

26 Christchurch Hill London, NW3 1LG

Civil Engineering Sustainable Drainage Strategy Report

Prepared by: Reviewed by: Job Number: Yousuf Azizi BSc (Hons) Tom Spawton MEng 24496

Date April 2020 Revision 1

Notes/Amendments/Issue Purpose To discharge Planning Condition 6

Consulting Engineers 37 Alfred Place London WC1E 7DP 020 7631 5128 mail@pricemyers.com www.pricemyers.com

Contents

1	Introduction	3
2	Site Description and Location	3
2.1	Existing Drainage	
3	Development Proposal	4
4	Pre-commencement Condition 6	4
5	SuDS Assessment	5
5.1	Store Rainwater for Later Use	
5.2	Infiltration	
5.3	Attenuation	
5.4	Discharge to Watercourse / Surface Water Sewer / Combined Sewer	
6	Surface Water Maintenance Strategy	7
7	Conclusions	8
_		

Appendices:

Appendix A	Drainage CCTV Survey Drawing
Appendix B	Calculations
Appendix C	Below Ground Drainage Layout

Contains Ordnance Survey material © Crown copyright. All rights reserved. Licence number 0100058197 Contains British Geological Survey materials © NERC 2020 All rights reserved.

Acronyms	
AOD	Above Ordnance Datum
CIRIA	Construction Industry Research and Information Association
EA	Environment Agency
FRA	Flood Risk Assessment
NPPF	National Planning Policy Framework
PPG	Planning Practice Guidance
SFRA	Strategic Flood Risk Assessment
TW	Thames Water

Page

1 Introduction

Price & Myers have been commissioned to undertake a Sustainable Drainage (SuDS) Strategy Report for the proposed development at 26 Christchurch Hill, Hampstead, London.

This Sustainable Drainage Strategy Report has been carried out in accordance with guidance from the Environment Agency (EA), the London Borough of Camden (LBC) Strategic Flood Risk Assessment (SFRA 2014) and CIRIA documents.

This report includes a detailed SuDS assessment in order to discharge Planning Condition 6 of the London Borough of Camden Planning Decision Notice, reference: 2016/5974/P.

2 Site Description and Location

The site has approximate OS coordinates of 526630/186043 at Grid Reference TQ2663086043. The site address is 26 Christchurch Hill, London, NW3 1LG, located in the London Borough of Camden.

The site occupies an area of approximately 793m² (0.079 ha) and is located on the northeast side of Christchurch Hill, immediately to the southeast of the crossroads junction with Well Road.

The main house is a detached 2-storey structure that is a Grade II listed building positioned in the centre of the site. There is also a single-storey structure fronting Well Road and annexed to the main house that is used as a studio.

The main house is surrounded by front and rear gardens. The north-western end is laid with lawn, whilst the central portion is covered in concrete paving and the south eastern half is covered in artificial grass. The gardens have a number of large trees and shrubs surrounding the perimeter of the property.

Figure 2.1: Existing site, showing site boundary

2.1 Existing Drainage

A drainage CCTV survey carried out by Kenclean shows that the site's foul and surface water currently discharge into the Thames Water public sewer located in Christchurch Hill via a combined drainage network.

The drainage CCTV survey drawing can be found in Appendix A.

3 Development Proposal

The development proposals include the construction of a basement level below the north-western half of the house, extending out beneath the north-western part of the garden.

The total impermeable area from the developed site will be approximately 210m².

Figure 3.1: Proposed site layout

4 Pre-commencement Condition 6

The following planning condition was included within the London Borough of Camden planning decision notice, reference 2016/5974/P.

6. The development hereby approved shall not be commenced, other than for site clearance. preparation and demolition, until details of a surface water drainage scheme for the site, prepared with reference to the London Plan policy 5.13 'SuDS hierarchy' to minimise the rate of surface water run-off

from the site aiming by reasonable endeavours to achieve the greenfield run off rate, shall be submitted to and approved by the local planning authority in consultation with Thames Water. The development shall not be implemented other than in complete accordance with the surface water drainage scheme that has been approved.

Reason: To reduce the rate of surface water run-off from the buildings and limit the impact on the storm-water drainage system in accordance with Policies C81, (302, C03 of the London Borough of Camden Local Plan 2017.

