BUROHAPPOLD ENGINEERING

UCL Institute of Education

Interim Sustainability Statement – Phase 2 Draft report

035833

26 March 2020

Revision 00

Revision	Description	Issued by	Date	Checked
00	Interim Sustainability Statement - Phase 2 Draft report	DC	26/03/2020	MD

C:\Users\dcatalan\Desktop\UCL IOE\200326 UCL IOE - Interim Sustainability Statement - Phase 2.docx

This report has been prepared for the sole benefit, use and information of Client name for the purposes set out in the report or instructions commissioning it. The liability of Buro Happold Limited in respect of the information contained in the report will not extend to any third party.

author	Daniela Catalano
date	26 March 2020
approved	Mark Dowson
signature	Moyon
date	26 March 2020

Contents

1	Executi	ve Summary	7				
2	Plannin	g Checklist	9				
	2.1	Camden Planning Guidance – Sustainability CGP3	9				
3	BREEAN	A Assessment Strategy	12				
	3.1	Overview	12				
	3.2	Pre-assessment score	12				
	3.3	Supporting commentary	13				
4	Energy	strategy	14				
	4.1	Overview	14				
	4.2	Modelling summary	14				
	4.3	Building Fabric inputs	16				
	4.4	Building Services Inputs	18				
	4.5	Energy and carbon emission results	20				
5	Therma	I comfort analysis	23				
	5.1	Overview	23				
	5.2	Modelling summary	23				
	5.3	Ventilation strategy	26				
	5.4	Baseline & Future Climate Results	28				
	5.5	Cooling demand vs. notional building – Phase 2 summary	28				
6	Conclus	sion	29				
	Append	lix A - 'Lean' BRUKL report					
	Append	lix B – 'Clean' BRUKL report					
	Append	lix C – 'GREEN' BRUKL report					
	Append	lix D – Thermal Comfort results, baseline climate					
	Append	Appendix E – Thermal Comfort results, future climate					

1 Executive Summary

This report sets out the interim sustainability statement for Phase 2 of the UCL Institute of Education refurbishment, covering level 5 to 9 Zone A, level 6 to 9 Wing and core A-B-C zones. The studies contain a summary of the Camden Council planning requirements, the energy strategy, thermal comfort assessment and BREEAM strategy.

The UCL Institute of Education is a Grade II* listed building, however despite this limiting factor significant efforts are being made by the design team to enhance the sustainability of the building. Key measures include:

- Improving the thermal performance of the building fabric in line with heritage constraints, through the addition of secondary glazing, where consented, and internal insulation to cladding panels.
- Upgrading all major MEP systems and lighting. To comply with Building Regulations, all performance values are better or equal to Part L2B 2013 (including 2016 amendments) and Non-Domestic Building Services Compliance Guide 2013.
- Retaining connection to the Bloomsbury Heat and Power network, which includes boiler and combined heat and power plant, enabling up to 80% of the building's electricity to come from low carbon sources.
- BREEAM 'Excellent' strategy this includes a wide variety of sustainability measures including the integration of low flow water fittings, responsible sourcing of construction materials, measures to enhance site ecology, security studies, acoustic measures and stringent sustainability criteria for the Contractor.

In terms of total CO_2 reduction for the Phase 2 areas Figure 1—1, preliminary modelling following the GLA energy statement guidance shows up to a 39% reduction in regulated CO_2 emissions compared to the existing building, from passive measures, HVAC improvements and connection to the Bloomsbury Heat and Power network.

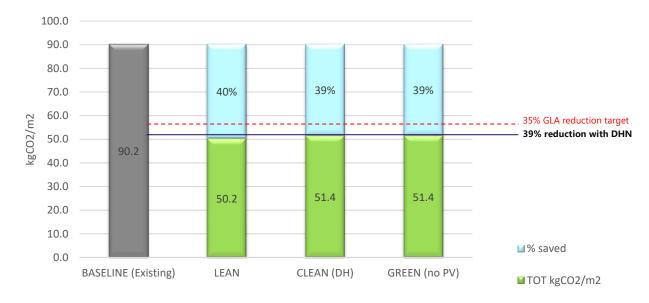


Figure 1—1 - CO_2 emissions for the Baseline (existing) and lean, clean and green scenarios.

In line with the energy hierarchy reporting requirements for Camden, Table 1—1 shows the calculated 'Lean, Clean, Green' CO_2 savings for the proposed upgrade works.

	UC	L IoE Phase 2 refur	bishment			
	Total CO ₂ (tCO ₂)	···· ··· ··· ··· ··· ··· ··· ··· ··· ·				
Baseline	478	-	-			
Be Lean	266	212	44%			
Be Clean	272	206	43%			
Be Green	272	206	43%			
Total	272	206	43%			
Target (Be Green)	310	168	35%			
Shortfall	0	0	0			

 Table 1—1 - Total CO2 reduction for Phase 2 areas

In terms of renewable energy, there is a Camden Planning requirement to target at least a 20% reduction in CO₂ emissions through the installation of on-site renewable energy technologies. Solar photovoltaic (PV) panels will not be included in the application for Phase 2, as it falls outside of the scope of works. The implementation of solar PV was investigated as part of a masterplan wide study and it will be taken in consideration in future phases of the masterplan if deemed acceptable to heritage.

The overheating risk and thermal comfort were assessed on the Phase 2 occupied spaces using IES-Virtual Environment in accordance with the methodology described in CIBSE TM52. Results indicate that the ventilation strategy and mechanically ventilation approach integrated with the fabric improvements ensure optimum comfort in these spaces. Overall, the proposed building cooling demand is lower than the notional as shown below.

Table 1-2 - Summary of notional vs. actual cooling demand

		Notional	Actual
MJ/m ²	Cooling demand	349.4	161.7

In relation to BREEAM, there is good potential to undertake an extensive and sustainable refurbishment for the UCL Institute of Education, which achieves a BREEAM Excellent rating. Phases 1-3 of the UCL IOE refurbishment will be submitted together under one BREEAM 2014 (RFO) refurbishment and fit out assessment 2014. The summary information presented in this submission shows progress to date on the Phase 1 and 2 works.

2 Planning Checklist

2.1 Camden Planning Guidance – Sustainability CGP3

Table 2—1 outlines the Camden Council planning requirements in relation to sustainability for existing buildings. Commentary in relation to the proposed Phase 2 works is given.

Table 2—1 Requirement	Commentary
 Energy efficiency: existing buildings All buildings, whether being updated or refurbished, are expected to reduce their carbon emissions by making improvements to the existing building. Work involving a change of use or an extension to an existing property is included. As a guide, at least 10% of the project cost should be spent on the improvements. Where retro-fitting measures are not identified at application stage we will most likely secure the implementation of environmental improvements by way of condition. Development involving a change of use or a conversion of more than 500sq m of any floorspace, will be expected to achieve 60% of the unweighted credits in the Energy category in their BREEAM assessment. Special consideration will be given to buildings that are protected e.g. listed buildings 	Substantial works are planned to improve the energy efficiency of this Grade II* listed building. Works in phase 2 include new secondary glazing, internal wall and roof insulation works where practical and new MEP systems throughout. Overall a 39% reduction in regulated CO2 is calculated following the 'lean, clean, green' hierarchy. For Phase 1, based on the interim cost check report, it was estimated that 19.8% of project costs are being spent on energy efficiency. Phase 2 will be similar, given the same level of energy efficiency is being applied.
 Decentralised energy Where feasible and viable your development will be required to connect to a decentralised energy network or include CHP. 	Phase 2 areas will be connected to the Bloomsbury Heat and Power (BHP) district heating network
 Cooling hierarchy: Proposals should align to the GLA cooling hierarchy: Minimising internal heat generation through energy efficient design Reducing the amount of heat entering the building in summer Use of thermal mass and high ceilings to manage the heat within the building Passive ventilation Mechanical ventilation 	The GLA cooling hierarchy has been followed. The strategy maximises passive design where feasible using exposed thermal mass, blinds on all windows to reduce solar gain, and low energy lighting/small power to reduce internal heat gains. For all spaces, BREEAM thermal comfort modelling has been carried out for Phase 2 occupied areas.
 Monitoring and management Proposals should include appropriate Building Management Systems, metering, monitoring and management 	The refurbishment works for Phase 2 areas include the provision of new energy meters that will be connected to the UCL BMS.
 All developments are to target at least a 20% reduction in carbon dioxide emissions through the installation of on-site renewable energy technologies. Special consideration will be given to heritage buildings and features to ensure that their historic and architectural features are preserved. 	Solar photovoltaic (PV) panels will not be included in the application for Phase 2.

The project is targeting a BREEAM

BREEAM Excellent rating of 75.8% is currently deemed achievable for

the development. The project is

currently targeting 10 credits for

category Ene01. 77% of credits are

material category and 63% in the waste category. Buro Happold are appointed as BREEAM Assessor and BREEAM AP for the scheme. The Contractor also has a BREEAM AP as their sustainability champion.

targeted in the water category. 61%

the development under Energy

of credits are targeted in the

construction works.

As the building is listed, the ecologist has recommended that

external terrace areas include

planters with native species.

Excellent rating with a single

assessment across Phases 1-3.

Sustainability	assessment tools	(BREEAM)
----------------	------------------	----------

- Submission of a pre-assessment report at the planning application stage. The report should summarise the design strategy for achieving your chosen level of BREEAM and/or Code for Sustainable Homes and include details of the credits proposed to be achieved.
- Pre-assessment report is to be carried out by a licensed assessor. The name of the assessor and their licence number should be clearly stated on the report.
- You are strongly encouraged to meet the following standards in accordance with Development Policy DP22 Promoting sustainable design and construction:

Time period	Minimum rating	Minimum standard for categories (% of un-weighted credits)
2010-2012	'very good'	Energy 60%
2013+	'excellent'	Water 60% Materials 40%

Water efficiency

- The Council expects all developments to be designed to be water Low flow fittings will be targeted as efficient by minimising water use and maximising the re-use of water. part of refurbishment works in line This includes new and existing buildings. with BREEAM Wat 01. Grey water recycling feasibility to be confirmed The Council will require developments over 1000sq m to include a grey by MEP engineer in Phases 3. water harvesting system, unless the applicant demonstrates to the Council's satisfaction that this is not feasible. Sustainable use of materials & waste All developments should aim for at least 10% of the total value of *For Phase 2 a pre-refurbishment* materials used to be derived from recycled and reused sources. This audit will be carried out by the should relate to the WRAP Quick Wins assessments or equivalent. Contractor to identify opportunities for material re-use and recycling Special consideration will be given to heritage buildings and features to with monitoring the construction ensure that their historic and architectural features are preserved. *waste activities throughout*
 - Major developments are anticipated to be able to achieve 15-20% of the total value of materials used to be derived from recycled and reused sources.

Construction waste and waste to landfill should be minimised

Adapting to climate change

A climate change

A climate change risk assessment

• All development is expected to consider the impact of climate change and be designed to cope with the anticipated conditions. *was conducted for BREEAM credit Wst05 covering the masterplan.*

Brown roofs, green roofs and green walls The Council will expect all developments to incorporate brown roofs, green roofs and green walls unless it is demonstrated this is not possible or appropriate. This includes new and existing buildings. Special consideration will be given to historic buildings to ensure historic and architectural features are preserved.

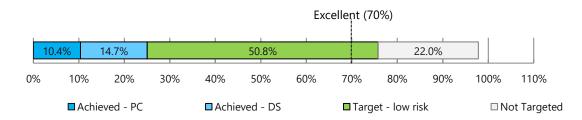
Flooding
 Developments must not increase the risk of flooding and are required to put in place mitigation measures where there is known to be a risk of flooding. Within the areas shown on Core Strategy Map 5 (Development Policies Map 2) we will expect water infrastructure to be designed to cope with a 1 in 100-year storm event in order to limit the flooding of, and damage to, property.

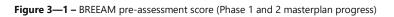
Externa	l lighting	
•	Lighting can have particular negative impacts on biodiversity. Unnecessary lighting should be avoided. Where lighting may harm biodiversity timers or specific coloured lighting will be required to minimise any disturbance.	BREEAM requirements for external lighting have been embedded into the project.
Local fo	ood growing	
•	We encourage food to be grown wherever possible and suitable. Rooftops and shared spaces such as gardens and parks provide opportunities.	Local food growing is not incorporated into the scheme.
Biodive	rsity	
•	Proposals should demonstrate how biodiversity considerations have been incorporated into the development; if any mitigation measures will be included; and what positive measures for enhancing biodiversity are planned.	An ecology study has been completed, recommending planting of native species on external terrace areas.

3 BREEAM Assessment Strategy

3.1 Overview

BREEAM (which stands for the "Building Research Establishment Environmental Assessment Methodology") sets the standard for best practice in sustainable building design, construction and operation and has become one of the most comprehensive and widely recognised measures of a building's environmental performance.


Phases 1-3 of the UCL IOE refurbishment will be submitted together under one BREEAM Refurbishment and Fit-out 2014 (RFO). The "UCL Sustainable Building Standard" states that all refurbishment projects with building services or building fabric upgrades must achieve a **BREEAM Excellent** rating.


In order to facilitate this approach in a complex phased project will require careful project management with the Contractor providing design stage and post construction BREEAM evidence for each element of the project as if it were a single assessment in its own right.

Supporting this process, the Contractor has nominated a Sustainability Champion throughout the design and construction process to formally report progress on BREEAM items to the client and BREEAM Assessor. Providing overall leadership to the BREEAM assessment are Buro Happold, who are appointed in a client side role as BREEAM Assessor and BREEAM AP for the project.

3.2 Pre-assessment score

The BREEAM pre-assessment score (consisting of Phase 1 and 2 combined works) for the UCL IOE masterplan is shown in Figure 3—1. As shown, the project is on track to achieve a score is 75.8% surpassing the 'Excellent' threshold.

The Masterplan assessment tracking schedule has been updated for Phase 2 based on information and advice received from the design team in order to identify the targeted and potential scores for the development. As shown, 10.4% of 'post construction' evidence has already been secured based on 'masterplan' studies from Phase 1 that can be carried forward into Phase 2.

Figure 3—2 shows the build-up of the BREEAM score by category.



Figure 3-2 - BREEAM pre-assessment score by category (Phase 1 and 2 masterplan progress)

3.3 Supporting commentary

In support of the Camden planning checklist, further commentary on key areas of interest are provided below:

Materials sourcing and waste

As part of the BREEAM assessment a number of credits are targeted relating to materials sourcing. Overall in the materials category 61% of credits are targeted at low risk. Credits include sourcing A/A+ rated materials using the BRE green guide, responsible sourcing, designing for durability and robustness and tracking of material efficiency decisions. Regarding waste, 63% of credits in the waste category are targeted. Specifically, for Phase 2 a pre-refurbishment audit was carried out to identify opportunities for material re-use and recycling. Construction waste activities shall also be monitored throughout construction works.

Green infrastructure and biodiversity

In line with the ecologist's recommendations, planters with native species shall be provided to terrace areas. Overall in the ecology category 4/4 credits are targeted.

Water efficiency and SuDS (including rainwater and greywater harvesting)

Low flow water fittings have been specified achieving a reduction in potable water usage of over 40%. Overall in the water category 77% of credits are targeted. The site is located in flood risk zone 1 (low risk of flooding). The proposed Phase 2 refurbishment works will not increase surface water run-off.

Building Management Systems, metering, monitoring and management

The sub-metering for Phase 2 covers LTHW, cooling, AHUs, MCCP control panels, systems above 50kW, lighting and small power. Metering and Sub-metering for data will be made available to the UCL campus wide metering EMON System and Schneider Stuxtureware platform.

4 Energy strategy

4.1 Overview

This section of the report describes the energy strategy for the Phase 2 of the UCL IOE refurbishment.

In order to comply with Camden Planning requirements for refurbishments, energy modelling following the GLA energy statement is required. This must be achieved by reporting performance through a 'Lean, Clean, Green' approach as illustrated in Figure 4—1.

Figure 4-1 - Summary of GLA 'lean, clean, green' energy hierarchy (indicative)

4.2 Modelling summary

Energy modelling has been conducted in IES Virtual Environment 2019. The whole building energy model, and Phase 2 areas (as shown in Figure 4—2 and Figure 4—3 respectively) is based on layouts received by Penoyre & Prasad, Feb 2020.

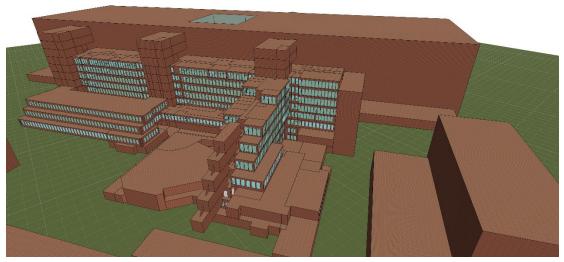


Figure 4-2 – UCL IOE whole building energy model taken from IESVE 2019

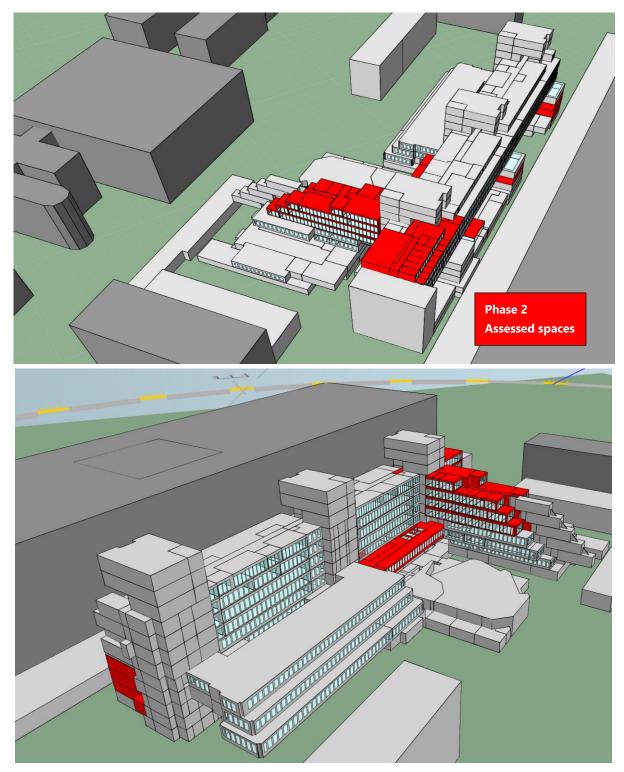


Figure 4-3 - UCL IOE energy model (Phase 2 areas highlighted) taken from IESVE 2019

In line with GLA reporting requirements for refurbished buildings, the following design scenarios have been modelled:

- GLA Baseline
 - Existing building with existing building fabric parameters, but with gas boiler & standard air conditioning
- BE LEAN
 - Actual building with improved building elements
 - o Daylight dimming and improved lighting energy efficiency
 - Improved HVAC efficiency & improved boiler efficiency
- BE CLEAN
 - Actual building with Bloomsbury campus district heating system
- BE GREEN
 - Model is the same as the clean model, no PV or other renewables will be implemented as part of this refurbishment.

