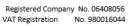


Energy Strategy Report

151-153
Camden High
Street,
London,
NW1 7JY

October 2019

Ref: 19-5251






| 1.  | EXECUTIVE SUMMARY                              |
|-----|------------------------------------------------|
| 2.  | INTRODUCTION                                   |
| 3.  | PLANNING POLICY                                |
| 4.  | ASSESSMENT METHODOLOGY12                       |
| 5.  | BASELINE – TARGET EMISSION RATE                |
| 6.  | BE LEAN – ENERGY EFFICIENT DESIGN1             |
| 7.  | BE CLEAN – CHP & DECENTRALISED ENERGY NETWORKS |
| 8.  | BE GREEN – RENEWABLE ENERGY                    |
| 9.  | CONCLUSION20                                   |
| 10. | APPENDIX A – SAP REPORTS                       |



























#### **Quality Standards Control**

The signatories below verify that this document has been prepared in accordance with our quality control requirements. These procedures do not affect the content and views expressed by the originator.

| Revision      | Initial    | Rev A | Rev B | Rev C |
|---------------|------------|-------|-------|-------|
| Date          | 16/10/2019 |       |       |       |
| Prepared by   | V. Mwenze  |       |       |       |
| Checked by    | Y.Choi     |       |       |       |
| Authorised by | E. Cao     |       |       |       |





















#### Limitations

Syntegra Consulting Ltd ("SC") has prepared this report for the sole use of client in accordance with the agreement under which our services were performed. No other warranty, expressed or implied, is made as to the professional advice included in this report or any other services provided by SC.

The conclusions and recommendations contained in this report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested and that such information is accurate. Information obtained by SC has not been independently verified by SC, unless otherwise stated in the report.

The methodology adopted and the sources of information used by SC in providing its services are outlined in this report. The work described in this report was undertaken in October 2019 and is based on the conditions encountered and the information available during the said period of time. The scope of this report and the services are accordingly factually limited by these circumstances.

This renewable report and energy pre-assessment modelling were generated based on the provided drawings and building information assumptions. Although every effort has been made to provide accurate content within this report, SC makes no warranty or assumes no legal liability or responsibility for the accuracy or completeness of information contained in this report.

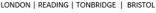
SC also wishes to make aware that this document is guidance only on energy strategy and should not be seen as a building design document. It is the responsibility of the appointed Building Services / Design Team to develop, select and implement appropriate energy efficiency measures to ensure compliance.

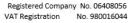
Where assessments of works or costs identified in this report are made, such assessments are based upon the information available at the time and where appropriate are subject to further investigations or information which may become available.

SC disclaim any undertaking or obligation to advise any person of any change in any matter affecting the report, which may come or be brought to SC's attention after the date of the report.

Certain statements made in the report that are not historical facts may constitute estimates, projections or other forwardlooking statements and even though they are based on reasonable assumptions as of the date of the report, such forwardlooking statements by their nature involve risks and uncertainties that could cause actual results to differ materially from the results predicted. SC specifically does not guarantee or warrant any estimate or projections contained in this report.

Costs may vary outside the ranges quoted. Whilst cost estimates are provided for individual issues in this report, these are based upon information at the time which can be incomplete. Cost estimates for such issues may therefore vary from those provided. Where costs are supplied, these estimates should be considered in aggregate only. No reliance should be made in relation to any division of aggregate costs, including in relation to any issue, site or other subdivision.


No allowance has been made for changes in prices or exchange rates or changes in any other conditions which may result in price fluctuations in the future. Where assessments of works or costs necessary to achieve compliance have been made, these are based upon measures which, in SC's experience, could normally be negotiated with the relevant authorities under present legislation and enforcement practice, assuming a pro-active and reasonable approach by site management.


Forecast cost estimates do not include such costs associated with any negotiations, appeals or other non-technical actions associated with the agreement on measures to meet the requirements of the authorities, nor are potential business loss and interruption costs considered that may be incurred as part of any technical measures.

#### Copyright

© This report is the copyright of SC. Any unauthorised reproduction or usage by any person other than the addressee is strictly prohibited.



























### 1. Executive Summary

This Energy Statement demonstrates the predicted energy performance and carbon dioxide emissions of the proposed development at **151-153 Camden High Street, London, NW1 7JY,** based on the information provided by the design team. The development will comprise of a refurbishment a **2-storey apartment and erection of 2<sup>nd</sup> floor rear extension and roof extension residential building.** 

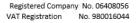
#### **Policy Requirements**

The Council requires new developments to incorporate sustainable design and construction measures. The table below summarises the local policy requirements for the proposed development.

| Policies                 | Requirements                                                                                                                                                                                | Compliance Check                                                                                                                                                                      |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Local Plan<br>Policy CC1 | All new residential development will also be required to demonstrate a 19% CO2 reduction below Part L 2013 Building Regulations and 20% carbon reduction via on-site renewable technologies | The development achieved a carbon reduction of 75.43% over Part L 2013 baseline via energy efficient measures. The development achieved an overall carbon reduction of 21.39% via PV. |  |
| Local Plan<br>Policy CC2 | BREEAM domestic refurbishment 'Excellent' for conversions and extensions of 500 sqm of residential floorspace or above or five or more dwellings.                                           | Since the development consists of 2 dwellings of a total of 193.09 sqm, BREEAM 'Excellent' was not targeted.                                                                          |  |

Table 1 Policy Requirements

#### **Methodology and Strategies**


The methodology used to determine the  $CO_2$  emissions is in accordance with the London Plan's threestep Energy Hierarchy (Policy 5.2). The below table shows the Energy Hierarchy and suggested strategies for the proposed development.

| Stages                                                       | Strategies                                                                                                                                                                                                                                      |  |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>BE LEAN</b><br>Energy efficient design                    | <ul> <li>U-values better and air permeability better than Building<br/>Regulations Part L;</li> <li>High efficiency electric boiler for heating and hot water.</li> <li>Low energy (LED) type lighting;</li> <li>Natural ventilation</li> </ul> |  |
| BE CLEAN  District heat networks or communal heating systems | As there are no current or proposed district heat networks and the size of the development is not suitable for CHP this stage of the hierarchy is not feasible for this scheme. Details can be found in section 8.1.                            |  |
| BE GREEN On-site renewable technologies                      | <ul> <li>PV panels of 4.725 kWp on the roof (approximate 15 panels with 315 w/p are required). Details are in Section Error! R eference source not found.</li> </ul>                                                                            |  |

Table 2 Energy Hierarchy and suggested strategies



LONDON | READING | TONBRIDGE | BRISTOL

























#### **Assessment Results**

After the application of all strategies based on the Energy Hierarchy, the regulated carbon dioxide emissions have been reduced as follows;

|          | Energy Hierarchy                            | Regulated Carbon Emissions (Tonnes CO <sub>2</sub> /yr) |
|----------|---------------------------------------------|---------------------------------------------------------|
| BASELINE | TER set by Building Regulations 2013 Part L | 27.90                                                   |
| BE LEAN  | After energy demand reduction               | 8.72                                                    |
| BE CLEAN | After CHP/ Communal Heating                 | 8.72                                                    |
| BE GREEN | After renewable energy                      | 6.85                                                    |

Table 3 Carbon Emissions after each stage of the proposed strategy

This carbon savings from each stage can be calculated based on the results above. The table below summarises the total cumulative savings:

|              | Energy Hierarchy                      |               | Regulated Carbon Savings |  |  |
|--------------|---------------------------------------|---------------|--------------------------|--|--|
|              | ,                                     | Tonnes CO₂/yr | %                        |  |  |
| BE LEAN      | BE LEAN After energy demand reduction |               | 68.75 %                  |  |  |
| BE CLEAN     | BE CLEAN After heat network/ CHP      |               | 0                        |  |  |
| BE GREEN     | After renewable energy                | 1.87          | 21.39%                   |  |  |
| Total Cumul  | ative Savings                         | 21.05         | 75.43%                   |  |  |
| Total Target | Savings                               | 5.30          | 19 %                     |  |  |

Table 4 Carbon dioxide Emissions after each stage of the Energy Hierarchy

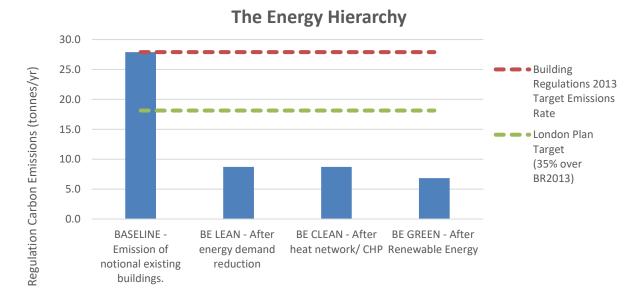
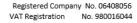




Figure 1 The Energy Hierarchy



















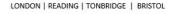








#### 2. Introduction


This Energy Statement will be included as part of the planning application that addresses the environmental impact of the development. This report focuses on the energy strategy for the proposed scheme and how energy consumption and carbon emissions will be minimised and to meet the targeted carbon emissions in accordance with the London Plan and Local planning policy.

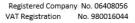

The development is to be located in the **London Borough of Camden** and it is in close proximity to Camden town underground Station (approximately 150 meters to the North) and Camden road station (approximately 500 meters to the North East). The proposal is a **refurbishment a 2-storey apartment** and erection of 2<sup>nd</sup> floor rear extension and roof extension residential building at 151-153 Camden High Street, London, NW1 7JY.



Figure 2 Site Location



























### 3. Planning Policy

#### **National Planning Policy Framework (February 2019)**

The National Planning Policy Framework is a key part of our reforms to make the planning system less complex and more accessible, to protect the environment and to promote sustainable growth.

#### The London Plan (March 2016)

#### MAYOR OF LONDON



#### Policy 5.2, 5.4, 5.5, 5.6, & 5.7

According to Policy 5.2 all major new developments should show carbon emissions reduction through the Mayor's energy hierarchy (Be Lean, Be Clean and Be Green), unless it can be demonstrated that such provision is not feasible. From October 2016 Zero Carbon Standard apply to all new major residential development (10 or more units). This means that at least 35% of carbon reductions against a Building Regulations Part L 2013 must be achieved on-site, with the remaining emissions, up to 100%, to be offset through a contribution to the Council's Carbon Offset Fund. For the non-residential development, must achieve a 35% reduction in CO<sub>2</sub> emissions against a Building Regulations Part L 2013 baseline.

For retrofitting developments, it will be a challenge to meet these targets. However, available reductions in carbon emissions should be demonstrated along with water saving measures as per Policy 5.4.

Furthermore, intent must be shown for connecting to a Decentralised Energy Network and utilizing a Combined Heat & Power according to Policy 5.5 and 5.6. The Mayor and boroughs should in their DPDs adopt a presumption that developments will achieve a reduction in carbon dioxide emissions of 20% from onsite renewable energy generation according to paragraph 5.42 of Policy 5.7





















#### **London Borough of Camden**

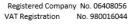


#### Core Strategy (Adopted in 2010)

#### Policy CS13 - Tackling climate change through promoting higher environmental standards

#### Reducing the effects of and adapting to climate change

The Council will require all development to take measures to minimise the effects of, and adapt to, climate change and encourage all development to meet the highest feasible environmental standards that are financially viable during construction and occupation by:


- a) Ensuring patterns of land use that minimize the need to travel by car and hep support local energy networks;
- b) Promoting the efficient use of land and buildings;
- c) Minimising carbon emissions from the redevelopment, construction and occupation of buildings by implementing, in order, all the elements of the following energy hierarchy:
  - Ensuring developments use less energy,
  - Making use of energy from efficient sources, such as the King's Cross, Gower Street, Bloomsbury and proposed Euston Road decentralised energy networks;
  - Generating renewable energy on-site; and
- d) Ensuring buildings and spaces are designed to cope with, and minimize the effects of, climate change.

The Council will have regard to the cost of installing measures to tackle climate change as well as the cumulative future costs of delaying reductions in carbon dioxide emissions.



mail@syntegragroup.com

Tel: 0330 053 6774























#### Local Plan (Adopted July 2017)

#### Policy CC1 - Climate change mitigation

The Council will require all development to minimise the effects of climate change and encourage all developments to meet the highest feasible environmental standards that are financially viable during construction and occupation.

We will:

- a. Promote zero development and require all development to reduce carbon dioxide emissions through following the steps in the energy hierarchy;
- b. Require all major development to demonstrate how London Plan targets for carbon dioxide emissions have been met;
- c. Ensure that the location of development and mix of land uses minimise the need to travel by car and help to support decentralised energy networks;
- d. Support and encourage sensitive energy efficiency improvements to existing building;
- e. Require all proposals that involve substantial demolition to demonstrate that it is not possible to retain and improve the existing building; and
- Expect all developments to optimise resource efficiency.

For decentralised energy networks, we will promote decentralised energy by:

- g. Working with local organisations and developers to implement decentralised energy networks in the parts of Camden most likely to support them;
- h. Protecting existing decentralised energy networks (e.g. at Gower Street, Bloomsbury, King's Cross, Gospel Oak and Somers Town) and safeguarding potential network routes; and
- Requiring all major developments to assess the feasibility of connecting to an existing decentralised energy network, or where this is not possible establishing a new network.

To ensure that the Council can monitor the effectiveness of renewable and low carbon technologies, major developments will be required to install appropriate monitoring equipment.

#### The energy hierarchy

The Council's Sustainability Plan 'Green Action for Change' commits the Council to seek low and where possible zero carbon buildings. New developments in Camden will be expected to be designed to minimise energy use and CO2 emissions in operation through the application of the energy hierarchy. It is understood that some sustainable design measures may be challenging for listed buildings and some conservation areas and we would advise developers to engage early with the Council to develop innovative solutions.

The energy hierarchy is a sequence of steps that minimise the energy consumption of a building. Buildings designed in line with the energy hierarchy prioritise lower cost passive design measures, such as improved fabric performance over higher cost active systems such as renewable energy technologies.

All developments involving five or more dwellings and/or more than 500 sqm of (gross internal) any floorspace will be required to submit an energy statement demonstrating how the energy hierarchy has been applied to make the fullest contribution to CO2 reduction. All new residential development will also be required to demonstrate a 19% CO2 reduction below Part L 2013 Building Regulations (in





















addition to any requirements for renewable energy). This can be demonstrated through an energy statement or sustainability statement.

#### Policy CC2 – Adapting to climate change

The Council will require development to be resilient to climate change.

All development should adopt appropriate climate change adaptation.

- a. The protection of existing green spaces and promoting new appropriate green infrastructure;
- b. Not increasing, and wherever possible reducing, surface water run-off through increasing permeable surfaces and use of Sustainable Drainage Systems;
- c. Incorporating bio-diverse roofs, combination green and blue roofs and green walls where appropriate; and
- d. Measures to reduce the impact of urban and dwelling overheating, including application of the cooling hierarchy.

Any development involving 5 or more residential units or 500 sqm or more of any additional floorspace is required to demonstrate the above in a Sustainable Statement.

#### Sustainable design and constructions measures

The Council will promote and measure sustainable design and construction by:

- e. Ensuring development schemes demonstrate how adaptation measures and sustainable development principles have been incorporated into the design and proposed implementation;
- Encourage new build residential development to use the Home Quality Mark and Passivhaus design standards:
- Encouraging conversions and extensions of 500 sqm of residential floorspace or above or five or more dwellings to achieve "excellent" in BREEAM Domestic refurbishment; and
- Expecting non-domestic developments of 500 sqm of floorspace or above to achieve "excellent" in BREEAM assessments and encouraging zero carbon in new development from 2019.

#### Policy CC3 – Water and flooding

The Council will seek to ensure that development does not increase flood risk and reduces the risk of flooding where possible.

