate of 2 l/sec/hectare and the attenuation rate used to slow the runoff from site.

	Notes for developers	
Please confirm what option has been chosen and how much storage is required on site.	The developer at this stage should have an idea of the site characteristics and be able to explain what the storage requiren are on site and how it will be achieved.	rements

8. Please confirm

	Notes for developers	
Which Drainage Systems measures have been used,	SUDS can be adapted for most situations even where infiltration	
including green roofs?	isn't feasible e.g. impermeable liners beneath some SUDS devices	
	allows treatment but not infiltration. See CIRIA SUDS Manual C697.	
Drainage system can contain in the 1 in 30 storm event	This a requirement for sewers for adoption & is good practice even	
without flooding	where drainage system is not adopted.	
Will the drainage system contain the 1 in 100 +CC storm	National standards require that the drainage system is designed so	
event? If no please demonstrate how buildings and utility	that flooding does not occur during a 1 in 100 year rainfall event in	
plants will be protected.	any part of: a building (including a basement); or in any utility plant	
	susceptible to water (e.g. pumping station or electricity substation)	
	within the development.	
Any flooding between the 1 in 30 & 1 in 100 plus climate	Safely: not causing property flooding or posing a hazard to site	
change storm events will be safely contained on site.	users i.e. no deeper than 300mm on roads/footpaths. Flood waters	
	must drain away at section 6 rates. Existing rates can be used	
	where runoff volumes are not increased.	
How will exceedance events be catered on site without	Safely: not causing property flooding or posing a hazard to site	
increasing flood risks (both on site and outside the	users i.e. no deeper than 300mm on roads/footpaths. Flood waters	
development)?	must drain away at section 6 rates. Existing rates can be used	
	where runoff volumes are not increased.	
	Evenedance events are defined as these larger than the 1 in 100	
	Exceedance events are defined as those larger than the 1 in 100 +CC event.	
How are rates being restricted (vortex control, orifice etc)	Detail of how the flow control systems have been designed to avoid	
now are rates being restricted (vortex control, onnice etc)	pipe blockages and ease of maintenance should be provided.	
Please confirm the owners/adopters of the entire drainage	If these are multiple owners then a drawing illustrating exactly what	
systems throughout the development. Please list all the	features will be within each owner's remit must be submitted with	
owners.	this Proforma.	
How is the entire drainage system to be maintained?	If the features are to be maintained directly by the owners as stated	
now to the online drainage by term to be maintained.	in answer to the above question please answer yes to this question	
	and submit the relevant maintenance schedule for each feature. If it	
	is to be maintained by others than above please give details of each	
	feature and the maintenance schedule.	
	Clear details of the maintenance proposals of all elements of the	
	proposed drainage system must be provided. Details must	
	demonstrate that maintenance and operation requirements are	
	economically proportionate. Poorly maintained drainage can lead to	
	increased flooding problems in the future.	

9. Evidence Please identify where the details quoted in the sections above were taken from. i.e. Plans, reports etc. Please also provide relevant drawings that need to accompany your proforma, in particular exceedance routes and ownership and location of SuDS (maintenance access strips etc

Pro-forma Section	Document reference where details quoted above are taken from	Page Number		
Section 2				
Section 3				
Section 4				
Section 5				
Section 6				
Section 7				
Section 8				
The above form should be completed using evidence from the Flood Risk Assessment and site plans. It should serve as a summary sheet of the drainage proposals and should clearly show that the proposed rate and volume as a result of development will not be increasing. If there is an increase in rate or volume, the rate or volume section should be completed to set out how the additional rate/volume is being dealt with. This form is completed using factual information from the Flood Risk Assessment and Site Plans and can be used as a summary of the surface water drainage strategy on this site.				
Form Completed By Qualification of person responsible for signing off this pro-forma				
Company On behalf of (Client's details) Date:				