

Our Ref: 371647-L04 (00)

18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT UK

14th February 2020

Telephone: +44 (0)1442 437500 Fax: +44 (0)1442 437550 www.rsk.co.uk

The Theatre of Comedy Company Shaftesbury Theatre 210 Shaftesbury Avenue London WC2H 8DP

For the attention of Richard Anelay

Dear Richard.

SHAFTESBURY THEATRE, LONDON GROUND MOVEMENT ASSESSMENT, CROSSRAIL TUNNEL - CATEGORY II CHECK

1. INTRODUCTION

On the instructions of The Theatre of Comedy Company (the Client), RSK Environment Limited – Geosciences (RSK) have undertaken a Category II check of the work presented in report ref. 52167-01 (01), dated February 2020. This work comprised a numerical ground movement assessment to determine what influence the proposed development at the Shaftesbury Theatre, London, would have on the adjacent Crossrail Tunnel.

This letter report is not intended to address the likely impact the proposed development would have on any adjacent properties and other infrastructure in the vicinity of the site.

The site investigation and development proposals contained within the Basement Impact Assessment Report for Shaftesbury Theatre, (ref. 52167-01 (01)) were adopted for the purpose of this assessment.

This Category II check has been carried out independently by Geotechnical Engineers that were not involved in the original assessment.

2. DEVELOPMENT

The proposed development comprises the extension of the existing basement both westward and southward beneath Bloomsbury Street and High Holborn, respectively (see **Appendix A**). In order to facilitate the construction of the proposed basement a sheet piled wall be installed around the perimeter prior to bulk excavation and construction of the proposed raft at a finished formation level of 19.60 mAOD.

3. GROUND CONDITIONS

The intrusive site investigation works undertaken in January 2013 beneath the eastern end of the site indicated the ground conditions to comprise a limited thickness of made ground (crushed fragments of brick and concrete in a clay matrix) to a depth of 0.40m below existing basement floor level. Beneath this

stiff to very stiff fissured London Clay was encountered. Very stiff Lambeth Group clays were encountered at 21.70 m below the basement floor level, and proven to the final depth of 25.20 mbbl.

From available BGS data it is anticipated the above strata are overlain by superficial deposits of the Lynch Hill Gravel Member outside the basement, this layer possibly being removed during the original basement excavation. No recorded groundwater strikes or monitoring results were presented within any of the available reports.

4. GROUND MOVEMENTS ASSESSMENT

The Category II check calculations presented in this report adopted the Oasys PDISP Version PDISP 20.0.0.2 computer package developed by ARUP and used the Boussinesq method of elastic analysis to estimate the vertical displacements likely to influence the Crossrail Tunnel.

4.1 Ground model

The Young's modulus for the cohesive deposits of the London Clay Formation and the Lambeth Group have been estimated from the undrained shear strength (c_u) profile obtained from SPT 'N' values and laboratory triaxial testing, using the correlations proposed by Jamiolkowski, et al.

Based on this the undrained Young's Modulus (E_u) has been estimated using the correlation E_u =400 c_u , while for the drained Young's modulus (E') has been determined from the relationship E' = 0.8 E_u .

For the Lynch Hill Gravel the drained Young's modulus has been assumed to be approximately 15 MN/m² based on experience although it should be stressed that this will have no influence on the calculations as it is present above the level where there is any change of loading.

The ground profile and associated parameters adopted for the analyses are presented in **Table 1**.

Table 1: Summary of ground profile and associated Young's Modulus Values Used

Charle	Level of top of	Level of base of	Undrained Condi	tions	Drained Condition	ons
Strata	Strata stratum mAOD		E _u MN/m²	ν	E' MN/m²	ν
Lynch Hill Gravel	24.15	20.15	-	-	15	0.2
London Clay Formation	20.15	-6.50	20 – at surface 110 – at base	0.5	16 – at surface 90 – at base	0.2
Lambeth Group	-6.50	-10.50	125.00	0.5	100.00	0.2

A rigid boundary layer was assumed at -20 mAOD, below which no movement is considered to occur.

4.2 Loading

The excavation associated with the basement excavation has been represented by applying a negative uniformly distributed load at the base of the excavation. The loads associated with the proposed development construction have been applied as positive loads at the base of the raft.

For the proposed work, it is estimated that between 3.90 m and 4.40 m of soil will be removed from the southern and western extensions, respectively. This equates to an unloading equal to 78 kN/m² and

371647- L04 (00) Page 2 of 4

88 kN/m², based on a unit weight of soil of 20 kN/m³. These pressures have then been applied at the proposed slab formation level of 19.60 mAOD.

In order to model the proposed development a conservative average load of 100 kN/m² has been applied across the full area of the raft based on the analysis undertaken by the JMS Group and included within **Appendix A**.

4.3 Analyses and Results

The vertical movements at the line and level of the Crossrail Tunnel (approx. 10.00 mAOD) have been calculated to assess what effect the construction works will have.

The analyses have considered both undrained and drained soil conditions to investigate both the expected short and long term ground/tunnel movements resulting from the proposed development.

The short term analyses have adopted undrained Young's modulus values for the soil and a Poisson's ratio of 0.50, allowing immediate elastic heave and settlement movements to be estimated. The long term analyses have adopted the drained Young's modulus values for the soils and a Poisson's ratio of 0.20 which allows for long term net tunnel movements resulting from construction of the new development to be determined. Typically, the fully drained conditions would take many years to develop.

The analyses have been carried out to determine the conditions at the following stages in the construction process, namely:

- unloading due to excavation for the new basement; and
- full loading following construction of the new basement.

The results from the analyses at various stages of the construction are included at the end of this letter report, while a summary of the maximum and minimum displacements is presented in **Table 2**.

Table 2: Estimated displacements at Crossrail Tunnel level at various construction stages

Loading Stage	Displacements (mm) ¹⁾			
Loading Stage	Max	Min		
Unloading – undrained conditions (stage only)	-1.00	0.00		
Unloading – drained conditions (stage only)	-2.00	0.00		
Full Loading – drained conditions (stage only)	2.00	0.00		
Full Loading – drained conditions (net)	0.50	0.00		

¹⁾ negative displacements represent heave; positive displacements represent settlement

The results presented in **Table 2** indicate that based on the available information, the maximum and differential net displacements at the relevant construction stages are not anticipated to exceed 0.5 mm along the length of the tunnel. Therefore, the proposed development is unlikely to have a significant impact on the Crossrail tunnel.

371647- L04 (00) Page 3 of 4

It is hoped that the information provided within this Category II check is sufficient for your current requirements. If you have any questions then please contact the undersigned.

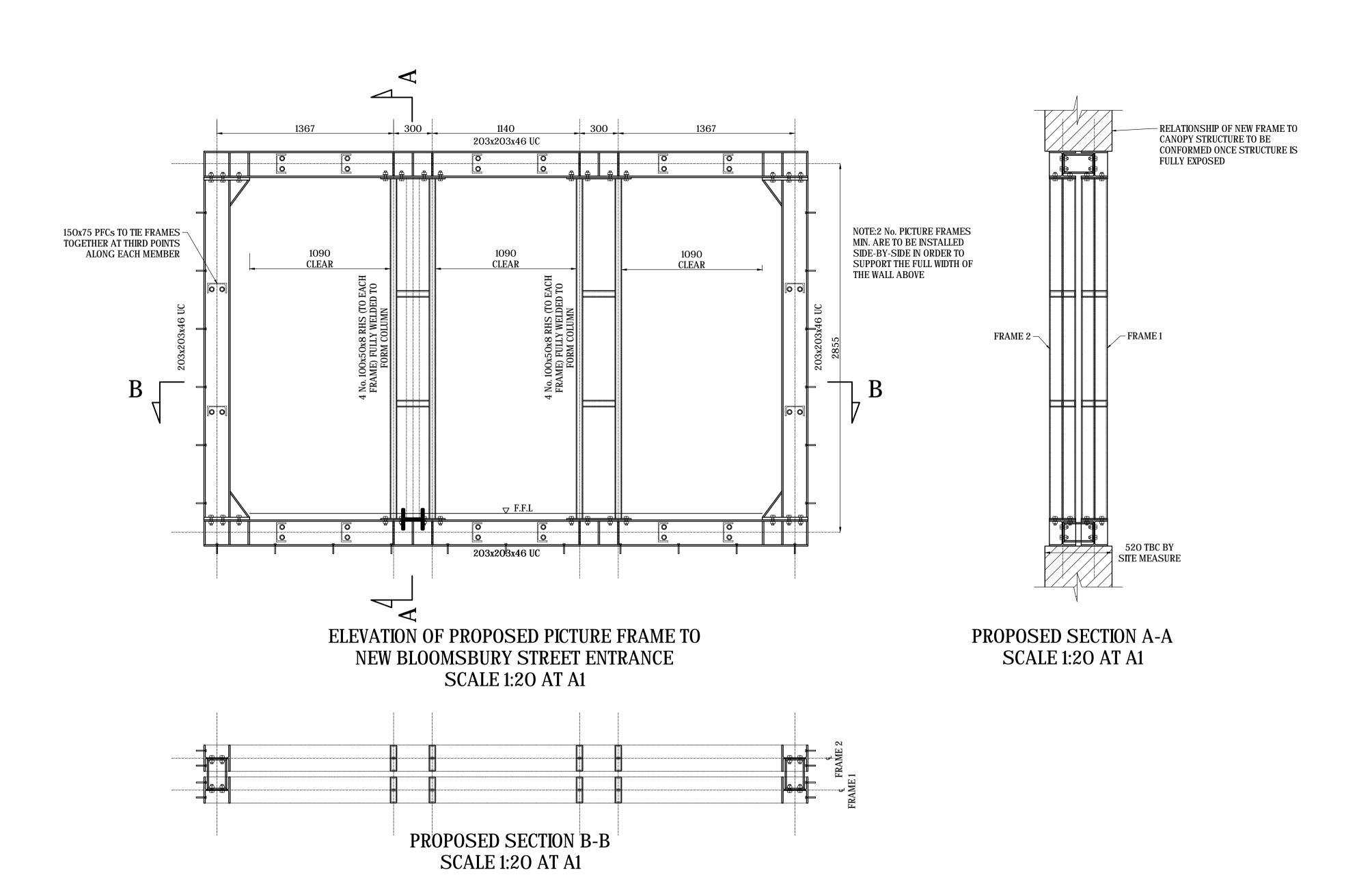
Yours sincerely

For RSK Environment Ltd

Dr Shon Williams

Geotechnical Engineer Technical Director

Enclosed:


Appendix A Proposed Development Plans and Loading Information

Appendix B Results of Ground Movement Assessment

371647- L04 (00) Page 4 of 4

APPENDIX A PROPOSED DEVELOPMENT PLANS AND LOADING INFORMATION

- S1. ALL STEELWORK TO BE GRADE S275 UNLESS NOTED OTHERWISE.
- S2. ALL HOLLOW SECTIONS TO BE GRADE S355
- S3. ALL STEEL WORK CONNECTIONS TO HAVE A
- S4. ALL NUTS TO BE NYLOCK TYPE GRADE 8.8
- S5. ALL STEEL IS TO MEET THE REQUIREMENTS OF EN1090. THE EXECUTION CLASS IS TO BE OBTAINED BY THE CONTRACTOR FROM THE
- FOLLOWS:

SHOT BLAST CLEAN TO SA 2 1/2, SHOP APPLY ZINC RICH EPOXY PRIMER TO 40 MICRONS, THEN SHOP APPLY HIGH BUILD EPOXY MIO TO 100 MICRONS. THEN SITE APPLY HIGH BUILD EPOXY MIO TO 100 MICRONS.

- TOUCHED UP LOCALLY ON SITE.
- S8. THE STEELWORK CONTRACTOR IS TO PROVIDE THE ENGINEER WITH 2 SETS OF FABRICATION DRAWINGS A MINIMUM OF 21 WORKING DAYS IN ADVANCE OF THE COMMENCEMENT OF
- S9. A MINIMUM OF 1 HOUR FIRE PROTECTION IS TO BE PROVIDED TO ALL EXPOSED STEEL WORK TO THE ARCHITECT'S SPECIFICATION.
- S10. ALL STEELWORK TO BE INTUMESCENTLY COATED TO ACHIEVE REQUIRED FIRE RATING

STEELWORK

- UNLESS NOTED OTHERWISE.
- MINIMUM OF 2 No. M16 BOLTS GRADE 8.8

- S6. NEW STEELWORK TO BE TREATED AS
- S7. ANY DAMAGED AREA OF PAINT FINISH TO BE
- FABRICATION.

DO NOT SCALE THIS DRAWING.

ORIGINAL DRAWING SIZE A1

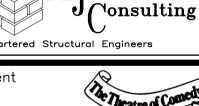
Notes

- **GENERAL**
- G1. ALL DIMENSIONS SHOWN ARE IN mm UNLESS NOTED OTHERWISE.
- G2. ALL DIMENSIONS SHOWN ARE APPROXIMATELY ONLY AND MUST BE CHECKED AND CONFIRMED BY THE CONTRACTOR VIA A FULL DIMENSIONAL SURVEY OF THE AREA OF THE WORKS PRIOR TO UNDERTAKING OF THE WORKS. THE ENGINEER MUST BE NOTIFIED IMMEDIATELY SHOULD ANY DISCREPANCIES BECOME APPARENT.
- G3. ALL DETAILS AND DIMENSIONS SHOWN RELATING TO THE EXISTING STRUCTURE ARE SCHEMATIC AND APPROXIMATE ONLY, BASED UPON NO EXPOSURE PRIOR TO COMMENCEMENT OF THE PREPARATION OF THESE DETAILS.
- G4. THE DEPTH AND LOCATION OF ANY SERVICES HAS NOT BEEN ESTABLISHED. THE CONTRACTOR IS RESPONSIBLE FOR LOCATING AND PROTECTING
- G5. ALL WORKMANSHIP AND MATERIALS TO COMPLY WITH THE CURRENT BUILDING REGULATIONS AND RELEVANT CURRENT BRITISH STANDARDS.
- G6. THE CONTRACTOR SHALL ALLOW FOR ALL WORK NECESSARY TO OBTAIN FULL APPROVAL AND SATISFACTION OF THE BUILDING INSPECTOR.
- G7. THE CONTRACTOR SHALL COMPLY WITH ALL REQUIREMENTS OF THE CURRENT HEALTH & SAFETY AT WORK ACT AND CONSTRUCTION REGULATIONS.
- G8. THE CONTRACTOR IS RESPONSIBLE FOR ENSURING THAT HIS OPERATIONS DO NOT IN ANY WAY IMPAIR THE SAFETY OR CONDITION OF THE EXISTING STRUCTURE OR ADJACENT STRUCTURES. HE IS TO PROVIDE ANY TEMPORARY SUPPORTS, SHORING STRUCTURES BOTH BEFORE AND DURING THE EXECUTION OF THE WORK. THE ENGINEER IS TO BE NOTIFIED IMMEDIATELY SHOULD ANY DAMAGE
- ACCORDANCE WITH MANUFACTURERS INSTRUCTIONS AND RECOMMENDATIONS THESE DRAWINGS HAVE BEEN PREPARED SOLELY AS A

G9. ALL PROPRIETARY PRODUCTS TO BE USED IN STRICT

DRAFT SCHEME TO ASSIST THE QS IN COSTING THE RC AND STEELWORK ONLY. THE SCHEME IS BASED ON A SECTION THROUGH PROVIDED BY BENNETTS ASSOCIATES. THE HEIGHTS AND

LEVELS OF THE FOUNDATIONS ARE INDICATIVE ONLY BASED ON NO EXPOSURE WORK. THE FOUNDATIONS SHOULD BE EXPOSED TO ALLOW THE


SCHEME TO BE VALIDATED OR REVISED ACCORDINGLY. IT IS ANTICIPATED THE STALLS FLOOR WILL NEED TO BE

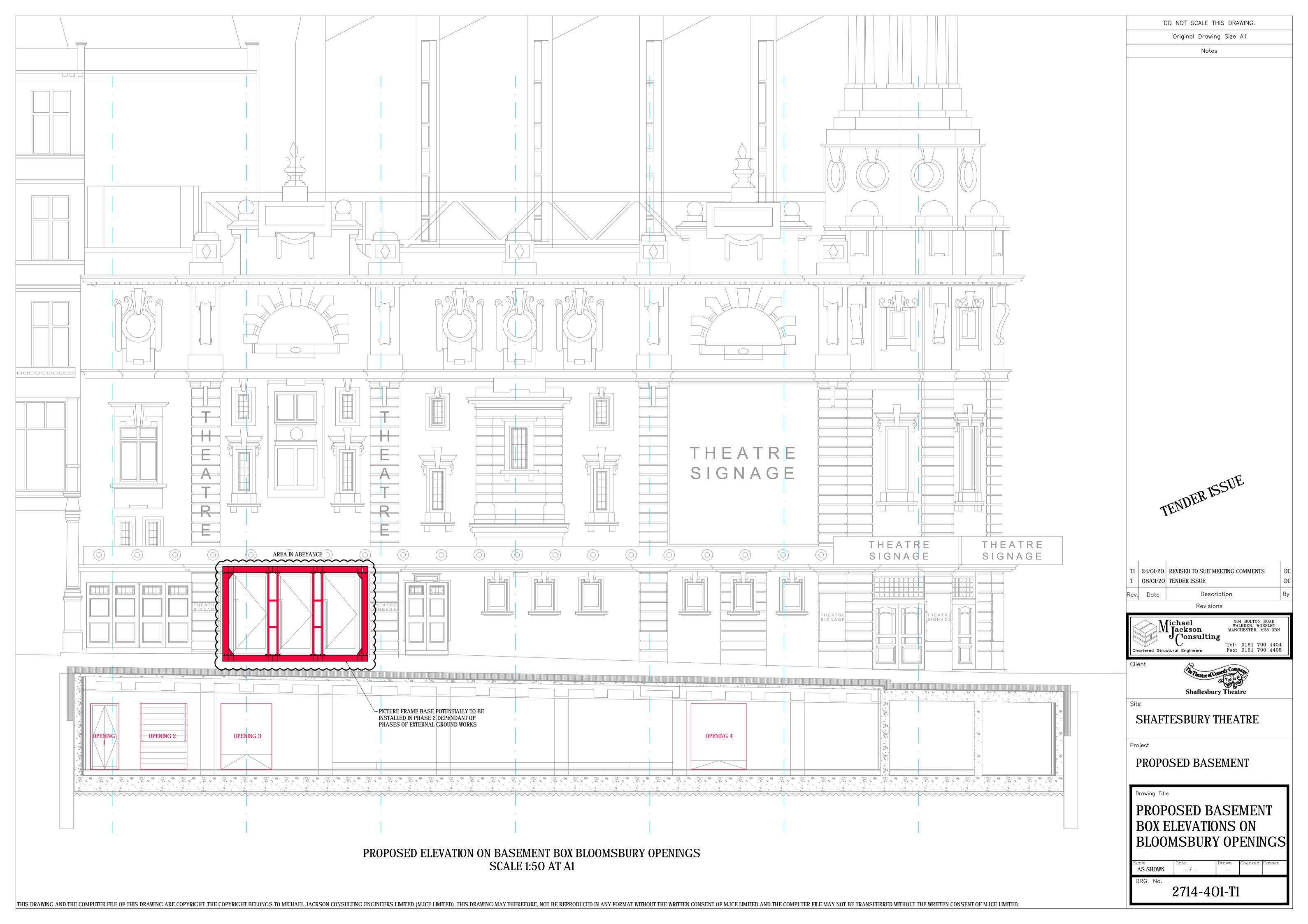
LOWERED TO PROVIDE THE ADDITIONAL HEADROOM REQUIRED TO ACCESS BENEATH THE BEAMS.

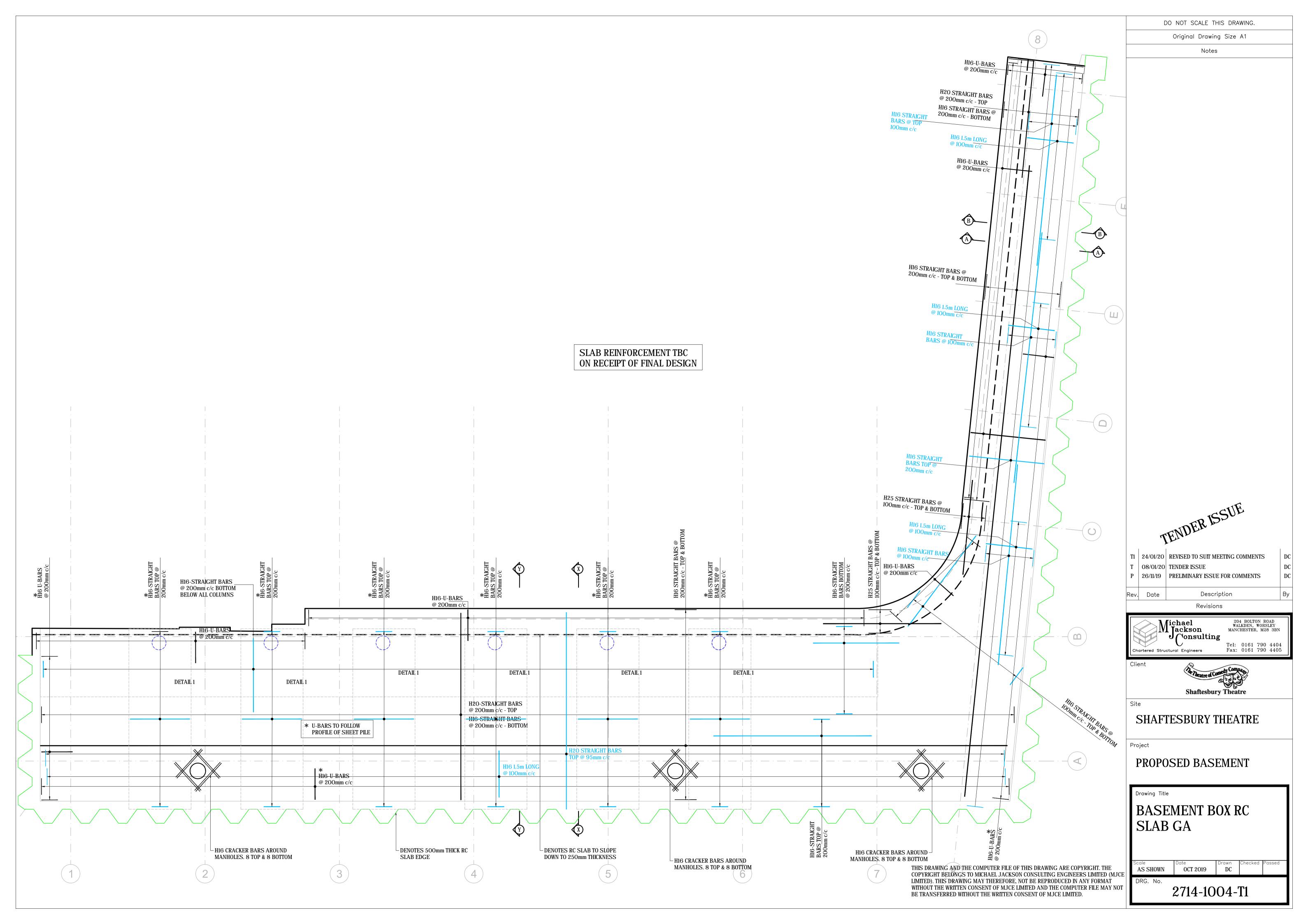
TENDER ISSUE

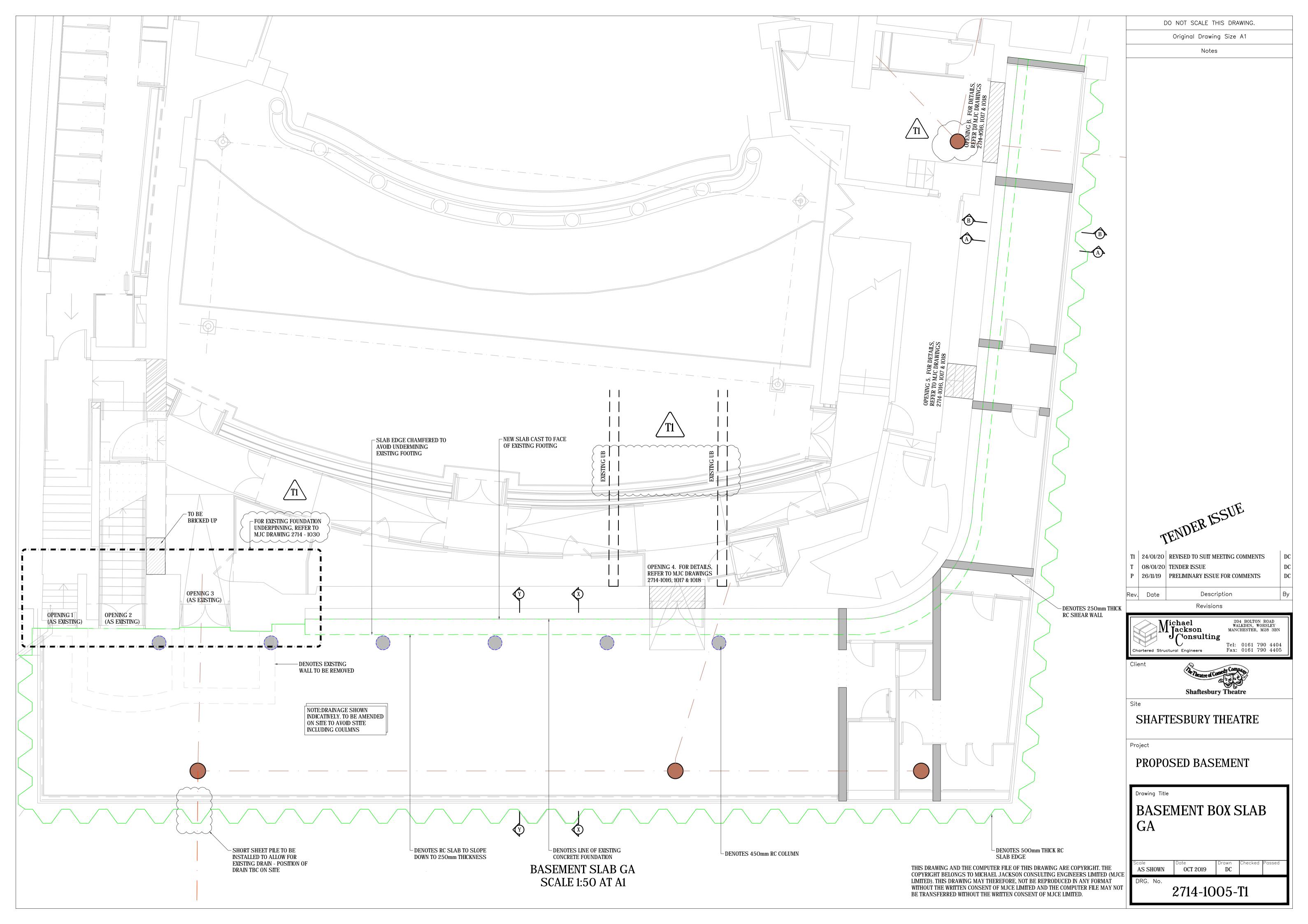
T 08/01/20 TENDER ISSUE Description Rev Date

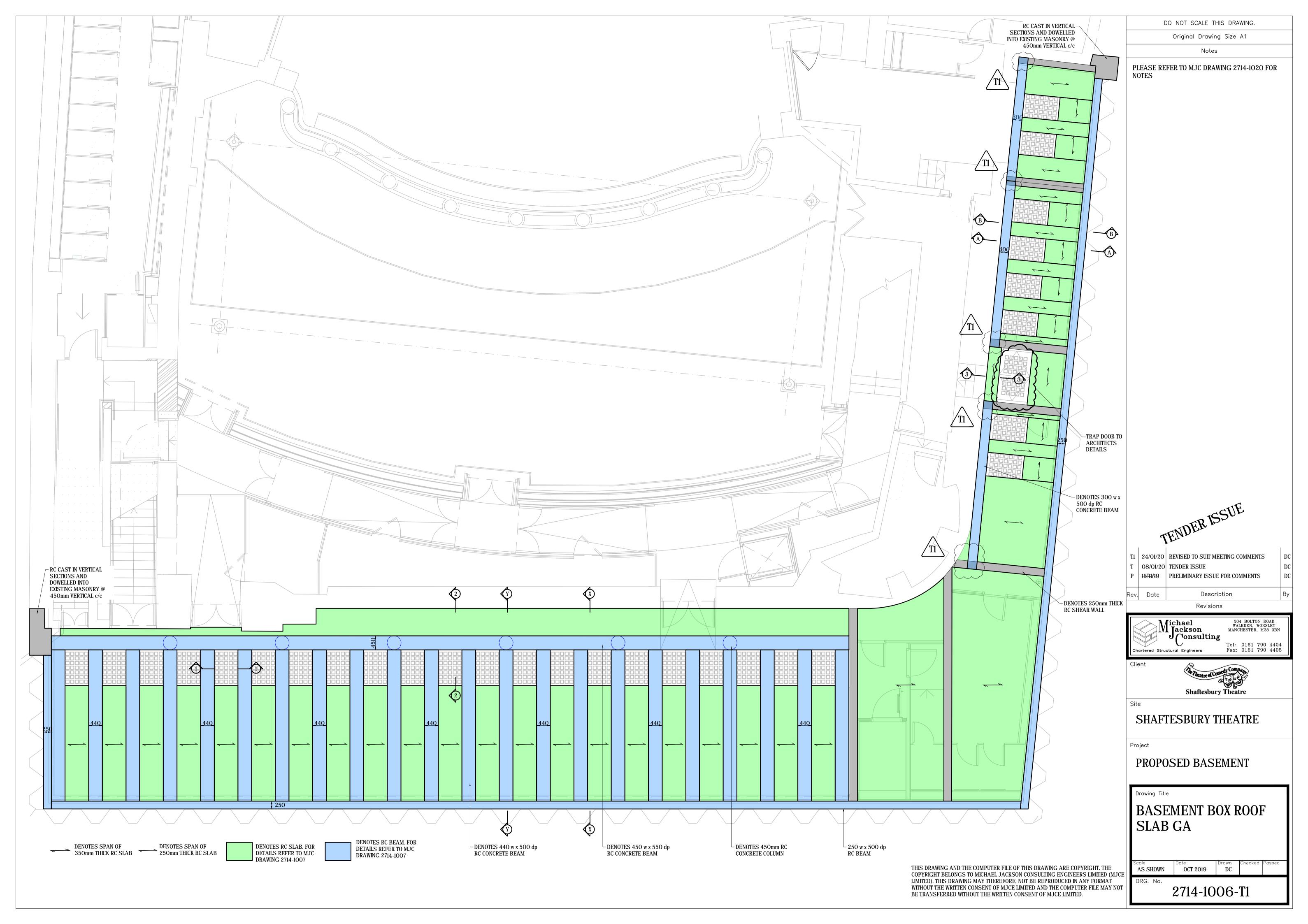
204 BOLTON ROAD WALKDEN, WORSLEY MANCHESTER, M28 3BN Michael Jackson