We will require development to:

- a. Incorporate water efficiency measures;
- b. Avoid harm to the water environment and improve water quality;
- c. Consider the impact of development in areas at risk of flooding (including drainage);
- d. Incorporate flood resilient measures in areas prone to flooding;
- e. Utilize Sustainable Drainage Systems (SuDS) in line with the drainage hierarchy to achieve a greenfield run-off rate where feasible; and
- Not locate vulnerable development in flood-prone areas.

Where an assessment of flood risk is required, developments should consider surface water flooding in detail and groundwater flooding where applicable.

The Council will protect the borough's existing drinking water and foul water infrastructure, including the reservoirs at Barrow Hill, Hampstead Heath, Highgate and Kidderpore.

mail@syntegragroup.com Tel: 0330 053 6774

Registered Company No. 06408056 VAT Registration























### 4. Assessment Methodology

#### Mayor's Energy Hierarchy

The energy hierarchy is a classification of different methods to improve energy performance in a parallel sequence. This includes primarily a focus on reducing energy use by avoiding unnecessary use, to then improving the efficiency of energy systems to minimise loss, this is followed by exploiting renewable energy sources and then low carbon energy solutions for energy needs and finally, any remaining demand can be catered for by conventional fuel sources.

The Mayor's Energy Strategy adopts a set of principles to guide design development and decisions regarding energy, balanced with the need to optimise environmental and economic benefits. These guiding principles have been reordered since the publication of the Mayor's Energy Strategy in Feb 2004 and the adopted replacement London Plan 2011 with further alterations in 2015 stating that the following hierarchy should be used to assess applications:

- **BE LEAN** By using less energy and taking into account the further energy efficiency measure in comparison to the baseline building.
- **BE CLEAN** By supplying energy efficiently. The clean building looks at further carbon dioxide emission savings over the lean building by taking into consideration the use of decentralise energy via CHP.
- **BE GREEN** By integrating renewable energy into the scheme which can further reduce the carbon dioxide emission rate.

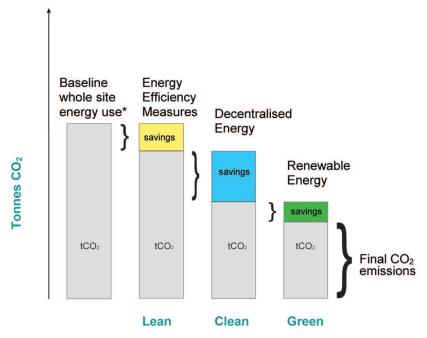



Figure 3 The Energy Hierarchy

mail@syntegragroup.com Tel: 0330 053 6774 LONDON | READING | TONBRIDGE | BRISTOL

Registered Company No. 06408056 VAT Registration No. 980016044























#### Software and Input data

The Government approved software, i.e. FSAP 2012, have been utilised to carry out Standard **Assessment Procedure (SAP)** calculations.

Syntegra received the architectural drawings and relevant documents, and they were used to undertake the energy assessments. The document reference is listed in table below.

| No. | <b>Document Name</b> | Format | Received Date |
|-----|----------------------|--------|---------------|
| 1   | PLANNING             | dwg    | 08-04-2019    |

Table 5 The document list



















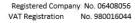
#### 5. **Baseline – Target Emission Rate**

In regard to the conversion/ refurbishment area, the CO<sub>2</sub> emissions for the development are calculated based on the notional existing building conditions in accordance with GLA Guidance on preparing energy assessments (March 2016). The inputs were gathered during the site survey or assumed by the Reduced Data SAP (RdSAP) when the data was not available. To make a parallel comparison with the proposed building, the existing building was assumed as if it has same functions and geometry with the proposed building. The existing building conditions are summarised in the table below.

|                                     |           | Existing Specifications (Age band A set by RdSAP 2012)                             |
|-------------------------------------|-----------|------------------------------------------------------------------------------------|
|                                     | Wall      | 2.1 (solid brick as built)                                                         |
|                                     | Window    | 4.8 (single glazing before 2002)                                                   |
| <b>U-value</b><br>(W/m² K)          | Floor     | 1.2 (as built/ insulation unknown)                                                 |
| , ,                                 | Roof      | 2.3 (Pitched, slates or tiles, insulation at rafters)                              |
|                                     | Door      | 3.0                                                                                |
| Air Permeability (m³/h.m² at 50 Pa) |           | 35                                                                                 |
| Heating System                      |           | Direct acting electric boiler for radiator heating (SAP default efficiency - 100%) |
| Hot Wate                            | er System | From main heating system<br>boiler 110 litres, 12 mm loose jacket                  |
| Lighting                            |           | 0% Low Energy Lights                                                               |
| Ventilation                         |           | Natural ventilation with no extract fans in wet rooms                              |

Table 6 Existing Specifications used for energy assessment

The baseline regulated energy demand for the development is presented in the table below:




| BASELINE                   | Regulated CO <sub>2</sub> Emissions (Tonnes CO <sub>2</sub> /yr) |
|----------------------------|------------------------------------------------------------------|
| 151-153 Camden High Street | 27.90                                                            |

Table 7 Regulated Carbon Emissions at Baseline



























### 6. BE LEAN – Energy Efficient Design

This section outlines the energy efficient measures taken in order to minimise the building's energy demand and therefore reduce energy use and CO<sub>2</sub> emissions further than the Baseline requirements (Building Regulations 2013 Part L compliance).

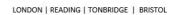
#### **Passive Design Measures**

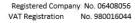
#### Enhanced Building Elements

At the 'BE LEAN' stage of the energy hierarchy, energy efficient building elements have been incorporated into the build. The heat loss of different building element is dependent upon their U-value, air tightness, and thermal bridging y-values. Therefore, better U-values and air permeability than the minimum values set in the Part L 2013 have been suggested in this development. Please see the table below more specifically:

|                                        |             | Part L2b min. required values                    | Proposed building values                         |
|----------------------------------------|-------------|--------------------------------------------------|--------------------------------------------------|
|                                        | Wall        | New element - 0.28<br>Upgrade element – 0.3-0.55 | New wall – 0.28                                  |
| U-value                                | Window unit | 1.6                                              | New window - 1.6<br>Replaced window – 1.6        |
| (W/m <sup>2</sup> K)                   | Floor       | New element - 0.22<br>Upgrade element –0.25      | New floor - 0.15<br>Retained ground floor – 0.25 |
|                                        | Roof        | 0.16 - 0.18                                      | New roof - 0.18                                  |
|                                        | Door        | 1.8 - 3.5                                        | New door – 1.2                                   |
| Air Permeability<br>(m³/h.m² at 50 Pa) |             | -                                                | 4.5                                              |

Table 8 Proposed Building Elements


#### Orientation & Natural Daylighting


Passive solar gain reduces the amount of energy required for space heating during the winter months. The building is typically positioned to have South-West outdoor area with North-East aspects which align with the roads and also maximise the passive solar gains into the building throughout the day. Moreover, the internal layout of the development has been designed to improve daylighting in all habitable spaces, as a way of improving the health and wellbeing of occupants.

#### Natural Ventilation

A natural ventilation strategy will be adopted with extract fans in wet rooms; toilets, bathrooms, kitchens and utility rooms. Therefore, higher energy consumption and CO<sub>2</sub> emissions due to mechanical ventilation is avoided.

















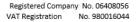











#### Water Efficiency

In accordance with London Plan policy 5.15, the development will be based upon the specification of water efficient fittings including low volume dual flush WCs, and low flow taps/ showers/ bath. These measures will result in the internal water consumption rate of **105 litres/person/day** or less, excluding an allowance 5 litres per person per day for external water consumption. The design stage water use calculations is below.

| Installation Type                           | Unit of<br>Measure                                      | Capacity/<br>flow rate<br>(1) | Use factor<br>(2) | Fixed use<br>(litres/head/<br>day)<br>(3) | Total Consumption Litres/head/day (1)x(2)+(3) =(4) |
|---------------------------------------------|---------------------------------------------------------|-------------------------------|-------------------|-------------------------------------------|----------------------------------------------------|
| wc                                          | Full Flush<br>Volume (litres)                           | 6                             | 1.46              | 0                                         | 8.76                                               |
| (dual flush)                                | Part flush<br>Volume (litres)                           | 4                             | 2.96              | 0                                         | 11.85                                              |
| Taps (excluding kitchen/ utility room taps) | Flow rate<br>(litres/minute)                            | 6.5                           | 1.58              | 1.58                                      | 11.85                                              |
| Bath<br>(where shower also<br>present)      | Capacity to overflow (litres)                           | 120                           | 0.11              | 0                                         | 13.20                                              |
| Shower<br>(where bath also<br>present)      | Flow rate<br>(litres/minute)                            | 7.5                           | 4.37              | 0                                         | 32.78                                              |
| Kitchen / utility room sink taps            | Flow rate<br>(litres/minute)                            | 6.5                           | 0.44              | 10.36                                     | 13.22                                              |
| Washing machine                             | Litres/kg dry<br>load                                   | 9                             | 2.1               | 0                                         | 18.90                                              |
| Dishwasher                                  | Litres/place setting                                    | 1.2                           | 3.6               | 0                                         | 4.32                                               |
| Waste disposal unit                         | Litres/use                                              | If present = 1 If absent = 0  | 3.08              | 0.00                                      | 0                                                  |
| Water Softener                              | Litres/person/d<br>ay                                   | -                             | 1.00              | 0.00                                      | -                                                  |
| (5)                                         | Total calculated use (litres/person/day) = Sum column 4 |                               |                   | 114.9                                     |                                                    |
| (6)                                         | Contribution from greywater (litres/person/day)         |                               |                   | 0                                         |                                                    |
| (7)                                         | Contribution from rainwater (litres/person/day)         |                               |                   | 0                                         |                                                    |
| (8) Normalisation Factor                    |                                                         |                               | 0.91              |                                           |                                                    |
| То                                          | Total water consumption (litres/person/day)             |                               |                   |                                           | 104.5                                              |
|                                             | External water use                                      |                               |                   |                                           | 5                                                  |

Table 9 Design stage water use calculations

mail@syntegragroup.com Tel: 0330 053 6774 LONDON | READING | TONBRIDGE | BRISTOL

























#### **Solar Shading**

Each dwelling will incorporate internal blinds or curtains to reduce the solar heat coming into the dwelling, and thus can avoid installing cooling systems for summer.

#### **Active Design Measures**

#### **Heating, Cooling and Hot Water System**

The space heating and hot water are provided by energy efficient systems as summarised in the table below. At Be Lean stage, direct acting electric boiler (100% efficiency) have been examined for radiator heating and hot water. Detailed specifications are in the table below:

| Systems      | General<br>Specification                                                         | Controls/ Other inputs                                                                                                                                                                        |                                                                                                            |  |
|--------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|
| Heating      | Direct acting electric<br>boiler for radiator<br>heating<br>(efficiency of 100%) | <ul> <li>Controls – Time and temperature zone control by suitable arrangement of plumbing and electrical services</li> <li>Pump is in heated space</li> <li>Boiler interlock – Yes</li> </ul> |                                                                                                            |  |
| Hot<br>water | From main heating system                                                         | Flat 1                                                                                                                                                                                        | <ul> <li>Cylinder in heated space</li> <li>Cylinderstat</li> <li>Water heating timed separately</li> </ul> |  |

Table 10 Heating, cooling and Hot water systems

All suggested specifications above are provisional at this early design stage, and therefore have to be reviewed with mechanical engineers and contractors in the course of design development.

The following table demonstrates the reduction in CO2 emissions from the energy efficiency measures mentioned above. It can be seen that the carbon reduction of 68.75% can be achieved against the existing building conditions.



| Regulated CO <sub>2</sub> Emission | Carbon Reduction |        |  |
|------------------------------------|------------------|--------|--|
| BASELINE                           | BE LEAN          | (%)    |  |
| 27.90                              | 8.72             | 68.75% |  |

Table 11 Regulated Carbon Emissions



Tel: 0330 053 6774

mail@syntegragroup.com





















### 7. BE CLEAN – CHP & Decentralised Energy Networks

The Energy Hierarchy encourages the use of a CHP system and the connection to District Heating system to reduce CO<sub>2</sub> emissions further.

#### **Decentralised Energy Network**

The Mayor's Energy Strategy favours community heating systems because they offer:

- Potential economies of scale in respect of efficiency and therefore reduced carbon emissions;
   and
- Greater potential for future replacement with Low or Zero Carbon (LZC) technologies.

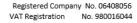

The feasibility of connecting into an existing heating network or providing the building with its own combined heat and power plant has been assessed alongside the **London Heat Map Study for the London Borough of Camden** as part of this assessment. The study identifies that the site is located near the existing district heating networks. This is demonstrated clearly from the London Heat Map (http://www.londonheatmap.org.uk) snapshot below.



Figure 4 London Heat Map near the site



LONDON | READING | TONBRIDGE | BRISTOL























Moreover, the London heat map below identifies existing and potential DH networks in more broaden area, and it could not find any existing (in red) and potential (in yellow) DH networks within 500m radius from the property. The costs involved in extending the DH networks would outweigh the advantages in this development. Therefore, utilisation of the DH network has not been a feasible option for this development.

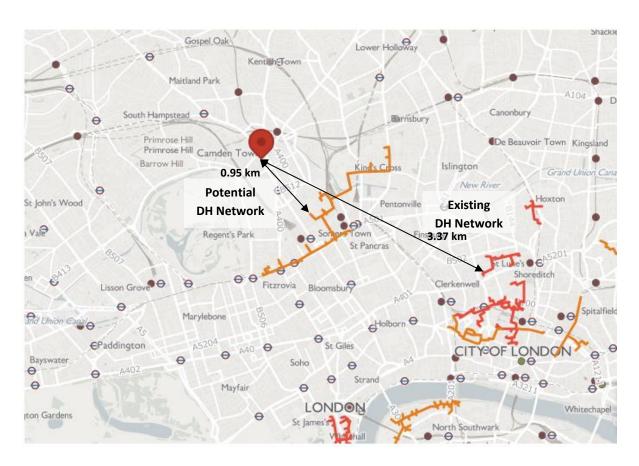
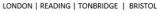
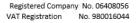





Figure 5 Existing and Potential DH Network near the site























#### **CHP**

The Energy Hierarchy identifies the combined heat and power (CHP) as a method of producing heat and electricity with much lower emissions than separate heat and power. Also, it encourages the creation of district heating systems supplied by CHP. The implementation of a CHP strategy should be decided according to good practice design. Key factors for the efficient implementation of the CHP system are:

- Development with high heating load for the majority of the year.
- CHP operation based on maximum heat load for minimum 10 hours per day.
- CHP operation at maximum capacity of 90% of its operating period.

To ensure that CHP is financially viable it is essential that the unit is selected to meet the base heat load and that this load is maintained over a large proportion of the day (a figure of 14-17 hours per day is often quoted subject to the load profiles and gas and electricity prices) to ensure that the additional costs (maintenance) associated with running a CHP unit can be recovered. This need to run the CHP plant, as far as possible continuously makes the building load profile of prime importance when reviewing the viability of such solutions and in particular the summer time heat load profile. To enable the CHP plant to run continuously when it is operating, a thermal store is often used so that excess CHP capacity can be used to generate hot water for use at a later time.

The feasibility of installing CHP has been assessed for this development. Since this development has only two residential units that would not require high hot water loads, installing the CHP system would not be beneficial given the cost. Hence the CHP system has not been considered for this small development at Be Clean stage.



| Regulated CO <sub>2</sub> Emissions (Tonnes CO <sub>2</sub> /yr) | BE LEAN | BE CLEAN | CARBON REDUCTION (%) |
|------------------------------------------------------------------|---------|----------|----------------------|
| 151-153 Camden High<br>Street                                    | 8.72    | 8.72     | 0                    |

Table 12 Regulated Carbon Emissions at Be Clean Stage



mail@syntegragroup.com

Tel: 0330 053 6774





















#### **Wind Power**

Wind turbines need extensive planning requirements and they are only feasible at consistent wind speed. Moreover, since the development is located in an urban area, the site does not have sufficient wind speed to operate wind turbine at the height of 10meters as shown below (http://www.renewreuse-recycle.com/noabl.pl?n=503). Hence this option has been discounted.