District heating

In terms of the 'clean' improvements, the building is currently connected to the existing Bloomsbury Heat and Power (BHP) district heating network, which provides low-carbon heat as well as renewable electricity generated simultaneously via a CHP (combined heat and power) engine. The Bloomsbury campus district heating supplies medium temperature heating water (MTHW) to multiple spaces within the IOE complex by using local heat exchangers to distribute low variable and constant temperature heating water circuits throughout the complex. Therefore, the "Clean" energy strategy for the project must include a district heating network providing heating and DHW whereas newly formed and existing chillers with primary cooling system is serving cooling to the whole development.

4.3 Building Fabric inputs

Building fabric input parameters for the existing and proposed building models are summarised in Table 4—1. Note that in some cases Part L2B U-values are not technically feasible on the listed building, but this has been deemed as acceptable by Building Control.

		Existing Model	Improved case	Part L2B 2013 (for reference)		eference)
		(assumed based on review of available information)	(Includes curtain wall upgrade, secondary glazing, roof insulation and single glazed skylights replaced)	Threshold of retained Element	Value of replace ment element	New thermal elements and controlled fittings
Fabric U-values (W/m2K)	Curtain wall panel	Average curtain wall value assumed to be 3.24 W/m ² *K: 13mm aluminium, 23mm asbestos insulation, 8mm aluminium	Opaque panelling below the glazing shall be upgraded to a centre pane U-value of 0.3 W/m ² . K (equivalent to an overall U-value of 1.7 W/m ² *K when all thermal bridging is considered)			
	Glazing		Secondary glazing, U-value = 2.1 W/m ² . K	3.3	1.8	8 W/m²K

 Table 4—1 - Modelling inputs tested (building fabric parameters) and Part L2B

		Glazing at 5.7 W/m ² * K: single glazing metal frame			allow to a	nstraint does not achieve a centre ue of 1.8 W/m ² K
	Solid wall	2.6 W/m ² . K (300mm cast dense concrete, membrane)	Walls (forming the external envelope) shall be internally insulated to achieve a U- value of 0.3 W/m ² . K or where not feasible 0.7 W/m2.K as a minimum value.	0.7	0.3	0.28
	Roof	2.3 W/m ² . K (400mm concrete deck & membrane, concrete tile 100mm)	0.18 W/m ² . K for improved elements (400mm concrete deck, insulation 100mm & membrane, concrete tile 100mm) *	0.35	0.1	8 flat roof
	Internal wall	1.58 W/m². K (200mm cast concrete medium)	0.95 W/m². K (lightweight plaster)			
	Internal floor/ceiling	2.5 (300 reinf concrete, 20mm screed)	2.5 (300 reinforced concrete, 20mm screed)			
	Ground floor	0.60 W/m ² . K (400mm reinf. Concrete & 30mm screed + adjustment)	0.32 W/m². K			
	Exposed floor	0.6 W/m². K	0.6 W/m².K			
	U-value	5.7 W/m². K	1.8 W/m². K			
**External Glazing Level 3	G-value	0.73	0.26-0.31	3.3	1.0	3 W/m ² K
new pavilion	LT (Light transmittance %)	69%	41%			
	U-value	5.7 W/m². K	1.8 W/m². K			
**External Glazing Level 3	G-value	0.73	0.26-0.31	3.3	1.0	3 W/m ² K
café	LT (Light transmittance %)	69%	41%			
**External	U-value	5.7 W/m². K				
Glazing Level 4 west façade	G-value	0.4	NO thermal upgrade	3.3	1.8 W/m ² K	
(Core B)	LT (Light transmittance %)	< 69%				
Roof lights Level 5 Core B-	U-value	Glazing at 5.7: single glazing metal frame	NO thermal upgrade			
C	G-value	0.73		3.3 1.8 W/m ² ł		3 W/m ² K
**Rooflights Level 4 Core B	U-value	Glazing at 5.7: single glazing metal frame	1.8 W/m². K	3.3	1	3 W/m²K

	G-value	0.73	0.25	
	LT (Light transmittance %)	69%	41%	
Air tightness	50 Pa (m3/h.m2 @ 50 Pa)	19 (to be tested by contractor)	9.5 (as per Phase 1A measured performance), although note that the Employers Requirements require 6.5, thus a conservative position has been taken for the model.	

* Conservative values taken – Contractor to confirm Part L compliant strategy

** L3-L4 fabric thermal values incorporated in Phase 2 energy model for the energy and CO₂ reduction results

4.4 Building Services Inputs

Building services input parameters for the existing and proposed building models are summarised in Table 4-2.

	Existing	Improved	Part L2B limiting efficiencies for new systems
Heating	Central heating using water, radiators	Central heating using water, radiators	-
Description	Existing rads	Zone A and Wing A levels with new radiator	
Heat source	District heating	District heating	
Pump type	Constant speed	Constant Speed	
SCOP	0.92	0.92	
Cooling			
Chillers	2no DX cooled existing chillers cater for Level 5-6 Core B and Core C	New chilled water circuit in Core A plant room 2 served by 2no. new chillers cater for the Wing and Core A	
Power kW	475	499 / 659	
SEER / EER	3	4.43 / 4.62	
Terminal units		DX cooling (split-multi split system in comms rooms)	
Terminal units	existing fan coil systems Level 5-6 Core B	Water cooled fan coil systems	
Ventilation	Centralised balanced mech vent	Centralised balanced mech vent	
Duct air leakage standard	Not tested	Not tested	
AHU air leakage standard	Class worse than L3 or not tested	L1	
Pump type	Constant speed	VSDs will be specified to comply with necessary regulations.	Either of B&ES DW/144, BS EN1507:2066, BS EN

 Table 4—2 - Building services inputs for heating, cooling, ventilation, DHW and lighting

			12237:2003, BS EN 13403:2003
Heat recovery %	0%	80%	Thermal wheel > 65%
core A toilets Extract fan SFP (W/(l/s)	0.8 @ 10ACH	0.4-0.5 @ 10ACH. Extract Fan is remote from Zone (located in Plant Room) and serves WCs on all floors.	< 0.4
core B toilets Extract fan SFP (W/(l/s)	0.8 @ 10ACH	0.4-0.5 @ 10ACH. Extract Fan is remote from Zone (located in Plant Room) and serves WCs on all floors.	< 0.4
core C toilets Extract fan SFP (W/(l/s)	0.8 @ 10ACH	Not currently in scope	< 0.4
Central ventilation AHU Specific fan power SFP (W/(l/s)	Centralised balance mech vent (AHU Plant selected to have SFP less than 3 W/(l/s))	AHU Plant selected with SFP less than 2.2 W/(l/s))	Centralised balance mech vent (AHU Plant selected to have SFP less than 2.2 W/(l/s))
terminal ventilation SFP (W/(l/s) - FCUs	0.5	0.15 Average (0.23 maximum SFP currently)	< 0.5
terminal ventilation SFP (W/(l/s) - indoor packaged VAV unit		AHU Plant selected with SFP less than 2.2 W/(l/s) No additional fan associated with VAV units, systems served by central air handling unit plant.	Centralised balance mech vent (AHU Plant selected to have SFP less than 2.2 W/(l/s))
Metering			
System metering	no	yes	
Metering warn "out of range" values	no	yes	
DHW			
Storage volume	existing 800 L Vessels	Retaining existing 800 L Vessels	
Storage losses (kWh/(l.day))	0.0063	As Existing following validation of existing systems.	
Circulation losses (W/m)	30	As Existing following validation of existing systems.	
Pump power	0.2	As Existing following validation of existing systems.	
Heating system controls			
Central time control	no	yes	
Optimum start and stop	no	yes	To comply with as a minimum with the Non-
Local temperature control	no	yes	Domestic Building Service Compliance Guide
Local time control	no	yes	Compliance Guide
Weather compensation	no	no	
Lighting Phase 2			
Efficacy Llm/W (Back of the house)	40	>80 Llm/W	>60 Llm/W
Efficacy Llm/W (Office)	40	>95 Llm/W	>60 Llm/W
Efficacy Llm/W (meeting room)	40	>95 Llm/W	>60 Llm/W
Efficacy Llm/W (social/break out)	40	>80 Llm/W	>60 Llm/W

Efficacy Llm/W (teaching room)	40	>80 Llm/W	>60 Llm/W
Efficacy Llm/W (circulation)	40	>80 Llm/W	>60 Llm/W
Efficacy Llm/W café	40	>80 Llm/W	>60 Llm/W
Efficacy Llm/W breakout	40	>80 Llm/W	>60 Llm/W
Efficacy Llm/W circulation	40	>80 Llm/W	>60 Llm/W
Controls	Switch	Dimming/PIR/Time	
Parasitic power W/m2	0.1 W/m2	0.3 W/m2	

4.5 Energy and carbon emission results

Energy modelling and CO_2 reduction modelling results are given below in Table 4—3. The table gives a summary of the GLA modelling results, whereby the % saving represents the reduction against the Part L 2013 Notional Building and 35% improvement is typically required to meet London Plan performance.

Table 4-5 - Lifergy inc	5	LEAN			CLEAN	GREEN
Annual carbon emissions (kgCO ₂ /m ²)	GLA Baseline	Improved fabric	Lighting controls & efficiency	Improved HVAC efficiency	DH system	No renewable
Heating	30		9		10	10
Hot water	44		20		21	21
Cooling	0		2		2	2
Fans	12		14		14	14
Lighting	5		4		4	4
Building emission rate Total CO ₂	90.2	50.2		51.4	51.4	
% saving			-40.1%		-39%	-39%

 Table 4—3 - Energy modelling results for Phase 2

Figure 4—4 illustrates the CO2 saving results. As shown, the preliminary modelling results achieve a **40%** improvement over the GLA Baseline. The district heating system efficiently reduces the carbon emissions by **39%** over GLA Baseline model without significant negative impacts. As no renewable energy systems (e.g. PV panels) are proposed specifically for Phase 2 there is no renewable reduction.

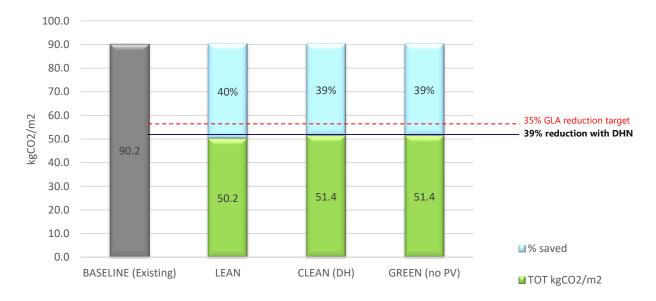


Figure 4-4 – Regulated CO2 reduction results expressed using the GLA lean, clean, green hierarchy

Figure 4—5 and Table 4—4 gives a summary of the modelling results in terms of energy end-use consumption. As shown, the highest energy consumption is from DHW, due to the existing storage heat losses and secondary circulation losses. The next highest load in the 'actual' building is heating energy use, followed by auxiliary energy for fans and pumping.

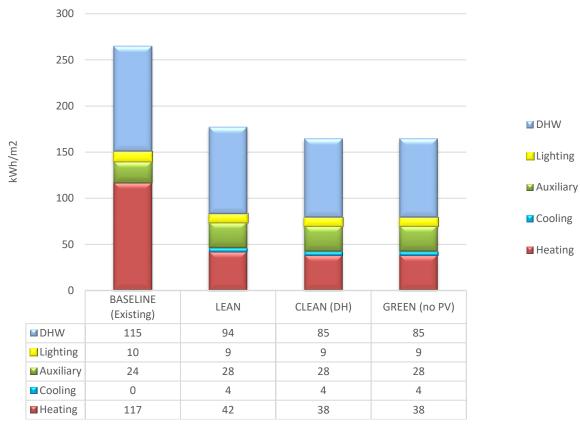
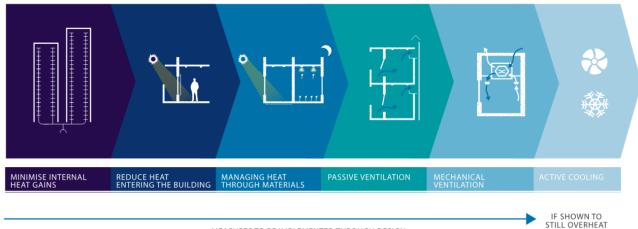


Figure 4-5 – Modelled regulated energy reduction for UCL IOE Phase 2 areas

		Baseline (Existing)	LEAN	CLEAN	GREEN
	ing emission rate (kgCO ₂ /m ²)	90.2	50.2	51.4	51.4
Car	bon savings (%)	-	40.1%	39%	39%
	Heating	30	9	10	10
	Cooling	0	2	2	2
kgCO ₂ /m ²	Auxiliary	12	14	14	14
	Lighting	5	4	4	4
	Domestic hot water	44	20	21	21
	Heating	117	42	38	38
Energy	Cooling	0	4	4	4
kWh/m ²	Auxiliary	24	28	28	28
	Lighting	10	9	9	9
	Domestic hot water	115	94	85	85

 Table 4—4 - Energy end use results and CO2 reduction modelling results for Phase 2


For further details of the energy models, see the BRUKL reports in Appendix A-C.

5 Thermal comfort analysis

5.1 Overview

This section contains a thermal comfort assessment for Phase 2 occupied rooms (Core A level 5 to 9 and Wing level 6 to 9) within the building The assessment covers the baseline and future climate assessment against the adaptive comfort standard specified in CIBSE Technical Memorandum 52 according with BREEAM 2014 UK Refurbishment Non-domestic buildings.

The thermal comfort strategy for UCL IOE has been developed following the GLA cooling hierarchy shown below, whereby active cooling systems are only utilised when all passive design measures have been exhausted.

MEASURES TO BE IMPLEMENTED THROUGH DESIGN

5.2 Modelling summary

The thermal comfort assessment was carried out IES Virtual Environment 2019, in accordance with CIBSE AM11 and BREEAM credit Hea04. Results are assessed against the CIBSE TM52 criteria. According to CIBSE TM52 methodology, a room or building that fails any two of the three criteria is classed as overheating:

- 1. The first criterion sets a limit for the number of hours that the operative temperature can exceed the threshold comfort temperature (upper limit of the range of comfort temperature) by 1°K or more during the occupied hours of a typical non-heating season (1st May to 30th September).
- 2. The second criterion deals with the severity of overheating within any one day, which can be as important as its frequency, the level of which is a function of both temperatures rise and its duration. This criterion sets a daily limit for acceptability.
- 3. The third criterion sets an absolute maximum daily temperature for a room, beyond which the level of overheating is unacceptable.

An image of the IES model, incorporating adjacent buildings is shown in Figure 5—2. The model reflects the RIBA Stage 3 design and is based on drawings issued by Penoyre & Prasad on February 2020.

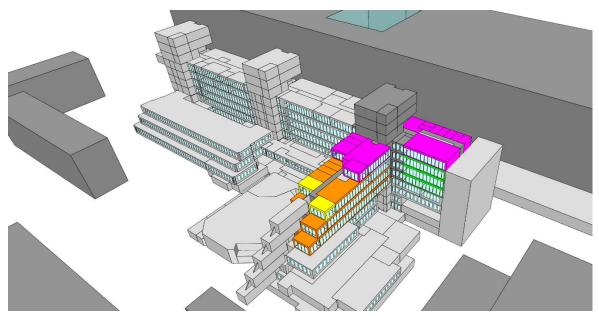


Figure 5-2 - Phase 2 Core A level 5 to 9 and Wing Level 6 to 9 model geometry created in IES

Weather files

As per BREEAM Hea04 and UCL Sustainable Building Standard guidelines, two sets of weather files were tested:

Weather file set	Description	Notes
LWC1989_baseline.epw	CIBSE weather file (DSY1 moderately warm summer)	In accordance with the BREEAM the naturally ventilated spaces as workspaces, shared hub and office units are tested in the current scenario
LWC1989_2050Med50pct.epw	Future weather predictions for 2050's under medium-risk climate change scenario	In accordance with BREEAM the naturally ventilated spaces as workspaces, shared hub and office units are tested in a 2050 scenario

Table 5—1 - Summary of weather files used

PMV/PPD criteria

For air-conditioned spaces, the predicted mean value (PMV) and predicted percentage dissatisfied (PPD) values indicate the level of thermal comfort in a space. Table 5—2 provides the acceptable ranges for PMV and PPD for any space, as defined in CIBSE Guide A. Both values must fall within their respective ranges for each space in winter and summer in order to demonstrate compliance.

Table 5—2 - PMV and PPD ranges

	Minimum allowable value	Maximum allowable value	Notes
PMV	-0.5	+0.5	It is desirable to achieve a PMV of 0; negative scores suggest temperatures are below the optimal thermal comfort (i.e. too cold), and positive scores are above optimal thermal comfort (i.e. too hot).
PPD	5%	10%	The PPD is a percentage that represents the number of people that would be thermally uncomfortable with the same conditions, level of activity and clothing in each thermal environment

4.0 3.6 3.2 2.8-

2.4 2.0 1.6 1.2 0.8 0.4 0.0

Heat gains

Inputs for internal equipment and lighting heat gains are given in Table 5—3. It is assumed that most of the equipment gains in the teaching spaces will be from personal laptop use by students, whereas in the offices there is likely to be a mix of laptops, screens, computers and additional facilities such as photocopiers.

	Occupancy (m ² /p)	Load/Person	Lighting (w/m ²)	Equipment (w/m ²)
Cellular office	3	Sens. Load (75 W/p) Lat. Load (55 W/p)	6	25
Shared hub	4	Sens. Load (75 W/p) Lat. Load (55 W/p)	4	15
Teaching IOE studies	3	Sens. Load (75 W/p) Lat. Load (55 W/p)	4	15
Meeting room	3	Sens. Load (75 W/p) Lat. Load (55 W/p)	5	25
Break out	3	Sens. Load (75 W/p) Lat. Load (55 W/p)	5	10
Profile	30% 8AM to 9AM 50% 9AM to 9.30AM 100% 9.30AM to 6PM 50% 6PM to 7PM 30% 7PM to 10PM		100% 8AM to 10PM, 10% at night	100% 9AM to 7PM, 10% at night

Table 5—3 - Internal gains for occupancy, equipment and lighting

Assumed occupancy densities for the Phase 2 occupied spaces on level 5 up to 9 are illustrated in Table 6-2. Circulation spaces are typically not considered occupied if not occupied for longer than 30 minutes, however, the circulation space on the shared hub may be considered a transition space with working area, it is likely that such an area might be used by staff or students and is taken into account during the overheating and thermal comfort analysis.

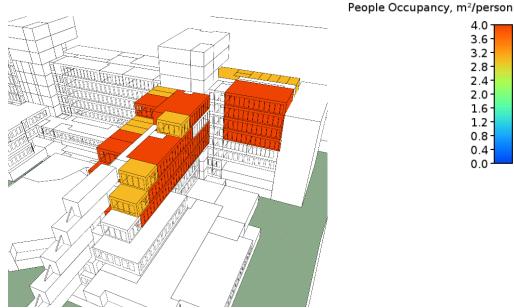


Figure 5-3 - Occupancy density Phase 2 Core A and Wing Level 6 to 9

5.3 Ventilation strategy

The ventilation strategy is illustrated in Figure 5-4 below.