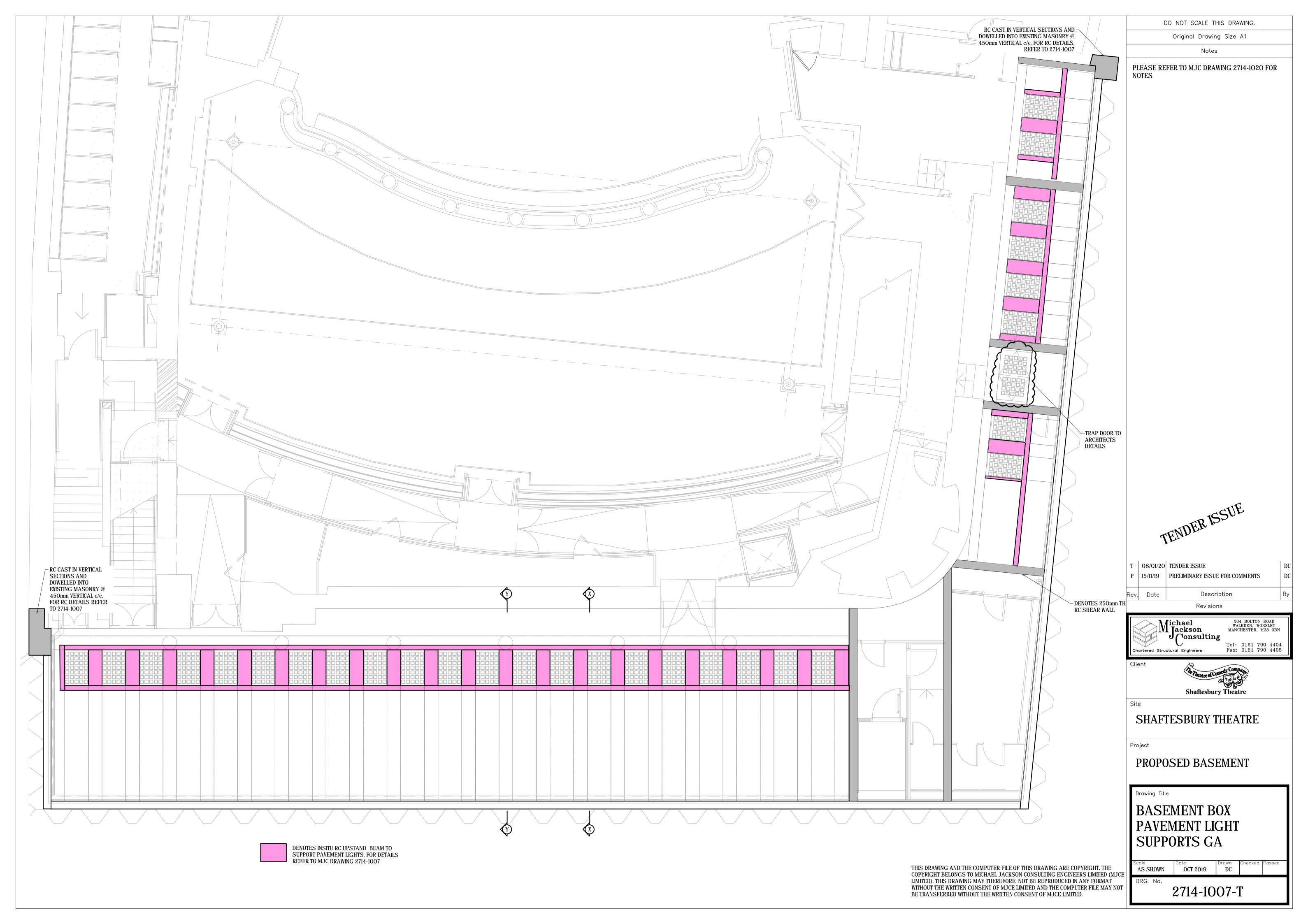
SHAFTESBURY THEATRE

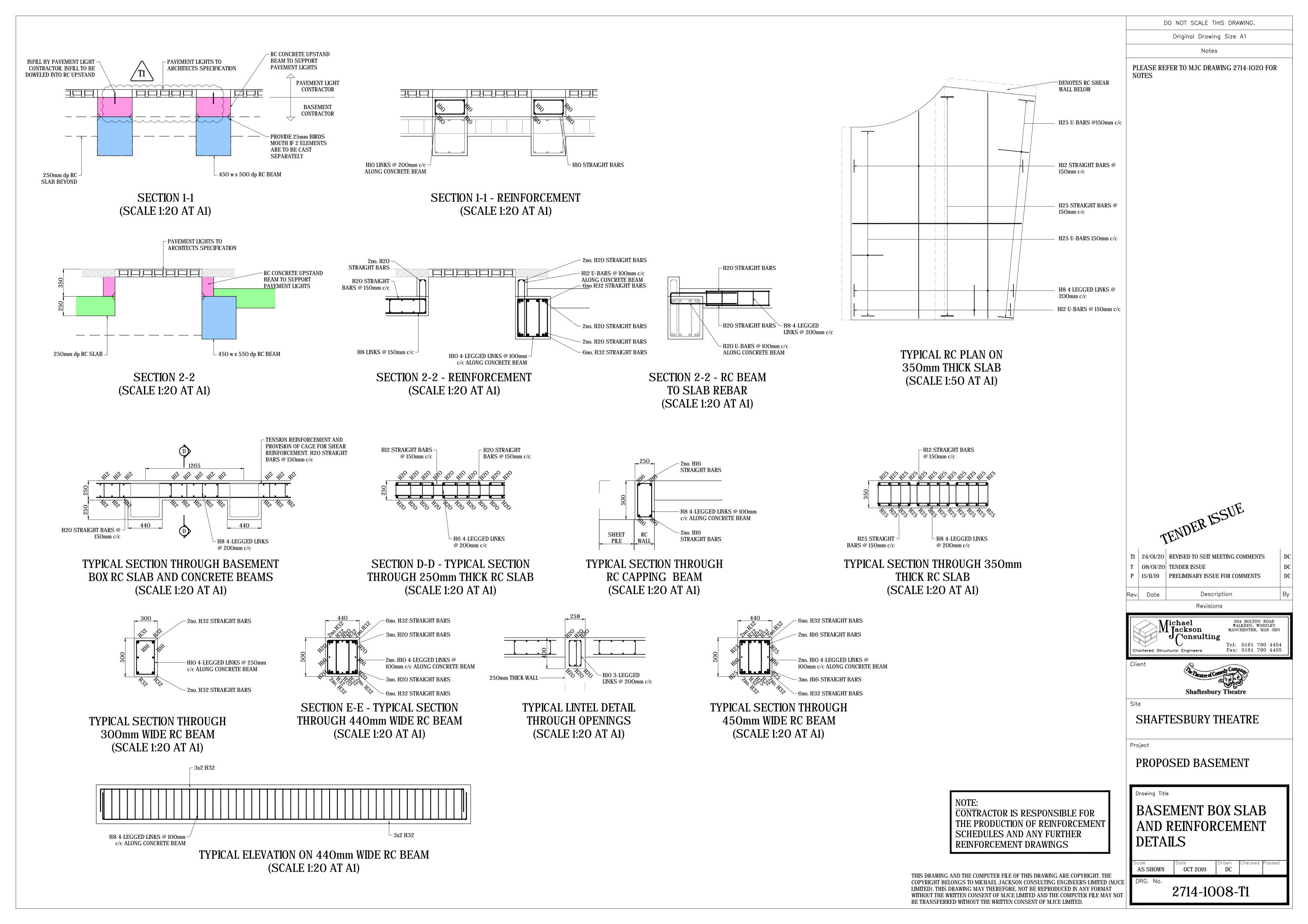

PROPOSED FOH UPGRADE AND BASEMENT EXTENSION

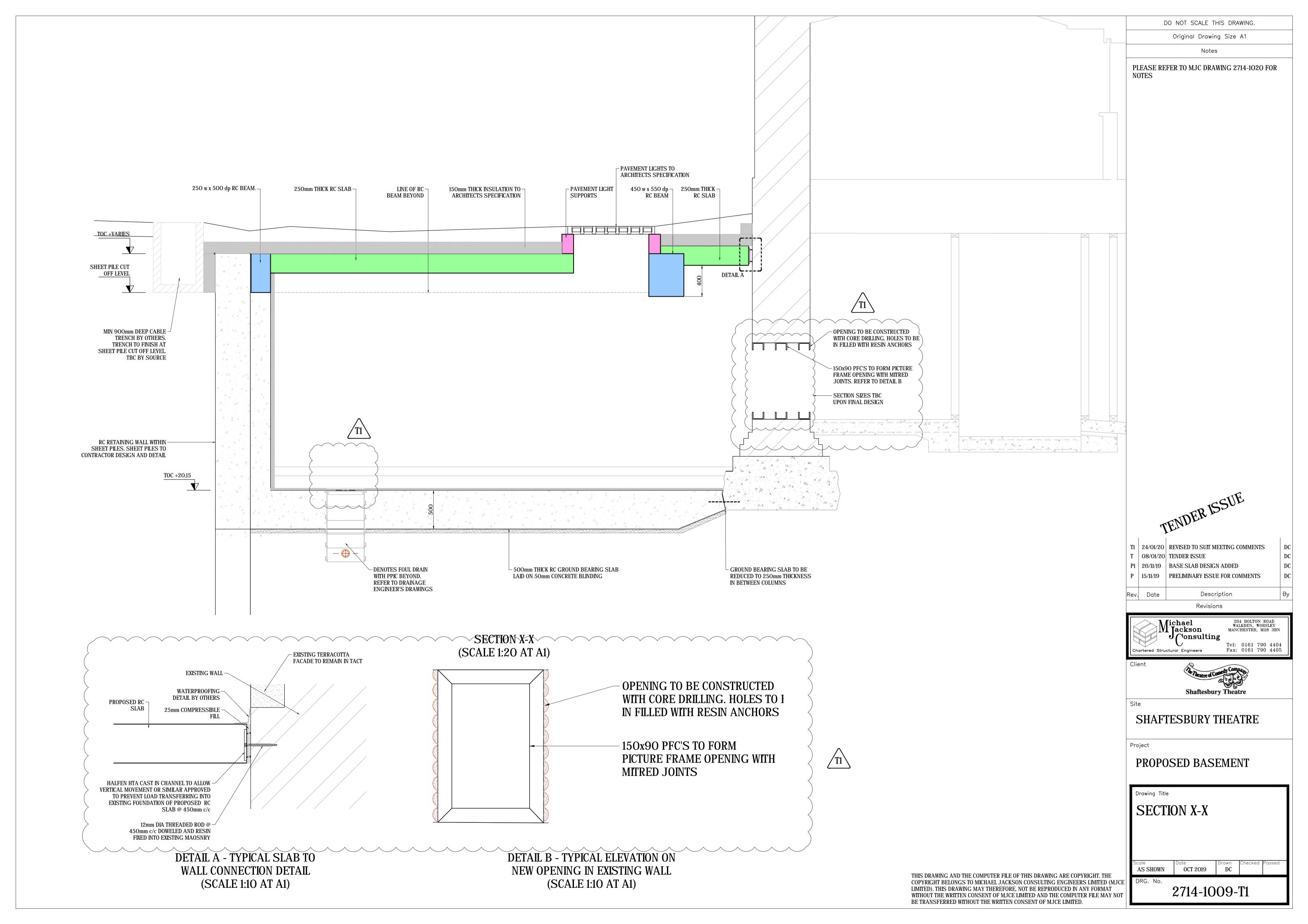

PROPOSED NEW **BLOOMSBURY STREET ENTRANCE**

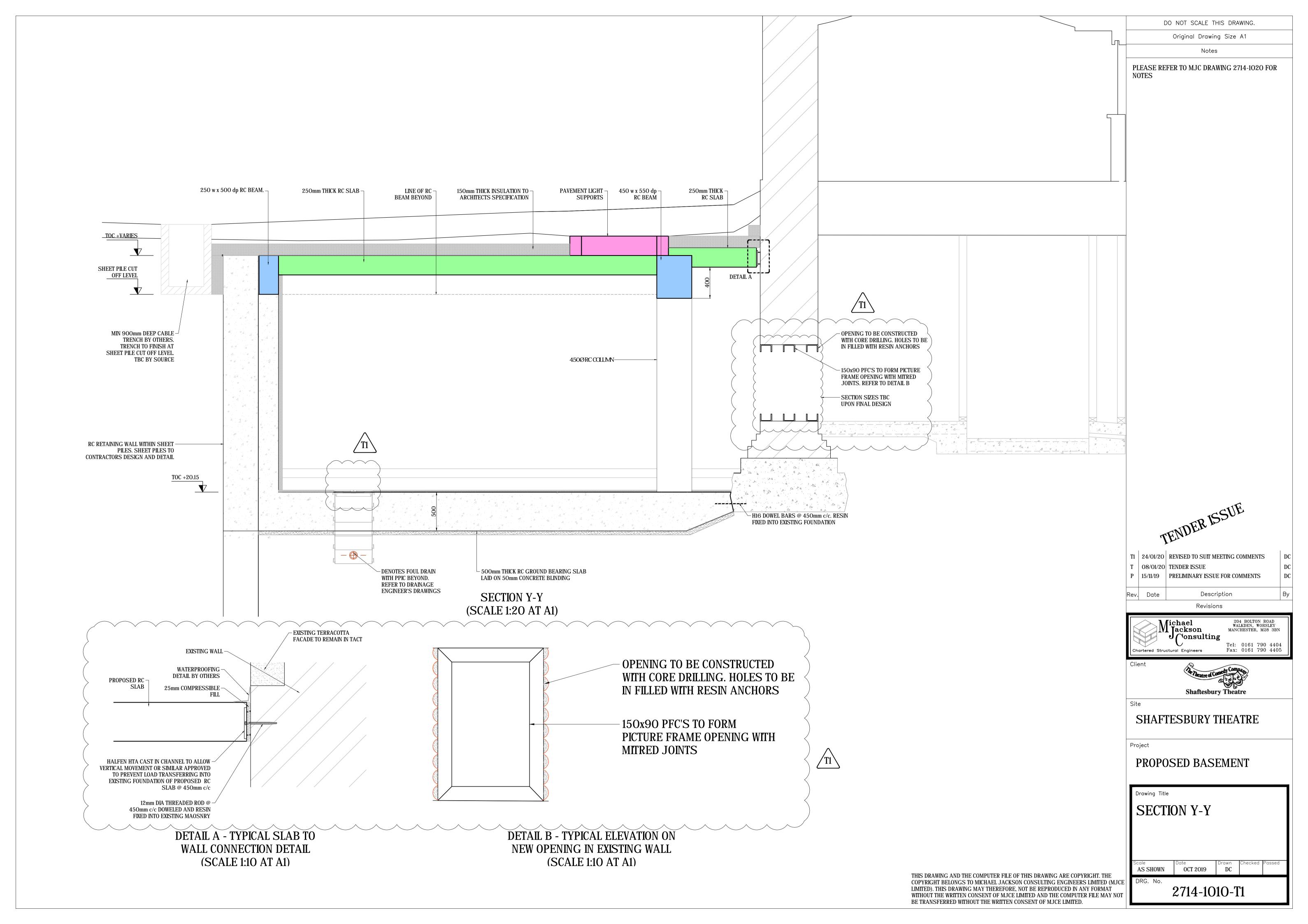

AS SHOWN JAN 2018 GAD

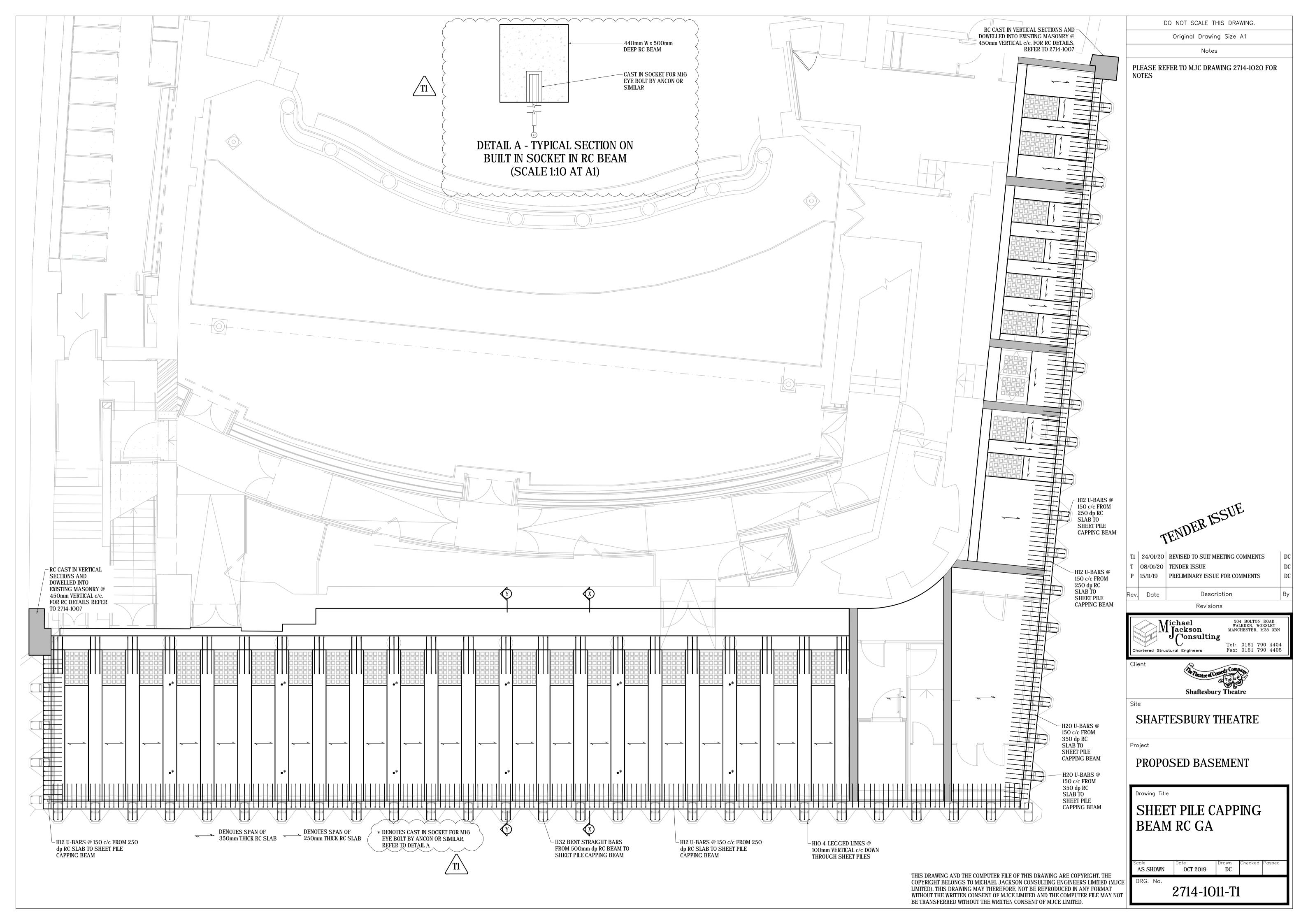

2714 - 400-T

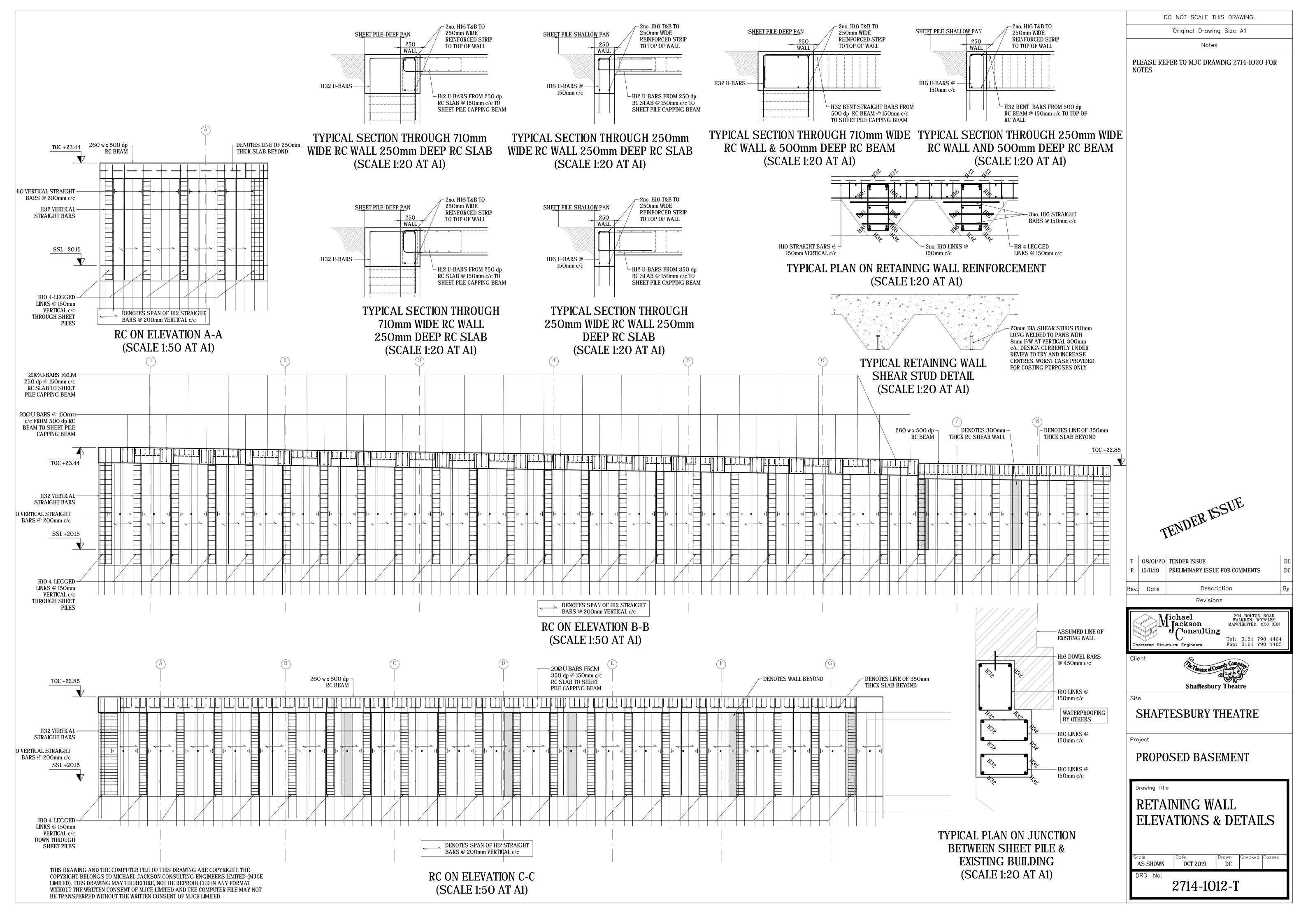


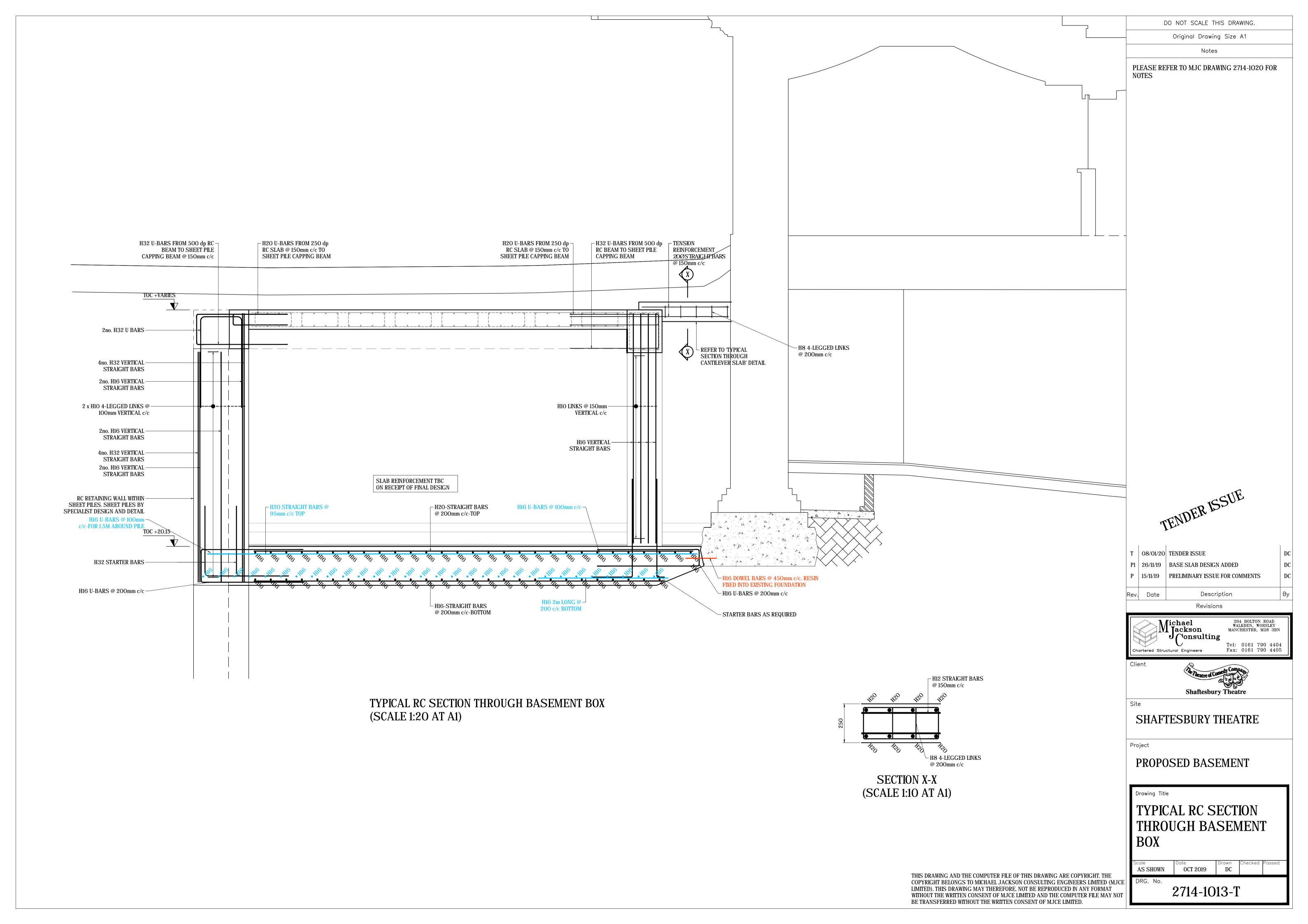


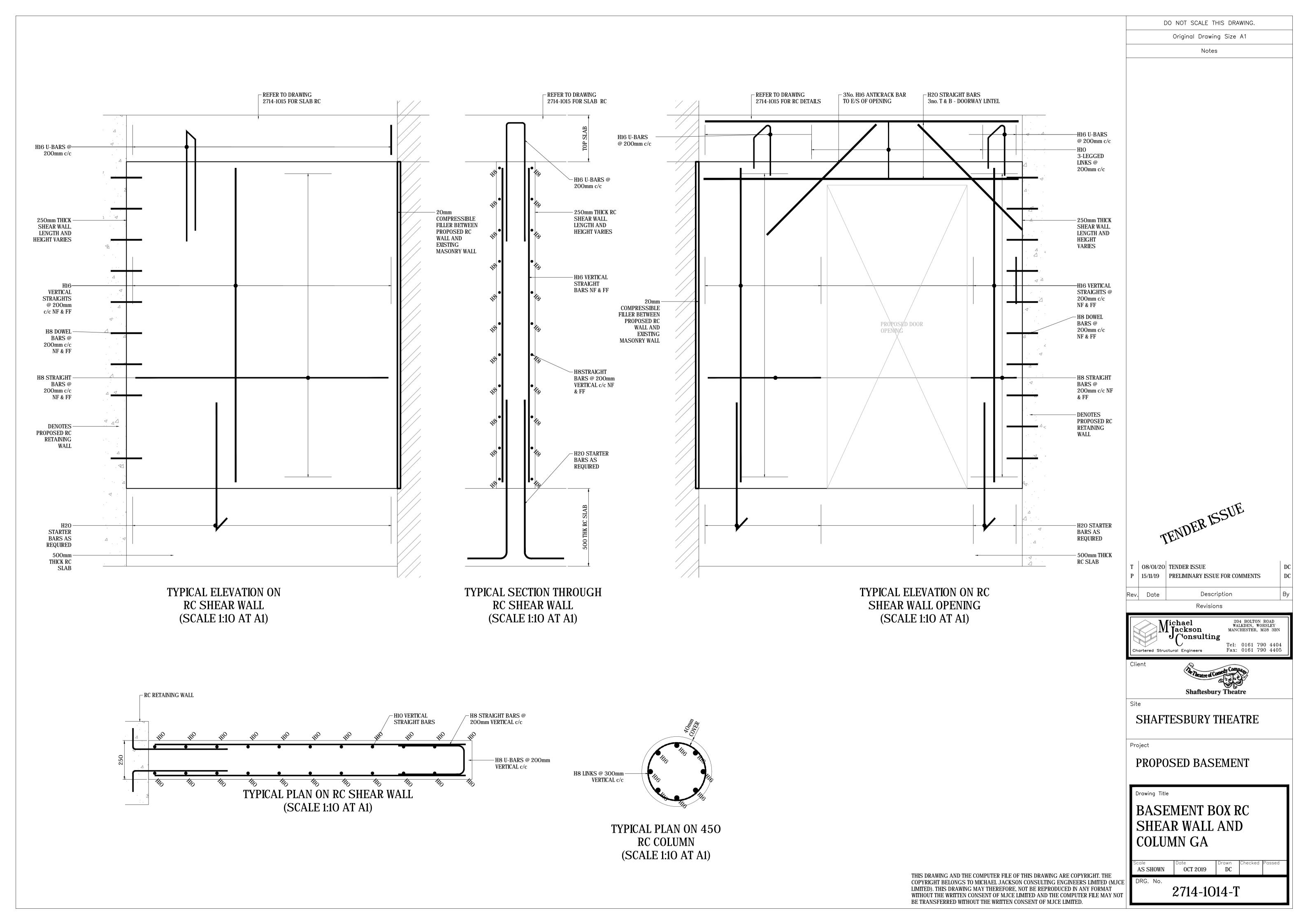


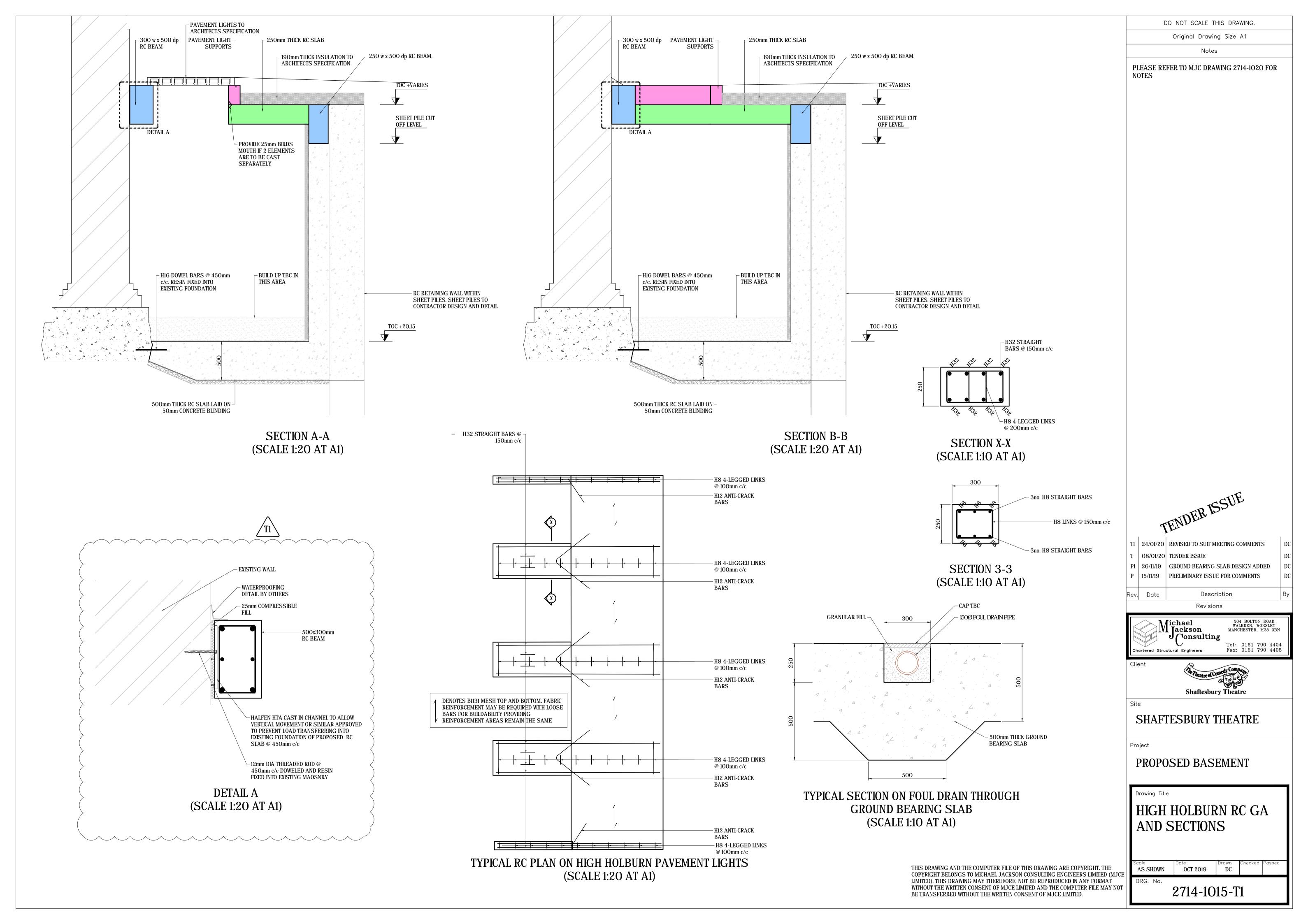


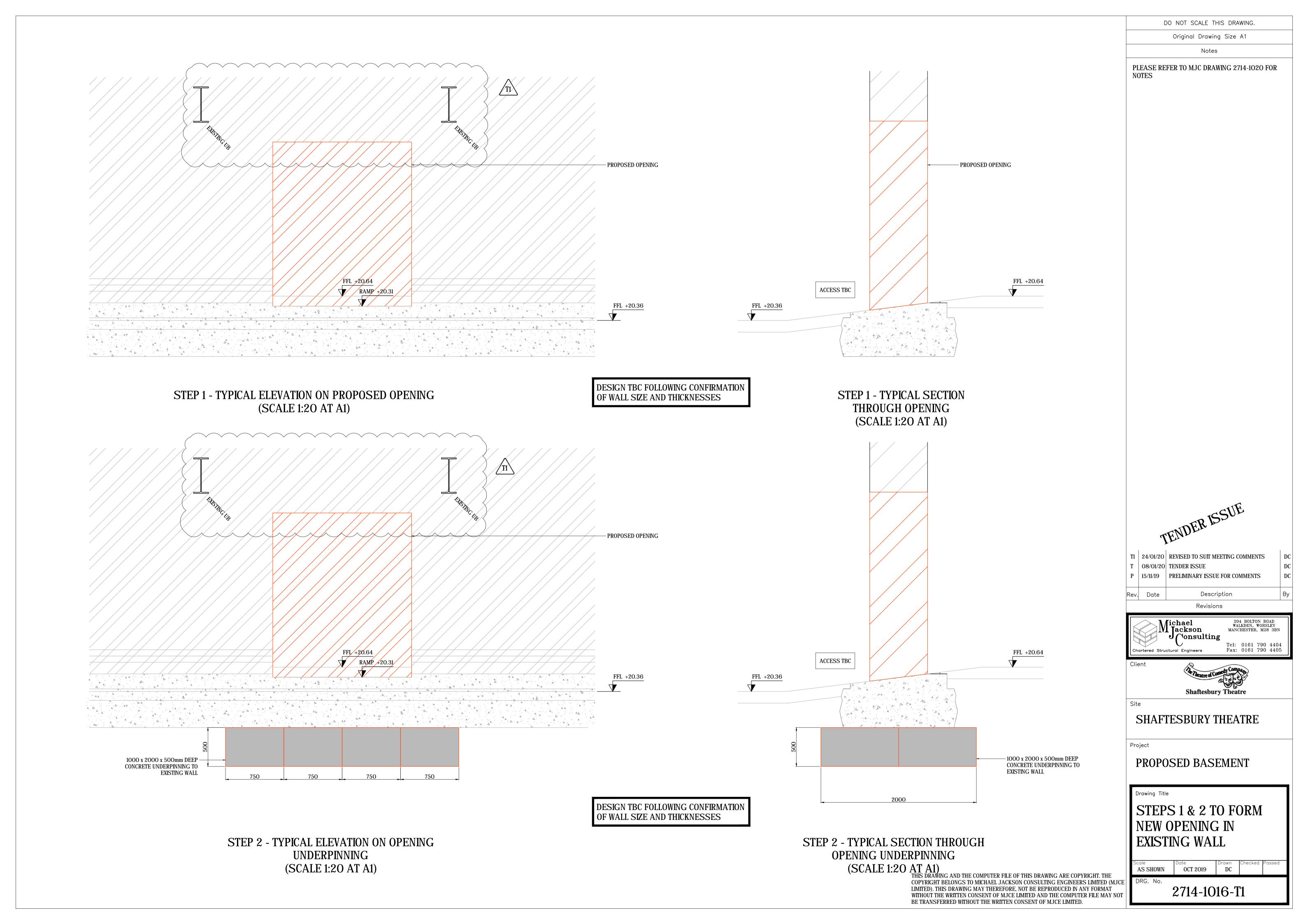


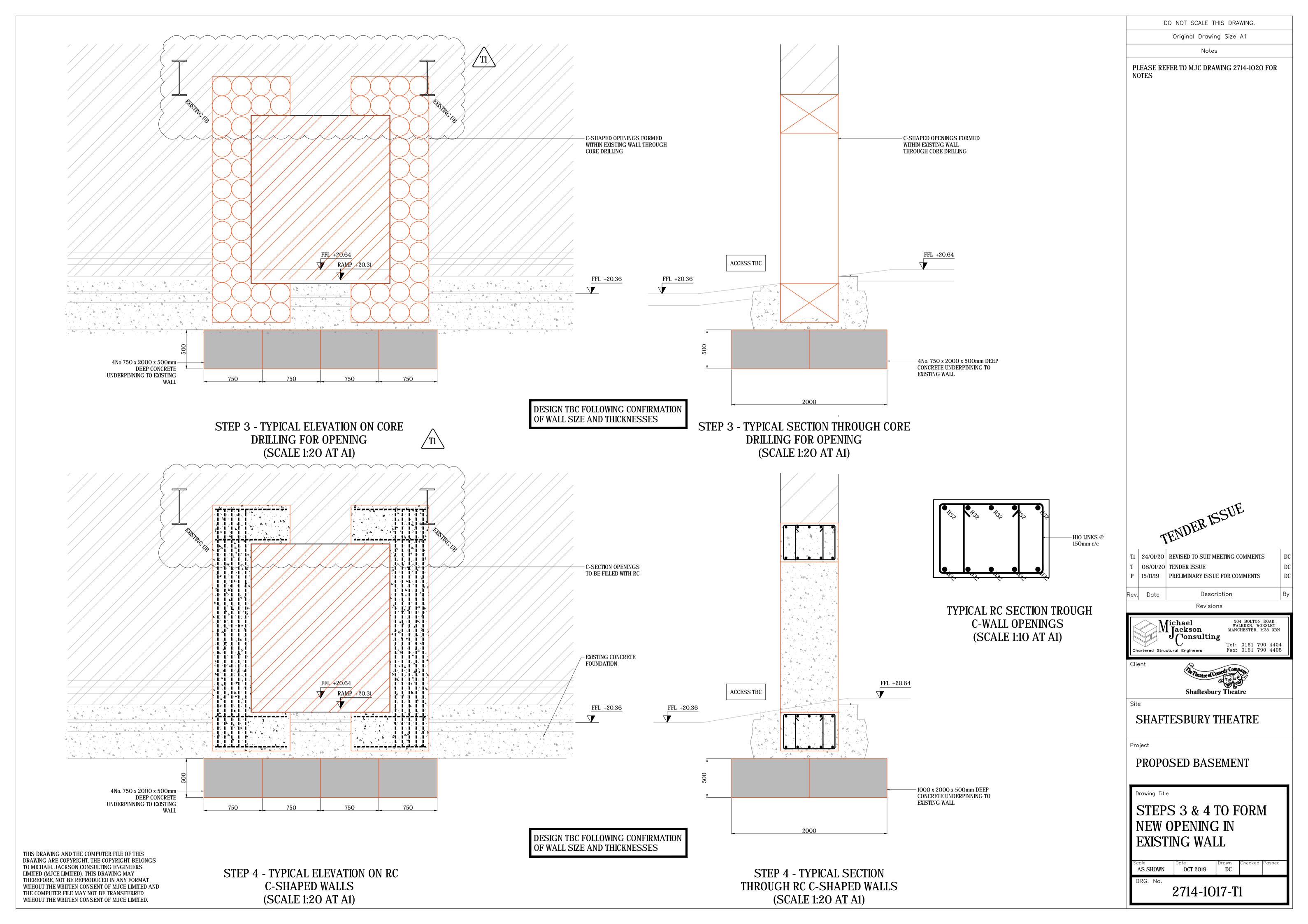


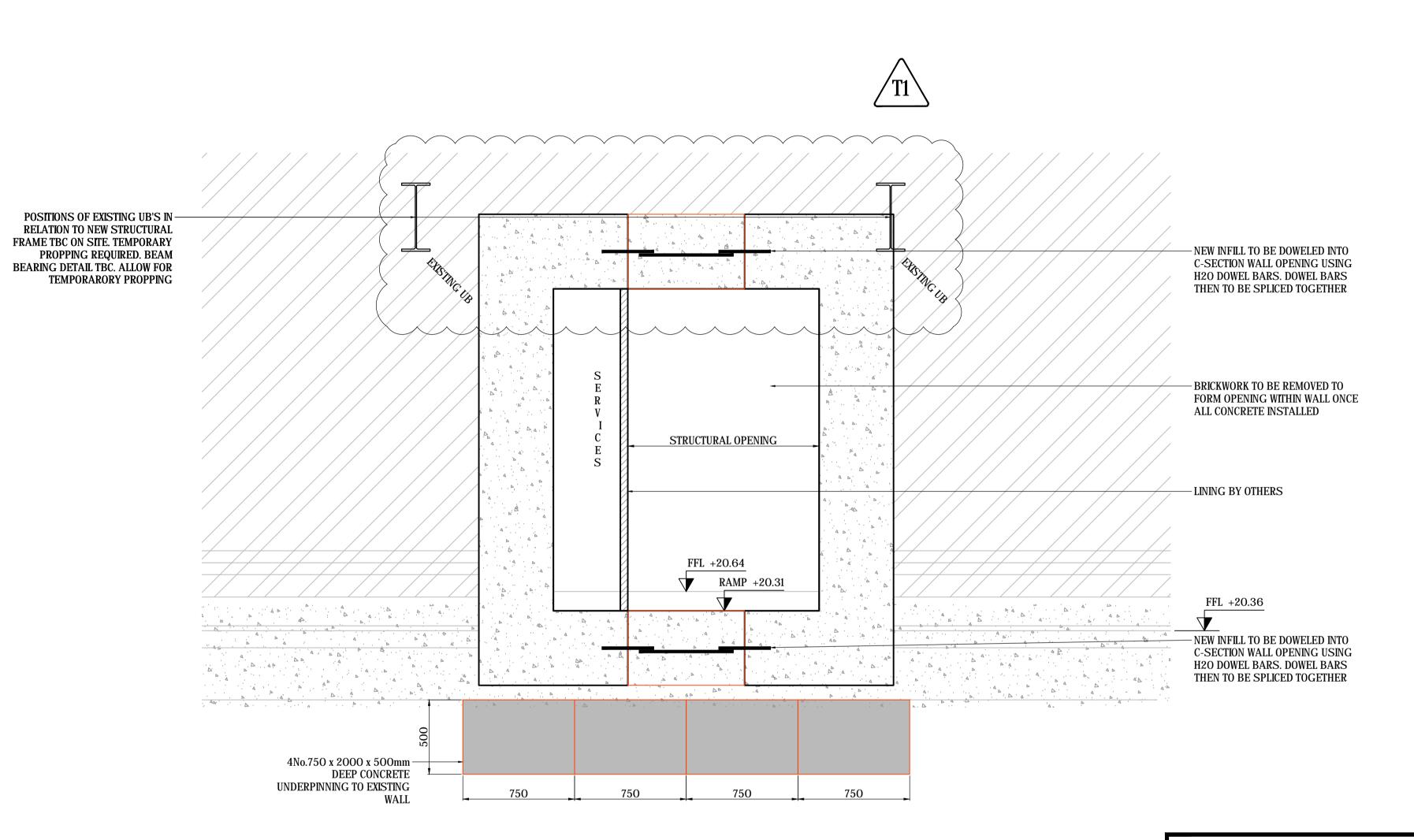












STEP 5 - TYPICAL ELEVATION ON OPENING (SCALE 1:20 AT A1)

DESIGN TBC FOLLOWING CONFIRMATION OF WALL SIZE AND THICKNESSES

DO NOT SCALE THIS DRAWING.