#### Estimated average windspeeds around NW1 7..

| Wind speed at 10m<br>above ground level<br>(m/s) |                    |     |  |  |  |  |
|--------------------------------------------------|--------------------|-----|--|--|--|--|
| 5 4.9 4.8                                        |                    |     |  |  |  |  |
| 4.9                                              | 4.9 <b>4.8</b> 4.8 |     |  |  |  |  |
| 5                                                | 4.9                | 4.8 |  |  |  |  |

| Wind speed at 25m<br>above ground level<br>(m/s) |         |     |  |  |  |
|--------------------------------------------------|---------|-----|--|--|--|
| 5.8                                              | 5.8 5.6 |     |  |  |  |
| 5.7                                              | 5.6     | 5.6 |  |  |  |
| 5.8                                              | 5.7     | 5.6 |  |  |  |

| Wind speed at 45m<br>above ground level<br>(m/s) |         |     |  |  |
|--------------------------------------------------|---------|-----|--|--|
| 6.3                                              | 6.3 6.1 |     |  |  |
| 6.2                                              | 6.1     | 6.1 |  |  |
| 6.2                                              | 6.2     | 6.1 |  |  |

Squares surrounding the central square correspond to wind speeds for surrounding grid squares. Power generated is related to windspeed by a cubic ratio. This means that if you halve the windspeed, the power goes down by a factor of 8 (which is 2 x 2 x 2). A quarter of the windspeed gives you a 64<sup>th</sup> of the power (4 x 4 x 4). As a rough guide, if your turbine is rated at producing 1KW at 12m/s, it will produce 125W at 6m/s and 15W at 3m/s.

Please note that the NOABL windspeed dataset used here is a model of windspeeds across the country, assuming completely flat terrain. It is not a database of measured windspeeds. Other factors such as hills, houses, trees and other obstructions in the vicinity need to be considered as well as they can have a significant effect. If you are thinking about installing a wind turbine, you should perform your own windspeed measurements using an anemometer to determine what the actual figures are.













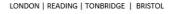


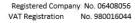




### 8. BE GREEN – Renewable Energy

In this section the viable renewable energy technologies that could reduce the development's  $CO_2$  emissions are examined. In determining the appropriate renewable technology for the site, the following factors were considered;


- Renewable energy resource or fuel availability of the LZC technology on the site.
- Space limitations due to building design and urban location of the site.
- Capital, operating and maintenance cost.
- Planning Permission
- Implementation with regards the overall M&E design strategy for building type
- Available Grants


The table below summarises the various low zero carbon technologies considered for the projects, and we have identified that **Air Source Heat Pumps (ASHP)** would be the most appropriate option in this development.

| Technology                            | Local Planning<br>Requirements                                   | Carbon<br>Payback                   | Grants/ Funding                   | Feasibility |
|---------------------------------------|------------------------------------------------------------------|-------------------------------------|-----------------------------------|-------------|
| Air Source Heat<br>Pumps (ASHP)       | Noise Issues from<br>External units                              | High                                | Renewable Heat<br>Incentive (RHI) | LOW         |
| Photovoltaic<br>(PV)                  | Spatial and Shadowing                                            | Medium                              | -                                 | HIGH        |
| Solar Thermal                         | Spatial and Shadowing                                            | Low Renewable Heat Incentive (RHI)  |                                   | MEDIUM      |
| Ground Source<br>Heat Pumps<br>(GSHP) | Spatial issues for Bore<br>Holes and noise                       | I Medium I                          |                                   | MEDIUM      |
| Biomass                               | Spatial requirement for fuel storage and biomass odour           | High Renewable Heat Incentive (RHI) |                                   | LOW         |
| Wind Power                            | Extensive planning requirements for noise and local biodiversity | Low                                 | -                                 | LOW         |
| Hydro Power                           | Extensive planning requirements for noise and water quality      | None                                | -                                 | ZERO        |

Table 13 Feasibility Study of LZC Technologies



























#### Non-feasible Technology

#### Air Source Heat Pumps (ASHP)

ASHP can meet the space heating demands on site efficiently in comparison with gas boilers. Although this low carbon technology consumes electricity to operate due to higher efficiency the heat output is much greater. However, the efficiency of heat pumps is very much dependent on the temperature difference between the heat source and the space required to be heated. As a result, ASHPs tend to have a lower COP than GSHPs. This is due to the varying levels of air temperature throughout the year when compared to the relatively stable ground temperature. Moreover, any noise associated with the external units could potentially be an issue at night due to the proximity of the neighbouring residential buildings. Therefore, the use of ASHP is not a suitable option for this development.

#### • Ground Source Heat Pumps (GSHP)

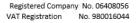
Ground source heat pump would be a feasible option to meet the space heating requirements, however, it requires ground space for bore holes to extract the ground heat to be utilised for space heating requirements. In this case there is no available ground space for a borehole or trench system, the ground source loop would have to be incorporated within the foundation piles of the structure, which would result in additional cost. Hence, this option is not suitable for this development.

#### Solar Thermal

The use of solar thermal for this development would be limited to domestic hot water only. The use of solar thermal for space heating would not be practical as it is not required when solar thermal is at its most effective during the summer months. Therefore, this system would require additional plumbing and space for hot water storage, incurring additional financial cost. Moreover, the amount of carbon offset from the system is generally lower than other technologies. Therefore, this technology is deemed to be unsuitable for this development.

#### Hydro power

There is no river or lake within the development site boundaries. Therefore, small scale hydro-electric will not be studied any further because of the location and the spatial limitations of the development.


#### Biomass

A biomass system designed for this development would be fueled by wood pellets which have a high energy content. However, a biomass system would not be an appropriate technology for the site for the following reasons:

- i. The burning of wood pellets releases substantially more NOx emissions when compared to similar gas boilers. As the development is situated within an urban area, the installation of a biomass boiler would further impact on the air quality in this area.
- ii. the lack of spaces for pellet boiler and storage on the site.
- iii. Pellets would need to be transported from local pellet suppliers, which causes carbon emissions to the air.









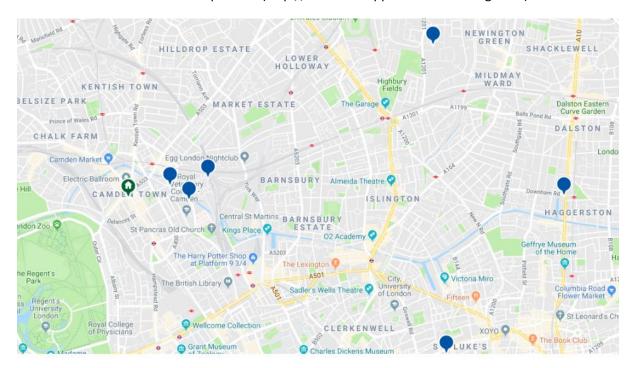



















However, if the biomass system is considered at detailed design stage, local suppliers can be found near the site as shown in the map below (http://biomass-suppliers-list.service.gov.uk).



| Company name                   | Postcode | Contact                                                       | Fuel Supplied |
|--------------------------------|----------|---------------------------------------------------------------|---------------|
| Wolseley UK Ltd                | NW1 0BY  | www.plumbcenter.co.uk FFP.Camden@wolseley.co.uk               | Pellets       |
| Travis Perkins Trading Co. Ltd | NW1 OPT  | www.travisperkins.co.uk<br>sean.mahon@travisperkins.co.uk     | Pellets       |
| Wolseley UK Ltd                | N1C 4PD  | www.pipecenter.co.uk<br>k94.kingscross@wolseley.co.uk         | Pellets       |
| Travis Perkins Trading Co. Ltd | N19 5UN  | www.travisperkins.co.uk<br>toby.duncan@travisperkins.co.uk    | Pellets       |
| Travis Perkins Trading Co. Ltd | W2 6NA   | www.travisperkins.co.uk<br>liam.clancy@travisperkins.co.uk    | Pellets       |
| Travis Perkins Trading Co. Ltd | NW61SD   | www.travisperkins.co.uk<br>johnny.farmer@travisperkins.co.uk  | Pellets       |
| Wolseley UK Ltd                | N5 2PW   | www.plumbcenter.co.uk YM.Highbury@wolseley.co.uk              | Pellets       |
| Travis Perkins Trading Co. Ltd | EC1Y 0TY | www.travisperkins.co.uk<br>keith.gittins@travisperkins.co.uk  | Pellets       |
| Travis Perkins Trading Co. Ltd | EC1Y 0TY | www.travisperkins.co.uk<br>kenneth.walker@travisperkins.co.uk | Pellets       |
| Travis Perkins Trading Co. Ltd | E8 4DL   | www.travisperkins.co.uk                                       | Pellets       |





















#### **Proposed Technology**

#### • Photovoltaic (PV)

Based on the feasibility study above, PV would be the most suitable renewable Technology for the following reasons:

- I. The installation of PV is much simpler when compared to other renewable technologies
- II. There is sufficient roof space available to install enough PV modules to have a significant impact on carbon emissions of the development
- III. PV panels sited on the roof within an urban area are less visually intrusive when compared to wind turbines

The PV system capacity for the whole development depends upon the selection of the heating system. Therefore, the amount of PV relating to the proposed heating system option is outlined below:

#### Direct acting electric Boilers + 4.725 kWp

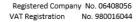
The tables below illustrate the indicative PV panel's detail, should it be feasible to implement:

| Orientation       | South - West                | Overshading  | Less than 20 percent |  |
|-------------------|-----------------------------|--------------|----------------------|--|
| Panel Tilt        | 0-10°                       | Power Output | 315 W per panel      |  |
| Annual Output     | Approximately<br>1796.7 kWh | PV Area      | 1.65 m² per panel    |  |
| Numbers of Panels | 15 panels in total          |              |                      |  |

Table 14 Suggested PV details

The proposed PV panels are subject to further consideration at detailed design stage. In order to qualify both the installer and the equipment, the system must be certified under the Microgeneration Certification Scheme (MCS).

Given the proposed LZC technologies on the site (**PVs**), the overall CO2 reduction at BE GREEN stage can be calculated as shown below. And, it can be seen that the development can achieve the  $CO_2$  emissions reduction of <u>21.39%</u> in the residential units over Building Regulations Part L 2013


### ♣ BE GREEN stage

| Regulated CO <sub>2</sub> Emissions (Tonnes CO <sub>2</sub> /yr) | BE LEAN | BE CLEAN | CARBON REDUCTION (%) |
|------------------------------------------------------------------|---------|----------|----------------------|
| 2-6 Camden High Street                                           | 8.72    | 6.85     | 21.39                |

Table 15 Regulated Carbon Reduction at Be Green Stage



LONDON | READING | TONBRIDGE | BRISTOL























#### Conclusion 9.

This report assesses the predicted energy performance and carbon dioxide emissions of the proposed development at 151-153 Camden High Street, London, NW1 7JY, based on the information provided by the design team.

In line with the London Plan's three step energy hierarchy the regulated CO2 emissions for this development have been reduced by 73.96% over Building Regulation 2013 with 23.10% from renewable energy, once all measures in the table below are taken into account.

| Stages                                                      | Strategies                                                                                                                                                                                                                                      |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>BE LEAN</b><br>Energy efficient design                   | <ul> <li>U-values better and air permeability better than Building<br/>Regulations Part L;</li> <li>High efficiency electric boiler for heating and hot water.</li> <li>Low energy (LED) type lighting;</li> <li>Natural ventilation</li> </ul> |
| BE CLEAN District heat networks or communal heating systems | As there are no current or proposed district heat networks and the size of the development is not suitable for CHP this stage of the hierarchy is not feasible for this scheme. Details can be found in section 8.1.                            |
| BE GREEN On-site renewable technologies                     | <ul> <li>PV panels of 4.725 kWp on the roof (approximate 15 panels with 315 w/p are required). Details are in Section Error! R eference source not found</li> </ul>                                                                             |

Table 16 Energy Hierarchy and suggested strategies

This carbon savings from each stage can be calculated based on the results above. The chart below summarises the total cumulative savings:

| Energy Hierarchy         |                                  | Regulated Carbon Savings |        |  |
|--------------------------|----------------------------------|--------------------------|--------|--|
|                          |                                  |                          | %      |  |
| BE LEAN                  | After energy demand reduction    | 19.18                    | 68.75% |  |
| BE CLEAN                 | BE CLEAN After heat network/ CHP |                          | 0      |  |
| BE GREEN                 | After renewable energy           | 1.87                     | 21.39% |  |
| Total Cumulative Savings |                                  | 21.05                    | 75.43% |  |
| Total Target             | Savings                          | 5.30                     | 19 %   |  |

Table 17 Carbon dioxide Emissions after each stage of the Energy Hierarchy



Tel: 0330 053 6774

mail@syntegragroup.com







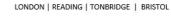


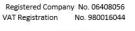













# **10.** Appendix A – Sap Reports SAP Existing























|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                     | User I      | Details:        |              |            |          |           |                         |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------|-------------|-----------------|--------------|------------|----------|-----------|-------------------------|------------|
| Assessor Name:<br>Software Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Su Lee<br>Stroma FSAP 20                                 | 012                 |             | Strom<br>Softwa |              |            |          |           | 0031315<br>on: 1.0.4.18 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                     |             | Address         |              | Existing   |          |           |                         |            |
| Address :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 151-153, Camder                                          | n High Stre         | et, LON     | IDON, N         | W1 7JY       |            |          |           |                         |            |
| 1. Overall dwelling dime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ensions:                                                 |                     | ۸ro         | a(m²)           |              | ۸۷ ۵۰      | ight(m)  |           | Volume(m <sup>3</sup>   | R <b>\</b> |
| Ground floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          |                     |             |                 | (1a) x       |            | 2.75     | (2a) =    | 205.34                  | (3a)       |
| Total floor area TFA = (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (a)+(1b)+(1c)+(1d)+(                                     | 1e)+(1r             | n)          | 74.67           | (4)          |            |          |           |                         |            |
| Dwelling volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                     |             |                 | (3a)+(3b     | )+(3c)+(3c | d)+(3e)+ | .(3n) =   | 205.34                  | (5)        |
| 2. Ventilation rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |                     |             |                 |              |            |          |           |                         |            |
| Number of chimneys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | main<br>heating                                          | secondar<br>heating | ry<br>□ + □ | other<br>0      | 7 = [        | total<br>0 | x        | 40 =      | m³ per hou              | (6a)       |
| Number of open flues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 +                                                      | 0                   | ┪╻┝         | 0               | 」            | 0          | x        | 20 =      | 0                       | (6b)       |
| Number of intermittent fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U                                                        |                     | J L         |                 | J            |            |          | 10 =      |                         | ╡`′        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                     |             |                 | Ļ            | 2          |          |           | 20                      | (7a)       |
| Number of passive vents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |                     |             |                 |              | 0          | x        | 10 =      | 0                       | (7b)       |
| Number of flueless gas f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ires                                                     |                     |             |                 |              | 0          | X        | 40 =      | 0                       | (7c)       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                     |             |                 |              |            |          | Air ch    | nanges per ho           | our        |
| Infiltration due to chimne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | evs flues and fans =                                     | (6a)+(6b)+(7        | 7a)+(7b)+   | (7c) =          | Г            | 20         |          | ÷ (5) =   | 0.1                     | (8)        |
| If a pressurisation test has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          |                     |             |                 | continue fr  | _          |          | ÷ (3) =   | 0.1                     | (0)        |
| Number of storeys in t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                          | .,                  | , ,,        |                 |              | , ,        | , ,      |           | 0                       | (9)        |
| Additional infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |                     |             |                 |              |            | [(9)     | -1]x0.1 = | 0                       | (10)       |
| Structural infiltration: (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |                     |             |                 | •            | uction     |          |           | 0                       | (11)       |
| if both types of wall are p<br>deducting areas of open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | present, use the value corr<br>ings): if equal user 0.35 | responding to       | the grea    | ter wall are    | a (after     |            |          |           |                         |            |
| If suspended wooden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • / .                                                    | ealed) or 0         | .1 (seal    | ed), else       | enter 0      |            |          |           | 0                       | (12)       |
| If no draught lobby, er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nter 0.05, else enter (                                  | )                   |             |                 |              |            |          |           | 0                       | (13)       |
| Percentage of window                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s and doors draught                                      | stripped            |             |                 |              |            |          |           | 0                       | (14)       |
| Window infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |                     |             | 0.25 - [0.2     | 2 x (14) ÷ 1 | 00] =      |          |           | 0                       | (15)       |
| Infiltration rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |                     |             | (8) + (10)      | + (11) + (1  | 2) + (13)  | + (15) = |           | 0                       | (16)       |
| Air permeability value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                        |                     | •           | •               | •            | etre of e  | envelope | area      | 35                      | (17)       |
| If based on air permeabi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                        |                     |             |                 |              |            |          |           | 1.85                    | (18)       |
| Air permeability value applie Number of sides sheltere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                          | nas been dor        | ne or a de  | gree aır pe     | rmeability   | is being u | sed      |           |                         | (19)       |
| Shelter factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5u                                                       |                     |             | (20) = 1 -      | [0.075 x (1  | 9)] =      |          |           | 0.85                    | (20)       |
| Infiltration rate incorpora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ting shelter factor                                      |                     |             | (21) = (18      | ) x (20) =   |            |          |           | 1.57                    | (21)       |
| Infiltration rate modified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                        | ed                  |             |                 |              |            |          |           |                         | ` ′        |
| Jan Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mar Apr Ma                                               | 1                   | Jul         | Aug             | Sep          | Oct        | Nov      | Dec       | 1                       |            |
| Monthly average wind sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - · · · ·                                                |                     | •           |                 |              | •          | •        | •         | _                       |            |
| (22)m= 5.1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.9 4.4 4.3                                              | 3.8                 | 3.8         | 3.7             | 4            | 4.3        | 4.5      | 4.7       | ]                       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | •                   | •           | •               | •            | •          | •        | •         | _                       |            |
| Wind Factor $(22a)m = (2a)m =$ | <del>'</del>                                             |                     |             |                 | · .          |            |          |           | 1                       |            |
| (22a)m= 1.27 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.23 1.1 1.08                                            | 0.95                | 0.95        | 0.92            | 1            | 1.08       | 1.12     | 1.18      | ]                       |            |