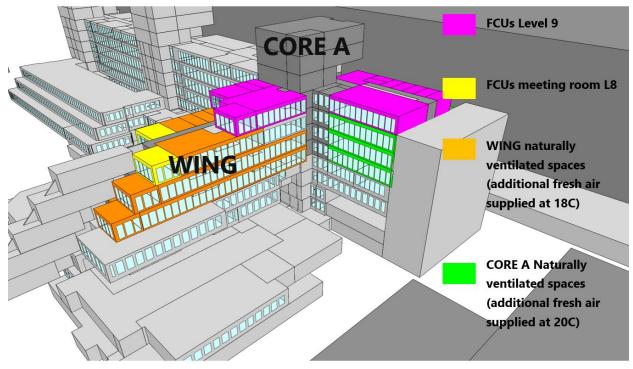


Figure 5—4 - Phase 2 Ventilation strategy

Windows in the wing and core A spaces on level 5 to 9 are sash windows, proposed to be improved with a secondary glazing panel. Sash windows are typically openable up to 50%. However, due to adjacency of the terrace to certain windows, these are locked and limited to an opening of circa 10% due to security reasons.

In order to achieve adequate thermal comfort TM52 thermal standards the wing and core A rooms from level 5 to 9 have the following ventilation features:

- Variable and constant air volume (VAV/CAV) and CO₂ sensors installed in an occupied space at 1600mm finished floor level and connected to VAV systems to modulate the fresh air provision into each room.
- Provision of airflow 3 l/s m² supplied at 18 °C delivered when outside air temperature exceeds 28°C and auxiliary flow rate of 3 l/s m² at 20°C.
- Possibility for users to open the sash windows to reflect the manually bottom/top panel opening profile in occupied hours. In order to simulate the manually opening it was considered a ventilation opening profile in IES thermal model applied to the bottom/top vent panels.
- Occupied rooms at level 9 zone A (office, shared hub and meeting room) and in the wing spaces (offices and shared hub) shall be mechanically ventilated treated with FCUs.
- Fan coil units (FCUs) shall be provided into the meeting room at Level 8
- Each space with FCUs shall be provided with a wall mounted user controller, with the user capable to adjust the room temperature within the +- 1.5°C from the design room temperatures.
- Rooms without FCUs shall be provided with wall mounted temperature sensors for monitoring purpose.

Air flow rate control regime and heating/cooling set points

The tables Table 5—4 Table 5—5 outline the ventilation strategy in terms of flow rates to Wing levels 6-9 and Core A (levels 5-9) respectively. Below in Table 5—6, the heating and cooling set points as agreed with the building services engineers are set out.

Table 5—4 - Air flow rate controlled by temperature profile and window opening profile applied to thermal model in IESVE 2019

Phase 2 wing occupied zones (Level 6 to 9)	Ventilation strategy	Opening profile IES thermal model
Cellular Office naturally ventilated with minimum fresh air ventilation	Flow rate 3 l/s m ² supplied at 18°C controlled by outside air temperature	
Shared hub naturally ventilated with minimum fresh air ventilation	Flow rate 3 l/s m ² supplied at 18°C controlled by outside air temperature	openable area 50% based on modulating profile applied to sash window. The bottom/top panel gradually opens when
Meeting room (mechanically ventilated)	cooling provision via FCUs on level 9	internal temperature is over 22 °C until is fully open at 24 °C in summer months.
Break out naturally ventilated with minimum fresh air ventilation	Flow rate 3 l/s m ² supplied at 18°C controlled by outside air temperature	

Table 5--5 - Air flow rate controlled by temperature profile and window opening profile applied to thermal model in IESVE 2019

Phase 2 Core A (level 5 to 9)	Ventilation strategy	Opening profile IES thermal model
Cellular Office naturally ventilated with minimum fresh air ventilation	Flow rate 3 I/s m ² supplied at 20°C controlled by outside air temperature	
Shared hub naturally ventilated with minimum fresh air ventilation	Flow rate 3 l/s m ² supplied at 20°C controlled by outside air temperature	Openable area 50% based on modulating profile applied to sash window: The bottom/top panel gradually opens when
Meeting room (mechanically ventilated)	cooling provision from FCUs	internal temperature is over 22 °C until is fully open at 24 °C in summer months.
Break out naturally ventilated with minimum fresh air ventilation	Flow rate 3 l/s m ² supplied at 20°C controlled by outside air temperature	

Table 5-6 - Heating and cooling set points per space function

Space use Assumed Heating set-point (°C)		Assumed Cooling set-point (°C)
Office	22 ±4	-
Shared hub	22 ±2	-
Meeting room	22 ±2	24 ±2
Break out	22 ±2	-

5.4 Baseline & Future Climate Results

Appendix D and Appendix E contain the modelling results for all spaces assessed against baseline and future climate for the Phase 2 wing and core zone A within the occupied spaces. Spaces are deemed to "Pass" the TM52 criteria if at least 2 of 3 requirements are met. As shown, all spaces PASS at least 2 of 3 of the TM52 criteria in the baseline and future weather files.

In terms of the PMV/PPD results, Table 5—7 and Table 5—8 summarise the figures, with all spaces meet the CIBSE criteria.

Table 5—7 - Summar	y of PMV/PPD results, baseline climate
Tuble J Julinia	y of the with the results, buseline climate

	PMV scale		PPD (%)	PPD (%)	
Space ID	Mean winter	Mean summer	Mean winter	Mean summer	RESULT
Air-Conditioned occupied spaces	0.21	0.36	7.81	9.73	Acceptable

Table 5-8 - Summary of PMV/PPD results, future climate

	PMV scale		PPD (%)		RESULT	
Space ID	Mean winter	Mean summer	Mean winter	Mean summer	RESULI	
Conditioned occupied spaces	0.30	0.50	8.1	11.7	Acceptable	

5.5 Cooling demand vs. notional building – Phase 2 summary

The area weighted average building cooling demand (MJ/m2) from the BRUKL for all Phase 2 areas, both Actual and Notional are below. As shown, the Actual cooling demand is below the Notional, demonstrating the GLA cooling hierarchy was applied successfully.

	Fan coil system energy demand	Constant Volume system energy demand	Single duct VAV energy demand	Total Cooling energy demand	% saved
	MJ/m ²	MJ/m ²	MJ/m ²	MJ/m ²	%
Actual	57.3	33.6	70.8	161.7	
Notional	125.1	80.2	144.1	349.4	54%

Table 5—9 - Heating and cooling demand for the Notional building compared to actual

6 Conclusion

This report has covered for the Phase 2 UCL Institute of Education, Level 5 to 9 Zone A, Level 6 to 9 Wing and core A-B-C zones energy strategy, thermal comfort assessment and BREEAM pre-assessment strategy in accordance with the planning requirements.

Headline outcomes include:

- The project is on track to achieve a BREEAM Excellent rating, with a score of 75.8%
- The Phase 2 energy strategy achieves a 39% reduction in regulated CO₂ emissions
- The naturally ventilated occupied spaces under the current and future climate are classed pass the CIBSE TM52 overheating criteria. Similarly, the conditioned rooms which include cooling demonstrated adequate thermal comfort has been achieved with a cooling demand far lower than the notional building.

In summary, there is good potential to undertake an extensive and sustainable refurbishment for the UCL Institute of Education, which achieves BREEAM Excellent and provides comfortable internal environments. Works undertaken to date for Phase 2 have shown that this will require investment in passive design and fabric improvements, for which an appropriate strategy has been developed in line with the heritage consultant advice.

Appendix A - 'Lean' BRUKL report

HM Government

Compliance with England Building Regulations Part L 2013

Project name

UCL_IOE_Phase 2 PartL2B_LEAN.rev00

As built

Date: Tue Mar 24 14:51:27 2020

Administrative information

Building Details

Address: Address 1, City, Postcode

Certification tool

Calculation engine: Apache Calculation engine version: 7.0.12 Interface to calculation engine: IES Virtual Environment Interface to calculation engine version: 7.0.12 BRUKL compliance check version: v5.6.a.1

Owner Details

Name: Name Telephone number: Phone Address: Street Address, City, Postcode

Certifier details

Name: Name Telephone number: Phone Address: Street Address, City, Postcode

Criterion 1: The calculated CO₂ emission rate for the building must not exceed the target

The building does not comply with England Building Regulations Part L 2013

CO ₂ emission rate from the notional building, kgCO ₂ /m ² .annum	21.9
Target CO ₂ emission rate (TER), kgCO ₂ /m ² .annum	21.9
Building CO ₂ emission rate (BER), kgCO ₂ /m ² .annum	51.2
Are emissions from the building less than or equal to the target?	BER > TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

Values which do not achieve the standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

Building fabric

Element	Ua-Limit	Ua-Calc	Ui-Calc	Surface where the maximum value occurs*
Wall**	0.35	0.32	0.47	L300001A:Surf[3]
Floor	0.25	0.27	0.77	L4000023:Surf[16]
Roof	0.25	0.82	2.26	L4000038:Surf[1]
Windows***, roof windows, and rooflights	2.2	2.04	5.7	L2000010:Surf[0]
Personnel doors	2.2	-	-	No Personnel doors in building
Vehicle access & similar large doors	1.5	-	-	No Vehicle access doors in building
High usage entrance doors	3.5	-	-	No High usage entrance doors in building
Ua-Limit = Limiting area-weighted average U-values [W	//(m²K)]			

 U_{a-Calc} = Calculated area-weighted average U-values [W/(m/K)]

 $U_{\vdash Calc}$ = Calculated maximum individual element U-values [W/(m²K)]

* There might be more than one surface where the maximum U-value occurs.

** Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

*** Display windows and similar glazing are excluded from the U-value check.

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

Air Permeability	Worst acceptable standard	This building
m ³ /(h.m ²) at 50 Pa	10	10

Building services

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

Whole building lighting automatic monitoring & targeting with alarms for out-of-range values	YES	
Whole building electric power factor achieved by power factor correction	>0.95	

1- radiators with extract_WC

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency	
This system	0.91	-	0	0	-	
Standard value	0.91*	N/A	N/A	N/A	N/A	
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES						
* Standard shown is for gas single boiler systems <= 2 MW output. For single boiler systems >2 MW or multi-boiler systems, (overall) limiting						

efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82.

2- Circulation supply+extract

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(l/s)]	HR efficiency	
This system	0.91	4.62	0	2.1	0.8	
Standard value	0.91*	2.55	N/A	1.6^	0.65	

Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES

* Standard shown is for gas single boiler systems <=2 MW output. For single boiler systems >2 MW or multi-boiler systems, (overall) limiting efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82.

^ Limiting SFP may be extended by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide.

3- AHU (FCUs)+rads

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency	
This system	0.91	4.6	0	2.1	0.8	
Standard value	0.91*	2.55	N/A	1.6^	0.65	
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES						

* Standard shown is for gas single boiler systems <=2 MW output. For single boiler systems >2 MW or multi-boiler systems, (overall) limiting efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82.

^ Limiting SFP may be extended by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide.

4-Nat_radiators

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency	
This system	0.91	-	0	0	-	
Standard value	0.91*	N/A	N/A	N/A	N/A	
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES						
* Standard shown is t	* Standard shown is for case single boiler systems >2 MW output. For single boiler systems >2 MW or multi-boiler systems. (overall) limiting					

* Standard shown is for gas single boiler systems <= 2 MW output. For single boiler systems > 2 MW or multi-boiler systems, (overall) limiting efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82.

5- DX cooling_comms room

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency	
This system	0.91	3.2	-	0	-	
Standard value	0.91*	3.2	N/A	N/A	N/A	
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system NO						
* Standard shown is for gas single boiler systems <=2 MW output. For single boiler systems >2 MW or multi-boiler systems, (overall) limiting						

Standard shown is for gas single boiler systems <= 2 MW output. For single boiler systems >2 MW or multi-boiler systems, (overall) limiting efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82.

6- VAV+rads

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency			
This system	0.91	4.62	0	2.1	0.8			
Standard value	0.91*	2.55	N/A	1.6^	0.65			
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES								
* Standard shown is for gas single boiler systems <= 2 MW output. For single boiler systems >2 MW or multi-boiler systems, (overall) limiting efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82.								
[^] Limiting SFP may be extended by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide.								

Local mechanical ventilation, exhaust, and terminal units

ID	System type in Non-domestic Building Services Compliance Guide
A	Local supply or extract ventilation units serving a single area
В	Zonal supply system where the fan is remote from the zone
С	Zonal extract system where the fan is remote from the zone
D	Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery
E	Local supply and extract ventilation system serving a single area with heating and heat recovery
F	Other local ventilation units
G	Fan-assisted terminal VAV unit
Н	Fan coil units
	Zonal extract system where the fan is remote from the zone with grease filter

Zone name	SFP [W/(I/s)]										
ID of system type	Α	В	С	D	Е	F	G	Н	I	HR efficiency	
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
L2_WC	0.4	-	-	-	-	-	-	-	-	-	N/A
L2_XA_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A
L2_XB_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A
L2_XB_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A
L2_XC_TS_I_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L3_teaching area	-	-	-	-	-	-	-	0.2	-	-	N/A
L3_teaching area	-	-	-	-	-	-	-	0.2	-	-	N/A
L3_teaching area	-	-	-	-	-	-	-	0.2	-	-	N/A
L3_teaching space	-	-	-	-	-	-	-	0.2	-	-	N/A
L3_WC	0.4	-	-	-	-	-	-	-	-	-	N/A
L3_XA_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A
L3_XA_WC_I_02	0.4	-	-	-	-	-	-	-	-	-	N/A
L3_XB_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A
L4_XA_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A
L4_XA_WC_I_02	0.4	-	-	-	-	-	-	-	-	-	N/A
L4_XB_TS_I_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L4_XB_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A
L4_XB_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A
L4_XC_TS_E_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L5_ZA_TS_E_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L5_ZA_TS_E_02	-	-	-	-	-	-	-	0.2	-	-	N/A
L5_ZA_TS_W_03	-	-	-	-	-	-	-	0.2	-	-	N/A

Zone name	SFP [W/(I/s)]										
ID of system type	Α	В	С	D	DEFGHI		1	НКе	fficiency		
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
L5_ZA_TS_W_04	-	-	-	-	-	-	-	0.2	-	-	N/A
L6_WI_MR_I_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L6 WI MR I 02	-	-	-	-	-	-	-	0.2	-	-	N/A
 L6 WI MR W 01	-	-	-	-	-	-	-	0.2	-	-	N/A
 L6 WI WS N 01	-	-	-	-	-	-	-	0.2	-	-	N/A
L6 WI WS N 02	-	-	-	-	-	-	-	0.2	-	-	N/A
L6 WI WS N 03	-	-	-	-	-	-	-	0.2	-	-	N/A
 L6 WI WS N 04	-	-	-	-	-	-	-	0.2	-	-	N/A
 L6 WI WS N 05	-	-	-	-	-	-	-	0.2	-	-	N/A
	-	-	-	-	-	-	-	0.2	-	-	N/A
L6 WI WS N 07	-	-	-	_	-	-	-	0.2	-	-	N/A
L6_WI_WS_N_08	-	-	_	_	_	_	_	0.2	_	-	N/A
L6 WI WS N 09	-	-	_	_	-	-	_	0.2	-	-	N/A
L6_WI_WS_N_10	-	-	_	_	_	_	_	0.2	_	_	N/A
L6_WI_WS_N_11	-	-	_	-	-	-	-	0.2	-	_	N/A
L6_ZA_MR_I_01	-	-	_	-	-	-	-	0.2	_	_	N/A
L6_ZA_MR_I_02	-	-	-	_	-	-	-	0.2	-	-	N/A
L7_WI_MR_I_01	_	-	_	-	-	-	-	0.2	-	_	N/A
L7_WI_MR_W_01	_	-	-	-	_	_	-	0.2	-	_	N/A
L7_WI_WS_N_01			_	-	-	-	-	0.2	-	-	N/A
L7_WI_WS_N_02	-	-	-	-	-	_	_	0.2	_	_	N/A
L7_WI_WS_N_03	-		-	-	-	-	-	0.2	_	_	N/A
L7 WI WS N 04	-	-	-	-	-	-	-	0.2	-	-	N/A
L7 WI_WS_N 05		-	_	_	-	-	-	0.2	-	-	N/A
L7 WI WS N 07	-	-	-	-	-	-	-	0.2	-	-	N/A
L7_WI_WS_N_07	-	-	_	_	-	-	-	0.2	_	-	N/A
L7_WI_WS_N_08				-	-	-	-	0.2	-	-	N/A
L7_WI_WS_N_09	-	-	-	_	-	-	_	0.2	-	-	N/A
L7_XA_MR_I_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L7_XA_MR_I_03	-	-	-	-	-	-	-	0.2	-	-	N/A
L7_XA_MR_E_01	-	-	-	-	-		-	0.8	-	-	N/A
L8_WI_MR_L_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L8_WI_MR_W_01	-	-	-	-	-	-		0.2	-	-	N/A N/A
	-	-	-	-	-	-	-	0.2	-	-	N/A N/A
L8_WI_WS_N_01	-	-	-	-	-	-	-		-	-	
L8_WI_WS_N_02	-	-	-	-	-	-	-	0.2	-	-	N/A
L8_WI_WS_N_03	-	-	-	-	-	-	-	0.2	-	-	N/A
L8_WI_WS_N_04	-	-	-	-	-	-	-	0.2	-	-	N/A
L8_WI_WS_N_05	-	-	-	-	-	-	-	0.2	-	-	N/A
L8_WI_WS_N_06	-	-	-	-	-	-	-	0.2	-	-	N/A
L8_WI_WS_N_07	-	-	-	-	-	-	-	0.2	-	-	N/A
L8_WI_WS_N_10	-	-	-	-	-	-	-	0.2	-	-	N/A
L8_XA_MR_I_02	-	-	-	-	-	-	-	0.2	-	-	N/A
L8_XA_MR_I_03	-	-	-	-	-	-	-	0.2	-	-	N/A

Zone name		SFP [W/(I/s)]									
ID of system type	Α	В	С	D	Е	F	G	н	I	HR efficiency	
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
L8_XB_MR_E_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L8_XB_MR_I_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L8_ZA_MR_E_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_WI_MR_W_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_WI_WS_N_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_WI_WS_N_02	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_WI_WS_N_10	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_WI_WS_S_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_BREAKOUT_E_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_MR_E_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_MR_I_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_WS_E_03	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_WS_E_04	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_WS_E_05	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_WS_E_06	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_WS_E_07	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_WS_W_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_WS_W_01	-	-	-	-	-	-	-	0.2	-	-	N/A

General lighting and display lighting	Lumino	ous effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
L2_store	90	-	-	8
L2_WC	-	80	-	66
L2_XA_WC_I_01	-	80	-	77
L2_XB_CIRC_I_02	-	80	-	89
L2_XB_WC_I_01	-	80	-	161
L2_XB_WC_I_01	-	80	-	82
L2_XC_TS_I_01	90	-	-	660
L3_atrium	-	90	-	64
L3_cafe_store	90	-	-	15
L3_ISD rooms	80	-	-	268
L3_store	90	-	-	6
L3_teaching area	90	-	-	145
L3_teaching area	90	-	-	146
L3_teaching area	90	-	-	149
L3_teaching space	90	-	-	654
L3_WC	-	80	-	73
L3_XA_COMMS_E_01	90	-	-	48
L3_XA_STORE_E_01	90	-	-	6
L3_XA_WC_I_01	-	80	-	90
L3_XA_WC_I_02	-	80	-	80
L3_XB_CC_I_01	-	80	-	131