Original Drawing Size A1

Notes

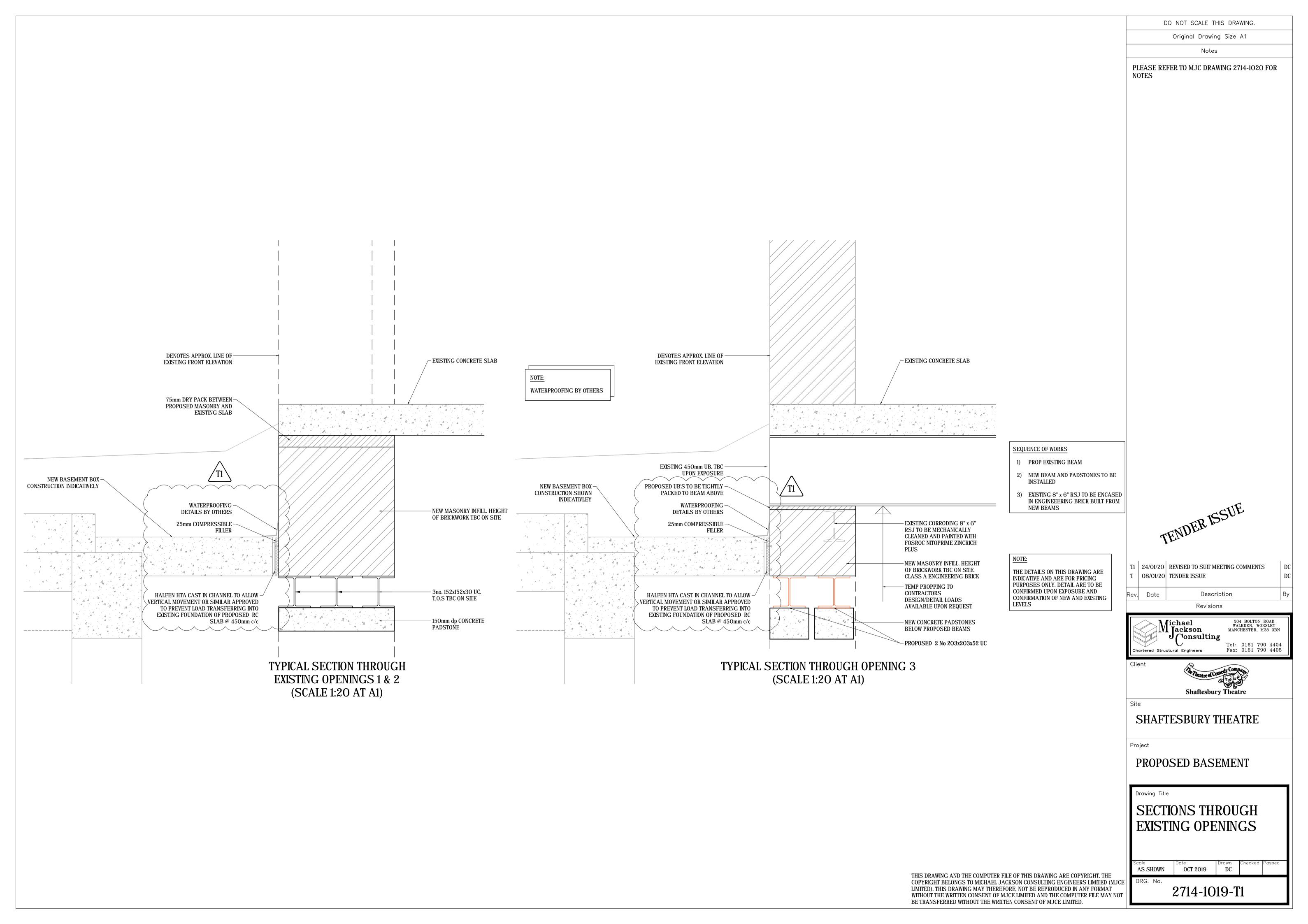
PLEASE REFER TO MJC DRAWING 2714-1020 FOR

l .			
T1	24/01/20	REVISED TO SUIT MEETING COMMENTS	DC
T	08/01/20	TENDER ISSUE	DC
P	15/11/19	PRELIMINARY ISSUE FOR COMMENTS	DC
Rev.	Date	Description	Ву

Revisions

SHAFTESBURY THEATRE

PROPOSED BASEMENT


Drawing Title STEP 5 FOR NEW OPENING IN EXISTING WALL

Oct 2019 AS SHOWN

2714-1018-T1

THIS DRAWING AND THE COMPUTER FILE OF THIS DRAWING ARE COPYRIGHT. THE COPYRIGHT BELONGS TO MICHAEL JACKSON CONSULTING ENGINEERS LIMITED (MJCE LIMITED). THIS DRAWING MAY THEREFORE, NOT BE REPRODUCED IN ANY FORMAT WITHOUT THE WRITTEN CONSENT OF MJCE LIMITED AND THE COMPUTER FILE MAY NOT BE TRANSFERRED

WITHOUT THE WRITTEN CONSENT OF MJCE LIMITED.

GENERAL

- G2. ALL DIMENSIONS SHOWN ARE APPROXIMATELY ONLY AND MUST BE CHECKED AND CONFIRMED BY THE CONTRACTOR VIA A FULL DIMENSIONAL SURVEY OF THE AREA OF THE WORKS PRIOR TO UNDERTAKING OF THE WORKS. THE ENGINEER MUST BE NOTIFIED IMMEDIATELY SHOULD ANY DISCREPANCIES BECOME APPARENT.
- G3. ALL DETAILS AND DIMENSIONS SHOWN RELATING TO THE EXISTING STRUCTURE ARE SCHEMATIC AND APPROXIMATE ONLY, BASED UPON NO EXPOSURE PRIOR TO COMMENCEMENT OF THE PREPARATION OF THESE DETAILS.
- G4. THE DEPTH AND LOCATION OF ANY SERVICES HAS NOT BEEN ESTABLISHED. THE CONTRACTOR IS RESPONSIBLE FOR LOCATING AND PROTECTING THEM.
- G5. ALL WORKMANSHIP AND MATERIALS TO COMPLY WITH THE CURRENT BUILDING REGULATIONS AND RELEVANT CURRENT BRITISH STANDARDS.
- G6. THE CONTRACTOR SHALL ALLOW FOR ALL WORK NECESSARY TO OBTAIN FULL APPROVAL AND SATISFACTION OF THE BUILDING INSPECTOR.
- G7. THE CONTRACTOR SHALL COMPLY WITH ALL REQUIREMENTS OF THE CURRENT HEALTH & SAFETY AT WORK ACT AND CONSTRUCTION REGULATIONS.
- G8. THE CONTRACTOR IS RESPONSIBLE FOR ENSURING THAT HIS OPERATIONS DO NOT IN ANY WAY IMPAIR THE SAFETY OR CONDITION OF THE EXISTING STRUCTURE OR ADJACENT STRUCTURES. HE IS TO PROVIDE ANY TEMPORARY SUPPORTS, SHORING, ETC REQUIRED FOR THIS PURPOSE AND HE IS TO CAREFULLY INSPECT THE CONDITION OF THE STRUCTURES BOTH BEFORE AND DURING THE EXECUTION OF THE WORK. THE ENGINEER IS TO BE NOTIFIED IMMEDIATELY SHOULD ANY DAMAGE
- G9. ALL PROPRIETARY PRODUCTS TO BE USED IN STRICT ACCORDANCE WITH MANUFACTURERS INSTRUCTIONS AND RECOMMENDATIONS.
- G10. THIS DRAWING TO BE READ IN CONJUNCTION WITH THE FOLLOWING:
- STRUCTURAL SPECIFICATION
- b) ARCHITECTS DRAWINGS c) ARCHITECT'S SPECIFICATION
- G11. THE BUILDING SET-OUT, INCLUDING FLOORS AND GROUND LEVELS, IS TO BE OBTAINED FROM THE ARCHITECTS DRAWINGS.

CONCRETE

- C1. ALL CONCRETE, UNLESS NOTED OTHERWISE, TO BE GRADE RC32/40 WITH A MAXIMUM AGGREGATE SIZE OF 20mm, A MINIMUM CEMENT CONTENT OF 300kg/m3 AND A MAXIMUM FREE WATER/CEMENT RATIO OF 0.6. ONLY READY MIXED CONCRETE IS TO BE USED.'BARROW MIX' CONCRETE OR SITE MIXED CONCRETE ARE STRICTLY PROHIBITED.
- C2. ALL CONCRETE TO BE PROPERLY POKER VIBRATED.
- C3. THE CONCRETE SPECIFICATION PRESUMES NO SULPHATES OR AGGRESSIVE MATERIALS ARE PRESENT WITHIN THE GROUND. THE ENGINEER IS TO BE NOTIFIED IMMEDIATELY IF ANY ARE DISCOVERED OR SUSPECTED.
- C4. BACKFILLING OF EXCAVATIONS IS TO BE CARRIED OUT USING SELECTED EXCAVATED MATERIAL IN LAYERS NOT EXCEEDING 150mm THICKNESS AND WELL COMPACTED.

REINFORCEMENTS

BS4483.

- R1. ALL FABRIC REINFORCEMENT TO COMPLY WITH
 - R2. ALL REINFORCEMENT, UNLESS NOTED OTHERWISE, IS TO BE HIGH TENSILE TYPE 2 DEFORMED.
 - R3. LAP TO FABRIC TO BE 300mm MINIMUM (UP TO LAP TO H12 BARS TO BE 450mm MINIMUM LAP TO H16 BARS TO BE 600mm MINIMUM LAP TO H2O BARS TO BE 750mm MINIMUM LAP TO H25 BARS TO BE 950mm MINIMUM
 - R4. CONCRETE COVER TO REINFORCEMENT TO BE AS DETAILED BELOW, UNLESS NOTED OTHERWISE. 75mm ON TOP OF CLEAN GROUND 50mm ON TOP OF BLINDED GROUND 50mm TO SIDES OF GROUND BEAMS 35mm TO ALL SIDES OF ALL OTHER BEAMS 35mm TO TOP OF FLOOR SLABS
 - R5. THE ENGINEERS CONSENT MUST BE REQUESTED REGARDING THE FIXING OF REINFORCEMENT AND FORMWORK, ETC. PRIOR TO PLACING OF CONCRETE.
 - R6. ALL REINFORCEMENT TO BE SECURELY SUPPORTED IN THE SPECIFIED POSITION BY PROPRIETARY PRODUCTS TO PREVENT MOVEMENT OF THE REINFORCEMENT AS CONCRETE IS BEING POURED.

CONCRETE SLAB

- CS1. THE SLAB IS TO BE FOUNDED ON A BEARING STRATA WITH A MINIMUM GROUND BEARING CAPACITY OF 150 kN/m2. PRIOR TO CASTING CONCRETE TO FOUNDATIONS, THE CONTRACTOR MUST OBTAIN APPROVAL FROM THE LOCAL AUTHORITY BUILDING CONTROL OFFICER ON THE GROUND BEARING CAPACITY. IN ADDITION, THE ENGINEER MUST BE PROVIDED WITH A MINIMUM 3 DAYS NOTICE TO ALLOW AN INSPECTION TO BE CARRIED OUT IF REQUIRED BY THE CLIENT.
- CS2. THE CONTRACTOR IS RESPONSIBLE FOR ENSURING THAT HIS OPERATIONS DO NOT IN ANY WAY IMPAIR THE SAFETY OR CONDITION OF THE EXISTING STRUCTURE OR ADJACENT STRUCTURES. HE IS TO PROVIDE ANY TEMPORARY SUPPORTS, SHORING, ETC REQUIRED FOR THIS PURPOSE AND HE IS TO CAREFULLY INSPECT THE CONDITION OF THE STRUCTURES BOTH BEFORE AND DURING THE EXECUTION OF THE WORK. THE ENGINEER IS TO BE NOTIFIED IMMEDIATELY SHOULD ANY DAMAGE OCCUR.
- CS3. ALL CONCRETE FOR SLAB, UNLESS NOTED OTHERWISE, TO BE GRADE C32/40 READY MIXED CONCRETE BATCHED IN A PLANT UNDER CONTROLLED CONDITIONS WITH A MAXIMUM AGGREGATE SIZE OF 20mm, A MINIMUM CEMENT CONTENT OF 300kg/m AND A MAXIMUM FREE WATER/CEMENT RATIO OF 0.6
- CS5. ALL CONCRETE TO BE PROPERLY POKER VIBRATED USING A POKER CAPABLE OF A MINIMUM OF 10,000 CYCLES PER MINUTE AND THE CONCRETE IS TO BE VIBRATED UNTIL AIR VOIDS HAVE BEEN REMOVED BUT THE CONCRETE MUST NOT BE OVER-VIBRATED TO CAUSE THE AGGREGATE TO SINK AND BECOME UNEVENLY DISTRIBUTED THROUGHOUT THE SLAB.

UNDERPINNING

- U1. UNDERPINNING IS TO BE CARRIED OUT TO THE SATISFACTION OF THE ENGINEER AND LOCAL AUTHORITY IN SHORT SECTIONS AS SHOWN IN SUCH A MANNER THAT ADEQUATE SUPPORT IS AT ALL TIMES MAINTAINED TO THE UNDERSIDE OF THE WALL FOR AT LEAST THREE-QUARTERS OF ITS LENGTH AND THAT SECTIONS OF WORK IN PROGRESS AT ANY ONE TIME ARE SEPARATED BY A DISTANCE OF AT LEAST 2m. AS FAR AS PRACTICABLE EXCAVATION AND CONCRETING OF ANY SECTION OF UNDERPINNING SHALL BE CARRIED OUT ON THE SAME DAY.
- U2. THE CONCRETE IS TO BE CAST ABOVE THE UNDERSIDE OF THE EXISTING FOOTING. THE PINNING IS TO BE IN ACCORDANCE WITH THE SPECIFICATION.
- U3. UNDERPINNING TO BE CARRIED OUT IN SEQUENCE SHOWN OR THE CONTRACTORS OWN SUBMITTED AND APPROVED SEQUENCE, ALLOWING TWO DAYS MINIMUM TO BE LEFT BETWEEN PINNING UP AND EXCAVATING ADJACENT PINS.
- U4. SUITABLE BEARING STRATA TO BE APPROVED BY BUILDING CONTROL OFFICER PRIOR TO CASTING OF NEW PINS.
- U5. CONCRETE UNDERPINNING TO BE POURED IN LAYERS AND WELL VIBRATED USING VIBRATING POKER TO ENSURE NO VOIDING.
- U6. ALL WORK TO COMPLY WITH BUILDING REGULATIONS.
- U7. ALL UNDERPINS TO BE LOCATED CENTRALLY UNDER WALLS.
- U8. BACKFILLING OF EXCAVATIONS SHALL BE CARRIED OUT USING SELECTED EXCAVATED MATERIAL IN LAYERS NOT EXCEEDING 150mm THICKNESS AND WELL COMPACTED.

PILES TO BE DESIGNED BY CONTRACTOR TO S.W.L SUPPLIED BY STRUCTURAL ENGINEER

- P2. THE USE OF DRIVEN PILES IS NOT PERMITTED
- P3. PILES ARE TO BE SET OUT TO ARCHITECTS DIMENSIONS WITH SUPPLEMENTARY INFORMATION FOR STRUCTURAL ENGINEER WHERE REQUIRED
- P4. TOLERANCE ON PLAN POSITIONING OF PILE IS +/-
- P5. TESTING OF PILES IS TO BE IN ACCORDANCE WITH THE SPECIFICATION
- P6. PILES ARE TO BE DESIGNED TO ACCOMMODATE 10% OF S.W.L APPLIED LATERALLY AT THE HEAD OF THE

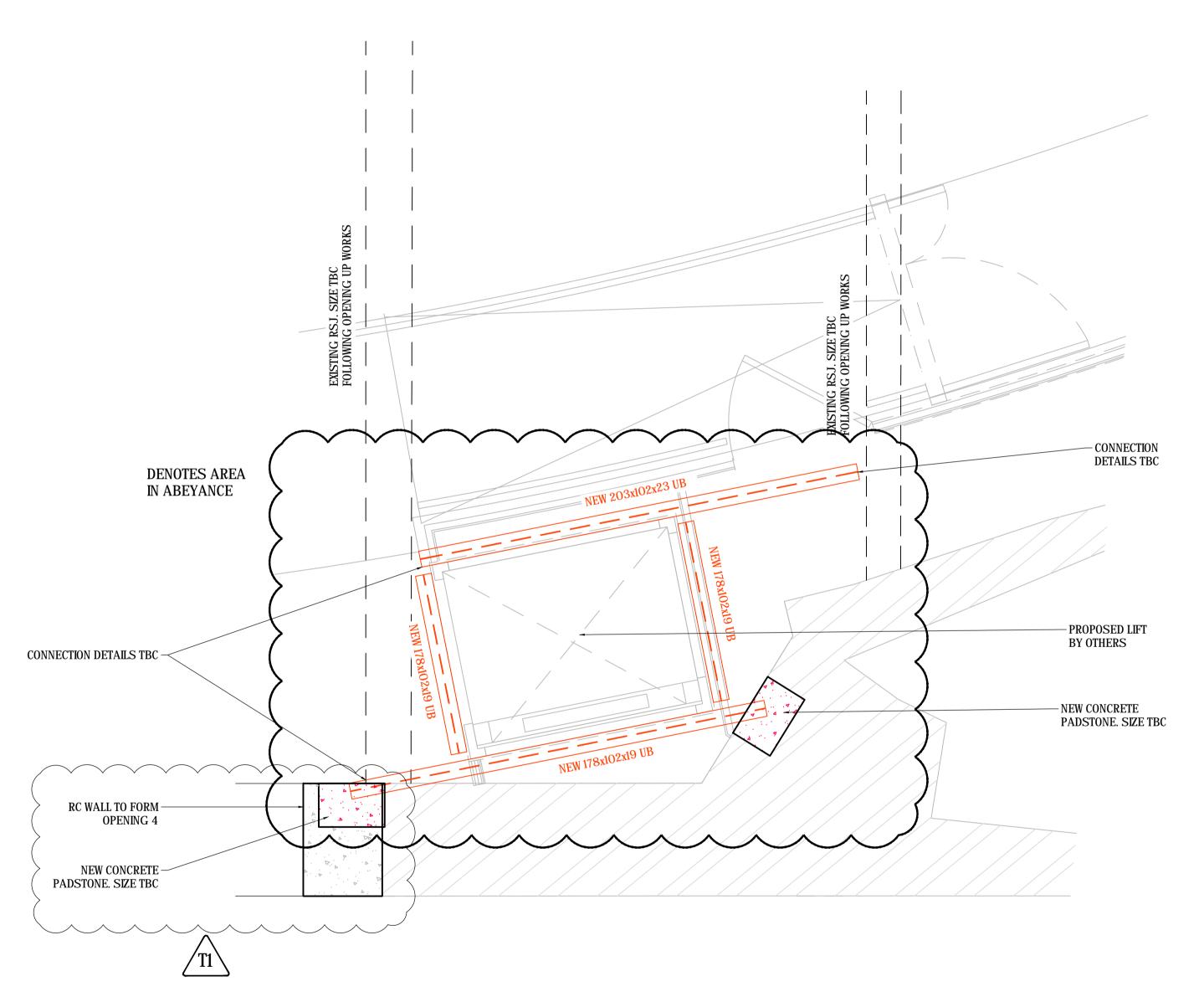
DRAWING TO BE READ IN CONJUNCTION WITH STRUCTURAL ENGINEER AND ARCHITECTS SPECIFICATION

DO NOT SCALE THIS DRAWING.

Original Drawing Size A1

Notes

T 08/01/20 TENDER ISSUE P | 15/11/19 | PRELIMINARY ISSUE FOR COMMENTS Rev. Date Description Revisions



SHAFTESBURY THEATRE

PROPOSED BASEMENT

Drawing Title **NOTES** OCT 2019 AS SHOWN

2714-1020-T

PROPOSED LIFT TRIMMING STEELWORK GA (SCALE 1:20 AT A1)

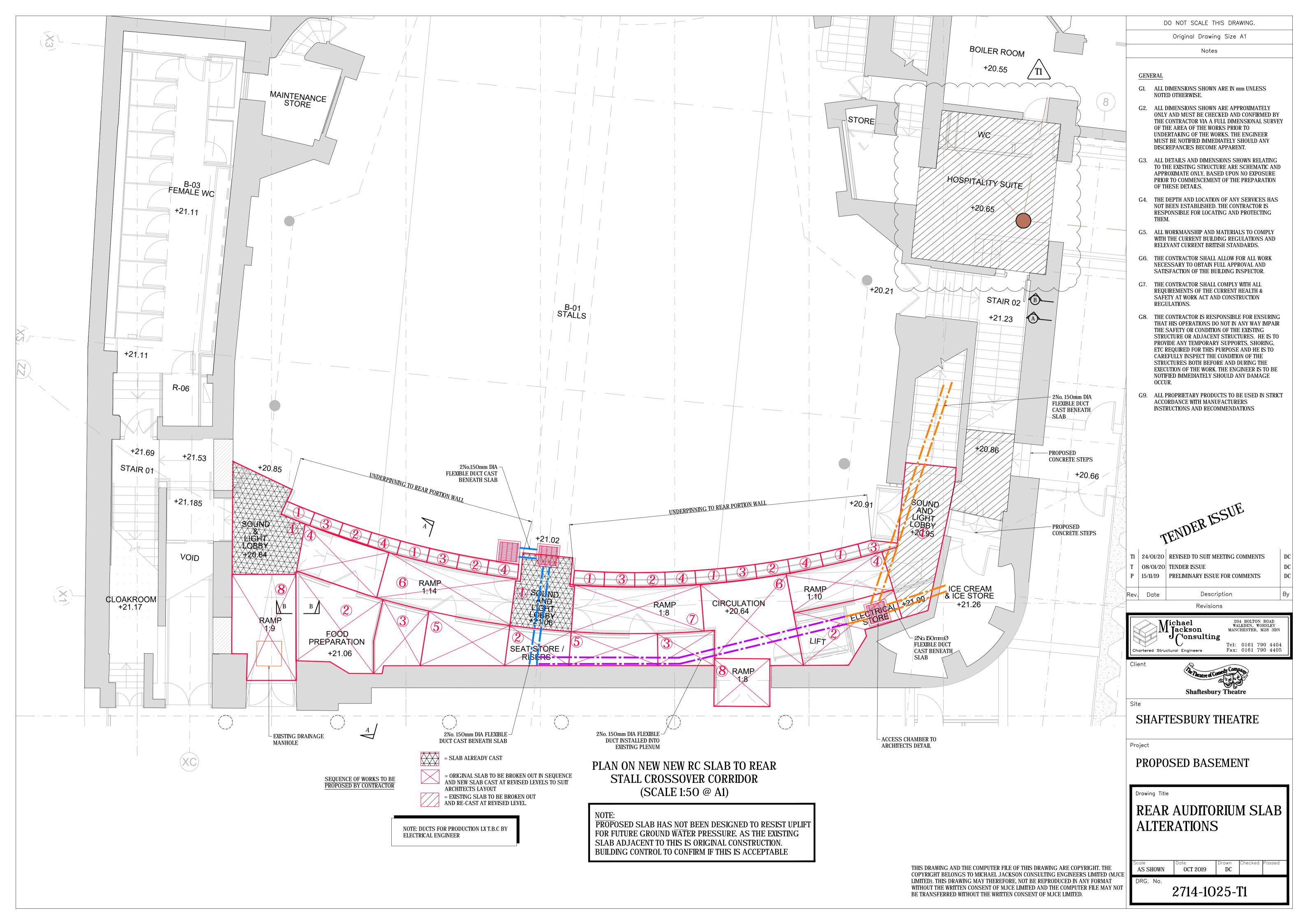
DO NOT SCALE THIS DRAWING.

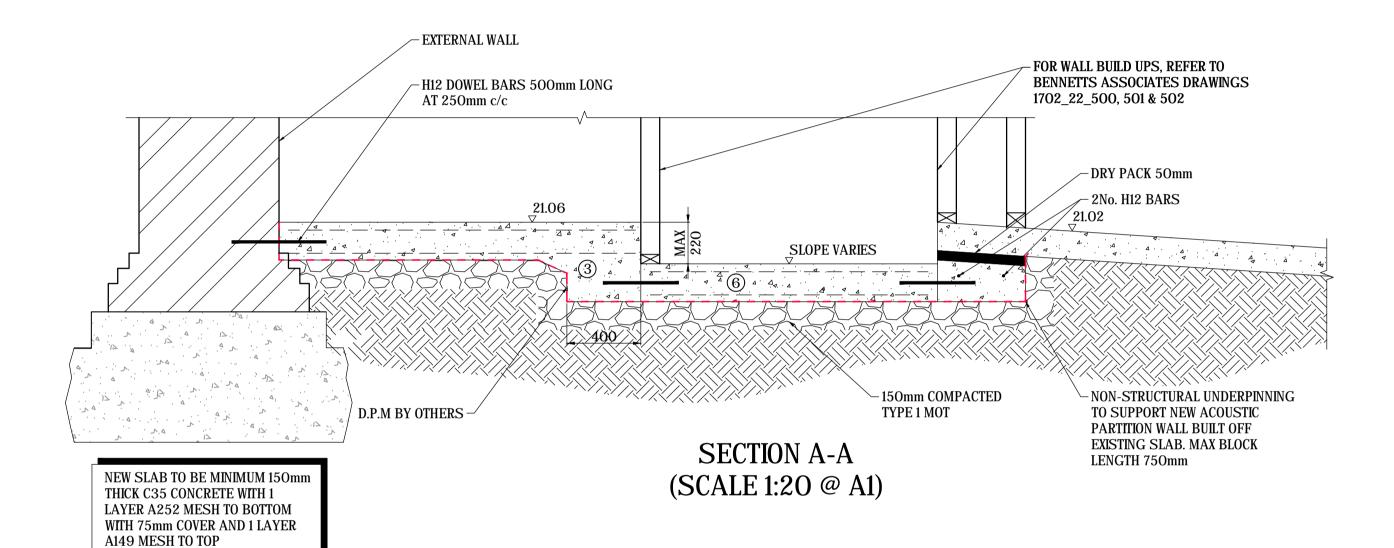
Original Drawing Size A1

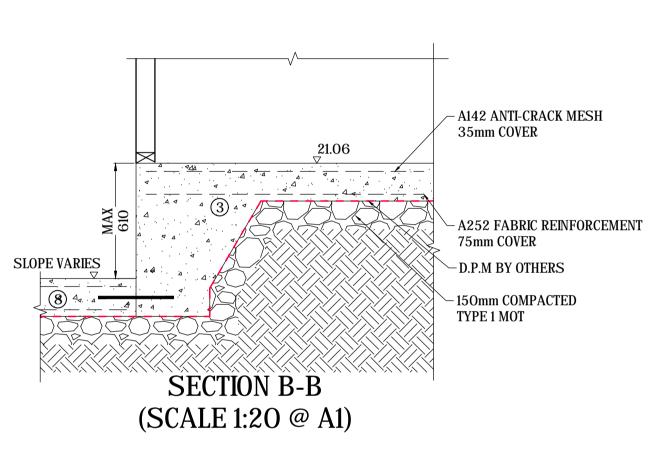
Notes

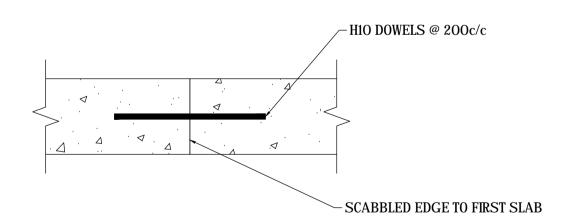
PLEASE REFER TO MJC DRAWING 2714-1020 FOR

T1 T		REVISED TO SUIT MEETING COMMENTS TENDER ISSUE	DC DC				
Rev.	v. Date Description		Ву				
Revisions							


SHAFTESBURY THEATRE


PROPOSED BASEMENT


Drawing Title PROPOSED LIFT TRIMMING STEELWORK GA


Oct 2019 2714-1021-T1

THIS DRAWING AND THE COMPUTER FILE OF THIS DRAWING ARE COPYRIGHT. THE COPYRIGHT BELONGS TO MICHAEL JACKSON CONSULTING ENGINEERS LIMITED (MJCE LIMITED). THIS DRAWING MAY THEREFORE, NOT BE REPRODUCED IN ANY FORMAT WITHOUT THE WRITTEN CONSENT OF MJCE LIMITED AND THE COMPUTER FILE MAY NOT BE TRANSFERRED WITHOUT THE WRITTEN CONSENT OF MJCE LIMITED.

TYPICAL SLAB ABUTMENT DETAIL (SCALE 1:10 @ A1)

THIS DRAWING AND THE COMPUTER FILE OF THIS DRAWING ARE COPYRIGHT. THE COPYRIGHT BELONGS TO MICHAEL JACKSON CONSULTING ENGINEERS LIMITED (MJCE LIMITED). THIS DRAWING MAY THEREFORE, NOT BE REPRODUCED IN ANY FORMAT WITHOUT THE WRITTEN CONSENT OF MJCE LIMITED AND THE COMPUTER FILE MAY NOT BE TRANSFERRED WITHOUT THE WRITTEN CONSENT OF MJCE LIMITED.

DO NOT SCALE THIS DRAWING.

Original Drawing Size A1

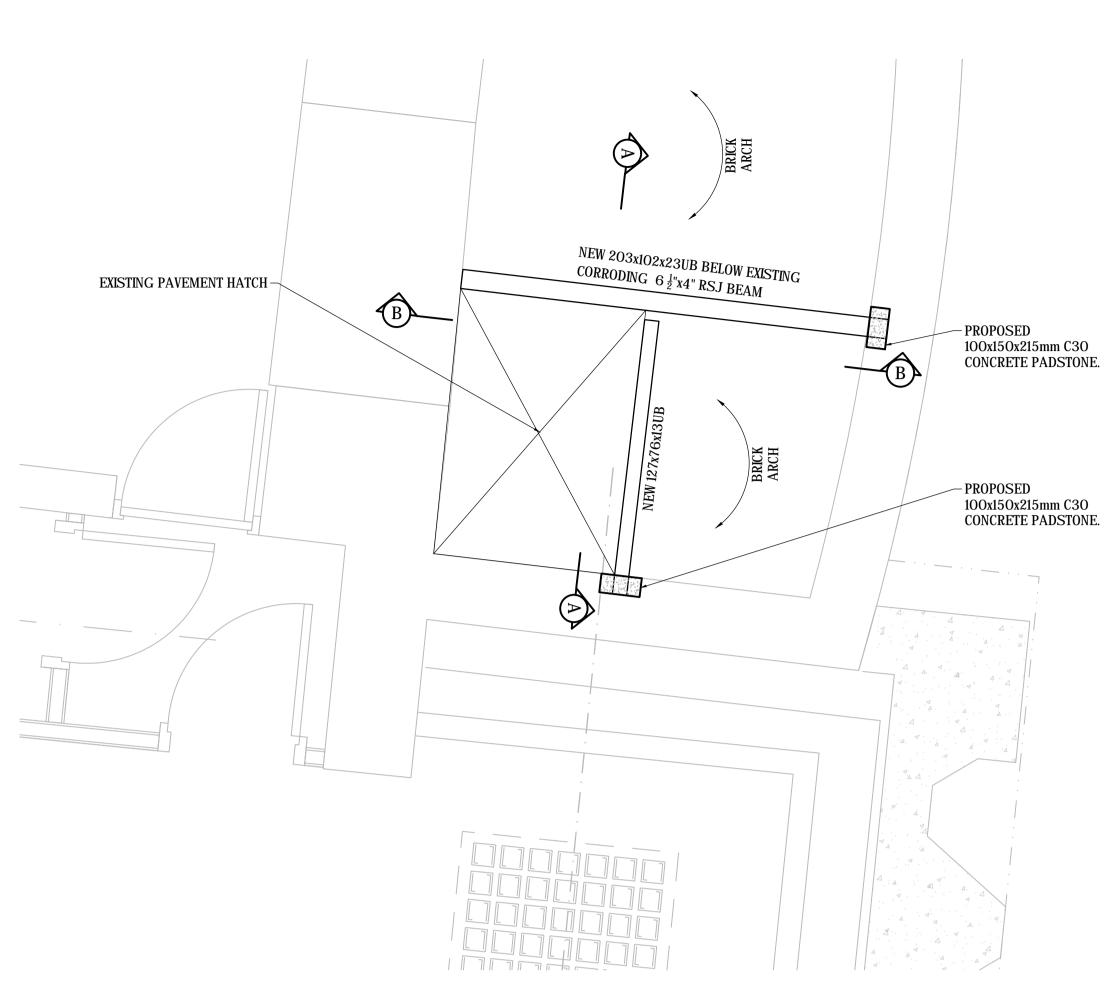
Notes

GENERAL

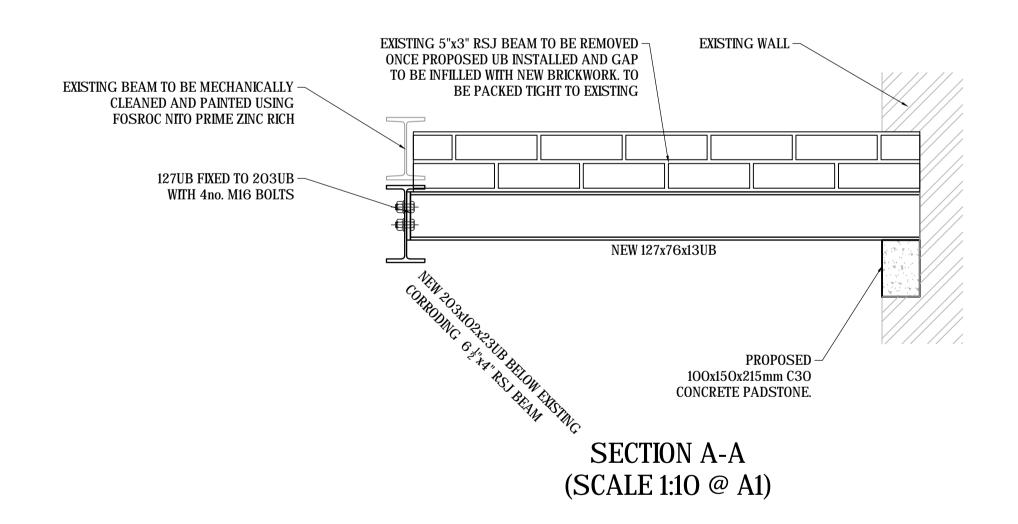
- G1. ALL DIMENSIONS SHOWN ARE IN mm UNLESS NOTED OTHERWISE.
- G2. ALL DIMENSIONS SHOWN ARE APPROXIMATELY ONLY AND MUST BE CHECKED AND CONFIRMED BY THE CONTRACTOR VIA A FULL DIMENSIONAL SURVEY OF THE AREA OF THE WORKS PRIOR TO UNDERTAKING OF THE WORKS. THE ENGINEER MUST BE NOTIFIED IMMEDIATELY SHOULD ANY DISCREPANCIES BECOME APPARENT.
- G3. ALL DETAILS AND DIMENSIONS SHOWN RELATING TO THE EXISTING STRUCTURE ARE SCHEMATIC AND APPROXIMATE ONLY, BASED UPON NO EXPOSURE PRIOR TO COMMENCEMENT OF THE PREPARATION OF THESE DETAILS.
- G4. THE DEPTH AND LOCATION OF ANY SERVICES HAS NOT BEEN ESTABLISHED. THE CONTRACTOR IS RESPONSIBLE FOR LOCATING AND PROTECTING
- G5. ALL WORKMANSHIP AND MATERIALS TO COMPLY WITH THE CURRENT BUILDING REGULATIONS AND RELEVANT CURRENT BRITISH STANDARDS.
- G6. THE CONTRACTOR SHALL ALLOW FOR ALL WORK NECESSARY TO OBTAIN FULL APPROVAL AND SATISFACTION OF THE BUILDING INSPECTOR.
- G7. THE CONTRACTOR SHALL COMPLY WITH ALL REQUIREMENTS OF THE CURRENT HEALTH & SAFETY AT WORK ACT AND CONSTRUCTION REGULATIONS.
- G8. THE CONTRACTOR IS RESPONSIBLE FOR ENSURING THAT HIS OPERATIONS DO NOT IN ANY WAY IMPAIR THE SAFETY OR CONDITION OF THE EXISTING STRUCTURE OR ADJACENT STRUCTURES. HE IS TO PROVIDE ANY TEMPORARY SUPPORTS, SHORING, ETC REQUIRED FOR THIS PURPOSE AND HE IS TO CAREFULLY INSPECT THE CONDITION OF THE STRUCTURES BOTH BEFORE AND DURING THE EXECUTION OF THE WORK. THE ENGINEER IS TO BE NOTIFIED IMMEDIATELY SHOULD ANY DAMAGE OCCUR.
- G9. ALL PROPRIETARY PRODUCTS TO BE USED IN STRICT ACCORDANCE WITH MANUFACTURERS INSTRUCTIONS AND RECOMMENDATIONS