| 2                                                                                                                                                                                       | 1.96 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.92                                        | 1.73                              | 1.69      | 1.49                                                                              | 1.49                                     | 1.45                                                                                     | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.69                                                                               | 1.77            | 1.85                | ]                       |       |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------|-----------|-----------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------|---------------------|-------------------------|-------|---------------|
| alculate effec                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                           | te for t                          | he appli  | cable ca                                                                          | se                                       | !                                                                                        | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | !                                                                                  |                 |                     | -                       |       | <b>—</b> ,,   |
| If mechanical If exhaust air he                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | div N. (2                         | 2h) _ (22 | a) × Emy (                                                                        | auation (                                | VEVV otho                                                                                | nuico (22h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n) = (22a)                                                                         |                 |                     |                         | 0     | (2            |
| If balanced with                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                   |           |                                                                                   |                                          |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ) – (23a)                                                                          |                 |                     |                         | 0     | =             |
|                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | -                                 | _         |                                                                                   |                                          |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2h\m . (1                                                                          | 22h) v [        | 1 (226)             | . 100                   | 0     | (2            |
| a) If balance                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                           | 0                                 | 0         | 0                                                                                 | o (IVIVI                                 | 0                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                  | 23D) <b>X</b> [ | $\frac{1-(230)}{0}$ | ) <del>-</del> 100<br>] | ']    | (2            |
| b) If balance                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                   |           |                                                                                   |                                          |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    |                 |                     | _                       |       | (-            |
| 4b)m= 0                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                           | 0                                 | 0         | 0                                                                                 | 0                                        | 0                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                  | 0               | 0                   | 1                       |       | (2            |
| c) If whole h                                                                                                                                                                           | ouse extraction < 0.5 × (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                   | •         | •                                                                                 |                                          |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .5 × (23b                                                                          | )               |                     | J                       |       |               |
| lc)m= 0                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                           | 0                                 | 0         | 0                                                                                 | 0                                        | 0                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                  | 0               | 0                   | 1                       |       | (:            |
| d) If natural                                                                                                                                                                           | ventilation on the state of the |                                             |                                   | •         |                                                                                   |                                          |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.51                                                                               |                 | 1                   | _                       |       |               |
| ld)m= 2                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.92                                        | 1.73                              | 1.69      | 1.49                                                                              | 1.49                                     | 1.45                                                                                     | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.69                                                                               | 1.77            | 1.85                | 1                       |       | (2            |
| Effective air                                                                                                                                                                           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |                                   |           | ļ                                                                                 |                                          |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    |                 |                     | J                       |       | •             |
| 5)m= 2                                                                                                                                                                                  | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.92                                        | 1.73                              | 1.69      | 1.49                                                                              | 1.49                                     | 1.45                                                                                     | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.69                                                                               | 1.77            | 1.85                | 1                       |       | (:            |
|                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                   |           | ı                                                                                 |                                          | ı                                                                                        | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                    |                 | L                   | _                       |       |               |
| . Heat losse:<br><b>_EMENT</b>                                                                                                                                                          | Gross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (                                           | aramete<br>Openin<br>m            | gs        | Net Ar                                                                            |                                          | U-val                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AXU                                                                                | <b>(</b> )      | k-value             |                         |       | X k<br>I/K    |
| oors                                                                                                                                                                                    | area (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -)                                          | 111                               | <b>-</b>  | A ,r                                                                              | _                                        |                                                                                          | .K<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (W/k                                                                               | \ <u>\</u>      | KJ/III              | r.                      | K     | )/ <b>(</b> . |
| ndows Type                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                   |           | 2.12                                                                              | X                                        | 3                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.36                                                                               |                 |                     |                         |       | Ι.            |
| IIIUUWS I VDC                                                                                                                                                                           | 1 ב                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |                                   |           | 0.01                                                                              |                                          | /[1/( 4 8 )+                                                                             | 0.041 _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.66                                                                               | =               |                     |                         |       | (             |
| • •                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                   |           | 0.91                                                                              | ╡,                                       | /[1/( 4.8 )+                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.66                                                                               |                 |                     |                         |       | ·             |
| indows Type                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                                   |           | 1.53                                                                              | x1                                       | /[1/( 4.8 )+                                                                             | 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.16                                                                               |                 |                     |                         |       | (             |
| ndows Type                                                                                                                                                                              | e 2<br>e 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                   |           | 1.53                                                                              | x1 x1                                    | /[1/( 4.8 )+<br>/[1/( 4.8 )+                                                             | 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.16                                                                               |                 |                     |                         |       | (             |
| indows Type<br>indows Type<br>indows Type                                                                                                                                               | e 2<br>e 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                   |           | 1.53<br>4.42<br>4.01                                                              | x1<br>x1<br>x1                           | /[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+                                             | 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.16<br>17.8<br>16.15                                                              |                 |                     | <b>—</b>                |       | ()            |
| ndows Type<br>ndows Type<br>ndows Type<br>oor                                                                                                                                           | 2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>¬</b> г                                  |                                   |           | 1.53<br>4.42<br>4.01<br>74.67                                                     | x1<br>x1<br>x1<br>x1                     | /[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>                                         | 0.04] =<br>0.04] =<br>0.04] =<br>=<br>= =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.16<br>17.8<br>16.15<br>89.604                                                    |                 |                     |                         |       | (1)           |
| indows Type<br>indows Type<br>indows Type<br>por<br>alls Type1                                                                                                                          | 28.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             | 6.86                              | =         | 1.53<br>4.42<br>4.01<br>74.67<br>21.82                                            | x1 x1 x1 x1 x1 x x x x                   | /[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>                                         | 0.04] = 0.04] = 0.04] = = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.16<br>17.8<br>16.15<br>89.604<br>45.83                                           |                 |                     |                         |       | ()            |
| indows Type<br>indows Type<br>indows Type<br>oor<br>alls Type1<br>alls Type2                                                                                                            | 28.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             | 8.02                              |           | 1.53<br>4.42<br>4.01<br>74.67<br>21.82<br>22.89                                   | x1 x1 x1 x1 x2 x x x x x x               | /[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>1.2<br>2.1                               | 0.04] = 0.04] = 0.04] = = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.16<br>17.8<br>16.15<br>89.604<br>45.83<br>48.07                                  |                 |                     |                         |       |               |
| indows Type<br>indows Type<br>indows Type<br>oor<br>alls Type1<br>alls Type2<br>alls Type3                                                                                              | 28.68<br>28.68<br>30.91<br>12.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             | 8.02<br>2.12                      |           | 1.53<br>4.42<br>4.01<br>74.67<br>21.82<br>22.89                                   | x1 x1 x1 x1 x2 x x x x x x x x x x x x x | /[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>1.2<br>2.1<br>2.1                        | 0.04] = 0.04] = 0.04] = = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.16<br>17.8<br>16.15<br>89.604<br>45.83<br>48.07<br>21.25                         |                 |                     |                         |       |               |
| indows Type<br>indows Type<br>indows Type<br>oor<br>alls Type1<br>alls Type2<br>alls Type3                                                                                              | 28.68<br>28.68<br>30.91<br>12.24<br>6.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             | 8.02                              |           | 1.53<br>4.42<br>4.01<br>74.67<br>21.82<br>22.89<br>10.12<br>6.42                  | x1 x1 x1 x x x x x x x x x x             | /[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>1.2<br>2.1                               | 0.04] = 0.04] = 0.04] = = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.16<br>17.8<br>16.15<br>89.604<br>45.83<br>48.07                                  |                 |                     |                         |       |               |
| indows Type<br>indows Type<br>indows Type<br>oor<br>alls Type1<br>alls Type2<br>alls Type3<br>oof                                                                                       | 28.68<br>28.68<br>30.91<br>12.24<br>6.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             | 8.02<br>2.12                      |           | 1.53<br>4.42<br>4.01<br>74.67<br>21.82<br>22.89<br>10.12<br>6.42<br>152.9         | x1 x1 x1 x2 x x x x x x x x x            | /[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+                                             | 0.04] = 0.04] = 0.04] = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.16<br>17.8<br>16.15<br>89.604<br>45.83<br>48.07<br>21.25                         |                 |                     |                         |       |               |
| indows Type<br>indows Type<br>indows Type<br>oor<br>alls Type1<br>alls Type2<br>alls Type3<br>oof<br>otal area of e                                                                     | 28.68<br>28.68<br>30.91<br>12.24<br>6.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             | 8.02<br>2.12                      |           | 1.53<br>4.42<br>4.01<br>74.67<br>21.82<br>22.89<br>10.12<br>6.42<br>152.9<br>28.6 | x1 x1 x1 x2 x x x x x x x x x x x x x x  | /[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>2.1<br>2.1<br>2.1<br>2.3 | 0.04] = 0.04] = 0.04] = = 0.04] = = 0.04] = = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0 | 6.16<br>17.8<br>16.15<br>89.604<br>45.83<br>48.07<br>21.25<br>14.77                |                 |                     |                         |       |               |
| indows Type<br>indows Type<br>indows Type<br>oor<br>alls Type1<br>alls Type2<br>alls Type3<br>oof<br>tal area of e<br>arty wall<br>arty wall                                            | 28.68<br>28.68<br>30.91<br>12.24<br>6.42<br>elements, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , use effe                                  | 8.02<br>2.12<br>0                 | ndow U-va | 1.53 4.42 4.01 74.67 21.82 22.89 10.12 6.42 152.9 28.6 16.44 alue calcul          | x1 x1 x1 x x x x x x x x x x x           | /[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>2.1<br>2.1<br>2.1<br>2.3 | 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = | 6.16<br>17.8<br>16.15<br>89.604<br>45.83<br>48.07<br>21.25<br>14.77                | ]               | paragrapi           |                         |       |               |
| indows Type<br>indows Type<br>indows Type<br>indows Type<br>alls Type1<br>alls Type2<br>alls Type3<br>oof<br>otal area of earty wall<br>arty wall<br>or windows and<br>include the area | 28.68<br>28.68<br>30.91<br>12.24<br>6.42<br>Elements, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , use effe<br>es of inte                    | 8.02 2.12 0                       | ndow U-va | 1.53 4.42 4.01 74.67 21.82 22.89 10.12 6.42 152.9 28.6 16.44 alue calcul          | x1 x1 x1 x1 x2 x x x x x x x x x x x x x | /[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>2.1<br>2.1<br>2.1<br>2.3 | 0.04] =   0.04] =   0.04] =   =   =   =   =   =     =     =     =     =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.16<br>17.8<br>16.15<br>89.604<br>45.83<br>48.07<br>21.25<br>14.77                | ]               | paragrapi           |                         | 85.79 |               |
| indows Type<br>indows Type<br>indows Type<br>oor<br>alls Type1<br>alls Type2<br>alls Type3                                                                                              | 28.68<br>28.68<br>30.91<br>12.24<br>6.42<br>elements, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , use effe<br>es of inte<br>(A x U          | 8.02 2.12 0                       | ndow U-va | 1.53 4.42 4.01 74.67 21.82 22.89 10.12 6.42 152.9 28.6 16.44 alue calcul          | x1 x1 x1 x1 x2 x x x x x x x x x x x x x | /[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>2.1<br>2.1<br>2.1<br>2.3 | 0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04]   | 6.16<br>17.8<br>16.15<br>89.604<br>45.83<br>48.07<br>21.25<br>14.77                |                 |                     |                         | 85.79 |               |
| indows Type indows Type indows Type indows Type oor alls Type1 alls Type2 alls Type3 oof otal area of e arty wall arty wall or windows and include the area abric heat los              | 28.68<br>30.91<br>12.24<br>6.42<br>elements, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , use effe<br>es of inte<br>(A x U<br>( k ) | 8.02 2.12 0 ective wineernal wall | ndow U-v  | 1.53 4.42 4.01 74.67 21.82 22.89 10.12 6.42 152.9 28.6 16.44 alue calculatitions  | x1 x1 x1 x1 x2 x x x x x x x x x x x x x | /[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>2.1<br>2.1<br>2.1<br>2.3 | 0.04] =   0.04] =   0.04] =   0.04] =   =   0.04] =   =   0.04] =   =   0.04] =   =   0.04] =   =   0.04] =   (1/U-value) + (32) =   ((28).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.16<br>17.8<br>16.15<br>89.604<br>45.83<br>48.07<br>21.25<br>14.77<br>0<br>0<br>0 | ?) + (32a).     |                     | 2                       |       |               |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eat loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                   |                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           |                                                                     |                                                 | ` '                                       | (36) =                                               | 05) (5)                                         |                                    | 308.73  | (3                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|------------------------------------------------------|-------------------------------------------------|------------------------------------|---------|----------------------------------------------------------------------------|
| entilation he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                     | I .                                             | ` ′                                       | = 0.33 × (                                           | , , , ,                                         |                                    |         |                                                                            |
| Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mar                                                                                                                               | Apr                                                                                                          | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jun                                                       | Jul                                                                 | Aug                                             | Sep                                       | Oct                                                  | Nov                                             | Dec                                |         | (0                                                                         |
| 8)m= 135.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 133.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 130.35                                                                                                                            | 117.05                                                                                                       | 114.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101.09                                                    | 101.09                                                              | 98.43                                           | 106.41                                    | 114.39                                               | 119.71                                          | 125.03                             |         | (3                                                                         |
| eat transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | coefficier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nt, W/K                                                                                                                           |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                     |                                                 | (39)m                                     | = (37) + (3                                          | 38)m                                            |                                    |         |                                                                            |
| 9)m= 444.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 441.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 439.08                                                                                                                            | 425.78                                                                                                       | 423.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 409.82                                                    | 409.82                                                              | 407.16                                          | 415.14                                    | 423.12                                               | 428.44                                          | 433.76                             |         |                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   | / 01.6                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                     |                                                 |                                           | Average =                                            |                                                 | 12 /12=                            | 425.12  | (3                                                                         |
| eat loss para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del>- `</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   |                                                                                                              | 5.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.40                                                      | - 10                                                                | - 4-                                            | ` ′                                       | = (39)m ÷                                            | <u>`                                    </u>    | 5.04                               |         |                                                                            |
| 0)m= 5.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.88                                                                                                                              | 5.7                                                                                                          | 5.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.49                                                      | 5.49                                                                | 5.45                                            | 5.56                                      | 5.67                                                 | 5.74                                            | 5.81                               |         | $\neg \alpha$                                                              |
| umber of day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vs in mor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nth (Tabl                                                                                                                         | le 1a)                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                     |                                                 | ,                                         | Average =                                            | Sum(40) <sub>1</sub>                            | 12 /12=                            | 5.69    | (4                                                                         |
| Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mar                                                                                                                               | Apr                                                                                                          | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jun                                                       | Jul                                                                 | Aug                                             | Sep                                       | Oct                                                  | Nov                                             | Dec                                |         |                                                                            |
| 1)m= 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31                                                                                                                                | 30                                                                                                           | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                        | 31                                                                  | 31                                              | 30                                        | 31                                                   | 30                                              | 31                                 |         | (4                                                                         |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                     |                                                 |                                           |                                                      |                                                 |                                    |         | ·                                                                          |
| 1. Water hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ting oner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | av roqui                                                                                                                          | romont:                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                     |                                                 |                                           |                                                      |                                                 | kWh/ye                             | or:     |                                                                            |
| r. vvalei nea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ung ener                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gy requi                                                                                                                          | rement.                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                     |                                                 |                                           |                                                      |                                                 | KVVII/ye                           | ;ai.    |                                                                            |
| ssumed occ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                     |                                                 |                                           |                                                      |                                                 | 35                                 |         | (4                                                                         |
| if TFA > 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + 1.76 x                                                                                                                          | [1 - exp                                                                                                     | (-0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 849 x (TF                                                 | FA -13.9                                                            | )2)] + 0.0                                      | 0013 x (                                  | TFA -13.                                             | 9)                                              |                                    |         |                                                                            |
| if TFA £ 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tor usos                                                                                                                          | no in litro                                                                                                  | o por de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | v Vd ov                                                   | orogo –                                                             | (25 v NI)                                       | . 26                                      |                                                      |                                                 |                                    |         | ,                                                                          |
| าnual avera(<br>educe the annu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                     |                                                 |                                           | se target o                                          |                                                 | .85                                |         | (4                                                                         |
| t more that 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                   |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                         | _                                                                   |                                                 |                                           | J                                                    |                                                 |                                    |         |                                                                            |
| Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mar                                                                                                                               | Apr                                                                                                          | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jun                                                       | Jul                                                                 | Aug                                             | Sep                                       | Oct                                                  | Nov                                             | Dec                                |         |                                                                            |
| t water usage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           |                                                                     |                                                 | ООР                                       |                                                      | 1.101                                           |                                    |         |                                                                            |
| 4)m= 104.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96.75                                                                                                                             | 92.95                                                                                                        | 89.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85.36                                                     | 85.36                                                               | 89.16                                           | 92.95                                     | 96.75                                                | 100.54                                          | 104.33                             |         |                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                     |                                                 |                                           | Total = Su                                           |                                                 | l .                                | 1138.19 | ( <u>4</u>                                                                 |
| 104.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | _                                                                   |                                                 |                                           |                                                      | . ,                                             |                                    |         |                                                                            |
| nergy content of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f hot water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | used - cal                                                                                                                        | culated mo                                                                                                   | onthly $= 4$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190 x Vd,r                                                | n x nm x L                                                          | 0Tm / 3600                                      | kWh/mor                                   | nth (see Ta                                          | ables 1b, 1                                     | c, ra)                             |         |                                                                            |
| nergy content o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f hot water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | used - cal                                                                                                                        | 121.74                                                                                                       | onthly = 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 190 x Vd,r                                                | 93.41                                                               | 0Tm / 3600<br>107.19                            | ) kWh/mor<br>108.47                       | 126.41                                               | 137.98                                          | 149.84                             |         |                                                                            |
| ergy content o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | 1                                                                   |                                                 | 108.47                                    | 126.41                                               | 137.98                                          | 149.84                             | 1492.35 | \( <u>4</u>                                                                |
| ergy content of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 135.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 139.64                                                                                                                            | 121.74                                                                                                       | 116.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.8                                                     | 93.41                                                               | 107.19                                          | 108.47                                    | ,                                                    | 137.98                                          | 149.84                             | 1492.35 | (4                                                                         |
| ergy content of 154.72 nstantaneous v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 135.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 139.64                                                                                                                            | 121.74                                                                                                       | 116.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.8                                                     | 93.41                                                               | 107.19                                          | 108.47                                    | 126.41                                               | 137.98                                          | 149.84                             | 1492.35 |                                                                            |
| ergy content of 154.72  Instantaneous v  S)m= 23.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 135.32<br>water heatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 139.64                                                                                                                            | 121.74<br>of use (no                                                                                         | 116.81  hot water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100.8                                                     | 93.41<br>enter 0 in                                                 | 107.19<br>boxes (46)                            | 108.47<br>) to (61)                       | 126.41<br>Total = Su                                 | 137.98<br>m(45) <sub>112</sub> =                | 149.84                             | 1492.35 |                                                                            |
| ergy content of 154.72  nstantaneous v  s)m= 23.21  ater storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 135.32  water heatin 20.3  closs:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 139.64<br>ng at point<br>20.95                                                                                                    | 121.74<br>of use (no                                                                                         | 116.81<br>hot water<br>17.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100.8 storage),                                           | 93.41<br>enter 0 in<br>14.01                                        | 107.19<br>boxes (46)<br>16.08                   | 108.47<br>) to (61)<br>16.27              | 126.41<br>Total = Su<br>18.96                        | 137.98<br>m(45) <sub>112</sub> =<br>20.7        | 149.84                             | 1492.35 | (4                                                                         |
| nstantaneous v some 23.21 ater storage orage volum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vater heatin<br>20.3<br>loss:<br>ne (litres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 139.64  ng at point 20.95  includin                                                                                               | 121.74<br>of use (no<br>18.26<br>ag any so                                                                   | 116.81<br>2 hot water<br>17.52<br>Dlar or W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.8  r storage), 15.12  /WHRS                           | 93.41  enter 0 in  14.01  storage                                   | 107.19  boxes (46)  16.08  within sa            | 108.47<br>) to (61)<br>16.27              | 126.41<br>Total = Su<br>18.96                        | 137.98<br>m(45) <sub>112</sub> =<br>20.7        | 149.84                             | 1492.35 | (4                                                                         |
| nstantaneous voices storage orage volum community h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vater heating 20.3 Ploss: ne (litres) neating a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 139.64  ng at point 20.95  includin                                                                                               | of use (not<br>18.26<br>ag any so<br>nk in dw                                                                | 116.81  2 hot water 17.52  Dlar or W  relling, e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100.8  * storage),  15.12  /WHRS nter 110                 | 93.41  enter 0 in  14.01  storage litres in                         | 107.19  boxes (46,  16.08  within sa (47)       | 108.47<br>) to (61)<br>16.27              | 126.41<br>Total = Su<br>18.96                        | 137.98<br>m(45) <sub>112</sub> =<br>20.7        | 149.84                             | 1492.35 | (4                                                                         |
| nstantaneous values orage volum community is therwise if natural orage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vater heating a constored eloss:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 139.64  ng at point 20.95  includin nd no ta hot wate                                                                             | of use (no<br>18.26<br>ag any so<br>nk in dw<br>er (this in                                                  | 116.81  to hot water 17.52  Dlar or Welling, e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100.8  r storage), 15.12  /WHRS nter 110 nstantar         | 93.41  enter 0 in  14.01  storage litres in neous co                | 107.19  boxes (46,  16.08  within sa (47)       | 108.47<br>) to (61)<br>16.27              | 126.41<br>Total = Su<br>18.96                        | 137.98<br>m(45) <sub>112</sub> =<br>20.7        | 149.84                             | 1492.35 | (4                                                                         |
| ergy content of the standard of the storage of the  | vater heating a stored e loss:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 139.64  ng at point 20.95  includin nd no ta hot wate                                                                             | of use (not) 18.26  18 any so ank in dwer (this in oss factors)                                              | 116.81  2 hot water 17.52  Dlar or Welling, eacludes i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.8  r storage), 15.12  /WHRS nter 110 nstantar         | 93.41  enter 0 in  14.01  storage litres in neous co                | 107.19  boxes (46,  16.08  within sa (47)       | 108.47<br>) to (61)<br>16.27              | 126.41<br>Total = Su<br>18.96                        | 137.98<br>m(45) <sub>112</sub> =<br>20.7        | 149.84                             | 1492.35 | (4                                                                         |
| ergy content of the standard of the storage of the  | vater heating a stored e loss:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 139.64  ng at point 20.95  includin nd no ta hot wate                                                                             | of use (not) 18.26  18 any so ank in dwer (this in oss factors)                                              | 116.81  2 hot water 17.52  Dlar or Welling, eacludes i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.8  r storage), 15.12  /WHRS nter 110 nstantar         | 93.41  enter 0 in  14.01  storage litres in neous co                | 107.19  boxes (46,  16.08  within sa (47)       | 108.47<br>) to (61)<br>16.27              | 126.41<br>Total = Su<br>18.96                        | 137.98<br>m(45) <sub>112</sub> =<br>20.7        | 149.84                             | 1492.35 | (4                                                                         |
| instantaneous visualistantaneous | vater heating 20.3 neating a stored e loss: turer's defactor from water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 139.64  ng at point 20.95  includin nd no ta hot wate eclared le m Table                                                          | of use (not 18.26 and any sounk in dwarf (this in coss factor 2b , kWh/ye                                    | 116.81  17.52  Dlar or Water  relling, eacludes it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100.8  r storage), 15.12  /WHRS nter 110 nstantar wn (kWh | 93.41  enter 0 in  14.01  storage litres in neous co                | 107.19  boxes (46,  16.08  within sa (47)       | 108.47<br>) to (61)<br>16.27<br>ame vess  | 126.41<br>Total = Su<br>18.96                        | 137.98<br>m(45) <sub>112</sub> =<br>20.7        | 149.84 = 22.48                     | 1492.35 | (4<br>(4<br>(4                                                             |
| instantaneous violater storage community in therwise if nurater storage in the st | vater heating a constored eloss: turer's defactor from water turer's defactor's defactor | 139.64  ng at point 20.95  includin nd no ta hot wate eclared le m Table storage eclared of                                       | of use (not) 18.26  ag any so onk in dwer (this in oss factor 2b  by kWh/ye cylinder l                       | 116.81  17.52  Dlar or Welling, encludes in the control of the con | 100.8  r storage), 15.12  /WHRS nter 110 nstantar wn (kWh | 93.41  enter 0 in  14.01  storage litres in neous con/day):         | 107.19 boxes (46, 16.08 within sa (47) mbi boil | 108.47<br>) to (61)<br>16.27<br>ame vess  | 126.41<br>Total = Su<br>18.96                        | 137.98<br>m(45) <sub>112</sub> =<br>20.7<br>47) | 149.84<br>= 22.48<br>110<br>0      | 1492.35 | (4)                                                                        |
| instantaneous visuality visuality instantaneous visuality visual | vater heating a construction of turer's desage loss.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 139.64  ng at point 20.95  includin and no ta hot wate eclared le m Table storage eclared of                                      | of use (not) 18.26  Ing any so ank in dwer (this in oss factors) 2b  kWh/ye cylinder loom Table              | 116.81  17.52  Dlar or Welling, encludes in the control of the con | 100.8  r storage), 15.12  /WHRS nter 110 nstantar wn (kWh | 93.41  enter 0 in  14.01  storage litres in neous con/day):         | 107.19 boxes (46, 16.08 within sa (47) mbi boil | 108.47<br>) to (61)<br>16.27<br>ame vess  | 126.41<br>Total = Su<br>18.96                        | 137.98<br>m(45) <sub>112</sub> =<br>20.7<br>47) | 149.84<br>= 22.48<br>110           | 1492.35 | (4)                                                                        |
| nstantaneous v nater storage orage volum community h therwise if n nater storage of manufac nergy lost fro of manufac of water stor community h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vater heating a construction of turer's defactor from water turer's defactor some and turer's defactor from water from | 139.64  ng at point 20.95  includin nd no ta hot wate eclared le m Table storage eclared of                                       | of use (not) 18.26  Ing any so ank in dwer (this in oss factors) 2b  kWh/ye cylinder loom Table              | 116.81  17.52  Dlar or Welling, encludes in the control of the con | 100.8  r storage), 15.12  /WHRS nter 110 nstantar wn (kWh | 93.41  enter 0 in  14.01  storage litres in neous con/day):         | 107.19 boxes (46, 16.08 within sa (47) mbi boil | 108.47<br>) to (61)<br>16.27<br>ame vess  | 126.41<br>Total = Su<br>18.96                        | 137.98<br>m(45) <sub>112</sub> =<br>20.7<br>47) | 149.84<br>= 22.48<br>110<br>0<br>0 | 1492.35 | (4)                                                                        |
| ergy content of the standard of the storage of the  | vater heating a constored stored factor from water turer's desage loss meating stored factor from mater turer's desage loss meating stored from Tal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 139.64  ng at point 20.95  includin nd no ta hot wate eclared le storage eclared of factor fr ee sectio                           | of use (not) 18.26  ag any so ank in dwer (this in coss factor 2b  , kWh/ye cylinder I com Tablon 4.3        | 116.81  hot water  17.52  plar or W velling, e acludes i  or is known                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.8  r storage), 15.12  /WHRS nter 110 nstantar wn (kWh | 93.41  enter 0 in  14.01  storage litres in neous con/day):         | 107.19 boxes (46, 16.08 within sa (47) mbi boil | 108.47<br>) to (61)<br>16.27<br>ame vess  | 126.41<br>Total = Su<br>18.96                        | 137.98<br>m(45) <sub>112</sub> =<br>20.7<br>47) | 149.84 = 22.48                     | 1492.35 |                                                                            |
| instantaneous visible  | vater heating 20.3 ne (litres) neating a constored a loss: turer's defactor from water turer's defactor from Eagle loss neating seriom Talifactor from the factor from the factor from the factor from the factor from Talifactor from Talifac | 139.64  ang at point 20.95  includin and no ta hot wate eclared le m Table storage eclared of factor fr ee section ble 2a m Table | of use (not) 18.26  18.26  ag any so onk in dwer (this in oss factors) 2b  kWh/ye cylinder I om Table on 4.3 | 116.81  2 hot water 17.52  Dlar or Water velling, encludes in the control of the  | 100.8  r storage), 15.12  /WHRS nter 110 nstantar wn (kWh | 93.41  enter 0 in  14.01  storage litres in neous con/day):  known: | 107.19 boxes (46, 16.08 within sa (47) mbi boil | 108.47  108.47  16.27  ame vest ers) ente | 126.41<br>Total = Sul<br>18.96<br>sel<br>er '0' in ( | 137.98 m(45) <sub>112</sub> = 20.7 47) 1 0.     | 149.84<br>= 22.48<br>110<br>0<br>0 | 1492.35 | (4) (4) (4) (4) (5) (5) (5) (5) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6 |