General lighting and display lighting	Lumino	ous effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
L3_XB_WC_I_01	80	-	-	259
L3_ZB_CIRC_I_01	-	80	-	87
L3_ZB_CIRC_I_02	-	80	-	215
L4_XA_WC_I_01	-	80	-	128
L4_XA_WC_I_02	-	80	-	77
L4_XB_CIRC_I_01	-	80	-	134
L4_XB_STORE_I_01	90	-	-	4
L4_XB_STORE_I_02	90	-	-	8
L4_XB_TS_I_01	90	-	-	624
L4_XB_WC_I_01	-	80	-	78
L4_XB_WC_I_01	-	80	-	138
 L4_XC_TS_E_01	90	-	-	621
	-	80	-	217
 L5_XA_CIRC_I_02	-	80	-	81
L5_ZA_TS_E_01	90	-	-	293
L5_ZA_TS_E_02	90	-	-	304
L5_ZA_TS_W_03	90	-	-	190
L5_ZA_TS_W_04	90	-	-	225
L6_WI_CIRC_I_01	-	80	-	115
L6_WI_MR_I_01	90	-	-	81
L6_WI_MR_I_02	90	_	-	169
L6_WI_MR_W_01	90	-	-	129
L6 WI WS N 01	90	-	-	125
L6_WI_WS_N_02	90	-	-	120
L6 WI WS N 03	90	-	-	117
L6_WI_WS_N_04	90	-	-	116
L6_WI_WS_N_05	90	-	-	116
L6_WI_WS_N_06	90	-	-	117
L6_WI_WS_N_07	90	-	-	117
L6_WI_WS_N_08	90	-	-	116
L6_WI_WS_N_09	90	_	-	116
L6_WI_WS_N_10	90	_	-	116
L6 WI WS N 11	90	-	-	116
L6_WI_WS_N_12	90	-		140
L6_WI_WS_S_01	90	-	-	850
L6_XA_CIRC_I_01	-	80	-	151
L6_ZA_BREAKOUT_E_01	-	80	-	158
L6_ZA_MR_I_01	90		-	70
L6_ZA_MR 02	90		-	73
L6_ZA_WS_W_01	90		-	835
L6_ZA_WS_W_01 L6_ZB_LAWTON_DINING_E_01	-	90	-	433
L7_WI_CIRC_I_01	-	80		106
		00	-	
L7_WI_MR_I_01	90	-	-	161

General lighting and display lighting	Lumine	ous effic	acy [lm/W]		
Zone name	Luminaire Lamp Display lamp			General lighting [W]	
Standard value	60	60	22		
L7_WI_MR_W_01	90	-	-	129	
L7_WI_WS_N_01	90	-	-	113	
L7_WI_WS_N_02	90	-	-	113	
L7_WI_WS_N_03	90	-	-	113	
L7_WI_WS_N_04	90	-	-	113	
L7 WI WS N 05	90	-	-	113	
L7_WI_WS_N_07	90	-	-	113	
L7_WI_WS_N_07	90	-	-	113	
 L7WI_WS_N_08	90	-	-	113	
L7_WI_WS_N_09	90	-	-	113	
	90	-	-	168	
	90	-	-	777	
L7 XA CIRC I 01	-	80	_	148	
L7_XA_MR_I_01	80	-	-	118	
L7_XA_MR_I_03	80	-	-	172	
L7_ZA_BREAKOUT_E_01	80	-	-	496	
L7_ZA_MR_E_01	80	-	-	151	
L7_ZA_WS_E_01	90	-	_	106	
L7_ZA_WS_E_02	90	-	_	100	
L7_ZA_WS_E_03	90	_	_	105	
L7_ZA_WS_E_04	90	-	-	103	
L7_ZA_WS_E_05	90	_	_	103	
L7_ZA_WS_E_07	90	-	_	93	
L7 ZA WS W 01	90	_	_	774	
L8 WI CIRC I 01	-	80	_	105	
L8_WI_MR_I_01	90	-	_	79	
L8_WI_MR_W_01	90	-	_	128	
L8_WI_WS_N_01	90	-	-	113	
L8_WI_WS_N_02	90	_	-	113	
L8_WI_WS_N_03	90	_	-	113	
L8_WI_WS_N_04	90	_	_	113	
L8_WI_WS_N_05	90	_	_	108	
L8_WI_WS_N_06	90	_	_	107	
L8_WI_WS_N_07	90	_	_	107	
L8_WI_WS_N_08	90	_	-	108	
L8_WI_WS_N_10	90	-	-	110	
L8_WI_WS_S_01	90		-	432	
L8_XA_CIRC_I_01		80	-	148	
L8_XA_MR_I_02	90	-	-	160	
L8_XA_MR_I_02	90		-	151	
	90	-		97	
L8_XB_MR_E_01	90	-	-	172	
L8_XB_MR_I_01		-	-		
L8_ZA_BREAKOUT_E_01	-	80	-	159	

General lighting and display lighting	Lumino	ous effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
L8_ZA_MR_E_01	90	-	-	83
L8_ZA_WS_E_01	90	-	-	78
L8_ZA_WS_E_02	80	-	-	109
L8_ZA_WS_E_03	90	-	-	103
L8_ZA_WS_E_04	90	-	-	100
L8_ZA_WS_E_05	90	-	-	100
L8_ZA_WS_E_06	90	-	-	100
L8_ZA_WS_E_07	90	-	-	89
L8_ZA_WS_W_01	80	-	-	1241
L9_WI_MR_W_01	90	-	-	140
L9_WI_WS_N_01	90	-	-	107
L9_WI_WS_N_02	90	-	-	107
L9_WI_WS_N_10	90	-	-	137
L9_WI_WS_S_01	90	-	-	416
L9_XA_CIRC_I_01	-	80	-	147
L9_ZA_BREAKOUT_E_01	-	80	-	106
L9_ZA_MR_E_01	90	-	-	74
L9_ZA_MR_I_01	90	-	-	91
L9_ZA_WS_E_03	90	-	-	93
L9_ZA_WS_E_04	90	-	-	90
L9_ZA_WS_E_05	90	-	-	90
L9_ZA_WS_E_06	90	-	-	90
L9_ZA_WS_E_07	90	-	-	79
L9_ZA_WS_W_01	90	-	-	166
L9_ZA_WS_W_01	90	-	-	521
L3_cafe	-	80	-	200
L3_ZB_ENTRANCE_E_01	-	90	80	183
L4_ZB_BREAKOUT_I_05	-	80	-	260
L4_ZB_STAIR_I_01	-	80	-	171
L4_ZB_CIRC_I_01	-	80	-	743
L4_ZB_ENTRANCE_I_01	-	90	80	79

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
L2_XB_CIRC_I_02	N/A	N/A
L2_XC_TS_I_01	N/A	N/A
L3_ISD rooms	N/A	N/A
L3_teaching area	N/A	N/A
L3_teaching area	N/A	N/A
L3_teaching area	N/A	N/A
L3_teaching space	N/A	N/A
L3_XA_COMMS_E_01	NO (-91.7%)	YES
L3_XB_CC_I_01	N/A	N/A

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
L3_XB_WC_I_01	NO (-49.5%)	YES
L4_XB_CIRC_I_01	N/A	N/A
L4_XB_TS_I_01	N/A	N/A
L4_XC_TS_E_01	N/A	N/A
L5_XA_CIRC_I_02	N/A	N/A
 L5 ZA TS E 01	NO (-72.4%)	YES
	NO (-50.1%)	YES
	NO (-34.8%)	YES
	NO (-45%)	YES
	N/A	N/A
	N/A	N/A
L6_WI_MR_I_02	N/A	N/A
L6 WI MR W 01	NO (-48.2%)	YES
L6_WI_WS_N_01	NO (-65.7%)	YES
L6_WI_WS_N_02	NO (-53.7%)	YES
L6_WI_WS_N_03	NO (-51.2%)	YES
L6_WI_WS_N_04	NO (-50.7%)	YES
L6_WI_WS_N_05	NO (-50.7%)	YES
L6_WI_WS_N_06	NO (-51.2%)	YES
L6_WI_WS_N_07	NO (-50.7%)	YES
L6_WI_WS_N_08	NO (-50.8%)	YES
L6_WI_WS_N_09	NO (-52.2%)	YES
L6_WI_WS_N_10	NO (-52.3%)	YES
L6_WI_WS_N_11	, ,	YES
	NO (-51.4%)	YES
L6_WI_WS_N_12	NO (-42.4%)	
	NO (-35.3%)	YES
	N/A	N/A
L6_ZA_BREAKOUT_E_01	NO (-43.5%)	YES
L6_ZA_MR_I_01	N/A	N/A
L6_ZA_MR_I_02	N/A	N/A
L6_ZA_WS_W_01	NO (-64%)	YES
L6_ZB_LAWTON_DINING_E_01	NO (-18.4%)	YES
	N/A	N/A
L7_WI_MR_I_01	N/A	N/A
L7_WI_MR_W_01	NO (-48.9%)	YES
L7_WI_WS_N_01	NO (-62.5%)	YES
L7_WI_WS_N_02	NO (-52.4%)	YES
L7_WI_WS_N_03	NO (-52.4%)	YES
L7_WI_WS_N_04	NO (-52.4%)	YES
L7_WI_WS_N_05	NO (-52.4%)	YES
L7_WI_WS_N_07	NO (-52.4%)	YES
L7_WI_WS_N_07	NO (-52.4%)	YES
L7_WI_WS_N_08	NO (-52.4%)	YES
L7_WI_WS_N_09	NO (-52.4%)	YES
L7_WI_WS_N_10	NO (-45.6%)	YES
L7_WI_WS_S_01	NO (-34%)	YES
L7_XA_CIRC_I_01	N/A	N/A
L7_XA_MR_I_01	N/A	N/A
L7_XA_MR_I_03	N/A	N/A

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
L7_ZA_BREAKOUT_E_01	NO (-51.8%)	YES
L7_ZA_MR_E_01	NO (-55.3%)	YES
L7_ZA_WS_E_01	NO (-47.3%)	YES
	NO (-41.1%)	YES
 L7_ZA_WS_E_03	NO (-43.5%)	YES
	NO (-42.9%)	YES
	NO (-42.9%)	YES
	NO (-91.5%)	YES
L7_ZA_WS_W_01	NO (-62.2%)	YES
L8_WI_CIRC_I_01	N/A	N/A
L8_WI_MR_I_01	N/A	N/A
L8_WI_MR_W_01	NO (-49.1%)	YES
L8_WI_WS_N_01	NO (-62.5%)	YES
L8_WI_WS_N_02	NO (-52.4%)	YES
L8_WI_WS_N_03	NO (-52.4%)	YES
L8_WI_WS_N_04	NO (-52.4%)	YES
L8_WI_WS_N_05		YES
	NO (-52.4%)	
L8_WI_WS_N_06	NO (-52.6%)	YES
L8_WI_WS_N_07	NO (-52.6%)	YES
L8_WI_WS_N_08	NO (-52.2%)	YES
L8_WI_WS_N_10	NO (-43.7%)	YES
L8_WI_WS_S_01	NO (-31.1%)	YES
L8_XA_CIRC_I_01	N/A	N/A
L8_XA_MR_I_02	N/A	N/A
L8_XA_MR_I_03	N/A	N/A
L8_XB_MR_E_01	NO (-43.9%)	YES
L8_XB_MR_I_01	N/A	N/A
L8_ZA_BREAKOUT_E_01	NO (-50.5%)	YES
L8_ZA_MR_E_01	NO (-48.4%)	YES
L8_ZA_WS_E_01	NO (-47.3%)	YES
L8_ZA_WS_E_02	NO (-41.1%)	YES
L8_ZA_WS_E_03	NO (-43.5%)	YES
L8_ZA_WS_E_04	NO (-42.9%)	YES
L8_ZA_WS_E_05	NO (-42.9%)	YES
L8_ZA_WS_E_06	NO (-42.9%)	YES
L8_ZA_WS_E_07	NO (-91.5%)	YES
L8_ZA_WS_W_01	NO (-62.2%)	YES
L9_WI_MR_W_01	NO (-49.4%)	YES
L9_WI_WS_N_01	NO (-62.6%)	YES
L9_WI_WS_N_02	NO (-52.6%)	YES
L9_WI_WS_N_10	NO (-44.1%)	YES
	NO (-53.9%)	YES
	N/A	N/A
	NO (-77.7%)	YES
L9 ZA MR E 01	NO (-47.6%)	YES
L9 ZA MR 01	N/A	N/A
L9_ZA_WS_E_03	NO (-43.5%)	YES
L9_ZA_WS_E_04	NO (-43%)	YES
L9_ZA_WS_E_05	NO (-42.9%)	YES
		1.20

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
L9_ZA_WS_E_06	NO (-42.9%)	YES
L9_ZA_WS_E_07	NO (-81.9%)	YES
L9_ZA_WS_W_01	N/A	N/A
L9_ZA_WS_W_01	NO (-54.4%)	YES
L3_ZB_ENTRANCE_E_01	NO (-36.4%)	YES
L4_ZB_ENTRANCE_I_01	NO (-42%)	YES

Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

EPBD (Recast): Consideration of alternative energy systems

Were alternative energy systems considered and analysed as part of the design process?			
Is evidence of such assessment available as a separate submission?	NO		
Are any such measures included in the proposed design?	NO		

Technical Data Sheet (Actual vs. Notional Building)

Building Global Parameters

	Actual	Notional
Area [m ²]	5190.2	5190.2
External area [m ²]	4998.7	5770
Weather	LON	LON
Infiltration [m ³ /hm ² @ 50Pa]	10	3
Average conductance [W/K]	5128.85	2799.3
Average U-value [W/m ² K]	1.03	0.49
Alpha value* [%]	9.18	10

* Percentage of the building's average heat transfer coefficient which is due to thermal bridging

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	42.74	13.46
Cooling	3.99	6.63
Auxiliary	28.8	13.93
Lighting	9.02	14.36
Hot water	96.32	6.3
Equipment*	30.79	30.79
TOTAL**	180.86	54.69

* Energy used by equipment does not count towards the total for consumption or calculating emissions. ** Total is net of any electrical energy displaced by CHP generators, if applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	0	0
Wind turbines	0	0
CHP generators	0	0
Solar thermal systems	0	0

Energy & CO₂ Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m ²]	170.55	132.26
Primary energy* [kWh/m ²]	294.77	128.66
Total emissions [kg/m ²]	51.2	21.9

* Primary energy is net of any electrical energy displaced by CHP generators, if applicable.

Building Use

100

% Area Building Type A1/A2 Retail/Financial and Professional services A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways

- B1 Offices and Workshop businesses B2 to B7 General Industrial and Special Industrial Groups B8 Storage or Distribution C1 Hotels C2 Residential Institutions: Hospitals and Care Homes C2 Residential Institutions: Residential schools C2 Residential Institutions: Universities and colleges C2A Secure Residential Institutions **Residential spaces** D1 Non-residential Institutions: Community/Day Centre D1 Non-residential Institutions: Libraries, Museums, and Galleries D1 Non-residential Institutions: Education D1 Non-residential Institutions: Primary Health Care Building D1 Non-residential Institutions: Crown and County Courts D2 General Assembly and Leisure, Night Clubs, and Theatres Others: Passenger terminals Others: Emergency services
 - Others: Miscellaneous 24hr activities

Others: Car Parks 24 hrs

Others: Stand alone utility block

Ŀ		tems Per	formane	a						
	tem Type		Cool dem MJ/m2		Cool con kWh/m2	Aux con kWh/m2	Heat SSEEF	Cool SSEER	Heat gen SEFF	Cool gen SEER
[ST]	Central he	eating using	y water: rad	iators, [HS]	LTHW boil	ler, [HFT] N	atural Gas,	[CFT] Elect	ricity	-
	Actual	339.8	0	110.4	0	1.8	0.85	0	0.91	0
	Notional	112.2	0	36.1	0	1.8	0.86	0		
[ST]	Central he	eating using	y water: rad	iators, [HS]	LTHW boil	ler, [HFT] N	atural Gas,	[CFT] Elect	ricity	
T	Actual	55.1	0	17.9	0	14.1	0.85	0	0.91	0
	Notional	31.3	0	10.1	0	14.1	0.86	0		
[ST]	Fan coil s	ystems, [HS	6] LTHW bo	iler, [HFT] I	Natural Gas	s, [CFT] Ele	ctricity			
	Actual	85.6	57.3	28	4.8	12.3	0.85	3.35	0.91	4.4
	Notional	32	125.1	10.3	9.2	16.1	0.86	3.79		
[ST]	Constant	volume sys	tem (fixed f	resh air rat	e), [HS] LTI	HW boiler,	[HFT] Natur	al Gas, [CF	T] Electrici	ty
	Actual	56.5	33.6	16.9	4.4	32.4	0.93	2.11	0.91	4.43
	Notional	11	80.2	3.5	5.9	21.9	0.86	3.79		
[ST]	Single-du	ct VAV, [HS] LTHW boi	ler, [HFT] N	latural Gas	, [CFT] Elec	tricity			
	Actual	69	70.8	26.8	6.9	65.1	0.71	2.85	0.91	4.43
	Notional	17.3	144.1	5.6	10.6	18.2	0.86	3.79		
[ST]	Split or m	ulti-split sy	stem, [HS] I	LTHW boile	er, [HFT] Na	tural Gas, [CFT] Electr	icity		
Ι	Actual	0	0	0	0	0	0.85	2.13	0.91	3
	Notional	0	0	0	0	0	0.86	3.79		
[ST]	No Heatin	g or Coolin	g							
T	Actual	0	0	0	0	0	0	0	0	0
	Notional	0	0	0	0	0	0	0		

Key to terms	
Heat dem [MJ/m2]	= Heating energy demand
Cool dem [MJ/m2]	= Cooling energy demand
Heat con [kWh/m2]	= Heating energy consumption
Cool con [kWh/m2]	= Cooling energy consumption
Aux con [kWh/m2]	= Auxiliary energy consumption
Heat SSEFF	= Heating system seasonal efficiency (for notional building, value depends on activity glazing class)
Cool SSEER	= Cooling system seasonal energy efficiency ratio
Heat gen SSEFF	= Heating generator seasonal efficiency
Cool gen SSEER	= Cooling generator seasonal energy efficiency ratio
ST	= System type
HS	= Heat source
HFT	= Heating fuel type
CFT	= Cooling fuel type

Key Features

The Building Control Body is advised to give particular attention to items whose specifications are better than typically expected.

Building fabric

Element	Element Ui-Typ		Surface where the minimum value occurs*		
Wall	0.23	-	L300009:Surf[9]		
Floor	0.2	0.11	L4000020:Surf[0]		
Roof	0.15	0.18	L2000016:Surf[0]		
Windows, roof windows, and rooflights	1.5	0.71	L300002B:Surf[0]		
Personnel doors 1.5		-	No Personnel doors in building		
Vehicle access & similar large doors 1.5		-	No Vehicle access doors in building		
High usage entrance doors 1.5		-	No High usage entrance doors in building		
Ui-Typ = Typical individual element U-values [W/(m ² K)]			Ui-Min = Minimum individual element U-values [W/(m ² K)]		
* There might be more than one surface where the m	* There might be more than one surface where the minimum U-value occurs.				