5 SuDS Assessment

In accordance with the London Plan, EA guidelines, the SFRA, and CIRIA documents, surface water runoff should be managed as close to its source as possible. The London Plan states that all new developments should aim to reduce run-off to greenfield rates "utilising SuDS unless there are practical reasons for not doing so".

The possibility of implementing SuDS at the site was assessed using a hierarchy of preferred surface water management methods. The following paragraphs discuss the various methods in order of that hierarchy and evaluate the site's suitability for each method.

5.1 Store Rainwater for Later Use

Rainwater harvesting promotes the storage and re-use of rainwater collected from roofs and hard surfaced areas. This type of system contributes to the reduction of run-off rates and volumes within a development.

The capacity of rainwater harvesting systems to attenuate rainwater depends on the water use within the building. If there is no activity in the building and the harvester is full, no attenuation will be provided during a subsequent storm event. In the worst-case scenario, the rainwater harvester will provide no attenuation.

Therefore, it is not proposed to incorporate any rainwater harvesting within the development proposals.

5.2 Infiltration

The SuDS Manual describes infiltration systems, such as soakaways, as a means of facilitating the discharge of the surface water to the ground and ultimately recharging groundwater.

A site-specific Desk Study and Basement Impact Assessment carried out by GEA (ref:J15236) revealed that the site is underlain by Made Ground to a depth of 1.2m, overlaying the Claygate Member which comprises of '*clayey sandy silt with pockets and lenses of fine sand, pockets of silty clay and fine selenite*'. This ground strata is not suitable for infiltration techniques as it contains cohesive soils such as clay which are known to have very poor porosity properties.

Therefore, it is not proposed to incorporate any infiltration systems within the development proposals.

5.3 Attenuation

The proposed surface water run-off from the development should be controlled as close to the source as possible. In order to do this, the SFRA states that developers should aim to achieve 'Greenfield' run-off rates where practicable. Therefore, attenuation to Greenfield run-off rates is the next preferred SuDS option. Attenuation techniques include green roofs, ponds, swales, permeable paving systems and underground storage tanks.

The SuDS manual states that "the hydraulic performance of green roofs during extreme events tends to be fairly similar to standard roofs". This means that green roofs will reduce the run-off rates in small storm event such as the annual and the 1 in 2-year events. However, these systems provide no attenuation benefits in high storm events such as the 1 in 30-year and 1 in 100-year storms which are considered in the design of surface water drainage systems. The benefits of these systems therefore cannot be considered in the design of any attenuation systems. Therefore, green roofs are not proposed to form part of the SuDS strategy for the site.

Ponds and swales require a large amount of ground level space. Therefore, due to the nature of the development and the insufficient space on site, they are not considered practical for this development.

Therefore, an underground geo-cellular tank is proposed to attenuate surface water run-off discharged from the site by storing water and releasing it slowly with the use of a hydro-brake flow control.

The Greenfield run-off rate was found using the IH124 Method, which gave a run-off rate for the 1 in 100-year storm event of 0.28 l/sec. However, such a low flow rate will require a very small flow control device which will be prone to blockages. In accordance with Building Regulations Part H, pipes should have a minimum internal diameter of 75mm to avoid the risk of blockages. Calculations using MicroDrainage software (attached in Appendix B) have shown that a peak flow rate of 2.5 l/s is required to achieve an internal opening within the flow control of 75mm. The MicroDrainage calculations show that an attenuation volume of 5m³ is required to restrict surface water run-off rates to 2.5 l/s, up to the 1 in 100-year rainfall event, plus a 40% climate change allowance.

The below ground drainage layouts (drawings 24496-601_2 and 24496-602_2) showing the proposed drainage arrangements, can be found in Appendix C.

5.4 Discharge to Watercourse / Surface Water Sewer / Combined Sewer

There are no watercourses in close proximity to the site.

It is proposed to discharge the attenuated surface water into the existing public sewer located in Christchurch Hill via the existing combined manhole located within the site boundary.

6 Surface Water Maintenance Strategy

The successful implementation and operation of a SuDS system depends on a robust and clear maintenance strategy being implemented. The following measures should form part of the site's proposed management plan.

The SuDS will be maintained by the client and will form part of the overall maintenance regime for the site.