| Water storage loss calculated for each month $((56)m = (55) \times (41)m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| (56)m= 208.01 187.88 208.01 201.3 208.01 201.3 208.01 208.01 201.3 208.01 201.3 208.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (56)                         |
| If cylinder contains dedicated solar storage, (57)m = (56)m x [(50) – (H11)] ÷ (50), else (57)m = (56)m where (H11) is from Appendix H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                            |
| (57)m= 208.01 187.88 208.01 201.3 208.01 201.3 208.01 208.01 208.01 201.3 208.01 201.3 208.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (57)                         |
| Primary circuit loss (annual) from Table 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (58)                         |
| Primary circuit loss calculated for each month (59)m = (58) ÷ 365 × (41)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |
| (modified by factor from Table H5 if there is solar water heating and a cylinder thermostat)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |
| (59)m= 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (59)                         |
| Combi loss calculated for each month (61)m = (60) ÷ 365 × (41)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| (61)m= 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (61)                         |
| Total heat required for water heating calculated for each month $(62)m = 0.85 \times (45)m + (46)m + (57)m + (59)m + (61)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n                            |
| (62)m= 362.73 323.2 347.65 323.04 324.82 302.1 301.41 315.19 309.76 334.41 339.28 357.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (62)                         |
| Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
| (add additional lines if FGHRS and/or WWHRS applies, see Appendix G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |
| (63)m= 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (63)                         |
| Output from water heater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| (64)m= 362.73 323.2 347.65 323.04 324.82 302.1 301.41 315.19 309.76 334.41 339.28 357.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| Output from water heater (annual) <sub>112</sub> 3941.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (64)                         |
| Heat gains from water heating, kWh/month 0.25 $'$ [0.85 $\times$ (45)m + (61)m] + 0.8 $\times$ [(46)m + (57)m + (59)m ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |
| (65)m= 217.85 195.3 212.83 201.52 205.25 194.55 197.46 202.04 197.1 208.44 206.92 216.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (65)                         |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |
| 5. Internal gains (see Table 5 and 5a):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| Metabolic gains (Table 5) Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| Metabolic gains (Table 5), Watts  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (66)                         |
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (66)                         |
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (66)<br>(67)                 |
| Jan         Feb         Mar         Apr         May         Jun         Jul         Aug         Sep         Oct         Nov         Dec           (66)m=         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117 | , ,                          |
| Jan         Feb         Mar         Apr         May         Jun         Jul         Aug         Sep         Oct         Nov         Dec           (66)m=         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117 | , ,                          |
| Jan         Feb         Mar         Apr         May         Jun         Jul         Aug         Sep         Oct         Nov         Dec           (66)m=         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117 | (67)                         |
| Jan         Feb         Mar         Apr         May         Jun         Jul         Aug         Sep         Oct         Nov         Dec           (66)m=         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117 | (67)                         |
| Jan         Feb         Mar         Apr         May         Jun         Jul         Aug         Sep         Oct         Nov         Dec           (66)m=         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117 | (67)<br>(68)                 |
| Jan         Feb         Mar         Apr         May         Jun         Jul         Aug         Sep         Oct         Nov         Dec           (66)m=         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117 | (67)<br>(68)                 |
| Jan         Feb         Mar         Apr         May         Jun         Jul         Aug         Sep         Oct         Nov         Dec           (66)m=         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117 | (67)<br>(68)<br>(69)         |
| Jan         Feb         Mar         Apr         May         Jun         Jul         Aug         Sep         Oct         Nov         Dec           (66)m=         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117.7         117 | (67)<br>(68)<br>(69)         |
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (67)<br>(68)<br>(69)<br>(70) |
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (67)<br>(68)<br>(69)<br>(70) |
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (67)<br>(68)<br>(69)<br>(70) |
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (67)<br>(68)<br>(69)<br>(70) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:              | Access Factor<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |     | Gains<br>(W) |      |
|---------------------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|-----|--------------|------|
| Northeast 0.9x            | 0.77                      | x | 4.01       | x | 11.28            | x | 0.76           | x | 0.7            | =   | 33.36        | (75) |
| Northeast 0.9x            | 0.77                      | x | 4.01       | x | 22.97            | x | 0.76           | x | 0.7            | =   | 67.91        | (75) |
| Northeast 0.9x            | 0.77                      | x | 4.01       | x | 41.38            | x | 0.76           | x | 0.7            | =   | 122.35       | (75) |
| Northeast 0.9x            | 0.77                      | x | 4.01       | x | 67.96            | x | 0.76           | x | 0.7            | =   | 200.93       | (75) |
| Northeast 0.9x            | 0.77                      | x | 4.01       | x | 91.35            | x | 0.76           | x | 0.7            | =   | 270.09       | (75) |
| Northeast 0.9x            | 0.77                      | x | 4.01       | x | 97.38            | x | 0.76           | x | 0.7            | =   | 287.94       | (75) |
| Northeast 0.9x            | 0.77                      | x | 4.01       | x | 91.1             | x | 0.76           | x | 0.7            | =   | 269.37       | (75) |
| Northeast 0.9x            | 0.77                      | x | 4.01       | x | 72.63            | x | 0.76           | x | 0.7            | =   | 214.74       | (75) |
| Northeast 0.9x            | 0.77                      | x | 4.01       | x | 50.42            | x | 0.76           | x | 0.7            | =   | 149.08       | (75) |
| Northeast 0.9x            | 0.77                      | x | 4.01       | x | 28.07            | x | 0.76           | x | 0.7            | =   | 82.99        | (75) |
| Northeast 0.9x            | 0.77                      | X | 4.01       | x | 14.2             | x | 0.76           | X | 0.7            | =   | 41.98        | (75) |
| Northeast 0.9x            | 0.77                      | x | 4.01       | x | 9.21             | x | 0.76           | x | 0.7            | =   | 27.24        | (75) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 0.91       | x | 36.79            | ] | 0.76           | x | 0.7            | =   | 12.34        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 1.53       | x | 36.79            | ] | 0.76           | x | 0.7            | =   | 20.75        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 4.42       | x | 36.79            | ] | 0.76           | x | 0.7            | =   | 59.96        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 0.91       | x | 62.67            | ] | 0.76           | x | 0.7            | =   | 21.03        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 1.53       | x | 62.67            | ] | 0.76           | x | 0.7            | =   | 35.35        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 4.42       | x | 62.67            | ] | 0.76           | x | 0.7            | =   | 102.13       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 0.91       | x | 85.75            | ] | 0.76           | x | 0.7            | =   | 28.77        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 1.53       | x | 85.75            | ] | 0.76           | x | 0.7            | =   | 48.37        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 4.42       | x | 85.75            | ] | 0.76           | x | 0.7            | =   | 139.74       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 0.91       | x | 106.25           | ] | 0.76           | x | 0.7            | =   | 35.65        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 1.53       | x | 106.25           | ] | 0.76           | x | 0.7            | =   | 59.93        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 4.42       | x | 106.25           | ] | 0.76           | x | 0.7            | =   | 173.14       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 0.91       | x | 119.01           | ] | 0.76           | x | 0.7            | =   | 39.93        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 1.53       | x | 119.01           | ] | 0.76           | x | 0.7            | =   | 67.13        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 4.42       | x | 119.01           | ] | 0.76           | x | 0.7            | =   | 193.93       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 0.91       | x | 118.15           | ] | 0.76           | x | 0.7            | =   | 39.64        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 1.53       | x | 118.15           | ] | 0.76           | x | 0.7            | =   | 66.65        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 4.42       | x | 118.15           | ] | 0.76           | x | 0.7            | =   | 192.53       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 0.91       | x | 113.91           | ] | 0.76           | x | 0.7            | =   | 38.22        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 1.53       | x | 113.91           | ] | 0.76           | x | 0.7            | =   | 64.25        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 4.42       | x | 113.91           | ] | 0.76           | x | 0.7            | =   | 185.62       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 0.91       | x | 104.39           | ] | 0.76           | x | 0.7            | =   | 35.02        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 1.53       | x | 104.39           | ] | 0.76           | x | 0.7            | =   | 58.88        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 4.42       | x | 104.39           | ] | 0.76           | x | 0.7            | =   | 170.11       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 0.91       | x | 92.85            | ] | 0.76           | x | 0.7            | ] = | 31.15        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 1.53       | x | 92.85            | ] | 0.76           | x | 0.7            | ] = | 52.38        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 4.42       | x | 92.85            | ] | 0.76           | x | 0.7            | j = | 151.31       | (79) |
|                           |                           |   |            |   |                  |   |                |   |                |     |              |      |