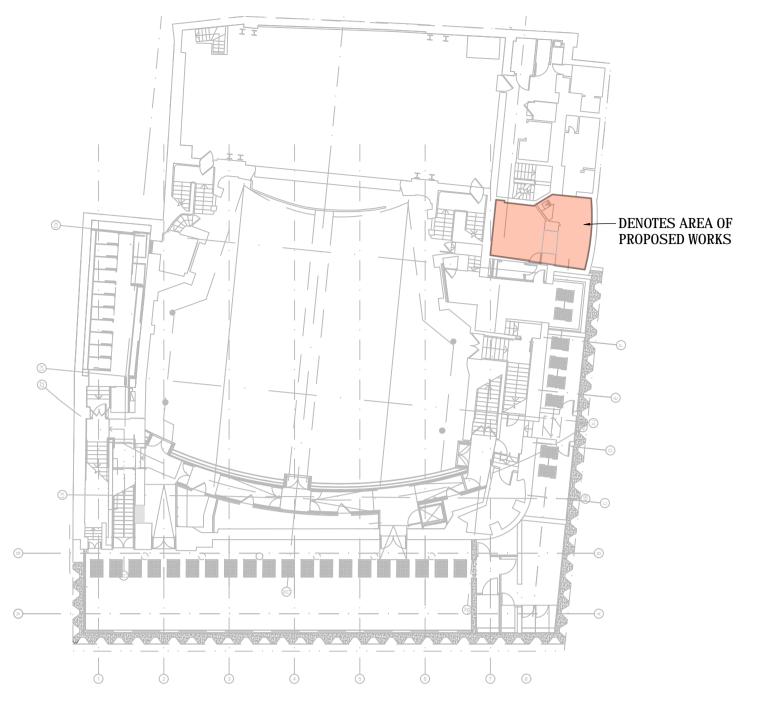
T | 24/01/20 | TENDER ISSUE Rev. Date Description

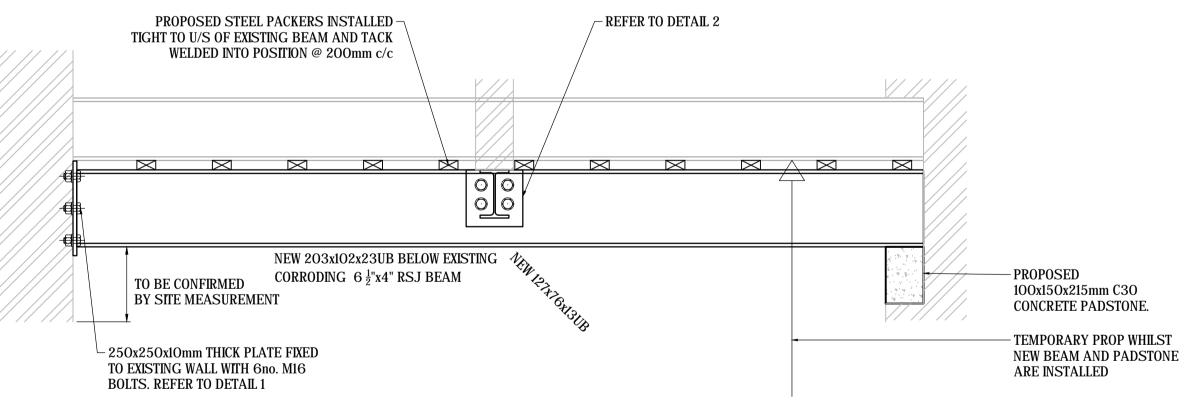
Revisions

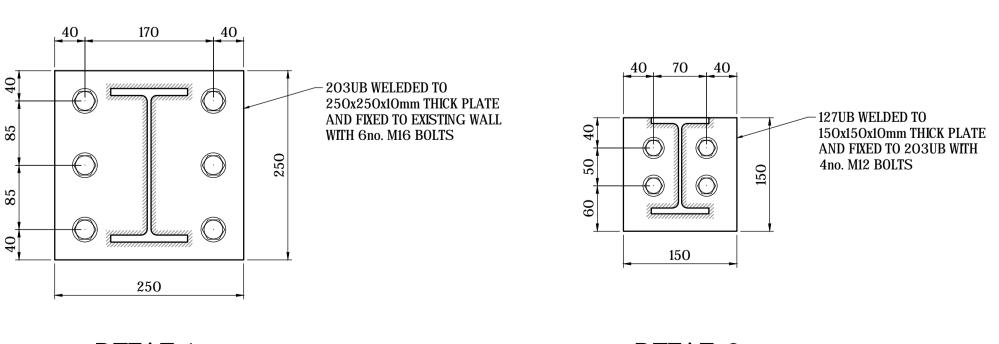

SHAFTESBURY THEATRE

PROPOSED BASEMENT


REAR AUDITORIUM SLAB ALTERATIONS DETAILS


Drawn **DC** oate OCT 2019


2714-1026-T


PLAN ON EXISTING BEAMS TO BE REPAIRED (SCALE 1:20 @ A1)

SECTION B-B (SCALE 1:10 @ A1)

DETAIL 1 (SCALE 1:5 @ A1)

DETAIL 2 (SCALE 1:5 @ A1)

S4. ALL NUTS TO BE NYLOCK TYPE GRADE 8.8 S5. ALL STEEL IS TO MEET THE REQUIREMENTS OF EN1090. THE EXECUTION CLASS IS TO BE OBTAINED BY THE CONTRACTOR FROM THE S6. NEW STEELWORK TO BE TREATED AS FOLLOWS: SHOT BLAST CLEAN TO SA 2 1/2, SHOP APPLY ZINC RICH EPOXY PRIMER TO 40 EPOXY MIO TO 100 MICRONS. THEN SITE APPLY HIGH BUILD EPOXY MIO TO 100 S7. ANY DAMAGED AREA OF PAINT FINISH TO BE TOUCHED UP LOCALLY ON SITE. S8. THE STEELWORK CONTRACTOR IS TO PROVIDE THE ENGINEER WITH 2 SETS OF FABRICATION DRAWINGS A MINIMUM OF 21 WORKING DAYS IN ADVANCE OF THE COMMENCEMENT OF FABRICATION. LOCATION GA (SCALE 1:250 @ A1) T 08/01/20 TENDER ISSUE P 27/11/19 PRELIMINARY ISSUE FOR COMMENTS Rev. Date Description Revisions 204 BOLTON ROAD WALKDEN, WORSLEY MANCHESTER, M28 3BN Michael Tackson J Consulting Tel: 0161 790 4404 Fax: 0161 790 4405 hartered Structural Engineers **Shaftesbury Theatre** SHAFTESBURY THEATRE PROPOSED BASEMENT Drawing Title REPAIRS TO EXISTING

DO NOT SCALE THIS DRAWING.

Original Drawing Size A1

Notes

S1. ALL STEELWORK TO BE GRADE S275 UNLESS

S2. ALL HOLLOW SECTIONS TO BE GRADE S355

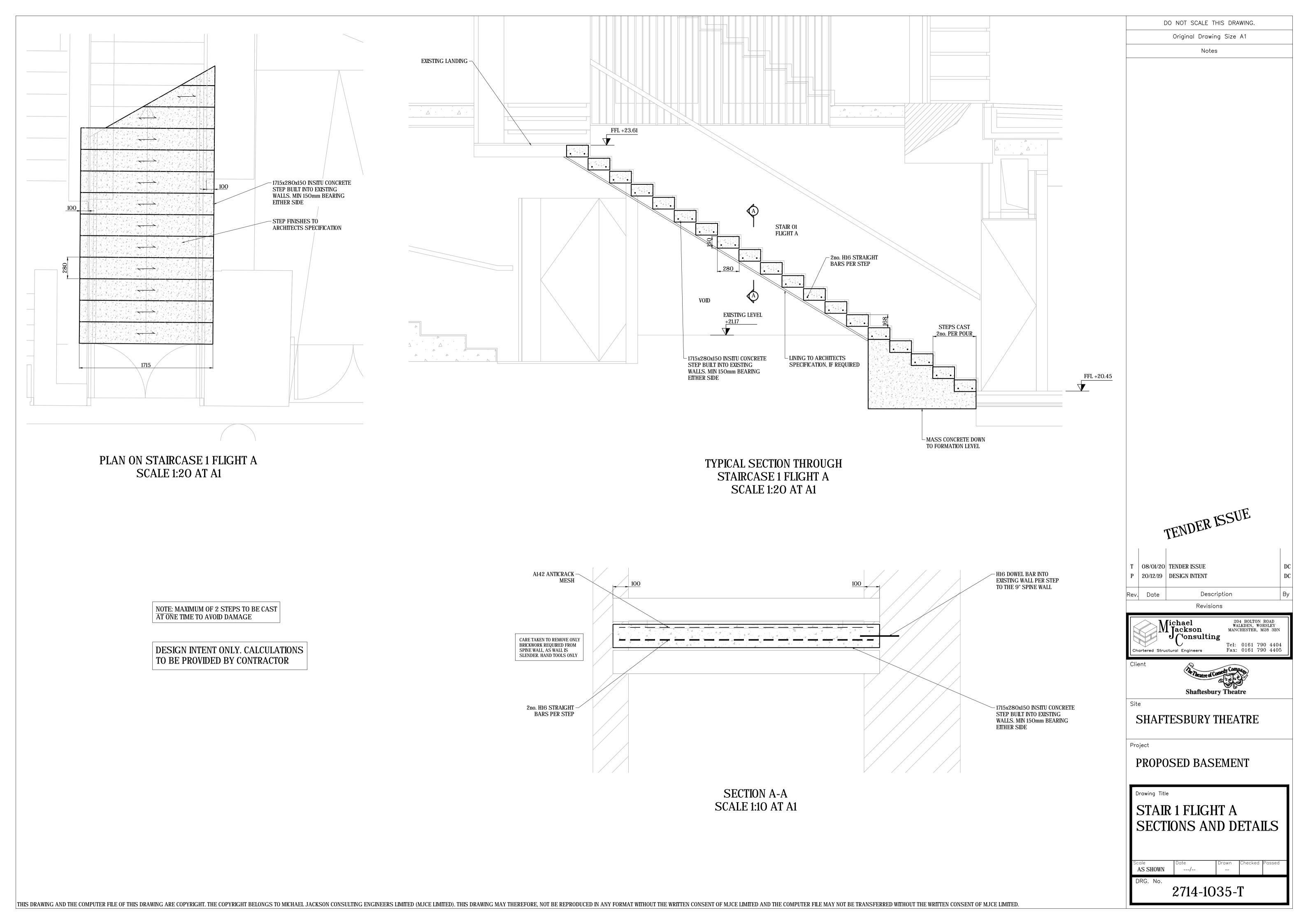
S3. ALL STEEL WORK CONNECTIONS TO HAVE A MINIMUM OF 2 No. M16 BOLTS GRADE 8.8

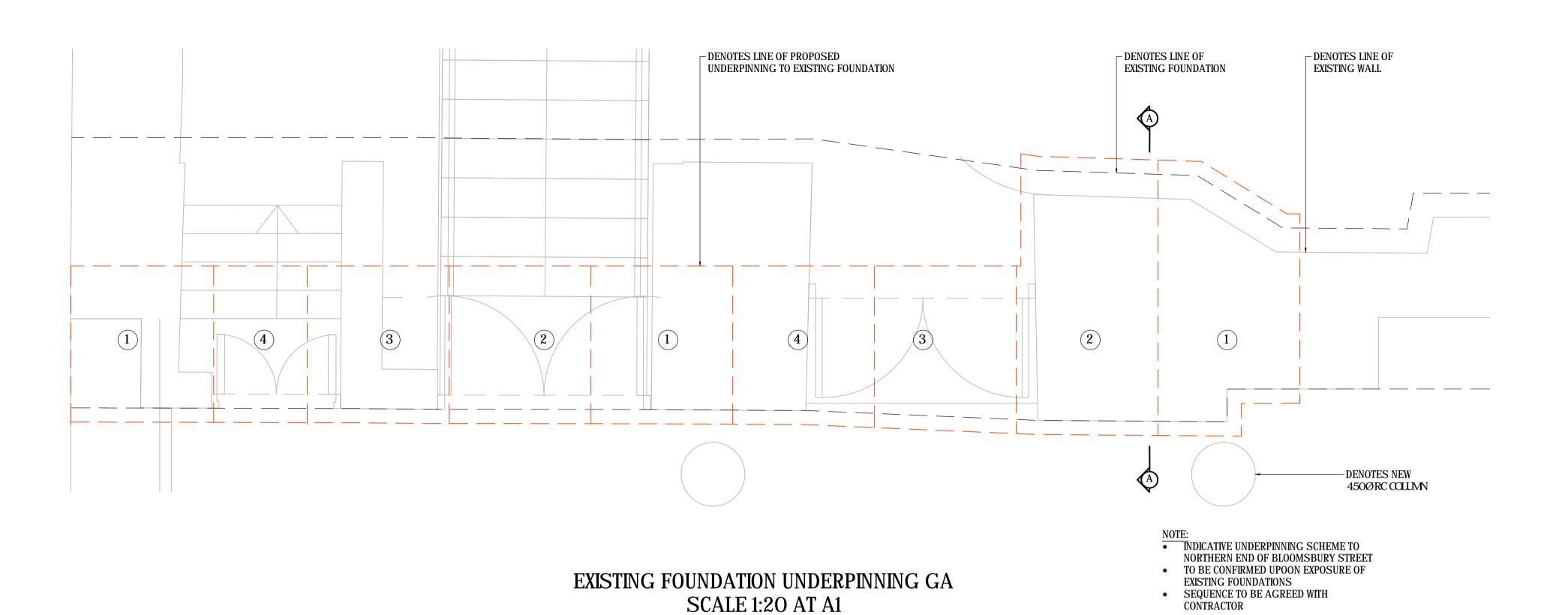
UNLESS NOTED OTHERWISE

BOILER ROOM

Oct 2019

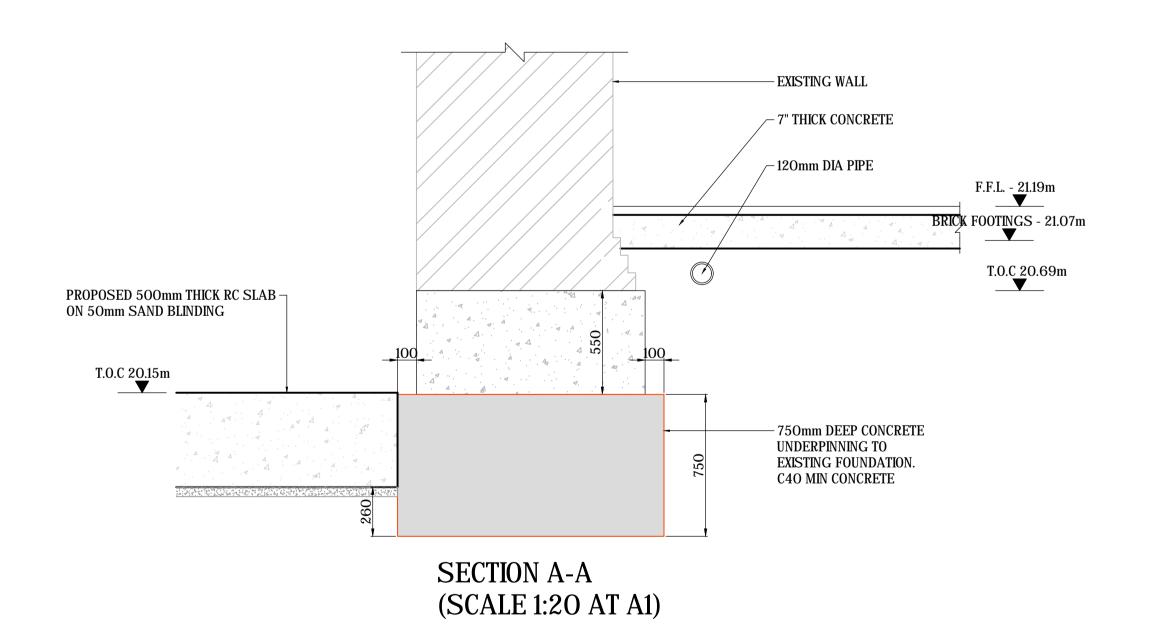
2714-1030-T


STEELWORK


AS SHOWN

NOTED OTHERWISE.

STEELWORK


THIS DRAWING AND THE COMPUTER FILE OF THIS DRAWING ARE COPYRIGHT. THE COPYRIGHT BELONGS TO MICHAEL JACKSON CONSULTING ENGINEERS LIMITED (MJCE LIMITED). THIS DRAWING MAY THEREFORE, NOT BE REPRODUCED IN ANY FORMAT WITHOUT THE WRITTEN CONSENT OF MJCE LIMITED AND THE COMPUTER FILE MAY NOT BE TRANSFERRED WITHOUT THE WRITTEN CONSENT OF MJCE LIMITED.

EXISTING FOUNDATION UNDERPINNING GA

SCALE 1:20 AT A1

T | 24/01/20 | TENDER ISSUE Rev. Date Description Revisions 204 BOLTON ROAD WALKDEN, WORSLEY MANCHESTER, M28 3BN Michael Jackson Consulting

DO NOT SCALE THIS DRAWING.

Original Drawing Size A1

Notes

SHAFTESBURY THEATRE

PROPOSED BASEMENT

THIS DRAWING AND THE COMPUTER FILE OF THIS DRAWING ARE COPYRIGHT. THE COPYRIGHT BELONGS TO MICHAEL JACKSON CONSULTING ENGINEERS LIMITED (MJCE LIMITED). THIS DRAWING MAY THEREFORE, NOT BE REPRODUCED IN ANY FORMAT WITHOUT THE WRITTEN CONSENT OF MJCE LIMITED AND THE COMPUTER FILE MAY NOT BE TRANSFERRED WITHOUT THE WRITTEN CONSENT OF MJCE LIMITED.

2714-1040-T

Structural Calculations

EX19/181/10

Shaftesbury Theatre

Basement Slab

Revision	Date	Changes
-	19.12.2019	Initial Issue for Discussion Only
А	07.01.2020	Issue to Client

Project No : **EX19/181/10**Sheet : **Structure /1 - Rev. A**

Made By : P Manios
Checked By : P Manios
Date : January 2020

Office : Greece - 0030 2310 960 636

General Construction Notes and Guidance on using these Calculations

- Calculations are not to be used for the purpose of ordering materials and should only be used for Building Regulations submissions. All dimensions should be checked by the contractor on site.
- 2. All steelwork to be mechanically wire brushed and painted two coats of red oxide. Steelwork located in the cavity or below DPC to be suitably protected with 2 coats of bituminous paint.
- 3. All steelwork connections to use grade 8.8 bolts unless stated otherwise. These are to be spanner tightened using the appropriate podger spanner (min length 460mm) or suitable power tools in accordance with BS2583. If a torque wrench is used the torque applied should be around 90Nm for M16 bolts, 110Nm for M20 & 130Nm for M24.
- 4. All timber to be grade C24 (SC4), unless stated otherwise. Preservative treated to Architects details.
- 5. To be read in conjunction with Architects drawings, any inconsistencies between the drawings should be reported. If any site conditions or existing details are found that may affect the structural design, JMS Consulting Engineers are to be notified immediately.
- 6. For details of fire protection to steelwork, see Architects drawings.
- 7. The Contractor is to ensure that all existing construction is adequately supported, using needles and props as required. Where a new beam supports the existing construction, adequate pre-load is to be applied and suitable packs such as driven dry-slate introduced, then pointed up with mortar.
- 8. All blockwork to be 7.3 N/mm² in class III mortar below DPC in accordance with BS 5628: Part 3: 2005 or suitable 7.0 N/mm² foundation quality blocks in class II mortar in accordance with the manufacturer's instructions. All brickwork below DPC to be Engineering Bricks DPC in accordance with BS 5628: Part 3: 2005.
- 9. The project requires the introduction of heavy structural elements such as steel beams or concrete lintels. Although the Construction (Design and Management) Regulation 2015 would not normally apply to this type of construction, the designer still has an obligation to foresee risks and bring to the attention of the builder such risks. In consequence, the builder is to take into consideration the placement of all structural elements, ensuring that the method of lifting and placement is safely carried out. Responsibility for this element lies with the Contractor. As the existing walls need to be propped in order to introduce some of the lintels, this should also be considered in relationship to the risk assessment of the Contractor. Safe working procedures must be adopted. Responsibility for this element lies with the Contractor. Splice details for long-span beams can often be accommodated if required.
- 10. All construction products should be CE marked in accordance current legislation. This includes all fabricated structural steelwork in accordance with BS EN 1090-1 and BS EN 1090-2. The consequence class is CC2 unless noted otherwise. The service class is SC1 for all buildings, SC2 for all lifting beams, sculptures & fall arrest systems. Production category will be PC1 unless noted otherwise. All site welded items, S355 steelwork & CHS lattice girders will be PC2. As such the execution class for buildings will be EXC2.
- 11. CLIMATE CHANGE: The Building Research establishment have produced a document CBG 63 "Climate Change: impact on building design and construction". Part of their recommendations are that designers and builders should give consideration to:
 - a. Increased wind loading by providing additional laps and fixings to roof coverings
 - b. Consider foundation depth on shrinkable clays and to avoid future problems, increase the depth above standard requirements if there is a risk. This should be in accordance with the NHBC Standards, Chapter 4.2 Guidance on Building near Trees. If the calculations do not specifically design the depths of the foundations to take into account any local trees, then this should be checked and agreed with the Building Inspector on site.

Party Wall etc. Act 1996

If part of the work is adjacent to the boundary, the adjacent neighbours right to support could be affected; the issues associated with Party Wall Act may need to be considered. This may include providing information to the adjoining owner, giving sufficient notice of works in compliance with the Act. If the following list applies to this project then the Party Wall Act will apply.

- Installing a new beam into the shared wall between properties
- Demolishing, building or under-pinning an existing shared wall
- Building a new wall at or on the boundary or junction of two properties
- Damp-proofing all the way through a party wall
- · Digging foundations that are within 3m of a Party Wall, where the new foundations are deeper than the existing ones
- Where the new foundations are within 6m and lower than a 45° line from the bottom of the existing foundations

Project No : EX19/181/10 Sheet

Structure /2 - Rev. A P Manios

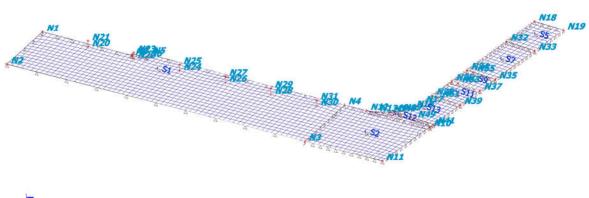
Made By Checked By: P Manios Date January 2020 Office Greece - 0030 2310 960 636

1. Table of contents

- 1. Table of contents
- 2. Model
- 2.1. 3D model
- 2.2. Analysis model
- 3. Libraries
- 3.1. Setup manager
- 3.2. Cross-sections
- 3.3. Materials
- 3.4. Subsoils
- 4. Structure
- 4.1. Nodes
- 4.2. Members
- 4.3. 2D members 4.4. Supports on 2D member edge
- 4.5. 2D member supports
- 5. Sets
- 5.1. Load cases
- 5.2. Load groups
- 5.3. Combinations
- 5.4. Result classes
- 6. Loads
- 6.1. LC2 Dead loads
- 6.2. LC3 Live Loads
- 6.3. LC4 Water Pressure
- 6.4. LC5 SLS from superstructure (unfactored)
- 6.5. LC6 ULS from superstructure (factored)
- 6.6. Point force in node
- 6.7. Moment in node
- 6.8. Line force on 2D member edge
- 6.9. Line moment on 2D member edge
- 6.10. Free line force
- 6.11. Surface load
- 7. Results
- 7.1. Contact stresses; sigmaz
- 7.2. Displacement of nodes; Uz (SLS)
- 8. Design
- 8.1. Member 2D design required areas; As1- (bottom x-x)
- 8.2. Member 2D design required areas; As2- (bottom y-y)
- 8.3. Member 2D design required areas; As1+ (top x-x)
- 8.4. Member 2D design required areas; As2+ (top y-y)

Project No : **EX19/181/10**

Sheet : Structure /3 - Rev. A
Made By : P Manios
Checked By : P Manios


Date : **January 2020**Office : **Greece - 0030 2310 960 636**

2. Model

2.1. 3D model

2.2. Analysis model

Project No : **EX19/181/10**Sheet : **Structure /4 - Rev. A**

Made By : P Manios
Checked By : P Manios
Date : January 2020

Office : Greece - 0030 2310 960 636

3. Libraries

3.1. Setup manager (STR/GEO) alternative

Combination Eq.6.10

Psi factors

Load	Psi0	Psi1	Psi2
CategoryA	0.7	0.5	0.3
CategoryB	0.7	0.5	0.3
CategoryC	0.7	0.7	0.6
CategoryD	0.7	0.7	0.6
CategoryE	1	0.9	0.8
CategoryF	0.7	0.7	0.6
CategoryG	0.7	0.5	0.3
CategoryH	0	0	0
Snow	0.5	0.2	0
Wind	0.6	0.2	0
Temperature	0.6	0.5	0

Load combination factors

Permanent action - unfavorable	1.35
Permanent action - favorable	1.00
Leading variable action	1.50
Accompanying variable action	1.50
Reduction factor ksi	0.85
Permanent action - unfavorable	1.00
Permanent action - favorable	1.00
Leading variable action	1.30
Accompanying variable action	1.30

3.2. Cross-sections

Name	Туре	Item material	Fabrication	A [m²]	A _y [m²]	I _y [m⁴]	W _{el.y} [m³]	W _{pl.y} [m³]	Colour
	Detailed				A z [m²]	I _z [m ⁴]	W _{el.z} [m ³]	W _{pl.z} [m³]	
CS1	Circle	C30/37	concrete	1.5904e-01	1.4319e-01	2.0129e-03	8.9462e-03	1.5188e-02	
	450				1.4319e-01	2.0129e-03	8.9462e-03	1.5188e-02	

3.3. Materials

Name	Туре	ρ [kg/m³]	Density in fresh state [kg/m³]	E _{mod} [kN/m²]	μ	a [m/mK]	f _{c.k.28} [MPa]	Colour
C30/37	Concrete	2500.0	2600.0	32800000.0	0.2	0.00	30.00	

Explanations of symbols						
Density in fresh state	The value in the density in fresh state					
	property is used only in case a					
	composite					
	deck is input and its self-weight load is					
	taken into account.					

Reinforcement EC2

Name	Туре	ρ [kg/m³]	E _{mod} [kN/m²]	G _{mod} [kN/m²]	a [m/mK]	f _{y.k} [MPa]
B 500B	Reinforcement steel	7850.0	200000000.0	83333333.3	0.00	500.0

3.4. Subsoils

Name	C1x [kN/m³]	C1z	C1y [kN/m³]	Stiffness [kN/m³]	C2x [kN/m]	C2y [kN/m]
225 KN/m2	2250.0	Flexible	2250.0	22500.0	2250.0	2250.0

Project No : EX19/181/10

Sheet : Structure /5 - Rev. A
Made By : P Manios
Checked By : P Manios
Date : January 2020

Office : Greece - 0030 2310 960 636

4. Structure

4.1. Nodes

4.1. Nodes								
Name	Coord X	Coord Y	Coord Z					
	[m]	[m]	[m]					
N1	-0.551	5.530	0.000					
N2	0.000	0.000	0.000					
N3	24.618	2.452	0.000					
N4	24.006	8.618	0.000					
N5	7.857	7.008	0.000					
N6	7.907	6.507	0.000					
N7	6.845	6.400	0.000					
N8	6.868	6.171	0.000					
N10	31.037	9.320	0.000					
N11	31.025	3.090	0.000					
N12	25.831	8.800	0.000					
N13	26.504	9.015	0.000					
N14	27.358	9.536	0.000					
N15	27.882	10.085	0.000					
N16	28.383	11.025	0.000					
N17	28.563	11.983	0.000					
N18	28.583	26.892	0.000					
N19	31.074	26.968	0.000					
N20	3.511	5.465	0.000					
N21	3.511	5.465	0.500					
N22	7.287	5.841	0.000					
N23	7.287	5.841	0.500					
N24	11.063	6.217	0.000					
N25	11.063	6.217	0.500					
N26	14.842	6.594	0.000					
N27	14.842	6.594	0.500					
N28	18.618	6.970	0.000					
N29	18.618	6.970	0.500					
N30	22.392	7.346	0.000					
N31	22.392	7.346	0.500					
N32	28.578	23.173	0.000					
N33	31.066	23.168	0.000					
N34	28.571	17.973	0.000					
N35	31.055	17.968	0.000					
N36	28.569	15.973	0.000					
N37	31.051	15.968	0.000					
N38	28.565	13.373	0.000					
N39	31.046	13.368	0.000					
N40	27.620	9.810	0.000					
N41	31.038	9.803	0.000					
N49	29.329	9.807	0.000					
N51	29.105	13.372	0.000					
N53	29.110	15.972	0.000					
N55	29.113	17.972	0.000					

4.2. Members

Name	CrossSection	Material	Length	Beg. node	End node	Type
			[m]			
B1	CS1 - Circle (450)	C30/37	0.500	N20	N21	column (100)
B2	CS1 - Circle (450)	C30/37	0.500	N22	N23	column (100)
B3	CS1 - Circle (450)	C30/37	0.500	N24	N25	column (100)
B4	CS1 - Circle (450)	C30/37	0.500	N26	N27	column (100)
B5	CS1 - Circle (450)	C30/37	0.500	N28	N29	column (100)
B6	CS1 - Circle (450)	C30/37	0.500	N30	N31	column (100)

4.3. 2D members

Name	Layer	Туре	Analysis model	Material	Thickness type	Th. [mm]
S1	Layer2-Slab	plate (90)	Standard	C30/37	constant	500
S2	Layer2-Slab	plate (90)	Standard	C30/37	constant	500
S5	Layer2-Slab	plate (90)	Standard	C30/37	constant	500
S7	Layer2-Slab	plate (90)	Standard	C30/37	constant	500
S9	Layer2-Slab	plate (90)	Standard	C30/37	constant	500

Project No : **EX19/181/10**Sheet : **Structure /6 - Rev. A**

Made By : P Manios
Checked By : P Manios
Date : January 2020

Office : Greece - 0030 2310 960 636

Name	Layer	Туре	Analysis model	Material	Thickness type	Th. [mm]
S11	Layer2-Slab	plate (90)	Standard	C30/37	constant	500
S12	Layer2-Slab	plate (90)	Standard	C30/37	constant	500
S13	Layer2-Slab	plate (90)	Standard	C30/37	constant	500

4.4. Supports on 2D member edge

Name	2D member	Orig	Pos x ₁	Х	Y	Z	Rx	Ry	Rz
	Edge	Coor	Pos x ₂						
Sle1	S5	From start	0.000	Rigid	Rigid	Free	Free	Free	Free
	1	Rela	1.000						
Sle2	S7	From start	0.000	Rigid	Rigid	Free	Free	Free	Free
	1	Rela	1.000						
Sle3	S9	From start	0.000	Rigid	Rigid	Free	Free	Free	Free
	1	Rela	1.000						
Sle4	S11	From start	0.000	Rigid	Rigid	Free	Free	Free	Free
	1	Rela	1.000						
Sle5	S13	From start	0.000	Rigid	Rigid	Free	Free	Free	Free
	4	Rela	1.000						
Sle6	S13	From start	0.000	Rigid	Rigid	Free	Free	Free	Free
	3	Rela	1.000	_					
Sle7	S13	From start	0.000	Rigid	Rigid	Free	Free	Free	Free
	2	Rela	1.000						
Sle8	S12	From start	0.000	Rigid	Rigid	Free	Free	Free	Free
	6	Rela	1.000						
Sle9	S12	From start	0.000	Rigid	Rigid	Free	Free	Free	Free
	5	Rela	1.000						
Sle10	S12	From start	0.000	Rigid	Rigid	Free	Free	Free	Free
	4	Rela	1.000						
Sle11	S1	From start	0.000	Rigid	Rigid	Free	Free	Free	Free
	4	Rela	1.000	_					
Sle12	S1	From start	0.000	Rigid	Rigid	Free	Free	Free	Free
	8	Rela	1.000						
Sle13	S1	From start	0.000	Rigid	Rigid	Free	Free	Free	Free
	7	Rela	1.000						
Sle14	S1	From start	0.000	Rigid	Rigid	Free	Free	Free	Free
	6	Rela	1.000						
Sle15	S2	From start	0.000	Rigid	Rigid	Free	Free	Free	Free
	1	Rela	0.230		1 -				

4.5. 2D member supports

		• •	
Name	Туре	Subsoil	2D member
SS1	Individual	225 KN/m2	S1
SS2	Individual	225 KN/m2	S2
SS3	Individual	225 KN/m2	S5
SS4	Individual	225 KN/m2	S7
SS5	Individual	225 KN/m2	S9
SS6	Individual	225 KN/m2	S11
SS7	Individual	225 KN/m2	S12
SS8	Individual	225 KN/m2	S13

5. Sets

5.1. Load cases

Name	Description	Action type	LoadGroup	Direction	Duration	Master load case
	Spec	Load type				
LC1	Self-Weight	Permanent	LG1-D	-Z		
		Self weight				
LC2	Dead	Permanent	LG1-D			
		Standard				
LC3	Live	Variable	LG2-L		Short	None
	Standard	Static				
LC4	Water Pressure	Variable	LG2-L		Short	None
	Standard	Static				
LC5	SLS from superstructure (unfactored)	Permanent	LG1-D			
		Standard				

Project No : **EX19/181/10**Sheet : **Structure /7 - Rev. A**

 Made By
 :
 P Manios

 Checked By
 :
 P Manios

 Date
 :
 January 2020

 Office
 :
 Greece - 0030 2310 960 636

Name	Description	Action type	LoadGroup	Direction	Duration	Master load case
	Spec	Load type				
LC6	ULS from superstructure (factored)	Permanent	LG1-D			
		Standard				

5.2. Load groups

Name	Load	Relation	Туре
LG1-D	Permanent		
LG2-L	Variable	Standard	Cat C : Congregation

5.3. Combinations

Name	Description	Туре	Load cases	Coeff.
ULS-for foundation.1		Envelope - ultimate	LC1 - Self-Weight	1.35
			LC2 - Dead	1.35
			LC5 - SLS from	1.00
			superstructure (unfactored)	
JLS-for foundation.2		Envelope - ultimate	LC1 - Self-Weight	1.00
			LC2 - Dead	1.00
			LC5 - SLS from	0.74
			superstructure (unfactored)	
ULS-for foundation.3		Envelope - ultimate	LC1 - Self-Weight	1.35
			LC3 - Live	1.50
			LC4 - Water Pressure	1.50
			LC2 - Dead	1.35
			LC5 - SLS from	1.00
			superstructure (unfactored)	2.00
JLS-for foundation.4		Envelope - ultimate	LC1 - Self-Weight	1.00
o Lo Tor Touridation T		Livelope diamate	LC3 - Live	1.50
			LC4 - Water Pressure	1.50
			LC2 - Dead	1.00
			LC5 - SLS from	0.74
			superstructure (unfactored)	0.74
SLS-Ch.1		Envelope - serviceability	LC1 - Self-Weight	1.00
3L3-CII.1		Envelope - Serviceability	LC2 - Dead	
				1.00
			LC5 - SLS from	1.00
		E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	superstructure (unfactored)	1.00
SLS-Ch.2		Envelope - serviceability	LC1 - Self-Weight	1.00
			LC3 - Live	1.00
			LC4 - Water Pressure	1.00
			LC2 - Dead	1.00
			LC5 - SLS from	1.00
			superstructure (unfactored)	
SLS-Fr.1		Envelope - serviceability	LC1 - Self-Weight	1.00
			LC2 - Dead	1.00
			LC5 - SLS from	1.00
			superstructure (unfactored)	
SLS-Fr.2		Envelope - serviceability	LC1 - Self-Weight	1.00
			LC3 - Live	0.70
			LC4 - Water Pressure	0.70
			LC2 - Dead	1.00
			LC5 - SLS from	1.00
			superstructure (unfactored)	2.00
SLS-Qp.1		Envelope - serviceability	LC1 - Self-Weight	1.00
323 QP11		Envelope serviceasine)	LC2 - Dead	1.00
			LC5 - SLS from	1.00
			superstructure (unfactored)	1.00
SLS-Qp.2		Envelope - serviceability	LC1 - Self-Weight	1.00
υ ι υ-γμια		Livelupe - serviceability	LC3 - Live	0.60
			LC4 - Water Pressure	0.60
			i	-
			LC2 - Dead	1.00
			LC5 - SLS from	1.00
			superstructure (unfactored)	4.05
JLS-for slab design.1		Envelope - ultimate	LC1 - Self-Weight	1.35
			LC2 - Dead	1.35
			LC6 - ULS from	1.10
			superstructure (factored)	