SUDS	Maintenance						
Element	Maintenance	Required Action	Typical Frequency				
	Schedule						
	Monitoring /	Inspect all inlets, outlets, vents, overflows	Annually or after severe				
	Inspections	and control structures to ensure they are	storms				
huk		working as they should					
L ²	Regular	Inspect and identify any elements that are	Monthly for three				
101	Maintenance	not operating correctly.	months, then Half yearly				
uat			or as required.				
ten		Remove sediments / debris from catch pits /	Annually, after severe				
Att		gullies and control structures	storms or as required				
	Remedial	Repair inlets, outlets, vents, overflows and	As required				
	Actions	control structures.					

Table 6.1 SUDS Maintenance Strategy as taken from the CIRIA SUDS Manual

Effective SuDS design must assess all foreseeable risks during construction and maintenance. These must be mitigated during the detailed design stages where effective design will aim to avoid, reduce and mitigate risks.

This process will also require input from the Principal Contractor who will ensure the construction of SuDS components are carried out in a safe and sustainable manner.

7 Conclusions

The site occupies an area of approximately 793m² (0.079 ha). The proposals include creating a lower ground level at the front of the house and a double level portion directly beneath the existing studio.

The drainage CCTV survey shows that the site's foul and surface water currently discharge into the Thames Water public sewer located in Christchurch Hill via a combined drainage network.

Local geology shown on the British Geological Survey (BGS) maps, indicates that the ground is underlain by Claygate Member comprising of clay, silt and sand which is not suitable for infiltration techniques as it contains cohesive soils such as clay which are known to have very poor porosity properties. Therefore, infiltration systems such as soakaways are not included within the development proposals.

Attenuation will therefore be provided to control the surface water run-off. MicroDrainage calculations have shown that an attenuation volume of 5m³ is required to restrict surface water run-off rates to 2.5 l/s, up to the 1 in 100-year rainfall event, plus a 40% allowance for climate change.

It is proposed to discharge the attenuated surface water into the existing public sewer located in Christchurch Hill via the existing combined manhole located within the site boundary.

Appendix A Drainage CCTV Survey Drawing

Price & Myers								Page 1	
37 Alfred Place									
London									
WC1E 7DP									<u></u>
Data 20/04/2020 11.5	2		Deci	and br	. matucat				
Date 28/04/2020 11:5	3		Desi	gnea by	y rstreet			Draina	חף
File YA Attenuation	Tank.SR(CX	Chec	ked by					5
Innovyze			Sour	ce Cont	crol 2018	.1			
Summary	of Resul	lts fo	or 10	0 year	Return F	Period	(+40%)		
	Ha	lf Dra	in Ti	me : 19	minutes.				
Storm	Max	Max	N	lax	Max	Max	Max	Status	
Event	Level 1	Depth	Infil	tration	Control S	Outflow	Volume		
	(m)	(m)	(1	L/s)	(1/s)	(1/s)	(m³)		
15 min Summer	101.937 (0.437		0.0	2.5	2.5	4.2	ОК	
30 min Summer	101.978	0.478		0.0	2.5	2.5	4.5	0 K	
60 min Summer	101.948	0.448		0.0	2.5	2.5	4.3	ОК	
120 min Summer	101.841	0.341		0.0	2.5	2.5	3.2	ОК	
180 min Summer	101.746	0.246		0.0	2.5	2.5	2.3	ОК	
240 min Summer	101.678	0.178		0.0	2.4	2.4	1.7	ΟK	
360 min Summer	101.604	0.104		0.0	2.2	2.2	1.0	ΟK	
480 min Summer	101.575 (0.075		0.0	1.9	1.9	0.7	ΟK	
600 min Summer	101.561 (0.061		0.0	1.6	1.6	0.6	O K	
720 min Summer	101.552	0.052		0.0	1.4	1.4	0.5	O K	
960 min Summer	101.542 (0.042		0.0	1.1	1.1	0.4	O K	
1440 min Summer	101.531 (0.031		0.0	0.8	0.8	0.3	O K	
2160 min Summer	101.523 (0.023		0.0	0.6	0.6	0.2	ΟK	
2880 min Summer	101.518 (0.018		0.0	0.5	0.5	0.2	ΟK	
4320 min Summer	101.513	0.013		0.0	0.3	0.3	0.1	0 K	
5760 min Summer	101.509	0.009		0.0	0.3	0.3	0.1	ΟK	
7200 min Summer	101.507	0.007		0.0	0.2	0.2	0.1	ОК	
8640 min Summer	101.505	0.005		0.0	0.2	0.2	0.0	OK	
10080 min Summer	101.504	0.004		0.0	0.2	0.2	0.0	OK	
15 MILL WILLEE	102.074	0.374		0.0	2.5	2.5	4.0	Οĸ	
	Storm	R	ain	Flooded	Discharge	Time-Pe	ak		
	Event	(mr	n/hr)	Volume	Volume	(mins)			
		•		(m ³)	(m ³)	· · · /			
15	min Summ	ner 149	9.574	0.0	5.9		15		
30	min Summ	ler 90	5.841	0.0	7.6		24		
60	min Summ	ler 59	9.609	0.0	9.4		42		
120	min Summ	ter 3	5.419	0.0	11.1		74		
180	min Summ	ler 2	5.//4	0.0	12.2	1	04		
240	min Summ	ier 20	U.43Z	0.0	12.9	1	0 0 0		
360	min Summ	ier 14	4.//0	0.0	14.0	1	90 40		
480	min Summ	ier I.	1.11J	0.0	14.8	2	40 08		
720	min Summ	ici : ier !	2.110 R 433	0.0	1J.4 15 Q	2	68 68		
960	min Summ	ier (6.673	0.0	16.8	4	90		
1440	min Summ	ier (4.791	0.0	18.1	7	34		
2160	min Summ	ier í	3.434	0.0	19.5	11	00		
2880	min Summ	ier 2	2.710	0.0	20.5	14	44		
4320	min Summ	ner 1	1.938	0.0	22.0	21	76		
5760	min Summ	ner 2	1.526	0.0	23.1	28	72		
7200	min Summ	ier 2	1.268	0.0	24.0	35	84		
8640	min Summ	ner 1	1.089	0.0	24.7	43	52		
10080	min Summ	ier (0.958	0.0	25.3	50	24		
15	min Wint	er 149	9.574	0.0	6.6		16		