|         | _                   |           |           |            |           |           |                 |           |             |               |           |           |              |          |        |      |
|---------|---------------------|-----------|-----------|------------|-----------|-----------|-----------------|-----------|-------------|---------------|-----------|-----------|--------------|----------|--------|------|
| Southw  | est <sub>0.9x</sub> | 0.77      | ×         | 0.9        | 91        | X         | 6               | 9.27      |             |               | 0.76      | X         | 0.7          | =        | 23.24  | (79) |
| Southw  | est <sub>0.9x</sub> | 0.77      | x         | 1.5        | 53        | X         | 6               | 9.27      | ] [         |               | 0.76      | X         | 0.7          | =        | 39.07  | (79) |
| Southw  | est <sub>0.9x</sub> | 0.77      | X         | 4.4        | 12        | X         | 6               | 9.27      |             |               | 0.76      | x         | 0.7          | =        | 112.87 | (79) |
| Southw  | est <sub>0.9x</sub> | 0.77      | X         | 0.9        | 91        | x         | 4               | 4.07      |             |               | 0.76      | x         | 0.7          | =        | 14.79  | (79) |
| Southw  | est <sub>0.9x</sub> | 0.77      | X         | 1.5        | 53        | x         | 4               | 4.07      | ] [         |               | 0.76      | x         | 0.7          | =        | 24.86  | (79) |
| Southw  | est <sub>0.9x</sub> | 0.77      | X         | 4.4        | 12        | x         | 4               | 4.07      | ] [         |               | 0.76      | x         | 0.7          | =        | 71.82  | (79) |
| Southw  | est <sub>0.9x</sub> | 0.77      | X         | 0.9        | 91        | x         | 3               | 1.49      | ] [         |               | 0.76      | x         | 0.7          | =        | 10.56  | (79) |
| Southw  | est <sub>0.9x</sub> | 0.77      | X         | 1.5        | 53        | x         | 3               | 1.49      | ] [         |               | 0.76      | x         | 0.7          | =        | 17.76  | (79) |
| Southw  | est <sub>0.9x</sub> | 0.77      | X         | 4.4        | 12        | x         | 3               | 1.49      |             |               | 0.76      | x         | 0.7          | =        | 51.31  | (79) |
|         |                     |           |           |            |           |           |                 |           |             |               |           |           |              |          |        |      |
| Solar g | gains in            | watts, ca | alculated | for eac    | h month   |           |                 |           | (83)m       | = Su          | um(74)m . | (82)m     |              |          | _      |      |
| (83)m=  | 126.42              | 226.42    | 339.23    | 469.65     | 571.08    | 58        | 86.76           | 557.46    | 478.        | .76           | 383.92    | 258.17    | 153.44       | 106.88   |        | (83) |
| Total g | ains – ii           | nternal a | nd solar  | (84)m =    | = (73)m   | + (8      | 83)m            | , watts   |             |               |           |           |              |          | _      |      |
| (84)m=  | 727.23              | 823.64    | 921.2     | 1028.29    | 1106.71   | 11        | 00.98           | 1058.58   | 987.        | .43           | 905.48    | 803.29    | 724.77       | 697.22   |        | (84) |
| 7. Me   | an inter            | nal temp  | erature   | (heating   | season    | )         |                 |           |             |               |           |           |              |          |        |      |
|         |                     |           |           | eriods ir  |           | <i>′</i>  | area f          | rom Tab   | ole 9.      | .Th1          | 1 (°C)    |           |              |          | 21     | (85) |
| •       |                     | _         | ٠.        | living are |           | _         |                 |           | ,           |               | . ( -)    |           |              |          |        | `` ′ |
|         | Jan                 | Feb       | Mar       | Apr        | May       | Ė         | Jun             | Jul       | Αι          | ua            | Sep       | Oct       | Nov          | Dec      | 7      |      |
| (86)m=  | 0.99                | 0.98      | 0.97      | 0.96       | 0.93      | _         | 0.87            | 0.8       | 0.8         | Ť             | 0.91      | 0.96      | 0.98         | 0.99     | ┪      | (86) |
| Moon    | intorno             | Ltompor   | atura in  | living are | no T1 /f/ | مالد      | w cto           | nc 2 to 7 | l<br>7 in T | able.         | . 00)     |           | 1            | I        | _      |      |
| (87)m=  | 16.55               | 16.8      | 17.34     | 18.16      | 19.01     | _         | 9.84            | 20.33     | 20.2        | _             | 19.59     | 18.52     | 17.44        | 16.56    | 1      | (87) |
|         |                     |           |           |            |           | <u> </u>  |                 |           | <u> </u>    |               |           | 10.02     | 17.44        | 10.00    |        | (0.) |
| - 1     |                     |           |           | eriods ir  |           | _         |                 |           |             | _             | <u> </u>  |           | 1            |          | 1      | (00) |
| (88)m=  | 18                  | 18        | 18        | 18.01      | 18.01     | 1         | 8.02            | 18.02     | 18.0        | 02            | 18.02     | 18.01     | 18.01        | 18       |        | (88) |
| Utilisa | ation fac           | tor for g | ains for  | rest of d  | welling,  | h2,       | m (se           | e Table   | 9a)         |               |           |           |              |          | _      |      |
| (89)m=  | 0.98                | 0.97      | 0.96      | 0.93       | 0.87      | (         | 0.72            | 0.45      | 0.5         | 52            | 0.81      | 0.94      | 0.97         | 0.98     |        | (89) |
| Mean    | interna             | l temper  | ature in  | the rest   | of dwelli | ing       | T2 (fo          | ollow ste | ps 3        | to 7          | ' in Tabl | e 9c)     |              |          |        |      |
| (90)m=  | 14.44               | 14.68     | 15.22     | 16.02      | 16.84     | Ť         | 17.6            | 17.95     | 17.9        | _             | 17.4      | 16.38     | 15.31        | 14.43    | 1      | (90) |
|         |                     |           |           |            |           | _         |                 |           | !           |               | f         | LA = Livi | ng area ÷ (4 | 4) =     | 0.45   | (91) |
| Maan    | intorno             | l tampar  | oturo (fo | r tha wh   | مام طبیم  | ارانا     | م/ fl           | ΛΤ1       | . /1        | £I            | Λ) Το     |           |              |          |        |      |
| (92)m=  | 15.39               | 15.64     | 16.18     | r the wh   | 17.82     | т —       | g) = 11<br>8.61 | 19.02     | 18.9        |               | 18.39     | 17.35     | 16.27        | 15.39    | 1      | (92) |
|         |                     |           |           | internal   |           | _         |                 |           | <u> </u>    |               |           |           | 10.27        | 15.59    |        | (32) |
| (93)m=  | 15.39               | 15.64     | 16.18     | 16.99      | 17.82     | _         | 8.61            | 19.02     | 18.9        | $\overline{}$ | 18.39     | 17.35     | 16.27        | 15.39    | 1      | (93) |
|         |                     | ting requ |           |            | 17.02     | <u>L'</u> | 0.01            | 10.02     | 10.0        |               | 10.00     | 17.00     | 10.27        | 10.00    |        | (55) |
|         |                     |           |           |            | ra ohtair | had       | at eta          | an 11 of  | Tabl        | ۵ Oh          | on tha    | t Ti m-   | (76)m an     | d re-cal | culata |      |
|         |                     |           |           | using Ta   |           | icu       | ai si           | ър 11 О   | Table       | 6 30          | , 30 ilia |           | (70)111 a11  | u ie-cai | Culate |      |
|         | Jan                 | Feb       | Mar       | Apr        | May       |           | Jun             | Jul       | Αι          | ug            | Sep       | Oct       | Nov          | Dec      |        |      |
| Utilisa | ation fac           | tor for g | ains, hm  | 1:         |           |           |                 |           | •           |               |           |           | •            | •        | -      |      |
| (94)m=  | 0.97                | 0.96      | 0.95      | 0.92       | 0.87      | (         | 0.77            | 0.63      | 0.6         | 57            | 0.83      | 0.93      | 0.96         | 0.97     | ]      | (94) |
| Usefu   | ıl gains,           | hmGm ,    | W = (94   | 4)m x (84  | 4)m       |           |                 |           |             | •             |           |           | •            | •        | _      |      |
| (95)m=  | 706.49              | 793.39    | 873.59    | 944.74     | 957.93    | 8         | 45.6            | 664.4     | 659.        | .89           | 754.34    | 743.95    | 696.66       | 678.87   |        | (95) |
| Month   | nly avera           | age exte  | rnal tem  | perature   | from T    | abl       | e 8             |           |             |               |           |           |              |          | _      |      |
| (96)m=  | 4.3                 | 4.9       | 6.5       | 8.9        | 11.7      |           | 14.6            | 16.6      | 16.         | .4            | 14.1      | 10.6      | 7.1          | 4.2      |        | (96) |
| Heat    | loss rate           | for mea   | an intern | al tempe   | erature,  | Lm        | , W =           | =[(39)m   | x [(93      | 3)m-          | - (96)m   | ]         |              |          | =      |      |
| (97)m=  | 4929.46             | 4744.38   | 4249.5    | 3442.45    | 2589.8    | 16        | 343.59          | 993.64    | 1048        | 3.46          | 1780.39   | 2853.96   | 3930.07      | 4854.2   |        | (97) |
|         |                     |           |           |            |           |           |                 |           |             |               |           |           |              |          |        |      |