Project No : **EX19/181/10**

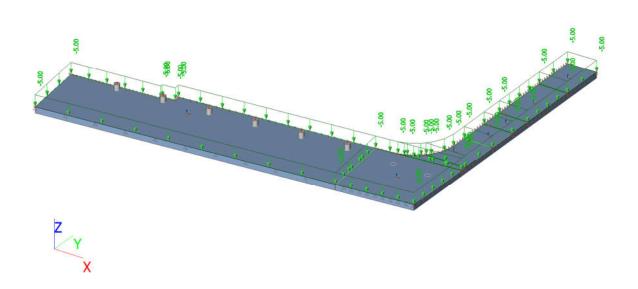
Sheet : Structure /8 - Rev. A
Made By : P Manios
Checked By : P Manios
Date : January 2020

Office : Greece - 0030 2310 960 636

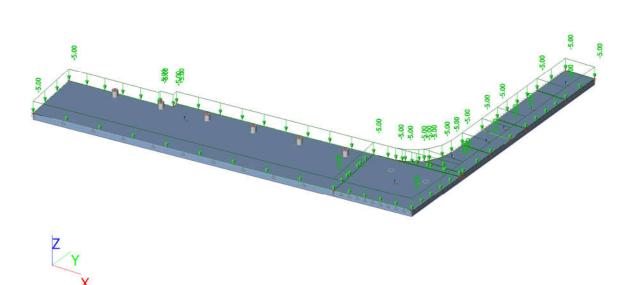
Name	Description	Туре	Load cases	Coeff. [-]
ULS-for slab design.2		Envelope - ultimate	LC1 - Self-Weight	1.00
			LC2 - Dead	1.00
			LC6 - ULS from superstructure (factored)	0.81
ULS-for slab design.3		Envelope - ultimate	LC1 - Self-Weight	1.35
			LC3 - Live	1.50
			LC4 - Water Pressure	1.50
			LC2 - Dead	1.35
			LC6 - ULS from	1.10
			superstructure (factored)	
ULS-for slab design.4		Envelope - ultimate	LC1 - Self-Weight	1.00
			LC3 - Live	1.50
			LC4 - Water Pressure	1.50
			LC2 - Dead	1.00
			LC6 - ULS from superstructure (factored)	0.81

5.4. Result classes

Name	List
GEO	ULS-for foundation - EN-ULS (STR/GEO) Set B
	ULS-for slab design - EN-ULS (STR/GEO) Set B
SLS	SLS-Ch - EN-SLS Characteristic
	SLS-Fr - EN-SLS Frequent
	SLS-Qp - EN-SLS Quasi-permanent


Project No : Sheet

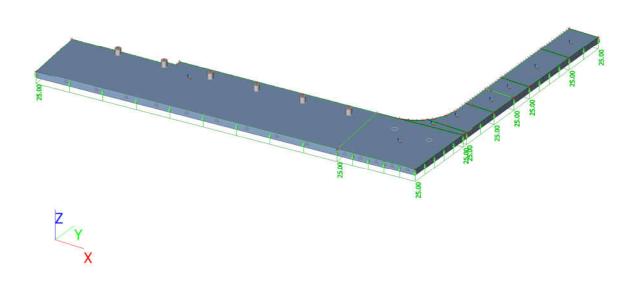
EX19/181/10 Structure /9 - Rev. A P Manios Made By Checked By: P Manios Date January 2020


Office Greece - 0030 2310 960 636

6. Loads

6.1. LC2 - Dead loads

6.2. LC3 - Live Loads



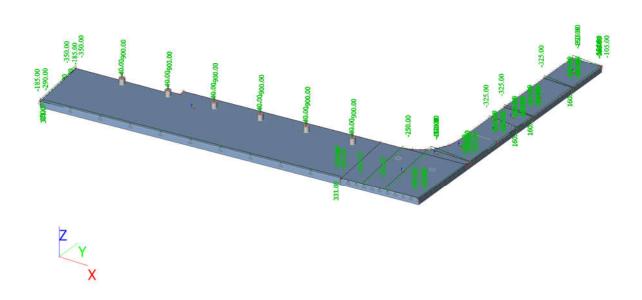
Project No : **EX19/181/10**Sheet : **Structure /10 - Rev. A**

Made By : P Manios
Checked By : P Manios
Date : January 2020

Office : Greece - 0030 2310 960 636

6.3. LC4 - Water Pressure

6.4. LC5 - SLS from superstructure (unfactored)



Project No : **EX19/181/10**Sheet : **Structure /11 - Rev. A**

Made By : P Manios
Checked By : P Manios
Date : January 2020

Office : Greece - 0030 2310 960 636

6.5. LC6 - ULS from superstructure (factored)

6.6. Point force in node

Name	Node	Load case	System	Dir	Туре	Value - F [kN]
F1	N21	LC5 - SLS from superstructure (unfactored)	GCS	Z	Force	-730.00
F2	N23	LC5 - SLS from superstructure (unfactored)	GCS	Z	Force	-730.00
F3	N25	LC5 - SLS from superstructure (unfactored)	GCS	Z	Force	-730.00
F4	N27	LC5 - SLS from superstructure (unfactored)	GCS	Z	Force	-730.00
F5	N29	LC5 - SLS from superstructure (unfactored)	GCS	Z	Force	-730.00
F6	N31	LC5 - SLS from superstructure (unfactored)	GCS	Z	Force	-730.00
F7	N21	LC6 - ULS from superstructure (factored)	GCS	Z	Force	-900.00
F8	N23	LC6 - ULS from superstructure (factored)	GCS	Z	Force	-900.00
F9	N25	LC6 - ULS from superstructure (factored)	GCS	Z	Force	-900.00
F10	N27	LC6 - ULS from superstructure (factored)	GCS	Z	Force	-900.00
F11	N29	LC6 - ULS from superstructure (factored)	GCS	Z	Force	-900.00
F12	N31	LC6 - ULS from superstructure (factored)	GCS	Z	Force	-900.00

6.7. Moment in node

Name	Node	Load case	System	Dir	Туре	Value - M
						[kNm]
M1	N21	LC5 - SLS from superstructure (unfactored)	GCS	Mx	Moment	30.00
M2	N23	LC5 - SLS from superstructure (unfactored)	GCS	Mx	Moment	30.00
M3	N25	LC5 - SLS from superstructure (unfactored)	GCS	Mx	Moment	30.00
M4	N27	LC5 - SLS from superstructure (unfactored)	GCS	Mx	Moment	30.00
M5	N29	LC5 - SLS from superstructure (unfactored)	GCS	Mx	Moment	30.00
M6	N31	LC5 - SLS from superstructure (unfactored)	GCS	Mx	Moment	30.00
M7	N21	LC6 - ULS from superstructure (factored)	GCS	Mx	Moment	40.00
M8	N23	LC6 - ULS from superstructure (factored)	GCS	Mx	Moment	40.00
M9	N25	LC6 - ULS from superstructure (factored)	GCS	Mx	Moment	40.00
M10	N27	LC6 - ULS from superstructure (factored)	GCS	Mx	Moment	40.00
M11	N29	LC6 - ULS from superstructure (factored)	GCS	Mx	Moment	40.00
M12	N31	LC6 - ULS from superstructure (factored)	GCS	Mx	Moment	40.00

6.8. Line force on 2D member edge

Name	2D member	Туре	Dir	Value - P ₁ [kN/m]	Pos x ₁	Loc	Edge
	Load case	System	Distribution	Value - P ₂ [kN/m]	Pos x ₂	Coor	Orig
LFS3	S2	Force	Z	-135.00	0.000	Length	2
	LC5 - SLS from superstructure (unfactored)	GCS	Uniform		1.000	Rela	From start

Project No : **EX19/181/10**Sheet : **Structure /12 - Rev. A**Made By : **P Manios**

Made By : P Manios
Checked By : P Manios
Date : January 2020

Office : Greece - 0030 2310 960 636

Name	2D member	Туре	Dir	Value - P ₁ [kN/m]	Pos x ₁	Loc	Edge
	Load case	System	Distribution	Value - P ₂ [kN/m]	Pos x ₂	Coor	Orig
LFS4	S2	Force	Z	-85.00	0.000	Length	3
	LC5 - SLS from superstructure (unfactored)	GCS	Uniform		1.000	Rela	From start
LFS5	S1	Force	Z	-240.00		Length	2
2.00	LC5 - SLS from superstructure (unfactored)	GCS	Uniform		1.000		From start
LFS6	S1	Force	Z	-330.00	0.000	Length	1
	LC5 - SLS from superstructure (unfactored)	GCS	Uniform		1.000	Abso	From start
LFS8	S1	Force	Z	-165.00		Length	1
2.00	LC5 - SLS from superstructure (unfactored)	GCS	Uniform	200.00	5.558	Abso	From start
LFS10	S9	Force	Z	-50.00	0.000	Length	4
	LC5 - SLS from superstructure (unfactored)	GCS	Trapez	-245.00		Rela	From start
LFS11	\$7	Force	Z	-50.00	0.000	Length	4
	LC5 - SLS from superstructure (unfactored)	GCS	Trapez	-245.00	1.000	Rela	From start
LFS12	S5	Force	Z	-50.00	0.000	Length	4
	LC5 - SLS from superstructure (unfactored)	GCS	Trapez	-245.00	1.000	Rela	From start
LFS13	S5	Force	Z	-245.00	0.000	Length	2
2.010	LC5 - SLS from superstructure (unfactored)	GCS	Trapez	-50.00	1.000	Rela	From start
LFS10	S12	Force	Z	-245.00	0.000	Length	1
2,010	LC5 - SLS from superstructure (unfactored)	GCS	Trapez	-50.00	1.000	Rela	From start
LFS14	S2	Force	Z	-165.00	0.000	Length	2
LI 31 I	LC6 - ULS from superstructure (factored)	GCS	Uniform	105.00	1.000	Rela	From start
LFS15	S2	Force	Z	-110.00	0.000		3
LI 313	LC6 - ULS from superstructure (factored)	GCS	Uniform	110.00	1.000	Rela	From start
LFS16	S1	Force	Z	-290.00	0.000	Length	2
LI 310	LC6 - ULS from superstructure (factored)	GCS	Uniform	230.00		Rela	From start
LFS17	S1	Force	Z	-350.00		Length	1
LI 317	LC6 - ULS from superstructure (factored)	GCS	Uniform	330.00	1.000	Abso	From start
LFS19	S1	Force	Z	-185.00	1.000	Length	1
LI 313	LC6 - ULS from superstructure (factored)	GCS	Uniform	105.00	5.558	Abso	From start
LFS20	S9	Force	Z	-55.00	0.000	Length	4
LI 320	LC6 - ULS from superstructure (factored)	GCS	Trapez	-325.00	1.000		From start
LFS21	S7	Force	Z	-55.00	0.000	Length	4
LI 321	LC6 - ULS from superstructure (factored)	GCS	Trapez	-325.00	1.000	Rela	From start
LFS22	S5	Force	Z	-55.00	0.000	Length	4
LI 322	LC6 - ULS from superstructure (factored)	GCS	Trapez	-325.00	1.000	Rela	From start
LFS23	S5	Force	Z	-325.00	0.000	Length	2
LI OLO	LC6 - ULS from superstructure (factored)	GCS	Trapez	-55.00		Rela	From start
LFS25	S12	Force	Z	-325.00	0.000	Length	1
LI 323	LC6 - ULS from superstructure (factored)	GCS	Trapez	-55.00	1.000	Rela	From start
LFS26	S13	Force	Z	-105.00	0.000	Length	6
LI OLO	LC6 - ULS from superstructure (factored)	GCS	Uniform	103.00	1.000		From start
LFS27	S11	Force	7	-105.00		Length	3
Li OL,	LC6 - ULS from superstructure (factored)	GCS	Uniform	103.00	1.000		From start
LFS28	S9	Force	Z	-105.00		Length	3
LI 320	LC6 - ULS from superstructure (factored)	GCS	Uniform	103.00	1.000		From start
LFS29	S7	Force	Z	-105.00		Length	3
LI 323	LC6 - ULS from superstructure (factored)	GCS	Uniform	103.00	1.000		From start
LFS30	S5	Force	Z	-105.00		Length	3
LI 330	LC6 - ULS from superstructure (factored)	GCS	Uniform	-105.00	1.000		From start
LFS31	S13	Force	Z	-85.00		Length	6
LI 331	LC5 - SLS from superstructure (unfactored)	GCS	Uniform	05.00	1.000		From start
LFS32	S11	Force	Z	-85.00		Length	3
LI 332	LC5 - SLS from superstructure (unfactored)	GCS	Uniform	-05.00	1.000		From start
LFS33	S9	Force	Z	-85.00		Length	3
LI 333	LC5 - SLS from superstructure (unfactored)	GCS	Uniform	-05.00	1.000	Rela	From start
LFS34	S7	Force	Z	-85.00		Length	3
LI 334	LC5 - SLS from superstructure (unfactored)	GCS	Uniform	-65.00	1.000		From start
LFS35	S5	Force	Z	-85.00	0.000	Length	3
トトランフ	LC5 - SLS from superstructure (unfactored)	GCS	Uniform	-05.00	1.000		From start
	Les - 313 nom superstructure (uniactored)	GCS	UTINUTITI		1.000	rcia	i ioni Stall

6.9. Line moment on 2D member edge

Name	2D member	Туре	Dir	Value - M ₁ [kNm/m]	Pos x ₁	Loc	Edge
	Load case	System	Distribution	Value - M ₂ [kNm/m]	Pos x ₂	Coor	Orig
LMS1	S1	Moment	Mx	85.00	0.170	Length	1
	LC5 - SLS from superstructure (unfactored)	LCS	Uniform		1.000	Rela	From start

Project No : **EX19/181/10**Sheet : **Structure /13 - Rev. A**

Made By : P Manios
Checked By : P Manios
Date : January 2020

Office : Greece - 0030 2310 960 636

Name	2D member	Туре	Dir	Value - M ₁ [kNm/m]	Pos x ₁	Loc	Edge
	Load case	System	Distribution	Value - M ₂ [kNm/m]	Pos x ₂	Coor	Orig
LMS2	S1	Moment	Mx	240.00	0.000	Length	2
	LC5 - SLS from superstructure (unfactored)	LCS	Uniform		1.000		From start
LMS3	S2	Moment	Mx	-95.00	0.000	Length	3
	LC5 - SLS from superstructure (unfactored)	LCS	Uniform		1.000		From start
LMS4	S2	Moment	Mx	-145.00		Length	2
	LC5 - SLS from superstructure (unfactored)	LCS	Uniform		1.000		From start
LMS6	S9	Moment	Mx	105.00		Length	4
	LC5 - SLS from superstructure (unfactored)	LCS	Uniform		1.000		From start
LMS7	S7	Moment	Mx	105.00		Length	4
LMCO	LC5 - SLS from superstructure (unfactored)	LCS	Uniform	105.00	1.000		From start
LMS8	S5	Moment	Mx	105.00		Length	4
LMS9	LC5 - SLS from superstructure (unfactored) S5	LCS Moment	Uniform Mx	-105.00	1.000	Length	From start 2
LIVISS	LC5 - SLS from superstructure (unfactored)	LCS	Uniform	-105.00	1.000		From start
LMS6	S12	Moment	Mx	-105.00		Length	1
LINSO	LC5 - SLS from superstructure (unfactored)	LCS	Uniform	-105.00	1.000		From start
LMS10	S1	Moment	Mx	125.00		Length	1
LINSIO	LC6 - ULS from superstructure (factored)	LCS	Uniform	123.00	0.170		From start
LMS11	S1	Moment	Mx	331.00		Length	2
LINDII	LC6 - ULS from superstructure (factored)	LCS	Uniform	331.00	1.000		From start
LMS12	S2	Moment	Mx	-140.00		Length	3
LIIJIZ	LC6 - ULS from superstructure (factored)	LCS	Uniform	110.00	1.000		From start
LMS13	S2	Moment	Mx	-205.00		Length	2
2025	LC6 - ULS from superstructure (factored)	LCS	Uniform		1.000		From start
LMS14	S9	Moment	Mx	160.00		Length	4
	LC6 - ULS from superstructure (factored)	LCS	Uniform		1.000		From start
LMS15	S7	Moment	Mx	160.00		Length	4
	LC6 - ULS from superstructure (factored)	LCS	Uniform		1.000		From start
LMS16	S5	Moment	Mx	160.00	0.000		4
	LC6 - ULS from superstructure (factored)	LCS	Uniform		1.000		From start
LMS17	S5	Moment	Mx	-160.00	0.000	Length	2
	LC6 - ULS from superstructure (factored)	LCS	Uniform		1.000		From start
LMS19	S12	Moment	Mx	-160.00		Length	1
	LC6 - ULS from superstructure (factored)	LCS	Uniform		1.000		From start
LMS20	S13	Moment	Mx	-160.00		Length	6
	LC6 - ULS from superstructure (factored)	LCS	Uniform		1.000		From start
LMS21	S11	Moment	Mx	-160.00		Length	3
	LC6 - ULS from superstructure (factored)	LCS	Uniform		1.000		From start
LMS22	S9	Moment	Mx	-160.00		Length	3
	LC6 - ULS from superstructure (factored)	LCS	Uniform		1.000		From start
LMS23	S7	Moment	Mx	-160.00		Length	3
1 1 1 0 0 1	LC6 - ULS from superstructure (factored)	LCS	Uniform	160.00	1.000		From start
LMS24	S5	Moment	Mx	-160.00		Length	3
LMC2E	LC6 - ULS from superstructure (factored)	LCS	Uniform	110.00	1.000		From start
LMS25	S13	Moment	Mx	-110.00		Length	6
LMC2C	LC5 - SLS from superstructure (unfactored)	LCS	Uniform	110.00	1.000		From start
LMS26	S11 LC5 - SLS from superstructure (unfactored)	Moment LCS	Mx Uniform	-110.00	1.000	Length	3 From start
LMS27	S9	Moment	Mx	-110.00		Length	3
LI·IJZ/	LC5 - SLS from superstructure (unfactored)	LCS	Uniform	-110.00	1.000		From start
LMS28	S7	Moment	Mx	-110.00		Length	3
LITIJZU	LC5 - SLS from superstructure (unfactored)	LCS	Uniform	110.00	1.000		From start
LMS29	S5	Moment	Mx	-110.00		Length	3
Li 1323	LC5 - SLS from superstructure (unfactored)	LCS	Uniform	110.00	1.000		From start
LMS30	S1	Moment	Mx	85.00		Length	1
	LC5 - SLS from superstructure (unfactored)	LCS	Uniform	03.00	0.170		From start
LMS31	S1	Moment	Mx	150.00		Length	1
	LC6 - ULS from superstructure (factored)	LCS	Uniform	150.00	1.000		From start
	(Idetored)	1	,	1			

6.10. Free line force

·									
Name	Load case	Dir	Туре	Distribution	Value - P ₁	Validity	Select	System	Location
					[kN/m]				
FL1	LC5 - SLS from superstructure (unfactored)	Z	Force	Uniform	-280.00	Z=0	Auto	GCS	Length
FL2	LC6 - ULS from superstructure (factored)	Z	Force	Uniform	-330.00	Z=0	Auto	GCS	Length
FL5	LC5 - SLS from superstructure (unfactored)	Z	Force	Uniform	-210.00	Z=0	Auto	GCS	Length
FL6	LC6 - ULS from superstructure (factored)	Z	Force	Uniform	-250.00	Z=0	Auto	GCS	Length

Project No : **EX19/181/10**Sheet : **Structure /14 - Rev. A**

Sheet : Structure /14 Made By : P Manios
Checked By : P Manios
Date : January 2020

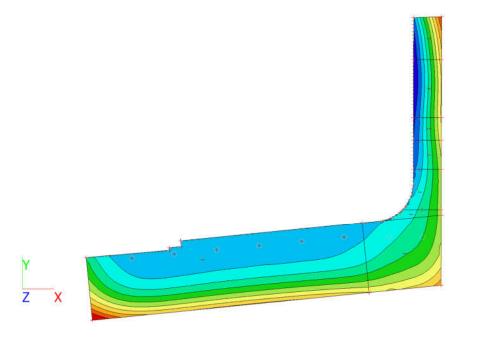
Office : Greece - 0030 2310 960 636

6.11. Surface load

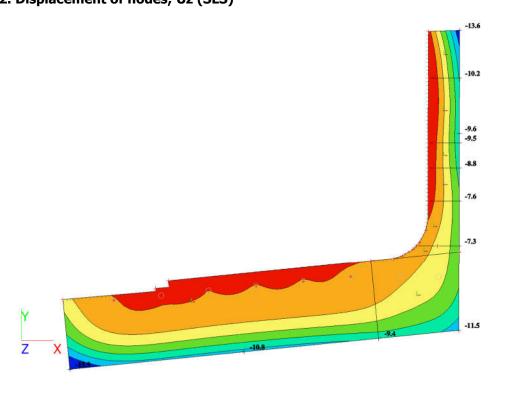
Name	Dir	Typo	Value	2D member	Load case	System	Loc
Name	Dii	Туре	[kN/m ²]	2D Member	Loau Case	System	LOC
SF1	Z	Force	-5.00	S1	LC3 - Live	GCS	Length
SF2	Z	Force	-5.00	S2	LC3 - Live	GCS	Length
SF3	Z	Force	-5.00	S12	LC3 - Live	GCS	Length
SF4	Z	Force	-5.00	S1	LC2 - Dead	GCS	Length
SF5	Z	Force	-5.00	S2	LC2 - Dead	GCS	Length
SF6	Z	Force	-5.00	S12	LC2 - Dead	GCS	Length
SF7	Z	Force	25.00	S1	LC4 - Water Pressure	GCS	Length
SF8	Z	Force	25.00	S2	LC4 - Water Pressure	GCS	Length
SF9	Z	Force	25.00	S12	LC4 - Water Pressure	GCS	Length
SF10	Z	Force	-5.00	S13	LC2 - Dead	GCS	Length
SF11	Z	Force	-5.00	S11	LC2 - Dead	GCS	Length
SF12	Z	Force	-5.00	S9	LC2 - Dead	GCS	Length
SF13	Z	Force	-5.00	S7	LC2 - Dead	GCS	Length
SF14	Z	Force	-5.00	S5	LC2 - Dead	GCS	Length
SF15	Z	Force	-5.00	S13	LC3 - Live	GCS	Length
SF16	Z	Force	-5.00	S11	LC3 - Live	GCS	Length
SF17	Z	Force	-5.00	S9	LC3 - Live	GCS	Length
SF18	Z	Force	-5.00	S7	LC3 - Live	GCS	Length
SF19	Z	Force	-5.00	S5	LC3 - Live	GCS	Length
SF20	Z	Force	25.00	S13	LC4 - Water Pressure	GCS	Length
SF21	Z	Force	25.00	S11	LC4 - Water Pressure	GCS	Length
SF22	Z	Force	25.00	S9	LC4 - Water Pressure	GCS	Length
SF23	Z	Force	25.00	S7	LC4 - Water Pressure	GCS	Length
SF24	Z	Force	25.00	S5	LC4 - Water Pressure	GCS	Length

Project No : **EX19/181/10**Sheet : **Structure /15 - Rev. A**

Made By : P Manios
Checked By : P Manios
Date : January 2020


Office : Greece - 0030 2310 960 636

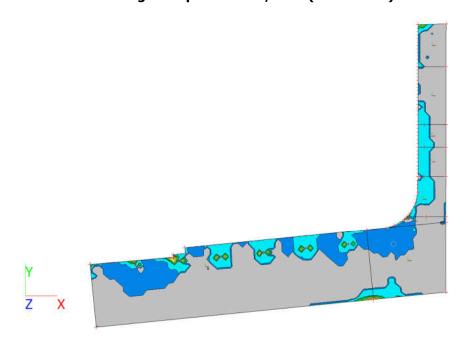
359.5 300.0 270.0 240.0 210.0 180.0 150.0 120.0 90.0 60.0 30.0 -35.6

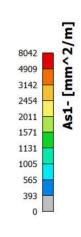

-2.0 -4.0 -6.0 -8.0 -10.0 -12.0 -15.9

7. Results

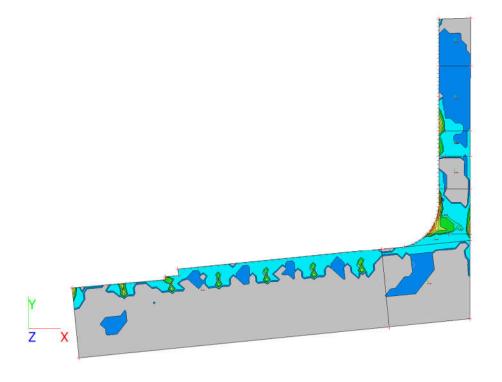
7.1. Contact stresses; sigmaz

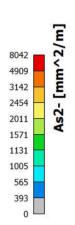
7.2. Displacement of nodes; Uz (SLS)


Project No : **EX19/181/10**Sheet : **Structure /16 - Rev. A**

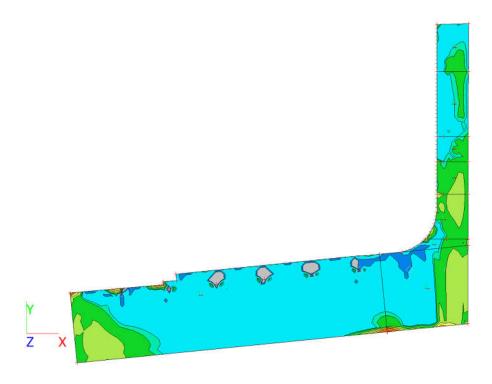

Made By : P Manios
Checked By : P Manios
Date : January 2020

Office : Greece - 0030 2310 960 636


8. Design

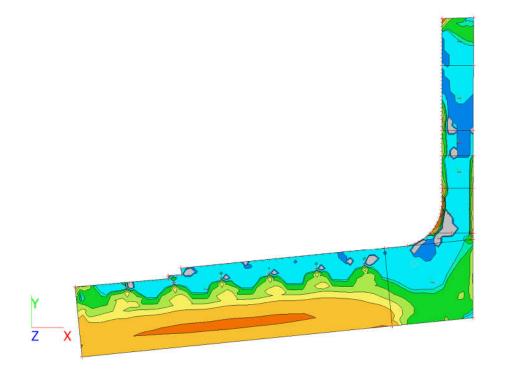

8.1. Member 2D - design - required areas; As1- (bottom x-x)

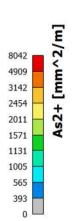
8.2. Member 2D - design - required areas; As2- (bottom y-y)


Project No : **EX19/181/10**Sheet : **Structure /17 - Rev. A**

Made By : P Manios
Checked By : P Manios
Date : January 2020

Office : Greece - 0030 2310 960 636


As1+ [mm^2/m]


8.3. Member 2D - design - required areas; As1+ (top x-x)

₀ L

8.4. Member 2D - design - required areas; As2+ (top y-y)

APPENDIX B RESULTS OF GROUND MOVEMENT ASSESSMENT

```
Oasys Ltd.
```

```
Shaftesbury Theatre
New Ex \_ Undrained
```

File 01 Ex - Undrained.pdd Exported 02/12/20 09:42:47

PDisp 20.0.0.2 64-bit Copyright © Oasys 1997-2019

Titles

START_TABLE Job No.: 371647 Job Title: Shaftesbury Theatre Sub-title: New Ex _ Undrained

Calculation Heading: Initials: SW Checker: Date Saved: Date Checked: Notes:

File Name: 01 Ex - Undrained.pdd

File Path: \\to-dc0\Geo\52100 onwards\52167 Shaftesbury Theatre Updated BIA\9. GMA\03 analyses\pdisp\CAT II

END_TABLE

Analysis Options

General

Global Poisson's ratio: 0.50

Maximum allowable ratio between values of E: 1.5 Horizontal rigid boundary level: -10.10 [m OD] Displacements at load centroids: Yes

Elastic

GSA piled raft data : No

Elastic: Yes Analysis: Boussinesq

Stiffness for horizontal displacement calculations: Weighted average

Using legacy heave correction factor: No

Consolidation Consolidation : No

Soil ProfilesSoil Profile 1

START_TABLE

Layer ref. Name Level at to Number of Youngs Mc Youngs Mo Poissons ra Non-linear curve [mOD] $[kN/m^2]$ $[kN/m^2]$ 5 20000 20000 5 20000 110000 1 0.2 None 1 24.15 2 2 20.15 0.5 None 5 125000 125000 0.5 None -6.5

END_TABLE

Soil Zones START_TABLE

Zone Name X min X max Y min Y max Profile [m] [m] [m] [m] 1 SZ1 -20 100 -20 60 Soil Profile 1

END_TABLE

Polygonal Load Data

START_TABLE

Position: L Position: P Position: P No. of Rect Value: Normal (local z) [m] [m] [%] [kN/m²] 19.6 (6.5,-1.8) (3 1 Western Ex 10 2 Southern E 19.6 (35.9,5.3) (10

END_TABLE

Polygonal Loads' Rectangles

START_TABLE

Centre : x Centre : y Angle of lo Width x Depth y No. [m] [Degrees] [m] Load 1 : Western Excavation (Edge 1 optimal)

1 21.22018 1.57035 0.35258 29.405 6.5594 2 37.45029 1.80282 0.35258 3.0575 6.8246 6.0572 3 39.04936 2.09754 0.35258 0.14423 4 39.1895 2.76253 0.35258 0.14423 4.7111 5 39.32965 3.42752 0.35258 0.14423 3.3651 6 39.46979 4.09251 0.35258 0.14423 2.0191 7 39.60993 4.7575 0.35258 0.14423 0.67302 Load 2 : Southern Excavation

(Edge 4 optimal) 1 38.95313 27.64382 -95.034 0.085059 0.31495 2 39.2594 27.53145 -95.034 0.085059 0.94484 3 39.56567 27.41909 -95.034 0.085059 1.5747 4 39.87194 27.30672 -95.034 0.085059 2.2046 5 40.17821 27.19435 -95.034 0.085059 2.8345 6 39.43807 17.70546 -95.034 18.949 3.0251 7 38.1789 6.76359 -95.034 3.0709 3.3246 8 37.33476 5.26584 -95.034 0.06124 2.8113 9 36.37825 5.28861 -95.034 0.06124 0.93711

END_TABLE

Displacement Points

START_TABLE

Name	X [m]	Y [n	n]	Z(level) [m]	Calculate	Detailed Results
GrapeNea	r	38	39	24	No	Yes
GrapeFar		38	44.5	24	No	Yes
HighNear		41	10	24	No	Yes
HighFar		61	10	24	No	Yes

ShaftsNear	20	-2.5	24 No	Ye
ShaftsFar	20	-8	24 No	Ye
FND TARIF				

Displacement Lines

START_TA	BLE									
Name	X1	Y1	Z1	X2	Y2	Z2		Intervals	Calculate	Detailed Results
	[m]	[m]	[m]	[m]	[m]	[m]		[No.]		
Berkshire I	-	63	-10	22.5	62	31	22.5	41	Yes	Yes
Berkshire I	-	62	31	22.5	90	32	22.5	28	Yes	Yes
Berkshire I	•	90	32	22.5	90	-5	22.5	37	Yes	Yes
Berkshire I	•	90	-5	22.5	63	-10	22.5	27	Yes	Yes
Archway -	!	6.5	5	20.5	6.5	15.5	20.5	11	Yes	Yes
Archway -	(6.5	15.5	20.5	4	15.5	20.5	3	Yes	Yes
Archway -	1	4	5	20.5	6.5	5	20.5	3	Yes	Yes
167High H	(27	45	20.5	40	45	20.5	13	Yes	Yes
167High H	(40	45	20.5	40	52	20.5	7	Yes	Yes
167High H	(40	52	20.5	27	52	20.5	13	Yes	Yes
167High H	(27	52	20.5	27	45	20.5	7	Yes	Yes
Sovereign	l	4	5	20.5	-1	5	20.5	5	Yes	Yes
Sovereign	l	-1	5	20.5	-4.5	8	20.5	5	Yes	Yes
Sovereign	I	-4.5	8	20.5	4	15.5	20.5	11	Yes	Yes
Sovereign	I	4	15.5	20.5	4	5	20.5	11	Yes	Yes
Crossrail T	ι	52	50	10	47	-10	10	60	Yes	Yes
END TABL	E									

Displacement Grids

START TABLE

Name	Extrusion: X1	Y1	Z 1	X2	Y2	Z2	Inte	ervals A Extr	usion: Ext	rusion: Calculate	Detailed Results
	[m]	[m]	[m]	[m]	[m]	[m]	[No	o.] [m]	[No	p.]	
Grid 1	Global X	-10	-20	24 -		60	24	100	80	100 No	No
Basemen END_TAE	t Global X BLE	-20	-20	19.6 -		60	19.6	50	120	50 No	Yes

Warnings

(1)One or more displacement grids have numbers of intervals of at least 100. Large numbers of intervals will slow the analysis.

(2) The load at (23.219, 1.611, 19.600) m lies wide of all soil zones. Displacements at its centre have been requested. The first soil profile will be used.

```
Oasys Ltd.
New Ex - Drained
File 02 Ex - Drained.pdd
 Exported 02/12/20 09:43:51
PDisp 20.0.0.2 64-bit Copyright © Oasys 1997-2019
Titles
START_TABLE
Job No.: 371647
Job Title: Shaftesbury Theatre
 Sub-title: New Ex - Drained
 Calculation Heading:
Initials: SW
Checker:
Date Saved:
Date Checked:
File Name: 02 Ex - Drained.pdd
File Path: \\to-dc0\Geo\S2100 onwards\S2167 Shaftesbury Theatre Updated BIA\9. GMA\03 analyses\pdisp\CAT || END_TABLE
Analysis Options
General
 Global Poisson's ratio: 0.20
 Maximum allowable ratio between values of E: 1.5
Horizontal rigid boundary level: -10.10 [m OD]
Displacements at load centroids: Yes
GSA piled raft data : No
Elastic
 Elastic : Yes
Analysis: Boussinesq
Stiffness for horizontal displacement calculations: Weighted average
 Using legacy heave correction factor: No
Consolidation
Consolidation : No
Soil ProfilesSoil Profile 1
 START_TABLE
                               Level at to Number of Youngs Mc Youngs Mc Poissons ra Non-linear curve
Layer ref. Name
                          [mOD]
1 24.15
2 20.15
3 -6.5
                                                   [kN/m²] [kN/m²]

5 20000 20000

5 16000 88000

5 100000 100000
                                                                                                      0.2 None
END_TABLE
START_TABLE

        Zone
        Name
        X min
        X max
        Y min
        Y max
        Profile

        [m]
        [m]
        [m]
        [m]

        1 SZ1
        -20
        100
        -20
        60 Soil Profile 1

END_TABLE
Polygonal Load Data
START_TABLE
| No. | Centre:x Centre:y Angle of lo Width x | Depthy | [m] | [m] | [Degrees] [m] | [m] | Load 1: Western Excavation |
4 39.1895 2.76253 0.35258 0.14423 4.7111
             5 39.32965 3.42752 0.35258 0.14423 3.3651
6 39.46979 4.09251 0.35258 0.14423 2.0191 7 39.60993 4.7575 0.35258 0.14423 0.67302  
Load 2: Southern Excavation
(Edge 4 optimal)
           1 38.95313 27.64382 -95.034 0.085059 0.31495
2 39.2594 27.53145 -95.034 0.085059 0.94484
3 39.56567 27.41909 -95.034 0.085059 1.5747
4 39.87194 27.30672 -95.034 0.085059 2.2046

        4
        35.3/194
        -39.304
        -09.032
        2.2049

        5
        40.17821
        27.19435
        -95.034
        0.085059
        2.8345

        6
        39.43807
        17.70546
        -95.034
        18.949
        3.0251

        7
        38.1789
        6.76359
        -95.034
        3.0709
        3.3246

        8
        37.33476
        5.26584
        -95.034
        0.06124
        2.8113

        9
        36.37825
        5.2861
        -95.034
        0.06124
        0.93711

END_TABLE
Displacement Points
START_TABLE
                                           Z(level) Calculate Detailed
Name
               [m]
                            [m] [m]
```

Displacement Lines

GrapeNear GrapeFar

HighNear

HighFar ShaftsNear

ShaftsFar END_TABLE 44.5

-2.5

10

41

20

START_TAI	BLE									
Name	X1	Y1	Z1	X2	Y2	Z2		Intervals	Calculate	Detailed Results
	[m]	[m] [m]	[m]	[m]	[m]		[No.]		
Berkshire I		63	-10	22.5	62	31	22.5	41	Yes	Yes
Berkshire I		62	31	22.5	90	32	22.5	28	Yes	Yes
Berkshire I		90	32	22.5	90	-5	22.5	37	Yes	Yes
Berkshire I		90	-5	22.5	63	-10	22.5	27	Yes	Yes
Archway -	:	6.5	5	20.5	6.5	15.5	20.5	11	Yes	Yes
Archway -		6.5	15.5	20.5	4	15.5	20.5	3	Yes	Yes
Archway -	,	4	5	20.5	6.5	5	20.5	3	Yes	Yes
167High H	(27	45	20.5	40	45	20.5	13	Yes	Yes
167High H	(40	45	20.5	40	52	20.5	7	Yes	Yes
167High H	(40	52	20.5	27	52	20.5	13	Yes	Yes
167High H	(27	52	20.5	27	45	20.5	7	Yes	Yes
Sovereign	I	4	5	20.5	-1	5	20.5	5	Yes	Yes
Sovereign	I	-1	5	20.5	-4.5	8	20.5	5	Yes	Yes
Sovereign	I	-4.5	8	20.5	4	15.5	20.5	11	Yes	Yes
Sovereign	I	4	15.5	20.5	4	5	20.5	11	Yes	Yes
Crossrail T	ı	52	50	10	47	-10	10	60	Yes	Yes
END TABL	E									

Yes Yes Yes

Yes Yes

24 Yes

24 Yes

24 Yes

Displacement Grids

START_T	ABLE											
Name	Extrusion:	X1	Y1	Z1	X2	Y2	Z2	Ir	ntervals A Ext	rusion: Ex	trusion: Calculate	Detailed Results
		[m]	[m]	[m]	[m]	[m]	[m]	1]	No.] [m]	[N	o.]	
Grid 1	Global X		-10	-20	24 -		60	24	100	80	100 No	No
Basemen	it Global X		-20	-20	19.6 -		60	19.6	50	120	50 No	No
END_TAE	BLE											

 $(1) One or more displacement grids have numbers of intervals of at least 100. \ Large numbers of intervals will slow the analysis.$

(2) The load at (23.219, 1.611, 19.600) m lies wide of all soil zones. Displacements at its centre have been requested. The first soil profile will be used.