©1982-2018 Innovyze

Price & Myers							Page 2
37 Alfred Place							
London							
WCIE /DP							Micro
Date 28/04/2020 11	:53	Desi	gned b	y rstree	et		Desinance
File YA Attenuatio	n Tank.SRCX	Chec	ked by				Diamay
Innovivi		Cour	con Con	+rol 201	Q 1		
IIIIOVYZE		SOUL	Ce CON	CIOI 201	.0.1		
Summar	y of Results	for 10)0 year	Return	Period	. (+40%	;)
Storm	Max Max	Ma	x	Max	Max	Max	Status
Event	Level Depth	Infiltr	ation Co	ontrol E	Outflow	Volume	
	(m) (m)	(1/:	s)	(l/s)	(l/s)	(m³)	
30 min Winter	102.498 0.998		0.0	2.5	2.5	5.3	Flood Risk
60 min Winter	102.042 0.542		0.0	2.5	2.5	4.8	O K
120 min Winter	101.831 0.331		0.0	2.5	2.5	3.1	O K
180 min Winter	101.699 0.199		0.0	2.4	2.4	1.9	O K
240 min Winter	101.622 0.122		0.0	2.2	2.2	1.2	O K
360 min Winter	101.569 0.069		0.0	1.8	1.8	0.7	O K
480 min Winter	101.553 0.053		0.0	1.4	1.4	0.5	O K
600 min Winter	101.544 0.044		0.0	1.2	1.2	0.4	O K
720 min Winter	101.538 0.038		0.0	1.0	1.0	0.4	O K
960 min Winter	101.531 0.031		0.0	0.8	0.8	0.3	0 K
1440 min Winter	101.523 0.023		0.0	0.6	0.6	0.2	ОК
2160 min Winter	101.51/ 0.01/		0.0	0.4	0.4	0.2	O K
2880 min Winter	101.513 0.013		0.0	0.3	0.3	0.1	O K
4320 min Winter	101.508 0.008		0.0	0.2	0.2	0.1	O K
5760 min Winter	101.505 0.005		0.0	0.2	0.2	0.0	O K
7200 min Winter	101.504 0.004		0.0	0.2	0.2	0.0	O K
8640 min Winter	101.502 0.002		0.0	0.1	0.1	0.0	O K
	101.001 0.001		0.0	0.1	0.1	0.0	0 11
	Storm	Rain	Flooded	Discharo	o Timo-1	Poak	
	Event	(mm/hr)	Volume	Volume	(mir	s)	
	Lvene	(1111) 111 /	(m ³)	(m ³)	(11121)	.57	
			()	(
	30 min Winter	96.841	0.0	8.	5	26	
	60 min Winter	59.609	0.0	10.	5	46	
1	20 min Winter	35.419	0.0	12.	5	78	
1	.80 min Winter	25.774	0.0	13.	6	108	
2	240 min Winter	20.452	0.0	14.	4	136	
3	360 min Winter	14.770	0.0	15.	6	188	
4	180 min Winter	11.713	0.0	16.	5	248	
6	500 min Winter	9.778	0.0	17.	2	308	
7	720 min Winter	8.433	0.0	17.	8	368	
9	960 min Winter	6.673	0.0	18.	8	488	
14	140 min Winter	4.791	0.0	20.	3	736	
21	60 min Winter	3.434	0.0	21.	8	1088	
28	380 min Winter	2.710	0.0	22.	9	1424	
43	320 min Winter	1.938	0.0	24.	6	2200	
57	760 min Winter	1.526	0.0	25.	8	2936	
72	200 min Winter	1.268	0.0	26.	8	3592	
86	540 min Winter	1.089	0.0	27.	7	4392	
100)80 min Winter	0.958	0.0	28.	4	5088	
			10 -				
	©_	1982-20	TA TUUC	ovyze			