Air Permeability	Typical value	This building
m³/(h.m²) at 50 Pa	5	10

Appendix B – 'Clean' BRUKL report

HM Government

Compliance with England Building Regulations Part L 2013

Project name

UCL_IOE_Phase 2 PartL2B_CLEAN.rev00 As built

Date: Tue Mar 24 14:21:59 2020

Administrative information

Building Details

Address: Address 1, City, Postcode

Certification tool

Calculation engine: Apache Calculation engine version: 7.0.12 Interface to calculation engine: IES Virtual Environment Interface to calculation engine version: 7.0.12 BRUKL compliance check version: v5.6.a.1

Owner Details

Name: Name Telephone number: Phone Address: Street Address, City, Postcode

Certifier details

Name: Name Telephone number: Phone Address: Street Address, City, Postcode

Criterion 1: The calculated CO₂ emission rate for the building must not exceed the target

The building does not comply with England Building Regulations Part L 2013

CO ₂ emission rate from the notional building, kgCO ₂ /m ² .annum	22.1
Target CO ₂ emission rate (TER), kgCO ₂ /m ² .annum	22.1
Building CO ₂ emission rate (BER), kgCO ₂ /m ² .annum	52.5
Are emissions from the building less than or equal to the target?	BER > TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

Values which do not achieve the standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

Building fabric

Element	Ua-Limit	Ua-Calc	Ui-Calc	Surface where the maximum value occurs*	
Wall**	0.35	0.32	0.47	L300001A:Surf[3]	
Floor	0.25	0.27	0.77	L4000023:Surf[16]	
Roof	0.25	0.82	2.26	L4000038:Surf[1]	
Windows***, roof windows, and rooflights	2.2	2.04	5.7	L2000010:Surf[0]	
Personnel doors	2.2	-	-	No Personnel doors in building	
Vehicle access & similar large doors	1.5	-	-	No Vehicle access doors in building	
High usage entrance doors	3.5	-	-	No High usage entrance doors in building	
Ua-Limit = Limiting area-weighted average U-values [W	//(m²K)]				

 U_{a-Calc} = Calculated area-weighted average U-values [W/(m/K)]

 $U_{\vdash Calc}$ = Calculated maximum individual element U-values [W/(m²K)]

* There might be more than one surface where the maximum U-value occurs.

** Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

*** Display windows and similar glazing are excluded from the U-value check.

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

Air Permeability	Worst acceptable standard	This building
m ³ /(h.m ²) at 50 Pa	10	10

Building services

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

Whole building lighting automatic monitoring & targeting with alarms for out-of-range values	YES
Whole building electric power factor achieved by power factor correction	>0.95

1- radiators with extract_WC

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency		
This system	1	-	0	0	-		
Standard value	N/A	N/A	N/A	N/A	N/A		
Automatic moni	Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES						

2- Circulation supply+extract

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency	
This system	1	4.62	0	2.1	0.8	
Standard value	N/A	2.55	N/A	1.6^	0.65	
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES						
[^] Limiting SFP may be extended by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide.						

3- AHU (FCUs)+rads

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(l/s)]	HR efficiency		
This system	1	4.6	0	2.1	0.8		
Standard value	N/A	2.55	N/A	1.6^	0.65		
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES							
	[^] Limiting SFP may be extended by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide.						

4- Nat_radiators

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency		
This system	1	-	0	0	-		
Standard value	N/A	N/A	N/A	N/A	N/A		
Automatic moni	Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES						

5- DX cooling_comms room

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(l/s)]	HR efficiency	
This system	1	3.2	-	0	-	
Standard value	0.91*	3.2	N/A	N/A	N/A	
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system NO						
* Standard chown is f	ier and single beiler eveter	a -2 MW output For sing	le beiler eveterne > 2 MW e	r multi boilor ovetor	o (ovorall) limiting	

* Standard shown is for gas single boiler systems <= 2 MW output. For single boiler systems > 2 MW or multi-boiler systems, (overall) limiting efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82.

6- VAV+rads

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency			
This system	1	4.62	0	2.1	0.8			
Standard value	N/A	2.55	N/A	1.6^	0.65			
Automatic moni	toring & targeting w	ith alarms for out-of	-range values for thi	is HVAC syster	n YES			
^ Limiting SFP may be extended by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide.								

"No HWS in project, or hot water is provided by HVAC system"

Local mechanical ventilation, exhaust, and terminal units

ID	System type in Non-domestic Building Services Compliance Guide
А	Local supply or extract ventilation units serving a single area
В	Zonal supply system where the fan is remote from the zone
С	Zonal extract system where the fan is remote from the zone
D	Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery
Е	Local supply and extract ventilation system serving a single area with heating and heat recovery
F	Other local ventilation units
G	Fan-assisted terminal VAV unit
Н	Fan coil units
I	Zonal extract system where the fan is remote from the zone with grease filter

Zone name	SFP [W/(I/s)]										
ID of system type	Α	В	С	D	E	F	G	Н	I	HRE	efficiency
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
L2_WC	0.4	-	-	-	-	-	-	-	-	-	N/A
L2_XA_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A
L2_XB_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A
L2_XB_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A
L2_XC_TS_I_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L3_teaching area	-	-	-	-	-	-	-	0.2	-	-	N/A
L3_teaching area	-	-	-	-	-	-	-	0.2	-	-	N/A
L3_teaching area	-	-	-	-	-	-	-	0.2	-	-	N/A
L3_teaching space	-	-	-	-	-	-	-	0.2	-	-	N/A
L3_WC	0.4	-	-	-	-	-	-	-	-	-	N/A
L3_XA_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A
L3_XA_WC_I_02	0.4	-	-	-	-	-	-	-	-	-	N/A
L3_XB_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A
L4_XA_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A
L4_XA_WC_I_02	0.4	-	-	-	-	-	-	-	-	-	N/A
L4_XB_TS_I_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L4_XB_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A
L4_XB_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A
L4_XC_TS_E_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L5_ZA_TS_E_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L5_ZA_TS_E_02	-	-	-	-	-	-	-	0.2	-	-	N/A
L5_ZA_TS_W_03	-	-	-	-	-	-	-	0.2	-	-	N/A
L5_ZA_TS_W_04	-	-	-	-	-	-	-	0.2	-	-	N/A
L6_WI_MR_I_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L6_WI_MR_I_02	-	-	-	-	-	-	-	0.2	-	-	N/A
L6_WI_MR_W_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L6_WI_WS_N_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L6_WI_WS_N_02	-	-	-	-	-	-	-	0.2	-	-	N/A
L6_WI_WS_N_03	-	-	-	-	-	-	-	0.2	-	-	N/A
L6_WI_WS_N_04	-	-	-	-	-	-	-	0.2	-	-	N/A
L6_WI_WS_N_05	-	-	-	-	-	-	-	0.2	-	-	N/A

Zone name	SFP [W/(I/s)]								<i></i>		
ID of system type	Α	В	С	D	Е	F	G	Н	I	нке	fficiency
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
L6_WI_WS_N_06	-	-	-	-	-	-	-	0.2	-	-	N/A
L6_WI_WS_N_07	-	-	-	-	-	-	-	0.2	-	-	N/A
L6_WI_WS_N_08	-	-	-	-	-	-	-	0.2	-	-	N/A
L6_WI_WS_N_09	-	-	-	-	-	-	-	0.2	-	-	N/A
L6_WI_WS_N_10	-	-	-	-	-	-	-	0.2	-	-	N/A
	-	-	-	-	-	-	-	0.2	-	-	N/A
L6 ZA MR 01	-	-	-	-	-	-	-	0.2	-	-	N/A
L6_ZA_MR_I_02	-	-	-	-	-	-	-	0.2	-	-	N/A
 L7_WI_MR_I_01	-	-	-	-	-	-	-	0.2	-	-	N/A
 L7 WI MR W 01	-	-	-	-	-	-	-	0.2	-	-	N/A
	-	-	-	-	-	-	-	0.2	-	-	N/A
 L7 WI WS N 02	-	-	-	_	-	-	-	0.2	-	-	N/A
 L7 WI WS N 03	-	-	-	-	-	-	-	0.2	-	-	N/A
 L7 WI WS N 04	-	-	-	-	-	-	-	0.2	-	-	N/A
L7 WI WS N 05	-	-	-	_	-	-	-	0.2	-	-	N/A
L7 WI WS N 07	-	-	_	_	-	-	-	0.2	_	-	N/A
L7_WI_WS_N_07	-	-	_	_	-	-	-	0.2	-	-	N/A
L7_WI_WS_N_08	-	-	-	_	_	-	-	0.2	-	_	N/A
L7_WI_WS_N_09	-	-	-	_	_	-	-	0.2	_	_	N/A
L7_XA_MR_I_01	-	_	-	_	-	-	-	0.2	_	_	N/A
L7_XA_MR_I_03	-	-	-	_	_	-	-	0.8	_	_	N/A
L7_ZA_MR_E_01	-	-	-	_	_	-	-	0.2	_	_	N/A
L8 WI MR I 01	-	-	-	_	-	-	-	0.2	_	-	N/A
L8 WI_MR_W_01	-	-	-	_	-	-	-	0.2	_	-	N/A
L8 WI WS N 01	-	-	-	_	-	-	-	0.2	_	-	N/A
L8 WI WS N 02	-	-	-	_	-	-	-	0.2	_	-	N/A
L8_WI_WS_N_03	-	-	-	_	-	-	-	0.2	-	-	N/A
L8_WI_WS_N_04	-	-	-	_	-	-	-	0.2	-	-	N/A
L8_WI_WS_N_05	-	-	-	_	-	-	-	0.2	-	-	N/A
L8_WI_WS_N_06	-	-	-	-	-	-	-	0.2	-	-	N/A
L8 WI WS N 07	-	-	_	_	-	-	-	0.2	-	-	N/A
L8_WI_WS_N_10	-	-	_	_	_	-	-	0.2	-	-	N/A
L8 XA MR I 02	-	-	_	_	_	_	-	0.2	-	-	N/A
L8_XA_MR_I_03	-	_	_	_	_	-	-	0.2	_	_	N/A
L8_XB_MR_E_01	-	_	-	-	_	-	-	0.2	-	_	N/A
L8_XB_MR_I_01	-	_	_	_	_	-	-	0.2	-	_	N/A
L8_ZA_MR_E_01	-	-	_	_	-	-	-	0.2	-	-	N/A
L9_WI_MR_W_01	_	-	-	-	-	-	-	0.2	-	-	N/A
L9_WI_WS_N_01	-	-	_	_	-	-	-	0.2	-	_	N/A
L9_WI_WS_N_02	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_WI_WS_N_10	-	-	-	-	-	-	-	0.2	-	-	N/A N/A
L9_WI_WS_N_10	- _		-				-	0.2	-		N/A N/A
L9_WI_WS_S_01		-	-	-	-	-	-	0.2	-	-	N/A N/A
	-	-	-	-	-	-	-	0.2	-	-	

Zone name		SFP [W/(I/s)]								UD officionay	
ID of system type	Α	В	С	D	Е	F	G	Н	I	HR efficiency	
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
L9_ZA_MR_E_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_MR_I_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_WS_E_03	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_WS_E_04	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_WS_E_05	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_WS_E_06	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_WS_E_07	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_WS_W_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_WS_W_01	-	-	-	-	-	-	-	0.2	-	-	N/A

General lighting and display lighting	Lumino	ous effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
L2_store	90	-	-	8
L2_WC	-	80	-	66
L2_XA_WC_I_01	-	80	-	77
L2_XB_CIRC_I_02	-	80	-	89
L2_XB_WC_I_01	-	80	-	161
L2_XB_WC_I_01	-	80	-	82
L2_XC_TS_I_01	90	-	-	660
L3_atrium	-	90	-	64
L3_cafe_store	90	-	-	15
L3_ISD rooms	80	-	-	268
L3_store	90	-	-	6
L3_teaching area	90	-	-	145
L3_teaching area	90	-	-	146
L3_teaching area	90	-	-	149
L3_teaching space	90	-	-	654
L3_WC	-	80	-	73
L3_XA_COMMS_E_01	90	-	-	48
L3_XA_STORE_E_01	90	-	-	6
L3_XA_WC_I_01	-	80	-	90
L3_XA_WC_I_02	-	80	-	80
L3_XB_CC_I_01	-	80	-	131
L3_XB_WC_I_01	80	-	-	259
L3_ZB_CIRC_I_01	-	80	-	87
L3_ZB_CIRC_I_02	-	80	-	215
L4_XA_WC_I_01	-	80	-	128
L4_XA_WC_I_02	-	80	-	77
	-	80	-	134
L4_XB_STORE_I_01	90	-	-	4
L4_XB_STORE_I_02	90	-	-	8
L4_XB_TS_I_01	90	-	-	624

General lighting and display lighting	Lumino	ous effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
L4_XB_WC_I_01	-	80	-	78
L4_XB_WC_I_01	-	80	-	138
L4_XC_TS_E_01	90	-	-	621
L4_ZB_BREAKOUT_I_08	-	80	-	217
L5_XA_CIRC_I_02	-	80	-	81
L5_ZA_TS_E_01	90	-	-	293
L5_ZA_TS_E_02	90	-	-	304
L5_ZA_TS_W_03	90	-	-	190
L5_ZA_TS_W_04	90	-	-	225
L6_WI_CIRC_I_01	-	80	-	115
L6_WI_MR_I_01	90	-	-	81
L6_WI_MR_I_02	90	-	-	169
L6_WI_MR_W_01	90	-	-	129
L6_WI_WS_N_01	90	-	-	125
L6_WI_WS_N_02	90	-	-	120
L6_WI_WS_N_03	90	-	-	117
L6_WI_WS_N_04	90	-	-	116
L6_WI_WS_N_05	90	_	_	116
L6_WI_WS_N_06	90	_	_	117
L6_WI_WS_N_07	90	-	_	117
L6_WI_WS_N_08	90	-	-	116
L6_WI_WS_N_09	90	1_		116
L6_WI_WS_N_10	90		-	116
L6 WI WS N 11	90		_	116
L6 WI WS N 12	90	_	-	140
L6_WI_WS_S_01	90	_	_	850
L6_XA_CIRC_I_01		80	-	151
L6 ZA BREAKOUT E 01		80		158
L6 ZA MR 01	90	00	-	70
L6 ZA_MR 02	90	-	-	73
L6 ZA_WR_1_02 L6 ZA WS W 01		-	-	835
L6 ZB LAWTON DINING E 01	90	-	-	
	-	90	-	433
L7_WI_CIRC_I_01	-	80	-	106
L7_WI_MR_I_01	90	-	-	161
L7_WI_MR_W_01	90	-	-	129
L7_WI_WS_N_01	90	-	-	113
L7_WI_WS_N_02	90	-	-	113
L7_WI_WS_N_03	90	-	-	113
L7_WI_WS_N_04	90	-	-	113
L7_WI_WS_N_05	90	-	-	113
L7_WI_WS_N_07	90	-	-	113
L7_WI_WS_N_07	90	-	-	113
L7_WI_WS_N_08	90	-	-	113

General lighting and display lighting	Lumino	ous effic			
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]	
Standard value	60	60	22		
L7_WI_WS_N_09	90	-	-	113	
L7_WI_WS_N_10	90	-	-	168	
L7_WI_WS_S_01	90	-	-	777	
L7_XA_CIRC_I_01	-	80	-	148	
L7_XA_MR_I_01	80	-	-	118	
L7 XA MR I 03	80	-	-	172	
L7_ZA_BREAKOUT_E_01	80	-	-	496	
L7_ZA_MR_E_01	80	-	-	151	
L7_ZA_WS_E_01	90	-	-	106	
L7_ZA_WS_E_02	90	-	-	100	
 L7_ZA_WS_E_03	90	-	-	105	
 L7_ZA_WS_E_04	90	-	-	103	
 L7_ZA_WS_E_05	90	-	-	103	
L7_ZA_WS_E_07	90	-	-	93	
L7_ZA_WS_W_01	90	-	-	774	
L8_WI_CIRC_I_01	-	80	-	105	
L8_WI_MR_I_01	90	-	-	79	
L8_WI_MR_W_01	90	-	-	128	
L8_WI_WS_N_01	90	-	_	113	
L8_WI_WS_N_02	90	-	_	113	
L8_WI_WS_N_03	90	_	_	113	
L8_WI_WS_N_04	90	-	_	113	
L8_WI_WS_N_05	90	-	_	108	
L8_WI_WS_N_06	90	-	-	107	
L8_WI_WS_N_07	90	-	-	107	
L8_WI_WS_N_08	90	-	-	108	
L8_WI_WS_N_10	90	-	-	110	
L8_WI_WS_S_01	90	-	-	432	
L8_XA_CIRC_I_01	-	80	-	148	
L8_XA_MR_I_02	90	-	-	160	
L8 XA MR I 03	90	-	-	151	
L8_XB_MR_E_01	90	-	-	97	
L8_XB_MR_I_01	90	-	_	172	
L8_ZA_BREAKOUT_E_01	-	80	-	159	
L8_ZA_MR_E_01	90	-	-	83	
L8_ZA_WS_E_01	90	-	-	78	
L8_ZA_WS_E_02	80	-	-	109	
L8_ZA_WS_E_03	90	-	-	103	
L8_ZA_WS_E_04	90	-	-	100	
L8_ZA_WS_E_05	90	-	-	100	
L8_ZA_WS_E_06	90	-	-	100	
L8_ZA_WS_E_07	90	-	-	89	
L8_ZA_WS_W_01	80	†	-	1241	

General lighting and display lighting	Lumino	ous effic]	
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
L9_WI_MR_W_01	90	-	-	140
L9_WI_WS_N_01	90	-	-	107
L9_WI_WS_N_02	90	-	-	107
L9_WI_WS_N_10	90	-	-	137
L9_WI_WS_S_01	90	-	-	416
L9_XA_CIRC_I_01	-	80	-	147
L9_ZA_BREAKOUT_E_01	-	80	-	106
L9_ZA_MR_E_01	90	-	-	74
L9_ZA_MR_I_01	90	-	-	91
L9_ZA_WS_E_03	90	-	-	93
L9_ZA_WS_E_04	90	-	-	90
L9_ZA_WS_E_05	90	-	-	90
L9_ZA_WS_E_06	90	-	-	90
L9_ZA_WS_E_07	90	-	-	79
L9_ZA_WS_W_01	90	-	-	166
L9_ZA_WS_W_01	90	-	-	521
L3_cafe	-	80	-	200
L3_ZB_ENTRANCE_E_01	-	90	80	183
L4_ZB_BREAKOUT_I_05	-	80	-	260
L4_ZB_STAIR_I_01	-	80	-	171
L4_ZB_CIRC_I_01	-	80	-	743
L4_ZB_ENTRANCE_I_01	-	90	80	79

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
L2_XB_CIRC_I_02	N/A	N/A
L2_XC_TS_I_01	N/A	N/A
L3_ISD rooms	N/A	N/A
L3_teaching area	N/A	N/A
L3_teaching area	N/A	N/A
L3_teaching area	N/A	N/A
L3_teaching space	N/A	N/A
L3_XA_COMMS_E_01	NO (-91.7%)	YES
L3_XB_CC_I_01	N/A	N/A
L3_XB_WC_I_01	NO (-49.5%)	YES
L4_XB_CIRC_I_01	N/A	N/A
L4_XB_TS_I_01	N/A	N/A
L4_XC_TS_E_01	N/A	N/A
L5_XA_CIRC_I_02	N/A	N/A
L5_ZA_TS_E_01	NO (-72.4%)	YES
L5_ZA_TS_E_02	NO (-50.1%)	YES
L5_ZA_TS_W_03	NO (-34.8%)	YES
L5_ZA_TS_W_04	NO (-45%)	YES