| Space heating requir 98)m= 3141.89 2655.06                | 1          |            | 1214.11    | 0        | 0        | 0             | 0                  | <del></del>           | 2328.05                 | 3106.44 |          |      |
|-----------------------------------------------------------|------------|------------|------------|----------|----------|---------------|--------------------|-----------------------|-------------------------|---------|----------|------|
| , , ,                                                     |            |            |            |          | ļ        | Tota          | l per year         | <u> </u>              | ) = Sum(9               | -       | 18325.44 | (98) |
| Space heating requir                                      | ement in   | kWh/m²     | /year      |          |          |               |                    |                       |                         | Ī       | 245.42   | (99) |
| a. Energy requireme                                       | nts – Indi | vidual h   | eating sy  | /stems i | ncluding | micro-C       | CHP)               |                       |                         |         |          |      |
| Space heating:                                            |            |            |            |          |          |               |                    |                       |                         | _       |          | _    |
| Fraction of space hea                                     |            | _          |            | mentary  | -        |               |                    |                       |                         | إ       | 0        | (201 |
| Fraction of space hea                                     |            | •          | ` ,        |          |          | (202) = 1 -   |                    |                       |                         | Ĺ       | 1        | (202 |
| Fraction of total heat                                    | ing from   | main sys   | stem 1     |          |          | (204) = (204) | Ĺ                  | 1                     | (204                    |         |          |      |
| Efficiency of main sp                                     | ace heat   | ing syste  | em 1       |          |          |               |                    |                       |                         | Ĺ       | 100      | (206 |
| Efficiency of seconda                                     | ary/supple | ementar    | y heating  | g systen | า, %     |               |                    |                       |                         |         | 0        | (208 |
| Jan Feb                                                   | Mar        | Apr        | May        | Jun      | Jul      | Aug           | Sep                | Oct                   | Nov                     | Dec     | kWh/ye   | ar   |
| Space heating requir                                      |            |            |            |          |          |               |                    |                       |                         |         |          |      |
| 3141.89 2655.06                                           |            |            |            | 0        | 0        | 0             | 0                  | 1569.84               | 2328.05                 | 3106.44 |          |      |
| $211)$ m = {[(98)m x (20                                  |            |            |            |          |          | _             |                    |                       |                         |         |          | (211 |
| 3141.89 2655.06                                           | 2511.67    | 1798.36    | 1214.11    | 0        | 0        | 0<br>Tota     | 0<br>L (k\\/b\/vor | <u> </u>              | 2328.05                 |         | 18325.44 | (211 |
| Space heating fuel (s $\{[(98)m \times (201)]\} \times 1$ |            | , , .      | month<br>0 | 0        | 0        | 0             | 0                  | 0                     | 0                       | 0       |          |      |
|                                                           |            |            |            |          | ļ -      | Tota          | l (kWh/yea         | ar) =Sum(2            | 215) <sub>15,1012</sub> |         | 0        | (215 |
| Vater heating                                             |            |            |            |          |          |               |                    |                       |                         | L       |          | _    |
| Output from water hea                                     | ter (calc  |            |            |          | 1        |               |                    |                       |                         |         |          |      |
| 362.73 323.2                                              | 347.65     | 323.04     | 324.82     | 302.1    | 301.41   | 315.19        | 309.76             | 334.41                | 339.28                  | 357.85  |          | ¬    |
| efficiency of water hea                                   |            | 400        | 400        | 400      | 100      | 400           | 400                | 400                   | 400                     | 400     | 100      | (216 |
| 217)m= 100 100                                            | 100        | 100        | 100        | 100      | 100      | 100           | 100                | 100                   | 100                     | 100     |          | (217 |
| uel for water heating<br>219)m = (64)m x 10               | -          |            |            |          |          |               |                    |                       |                         |         |          |      |
| 219)m= 362.73 323.2                                       | 347.65     | 323.04     | 324.82     | 302.1    | 301.41   | 315.19        | 309.76             | 334.41                | 339.28                  | 357.85  |          |      |
|                                                           |            |            |            |          |          | Tota          | I = Sum(2          | 19a) <sub>112</sub> = |                         |         | 3941.44  | (219 |
| Annual totals                                             | ad main    | avatam     | 4          |          |          |               |                    | k\                    | Wh/year                 | Г       | kWh/yea  | ¬    |
| pace heating fuel us                                      |            | system     | 1          |          |          |               |                    |                       |                         | Ĺ       | 18325.44 | ╣    |
| Vater heating fuel use                                    |            |            |            |          |          |               |                    |                       |                         |         | 3941.44  |      |
| lectricity for pumps, f                                   | ans and    | electric l | keep-hot   | t        |          |               |                    |                       |                         |         |          |      |
| central heating pump                                      | ):         |            |            |          |          |               |                    |                       |                         | 120     |          | (230 |
| otal electricity for the                                  | above, k   | «Wh/yea    | r          |          |          | sum           | of (230a).         | (230g) =              |                         |         | 120      | (23  |
| Electricity for lighting                                  |            |            |            |          |          |               |                    |                       |                         | Ī       | 560.7    | (232 |
| 12a. CO2 emissions                                        | امطانيناط  | ual baati  | na cycto   | ma inal  | udina mi | cro-CHE       |                    |                       |                         | _       |          | _    |

**Energy** kWh/year

Stroma FSAP 2012 Version: 1.0.4.18 (SAP 9.92) - http://www.stroma.com

**Emissions** 

kg CO2/year

**Emission factor** 

kg CO2/kWh

| Space heating (main system 1)                     | (211) x                         | 0.519           | = | 9510.9   | (261) |
|---------------------------------------------------|---------------------------------|-----------------|---|----------|-------|
| Space heating (secondary)                         | (215) x                         | 0.519           | = | 0        | (263) |
| Water heating                                     | (219) x                         | 0.519           | = | 2045.61  | (264) |
| Space and water heating                           | (261) + (262) + (263) + (264) = |                 |   | 11556.51 | (265) |
| Electricity for pumps, fans and electric keep-hot | (231) x                         | 0.519           | = | 62.28    | (267) |
| Electricity for lighting                          | (232) x                         | 0.519           | = | 291      | (268) |
| Total CO2, kg/year                                | sum                             | of (265)(271) = |   | 11909.79 | (272) |
| Dwelling CO2 Emission Rate                        | (272                            | 2) ÷ (4) =      |   | 159.5    | (273) |
| El rating (section 14)                            |                                 |                 |   | 10       | (274) |

|                                                                                                                                                                                   |                                                                                                                                     | User Details:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                         |                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------|--------------------------------------|
| Assessor Name:                                                                                                                                                                    | Su Lee                                                                                                                              | Stroma Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CTD()         | 031315                  |                                      |
| Software Name:                                                                                                                                                                    | Stroma FSAP 2012                                                                                                                    | Software Version:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | n: 1.0.4.18             |                                      |
| Contware Hame.                                                                                                                                                                    | 300000 TO 100000                                                                                                                    | Property Address: Flat 2- Existing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 01010       | 11. 1.0. 1.10           |                                      |
| Address :                                                                                                                                                                         | 151-153, Camden High S                                                                                                              | Street, LONDON, NW1 7JY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                         |                                      |
| 1. Overall dwelling dime                                                                                                                                                          |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                         |                                      |
|                                                                                                                                                                                   |                                                                                                                                     | Area(m²) Av. He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ight(m)       | Volume(m³)              | )                                    |
| Ground floor                                                                                                                                                                      |                                                                                                                                     | 70.26 (1a) x 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .04 (2a) =    | 213.59                  | (3a)                                 |
| First floor                                                                                                                                                                       |                                                                                                                                     | 48.16 (1b) x 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .39 (2b) =    | 115.1                   | (3b)                                 |
| Total floor area TFA = (1                                                                                                                                                         | a)+(1b)+(1c)+(1d)+(1e)+                                                                                                             | (1n) 118.42 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                         |                                      |
| Dwelling volume                                                                                                                                                                   |                                                                                                                                     | (3a)+(3b)+(3c)+(3d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )+(3e)+(3n) = | 328.69                  | (5)                                  |
| 2. Ventilation rate:                                                                                                                                                              |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                         |                                      |
|                                                                                                                                                                                   | main second heating heating                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | m³ per hou              | r                                    |
| Number of chimneys                                                                                                                                                                | 0 + 0                                                                                                                               | + 0 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | x 40 =        | 0                       | (6a)                                 |
| Number of open flues                                                                                                                                                              | 0 + 0                                                                                                                               | + 0 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | x 20 =        | 0                       | (6b)                                 |
| Number of intermittent fa                                                                                                                                                         | ns                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x 10 =        | 40                      | (7a)                                 |
| Number of passive vents                                                                                                                                                           |                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x 10 =        | 0                       | (7b)                                 |
| Number of flueless gas fi                                                                                                                                                         | res                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x 40 =        | 0                       | (7c)                                 |
|                                                                                                                                                                                   |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Air ch        | anges per ho            | ur                                   |
| Infiltration due to chimne                                                                                                                                                        | ys, flues and fans = $(6a)+(6b)$                                                                                                    | )+(7a)+(7b)+(7c) = 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ÷ (5) =       | 0.12                    | (8)                                  |
| •                                                                                                                                                                                 |                                                                                                                                     | ceed to (17), otherwise continue from (9) to (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | 0.12                    |                                      |
| Number of storeys in the                                                                                                                                                          | ne dwelling (ns)                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 0                       | (9)                                  |
| Additional infiltration                                                                                                                                                           |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [(9)-1]x0.1 = | 0                       | (10)                                 |
|                                                                                                                                                                                   |                                                                                                                                     | or 0.35 for masonry construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 0                       | (11)                                 |
| if both types of wall are pa<br>deducting areas of openia                                                                                                                         | resent, use the value correspondin<br>ngs); if equal user 0.35                                                                      | g to the greater wall area (after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                         |                                      |
| = -                                                                                                                                                                               | loor, enter 0.2 (unsealed) o                                                                                                        | r 0.1 (sealed), else enter 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 0                       | (12)                                 |
| If no draught lobby, en                                                                                                                                                           | ter 0.05, else enter 0                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 0                       | (13)                                 |
| Percentage of windows                                                                                                                                                             | s and doors draught strippe                                                                                                         | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 0                       | (14)                                 |
| Window infiltration                                                                                                                                                               |                                                                                                                                     | $0.25 - [0.2 \times (14) \div 100] =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 0                       |                                      |
|                                                                                                                                                                                   |                                                                                                                                     | (0) + (40) + (44) + (40) + (40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (45)          |                         | (15)                                 |
| Infiltration rate                                                                                                                                                                 |                                                                                                                                     | (8) + (10) + (11) + (12) + (13) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F (15) =      | 0                       | (15)<br>(16)                         |
|                                                                                                                                                                                   | q50, expressed in cubic me                                                                                                          | etres per hour per square metre of e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 0<br>35                 | =                                    |
| Air permeability value, If based on air permeabil                                                                                                                                 | ity value, then $(18) = [(17) \div 20]$                                                                                             | etres per hour per square metre of e<br>0]+(8), otherwise (18) = (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nvelope area  |                         | (16)                                 |
| Air permeability value, If based on air permeabil Air permeability value applie                                                                                                   | ity value, then $(18) = [(17) \div 20]$<br>s if a pressurisation test has been                                                      | etres per hour per square metre of e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nvelope area  | 35                      | (16)<br>(17)<br>(18)                 |
| Air permeability value, If based on air permeabil Air permeability value applie Number of sides sheltere                                                                          | ity value, then $(18) = [(17) \div 20]$<br>s if a pressurisation test has been                                                      | etres per hour per square metre of e<br>i]+(8), otherwise (18) = (16)<br>done or a degree air permeability is being us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nvelope area  | 35<br>1.87<br>2         | (16)<br>(17)<br>(18)<br>(19)         |
| Air permeability value,<br>If based on air permeabil<br>Air permeability value applie<br>Number of sides sheltere<br>Shelter factor                                               | ity value, then (18) = [(17) ÷ 20 s if a pressurisation test has been                                                               | etres per hour per square metre of end; etres per hour per hour per square metre of end; etres per hour per ho | nvelope area  | 35<br>1.87<br>2<br>0.85 | (16)<br>(17)<br>(18)<br>(19)<br>(20) |
| Air permeability value, If based on air permeabil Air permeability value applie Number of sides sheltere Shelter factor Infiltration rate incorporate                             | ity value, then (18) = [(17) ÷ 20 s if a pressurisation test has been ed                                                            | etres per hour per square metre of e<br>i]+(8), otherwise (18) = (16)<br>done or a degree air permeability is being us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nvelope area  | 35<br>1.87<br>2         | (16)<br>(17)<br>(18)<br>(19)         |
| Air permeability value, If based on air permeabil Air permeability value applie Number of sides sheltere Shelter factor Infiltration rate incorporat Infiltration rate modified f | ity value, then (18) = [(17) ÷ 20 s if a pressurisation test has been ed                                                            | etres per hour per square metre of end;  etres per hour per hour per square metre of end;  etres per hour per hour per  | nvelope area  | 35<br>1.87<br>2<br>0.85 | (16)<br>(17)<br>(18)<br>(19)<br>(20) |
| Air permeability value, If based on air permeabil Air permeability value applie Number of sides sheltere Shelter factor Infiltration rate incorporate                             | ity value, then (18) = [(17) ÷ 20 s if a pressurisation test has been ed  ing shelter factor or monthly wind speed  Mar Apr May Jui | etres per hour per square metre of end;  etres per hour per hour per square metre of end;  etres per hour per hour per  | nvelope area  | 35<br>1.87<br>2<br>0.85 | (16)<br>(17)<br>(18)<br>(19)<br>(20) |