Price & Myers		Page 3
37 Alfred Place		
London		
WC1E 7DP		Mirro
Date 28/04/2020 11:53	Designed by rstreet	Drainago
File YA Attenuation Tank.SRCX	Checked by	Diamage
Innovyze	Source Control 2018.1	
Ra	infall Details	
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms Y 100 Cv (Summer) 0.7 and and Wales Cv (Winter) 0.8 21.000 Shortest Storm (mins) 0.431 Longest Storm (mins) 100 Yes Climate Change % +	es 50 40 15 80 40
Tin	ne Area Diagram	
Tota	al Area (ha) 0.021	
Ti Fr	ime (mins) Area om: To: (ha)	
	0 4 0.021	

©1982-2018 Innovyze

Price & Myers							Page 4	
37 Alfred Place								
London								
WC1E 7DP							Micco	
Date 28/04/2020	11:53		Designe	d by rst	reet			
File VA Attenuat	ion Tank	SBCX	Checker	hv			Urainage	
Innovyze		• 51(6)/	Source	Control .	2018 1			
11110Vy2C			DOULCC	CONCLOT	2010.1			
		ī	Model De	tails				
		=						
	Stor	age is On	line Cove	r Level (m)) 102.780			
		Cellula	ir Stora	ge Struct	ure			
		-		() 101 FO				
Infil	tration Co	Inve: efficient	rt Level Base (m/1	(m) 101.500 ar) 0.00000) Safety Fa) Porc	ctor 2.0 sity 0.95		
Infil	tration Co	efficient	Side (m/l	nr) 0.00000)	51Cy 0.95		
Depth (m)) Area (m²) Inf. Ar	ea (m²) D	epth (m) A	rea (m²) In	nf. Area ((m²)	
0.000	0 10.	C	10.0	0.501	0.0	1	7.0	
0.500	0 10.	C	17.0					
	Hydr	o-Brake®) Optimu	n Outflow	Control			
			D		075 0500 1			
		Unit	: Referenc	e MD-SHE-0	0/5-2500-10	1 000		
		Design	Flow (1/s	;)		2.5		
		5	Flush-Flo	TM	Ca	lculated		
			Objectiv	re Minimis	e upstream	storage		
		P	Applicatio	n		Surface		
		Sump	> Availabl	e		Yes		
		Invert	Level (nu	1)		101.485		
Min:	imum Outlet	: Pipe Dia	ameter (mn	ı)		101.100		
Si	uggested Ma	anhole Dia	ameter (mn	1)		1200		
	c	Control Po	oints	Head (m)	Flow (1/s)			
	Design	Point (C	alculated) 1.000	2.5			
			Flusn-Flo	™ 0.307 n 0.627	2.3			
	Mean F	low over i	Head Rang	e –	2.2			
The hydrological	calculatio	ons have b	been based	l on the He	ad/Dischar	ge relatio	onship for the	
Hydro-Brake® Opt:	imum as spe	ecified.	Should ar	other type	of contro.	l device d lations wi	other than a	
invalidated	nunio de uc.	LIISEU UNG	en chese a	corage rou	cing carcu.	Lations wi	LII De	
Depth (m) Flow	(1/s) Dept	h (m) Flo	w (l/s) D	epth (m) F	low (l/s) I	Depth (m)	Flow (l/s)	
0.100	2.1	1.200	2.7	3.000	4.1	7.000	6.2	
0.200	2.4	1.400	2.9	3.500	4.5	7.500	6.4	
0.300	2.5	1.600	3.1	4.000	4.7	8.000	6.6	
0.400	2.5	1.800	3.3	4.500	5.0	8.500	6.8	
0.500	2.4	2.000	3.4	5.000	5.3	9.000	7.0	
0.800	2.3	2.200	3.6 3.7	5.500	5.5	9.500	/ • ⊥	
1.000	2.5	2.600	3.9	6.500	6.0			
		©19	82-2018	Innovyze				