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
L6_WI_CIRC_I_01	N/A	N/A
L6_WI_MR_I_01	N/A	N/A
L6_WI_MR_I_02	N/A	N/A
L6_WI_MR_W_01	NO (-48.2%)	YES
L6_WI_WS_N_01	NO (-65.7%)	YES
L6_WI_WS_N_02	NO (-53.7%)	YES
L6_WI_WS_N_03	NO (-51.2%)	YES
	NO (-50.7%)	YES
L6_WI_WS_N_05	NO (-50.7%)	YES
L6_WI_WS_N_06	NO (-51.2%)	YES
L6_WI_WS_N_07	NO (-50.7%)	YES
	NO (-50.8%)	YES
	NO (-52.2%)	YES
	NO (-52.3%)	YES
	NO (-51.4%)	YES
	NO (-42.4%)	YES
	NO (-35.3%)	YES
L6 XA CIRC I 01	N/A	N/A
L6_ZA_BREAKOUT_E_01	NO (-43.5%)	YES
L6_ZA_MR_I_01	N/A	N/A
L6_ZA_MR_I_02	N/A	N/A
L6_ZA_WS_W_01	NO (-64%)	YES
L6_ZB_LAWTON_DINING_E_01	NO (-18.4%)	YES
L7_WI_CIRC_I_01	N/A	N/A
L7 WI MR I 01	N/A	N/A
L7_WI_MR_W_01	NO (-48.9%)	YES
L7 WI WS N 01	NO (-62.5%)	YES
L7_WI_WS_N_02	NO (-52.4%)	YES
L7_WI_WS_N_03	NO (-52.4%)	YES
U	NO (-52.4%)	YES
L7_WI_WS_N_05	NO (-52.4%)	YES
L7_WI_WS_N_07	NO (-52.4%)	YES
L7_WI_WS_N_07	NO (-52.4%)	YES
L7 WI WS N 08	NO (-52.4%)	YES
L7_WI_WS_N_09	NO (-52.4%)	YES
L7 WI WS N 10	NO (-45.6%)	YES
L7 WI WS S 01	NO (-34%)	YES
L7_XA_CIRC_I_01	N/A	N/A
 L7_XA_MR_I_01	N/A	N/A
L7_XA_MR_I_03	N/A	N/A
L7_ZA_BREAKOUT_E_01	NO (-51.8%)	YES
L7_ZA_MR_E_01	NO (-55.3%)	YES
L7_ZA_WS_E_01	NO (-47.3%)	YES
L7_ZA_WS_E_02	NO (-41.1%)	YES
L7 ZA WS E 03	NO (-43.5%)	YES
L7 ZA WS E 04	NO (-42.9%)	YES
L7_ZA_WS_E_05	NO (-42.9%)	YES
L7_ZA_WS_E_07	NO (-91.5%)	YES
L7_ZA_WS_W_01	NO (-62.2%)	YES
		1.20

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
L8_WI_CIRC_I_01	N/A	N/A
L8_WI_MR_I_01	N/A	N/A
L8_WI_MR_W_01	NO (-49.1%)	YES
L8_WI_WS_N_01	NO (-62.5%)	YES
L8_WI_WS_N_02	NO (-52.4%)	YES
L8_WI_WS_N_03	NO (-52.4%)	YES
L8_WI_WS_N_04	NO (-52.4%)	YES
L8_WI_WS_N_05	NO (-52.4%)	YES
L8_WI_WS_N_06	NO (-52.6%)	YES
	NO (-52.6%)	YES
	NO (-52.2%)	YES
	NO (-43.7%)	YES
	NO (-31.1%)	YES
	N/A	N/A
L8_XA_MR_I_02	N/A	N/A
L8_XA_MR_I_03	N/A	N/A
L8_XB_MR_E_01	NO (-43.9%)	YES
L8_XB_MR_I_01	N/A	N/A
L8_ZA_BREAKOUT_E_01	NO (-50.5%)	YES
L8_ZA_MR_E_01	NO (-48.4%)	YES
L8_ZA_WS_E_01	NO (-47.3%)	YES
L8_ZA_WS_E_02	NO (-41.1%)	YES
L8_ZA_WS_E_03	NO (-43.5%)	YES
L8 ZA WS E 04	NO (-42.9%)	YES
L8 ZA WS E 05	NO (-42.9%)	YES
L8 ZA WS E 06	NO (-42.9%)	YES
L8 ZA WS E 07	NO (-91.5%)	YES
L8 ZA WS W 01	NO (-62.2%)	YES
L9_WI_MR_W_01	NO (-49.4%)	YES
L9_WI_WS_N_01	NO (-62.6%)	YES
L9_WI_WS_N_02	NO (-52.6%)	YES
L9_WI_WS_N_10	NO (-44.1%)	YES
L9_WI_WS_S_01	NO (-53.9%)	YES
L9_XA_CIRC_I_01	N/A	N/A
L9_ZA_BREAKOUT_E_01	NO (-77.7%)	YES
L9_ZA_MR_E_01	NO (-47.6%)	YES
L9 ZA MR 01	N/A	N/A
L9 ZA WS E 03	NO (-43.5%)	YES
L9_ZA_WS_E_04	NO (-43%)	YES
L9_ZA_WS_E_05	NO (-42.9%)	YES
L9_ZA_WS_E_06	NO (-42.9%)	YES
L9_ZA_WS_E_07	NO (-81.9%)	YES
L9_ZA_WS_W_01	N/A	N/A
L9_ZA_WS_W_01	NO (-54.4%)	YES
L3_ZB_ENTRANCE_E_01	NO (-36.4%)	YES
L4_ZB_ENTRANCE_I_01	NO (-42%)	YES

Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

EPBD (Recast): Consideration of alternative energy systems

Were alternative energy systems considered and analysed as part of the design process?					
Is evidence of such assessment available as a separate submission?	NO				
Are any such measures included in the proposed design?	NO				

Technical Data Sheet (Actual vs. Notional Building)

Building Global Parameters

	Actual	Notional
Area [m ²]	5190.2	5190.2
External area [m ²]	4998.7	5770
Weather	LON	LON
Infiltration [m ³ /hm ² @ 50Pa]	10	3
Average conductance [W/K]	5128.85	2799.3
Average U-value [W/m ² K]	1.03	0.49
Alpha value* [%]	9.18	10

* Percentage of the building's average heat transfer coefficient which is due to thermal bridging

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	38.89	11.6
Cooling	3.99	6.63
Auxiliary	28.8	13.93
Lighting	9.02	14.36
Hot water	87.08	6.04
Equipment*	30.79	30.79
TOTAL**	167.77	52.56

* Energy used by equipment does not count towards the total for consumption or calculating emissions. ** Total is net of any electrical energy displaced by CHP generators, if applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	0	0
Wind turbines	0	0
CHP generators	0	0
Solar thermal systems	0	0

Energy & CO₂ Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m ²]	170.55	132.26
Primary energy* [kWh/m ²]	276.39	125.72
Total emissions [kg/m ²]	52.5	22.1

* Primary energy is net of any electrical energy displaced by CHP generators, if applicable.

Building Use

100

% Area Building Type A1/A2 Retail/Financial and Professional services A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways B1 Offices and Workshop businesses

- B1 Offices and workshop businesses
 B2 to B7 General Industrial and Special Industrial Groups
 B8 Storage or Distribution
 C1 Hotels
 C2 Residential Institutions: Hospitals and Care Homes
 C2 Residential Institutions: Residential schools
 C2 Residential Institutions: Universities and colleges
 C2A Secure Residential Institutions
 Residential spaces
 D1 Non-residential Institutions: Libraries, Museums, and Galleries
 D1 Non-residential Institutions: Primary Health Care Building
 D1 Non-residential Institutions: Crown and County Courts
 D2 General Assembly and Leisure, Night Clubs, and Theatres
 Others: Passenger terminals
 - Others: Emergency services
 - Others: Miscellaneous 24hr activities
 - Others: Car Parks 24 hrs
 - Others: Stand alone utility block

		stems Per	formane	<u> </u>						
	stem Type		Cool dem MJ/m2		Cool con kWh/m2	Aux con kWh/m2	Heat SSEEF	Cool SSEER	Heat gen SEFF	Cool gen SEER
[ST] Central he	eating using	water: rad	iators, [HS]	District he	ating, [HFT] District He	eating, [CF]	[] Electricit	у
	Actual	339.8	0	100.5	0	1.8	0.94	0	1	0
	Notional	112.2	0	31.2	0	1.8	1	0		
[ST] Central he	eating using	ywater: rad	iators, [HS]	District he	ating, [HFT] District He	eating, [CF]	[] Electricit	у
	Actual	55.1	0	16.3	0	14.1	0.94	0	1	0
	Notional	31.3	0	8.7	0	14.1	1	0		
[ST] Fan coil s	ystems, [HS	6] District h	eating, [HF	T] District H	leating, [CF	T] Electric	ity		
	Actual	85.6	57.3	25.5	4.8	12.3	0.93	3.35	1	4.4
	Notional	32	125.1	8.9	9.2	16.1	1	3.79		
[ST] Constant	volume sys	tem (fixed f	iresh air rat	e), [HS] Dis	trict heatin	g, [HFT] Dis	strict Heatir	ng, [CFT] El	ectricity
	Actual	56.5	33.6	15.4	4.4	32.4	1.02	2.11	1	4.43
	Notional	11	80.2	3	5.9	21.9	1	3.79		
[ST] Single-du	ct VAV, [HS] District he	eating, [HF]	[] District H	eating, [CF	T] Electrici	ty		
	Actual	69	70.8	24.4	6.9	65.1	0.78	2.85	1	4.43
	Notional	17.3	144.1	4.8	10.6	18.2	1	3.79		
[ST] Split or m	ulti-split sy	stem, [HS]	LTHW boile	er, [HFT] Na	tural Gas, [CFT] Electr	icity		
	Actual	0	0	0	0	0	0.93	2.13	1	3
	Notional	0	0	0	0	0	0.86	3.79		
[ST] No Heatin	g or Coolin	g							
	Actual	0	0	0	0	0	0	0	0	0
	Notional	0	0	0	0	0	0	0		

Key to terms	
Heat dem [MJ/m2]	= Heating energy demand
Cool dem [MJ/m2]	= Cooling energy demand
Heat con [kWh/m2]	= Heating energy consumption
Cool con [kWh/m2]	= Cooling energy consumption
Aux con [kWh/m2]	= Auxiliary energy consumption
Heat SSEFF	= Heating system seasonal efficiency (for notional building, value depends on activity glazing class)
Cool SSEER	= Cooling system seasonal energy efficiency ratio
Heat gen SSEFF	= Heating generator seasonal efficiency
Cool gen SSEER	= Cooling generator seasonal energy efficiency ratio
ST	= System type
HS	= Heat source
HFT	= Heating fuel type
CFT	= Cooling fuel type

Key Features

The Building Control Body is advised to give particular attention to items whose specifications are better than typically expected.

Building fabric

Element	U і-тур	Ui-Min	Surface where the minimum value occurs*
Wall	0.23	-	L300009:Surf[9]
Floor	0.2	0.11	L4000020:Surf[0]
Roof	0.15	0.18	L2000016:Surf[0]
Windows, roof windows, and rooflights	1.5	0.71	L300002B:Surf[0]
Personnel doors	1.5	-	No Personnel doors in building
Vehicle access & similar large doors	1.5	-	No Vehicle access doors in building
High usage entrance doors	1.5	-	No High usage entrance doors in building
Ui-Typ = Typical individual element U-values [W/(m ² K)]		Ui-Min = Minimum individual element U-values [W/(m ² K)]
* There might be more than one surface where the minimum U-v			curs.

Air Permeability	Typical value	This building
m³/(h.m²) at 50 Pa	5	10

Appendix C – 'GREEN' BRUKL report

HM Government

Compliance with England Building Regulations Part L 2013

Project name

UCL_IOE_Phase 2 PartL2B_GREEN.rev00 As built

Date: Tue Mar 24 14:34:43 2020

Administrative information

Building Details

Address: Address 1, City, Postcode

Certification tool

Calculation engine: Apache Calculation engine version: 7.0.12 Interface to calculation engine: IES Virtual Environment Interface to calculation engine version: 7.0.12 BRUKL compliance check version: v5.6.a.1

Owner Details

Name: Name Telephone number: Phone Address: Street Address, City, Postcode

Certifier details

Name: Name Telephone number: Phone Address: Street Address, City, Postcode

Criterion 1: The calculated CO₂ emission rate for the building must not exceed the target

The building does not comply with England Building Regulations Part L 2013

CO ₂ emission rate from the notional building, kgCO ₂ /m ² .annum	22.1
Target CO ₂ emission rate (TER), kgCO ₂ /m ² .annum	22.1
Building CO ₂ emission rate (BER), kgCO ₂ /m ² .annum	52.5
Are emissions from the building less than or equal to the target?	BER > TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

Values which do not achieve the standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

Building fabric

Element	Ua-Limit	Ua-Calc	Ui-Calc	Surface where the maximum value occurs*
Wall**	0.35	0.32	0.47	L300001A:Surf[3]
Floor	0.25	0.27	0.77	L4000023:Surf[16]
Roof	0.25	0.82	2.26	L4000038:Surf[1]
Windows***, roof windows, and rooflights	2.2	2.04	5.7	L2000010:Surf[0]
Personnel doors	2.2	-	-	No Personnel doors in building
Vehicle access & similar large doors	1.5	-	-	No Vehicle access doors in building
High usage entrance doors	3.5	-	-	No High usage entrance doors in building
Ua-Limit = Limiting area-weighted average U-values [W	//(m²K)]			

 U_{a-Calc} = Calculated area-weighted average U-values [W/(m/K)]

 $U_{\text{\tiny i-Calc}} = Calculated \text{ maximum individual element U-values } [W/(m^2K)]$

* There might be more than one surface where the maximum U-value occurs.

** Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

*** Display windows and similar glazing are excluded from the U-value check.

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

Air Permeability	Worst acceptable standard	This building
m ³ /(h.m ²) at 50 Pa	10	10

Building services

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

Whole building lighting automatic monitoring & targeting with alarms for out-of-range values	YES
Whole building electric power factor achieved by power factor correction	>0.95

1- radiators with extract_WC

	Heating efficiency	Cooling efficiency	efficiency Radiant efficiency SFP [W/(I/s)]							
This system	1	-	0	0	-					
Standard value	N/A	N/A	N/A	N/A	N/A					
Automatic moni	Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES									

2- Circulation supply+extract

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency
This system	1	4.62	0	2.1	0.8
Standard value	N/A	2.55	N/A	1.6^	0.65
Automatic moni	toring & targeting w	ith alarms for out-of	-range values for thi	is HVAC syster	n YES
	e extended by the amounts is as listed in the Guide.	s specified in the Non-Dom	estic Building Services Cor	npliance Guide if the	e system includes

3- AHU (FCUs)+rads

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(l/s)]	HR efficiency	
This system	1	4.6	0	2.1	0.8	
Standard value	N/A	2.55	N/A	1.6^	0.65	
Automatic moni	toring & targeting w	ith alarms for out-of	-range values for thi	s HVAC system	n YES	
	e extended by the amounts ts as listed in the Guide.	s specified in the Non-Dom	estic Building Services Cor	npliance Guide if the	e system includes	

4- Nat_radiators

	Heating efficiency	Cooling efficiency	ooling efficiency Radiant efficiency SFP [W/(I/s)]							
This system	1	-	0	0	-					
Standard value	N/A	N/A	N/A N/A N/							
Automatic moni	Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES									

5- DX cooling_comms room

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(l/s)]	HR efficiency				
This system	1	3.2	-	0	-				
Standard value	0.91*	3.2	N/A	N/A	N/A				
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system NO									
* Standard chown is f	ier and single beiler eveter	a -2 MW output For sing	le beiler eveterne > 2 MW e	r multi boilor ovetor	o (ovorall) limiting				

* Standard shown is for gas single boiler systems <= 2 MW output. For single boiler systems > 2 MW or multi-boiler systems, (overall) limiting efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82.

6- VAV+rads

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency	
This system	1	4.62 0		2.1	0.8	
Standard value	N/A	2.55	N/A	1.6^	0.65	
Automatic moni	toring & targeting w	ith alarms for out-of	-range values for thi	is HVAC syster	n YES	
	e extended by the amounts ts as listed in the Guide.	s specified in the Non-Dom	estic Building Services Cor	npliance Guide if the	e system includes	

"No HWS in project, or hot water is provided by HVAC system"

Local mechanical ventilation, exhaust, and terminal units

ID	System type in Non-domestic Building Services Compliance Guide
А	Local supply or extract ventilation units serving a single area
В	Zonal supply system where the fan is remote from the zone
С	Zonal extract system where the fan is remote from the zone
D	Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery
Е	Local supply and extract ventilation system serving a single area with heating and heat recovery
F	Other local ventilation units
G	Fan-assisted terminal VAV unit
Н	Fan coil units
I	Zonal extract system where the fan is remote from the zone with grease filter

Zone name		SFP [W/(I/s)]										
ID of system type	Α	В	С	D	E	F	G	Н	I	HRE	efficiency	
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard	
L2_WC	0.4	-	-	-	-	-	-	-	-	-	N/A	
L2_XA_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A	
L2_XB_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A	
L2_XB_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A	
L2_XC_TS_I_01	-	-	-	-	-	-	-	0.2	-	-	N/A	
L3_teaching area	-	-	-	-	-	-	-	0.2	-	-	N/A	
L3_teaching area	-	-	-	-	-	-	-	0.2	-	-	N/A	
L3_teaching area	-	-	-	-	-	-	-	0.2	-	-	N/A	
L3_teaching space	-	-	-	-	-	-	-	0.2	-	-	N/A	
L3_WC	0.4	-	-	-	-	-	-	-	-	-	N/A	
L3_XA_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A	
L3_XA_WC_I_02	0.4	-	-	-	-	-	-	-	-	-	N/A	
L3_XB_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A	
L4_XA_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A	
L4_XA_WC_I_02	0.4	-	-	-	-	-	-	-	-	-	N/A	
L4_XB_TS_I_01	-	-	-	-	-	-	-	0.2	-	-	N/A	
L4_XB_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A	
L4_XB_WC_I_01	0.4	-	-	-	-	-	-	-	-	-	N/A	
L4_XC_TS_E_01	-	-	-	-	-	-	-	0.2	-	-	N/A	
L5_ZA_TS_E_01	-	-	-	-	-	-	-	0.2	-	-	N/A	
L5_ZA_TS_E_02	-	-	-	-	-	-	-	0.2	-	-	N/A	
L5_ZA_TS_W_03	-	-	-	-	-	-	-	0.2	-	-	N/A	
L5_ZA_TS_W_04	-	-	-	-	-	-	-	0.2	-	-	N/A	
L6_WI_MR_I_01	-	-	-	-	-	-	-	0.2	-	-	N/A	
L6_WI_MR_I_02	-	-	-	-	-	-	-	0.2	-	-	N/A	
L6_WI_MR_W_01	-	-	-	-	-	-	-	0.2	-	-	N/A	
L6_WI_WS_N_01	-	-	-	-	-	-	-	0.2	-	-	N/A	
L6_WI_WS_N_02	-	-	-	-	-	-	-	0.2	-	-	N/A	
L6_WI_WS_N_03	-	-	-	-	-	-	-	0.2	-	-	N/A	
L6_WI_WS_N_04	-	-	-	-	-	-	-	0.2	-	-	N/A	
L6_WI_WS_N_05	-	-	-	-	-	-	-	0.2	-	-	N/A	