Results : Immediate : Load Centres : Polygonal

START_TABLE

| Name | x | y | z | dz | Stress: Calc Stress: Ver Stress: Sun Vert. Strain | [m] | [m] | [mOD] | [mm] | [mOD] | [kN/m²] | [kN/m²] | [1 Western E: 23.21861 | 1.61111 | 19.6 | -25.8254 | 17.028 | -77.933 | -120.38 | -0.00292 | 2 Southern E: 39.25431 | 16.22418 | 19.6 | -14.8912 | 17.028 | -48.112 | -64.202 | -0.00189 | -14.8912 END_TABLE

 $Results: Consolidation: Load \ Centres: Polygonal\\$

None

Results : Total : Load Centres : Polygonal

None

 $Results: Immediate: Displacement\ Data: Points$

START_TABLE

Results : Consolidation : Displacement Data : Points

None

Results : Total : Displacement Data : Points

None

Results : In	nmediate : [Displaceme	nt Data : Lin	ies					
START_TAI		x		z			Stress: Ver Stre		. Strain
	Daalahiaa I	[m]		[mOD]	[mm]	[mOD] 22.108	[kN/m ²] [kN/ 0		0
	Berkshire F Berkshire F	63 62.97561	-10 -9	22.5 22.5	-0.05284 -0.05876	22.108	0	0	0
	Berkshire F		-8	22.5	-0.06483	22.108	0	0	0
	Berkshire F		-7	22.5	-0.07101	22.108	0	0	0
	Berkshire F		-6	22.5	-0.07727	22.108	0	0	0
	Berkshire F Berkshire F		-5 -4	22.5 22.5	-0.08355 -0.0898	22.108 22.108	0	0	0
	Berkshire F		-4	22.5	-0.0898	22.108	0	0	0
	Berkshire F		-2	22.5	-0.10201	22.108	0	0	0
1	Berkshire F	62.78049	-1	22.5	-0.10786	22.108	0	0	0
	Berkshire F		0	22.5	-0.11346		0	0	0
	Berkshire F		1	22.5	-0.11877	22.108	0	0	0
	Berkshire I Berkshire I		2	22.5 22.5	-0.12374 -0.12831	22.108 22.108	0	0	0
	Berkshire F		4	22.5	-0.13246		0	0	0
1	Berkshire F	62.63415	5	22.5	-0.13614	22.108	0	0	0
	Berkshire F		6	22.5	-0.13934	22.108	0	0	0
	Berkshire F		7	22.5	-0.14202	22.108	0	0	0
	Berkshire F Berkshire F		8 9	22.5 22.5	-0.14416 -0.14577	22.108 22.108	0	0	0
	Berkshire F		10	22.5	-0.14682	22.108	0	0	0
	Berkshire F		11	22.5	-0.14732	22.108	0	0	0
1	Berkshire F	62.46341	12	22.5	-0.14727	22.108	0	0	0
	Berkshire F		13	22.5	-0.14667	22.108	0	0	0
	Berkshire F		14	22.5	-0.14552 -0.14385	22.108	0	0	0
	Berkshire F Berkshire F		15 16	22.5 22.5	-0.14385	22.108 22.108	0	0	0
	Berkshire F		17	22.5	-0.13894		0	0	0
1	Berkshire F	62.31707	18	22.5	-0.13575	22.108	0	0	0
	Berkshire F		19	22.5	-0.13208	22.108	0	0	0
	Berkshire I		20	22.5	-0.12796		0	0	0
	Berkshire I Berkshire I		21 22	22.5 22.5	-0.12342 -0.11849	22.108 22.108	0	0	0
	Berkshire F		23	22.5	-0.11321	22.108	0	0	0
	Berkshire F		24	22.5	-0.10762	22.108	0	0	0
1	Berkshire F	62.14634	25	22.5	-0.10176	22.108	0	0	0
	Berkshire F		26	22.5	-0.09568	22.108	0	0	0
	Berkshire F		27	22.5	-0.08944		0	0	0
	Berkshire I Berkshire I		28 29	22.5 22.5	-0.0831 -0.0767	22.108 22.108	0	0	0
	Berkshire F		30	22.5	-0.0707	22.108	0	0	0
	Berkshire F	62	31	22.5	-0.06397	22.108	0	0	0
2	Berkshire F	62	31	22.5	-0.06397	22.108	0	0	0
	Berkshire F	63	31.03571	22.5	-0.05242	22.108	0	0	0
	Berkshire F	64	31.07143	22.5	-0.04239	22.108	0	0	0
	Berkshire F Berkshire F	65 66	31.10714 31.14286	22.5 22.5	-0.03367 -0.02609	22.108 22.108	0	0	0
	Berkshire F	67	31.17857	22.5	-0.02003	22.108	0	0	0
	Berkshire F	68	31.21429	22.5	-0.01383	22.108	0	0	0
2	Berkshire F	69	31.25	22.5	-0.0089	22.108	0	0	0
	Berkshire I	70	31.28571	22.5	-0.00464		0	0	0
	Berkshire F	71	31.32143	22.5	-0.00096	22.108	0	0	0
	Berkshire F Berkshire F	72 73	31.35714 31.39286	22.5 22.5	0.0022 0.00491	22.108 22.108	0	0	0
	Berkshire F	74	31.42857	22.5	0.00724		0	0	0
	Berkshire F	75	31.46429	22.5	0.00921	22.108	0	0	0
_	Berkshire F	76		22.5	0.01089	22.108	0	0	0
	Berkshire F		31.53571	22.5	0.0123	22.108	0	0	0
	Berkshire F	78	31.57143	22.5	0.01348		0	0	0
	Berkshire I Berkshire I	79 80	31.60714 31.64286	22.5 22.5	0.01447 0.01527	22.108	0	0	0
	Berkshire F	81	31.67857	22.5	0.01592	22.108	0	0	0
2	Berkshire F	82	31.71429	22.5	0.01644		0	0	0
	Berkshire F	83	31.75	22.5	0.01684	22.108	0	0	0
	Berkshire F	84	31.78571	22.5	0.01714		0	0	0
	Berkshire F Berkshire F	85 86	31.82143 31.85714	22.5 22.5	0.01735 0.01748	22.108 22.108	0	0 0	0 0
	Berkshire F	87	31.89286	22.5	0.01755	22.108	0	0	0
	Berkshire F	88	31.92857	22.5	0.01755	22.108	0	0	0
	Berkshire F	89	31.96429	22.5	0.01751	22.108	0	0	0
	Berkshire I	90	32	22.5	0.01743		0	0	0
	Berkshire F	90	32	22.5	0.01743	22.108 22.108	0	0	0
	Berkshire I Berkshire I	90 90	31 30	22.5 22.5	0.0175 0.01756		0	0	0
	Berkshire F	90	29	22.5	0.01762	22.108	0	0	0
3	Berkshire F	90	28	22.5	0.01768		0	0	0
	Berkshire F	90	27	22.5	0.01773	22.108	0	0	0
	Berkshire F	90	26	22.5	0.01778		0	0	0
	Berkshire F	90	25	22.5	0.01783		0	0	0
	Berkshire I Berkshire I	90 90	24 23	22.5 22.5	0.01787 0.01791	22.108 22.108	0	0	0
	Berkshire F	90	22	22.5	0.01795	22.108	0	0	0
	Berkshire F	90	21	22.5	0.01799	22.108	0	0	0
	Berkshire F	90	20	22.5	0.01803		0	0	0
	Berkshire F	90	19	22.5	0.01807	22.108	0	0	0
	Berkshire H Berkshire H	90 90	18 17	22.5 22.5	0.0181 0.01813	22.108 22.108	0	0 0	0 0
	Berkshire F	90	16	22.5	0.01813	22.108	0	0	0
	Berkshire F	90	15	22.5	0.0182		0	0	0
	Berkshire F	90	14	22.5	0.01823	22.108	0	0	0
	Berkshire F	90	13	22.5	0.01827		0	0	0
3	Berkshire F	90	12	22.5	0.0183	22.108	0	0	0

3 Berkshire F	90	11	22.5	0.01833	22.108	0	0	0
3 Berkshire F 3 Berkshire F	90 90	10 9	22.5 22.5	0.01837 0.0184	22.108 22.108	0	0	0
3 Berkshire F 3 Berkshire F	90 90	8 7	22.5 22.5	0.01843 0.01847	22.108 22.108	0	0	0
3 Berkshire F	90	6	22.5	0.0185	22.108	0	0	0
3 Berkshire F 3 Berkshire F	90 90	5 4	22.5 22.5	0.01853 0.01856	22.108 22.108	0	0	0 0
3 Berkshire F 3 Berkshire F	90 90	3	22.5 22.5	0.01859 0.01862	22.108 22.108	0	0	0
3 Berkshire F	90	1	22.5	0.01865	22.108	0	0	0
3 Berkshire F 3 Berkshire F	90 90	0 -1	22.5 22.5	0.01868 0.0187	22.108 22.108	0	0	0 0
3 Berkshire F 3 Berkshire F	90 90	-2 -3	22.5 22.5	0.01872 0.01874	22.108 22.108	0	0	0
3 Berkshire F	90	-4	22.5	0.01875	22.108	0	0	0
3 Berkshire F 4 Berkshire F	90 90	-5 -5	22.5 22.5	0.01877 0.01877	22.108 22.108	0	0	0 0
4 Berkshire F 4 Berkshire F	89 88	-5.18519 -5.37037	22.5 22.5	0.01881 0.0188	22.108 22.108	0	0	0
4 Berkshire F	87	-5.55556	22.5	0.01873	22.108	0	0	0
4 Berkshire F 4 Berkshire F	86 85	-5.74074 -5.92593	22.5 22.5	0.01859 0.01837	22.108 22.108	0	0	0 0
4 Berkshire F 4 Berkshire F	84 83	-6.11111 -6.2963	22.5 22.5	0.01806 0.01765	22.108 22.108	0	0	0 0
4 Berkshire F	82	-6.48148	22.5	0.01712	22.108	0	0	0
4 Berkshire F 4 Berkshire F	81 80	-6.66667 -6.85185	22.5 22.5	0.01645 0.01564	22.108 22.108	0	0	0 0
4 Berkshire F 4 Berkshire F	79 78	-7.03704 -7.22222	22.5 22.5	0.01466 0.01348	22.108 22.108	0	0	0 0
4 Berkshire F	77 76	-7.40741 -7.59259	22.5 22.5	0.01209 0.01045	22.108 22.108	0	0	0 0
4 Berkshire F	75	-7.77778	22.5	0.00854	22.108	0	0	0
4 Berkshire F 4 Berkshire F	74 73	-7.96296 -8.14815	22.5 22.5	0.00632 0.00375	22.108 22.108	0	0	0 0
4 Berkshire F 4 Berkshire F	72 71	-8.33333 -8.51852	22.5 22.5	0.00079 -0.00261	22.108 22.108	0	0	0
4 Berkshire F	70	-8.7037	22.5	-0.00649	22.108	0	0	0
4 Berkshire F 4 Berkshire F	69 68	-8.88889 -9.07407	22.5 22.5	-0.01092 -0.01595	22.108 22.108	0	0	0 0
4 Berkshire F 4 Berkshire F	67 66	-9.25926 -9.44444	22.5 22.5	-0.02166 -0.02812	22.108 22.108	0	0	0
4 Berkshire I	65	-9.62963	22.5	-0.03541	22.108	0	0	0
4 Berkshire F 4 Berkshire F	64 63	-9.81481 -10	22.5 22.5	-0.04362 -0.05284	22.108 22.108	0	0	0 0
5 Archway -: 5 Archway -:	6.5 6.5	5 5.95455	20.5 20.5	-7.78794 -4.99435	20.325 20.325	0	0	0 0
5 Archway -: 5 Archway -:	6.5 6.5	6.90909 7.86364	20.5 20.5	-3.91565 -3.20061	20.325 20.325	0	0	0
5 Archway -:	6.5	8.81818	20.5	-2.65372	20.325	0	0	0
5 Archway -: 5 Archway -:	6.5 6.5	9.77273 10.72727	20.5 20.5	-2.22382 -1.8799	20.325 20.325	0	0 0	0 0
5 Archway -: 5 Archway -:	6.5 6.5	11.68182 12.63636	20.5 20.5	-1.60024 -1.36961	20.325 20.325	0	0	0
5 Archway -:	6.5	13.59091	20.5	-1.17723	20.325	0	0	0
5 Archway - : 5 Archway - :	6.5 6.5	14.54545 15.5	20.5 20.5	-1.01526 -0.87788	20.325 20.325	0	0	0 0
6 Archway -	6.5 5.66667	15.5 15.5	20.5 20.5	-0.87788 -0.8168	20.325	0	0	0
6 Archway -	4.83333	15.5	20.5	-0.75657	20.325	0	0	0
6 Archway - 1 7 Archway - 1	4	15.5 5	20.5 20.5	-0.69776 -3.22946	20.325 20.325	0	0 0	0 0
7 Archway -	4.83333 5.66667	5 5	20.5 20.5	-3.99319 -5.21062	20.325	0	0	0 0
7 Archway -	6.5	5 45	20.5	-7.78794	20.325	0	0	0
8 167High Ho 8 167High Ho	27 28	45	20.5 20.5	-0.03925 -0.04288	20.325 20.325	0	0	0
8 167High Ho 8 167High Ho	29 30	45 45	20.5 20.5	-0.04651 -0.0501	20.325 20.325	0	0	0
8 167High Ho 8 167High Ho	31 32	45 45	20.5 20.5	-0.05359 -0.05692	20.325 20.325	0	0	0 0
8 167High H	33	45	20.5	-0.06002	20.325	0	0	0
8 167High Ho 8 167High Ho	34 35	45 45	20.5 20.5	-0.06283 -0.06527	20.325 20.325	0	0	0 0
8 167High Ho 8 167High Ho	36 37	45 45	20.5 20.5	-0.06728 -0.06878	20.325 20.325	0	0	0 0
8 167High H	38	45	20.5	-0.06974	20.325	0	0	0
8 167High Ho 8 167High Ho	39 40	45 45	20.5 20.5	-0.07012 -0.06988	20.325 20.325	0	0	0 0
9 167High Ho 9 167High Ho	40 40	45 46	20.5 20.5	-0.06988 -0.05572	20.325 20.325	0	0	0
9 167High H	40 40	47 48	20.5	-0.04377	20.325	0	0	0
9 167High Ho 9 167High Ho	40	48	20.5 20.5	-0.03367 -0.02512	20.325 20.325	0	0	0
9 167High Ho 9 167High Ho	40 40	50 51	20.5 20.5	-0.01789 -0.01177	20.325 20.325	0	0	0
9 167High Ho 10 167High Ho	40 40	52 52	20.5 20.5	-0.0066 -0.0066	20.325 20.325	0	0	0 0
10 167High H	39	52	20.5	-0.00663	20.325	0	0	0
10 167High Ho 10 167High Ho	38 37	52 52	20.5 20.5	-0.00652 -0.00627	20.325 20.325	0	0	0 0
10 167High Ho 10 167High Ho	36 35	52 52	20.5 20.5	-0.00588 -0.00537	20.325 20.325	0	0	0
10 167High Ho 10 167High Ho	34	52	20.5	-0.00474	20.325	0	0	0
10 167High H	33 32	52 52	20.5 20.5	-0.004 -0.00318	20.325 20.325	0	0	0 0
10 167High Ho 10 167High Ho	31 30	52 52	20.5 20.5	-0.00227 -0.0013	20.325 20.325	0	0 0	0 0
10 167High Ho 10 167High Ho	29 28	52 52	20.5 20.5	-0.00028 0.00078	20.325 20.325	0	0	0 0
10 167High H	27 27	52 52	20.5 20.5	0.00186 0.00186	20.325	0	0	0
11 167High Ho 11 167High Ho	27	51	20.5	-0.00186	20.325	0	0	0
11 167High Ho 11 167High Ho	27 27	50 49	20.5 20.5	-0.00592 -0.01079	20.325 20.325	0	0	0 0
11 167High H	27 27	48 47	20.5 20.5	-0.01644 -0.02299	20.325 20.325	0	0	0
11 167High H	27	46	20.5	-0.03054	20.325	0	0	0
11 167High Ho 12 Sovereign I	27 4	45 5	20.5 20.5	-0.03925 -3.22946	20.325 20.325	0	0	0 0
12 Sovereign 12 Sovereign	3	5 5	20.5 20.5	-2.5501 -2.03846	20.325 20.325	0	0	0 0
12 Sovereign 12 Sovereign	1 0	5	20.5	-1.64677 -1.34225	20.325	0	0	0
12 Sovereign	-1	5	20.5	-1.10197	20.325	0	0	0
13 Sovereign 13 Sovereign	-1 -1.7	5 5.6	20.5 20.5	-1.10197 -0.93287	20.325 20.325	0	0	0 0
13 Sovereign 13 Sovereign	-2.4 -3.1	6.2 6.8	20.5 20.5	-0.79187 -0.67365	20.325 20.325	0	0	0 0
13 Sovereign I	-3.8	7.4	20.5	-0.57404	20.325	0	0	0
13 Sovereign 14 Sovereign	-4.5 -4.5	8	20.5	-0.48973 -0.48973	20.325	0	0	0
14 Sovereign 14 Sovereign	-3.72727 -2.95455	8.68182 9.36364	20.5 20.5	-0.53157 -0.57182	20.325 20.325	0	0	0 0
14 Sovereign 14 Sovereign	-2.18182 -1.40909	10.04545 10.72727	20.5 20.5	-0.60921 -0.64247	20.325 20.325	0	0	0
14 Sovereign I	-0.63636	11.40909	20.5	-0.67041	20.325	0	0	0
14 Sovereign 14 Sovereign	0.13636 0.90909	12.09091 12.77273	20.5 20.5	-0.69208 -0.70685	20.325 20.325	0	0	0 0
14 Sovereign 14 Sovereign	1.68182 2.45455	13.45455 14.13636	20.5 20.5	-0.71449 -0.71515	20.325 20.325	0	0	0 0
14 Sovereign 14 Sovereign	3.22727	14.81818	20.5 20.5	-0.70933 -0.69776	20.325	0	0	0
15 Sovereign I	4	15.5	20.5	-0.69776	20.325	0	0	0
15 Sovereign 15 Sovereign	4	14.54545 13.59091	20.5 20.5	-0.79983 -0.91757	20.325 20.325	0	0 0	0 0
15 Sovereign 15 Sovereign	4	12.63636 11.68182	20.5 20.5	-1.05375 -1.21176	20.325 20.325	0	0	0
15 Sovereign I	4	10.72727	20.5	-1.39564	20.325	0	0	0
15 Sovereign 15 Sovereign	4	9.77273 8.81818	20.5	-1.61013 -1.86041	20.325	0	0	0
15 Sovereign 15 Sovereign	4	7.86364 6.90909	20.5 20.5	-2.15107 -2.48342	20.325 20.325	0	0	0 0
- 0	4	5.95455	20.5	-2.85047	20.325	0	0	0
15 Sovereign		-	20 -		יייי חל			0
15 Sovereign 16 Crossrail Tı	4 52	5 50	20.5	-3.22946 -0.02438	20.325 8.4091	-0.08723	-0.91866	0 1.66E-06
15 Sovereign I	4 52 51.91667							
15 Sovereign 16 Crossrail Tu 16 Crossrail Tu	4 52 51.91667 51.83333 51.75	50 49	10 10	-0.02438 -0.02981	8.4091 8.4091	-0.08723 -0.09866	-0.91866 -0.97989	1.66E-06 1.63E-06

16 Crossrail To	51.58333	45	10	-0.06062	8.4091	-0.16648	-1.2871	1.21E-06
16 Crossrail To	51.5	44	10	-0.07125	8.4091	-0.19121	-1.3831	9.91E-07
16 Crossrail Tu	51.41667	43	10	-0.08338	8.4091	-0.22028	-1.4886	7.02E-07
16 Crossrail Tu	51.33333	42	10	-0.0972	8.4091	-0.25449	-1.6046	3.26E-07
16 Crossrail Tu	51.25	41	10	-0.11292	8.4091	-0.29482	-1.7321	-1.54E-07
16 Crossrail Tu	51.16667	40	10	-0.13078	8.4091	-0.34236	-1.8725	-7.63E-07
16 Crossrail Tu	51.08333	39	10	-0.15102	8.4091	-0.39841	-2.027	-1.53E-06
16 Crossrail To	51	38	10	-0.1739	8.4091	-0.46438	-2.1969	-2.48E-06
16 Crossrail Tu	50.91667	37	10	-0.19968	8.4091	-0.54186	-2.3835	-3.65E-06
16 Crossrail Tu	50.83333	36	10	-0.22861	8.4091	-0.6325	-2.5879	-5.07E-06
16 Crossrail Tu	50.75	35	10	-0.26093	8.4091	-0.73797	-2.8113	-6.79E-06
16 Crossrail Tu	50.66667	34	10	-0.29681	8.4091	-0.85982	-3.0545	-8.84E-06
16 Crossrail To	50.58333	33	10	-0.33637	8.4091	-0.99931	-3.3178	-1.13E-05
16 Crossrail Tu	50.5	32	10	-0.37964	8.4091	-1.1572	-3.6013	-1.40E-05
16 Crossrail Tu	50.41667	31	10	-0.42653	8.4091	-1.3336	-3.9041	-1.72E-05
16 Crossrail Tu	50.33333	30	10	-0.4768	8.4091	-1.5275	-4.225	-2.08E-05
16 Crossrail Tu	50.25	29	10	-0.53005	8.4091	-1.737	-4.5616	-2.46E-05
16 Crossrail Tu	50.16667	28	10	-0.58577	8.4091	-1.959	-4.9112	-2.88E-05
16 Crossrail Tu	50.08333	27	10	-0.64327	8.4091	-2.1895	-5.2701	-3.31E-05
16 Crossrail Tu	50	26	10	-0.70182	8.4091	-2.424	-5.6345	-3.74E-05
16 Crossrail Tu	49.91667	25	10	-0.76064	8.4091	-2.6574	-6.0004	-4.18E-05
16 Crossrail Tu	49.83333	24	10	-0.81898	8.4091	-2.8853	-6.3637	-4.60E-05
16 Crossrail Tu	49.75	23	10	-0.8762	8.4091	-3.1037	-6.721	-5.00E-05
16 Crossrail Tu	49.66667	22	10	-0.93174	8.4091	-3.3098	-7.0693	-5.37E-05
16 Crossrail Tu	49.58333	21	10	-0.98523	8.4091	-3.5017	-7.4063	-5.72E-05
16 Crossrail Tu	49.5	20	10	-1.0364	8.4091	-3.6789	-7.7303	-6.03E-05
16 Crossrail Tu	49.41667	19	10	-1.08513	8.4091	-3.8417	-8.0404	-6.31E-05
16 Crossrail Tu	49.33333	18	10	-1.13139	8.4091	-3.9909	-8.336	-6.56E-05
16 Crossrail To	49.25	17	10	-1.17519	8.4091	-4.128	-8.6168	-6.79E-05
16 Crossrail Tu	49.16667	16	10	-1.21659	8.4091	-4.2544	-8.8828	-6.99E-05
16 Crossrail To	49.08333	15	10	-1.25561	8.4091	-4.3717	-9.1337	-7.18E-05
16 Crossrail Tu	49	14	10	-1.29226	8.4091	-4.4811	-9.3691	-7.36E-05
16 Crossrail Tu	48.91667	13	10	-1.32643	8.4091	-4.5833	-9.5882	-7.53E-05
16 Crossrail Tu	48.83333	12	10	-1.35795	8.4091	-4.6785	-9.7899	-7.68E-05
16 Crossrail Tu	48.75	11	10	-1.38651	8.4091	-4.7662	-9.9721	-7.83E-05
16 Crossrail Tu	48.66667	10	10	-1.41169	8.4091	-4.8452	-10.132	-7.96E-05
16 Crossrail To	48.58333	9	10	-1.43294	8.4091	-4.9133	-10.268	-8.07E-05
16 Crossrail Tu	48.5	8	10	-1.44958	8.4091	-4.9674	-10.374	-8.17E-05
16 Crossrail To	48.41667	7	10	-1.46086	8.4091	-5.0039	-10.448	-8.23E-05
16 Crossrail Tu	48.33333	6	10	-1.46595	8.4091	-5.0183	-10.484	-8.25E-05
16 Crossrail Tu	48.25	5	10	-1.46403	8.4091	-5.0059	-10.479	-8.22E-05
16 Crossrail To	48.16667	4	10	-1.45437	8.4091	-4.9624	-10.428	-8.13E-05
16 Crossrail Tu	48.08333	3	10	-1.43636	8.4091	-4.8837	-10.329	-7.97E-05
16 Crossrail Tu	48	2	10	-1.40965	8.4091	-4.7673	-10.18	-7.74E-05
16 Crossrail Tu	47.91667	1	10	-1.37419	8.4091	-4.6124	-9.9804	-7.44E-05
16 Crossrail Tu	47.83333	0	10	-1.33025	8.4091	-4.4201	-9.7322	-7.06E-05
16 Crossrail Tu	47.75	-1	10	-1.27849	8.4091	-4.1941	-9.4387	-6.61E-05
16 Crossrail Tu	47.66667	-2	10	-1.21988	8.4091	-3.9397	-9.1051	-6.11E-05
16 Crossrail Tu	47.58333	-3	10	-1.15569	8.4091	-3.6642	-8.7379	-5.57E-05
16 Crossrail Tu	47.5	-4	10	-1.08734	8.4091	-3.3756		-5.00E-05
16 Crossrail Tu	47.41667	-5	10	-1.01634	8.4091	-3.0821		-4.44E-05
16 Crossrail Tu		-6	10	-0.94415	8.4091	-2.7914		-3.88E-05
16 Crossrail Tu	47.25	-7	10	-0.87213	8.4091	-2.51		-3.35E-05
16 Crossrail Tu		-8	10	-0.80146	8.4091	-2.2433		-2.86E-05
16 Crossrail Tu		-9	10	-0.73309	8.4091	-1.9948		-2.40E-05
16 Crossrail Tu	47	-10	10	-0.66775	8.4091	-1.7666		-1.99E-05
END_TABLE								
-								

Results : Consolidation : Displacement Data : Lines

None

Results : Total : Displacement Data : Lines

None

Oasys Ltd.

Shaftesbury Theatre Prop Dev - Undrained

File 03 Prop Dev - Undrained.pdd Exported 02/12/20 09:43:39

PDisp 20.0.0.2 64-bit Copyright © Oasys 1997-2019

Titles

START_TABLE

Job No.: 371647

Job Title: Shaftesbury Theatre Sub-title: Prop Dev - Undrained

Calculation Heading:
Initials: SW
Checker:
Date Saved:
Date Checked:
Notes:

File Name: 03 Prop Dev - Undrained.pdd

File Path: \\to-dc0\Geo\52100 onwards\52167 Shaftesbury Theatre Updated BIA\9. GMA\03 analyses\pdisp\CAT II

END_TABLE

Analysis Options

General

Global Poisson's ratio: 0.50

Maximum allowable ratio between values of E: 1.5 Horizontal rigid boundary level: -10.10 [m OD] Displacements at load centroids: Yes

GSA piled raft data : No

Elastic Elastic : Yes

Analysis: Boussinesq

Stiffness for horizontal displacement calculations: Weighted average

Using legacy heave correction factor: No

Consolidation : No

Soil ProfilesSoil Profile 1

START_TABLE

Layer ref. Name Level at tor Number of Youngs Mo Youngs Mo Poissons ra Non-linear curve $[kN/m^2]$ $[kN/m^2]$ [mOD] 1 20000 20000 0.2 None 1 24.15 5 2 2 20.15 5 20000 110000 0.5 None 5 125000 3 3 -6.5 125000 0.5 None

END_TABLE

Soil Zones

START_TABLE

Zone Name X min X max Y min Y max Profile [m] [m] [m] [m] -20 100 -20 60 Soil Profile 1 1 SZ1

END_TABLE

Polygonal Load Data

START_TABLE

Load ref. Name Position : P Position : P No. of Rect Value : Normal (local z)

[m] [m] [%] [kN/m²]