Calculated by:	
Site name:	26 Christchurch Hill
Site location:	26 Christchurch Hill

This is an estimation of the greenfield runoff rate limits that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the SuDS Manual, C753 (Ciria, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Greenfield runoff estimation for sites

www.uksuds.com | Greenfield runoff tool

Site coordinates

51.55907° N
0.17468° W
2019-07-04 14:48

Methodology	IH124					
Site characteristics						
Total site area (ha)			0.0197			
Methodology						
Qbar estimation metho	bd	Calculate fro	om SPR ar	nd SAAR		
SPR estimation metho	SPR estimation method Calculate fr			/pe		
			Default	Edited		
SOIL type			4	4		
HOST class						
SPR/SPRHOST			0.47	0.47		
Hydrological charact	eristic	s	Default	Edited		
SAAR (mm)			660	660		
Hydrological region	6	6				
Growth curve factor: 1	0.85	0.85				
Growth curve factor: 3	2.3	2.3				
Growth curve factor: 1	3.19	3.19				

Notes:

(1) Is Q_{BAR} < 2.0 l/s/ha?

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consents are usually set at 5.0l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set in which case blockage work must be addressed by using appropriate drainage elements (3) Is SPR/SPRHOST \leq 0.3?

Greenfield runoff rates	Default	Edited
Qbar (l/s)	0.09	0.09
1 in 1 year (l/s)	0.08	0.08
1 in 30 years (l/s)	0.2	0.2
1 in 100 years (l/s)	0.28	0.28

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at http://uksuds.com/terms-and-conditions.htm. The outputs from this tool have been used to estimate storage volume requirements. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for use of this data in the design or operational characteristics of any drainage scheme.

Appendix C Below Ground Drainage Layout

Notes :

- This drawing is to be read in conjunction with all relevant Architect's, Engineer's and specialists' drawings and specifications.
- Do not scale from this drawing in either paper or digital form. Use written dimensions only. To check that this drawing has been printed to the intended scale this bar should be 50mm long @ A1 or 25mm long @ A3.
- Health & Safety : All specific drawing notes are to be read in conjunction with the project "Information Pack" and "Site Rules".
- 4. Cast iron pipes to be used below slab.

DRAINAGE LEGEND				
New FW Drain Foul Water Rising Main (Route TBC by M&E Engineer) New SW Drain				
Surface Water Rising Main (Route TBC by M&E Engineer)				
Cavity Drain Rising Main (Route TBC by specialist)				
DRAINAGE KEY				
FWP	Foul Waste Pipe			
F1	Pumping Station Manhole Chamber			
─── <mark>─</mark> ── ^{YG}	Yard Gully			
FG	Floor Gully			
ABBREVIATIONS				
IL - Invert Level CL - Cover Level FWP - Foul water pipe				

2	17.04.20	PJ	YA	Issued for Tender
1	16.12.19	PJ	AC	Issued for Tender
Ver	Date	Drawn	Eng	Amendment

26 CHRISTCHURCH HILL, LONDON, NW3 1LG

BELOW GROUND DRAINAGE LAYOUT BASEMENT

Status

FOR TENDER NOT FOR CONSTRUCTION

Drawn PJ	Eng AC
Scales 1:50 at A1	1:100 at A3
Drawing No	Ver
24496-601	2

PRICE&MYERS * 🙏 🖗 🔘

Consulting Engineers 37 Alfred Place London WC1E 7DP T 020 7631 5128 F 020 7462 1390 E mail@pricemyers.com www.pricemyers.com