Zone name				SF	P [W/	(I/s)]				HR efficiency	
ID of system type	Α	В	С	D	Е	F	G	Н	I	нке	efficiency
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
L6_WI_WS_N_06	-	-	-	-	-	-	-	0.2	-	-	N/A
L6_WI_WS_N_07	-	-	-	-	-	-	-	0.2	-	-	N/A
L6_WI_WS_N_08	-	-	-	-	-	-	-	0.2	-	-	N/A
L6_WI_WS_N_09	-	-	-	-	-	-	-	0.2	-	-	N/A
L6_WI_WS_N_10	-	-	-	-	-	-	-	0.2	-	-	N/A
	-	-	-	-	-	-	-	0.2	-	-	N/A
L6 ZA MR 01	-	-	-	-	-	-	-	0.2	-	-	N/A
L6_ZA_MR_I_02	-	-	-	-	-	-	-	0.2	-	-	N/A
 L7_WI_MR_I_01	-	-	-	-	-	-	-	0.2	-	-	N/A
 L7 WI MR W 01	-	-	-	-	-	-	-	0.2	-	-	N/A
	-	-	-	-	-	-	-	0.2	-	-	N/A
 L7 WI WS N 02	-	-	-	_	-	-	-	0.2	-	-	N/A
 L7 WI WS N 03	-	-	-	-	-	-	-	0.2	-	-	N/A
 L7 WI WS N 04	-	-	-	-	-	-	-	0.2	-	-	N/A
L7 WI WS N 05	-	-	-	_	-	-	-	0.2	-	-	N/A
L7 WI WS N 07	-	-	_	_	-	-	-	0.2	_	-	N/A
L7_WI_WS_N_07	-	-	_	_	-	-	-	0.2	-	-	N/A
L7_WI_WS_N_08	-	-	-	_	_	-	-	0.2	-	_	N/A
L7_WI_WS_N_09	-	-	-	_	_	-	-	0.2	_	_	N/A
L7_XA_MR_I_01	-	_	-	_	-	-	-	0.2	_	_	N/A
L7_XA_MR_I_03	-	-	-	_	_	-	-	0.8	_	_	N/A
L7_ZA_MR_E_01	-	-	-	_	_	-	-	0.2	_	_	N/A
L8 WI MR I 01	-	-	-	_	-	-	-	0.2	_	-	N/A
L8 WI_MR_W_01	-	-	-	_	-	-	-	0.2	_	-	N/A
L8 WI WS N 01	-	-	-	_	-	-	-	0.2	_	-	N/A
L8 WI WS N 02	-	-	-	_	-	-	-	0.2	_	-	N/A
L8_WI_WS_N_03	-	-	-	_	-	-	-	0.2	-	-	N/A
L8_WI_WS_N_04	-	-	-	_	-	-	-	0.2	-	-	N/A
L8_WI_WS_N_05	-	-	-	_	-	-	-	0.2	-	-	N/A
L8_WI_WS_N_06	-	-	-	-	-	-	-	0.2	-	-	N/A
L8 WI WS N 07	-	-	_	_	-	-	-	0.2	-	-	N/A
L8_WI_WS_N_10	-	-	_	_	_	-	-	0.2	-	-	N/A
L8 XA MR I 02	-	-	_	_	_	_	-	0.2	-	-	N/A
L8_XA_MR_I_03	-	_	_	_	_	-	-	0.2	_	_	N/A
L8_XB_MR_E_01	-	_	-	-	_	-	-	0.2	-	_	N/A
L8_XB_MR_I_01	-	_	_	_	_	-	-	0.2	-	_	N/A
L8_ZA_MR_E_01	-	-	_	_	-	-	-	0.2	-	_	N/A
L9_WI_MR_W_01	_	-	-	-	-	-	-	0.2	-	-	N/A
L9_WI_WS_N_01	-	-	_	_	-	-	-	0.2	-	_	N/A
L9_WI_WS_N_02	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_WI_WS_N_10	-	-	-	-	-	-	-	0.2	-	-	N/A N/A
L9_WI_WS_N_10	<u>-</u>		-				-	0.2	-		N/A N/A
L9_WI_WS_S_01		-	-	-	-	-	-	0.2	-	-	N/A N/A
	-	-	-	-	-	-	-	0.2	-	-	

Zone name	SFP [W/(I/s)]								UD officionay		
ID of system type	Α	В	С	D	Е	F	G	Н	I	HR efficiency	
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
L9_ZA_MR_E_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_MR_I_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_WS_E_03	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_WS_E_04	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_WS_E_05	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_WS_E_06	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_WS_E_07	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_WS_W_01	-	-	-	-	-	-	-	0.2	-	-	N/A
L9_ZA_WS_W_01	-	-	-	-	-	-	-	0.2	-	-	N/A

General lighting and display lighting	Lumino	ous effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
L2_store	90	-	-	8
L2_WC	-	80	-	66
L2_XA_WC_I_01	-	80	-	77
L2_XB_CIRC_I_02	-	80	-	89
L2_XB_WC_I_01	-	80	-	161
L2_XB_WC_I_01	-	80	-	82
L2_XC_TS_I_01	90	-	-	660
L3_atrium	-	90	-	64
L3_cafe_store	90	-	-	15
L3_ISD rooms	80	-	-	268
L3_store	90	-	-	6
L3_teaching area	90	-	-	145
L3_teaching area	90	-	-	146
L3_teaching area	90	-	-	149
L3_teaching space	90	-	-	654
L3_WC	-	80	-	73
L3_XA_COMMS_E_01	90	-	-	48
L3_XA_STORE_E_01	90	-	-	6
L3_XA_WC_I_01	-	80	-	90
L3_XA_WC_I_02	-	80	-	80
L3_XB_CC_I_01	-	80	-	131
L3_XB_WC_I_01	80	-	-	259
L3_ZB_CIRC_I_01	-	80	-	87
L3_ZB_CIRC_I_02	-	80	-	215
L4_XA_WC_I_01	-	80	-	128
L4_XA_WC_I_02	-	80	-	77
	-	80	-	134
L4_XB_STORE_I_01	90	-	-	4
L4_XB_STORE_I_02	90	-	-	8
L4_XB_TS_I_01	90	-	-	624

General lighting and display lighting	Luminous efficacy [lm/W]				
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]	
Standard value	60	60	22		
L4_XB_WC_I_01	-	80	-	78	
L4_XB_WC_I_01	-	80	-	138	
L4_XC_TS_E_01	90	-	-	621	
L4_ZB_BREAKOUT_I_08	-	80	-	217	
L5_XA_CIRC_I_02	-	80	-	81	
L5_ZA_TS_E_01	90	-	-	293	
L5_ZA_TS_E_02	90	-	-	304	
L5_ZA_TS_W_03	90	-	-	190	
L5_ZA_TS_W_04	90	-	-	225	
L6_WI_CIRC_I_01	-	80	-	115	
L6_WI_MR_I_01	90	-	-	81	
L6_WI_MR_I_02	90	-	-	169	
L6_WI_MR_W_01	90	-	-	129	
L6_WI_WS_N_01	90	-	-	125	
L6_WI_WS_N_02	90	-	-	120	
L6_WI_WS_N_03	90	-	-	117	
L6_WI_WS_N_04	90	-	-	116	
L6_WI_WS_N_05	90	_	_	116	
L6_WI_WS_N_06	90	_	_	117	
L6_WI_WS_N_07	90	-	_	117	
L6_WI_WS_N_08	90	-	-	116	
L6_WI_WS_N_09	90	1_		116	
L6_WI_WS_N_10	90		-	116	
L6 WI WS N 11	90		_	116	
L6 WI WS N 12	90	_	-	140	
L6_WI_WS_S_01	90	_	_	850	
L6_XA_CIRC_I_01		80	-	151	
L6 ZA BREAKOUT E 01		80	-	158	
L6 ZA MR 01	90	00	-	70	
L6 ZA_MR 02	90	-	-	73	
L6 ZA_WR_1_02 L6 ZA WS W 01		-	-	835	
L6 ZB LAWTON DINING E 01	90	-	-		
	-	90	-	433	
L7_WI_CIRC_I_01	-	80	-	106	
L7_WI_MR_I_01	90	-	-	161	
L7_WI_MR_W_01	90	-	-	129	
L7_WI_WS_N_01	90	-	-	113	
L7_WI_WS_N_02	90	-	-	113	
L7_WI_WS_N_03	90	-	-	113	
L7_WI_WS_N_04	90	-	-	113	
L7_WI_WS_N_05	90	-	-	113	
L7_WI_WS_N_07	90	-	-	113	
L7_WI_WS_N_07	90	-	-	113	
L7_WI_WS_N_08	90	-	-	113	

General lighting and display lighting	Luminous efficacy [Im/W]			
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
L7_WI_WS_N_09	90	-	-	113
L7_WI_WS_N_10	90	-	-	168
L7_WI_WS_S_01	90	-	-	777
L7_XA_CIRC_I_01	-	80	-	148
L7_XA_MR_I_01	80	-	-	118
L7 XA MR I 03	80	-	-	172
L7_ZA_BREAKOUT_E_01	80	-	-	496
L7_ZA_MR_E_01	80	-	-	151
L7_ZA_WS_E_01	90	-	-	106
L7_ZA_WS_E_02	90	-	-	100
 L7_ZA_WS_E_03	90	-	-	105
 L7_ZA_WS_E_04	90	-	-	103
 L7_ZA_WS_E_05	90	-	-	103
L7_ZA_WS_E_07	90	-	-	93
L7_ZA_WS_W_01	90	-	-	774
L8_WI_CIRC_I_01	-	80	-	105
L8_WI_MR_I_01	90	-	-	79
L8_WI_MR_W_01	90	-	-	128
L8_WI_WS_N_01	90	-	_	113
L8_WI_WS_N_02	90	_	_	113
L8_WI_WS_N_03	90	_	_	113
L8_WI_WS_N_04	90	-	_	113
L8_WI_WS_N_05	90	-	_	108
L8_WI_WS_N_06	90	-	-	107
L8_WI_WS_N_07	90	-	-	107
L8_WI_WS_N_08	90	-	-	108
L8_WI_WS_N_10	90	-	-	110
L8_WI_WS_S_01	90	-	-	432
L8_XA_CIRC_I_01	-	80	-	148
L8_XA_MR_I_02	90	-	-	160
L8 XA MR I 03	90	-	-	151
L8_XB_MR_E_01	90	-	-	97
L8_XB_MR_I_01	90	-	_	172
L8_ZA_BREAKOUT_E_01	-	80	-	159
L8_ZA_MR_E_01	90	-	-	83
L8_ZA_WS_E_01	90	-	-	78
L8_ZA_WS_E_02	80	-	-	109
L8_ZA_WS_E_03	90	-	-	103
L8_ZA_WS_E_04	90	-	-	100
L8_ZA_WS_E_05	90	-	-	100
L8_ZA_WS_E_06	90	-	-	100
L8_ZA_WS_E_07	90	-	-	89
L8_ZA_WS_W_01	80	-	-	1241

General lighting and display lighting	Luminous efficacy [lm/W]]
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
L9_WI_MR_W_01	90	-	-	140
L9_WI_WS_N_01	90	-	-	107
L9_WI_WS_N_02	90	-	-	107
L9_WI_WS_N_10	90	-	-	137
L9_WI_WS_S_01	90	-	-	416
L9_XA_CIRC_I_01	-	80	-	147
L9_ZA_BREAKOUT_E_01	-	80	-	106
L9_ZA_MR_E_01	90	-	-	74
L9_ZA_MR_I_01	90	-	-	91
L9_ZA_WS_E_03	90	-	-	93
L9_ZA_WS_E_04	90	-	-	90
L9_ZA_WS_E_05	90	-	-	90
L9_ZA_WS_E_06	90	-	-	90
L9_ZA_WS_E_07	90	-	-	79
L9_ZA_WS_W_01	90	-	-	166
L9_ZA_WS_W_01	90	-	-	521
L3_cafe	-	80	-	200
L3_ZB_ENTRANCE_E_01	-	90	80	183
L4_ZB_BREAKOUT_I_05	-	80	-	260
L4_ZB_STAIR_I_01	-	80	-	171
L4_ZB_CIRC_I_01	-	80	-	743
L4_ZB_ENTRANCE_I_01	-	90	80	79

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
L2_XB_CIRC_I_02	N/A	N/A
L2_XC_TS_I_01	N/A	N/A
L3_ISD rooms	N/A	N/A
L3_teaching area	N/A	N/A
L3_teaching area	N/A	N/A
L3_teaching area	N/A	N/A
L3_teaching space	N/A	N/A
L3_XA_COMMS_E_01	NO (-91.7%)	YES
L3_XB_CC_I_01	N/A	N/A
L3_XB_WC_I_01	NO (-49.5%)	YES
L4_XB_CIRC_I_01	N/A	N/A
L4_XB_TS_I_01	N/A	N/A
L4_XC_TS_E_01	N/A	N/A
L5_XA_CIRC_I_02	N/A	N/A
L5_ZA_TS_E_01	NO (-72.4%)	YES
L5_ZA_TS_E_02	NO (-50.1%)	YES
L5_ZA_TS_W_03	NO (-34.8%)	YES
L5_ZA_TS_W_04	NO (-45%)	YES

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
L6_WI_CIRC_I_01	N/A	N/A
L6_WI_MR_I_01	N/A	N/A
L6_WI_MR_I_02	N/A	N/A
L6_WI_MR_W_01	NO (-48.2%)	YES
L6_WI_WS_N_01	NO (-65.7%)	YES
L6_WI_WS_N_02	NO (-53.7%)	YES
L6_WI_WS_N_03	NO (-51.2%)	YES
L6_WI_WS_N_04	NO (-50.7%)	YES
	NO (-50.7%)	YES
L6_WI_WS_N_06	NO (-51.2%)	YES
L6_WI_WS_N_07	NO (-50.7%)	YES
L6_WI_WS_N_08	NO (-50.8%)	YES
L6_WI_WS_N_09	NO (-52.2%)	YES
L6_WI_WS_N_10	NO (-52.3%)	YES
	NO (-51.4%)	YES
	NO (-42.4%)	YES
	NO (-35.3%)	YES
	N/A	N/A
	NO (-43.5%)	YES
	N/A	N/A
	N/A	N/A
	NO (-64%)	YES
	NO (-18.4%)	YES
	N/A	N/A
 L7 WI MR I 01	N/A	N/A
	NO (-48.9%)	YES
 L7 WI WS N 01	NO (-62.5%)	YES
	NO (-52.4%)	YES
	NO (-52.4%)	YES
	NO (-52.4%)	YES
 L7_WI_WS_N_05	NO (-52.4%)	YES
	NO (-52.4%)	YES
	NO (-52.4%)	YES
 L7 WI WS N 08	NO (-52.4%)	YES
	NO (-52.4%)	YES
 L7 WI WS N 10	NO (-45.6%)	YES
 L7 WI WS S 01	NO (-34%)	YES
L7_XA_CIRC_I_01	N/A	N/A
 L7_XA_MR_I_01	N/A	N/A
 L7_XA_MR_I_03	N/A	N/A
L7_ZA_BREAKOUT_E_01	NO (-51.8%)	YES
	NO (-55.3%)	YES
	NO (-47.3%)	YES
	NO (-41.1%)	YES
	NO (-43.5%)	YES
	NO (-42.9%)	YES
	NO (-42.9%)	YES
	NO (-91.5%)	YES
L7_ZA_WS_W_01	NO (-62.2%)	YES
	1 ()	1

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
L8_WI_CIRC_I_01	N/A	N/A
L8_WI_MR_I_01	N/A	N/A
L8_WI_MR_W_01	NO (-49.1%)	YES
L8_WI_WS_N_01	NO (-62.5%)	YES
	NO (-52.4%)	YES
	NO (-52.6%)	YES
L8_WI_WS_N_07	NO (-52.6%)	YES
L8_WI_WS_N_08	NO (-52.2%)	YES
L8_WI_WS_N_10	NO (-43.7%)	YES
L8_WI_WS_S_01	NO (-31.1%)	YES
L8_XA_CIRC_I_01	N/A	N/A
L8_XA_MR_I_02	N/A	N/A
L8_XA_MR_I_03	N/A	N/A
L8_XB_MR_E_01	NO (-43.9%)	YES
L8_XB_MR_L_01	N/A	N/A
L8_ZA_BREAKOUT_E_01	NO (-50.5%)	YES
L8_ZA_MR_E_01	NO (-48.4%)	YES
L8_ZA_WS_E_01	NO (-47.3%)	YES
L8_ZA_WS_E_01	NO (-47.3%)	YES
L8_ZA_WS_E_02	NO (-41.1%)	YES
L8 ZA_WS_E_03		YES
	NO (-42.9%)	
L8_ZA_WS_E_05	NO (-42.9%)	YES
L8_ZA_WS_E_06	NO (-42.9%)	YES
L8_ZA_WS_E_07	NO (-91.5%)	YES
L8_ZA_WS_W_01	NO (-62.2%)	YES
L9_WI_MR_W_01	NO (-49.4%)	YES
L9_WI_WS_N_01	NO (-62.6%)	YES
L9_WI_WS_N_02	NO (-52.6%)	YES
L9_WI_WS_N_10	NO (-44.1%)	YES
L9_WI_WS_S_01	NO (-53.9%)	YES
L9_XA_CIRC_I_01	N/A	N/A
L9_ZA_BREAKOUT_E_01	NO (-77.7%)	YES
L9_ZA_MR_E_01	NO (-47.6%)	YES
L9_ZA_MR_I_01	N/A	N/A
L9_ZA_WS_E_03	NO (-43.5%)	YES
L9_ZA_WS_E_04	NO (-43%)	YES
L9_ZA_WS_E_05	NO (-42.9%)	YES
L9_ZA_WS_E_06	NO (-42.9%)	YES
L9_ZA_WS_E_07	NO (-81.9%)	YES
L9_ZA_WS_W_01	N/A	N/A
L9_ZA_WS_W_01	NO (-54.4%)	YES
L3_ZB_ENTRANCE_E_01	NO (-36.4%)	YES
L4_ZB_ENTRANCE_I_01	NO (-42%)	YES

Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

EPBD (Recast): Consideration of alternative energy systems

Were alternative energy systems considered and analysed as part of the design process?	
Is evidence of such assessment available as a separate submission?	NO
Are any such measures included in the proposed design?	NO

Technical Data Sheet (Actual vs. Notional Building)

Building Global Parameters

	Actual	Notional
Area [m ²]	5190.2	5190.2
External area [m ²]	4998.7	5770
Weather	LON	LON
Infiltration [m ³ /hm ² @ 50Pa]	10	3
Average conductance [W/K]	5128.85	2799.3
Average U-value [W/m ² K]	1.03	0.49
Alpha value* [%]	9.18	10

* Percentage of the building's average heat transfer coefficient which is due to thermal bridging

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	38.89	11.6
Cooling	3.99	6.63
Auxiliary	28.8	13.93
Lighting	9.02	14.36
Hot water	87.08	6.04
Equipment*	30.79	30.79
TOTAL**	167.77	52.56

* Energy used by equipment does not count towards the total for consumption or calculating emissions. ** Total is net of any electrical energy displaced by CHP generators, if applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	0	0
Wind turbines	0	0
CHP generators	0	0
Solar thermal systems	0	0

Energy & CO₂ Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m ²]	170.55	132.26
Primary energy* [kWh/m ²]	276.39	125.72
Total emissions [kg/m ²]	52.5	22.1

* Primary energy is net of any electrical energy displaced by CHP generators, if applicable.