1 Western Ex 19.6 (6.5,-1.8) (3 10 7 100

2 Southern E 19.6 (35.9,5.3) (10 9 100

END_TABLE

Polygonal Loads' Rectangles

START_TABLE

[m	n] [ı	m]	Angle of lo		Depth y [m]						
Load 1 : Weste		tion									
(Edge 1 optima											
1 2	1.22018	1.57035	0.35258	29.405	6.5594						
2 3	7.45029	1.80282	0.35258	3.0575	6.8246						
3 3	9.04936	2.09754	0.35258	0.14423	6.0572						
4	39.1895	2.76253	0.35258	0.14423	4.7111						
5 3	9.32965	3.42752	0.35258	0.14423	3.3651						
6 3	9.46979	4.09251	0.35258	0.14423	2.0191						
7 3	9.60993	4.7575	0.35258	0.14423	0.67302						
Load 2 : South	nern Excava	ation									
(Edge 4 optima											
	88.95313	27.64382	-95.034	0.085059	0.31495						
		27.53145	-95.034		0.94484						
		27.41909	-95.034		1.5747						
		27.30672	-95.034		2.2046						
	0.17821		-95.034		2.8345						
		17.70546	-95.034	18.949	3.0251						
	38.1789	6.76359	-95.034		3.3246						
	38.1789 37.33476	5.26584	-95.034	0.06124	2.8113						
	86.37825	5.28861	-95.034	0.06124	0.93711						
END_TABLE											
Displacement	Points										
START_TABLE											
Name X	Υ		Z(level)	Calculate	Detailed						
[m		m]	[m]	Carcarace	Results						
	.,	,	[]		riesares						
GrapeNear	38	39	2/	Yes	Yes						
GrapeFar	38	44.5		Yes	Yes						
HighNear	41	10		Yes	Yes						
HighFar	61	10		Yes	Yes						
ShaftsNear											
ShaftsFar	20	-2.5		Yes	Yes						
	20	-8	24	Yes	Yes						
CNID TADIC											
END_TABLE											
END_TABLE											
END_TABLE											
END_TABLE Displacement	Lines										
	Lines										
Displacement											
Displacement START_TABLE		1	Z1	X2	Y 2	Z2	Intervals	Calculate	Detailed Results	5	
Displacement START_TABLE Name X1	Y		Z1 [m]		Y2 [m]			Calculate	Detailed Results	5	
Displacement START_TABLE	Y	1 n]	Z1 [m]	X2 [m]	Y2 [m]	Z2 [m]	Intervals [No.]	Calculate	Detailed Results	5	
Displacement START_TABLE Name X1 [m	Y	m]	[m]	[m]	[m]	[m]	[No.]			5	
Displacement START_TABLE Name X1 [m	. Y n] [ı	m] -10	[m] 22.5	[m] 62	[m] 31	[m] 22.5	[No.]	. Yes	Yes	5	
Displacement START_TABLE Name X1 [m Berkshire F Berkshire F	. Y n] [ı 63 62	m] -10 31	[m] 22.5 22.5	[m] 62 90	[m] 31 32	[m] 22.5 22.5	[No.] 41 28	. Yes 3 Yes	Yes Yes	5	
Displacement START_TABLE Name X1 [m Berkshire H Berkshire H Berkshire H	. Y n] [ı 63 62 90	-10 31 32	[m] 22.5 22.5 22.5	[m] 62 90 90	[m] 31 32 -5	[m] 22.5 22.5 22.5	[No.] 41 28 37	. Yes 3 Yes 7 Yes	Yes Yes Yes	5	
Displacement START_TABLE Name X1 [m Berkshire H Berkshire H Berkshire H Berkshire H	63 62 90 90	-10 31 32 -5	[m] 22.5 22.5 22.5 22.5 22.5	[m] 62 90 90 63	[m] 31 32 -5 -10	[m] 22.5 22.5 22.5 22.5	[No.] 41 28 37 27	. Yes 3 Yes 7 Yes 7 Yes	Yes Yes Yes Yes	5	
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Berkshire H Archway - 5	63 62 90 90 6.5	m] -10 31 32 -5 5	[m] 22.5 22.5 22.5 22.5 22.5 20.5	[m] 62 90 90 63 6.5	[m] 31 32 -5 -10 15.5	[m] 22.5 22.5 22.5 22.5 20.5	[No.] 41 28 37 27	Yes Yes Yes Yes	Yes Yes Yes Yes		
Displacement START_TABLE Name X1 [m Berkshire H Berkshire H Berkshire H Archway - S Archway - S	63 62 90 90 6.5 6.5	-10 31 32 -5 5 15.5	[m] 22.5 22.5 22.5 22.5 20.5 20.5	[m] 62 90 90 63 6.5 4	[m] 31 32 -5 -10 15.5 15.5	[m] 22.5 22.5 22.5 22.5 20.5 20.5	[No.] 41 28 37 27 11	Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes		
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Archway - S Archway - S	63 62 90 90 6.5 6.5	-10 31 32 -5 5 15.5	[m] 22.5 22.5 22.5 22.5 20.5 20.5 20.5	[m] 62 90 90 63 6.5 4 6.5	[m] 31 32 -5 -10 15.5 15.5	[m] 22.5 22.5 22.5 22.5 20.5 20.5 20.5	[No.] 41 28 37 27 11 3	Yes Yes Yes Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes Yes	5	
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Archway - S Archway - S Archway - N 167High Ho	63 62 90 90 6.5 6.5 4 27	-10 31 32 -5 5 15.5 45	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5	[m] 62 90 90 63 6.5 4 6.5 40	[m] 31 32 -5 -10 15.5 15.5 5 45	[m] 22.5 22.5 22.5 22.5 20.5 20.5 20.5	[No.] 41 28 37 27 11 3 3 13	Yes Yes Yes Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes Yes Yes		
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Archway - S Archway - S Archway - N 167High Ho 167High Ho	63 62 90 90 6.5 6.5 4 27	-10 31 32 -5 5 15.5 5 45	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[m] 62 90 90 63 6.5 4 6.5 40 40	[m] 31 32 -5 -10 15.5 15.5 5 45	[m] 22.5 22.5 22.5 22.5 20.5 20.5 20.5 20.5	[No.] 41 28 37 27 11 3 3 13	Yes Yes Yes Yes Yes Yes Yes Yes Yes	Yes		
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Archway - S Archway - S Archway - N 167High HC 167High HC	63 62 90 90 6.5 6.5 4 27 40	m] -10 31 32 -5 5 15.5 5 45 45 52	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[m] 62 90 90 63 6.5 4 6.5 40 40 27	[m] 31 32 -5 -10 15.5 15.5 5 45 52	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[No.] 41 28 37 27 11 3 3 13 7	Yes	Yes		
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Archway - S Archway - S Archway - N 167High HC 167High HC 167High HC	63 62 90 90 6.5 6.5 4 27 40 40 27	m] -10 31 32 -5 5 15.5 5 45 45 52	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[m] 62 90 90 63 6.5 4 6.5 40 40 27 27	[m] 31 32 -5 -10 15.5 15.5 5 45 52 45	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[No.] 41 28 37 27 11 3 3 13 7	Yes	Yes	5	
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Archway - S Archway - S Archway - N 167High HC 167High HC	63 62 90 90 6.5 6.5 4 27 40 40 27 4	m] -10 31 32 -5 5 15.5 5 45 45 52 52	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[m] 62 90 90 63 6.5 4 6.5 40 27 27 -1	[m] 31 32 -5 -10 15.5 15.5 5 45 52 45 52	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[No.] 41 28 37 27 11 3 3 13 7 13 7	Yes	Yes		
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Archway - S Archway - S Archway - N 167High HC 167High HC 167High HC Sovereign H Sovereign H	63 62 90 90 6.5 6.5 4 27 40 40 27 4	m] -10 31 32 -5 5 15.5 5 45 45 52 52 5	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[m] 62 90 90 63 6.5 4 6.5 40 40 27 27 -1 -4.5	[m] 31 32 -5 -10 15.5 15.5 5 45 52 45 52 45	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[No.] 41 28 37 27 11 3 3 13 7 13 7 5	Yes	Yes		
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Archway - S Archway - S Archway - N 167High HC 167High HC 167High HC Sovereign H	63 62 90 90 6.5 6.5 4 27 40 40 27 4	m] -10 31 32 -5 5 15.5 5 45 45 52 52	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[m] 62 90 90 63 6.5 4 6.5 40 40 27 27 -1	[m] 31 32 -5 -10 15.5 15.5 5 45 52 45 52 45	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[No.] 41 28 37 27 11 3 3 13 7 13 7 5	Yes	Yes		
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Archway - S Archway - S Archway - N 167High HC 167High HC 167High HC Sovereign H Sovereign H	63 62 90 90 6.5 6.5 4 27 40 40 27 4	m] -10 31 32 -5 5 15.5 5 45 45 52 52 5	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[m] 62 90 90 63 6.5 4 6.5 40 40 27 27 -1 -4.5 4	[m] 31 32 -5 -10 15.5 15.5 5 45 52 45 52 45 51 45 51 55 51 55 51 55 51 55 51 55 55 55 55	[m] 22.5 22.5 22.5 22.5 20.5 20.5 20.5 20.5	[No.] 41 28 37 27 11 3 3 7 13 7 5 5 11	Yes	Yes		
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Archway - S Archway - S Archway - N 167High HC 167High HC 167High HC Sovereign H Sovereign H	63 62 90 90 6.5 6.5 4 27 40 40 27 4 -1	m] -10 31 32 -5 5 15.5 5 45 45 52 52 5 5	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[m] 62 90 90 63 6.5 4 6.5 40 40 27 27 -1 -4.5 4	[m] 31 32 -5 -10 15.5 15.5 5 45 52 45 52 45 51 45 51 55 51 55 51 55 51 55 51 55 55 55 55	[m] 22.5 22.5 22.5 22.5 20.5 20.5 20.5 20.5	[No.] 41 28 37 27 11 3 3 13 7 13 7 11 11	Yes	Yes	5	
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Archway - S Archway - S Archway - N 167High HC 167High HC 167High HC Sovereign H Sovereign H Sovereign H	63 62 90 90 6.5 6.5 4 27 40 40 27 4 -1 -4.5	m] -10 31 32 -5 5 15.5 5 45 45 52 52 52 5 8 15.5	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[m] 62 90 90 63 6.5 4 6.5 40 40 27 27 -1 -4.5 4	[m] 31 32 -5 -10 15.5 15.5 5 45 52 45 52 45 5	[m] 22.5 22.5 22.5 22.5 20.5 20.5 20.5 20.5	[No.] 41 28 37 27 11 3 3 13 7 13 7 11 11	Yes	Yes		
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Archway - S Archway - S Archway - N 167High Ho 167High Ho 167High Ho Sovereign H Sovereign H Sovereign H Sovereign H Crossrail Tu	63 62 90 90 6.5 6.5 4 27 40 40 27 4 -1 -4.5	m] -10 31 32 -5 5 15.5 5 45 45 52 52 52 5 8 15.5	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[m] 62 90 90 63 6.5 4 6.5 40 40 27 27 -1 -4.5 4	[m] 31 32 -5 -10 15.5 15.5 5 45 52 45 52 45 5	[m] 22.5 22.5 22.5 22.5 20.5 20.5 20.5 20.5	[No.] 41 28 37 27 11 3 3 13 7 13 7 11 11	Yes	Yes		
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Archway - S Archway - S Archway - N 167High Ho 167High Ho 167High Ho Sovereign H Sovereign H Sovereign H Sovereign H Crossrail Tu	63 62 90 90 6.5 6.5 4 27 40 40 27 4 -1 -4.5	m] -10 31 32 -5 5 15.5 5 45 45 52 52 52 5 8 15.5	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[m] 62 90 90 63 6.5 4 6.5 40 40 27 27 -1 -4.5 4	[m] 31 32 -5 -10 15.5 15.5 5 45 52 45 52 45 5	[m] 22.5 22.5 22.5 22.5 20.5 20.5 20.5 20.5	[No.] 41 28 37 27 11 3 3 13 7 13 7 11 11	Yes	Yes		
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Archway - S Archway - S Archway - N 167High Ho 167High Ho 167High Ho Sovereign H Sovereign H Sovereign H Sovereign H Crossrail Tu	63 62 90 90 6.5 6.5 4 27 40 40 27 4 -1 -4.5	m] -10 31 32 -5 5 15.5 5 45 45 52 52 52 5 8 15.5	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[m] 62 90 90 63 6.5 4 6.5 40 40 27 27 -1 -4.5 4	[m] 31 32 -5 -10 15.5 15.5 5 45 52 45 52 45 5	[m] 22.5 22.5 22.5 22.5 20.5 20.5 20.5 20.5	[No.] 41 28 37 27 11 3 3 13 7 13 7 11 11	Yes	Yes		
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Archway - S Archway - S Archway - N 167High Ho 167High Ho 167High Ho Sovereign H Sovereign H Sovereign H Sovereign H Crossrail Tu	63 62 90 90 6.5 6.5 4 27 40 40 27 4 -1 -4.5 4	m] -10 31 32 -5 5 15.5 5 45 45 52 52 52 5 8 15.5	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[m] 62 90 90 63 6.5 4 6.5 40 40 27 27 -1 -4.5 4	[m] 31 32 -5 -10 15.5 15.5 5 45 52 45 52 45 5	[m] 22.5 22.5 22.5 22.5 20.5 20.5 20.5 20.5	[No.] 41 28 37 27 11 3 3 13 7 13 7 11 11	Yes	Yes		
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Archway - S Archway - S Archway - N 167High HC 167High HC 167High HC Sovereign H Sovereign H Sovereign H Sovereign H Crossrail TU END_TABLE	63 62 90 90 6.5 6.5 4 27 40 40 27 4 -1 -4.5 4	m] -10 31 32 -5 5 15.5 5 45 45 52 52 52 5 8 15.5	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[m] 62 90 90 63 6.5 4 6.5 40 40 27 27 -1 -4.5 4	[m] 31 32 -5 -10 15.5 15.5 5 45 52 45 52 45 5	[m] 22.5 22.5 22.5 22.5 20.5 20.5 20.5 20.5	[No.] 41 28 37 27 11 3 3 13 7 13 7 11 11	Yes	Yes		
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Archway - S Archway - S Archway - N 167High HC 167High HC 167High HC Sovereign H Sovereign H Sovereign H Sovereign H Crossrail TU END_TABLE	63 62 90 90 6.5 6.5 4 27 40 40 27 4 -1 -4.5 4 52	m] -10 31 32 -5 5 15.5 5 45 45 52 52 52 5 8 15.5	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[m] 62 90 90 63 6.5 4 6.5 40 40 27 27 -1 -4.5 4	[m] 31 32 -5 -10 15.5 15.5 5 45 52 45 52 45 5	[m] 22.5 22.5 22.5 22.5 20.5 20.5 20.5 20.5	[No.] 41 28 37 27 11 3 3 13 7 13 7 11 11	Yes	Yes		
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Archway - S Archway - S Archway - N 167High HC 167High HC 167High HC Sovereign H	63 62 90 90 6.5 6.5 4 27 40 40 27 4 -1 -4.5 4 52	m] -10 31 32 -5 5 15.5 5 45 45 52 52 5 8 15.5 50	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[m] 62 90 90 63 6.5 4 6.5 40 27 27 -1 -4.5 4 47	[m] 31 32 -5 -10 15.5 15.5 5 45 52 45 52 45 5	[m] 22.5 22.5 22.5 22.5 20.5 20.5 20.5 20.5	[No.] 41 28 37 27 11 3 3 13 7 13 7 11 11	Yes	Yes		Detailed Results
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Archway - S Archway - S Archway - N 167High HC 167High HC 167High HC Sovereign H	63 62 90 90 6.5 6.5 4 27 40 40 27 4 -1 -4.5 4 52	m] -10 31 32 -5 5 15.5 5 45 45 52 52 5 8 15.5 50	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.	[m] 62 90 90 63 6.5 4 6.5 40 27 27 -1 -4.5 4 47	[m] 31 32 -5 -10 15.5 15.5 5 45 52 45 5 8 15.5 5 -10	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.	[No.] 41 28 37 27 11 3 3 7 13 7 5 5 11 11 60	Yes	Yes	usion: I Calculate	Detailed Results
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Archway - S Archway - S Archway - N 167High HC 167High HC 167High HC Sovereign H	63 62 90 90 6.5 6.5 4 27 40 40 27 4 -1 -4.5 4 52	n] -10 31 32 -5 5 15.5 5 45 45 52 52 5 8 15.5 50	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[m] 62 90 90 63 6.5 4 6.5 40 40 27 27 -1 -4.5 4 4 77	[m] 31 32 -5 -10 15.5 15.5 5 45 52 45 52 45 5 -10	[m] 22.5 22.5 22.5 22.5 20.5 20.5 20.5 20.5	[No.] 41 28 37 27 11 3 3 7 13 7 5 5 11 11 60	Yes	Yes	usion: I Calculate	Detailed Results
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Archway - S Archway - S Archway - N 167High HC 167High HC 167High HC Sovereign H Sover	63 62 90 90 6.5 6.5 4 27 40 40 27 4 -1 -4.5 4 52	n] -10 31 32 -5 5 15.5 5 45 45 52 52 5 8 15.5 50	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.	[m] 62 90 90 63 6.5 4 6.5 40 27 27 -1 -4.5 4 47	[m] 31 32 -5 -10 15.5 15.5 5 45 52 45 58 15.5 5 -10	[m] 22.5 22.5 22.5 22.5 20.5 20.5 20.5 20.5	[No.] 41 28 37 27 11 3 7 13 7 5 5 11 11 60	Yes	Yes	usion: I Calculate	Detailed Results
Displacement START_TABLE Name X1 [m] Berkshire H Berkshire H Berkshire H Archway - S Archway - S Archway - N 167High HC 167High HC 167High HC Sovereign H Sover	63 62 90 90 6.5 6.5 4 27 40 40 27 4 -1 -4.5 4 52 Grids	m] -10 31 32 -5 5 15.5 5 45 45 52 52 5 8 15.5 50	[m] 22.5 22.5 22.5 20.5 20.5 20.5 20.5 20.5	[m] 62 90 90 63 6.5 4 6.5 40 40 27 27 -1 -4.5 4 47 27 21 [m] 24	[m] 31 32 -5 -10 15.5 15.5 5 45 52 45 5 -10 X2 [m] -	[m] 22.5 22.5 22.5 22.5 20.5 20.5 20.5 20.5	[No.] 41 28 37 27 11 3 3 13 7 13 7 5 5 5 11 11 60	Yes	Yes	usion: I Calculate	

Warnings

(1)One or more displacement grids have numbers of intervals of at least 100. Large numbers of intervals will slow the analysis.

(2)The load at (23.219, 1.611, 19.600)m lies wide of all soil zones. Displacements at its centre have been requested. The first soil profile will be used.

Results: Immediate: Load Centres: Polygonal

START_TABLE

Ref. Name dz Stress: Calc Stress: Verl Stress: Sum Vert. Strain Χ $[kN/m^2]$ $[kN/m^2]$ [[m] [m] [mOD] [mm] [mOD] 1 Western Ex 23.21861 1.61111 19.6 16.30277 17.028 88.563 171.11 0.001592 2 Southern E 39.25431 16.22418 19.6 11.18748 17.028 102.42 0.00139 61.671 END_TABLE

Results: Consolidation: Load Centres: Polygonal

None

Results: Total: Load Centres: Polygonal

None

Results: Immediate: Displacement Data: Points

START_TABLE

Ref.	Name	Х	У	Z		dz	Stress: Cald	Stress: Verl	Stress: Sum \	/ert. Strain
		[m]	[m]	[mOD]		[mm]	[mOD]	$[kN/m^2]$	$[kN/m^2]$	
	1 GrapeNe	ar	38	39	24	-0.21435	23.615	0	0	0
	2 GrapeFar		38	44.5	24	-0.22213	23.615	0	0	0
	3 HighNear	•	41	10	24	3.6115	23.615	0	0	0
	4 HighFar		61	10	24	-0.27656	23.615	0	0	0
	5 ShaftsNe	ar	20	-2.5	24	4.63056	23.615	0	0	0
	6 ShaftsFar		20	-8	24	0.78425	23.615	0	0	0
END_T	ABLE									

Results : Consolidation : Displacement Data : Points

None

Results : Total : Displacement Data : Points

None

Results: Immediate: Displacement Data: Lines

START_TABLE

Ref.	Name	Х	У		Z	dz	Stress: Cald	Stress: Ver	Stress: Sun	Vert. Strain
		[m]	[m]		[mOD]	[mm]	[mOD]	$[kN/m^2]$	$[kN/m^2]$	[
	1 Berkshire	F	63	-10	22.5	-0.25312	22.108	0	0	0
	1 Berkshire	F 62.975	61	-9	22.5	-0.25638	22.108	0	0	0
	1 Berkshire	⊦ 62.951	22	-8	22.5	-0.25942	22.108	0	0	0
	1 Berkshire	⊦ 62.926	83	-7	22.5	-0.26223	22.108	0	0	0
	1 Berkshire	F 62.902	44	-6	22.5	-0.26479	22.108	0	0	0
	1 Berkshire	F 62.878	05	-5	22.5	-0.26711	22.108	0	0	0
	1 Berkshire	F 62.853	66	-4	22.5	-0.26918	22.108	0	0	0
	1 Berkshire	F 62.829	27	-3	22.5	-0.271	22.108	0	0	0
	1 Berkshire	F 62.804	88	-2	22.5	-0.27257	22.108	0	0	0
	1 Berkshire	F 62.780	49	-1	22.5	-0.2739	22.108	0	0	0
	1 Berkshire	F 62.75	61	0	22.5	-0.27498	22.108	0	0	0
	1 Berkshire	⊦ 62.731	71	1	22.5	-0.27582	22.108	0	0	0
	1 Berkshire	⊦ 62.707	32	2	22.5	-0.27642	22.108	0	0	0
	1 Berkshire	F 62.682	93	3	22.5	-0.27679	22.108	0	0	0

1 Berkshire F	62.65854	4	22.5	-0.27693	22.108	0	0	0
1 Berkshire F	62.63415	5	22.5	-0.27686	22.108	0	0	0
1 Berkshire F	62.60976	6	22.5	-0.27656	22.108	0	0	0
1 Berkshire F	62.58537	7	22.5	-0.27606	22.108	0	0	0
1 Berkshire F		8	22.5	-0.27534	22.108	0	0	0
1 Berkshire F		9	22.5	-0.27443	22.108	0	0	0
1 Berkshire F	62.5122	10	22.5	-0.27332	22.108	0	0	0
1 Berkshire F	62.4878	10	22.5	-0.27332	22.108	0	0	0
						_	_	
1 Berkshire F		12	22.5	-0.27054	22.108	0	0	0
1 Berkshire F		13	22.5	-0.26888	22.108	0	0	0
1 Berkshire F		14	22.5	-0.26706	22.108	0	0	0
1 Berkshire F		15	22.5	-0.26509	22.108	0	0	0
1 Berkshire F		16	22.5	-0.26297	22.108	0	0	0
1 Berkshire F		17	22.5	-0.26072	22.108	0	0	0
1 Berkshire F	62.31707	18	22.5	-0.25835	22.108	0	0	0
1 Berkshire F		19	22.5	-0.25587	22.108	0	0	0
1 Berkshire F	62.26829	20	22.5	-0.25329	22.108	0	0	0
1 Berkshire F	62.2439	21	22.5	-0.25062	22.108	0	0	0
1 Berkshire F	62.21951	22	22.5	-0.24787	22.108	0	0	0
1 Berkshire F	62.19512	23	22.5	-0.24505	22.108	0	0	0
1 Berkshire F	62.17073	24	22.5	-0.24215	22.108	0	0	0
1 Berkshire F	62.14634	25	22.5	-0.23919	22.108	0	0	0
1 Berkshire F		26	22.5	-0.23616	22.108	0	0	0
1 Berkshire F		27	22.5	-0.23305	22.108	0	0	0
1 Berkshire F		28	22.5	-0.22987	22.108	0	0	0
1 Berkshire F		29	22.5	-0.22661	22.108	0	0	0
1 Berkshire F		30	22.5	-0.22327	22.108	0	0	0
1 Berkshire F						_		
	62	31	22.5	-0.21984	22.108	0	0	0
2 Berkshire F	62	31	22.5	-0.21984	22.108	0	0	0
2 Berkshire F	63	31.03571	22.5	-0.21599	22.108	0	0	0
2 Berkshire F	64	31.07143	22.5	-0.21165	22.108	0	0	0
2 Berkshire F	65	31.10714	22.5	-0.20694	22.108	0	0	0
2 Berkshire F	66	31.14286	22.5	-0.20194	22.108	0	0	0
2 Berkshire F	67	31.17857	22.5	-0.19674	22.108	0	0	0
2 Berkshire F	68	31.21429	22.5	-0.19141	22.108	0	0	0
2 Berkshire F	69	31.25	22.5	-0.186	22.108	0	0	0
2 Berkshire F	70	31.28571	22.5	-0.18055	22.108	0	0	0
2 Berkshire F	71	31.32143	22.5	-0.17511	22.108	0	0	0
2 Berkshire F	72	31.35714	22.5	-0.16971	22.108	0	0	0
2 Berkshire F	73	31.39286	22.5	-0.16437	22.108	0	0	0
2 Berkshire F	74	31.42857	22.5	-0.15911	22.108	0	0	0
2 Berkshire F	75	31.46429	22.5	-0.15395	22.108	0	0	0
2 Berkshire F	76	31.5	22.5	-0.1489	22.108	0	0	0
2 Berkshire F	77	31.53571	22.5	-0.14398	22.108	0	0	0
2 Berkshire F	78	31.57143	22.5	-0.13918	22.108	0	0	0
2 Berkshire F	79	31.60714	22.5	-0.13452	22.108	0	0	0
2 Berkshire F	80	31.64286	22.5	-0.13	22.108	0	0	0
2 Berkshire F	81	31.67857	22.5	-0.12562	22.108	0	0	0
2 Berkshire F	82	31.71429	22.5	-0.12137	22.108	0	0	0
2 Berkshire F	83	31.75	22.5	-0.11727	22.108	0	0	0
2 Berkshire F	84	31.78571	22.5	-0.11331	22.108	0	0	0
2 Berkshire F	85	31.82143	22.5	-0.10949	22.108	0	0	0
2 Berkshire F	86	31.85714	22.5	-0.1058	22.108	0	0	0
2 Berkshire F	87	31.89286	22.5	-0.10224	22.108	0	0	0
2 Berkshire F	88	31.92857	22.5	-0.09881	22.108	0	0	0
2 Berkshire F	89	31.96429	22.5	-0.09551	22.108	0	0	0
2 Berkshire F	90	32	22.5	-0.09233	22.108	0	0	0
3 Berkshire F	90	32	22.5	-0.09233	22.108	0	0	0
3 Berkshire F	90	31	22.5	-0.09355	22.108	0	0	0
3 Berkshire F	90	30	22.5	-0.09475	22.108	0	0	0
3 Berkshire F	90	29	22.5	-0.09591	22.108	0	0	0
3 Berkshire F	90	28	22.5	-0.09705	22.108	0	0	0
3 Berkshire F	90	27	22.5	-0.09815	22.108	0	0	0
3 Berkshire F	90	26	22.5	-0.09921	22.108	0	0	0
3 Berkshire F	90	25	22.5	-0.10023	22.108	0	0	0
3 Berkshire F	90	24	22.5	-0.10121	22.108	0	0	0
3 Berkshire F	90	23	22.5	-0.10214	22.108	0	0	0
3 Berkshire F	90	22	22.5	-0.10303	22.108	0	0	0
3 Berkshire F	90	21	22.5	-0.10387	22.108	0	0	0
3 Berkshire F	90	20	22.5	-0.10466	22.108	0	0	0
3 Berkshire F	90	19	22.5	-0.10466	22.108	0	0	0
3 Berkshire F	90	18	22.5	-0.1054	22.108	0	0	0
3 Berkshire F	90	17	22.5	-0.10608	22.108	0	0	0
3 Berkshire F	90	16	22.5	-0.10671	22.108	0	0	0
2 DELKSHILE L	30	10	22.3	0.10/2/	22.100	U	U	U

3 Berkshire F	90	15	22.5	-0.10778	22.108	0	0	0
3 Berkshire F	90	14	22.5	-0.10823	22.108	0	0	0
3 Berkshire F	90	13	22.5	-0.10862	22.108	0	0	0
3 Berkshire F	90	12	22.5	-0.10894	22.108	0	0	0
3 Berkshire F	90	11	22.5	-0.1092	22.108	0	0	0
3 Berkshire F	90	10	22.5	-0.10939	22.108	0	0	0
3 Berkshire F	90	9	22.5	-0.10952	22.108	0	0	0
3 Berkshire F	90	8	22.5	-0.10959	22.108	0	0	0
3 Berkshire F	90	7	22.5	-0.10959	22.108	0	0	0
3 Berkshire F	90	6	22.5	-0.10952	22.108	0	0	0
3 Berkshire F	90	5	22.5	-0.1094	22.108	0	0	0
3 Berkshire F	90	4	22.5	-0.1092	22.108	0	0	0
3 Berkshire F	90	3	22.5	-0.10895	22.108	0	0	0
3 Berkshire F	90	2	22.5	-0.10863	22.108	0	0	0
3 Berkshire F	90	1	22.5	-0.10824	22.108	0	0	0
3 Berkshire F	90	0	22.5	-0.1078	22.108	0	0	0
3 Berkshire F	90	-1	22.5	-0.1073	22.108	0	0	0
3 Berkshire F	90	-2	22.5	-0.10674	22.108	0	0	0
3 Berkshire F	90	-3	22.5	-0.10612	22.108	0	0	0
3 Berkshire F	90	-4	22.5	-0.10545	22.108	0	0	0
3 Berkshire F	90	-5	22.5	-0.10473	22.108	0	0	0
4 Berkshire F	90	-5	22.5	-0.10473	22.108	0	0	0
4 Berkshire F	89	-5.18519	22.5	-0.10841	22.108	0	0	0
4 Berkshire F	88	-5.37037	22.5	-0.11224	22.108	0	0	0
4 Berkshire F	87	-5.55556	22.5	-0.11621	22.108	0	0	0
4 Berkshire F	86	-5.74074	22.5	-0.12034	22.108	0	0	0
4 Berkshire F	85	-5.92593	22.5	-0.12461	22.108	0	0	0
4 Berkshire F	84	-6.11111	22.5	-0.12904	22.108	0	0	0
4 Berkshire F	83	-6.2963	22.5	-0.13363	22.108	0	0	0
4 Berkshire F	82	-6.48148	22.5	-0.13838	22.108	0	0	0
4 Berkshire F	81	-6.66667	22.5	-0.14329	22.108	0	0	0
4 Berkshire F	80	-6.85185	22.5	-0.14837	22.108	0	0	
						_		0
4 Berkshire F	79	-7.03704	22.5	-0.15361	22.108	0	0	0
4 Berkshire F	78	-7.22222	22.5	-0.15901	22.108	0	0	0
4 Berkshire F	77	-7.40741	22.5	-0.16457	22.108	0	0	0
4 Berkshire F	76	-7.59259	22.5	-0.17029	22.108	0	0	0
4 Berkshire F	75	-7.77778	22.5	-0.17617	22.108	0	0	0
4 Berkshire F	74	-7.96296	22.5	-0.18218	22.108	0	0	0
4 Berkshire F	73	-8.14815	22.5	-0.18834	22.108	0	0	0
4 Berkshire F	72	-8.33333	22.5	-0.19461	22.108	0	0	0
4 Berkshire F	72	-8.51852	22.5	-0.201	22.108	0	0	0
						_	_	_
4 Berkshire F	70	-8.7037	22.5	-0.20748	22.108	0	0	0
4 Berkshire F	69	-8.88889	22.5	-0.21403	22.108	0	0	0
4 Berkshire F	68	-9.07407	22.5	-0.22063	22.108	0	0	0
4 Berkshire F	67	-9.25926	22.5	-0.22724	22.108	0	0	0
4 Berkshire F	66	-9.44444	22.5	-0.23384	22.108	0	0	0
4 Berkshire F	65	-9.62963	22.5	-0.24038	22.108	0	0	0
4 Berkshire F	64	-9.81481	22.5	-0.24682	22.108	0	0	0
4 Berkshire F	63	-10	22.5	-0.25312	22.108	0	0	0
5 Archway - s	6.5	5	20.5	3.51701	20.325	0	0	0
•						-		
5 Archway - s	6.5	5.95455	20.5	1.75051	20.325	0	0	0
5 Archway - s	6.5	6.90909	20.5	1.27685	20.325	0	0	0
5 Archway - s	6.5	7.86364	20.5	0.9432	20.325	0	0	0
5 Archway - s	6.5	8.81818	20.5	0.67186	20.325	0	0	0
5 Archway - s	6.5	9.77273	20.5	0.45734	20.325	0	0	0
5 Archway - s	6.5	10.72727	20.5	0.28913	20.325	0	0	0
5 Archway - s	6.5	11.68182	20.5	0.15664	20.325	0	0	0
5 Archway - s	6.5	12.63636	20.5	0.05157	20.325	0	0	0
5 Archway - s	6.5	13.59091	20.5	-0.03222	20.325	0	0	0
5 Archway - s	6.5	14.54545	20.5	-0.09922	20.325	0	0	0
•						-	_	_
5 Archway - s	6.5	15.5	20.5	-0.15279	20.325	0	0	0
6 Archway - (6.5	15.5	20.5	-0.15279	20.325	0	0	0
6 Archway - (5.66667	15.5	20.5	-0.16757	20.325	0	0	0
6 Archway - e	4.83333	15.5	20.5	-0.18185	20.325	0	0	0
6 Archway - (4	15.5	20.5	-0.19541	20.325	0	0	0
7 Archway - ۱	4	5	20.5	0.99123	20.325	0	0	0
7 Archway - \	4.83333	5	20.5	1.32133	20.325	0	0	0
7 Archway - v	5.66667	5	20.5	1.88192	20.325	0	0	0
7 Archway - \	6.5	5	20.5	3.51701	20.325	0	0	0
•			20.5				0	
8 167High Ho	27	45		-0.23587	20.325	0		0
8 167High Ho	28	45	20.5	-0.23539	20.325	0	0	0
8 167High Ho	29	45	20.5	-0.23466	20.325	0	0	0
8 167High Ho	30	45	20.5	-0.2337	20.325	0	0	0
8 167High Ho	31	45	20.5	-0.23251	20.325	0	0	0

8 167High Ho	32	45	20.5	-0.23112	20.325	0	0	0
8 167High Ho	33	45	20.5	-0.22957	20.325	0	0	0
8 167High Ho	34	45	20.5	-0.22787	20.325	0	0	0
8 167High Hc	35	45	20.5	-0.22607	20.325	0	0	0
8 167High Ho	36	45	20.5	-0.22419	20.325	0	0	0
_								
8 167High Ho	37	45	20.5	-0.22227	20.325	0	0	0
8 167High Ho	38	45	20.5	-0.22033	20.325	0	0	0
8 167High Ho	39	45	20.5	-0.21841	20.325	0	0	0
8 167High Ho	40	45	20.5	-0.21651	20.325	0	0	0
9 167High Ho	40	45	20.5	-0.21651	20.325	0	0	0
9 167High Ho	40	46	20.5	-0.21259	20.325	0	0	0
9 167High Ho	40	47	20.5	-0.20801	20.325	0	0	0
9 167High Ho	40	48	20.5	-0.20295	20.325	0	0	0
_								
9 167High Hc	40	49	20.5	-0.19756	20.325	0	0	0
9 167High Ho	40	50	20.5	-0.19194	20.325	0	0	0
9 167High Ho	40	51	20.5	-0.18619	20.325	0	0	0
9 167High Ho	40	52	20.5	-0.18038	20.325	0	0	0
10 167High Ho	40	52	20.5	-0.18038	20.325	0	0	0
10 167High Ho	39	52	20.5	-0.18162	20.325	0	0	0
10 167High Ho	38	52	20.5	-0.18275	20.325	0	0	0
10 167High Hc	37	52	20.5	-0.18377	20.325	0	0	0
10 167High Hc	36	52	20.5	-0.18469	20.325			
_						0	0	0
10 167High Hc	35	52	20.5	-0.18549	20.325	0	0	0
10 167High Ho	34	52	20.5	-0.18617	20.325	0	0	0
10 167High Ho	33	52	20.5	-0.18672	20.325	0	0	0
10 167High Ho	32	52	20.5	-0.18714	20.325	0	0	0
10 167High Ho	31	52	20.5	-0.18743	20.325	0	0	0
10 167High Ho	30	52	20.5	-0.18759	20.325	0	0	0
10 167High Hc	29	52	20.5	-0.1876	20.325	0	0	0
10 167High Hc	28	52	20.5	-0.18747	20.325	0	0	0
_								
10 167High Hc	27	52	20.5	-0.1872	20.325	0	0	0
11 167High Ho	27	52	20.5	-0.1872	20.325	0	0	0
11 167High Ho	27	51	20.5	-0.19391	20.325	0	0	0
11 167High Ho	27	50	20.5	-0.20075	20.325	0	0	0
11 167High Ho	27	49	20.5	-0.2077	20.325	0	0	0
11 167High Ho	27	48	20.5	-0.21473	20.325	0	0	0
11 167High Hc	27	47	20.5	-0.2218	20.325	0	0	0
11 167High Hc						_	_	
•	27	46	20.5	-0.22886	20.325	0	0	0
11 167High Hc	27	45	20.5	-0.23587	20.325	0	0	0
12 Sovereign I	4	5	20.5	0.99123	20.325	0	0	0
12 Sovereign I	3	5	20.5	0.67708	20.325	0	0	0
12 Sovereign I	2	5	20.5	0.43594	20.325	0	0	0
12 Sovereign I	1	5	20.5	0.2554	20.325	0	0	0
12 Sovereign I	0	5	20.5	0.12084	20.325	0	0	0
12 Sovereign I	-1	5	20.5	0.02027	20.325	0	0	0
_	-1	5		0.02027		0	0	
13 Sovereign I			20.5		20.325	_	_	0
13 Sovereign I	-1.7	5.6	20.5	-0.04819	20.325	0	0	0
13 Sovereign I	-2.4	6.2	20.5	-0.10184	20.325	0	0	0
13 Sovereign I	-3.1	6.8	20.5	-0.14369	20.325	0	0	0
13 Sovereign I	-3.8	7.4	20.5	-0.17608	20.325	0	0	0
13 Sovereign I	-4.5	8	20.5	-0.20087	20.325	0	0	0
14 Sovereign I	-4.5	8	20.5	-0.20087	20.325	0	0	0
14 Sovereign I	-3.72727	8.68182	20.5	-0.19201	20.325	0	0	0
14 Sovereign F	-2.95455	9.36364	20.5	-0.1835	20.325	0	0	0
_								
14 Sovereign I	-2.18182	10.04545	20.5	-0.17589	20.325	0	0	0
14 Sovereign I	-1.40909	10.72727	20.5	-0.16977	20.325	0	0	0
14 Sovereign I	-0.63636	11.40909	20.5	-0.16569	20.325	0	0	0
14 Sovereign I	0.13636	12.09091	20.5	-0.16407	20.325	0	0	0
14 Sovereign F	0.90909	12.77273	20.5	-0.16518	20.325	0	0	0
14 Sovereign I	1.68182	13.45455	20.5	-0.16907	20.325	0	0	0
14 Sovereign F	2.45455	14.13636	20.5	-0.17562	20.325	0	0	0
14 Sovereign F	3.22727	14.81818	20.5	-0.18454	20.325	0	0	0
_								
14 Sovereign I	4	15.5	20.5	-0.19541	20.325	0	0	0
15 Sovereign I	4	15.5	20.5	-0.19541	20.325	0	0	0
15 Sovereign I	4	14.54545	20.5	-0.15815	20.325	0	0	0
15 Sovereign I	4	13.59091	20.5	-0.11225	20.325	0	0	0
15 Sovereign I	4	12.63636	20.5	-0.05605	20.325	0	0	0
15 Sovereign I	4	11.68182	20.5	0.01248	20.325	0	0	0
15 Sovereign I	4	10.72727	20.5	0.09574	20.325	0	0	0
15 Sovereign I	4	9.77273	20.5	0.19652	20.325	0	0	0
_								
15 Sovereign I	4	8.81818	20.5	0.31773	20.325	0	0	0
15 Sovereign I	4	7.86364	20.5	0.46142	20.325	0	0	0
15 Sovereign I	4	6.90909	20.5	0.62688	20.325	0	0	0
15 Sovereign I	4	5.95455	20.5	0.80783	20.325	0	0	0

15 Carragian I	4	_	20.5	0.00422	20.225	0	0	0
15 Sovereign I	4	5	20.5	0.99123	20.325	0 1007	1 2022	0
16 Crossrail Tu	52	50	10	-0.09796	8.4091	0.1087	1.3932	-8.97E-06
16 Crossrail Tu		49	10	-0.09846	8.4091	0.12309	1.4875	-9.40E-06
16 Crossrail Tu		48 47	10	-0.0985	8.4091	0.13981	1.5904	-9.84E-06
16 Crossrail Tu	51.75		10	-0.09799	8.4091	0.15928	1.703	-1.03E-05
16 Crossrail Tu		46	10	-0.09681	8.4091	0.18202	1.8263	-1.08E-05
16 Crossrail Tu		45	10	-0.09483	8.4091	0.20866	1.9616	-1.12E-05
16 Crossrail Tu	51.5	44	10	-0.09192	8.4091	0.23993	2.1101	-1.17E-05
16 Crossrail Tu		43	10	-0.08791	8.4091	0.27671	2.2735	-1.21E-05
16 Crossrail Tu		42	10	-0.0826	8.4091	0.32003	2.4533	-1.26E-05
16 Crossrail Tu	51.25	41	10	-0.0758	8.4091	0.37113	2.6513	-1.29E-05
16 Crossrail Tu		40	10	-0.06726	8.4091	0.43141	2.8693	-1.32E-05
16 Crossrail Tu		39	10	-0.05674	8.4091	0.50251	3.1094	-1.35E-05
16 Crossrail Tu	51	38	10	-0.04397	8.4091	0.58625	3.3737	-1.36E-05
16 Crossrail Tu		37	10	-0.02868	8.4091	0.68464	3.6641	-1.35E-05
16 Crossrail Tu		36	10	-0.01059	8.4091	0.79979	3.9825	-1.33E-05
16 Crossrail Tu	50.75	35	10	0.01056	8.4091	0.93382	4.3306	-1.29E-05
16 Crossrail Tu		34	10	0.03497	8.4091	1.0887	4.7096	-1.21E-05
16 Crossrail Tu		33	10	0.0628	8.4091	1.266	5.1202	-1.11E-05
16 Crossrail Tu	50.5	32	10	0.09412	8.4091	1.4667	5.5621	-9.77E-06
16 Crossrail Tu		31	10	0.12884	8.4091	1.6909	6.0341	-8.08E-06
16 Crossrail Tu		30	10	0.16676	8.4091	1.9372	6.5339	-6.07E-06
16 Crossrail Tu	50.25	29	10	0.20751	8.4091	2.2033	7.0579	-3.76E-06
16 Crossrail Tu		28	10	0.25054	8.4091	2.4851	7.6012	-1.23E-06
16 Crossrail Tu		27	10	0.29519	8.4091	2.7774	8.1583	1.46E-06
16 Crossrail Tu	50	26	10	0.3407	8.4091	3.0742	8.7227	4.20E-06
16 Crossrail Tu		25	10	0.38627	8.4091	3.3692	9.2877	6.89E-06
16 Crossrail Tu		24	10	0.43114	8.4091	3.6565	9.8469	9.43E-06
16 Crossrail Tu	49.75	23	10	0.47467	8.4091	3.9308	10.395	1.17E-05
16 Crossrail Tu		22	10	0.51633	8.4091	4.1885	10.926	1.38E-05
16 Crossrail Tu		21	10	0.55575	8.4091	4.4272	11.437	1.55E-05
16 Crossrail Tu	49.5	20	10	0.59271	8.4091	4.6458	11.924	1.69E-05
16 Crossrail Tu		19	10	0.62715	8.4091	4.8445	12.387	1.80E-05
16 Crossrail Tu		18	10	0.6591	8.4091	5.0245	12.824	1.89E-05
16 Crossrail Tu	49.25	17	10	0.68864	8.4091	5.1872	13.235	1.96E-05
16 Crossrail Tu		16	10	0.71591	8.4091	5.3344	13.619	2.00E-05
16 Crossrail Tu		15	10	0.74102	8.4091	5.4678	13.976	2.04E-05
16 Crossrail Tu	49	14	10	0.76404	8.4091	5.5889	14.305	2.07E-05
16 Crossrail Tu		13	10	0.78499	8.4091	5.6983	14.606	2.09E-05
16 Crossrail Tu		12	10	0.80378	8.4091	5.7965	14.876	2.11E-05
16 Crossrail Tu	48.75	11	10	0.82023	8.4091	5.8827	15.114	2.13E-05
16 Crossrail Tu		10	10	0.83405	8.4091	5.9557	15.315	2.15E-05
16 Crossrail Tu		9	10	0.84482	8.4091	6.0129	15.476	2.15E-05
16 Crossrail Tu	48.5	8	10	0.85203	8.4091	6.0514	15.592	2.15E-05
16 Crossrail Tu		7	10	0.85509	8.4091	6.0671	15.657	2.14E-05
16 Crossrail Tu		6	10	0.85335	8.4091	6.0556	15.666	2.10E-05
16 Crossrail Tu	48.25	5	10	0.84618	8.4091	6.0122	15.614	2.04E-05
16 Crossrail Tu		4	10	0.833	8.4091	5.9326	15.495	1.94E-05
16 Crossrail Tu		3	10	0.81337	8.4091	5.813	15.308	1.79E-05
16 Crossrail Tu	48	2	10	0.78703	8.4091	5.6514	15.049	1.60E-05
16 Crossrail Tu		1	10	0.754	8.4091	5.4473	14.72	1.36E-05
16 Crossrail Tu		0	10	0.71459	8.4091	5.2027	14.323	1.08E-05
16 Crossrail Tu	47.75	-1	10	0.66941	8.4091	4.9219	13.864	7.58E-06
16 Crossrail Tu		-2	10	0.61939	8.4091	4.6113	13.351	4.06E-06
16 Crossrail Tu		-3	10	0.56563	8.4091	4.2791	12.792	3.80E-07
16 Crossrail Tu	47.5	-4	10	0.50941	8.4091	3.9343	12.199	-3.33E-06
16 Crossrail Tu		-5	10	0.45203	8.4091	3.5863	11.583	-6.93E-06
16 Crossrail Tu		-6	10	0.39477	8.4091	3.2434	10.956	-1.03E-05
16 Crossrail Tu	47.25	-7	10	0.33874	8.4091	2.9131	10.327	-1.33E-05
16 Crossrail Tu		-8	10	0.2849	8.4091	2.601	9.7051	-1.60E-05
16 Crossrail Tu		-9 10	10	0.23398	8.4091	2.3108		-1.82E-05
16 Crossrail Tu	47	-10	10	0.18652	8.4091	2.0451	8.5128	-2.00E-05