Building Use

100

% Area Building Type A1/A2 Retail/Financial and Professional services A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways B1 Offices and Workshop businesses

- B1 Offices and workshop businesses
 B2 to B7 General Industrial and Special Industrial Groups
 B8 Storage or Distribution
 C1 Hotels
 C2 Residential Institutions: Hospitals and Care Homes
 C2 Residential Institutions: Residential schools
 C2 Residential Institutions: Universities and colleges
 C2A Secure Residential Institutions
 Residential spaces
 D1 Non-residential Institutions: Libraries, Museums, and Galleries
 D1 Non-residential Institutions: Primary Health Care Building
 D1 Non-residential Institutions: Crown and County Courts
 D2 General Assembly and Leisure, Night Clubs, and Theatres
 Others: Passenger terminals
 - Others: Emergency services
 - Others: Miscellaneous 24hr activities
 - Others: Car Parks 24 hrs
 - Others: Stand alone utility block

		stems Per	formane	<u> </u>						
	stem Type		Cool dem MJ/m2		Cool con kWh/m2	Aux con kWh/m2	Heat SSEEF	Cool SSEER	Heat gen SEFF	Cool gen SEER
[ST] Central he	eating using	water: rad	iators, [HS]	District he	ating, [HFT] District He	eating, [CF]	[] Electricit	у
	Actual	339.8	0	100.5	0	1.8	0.94	0	1	0
	Notional	112.2	0	31.2	0	1.8	1	0		
[ST] Central he	eating using	ywater: rad	iators, [HS]	District he	ating, [HFT] District He	eating, [CF]	[] Electricit	у
	Actual	55.1	0	16.3	0	14.1	0.94	0	1	0
	Notional	31.3	0	8.7	0	14.1	1	0		
[ST] Fan coil s	ystems, [HS	6] District h	eating, [HF	T] District H	leating, [CF	T] Electric	ity		
	Actual	85.6	57.3	25.5	4.8	12.3	0.93	3.35	1	4.4
	Notional	32	125.1	8.9	9.2	16.1	1	3.79		
[ST] Constant	volume sys	tem (fixed f	iresh air rat	e), [HS] Dis	trict heatin	g, [HFT] Dis	strict Heatir	ng, [CFT] El	ectricity
	Actual	56.5	33.6	15.4	4.4	32.4	1.02	2.11	1	4.43
	Notional	11	80.2	3	5.9	21.9	1	3.79		
[ST] Single-du	ct VAV, [HS] District he	eating, [HF]	[] District H	eating, [CF	T] Electrici	ty		
	Actual	69	70.8	24.4	6.9	65.1	0.78	2.85	1	4.43
	Notional	17.3	144.1	4.8	10.6	18.2	1	3.79		
[ST] Split or m	ulti-split sy	stem, [HS]	LTHW boile	er, [HFT] Na	tural Gas, [CFT] Electr	icity		
	Actual	0	0	0	0	0	0.93	2.13	1	3
	Notional	0	0	0	0	0	0.86	3.79		
[ST] No Heatin	g or Coolin	g							
	Actual	0	0	0	0	0	0	0	0	0
	Notional	0	0	0	0	0	0	0		

Key to terms	
Heat dem [MJ/m2]	= Heating energy demand
Cool dem [MJ/m2]	= Cooling energy demand
Heat con [kWh/m2]	= Heating energy consumption
Cool con [kWh/m2]	= Cooling energy consumption
Aux con [kWh/m2]	= Auxiliary energy consumption
Heat SSEFF	= Heating system seasonal efficiency (for notional building, value depends on activity glazing class)
Cool SSEER	= Cooling system seasonal energy efficiency ratio
Heat gen SSEFF	= Heating generator seasonal efficiency
Cool gen SSEER	= Cooling generator seasonal energy efficiency ratio
ST	= System type
HS	= Heat source
HFT	= Heating fuel type
CFT	= Cooling fuel type

Key Features

The Building Control Body is advised to give particular attention to items whose specifications are better than typically expected.

Building fabric

Element	U і-тур	Ui-Min	Surface where the minimum value occurs*
Wall	0.23	-	L300009:Surf[9]
Floor	0.2	0.11	L4000020:Surf[0]
Roof	0.15	0.18	L2000016:Surf[0]
Windows, roof windows, and rooflights	1.5	0.71	L300002B:Surf[0]
Personnel doors	1.5	-	No Personnel doors in building
Vehicle access & similar large doors	1.5	-	No Vehicle access doors in building
High usage entrance doors	1.5	-	No High usage entrance doors in building
Ui-Typ = Typical individual element U-values [W/(m ² K)]		Ui-Min = Minimum individual element U-values [W/(m ² K)]
* There might be more than one surface where the m	ninimum U	-value oco	curs.

Air Permeability	Typical value	This building
m³/(h.m²) at 50 Pa	5	10

Appendix D – Thermal Comfort results, baseline climate

Space type PHASE 2 occupied rooms	Winter – Min temperature (°C)	Winter -Max temperature (°C)	CIBSE Guide A temperature range (°C)	Criteria 1 (%Hrs Top- Tmax>=1K)	Criteria 2 (Max. Daily Deg.Hrs)	Criteria 3 (Max. DeltaT)	% PMV Mean winter	% PMV Mean summer	% PPD Mean winter	% PPD Mean summer
L6_WI_MR_I_01	23.01	24.19	18-25	PASS	PASS	PASS	0.13	0.13	13.7	11.9
L6_WI_MR_W_01	20.28	24.21	18-25	PASS	PASS	PASS	0.10	0.10	5.8	7.8
L6_WI_WS_N_01	18.08	22.29	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_N_02	18.36	22.31	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_N_03	18.60	22.35	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_N_04	19.08	22.40	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_N_05	19.15	22.40	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_N_06	19.18	22.39	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_N_07	19.18	22.39	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_N_08	19.21	22.39	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_N_09	19.28	22.39	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_N_10	18.85	22.43	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_N_11	21.89	24.42	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_N_12	23.01	24.19	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_S_01	20.28	24.21	18-25	PASS	FAIL	PASS	n/a	n/a	n/a	n/a
L6_ZA_BREAKOUT_E_01	21.83	22.85	18-25	PASS	PASS	PASS	0.07	0.36	5.2	9.2
L6_ZA_MR_I_01	22.18	23.97	18-25	PASS	PASS	PASS	0.63	0.59	14.3	12.9
L6_ZA_MR_I_02	22.90	24.00	18-25	PASS	PASS	PASS	0.71	0.59	16.0	12.6

 Table 6—1 – Phase 2 occupied rooms - TM52 thermal comfort assessment results, baseline climate scenario

UCL Institute of Education Interim Sustainability Statement – Phase 2 Draft report Copyright © 1976 - 2020 BuroHappold Engineering. All Rights Reserved. Revision 00 26 March 2020

L6_ZA_WS_W_01	21.78	23.36	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_WI_MR_W_01	21.42	25.00	18-25	PASS	PASS	PASS	0.23	0.51	6.8	11.7
L7_WI_WS_N_01	18.49	22.31	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_WI_WS_N_02	19.03	22.40	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_WI_WS_N_03	19.11	22.41	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_WI_WS_N_04	19.14	22.41	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_WI_WS_N_05	19.11	22.41	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_WI_WS_N_07	19.12	22.40	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_WI_WS_N_07	19.12	22.40	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_WI_WS_N_08	18.69	22.42	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_WI_WS_N_09	18.79	22.50	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_WI_WS_N_10	21.30	23.77	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_WI_WS_S_01	21.87	24.43	18-25	PASS	FAIL	PASS	n/a	n/a	n/a	n/a
L7_XA_MR_I_01	22.16	24.00	18-25	PASS	PASS	PASS	0.61	0.60	13.2	12.6
L7_ZA_BREAKOUT_E_01	21.78	22.87	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_ZA_MR_E_01	21.69	22.99	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_ZA_WS_E_01	19.31	22.53	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_ZA_WS_E_02	19.31	22.53	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_ZA_WS_E_03	19.33	22.54	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_ZA_WS_E_04	18.73	22.53	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_ZA_WS_E_05	18.75	22.43	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_ZA_WS_E_07	19.00	23.44	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_ZA_WS_W_01	21.86	23.88	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L8_WI_MR_W_01	21.40	25.00	18-25	PASS	PASS	PASS	0.22	0.50	6.8	11.6

UCL Institute of Education

Interim Sustainability Statement – Phase 2 Draft report

Revision 00 26 March 2020

Copyright © 1976 - 2020 BuroHappold Engineering. All Rights Reserved.

n/a	n/a	n/a	n/a
			170
n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a
0.68	0.59	15.2	12.5
0.08	0.31	5.2	7.8
0.63	0.59	14.0	12.6
n/a	n/a	n/a	n/a
0.07	0.32	5.2	7.9
n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a
0.05	0.12	6.2	6.3
	n/a n/a n/a n/a n/a n/a n/a n/a 0.68 0.08 0.63 0.08 0.63 n/a 0.07 n/a n/a n/a n/a n/a n/a n/a n/a	n/a n/a n/a	n/a n/a n/a n/a n/a n/a

UCL Institute of Education

Interim Sustainability Statement – Phase 2 Draft report

Revision 00 26 March 2020

Copyright © 1976 - 2020 BuroHappold Engineering. All Rights Reserved.

L9_WI_WS_N_01	18.00	22.35	18-25	PASS	PASS	PASS	0.05	0.23	5.6	7.4
L9_WI_WS_N_02	18.75	22.49	18-25	PASS	PASS	PASS	0.1	0.43	5.4	11.6
L9_WI_WS_N_10	21.16	24.04	18-25	PASS	PASS	PASS	0.15	0.41	5.7	10.2
L9_WI_WS_S_01	21.77	23.89	18-25	PASS	FAIL	PASS	0.07	0.36	5.2	9.4
L9_ZA_BREAKOUT_E_01	21.70	22.77	18-25	PASS	PASS	PASS	0.09	0.32	5.3	8
L9_ZA_MR_E_01	21.22	23.86	18-25	PASS	PASS	PASS	0.35	0.6	8.2	13
L9_ZA_MR_I_01	21.15	23.89	18-25	PASS	PASS	PASS	0.05	0.25	5.6	7.7
L9_ZA_WS_E_03	18.61	22.61	18-25	PASS	PASS	PASS	0.05	0.25	5.6	7.7
L9_ZA_WS_E_04	18.33	22.57	18-25	PASS	PASS	PASS	0.05	0.25	5.6	7.7
L9_ZA_WS_E_05	18.29	22.56	18-25	PASS	PASS	PASS	0.05	0.25	5.7	7.7
L9_ZA_WS_E_06	18.19	22.55	18-25	PASS	PASS	PASS	0.04	0.24	5.9	7.5
L9_ZA_WS_E_07	19.00	22.36	18-25	PASS	PASS	PASS	0.12	0.44	5.5	11.4
L9_ZA_WS_W_01	21.59	24.03	18-25	PASS	PASS	PASS	0.05	0.12	6.2	6.3

Appendix E – Thermal Comfort results, future climate

Space type PHASE 2 occupied rooms	Winter – Min temperature (°C)	Winter -Max temperature (°C)	CIBSE Guide A temperature range (°C)	Criteria 1 (%Hrs Top- Tmax>=1K)	Criteria 2 (Max. Daily Deg.Hrs)	Criteria 3 (Max. DeltaT)	% PMV Mean winter	% PMV Mean summer	% PPD Mean winter	% PPD Mean summer
L6_WI_MR_I_01	23.10	24.22	18-25	PASS	PASS	PASS	0.62	0.59	13.6	12.4
L6_WI_MR_W_01	20.41	24.77	18-25	PASS	PASS	PASS	0.15	0.37	6.0	9.3
L6_WI_WS_N_01	18.64	22.74	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_N_02	18.94	22.66	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_N_03	18.91	22.66	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_N_04	19.08	22.70	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_N_05	19.10	22.70	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_N_06	19.10	22.70	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_N_07	19.08	22.70	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_N_08	19.10	22.70	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_N_09	19.46	22.71	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_N_10	19.23	22.76	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_N_11	19.31	22.82	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_N_12	21.39	24.25	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_WI_WS_S_01	21.67	24.31	18-25	PASS	FAIL	PASS	n/a	n/a	n/a	n/a
L6_ZA_BREAKOUT_E_01	21.87	23.32	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L6_ZA_MR_I_01	22.27	24.04	18-25	PASS	PASS	PASS	0.65	0.59	14.7	12.9

Table 6—2 – Phase 2 occupied rooms - TM52 thermal comfort assessment results, future climate scenario

UCL Institute of Education Interim Sustainability Statement – Phase 2 Draft report Copyright © 1976 - 2020 BuroHappold Engineering. All Rights Reserved.

		-		-						
L6_ZA_MR_I_02	22.98	24.02	18-25	PASS	PASS	PASS	0.72	0.60	16.2	12.8
L6_ZA_WS_W_01	21.84	23.68	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_WI_MR_W_01	21.52	25.47	18-25	PASS	PASS	PASS	0.26	0.60	7.2	14.2
L7_WI_WS_N_01	18.93	22.72	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_WI_WS_N_02	19.50	22.69	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_WI_WS_N_03	19.02	22.70	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_WI_WS_N_04	19.55	22.70	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_WI_WS_N_05	19.02	22.69	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_WI_WS_N_07	19.02	22.69	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_WI_WS_N_07	19.02	22.69	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_WI_WS_N_08	19.08	22.71	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_WI_WS_N_09	19.17	22.79	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_WI_WS_N_10	21.39	24.03	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_WI_WS_S_01	21.93	24.48	18-25	PASS	FAIL	PASS	n/a	n/a	n/a	n/a
L7_XA_MR_I_01	22.26	24.10	18-25	PASS	PASS	PASS	0.64	0.63	14.0	13.6
L7_ZA_BREAKOUT_E_01	21.81	23.60	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_ZA_MR_E_01	21.75	23.04	18-25	PASS	PASS	PASS	0.09	0.43	5.2	10.1
L7_ZA_WS_E_01	19.20	22.82	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_ZA_WS_E_02	19.11	22.72	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_ZA_WS_E_03	19.10	22.75	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_ZA_WS_E_04	19.34	22.74	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_ZA_WS_E_05	19.29	22.67	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_ZA_WS_E_07	20.00	23.88	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L7_ZA_WS_W_01	21.90	24.35	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a

UCL Institute of Education

Interim Sustainability Statement – Phase 2 Draft report

Copyright © 1976 - 2020 BuroHappold Engineering. All Rights Reserved.

Revision 00 26 March 2020

L8_WI_MR_W_01	21.50	25.43	18-25	PASS	PASS	PASS	0.25	0.60	7.1	14.1
L8_WI_WS_N_01	19.29	22.75	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L8_WI_WS_N_02	19.30	22.68	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L8_WI_WS_N_03	19.11	22.72	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L8_WI_WS_N_04	19.08	22.73	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L8_WI_WS_N_05	19.13	22.69	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L8_WI_WS_N_06	19.02	22.67	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L8_WI_WS_N_07	19.21	22.69	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L8_WI_WS_N_08	21.55	22.71	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L8_WI_WS_N_10	21.82	24.61	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L8_WI_WS_S_01	19.29	22.75	18-25	PASS	FAIL	PASS	n/a	n/a	n/a	n/a
L8_XA_MR_I_02	22.64	24.03	18-25	PASS	PASS	PASS	0.70	0.61	15.6	13.1
L8_XB_MR_E_01	21.53	24.06	18-25	PASS	PASS	PASS	0.10	0.37	5.3	8.8
L8_XB_MR_I_01	21.83	24.18	18-25	PASS	PASS	PASS	0.64	0.62	14.2	13.2
L8_ZA_BREAKOUT_E_01	21.85	23.44	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L8_ZA_MR_E_01	21.74	23.09	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L8_ZA_WS_E_01	19.16	22.87	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L8_ZA_WS_E_02	19.30	22.73	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L8_ZA_WS_E_03	19.37	22.74	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L8_ZA_WS_E_04	19.03	22.71	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L8_ZA_WS_E_05	19.01	22.71	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L8_ZA_WS_E_06	18.77	22.63	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L8_ZA_WS_E_07	19.00	23.96	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a
L8_ZA_WS_W_01	21.90	24.10	18-25	PASS	PASS	PASS	n/a	n/a	n/a	n/a

UCL Institute of Education

Interim Sustainability Statement – Phase 2 Draft report

Copyright © 1976 - 2020 BuroHappold Engineering. All Rights Reserved.

Revision 00 26 March 2020

L9_WI_MR_W_01	21.57	25.31	18-25	PASS	PASS	PASS	0.25	0.59	6.9	13.8
	21.57	23.31	10 25	17.00	17(55	17(55	0.25	0.55	0.5	13.0
L9_WI_WS_N_01	18.52	22.78	18-25	PASS	PASS	PASS	0.06	0.19	5.9	6.9
L9_WI_WS_N_02	19.12	22.76	18-25	PASS	PASS	PASS	0.05	0.33	5.4	8.9
L9_WI_WS_N_10	21.27	24.28	18-25	PASS	PASS	PASS	0.13	0.59	5.6	16.8
L9_WI_WS_S_01	21.83	24.06	18-25	PASS	FAIL	PASS	0.18	0.56	5.9	14.4
L9_ZA_BREAKOUT_E_01	21.76	23.33	18-25	PASS	PASS	PASS	0.09	0.51	5.3	13.2
L9_ZA_MR_E_01	21.31	24.02	18-25	PASS	PASS	PASS	0.11	0.38	5.4	9.1
L9_ZA_MR_I_01	21.26	23.98	18-25	PASS	PASS	PASS	0.41	0.61	9.3	13.3
L9_ZA_WS_E_03	18.87	22.76	18-25	PASS	PASS	PASS	0.06	0.36	5.5	9.3
L9_ZA_WS_E_04	18.94	22.70	18-25	PASS	PASS	PASS	0.06	0.35	5.5	9.2
L9_ZA_WS_E_05	18.83	22.70	18-25	PASS	PASS	PASS	0.06	0.35	5.5	9.2
L9_ZA_WS_E_06	18.81	22.67	18-25	PASS	PASS	PASS	0.07	0.35	5.5	9.2
L9_ZA_WS_E_07	18.00	22.61	18-25	PASS	PASS	PASS	0.07	0.34	5.7	9
L9_ZA_WS_W_01	21.66	24.89	18-25	PASS	PASS	PASS	0.15	0.59	5.7	16.4

Daniela Catalano Buro Happold Limited Sustainability & Physics

T: +44 (0)20 7927 9700 www.burohappold.com | @burohappold.com

Email: Daniela.Catalano@BuroHappold.com