END_TABLE

Results : Consolidation : Displacement Data : Lines

None

Results : Total : Displacement Data : Lines

None

```
Oasys Ltd.
```

```
Shaftesbury Theatre
Prop Dev - Drained
```

File 04 Prop Dev - Drained.pdd Exported 02/12/20 09:43:20

PDisp 20.0.0.2 64-bit Copyright © Oasys 1997-2019

Titles

START_TABLE Job No.: 371647 Job Title: Shaftesbury Theatre Sub-title: Prop Dev - Drained Calculation Heading: Initials: SW Checker: Date Saved: Date Checked:

File Name: 04 Prop Dev - Drained.pdd

END_TABLE

Notes:

History

```
START_TABLE
Date
        Time
                 Ву
                          Notes
18-Oct-17 16:20 TYLER_A
           12:00 tyler_a
23-Oct-17
26-Oct-17
            13:41 TYLER_A
           13:46 TYLER_A
26-Oct-17
           14:24 TYLER_A
26-Oct-17
26-Oct-17
            14:26 TYLER_A
            14:52 TYLER_A
26-Oct-17
29-Jan-20
            10:55 TRAJKOVSKI_S
30-Jan-20
            16:19 TRAJKOVSKI_S
30-Jan-20
            16:20 TRAJKOVSKI_S
            17:26 TRAJKOVSKI_S
30-Jan-20
31-Jan-20
            12:30 TRAJKOVSKI_S
            17:08 TRAJKOVSKI_S
05-Feb-20
10-Feb-20
            17:21 TYLER_A
12-Feb-20
            09:42 TYLER_A Open
END TABLE
```

Analysis Options

General

Global Poisson's ratio: 0.20

Maximum allowable ratio between values of E: 1.5 Horizontal rigid boundary level: -10.10 [m OD] Displacements at load centroids: Yes GSA piled raft data : No

Elastic

Elastic : Yes Analysis: Boussinesq

Stiffness for horizontal displacement calculations: Weighted average

Using legacy heave correction factor: No

Consolidation Consolidation : No

Soil ProfilesSoil Profile 1

START_TABLE

Layer ref. Name Level at to Number of Youngs Mc Youngs Mo Poissons ra Non-linear curve [mOD] $[kN/m^2]$ $[kN/m^2]$ 20000 1 1 24.15 0.2 None

5 20000 5 16000 2 88000 2 20.15 0.2 None 5 100000 100000 3 3 -6.5 0.2 None END_TABLE

Soil Zones

START_TABLE

X max Y min Profile X min Y max Zone Name [m] [m] 1 SZ1 100 -20 60 Soil Profile 1 END_TABLE

Polygonal Load Data

START_TABLE

Position: L Position: P Position: P No. of Rect Value: Normal (local z) Load ref. Name [m] [m] [%] 1 Western E) 19.6 (6.5,-1.8) (3 10 2 Southern E 19.6 (35.9,5.3) (10 100

END_TABLE

Polygonal Loads' Rectangles

START_TABLE

No.	Centre : x	Centre: y	Angle of lo Width x	Depth y					
	[m]	[m]	[Degrees] [m]	[m]					
Load 1: Western Excavation									

(Edge 1 optimal)

10	γPt	iiiaij				
	1	21.22018	1.57035	0.35258	29.405	6.5594
	2	37.45029	1.80282	0.35258	3.0575	6.8246
	3	39.04936	2.09754	0.35258	0.14423	6.0572
	4	39.1895	2.76253	0.35258	0.14423	4.7111
	5	39.32965	3.42752	0.35258	0.14423	3.3651
	6	39.46979	4.09251	0.35258	0.14423	2.0191

```
7 39.60993 4.7575 0.35258 0.14423 0.67302
Load 2 : Southern Excavation
(Edge 4 optimal)
       1 38.95313 27.64382 -95.034 0.085059 0.31495
       2 39.2594 27.53145 -95.034 0.085059
       3 39.56567 27.41909
                             -95.034 0.085059
                                                1.5747
       4 39.87194 27.30672
                             -95.034 0.085059
                                                2.2046
       5 40.17821 27.19435
                             -95.034 0.085059
                                                2.8345
       6 39.43807 17.70546
                             -95.034
                                       18.949
                                                3.0251
       7 38.1789 6.76359
                             -95.034
                                       3.0709
                                                3.3246
       8 37.33476 5.26584
                             -95.034
                                      0.06124
       9 36.37825 5.28861
                             -95.034 0.06124 0.93711
END_TABLE
Displacement Points
START_TABLE
Name
        Χ
                           Z(level) Calculate Detailed
        [m]
                  [m]
                           [m]
                                             Results
GrapeNear
               38
                        39
                                 24 Yes
                                              Yes
                                 24 Yes
GrapeFar
               38
                       44.5
                                             Yes
HighNear
               41
                        10
                                 24 Yes
                                              Yes
HighFar
               61
                        10
                                 24 Yes
                                             Yes
ShaftsNear
               20
                        -2.5
                                 24 Yes
                                             Yes
ShaftsFar
               20
                         -8
                                 24 Yes
                                              Yes
END_TABLE
Displacement Lines
START_TABLE
                                    X2
                                             Y2
                  Y1
                           Z1
Name
        X1
        [m]
                  [m]
                           [m]
                                    [m]
                                             [m]
Berkshire F
                        -10
                                22.5
                                                    31
               63
                                           62
Berkshire F
               62
                        31
                                22.5
                                           90
                                                    32
Berkshire F
               90
                        32
                                22.5
                                           90
                                                    -5
Berkshire F
               90
                                22.5
                                           63
                                                   -10
                         -5
Archway - :
               6.5
                         5
                                20.5
                                          6.5
                                                  15.5
Archway -
               6.5
                       15.5
                                20.5
                                           4
                                                  15.5
Archway - 1
                         5
                                20.5
                                                    5
                4
                                          6.5
167High Ho
               27
                        45
                                20.5
                                           40
                                                    45
```

Displacement Grids

START_TABLE

167High Ho

167High Ho

167High Ho

Sovereign I

Sovereign I

Sovereign I

Sovereign I

Crossrail Tı

END_TABLE

40

40

27

4

-1

-4.5

4

45

52

52

5

8

15.5

50

20.5

20.5

20.5

20.5

20.5

20.5

20.5

10

40

27

27

-1

4

4

-4.5

Intervals A Extrusion: | Extrusion: | Calculate | Detailed Results Name Extrusion: |X1 Y1 Z1 X2 Y2 Z2 [No.] [No.] [m] [m] [m] [m] [m] [m] [m] 100 No Grid 1 Global X -20 -20 24 -60 24 100 120 No Basement | Global X -20 -20 19.6 -60 19.6 50 120 50 No No END_TABLE

Z2

[m]

52

52

45

5

8

5

-10

15.5

[No.]

22.5

22.5

22.5

22.5

20.5

20.5

20.5

20.5

20.5

20.5

20.5

20.5

20.5

20.5

20.5

10

Intervals Calculate Detailed Results

Yes

41 Yes

28 Yes

37 Yes

27 Yes

11 Yes

3 Yes

3 Yes

13 Yes

7 Yes

13 Yes

7 Yes

5 Yes

5 Yes

11 Yes

11 Yes

60 Yes

Warnings

(1)One or more displacement grids have numbers of intervals of at least 100. Large numbers of intervals will slow the analysis.

(2)The load at (23.219, 1.611, 19.600)m lies wide of all soil zones. Displacements at its centre have been requested. The first soil profile will be used.

Results: Immediate: Load Centres: Polygonal

START_TABLE

Stress: Calc Stress: Ver Stress: Sun Vert. Strain Ref. Z dz [m] [mOD] [mm] [mOD] $[kN/m^2]$ $[kN/m^2]$ [[m] 1 Western E> 23.21861 1.61111 19.6 29.37524 17.028 88.563 136.89 0.003321 19.6 18.97582 17.028 61.671 81.937 0.002425 2 Southern E 39.25431 16.22418 END_TABLE

Results: Consolidation: Load Centres: Polygonal

None

Results : Total : Load Centres : Polygonal

None

Results: Immediate: Displacement Data: Points

START_TABLE

Ref.	Name	X	У	Z		dz	Stress: Cal	Stress: Ver	Stress: Sun	Vert. Strain
		[m]	[m]	[mOD]		[mm]	[mOD]	$[kN/m^2]$	[kN/m²]	[
	1 GrapeNea	r	38	39	24	0.29729	23.615	0	0	0
	2 GrapeFar		38	44.5	24	0.10067	23.615	0	0	0
	3 HighNear		41	10	24	10.18566	23.615	0	0	0
	4 HighFar		61	10	24	0.23484	23.615	0	0	0
	5 ShaftsNea	r	20	-2.5	24	12.71792	23.615	0	0	0
	6 ShaftsFar		20	-8	24	3.64228	23.615	0	0	0
FND TA	ARIF									

END_TABLE

None

Results: Total: Displacement Data: Points

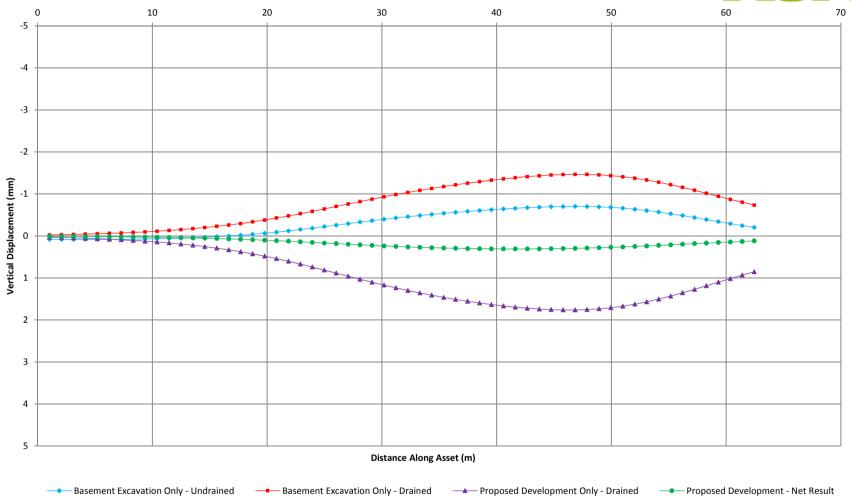
None

Results : Immediate : Displacement Data : Lines

f.	Name	x	у		dz			ress: Sun Vert	. Strair
	1 Berkshire	[m] F 63	[m] -10	[mOD] 22.5	[mm] 0.06243		[kN/m²] [k 0	(N/m²] [0
	1 Berkshire		-10 -9	22.5	0.06243		0	0 0	0
	1 Berkshire		-8	22.5	0.0768		0	0	0
	1 Berkshire	F 62.92683	-7	22.5	0.08425		0	0	0
	1 Berkshire	F 62.90244	-6	22.5	0.09182	22.108	0	0	0
	1 Berkshire		-5	22.5	0.09944	22.108	0	0	0
	1 Berkshire		-4	22.5	0.10706		0	0	0
	1 Berkshire 1 Berkshire		-3 -2	22.5	0.11462		0	0 0	0
	1 Berkshire		-2 -1	22.5 22.5	0.12206 0.1293		0 0	0	0
	1 Berkshire		0	22.5	0.13629		0	0	0
	1 Berkshire		1	22.5	0.14297		0	0	0
	1 Berkshire		2	22.5	0.14927		0	0	0
	1 Berkshire	F 62.68293	3	22.5	0.15513	22.108	0	0	0
	1 Berkshire	F 62.65854	4	22.5	0.16052	22.108	0	0	0
	1 Berkshire		5	22.5	0.16537		0	0	0
	1 Berkshire		6	22.5	0.16966		0	0	0
	1 Berkshire		7	22.5	0.17334		0	0	0
	1 Berkshire 1 Berkshire		8 9	22.5 22.5	0.1764 0.17881		0 0	0 0	0
	1 Berkshire		10	22.5	0.17881		0	0	0
	1 Berkshire		11	22.5	0.18163		0	0	0
	1 Berkshire		12	22.5	0.18202		0	0	0
	1 Berkshire	F 62.43902	13	22.5	0.18173		0	0	0
	1 Berkshire	F 62.41463	14	22.5	0.18076	22.108	0	0	0
	1 Berkshire	F 62.39024	15	22.5	0.17911	22.108	0	0	0
	1 Berkshire	F 62.36585	16	22.5	0.17679	22.108	0	0	0
	1 Berkshire		17	22.5	0.17382		0	0	0
	1 Berkshire		18	22.5	0.17022		0	0	0
	1 Berkshire		19	22.5	0.166		0	0	0
	1 Berkshire 1 Berkshire		20 21	22.5 22.5	0.16118 0.15581		0 0	0 0	0
	1 Berkshire		22	22.5	0.13381		0	0	0
	1 Berkshire		23	22.5	0.14356		0	0	0
	1 Berkshire		24	22.5	0.13677		0	0	0
	1 Berkshire	F 62.14634	25	22.5	0.12962		0	0	0
	1 Berkshire	F 62.12195	26	22.5	0.12217	22.108	0	0	0
	1 Berkshire	F 62.09756	27	22.5	0.11448	22.108	0	0	0
	1 Berkshire	F 62.07317	28	22.5	0.10663	22.108	0	0	0
	1 Berkshire		29	22.5	0.09869		0	0	C
	1 Berkshire		30	22.5	0.09074	22.108	0	0	C
	1 Berkshire 2 Berkshire		31	22.5	0.08283	22.108	0	0	0
	2 Berkshire		31 31.03571	22.5 22.5	0.08283 0.06824		0 0	0 0	C
	2 Berkshire			22.5	0.05556		0	0	C
	2 Berkshire		31.10714	22.5	0.04455		0	0	C
	2 Berkshire		31.14286	22.5	0.03498		0	0	C
	2 Berkshire	F 67	31.17857	22.5	0.02668		0	0	C
	2 Berkshire	F 68	31.21429	22.5	0.01948	22.108	0	0	0
	2 Berkshire	F 69	31.25	22.5	0.01325		0	0	0
	2 Berkshire			22.5	0.00787		0	0	0
	2 Berkshire			22.5	0.00322		0	0	0
	2 Berkshire			22.5	-0.00078		0	0	0
	2 Berkshire		31.39286	22.5	-0.00422		0	0	C
	2 Berkshire 2 Berkshire		31.42857 31.46429	22.5 22.5	-0.00717 -0.00968		0 0	0 0	0
	2 Berkshire		31.40429	22.5	-0.00308		0	0	C
	2 Berkshire			22.5	-0.01361		0	0	C
	2 Berkshire		31.57143	22.5	-0.01513		0	0	C
	2 Berkshire		31.60714	22.5	-0.01639		0	0	C
	2 Berkshire			22.5	-0.01743		0	0	C
	2 Berkshire			22.5	-0.01828		0	0	C
	2 Berkshire		31.71429	22.5	-0.01896		0	0	C
	2 Berkshire		31.75	22.5	-0.01949		0	0	C
	2 Berkshire			22.5	-0.01989		0	0	
	2 Berkshire 2 Berkshire		31.82143 31.85714	22.5	-0.02018 -0.02038		0 0	0 0	(
	2 Berkshire		31.85714	22.5 22.5	-0.02038		0	0	(
	2 Berkshire		31.92857	22.5	-0.02043		0	0	(
	2 Berkshire		31.96429	22.5	-0.02051		0	0	C
	2 Berkshire		32	22.5	-0.02043		0	0	C
	3 Berkshire		32	22.5	-0.02043		0	0	C
	3 Berkshire	⊦ 90	31	22.5	-0.02051		0	0	(
	3 Berkshire		30	22.5	-0.02058		0	0	C
	3 Berkshire		29	22.5	-0.02064		0	0	C
	3 Berkshire		28	22.5	-0.0207		0	0	(
	3 Berkshire		27	22.5	-0.02076		0	0	(
	3 Berkshire 3 Berkshire		26 25	22.5	-0.02081		0 0	0 0	(
	3 Berkshire		25 24	22.5 22.5	-0.02086 -0.02091		0	0	(
	3 Berkshire		23	22.5	-0.02091		0	0	(
	3 Berkshire		23	22.5	-0.02095		0	0	(
	3 Berkshire		21	22.5	-0.021		0	0	(
	3 Berkshire		20	22.5	-0.02104		0	0	(
	3 Berkshire		19	22.5	-0.02112		0	0	C
	3 Berkshire		18	22.5	-0.02116	22.108	0	0	C
	3 Berkshire			22.5	-0.0212		0	0	C
	3 Berkshire			22.5	-0.02123		0	0	C
	3 Berkshire			22.5	-0.02127		0	0	0
			1.1	22.5	-0.02131	22.108	0	0	0
	3 Berkshire		14		0.02131	22.100	U	U	C
	3 Berkshire3 Berkshire3 Berkshire	F 90	13	22.5 22.5 22.5	-0.02131 -0.02135 -0.02139	22.108	0	0	0

3 Berkshire F	90	11	22.5	-0.02143	22.108	0	0	0
3 Berkshire F	90	10	22.5	-0.02147	22.108	0	0	0
3 Berkshire F	90	9	22.5	-0.02151	22.108	0	0	0
3 Berkshire F	90	8	22.5	-0.02155	22.108	0	0	0
3 Berkshire F	90	7	22.5	-0.02159	22.108	0	0	0
3 Berkshire F	90	6	22.5	-0.02164	22.108	0	0	0
3 Berkshire F	90	5	22.5	-0.02168	22.108	0	0	0
3 Berkshire F	90	4	22.5	-0.02172	22.108	0	0	0
3 Berkshire F	90	3	22.5	-0.02175	22.108	0	0	0
3 Berkshire F	90	2	22.5	-0.02179	22.108	0	0	0
3 Berkshire F	90	1	22.5	-0.02183	22.108	0	0	0
3 Berkshire F	90	0	22.5	-0.02186	22.108	0	0	0
3 Berkshire F	90	-1	22.5	-0.02189	22.108	0	0	0
3 Berkshire F	90	-2	22.5	-0.02192	22.108	0	0	0
3 Berkshire F	90	-3	22.5	-0.02194	22.108	0	0	0
3 Berkshire F 3 Berkshire F	90 90	-4 -5	22.5 22.5	-0.02196	22.108	0 0	0 0	0 0
4 Berkshire F	90	-5 -5	22.5	-0.02198 -0.02198	22.108 22.108	0	0	0
4 Berkshire F	89	-5.18519	22.5	-0.02198	22.108	0	0	0
4 Berkshire F	88	-5.37037	22.5	-0.02199	22.108	0	0	0
4 Berkshire F	87	-5.55556	22.5	-0.0219	22.108	0	0	0
4 Berkshire F	86	-5.74074	22.5	-0.02172	22.108	0	0	0
4 Berkshire F	85	-5.92593	22.5	-0.02145	22.108	0	0	0
4 Berkshire F	84	-6.11111	22.5	-0.02107	22.108	0	0	0
4 Berkshire F	83	-6.2963	22.5	-0.02057	22.108	0	0	0
4 Berkshire F	82	-6.48148	22.5	-0.01993	22.108	0	0	0
4 Berkshire F	81	-6.66667	22.5	-0.01913	22.108	0	0	0
4 Berkshire F	80	-6.85185	22.5	-0.01815	22.108	0	0	0
4 Berkshire F	79	-7.03704	22.5	-0.01698	22.108	0	0	0
4 Berkshire F	78	-7.22222	22.5	-0.01557	22.108	0	0	0
4 Berkshire F	77	-7.40741	22.5	-0.01391	22.108	0	0	0
4 Berkshire F	76	-7.59259	22.5	-0.01196	22.108	0	0	0
4 Berkshire F	75	-7.77778	22.5	-0.00969	22.108	0	0	0
4 Berkshire F	74	-7.96296	22.5	-0.00706	22.108	0	0	0
4 Berkshire F	73	-8.14815	22.5	-0.00401	22.108	0	0	0
4 Berkshire F	72	-8.33333	22.5	-0.00051	22.108	0	0	0
4 Berkshire F	71	-8.51852	22.5	0.0035	22.108	0	0	0
4 Berkshire F	70	-8.7037	22.5	0.00807	22.108	0	0	0
4 Berkshire F	69	-8.88889	22.5	0.01329	22.108	0	0	0
4 Berkshire F	68	-9.07407	22.5	0.01921 0.02592	22.108	0	0	0
4 Berkshire F 4 Berkshire F	67 66	-9.25926	22.5 22.5		22.108	0 0	0 0	0
4 Berkshire F	66 65	-9.44444 -9.62963	22.5	0.0335 0.04204	22.108 22.108	0	0	0 0
4 Berkshire F	64	-9.81481	22.5	0.04204	22.108	0	0	0
4 Berkshire F	63	-9.81481	22.5	0.06243	22.108	0	0	0
5 Archway - :	6.5	5	20.5	8.85219	20.325	0	0	0
5 Archway - :	6.5	5.95455	20.5	5.67777	20.325	0	0	0
5 Archway - :	6.5	6.90909	20.5	4.45208	20.325	0	0	0
5 Archway - :	6.5	7.86364	20.5	3.63963	20.325	0	0	0
5 Archway - :	6.5	8.81818	20.5	3.01825	20.325	0	0	0
5 Archway - :	6.5	9.77273	20.5	2.52981	20.325	0	0	0
5 Archway - :	6.5	10.72727	20.5	2.13906	20.325	0	0	0
5 Archway - :	6.5	11.68182	20.5	1.82131	20.325	0	0	0
5 Archway - :	6.5	12.63636	20.5	1.55927	20.325	0	0	0
5 Archway - :	6.5	13.59091	20.5	1.34069	20.325	0	0	0
5 Archway - :	6.5	14.54545	20.5	1.15665	20.325	0	0	0
5 Archway - :	6.5	15.5	20.5	1.00054	20.325	0	0	0
6 Archway - (6.5	15.5	20.5	1.00054	20.325	0	0	0
6 Archway - (5.66667	15.5	20.5	0.93067	20.325	0	0	0
6 Archway - (4.83333	15.5	20.5	0.86183	20.325	0	0	0
6 Archway - (4	15.5	20.5	0.79464	20.325	0	0	0
7 Archway - 1	4	5	20.5	3.67112	20.325	0	0	0
7 Archway - 1	4.83333	5	20.5	4.53929	20.325	0	0	0
7 Archway - 1	5.66667	5	20.5	5.92306	20.325	0	0	0
7 Archway - 1 8 167High Ho	6.5 27	5 45	20.5 20.5	8.85219 0.05095	20.325 20.325	0 0	0 0	0 0
8 167High Ho	28	45	20.5	0.05562	20.325	0	0	0
8 167High Ho	29	45	20.5	0.0603	20.325	0	0	0
8 167High Ho	30	45	20.5	0.06494	20.325	0	0	0
8 167High Ho	31	45	20.5	0.06945	20.325	0	0	0
8 167High Ho	32	45	20.5	0.07377	20.325	0	0	0
8 167High Ho	33	45	20.5	0.07779	20.325	0	0	0
8 167High Ho	34	45	20.5	0.08144	20.325	0	0	0
8 167High Ho	35	45	20.5	0.08463	20.325	0	0	0
8 167High Ho	36	45	20.5	0.08726	20.325	0	0	0
8 167High Ho	37	45	20.5	0.08925	20.325	0	0	0
8 167High H	38	45 45	20.5	0.09054	20.325	0	0	0
8 167High Hւ 8 167High Hւ	39 40	45 45	20.5 20.5	0.09108 0.09084	20.325 20.325	0 0	0 0	0 0
9 167High Ho	40	45 45	20.5	0.09084	20.325	0	0	0
9 167High Ho	40	46	20.5	0.07292	20.325	0	0	0
9 167High Ho	40	47	20.5	0.07232	20.325	0	0	0
9 167High Ho	40	48	20.5	0.04499	20.325	0	0	0
9 167High Ho	40	49	20.5	0.03417	20.325	0	0	0
9 167High Ho	40	50	20.5	0.025	20.325	0	0	0
9 167High Ho	40	51	20.5	0.01724	20.325	0	0	0
9 167High Ho	40	52	20.5	0.01067	20.325	0	0	0
10 167High Ho	40	52	20.5	0.01067	20.325	0	0	0
10 167High Ho	39	52	20.5	0.0107	20.325	0	0	0
10 167High Ho	38	52	20.5	0.01055	20.325	0	0	0
10 167High Ho	37	52	20.5	0.01022	20.325	0	0	0
10 167High Ho	36	52 52	20.5	0.00971	20.325	0	0	0
10 167High Ho	35	52 52	20.5	0.00904	20.325	0	0	0
10 167High H	34	52 52	20.5	0.00822	20.325	0	0	0
10 167High H	33	52 52	20.5	0.00727	20.325	0	0	0
10 167High H	32 31	52 52	20.5	0.0062	20.325	0	0	0
10 167High Ho 10 167High Ho	31 30	52 52	20.5 20.5	0.00503 0.00378	20.325 20.325	0 0	0 0	0 0
10 167High Ho	29	52 52	20.5	0.00378	20.325	0	0	0
10 167High Ho	28	52	20.5	0.00240	20.325	0	0	0
10 167High Ho	27	52	20.5	-0.00029	20.325	0	0	0
11 167High Ho	27	52	20.5	-0.00029	20.325	0	0	0
11 167High Ho	27	51	20.5	0.0042	20.325	0	0	0
TT TOVINGILIN								
11 167High Ho	27	50	20.5	0.00944	20.325	0	0	0
		50 49	20.5 20.5	0.00944	20.325	0	0	0 0
11 167High Ho 11 167High Ho 11 167High Ho	27 27 27	49 48	20.5 20.5	0.01552 0.02256	20.325 20.325	0 0	0	0 0
11 167High Ho 11 167High Ho 11 167High Ho 11 167High Ho	27 27 27 27	49 48 47	20.5 20.5 20.5	0.01552 0.02256 0.03071	20.325 20.325 20.325	0 0 0	0 0 0	0 0 0
11 167High Ho 11 167High Ho 11 167High Ho	27 27 27	49 48	20.5 20.5	0.01552 0.02256	20.325 20.325	0 0	0	0 0

11 167High Hւ	27	45	20.5	0.05095	20.325	0	0	0
12 Sovereign I	4	5	20.5	3.67112	20.325	0	0	0
12 Sovereign I	3	5	20.5	2.89882	20.325	0	0	0
•								
12 Sovereign I	2	5	20.5	2.31715	20.325	0	0	0
12 Sovereign I	1	5	20.5	1.87183	20.325	0	0	0
12 Sovereign I	0	5	20.5	1.5256	20.325	0	0	0
•								
12 Sovereign I	-1	5	20.5	1.25238	20.325	0	0	0
13 Sovereign I	-1	5	20.5	1.25238	20.325	0	0	0
13 Sovereign I	-1.7	5.6	20.5	1.06014	20.325	0	0	0
=								
13 Sovereign I	-2.4	6.2	20.5	0.89984	20.325	0	0	0
13 Sovereign I	-3.1	6.8	20.5	0.76543	20.325	0	0	0
13 Sovereign I	-3.8	7.4	20.5	0.65216	20.325	0	0	0
•								
13 Sovereign I	-4.5	8	20.5	0.5563	20.325	0	0	0
14 Sovereign I	-4.5	8	20.5	0.5563	20.325	0	0	0
14 Sovereign I	-3.72727	8.68182	20.5	0.60393	20.325	0	0	0
•			20.5	0.64977	20.325	0	0	0
14 Sovereign I		9.36364						
14 Sovereign I	-2.18182	10.04545	20.5	0.69237	20.325	0	0	0
14 Sovereign I	-1.40909	10.72727	20.5	0.7303	20.325	0	0	0
14 Sovereign I	-0.63636	11.40909	20.5	0.7622	20.325	0	0	0
•								
14 Sovereign I	0.13636	12.09091	20.5	0.78699	20.325	0	0	0
14 Sovereign I	0.90909	12.77273	20.5	0.80396	20.325	0	0	0
14 Sovereign I	1.68182	13.45455	20.5	0.81286	20.325	0	0	0
•								
14 Sovereign I	2.45455	14.13636	20.5	0.81384	20.325	0	0	0
14 Sovereign I	3.22727	14.81818	20.5	0.80749	20.325	0	0	0
14 Sovereign I	4	15.5	20.5	0.79464	20.325	0	0	0
15 Sovereign I	4	15.5	20.5	0.79464	20.325	0	0	0
•								
15 Sovereign I	4	14.54545	20.5	0.91063	20.325	0	0	0
15 Sovereign I	4	13.59091	20.5	1.04441	20.325	0	0	0
15 Sovereign I	4	12.63636	20.5	1.19915	20.325	0	0	0
=								
15 Sovereign I	4	11.68182	20.5	1.37867	20.325	0	0	0
15 Sovereign I	4	10.72727	20.5	1.58759	20.325	0	0	0
15 Sovereign I	4	9.77273	20.5	1.83129	20.325	0	0	0
=			20.5			0	0	
15 Sovereign I	4	8.81818		2.11565	20.325			0
15 Sovereign I	4	7.86364	20.5	2.44588	20.325	0	0	0
15 Sovereign I	4	6.90909	20.5	2.82349	20.325	0	0	0
15 Sovereign I	4	5.95455	20.5	3.24052	20.325	0	0	0
=								
15 Sovereign I	4	5	20.5	3.67112	20.325	0	0	0
16 Crossrail Tu	52	50	10	0.032	8.4091	0.1087	1.1146	-1.94E-06
16 Crossrail Tu	51 91667	49	10	0.03887	8.4091	0.12309	1 19	-1.90E-06
16 Crossrail Tu	51.83333	48	10	0.04673	8.4091	0.13981		-1.82E-06
16 Crossrail Tu	51.75	47	10	0.05572	8.4091	0.15928	1.3624	-1.71E-06
16 Crossrail Tu	51 66667	46	10	0.066	8.4091	0.18202	1 461	-1.55E-06
				0.07775				
16 Crossrail Tu		45	10		8.4091	0.20866		-1.33E-06
16 Crossrail Tı	51.5	44	10	0.09117	8.4091	0.23993	1.6881	-1.04E-06
16 Crossrail Tu	51.41667	43	10	0.10648	8.4091	0.27671	1.8188	-6.66E-07
16 Crossrail Tu		42	10	0.12392	8.4091	0.32003		-1.78E-07
16 Crossrail Tu	51.25	41	10	0.14377	8.4091	0.37113	2.121	4.44E-07
16 Crossrail Tu	51.16667	40	10	0.16632	8.4091	0.43141	2.2954	1.23E-06
16 Crossrail Tu	51 08333	39	10	0.19187	8.4091	0.50251	2.4876	2.22E-06
16 Crossrail Tu		38	10	0.22075	8.4091	0.58625		3.44E-06
16 Crossrail Tu	50.91667	37	10	0.25329	8.4091	0.68464	2.9313	4.94E-06
16 Crossrail Tu	50.83333	36	10	0.28981	8.4091	0.79979	3.186	6.78E-06
		35			8.4091			
16 Crossrail Tu			10	0.33059		0.93382	3.4645	
16 Crossrail Tu	50.66667	34	10	0.37586	8.4091	1.0887	3.7677	1.16E-05
16 Crossrail Tu	50.58333	33	10	0.42576	8.4091	1.266	4.0962	1.47E-05
16 Crossrail Tu	50.5	32	10	0.48031	8.4091	1.4667	4.4497	
16 Crossrail Tu		31	10	0.53938	8.4091	1.6909	4.8273	2.23E-05
16 Crossrail Tu	50.33333	30	10	0.60266	8.4091	1.9372	5.2271	2.69E-05
16 Crossrail Tu	50.25	29	10	0.66963	8.4091	2.2033	5.6463	3.18E-05
16 Crossrail Tu		28	10	0.73958	8.4091	2.4851	6.081	
16 Crossrail Tu	50.08333	27	10	0.81165	8.4091	2.7774	6.5266	4.26E-05
16 Crossrail Tu	50	26	10	0.88487	8.4091	3.0742	6.9781	4.82E-05
16 Crossrail Tu	49 91667	25	10	0.95821	8.4091	3.3692	7.4302	5.37E-05
16 Crossrail Tu		24	10	1.03071	8.4091		7.8775	
						3.6565		
16 Crossrail Tu	49.75	23	10	1.10149	8.4091	3.9308	8.3157	6.42E-05
16 Crossrail Tu	49.66667	22	10	1.16984	8.4091	4.1885	8.7406	6.89E-05
16 Crossrail Tu		21	10	1.23523	8.4091	4.4272	9.1492	
16 Crossrail Tu		20	10	1.2973	8.4091	4.6458	9.5394	
16 Crossrail Tu	49.41667	19	10	1.35587	8.4091	4.8445	9.9097	8.05E-05
16 Crossrail Tu	49.33333	18	10	1.41087	8.4091	5.0245	10.259	8.36E-05
16 Crossrail Tu		17	10	1.4623	8.4091		10.588	
						5.1872		8.63E-05
16 Crossrail Tu		16	10	1.51021	8.4091	5.3344	10.895	
16 Crossrail Tu	49.08333	15	10	1.55464	8.4091	5.4678	11.18	9.09E-05
16 Crossrail Tu	49	14	10	1.59556	8.4091	5.5889	11.444	
16 Crossrail Tu		13	10	1.63288	8.4091	5.6983	11.685	
16 Crossrail Tu	48.83333	12	10	1.6664	8.4091	5.7965	11.901	9.61E-05
16 Crossrail Tu	48.75	11	10	1.69581	8.4091	5.8827	12.091	9.75E-05
16 Crossrail Tu		10	10	1.72064	8.4091	5.9557	12.252	
16 Crossrail Tu	48.58333	9	10	1.74031	8.4091	6.0129	12.381	9.96E-05
16 Crossrail Tu	48.5	8	10	1.75412	8.4091	6.0514	12.473	1.00E-04
16 Crossrail Tu	48 41667	7	10	1.76128	8.4091	6.0671	12.525	1.00E-04
16 Crossrail Tu		6	10	1.76097	8.4091	6.0556	12.533	1.00E-04
16 Crossrail Tu	48.25	5	10	1.75237	8.4091	6.0122	12.491	9.91E-05
16 Crossrail Tu	48.16667	4	10	1.73475	8.4091	5.9326	12.396	9.75E-05
16 Crossrail Tu		3	10	1.7076	8.4091	5.813	12.246	
16 Crossrail Tu	48	2	10	1.67061	8.4091	5.6514	12.039	9.19E-05
16 Crossrail Tu	47.91667	1	10	1.62384	8.4091	5.4473	11.776	8.79E-05
16 Crossrail Tu		0	10	1.56772	8.4091	5.2027	11.459	
16 Crossrail Tu	47.75	-1	10	1.50305	8.4091	4.9219	11.091	7.75E-05
16 Crossrail Tu	47.66667	-2	10	1.43101	8.4091	4.6113	10.68	7.14E-05
16 Crossrail Tu		-3	10	1.35305	8.4091	4.2791	10.234	6.49E-05
16 Crossrail Tu		-4	10	1.2708	8.4091	3.9343	9.7594	5.82E-05
16 Crossrail Tu	47.41667	-5	10	1.18596	8.4091	3.5863	9.2668	5.15E-05
16 Crossrail Tu		-6	10	1.1002	8.4091	3.2434	8.7647	
16 Crossrail Tu	47.25	-7	10	1.01503	8.4091	2.9131	8.2614	3.87E-05
16 Crossrail Tu	47.16667	-8	10	0.93176	8.4091	2.601	7.7641	3.30E-05
16 Crossrail Tu	47.08333	-9	10	0.85143	8.4091	2.3108	7.2788	2.77E-05
16 Crossrail Tu	47	-10	10	0.77487	8.4091	2.0451	6.8103	2.29E-05
	47	10	10	J., / 70/	5.7031	∪¬J1	0.0103	,
END_TABLE								


 $Results: Consolidation: Displacement\ Data: Lines$

None

 ${\it Results: Total: Displacement\ Data: Lines}$

Crossrail Asset (10.00mAOD) - North to South