4.4

4.3

3.8

3.8

3.7

4

4.3

4.5

4.7

(22)m=

| Wind Factor (22                                                                                                                                                                                                                            | 2a)m = (                                   | (22)m ÷               | 4                                      |                    |                                                                                            |                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    |                                                  |                    |        |                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------|----------------------------------------|--------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------|--------|----------------------------------------------------------------------------|
| (22a)m= 1.27                                                                                                                                                                                                                               | 1.25                                       | 1.23                  | 1.1                                    | 1.08               | 0.95                                                                                       | 0.95                                              | 0.92                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.08                                                                                                                               | 1.12                                             | 1.18               |        |                                                                            |
| Adjusted infiltret                                                                                                                                                                                                                         | tion rate                                  | المسام                | na for ob                              | oltor on           | م لمشمط م                                                                                  |                                                   | (21a) v                                                                                                                                  | (22a)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | !                                                                                                                                  |                                                  |                    |        |                                                                            |
| Adjusted infiltrat                                                                                                                                                                                                                         | 1.99                                       | 1.95                  | 1.75                                   | 1.71               | 1.51                                                                                       | 1.51                                              | 1.47                                                                                                                                     | (22a)III<br>1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.71                                                                                                                               | 1.79                                             | 1.87               |        |                                                                            |
| Calculate effect                                                                                                                                                                                                                           |                                            |                       |                                        |                    |                                                                                            |                                                   | 1.47                                                                                                                                     | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.71                                                                                                                               | 1.75                                             | 1.07               |        |                                                                            |
| If mechanical                                                                                                                                                                                                                              | ventila                                    | tion:                 |                                        |                    |                                                                                            |                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    |                                                  |                    | 0      | (23a)                                                                      |
| If exhaust air hea                                                                                                                                                                                                                         | at pump u                                  | ising Appe            | endix N, (2                            | 3b) = (23a         | ) × Fmv (e                                                                                 | equation (I                                       | N5)) , othe                                                                                                                              | rwise (23b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | o) = (23a)                                                                                                                         |                                                  |                    | 0      | (23b)                                                                      |
| If balanced with h                                                                                                                                                                                                                         | heat reco                                  | very: effici          | iency in %                             | allowing for       | or in-use fa                                                                               | actor (fron                                       | n Table 4h                                                                                                                               | ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                    |                                                  |                    | 0      | (23c)                                                                      |
| a) If balanced                                                                                                                                                                                                                             |                                            |                       |                                        |                    |                                                                                            | <del>- ` `                                 </del> | <del>-                                    </del>                                                                                         | <del>``</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del>-                                    </del>                                                                                   | <del></del>                                      | <del>``</del>      | ÷ 100] |                                                                            |
| (24a)m= 0                                                                                                                                                                                                                                  | 0                                          | 0                     | 0                                      | 0                  | 0                                                                                          | 0                                                 | 0                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                  | 0                                                | 0                  |        | (24a)                                                                      |
| b) If balanced                                                                                                                                                                                                                             | -                                          |                       |                                        |                    |                                                                                            | <del></del>                                       | <u> </u>                                                                                                                                 | <del>``</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del>-                                    </del>                                                                                   | <del>-                                    </del> | 1 1                |        | (0.41.)                                                                    |
| (24b)m= 0                                                                                                                                                                                                                                  | 0                                          | 0                     | 0                                      | 0                  | 0                                                                                          | 0                                                 | 0                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                  | 0                                                | 0                  |        | (24b)                                                                      |
| c) If whole ho                                                                                                                                                                                                                             |                                            |                       |                                        |                    | •                                                                                          |                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E (22h                                                                                                                             | .\                                               |                    |        |                                                                            |
| if (22b)m<br>(24c)m= 0                                                                                                                                                                                                                     | < 0.5 x                                    | 0                     | nen (240                               | c) = (230<br>0     | o); otnerv                                                                                 | wise (24                                          | C) = (220)                                                                                                                               | ) m + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .5 × (230                                                                                                                          | 0                                                | 0                  |        | (24c)                                                                      |
| ( 1)                                                                                                                                                                                                                                       |                                            |                       |                                        |                    |                                                                                            |                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    | 0                                                | 0                  |        | (240)                                                                      |
| d) If natural ve<br>if (22b)m                                                                                                                                                                                                              |                                            |                       |                                        |                    |                                                                                            |                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5]                                                                                                                               |                                                  |                    |        |                                                                            |
| (24d)m= 2.03                                                                                                                                                                                                                               | 1.99                                       | 1.95                  | 1.75                                   | 1.71               | 1.51                                                                                       | 1.51                                              | 1.47                                                                                                                                     | 1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.71                                                                                                                               | 1.79                                             | 1.87               |        | (24d)                                                                      |
| Effective air c                                                                                                                                                                                                                            | hange                                      | rate - en             | ıter (24a                              | or (24b            | o) or (240                                                                                 | c) or (24                                         | d) in box                                                                                                                                | · (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                    |                                                  |                    |        |                                                                            |
| (25)m= 2.03                                                                                                                                                                                                                                | 1.99                                       | 1.95                  | 1.75                                   | 1.71               | 1.51                                                                                       | 1.51                                              | 1.47                                                                                                                                     | 1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.71                                                                                                                               | 1.79                                             | 1.87               |        | (25)                                                                       |
|                                                                                                                                                                                                                                            |                                            |                       |                                        |                    |                                                                                            |                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    |                                                  |                    |        |                                                                            |
| 3. Heat losses                                                                                                                                                                                                                             | and he                                     | at loss r             | paramete                               | er:                |                                                                                            |                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    |                                                  |                    |        |                                                                            |
| 3. Heat losses <b>ELEMENT</b>                                                                                                                                                                                                              | and he<br>Gros<br>area                     | S                     | oaramete<br>Openin<br>m                | gs                 | Net Ar                                                                                     |                                                   | U-valı<br>W/m2                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A X U<br>(W/I                                                                                                                      | <b>&lt;</b> )                                    | k-value<br>kJ/m²-ł |        | A X k<br>kJ/K                                                              |
|                                                                                                                                                                                                                                            | Gros                                       | S                     | Openin                                 | gs                 |                                                                                            |                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    | <)<br>                                           |                    |        |                                                                            |
| ELEMENT                                                                                                                                                                                                                                    | Gros<br>area                               | S                     | Openin                                 | gs                 | A ,n                                                                                       | m² x                                              | W/m2                                                                                                                                     | K =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (W/I                                                                                                                               | <)<br>                                           |                    |        | kJ/K                                                                       |
| <b>ELEMENT</b> Doors                                                                                                                                                                                                                       | Gros<br>area<br>1                          | S                     | Openin                                 | gs                 | A ,r                                                                                       | m <sup>2</sup> x x1                               | W/m2                                                                                                                                     | = 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (W/I                                                                                                                               | <)<br>                                           |                    |        | kJ/K<br>(26)                                                               |
| ELEMENT  Doors  Windows Type                                                                                                                                                                                                               | Gros<br>area<br>1                          | S                     | Openin                                 | gs                 | A ,n 2.1 1.43                                                                              | m² x x1 x1                                        | W/m2<br>3<br>/[1/( 4.8 )+                                                                                                                | 0.04] = 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (W/I<br>6.3<br>5.76                                                                                                                | <)<br>                                           |                    |        | kJ/K<br>(26)<br>(27)                                                       |
| ELEMENT  Doors  Windows Type 2                                                                                                                                                                                                             | Gros<br>area<br>1<br>2                     | S                     | Openin                                 | gs                 | A ,n 2.1 1.43 1.43                                                                         | x1 x1 x1                                          | W/m2<br>3<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+                                                                                                | 0.04] = 0.04] = 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (W/I<br>6.3<br>5.76<br>5.76                                                                                                        | <)                                               |                    |        | kJ/K (26) (27) (27)                                                        |
| ELEMENT  Doors  Windows Type 2  Windows Type 2  Windows Type 3                                                                                                                                                                             | Gros<br>area<br>1<br>2<br>3<br>4           | S                     | Openin                                 | gs                 | A ,n 2.1 1.43 1.43 0.91                                                                    | m <sup>2</sup>                                    | W/m2<br>3<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+                                                                                | 0.04] = 0.04] = 0.04] = 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (W/I<br>6.3<br>5.76<br>5.76<br>3.66                                                                                                | <)                                               |                    |        | kJ/K (26) (27) (27) (27)                                                   |
| ELEMENT  Doors  Windows Type 2  Windows Type 3  Windows Type 4                                                                                                                                                                             | Gros<br>area<br>1<br>2<br>3<br>4           | S                     | Openin                                 | gs                 | A ,n  2.1  1.43  1.43  0.91  3.1                                                           | m <sup>2</sup>                                    | W/m2  3 /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+                                                                              | 0.04] = 0.04] = 0.04] = 0.04] = 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (W/I<br>6.3<br>5.76<br>5.76<br>3.66<br>12.48                                                                                       | <)                                               |                    |        | kJ/K (26) (27) (27) (27) (27)                                              |
| ELEMENT  Doors  Windows Type 2  Windows Type 3  Windows Type 4  Windows Type 4                                                                                                                                                             | Gros<br>area<br>1<br>2<br>3<br>4           | S                     | Openin                                 | gs                 | A ,n  2.1  1.43  1.43  0.91  3.1  1.43                                                     | n <sup>2</sup>                                    | W/m2  3 /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+                                                                 | 0.04] = 0.04] = 0.04] = 0.04] = 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (W/I<br>6.3<br>5.76<br>5.76<br>3.66<br>12.48<br>5.76                                                                               |                                                  |                    |        | kJ/K (26) (27) (27) (27) (27) (27)                                         |
| ELEMENT  Doors  Windows Type 2  Windows Type 3  Windows Type 4  Windows Type 4  Windows Type 8  Windows Type 8                                                                                                                             | Gros<br>area<br>1<br>2<br>3<br>4           | S                     | Openin                                 | gs                 | A ,n  2.1  1.43  1.43  0.91  3.1  1.43  4.01                                               | m <sup>2</sup>                                    | W/m2  3 /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+                                                    | 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] | (W/I<br>6.3<br>5.76<br>5.76<br>3.66<br>12.48<br>5.76<br>16.15                                                                      |                                                  |                    |        | kJ/K (26) (27) (27) (27) (27) (27) (27)                                    |
| ELEMENT  Doors  Windows Type 2  Windows Type 3  Windows Type 4  Windows Type 4  Windows Type 6  Windows Type 6  Floor Type 1                                                                                                               | Gros<br>area<br>1<br>2<br>3<br>4           | s<br>(m²)             | Openin                                 | gs<br><sup>2</sup> | A ,n  2.1  1.43  1.43  0.91  3.1  1.43  4.01  70.26                                        | m <sup>2</sup>                                    | W/m2  3 /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+                                       | 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] | (W/I<br>6.3<br>5.76<br>5.76<br>3.66<br>12.48<br>5.76<br>16.15<br>84.312                                                            |                                                  |                    |        | kJ/K (26) (27) (27) (27) (27) (27) (27) (27)                               |
| ELEMENT  Doors  Windows Type 2  Windows Type 3  Windows Type 4  Windows Type 4  Windows Type 6  Windows Type 6  Floor Type 1  Floor Type 2                                                                                                 | Gros<br>area<br>1<br>2<br>3<br>4<br>5<br>6 | s (m²)                | Openin<br>m                            | gs<br><sup>2</sup> | A ,n  2.1  1.43  1.43  0.91  3.1  1.43  4.01  70.26                                        | m <sup>2</sup>                                    | W/m2  3 /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ 1.2  1.2                                           | 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] | (W/I<br>6.3<br>5.76<br>5.76<br>3.66<br>12.48<br>5.76<br>16.15<br>84.312<br>57.792                                                  |                                                  |                    |        | kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (28)                          |
| ELEMENT  Doors  Windows Type 2  Windows Type 3  Windows Type 4  Windows Type 4  Windows Type 6  Floor Type 1  Floor Type 2  Walls Type 1                                                                                                   | Gros area  1 2 3 4 5 6                     | s (m²)                | Openin m                               | gs<br><sup>2</sup> | A ,n  2.1  1.43  1.43  0.91  3.1  1.43  4.01  70.26  48.16                                 | x1 x          | W/m2  3 /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+  1.2  2.1                             | 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] | (W/I<br>6.3<br>5.76<br>5.76<br>3.66<br>12.48<br>5.76<br>16.15<br>84.312<br>57.792                                                  |                                                  |                    |        | kJ/K (26) (27) (27) (27) (27) (27) (27) (28) (28) (29)                     |
| ELEMENT  Doors  Windows Type 2  Windows Type 3  Windows Type 4  Windows Type 4  Windows Type 6  Floor Type 1  Floor Type 2  Walls Type 1  Walls Type 2                                                                                     | Gros area  1 2 3 4 5 6                     | 1<br>8                | Openin m                               | gs<br><sup>2</sup> | A ,n  2.1  1.43  1.43  0.91  3.1  1.43  4.01  70.26  48.16  -2.21  19.46                   | m <sup>2</sup>                                    | W/m2  3 /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+  1.2  1.2  2.1                                     | 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] | (W/I<br>6.3<br>5.76<br>5.76<br>3.66<br>12.48<br>5.76<br>16.15<br>84.312<br>57.792<br>-4.65<br>40.87                                |                                                  |                    |        | kJ/K (26) (27) (27) (27) (27) (27) (27) (28) (28) (29)                     |
| ELEMENT  Doors  Windows Type 2  Windows Type 3  Windows Type 4  Windows Type 4  Windows Type 6  Windows Type 1  Floor Type 1  Floor Type 2  Walls Type1  Walls Type2  Walls Type3                                                          | Gros area  1 2 3 4 5 6 14.1 27.4           | 1<br>8<br>5           | 16.32<br>8.02                          | gs<br><sup>2</sup> | A ,n  2.1  1.43  1.43  0.91  3.1  1.43  4.01  70.26  48.16  -2.21  19.46  6.75             | m <sup>2</sup>                                    | W/m2  3 /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+  1.2  1.2  2.1  0.73                               | 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] | (W/I<br>6.3<br>5.76<br>5.76<br>3.66<br>12.48<br>5.76<br>16.15<br>84.312<br>57.792<br>-4.65<br>40.87                                |                                                  |                    |        | kJ/K (26) (27) (27) (27) (27) (27) (27) (28) (28) (29) (29)                |
| ELEMENT  Doors  Windows Type 2  Windows Type 3  Windows Type 4  Windows Type 4  Windows Type 6  Windows Type 1  Floor Type 1  Floor Type 2  Walls Type 1  Walls Type 2  Walls Type 3  Walls Type 3  Walls Type 4                           | Gros area  1 2 3 4 5 6 14.1 27.4 6.75      | 1 8 5 7               | 16.32<br>8.02<br>0                     | gs<br>2            | A ,n  2.1  1.43  1.43  0.91  3.1  1.43  4.01  70.26  48.16  -2.21  19.46  6.75  6.75       | m <sup>2</sup>                                    | W/m2  3 /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+  1.2  2.1  2.1  0.73  0.73                         | 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (W/I<br>6.3<br>5.76<br>5.76<br>3.66<br>12.48<br>5.76<br>16.15<br>84.312<br>57.792<br>-4.65<br>40.87<br>4.9                         |                                                  |                    |        | kJ/K (26) (27) (27) (27) (27) (27) (27) (28) (28) (29) (29) (29)           |
| ELEMENT  Doors  Windows Type 2  Windows Type 3  Windows Type 4  Windows Type 6  Windows Type 6  Windows Type 1  Floor Type 1  Floor Type 2  Walls Type 1  Walls Type 2  Walls Type 3  Walls Type 4  Walls Type 5                           | Gros area  1 2 3 4 5 6 14.1 27.4 6.75 10.3 | 1<br>8<br>5<br>7<br>4 | 16.33<br>8.02<br>0<br>0<br>2.1         | gs<br><sup>2</sup> | A ,n  2.1  1.43  1.43  0.91  3.1  1.43  4.01  70.26  48.16  -2.21  19.46  6.75  6.75  8.27 | m <sup>2</sup>                                    | W/m2  3 /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+  1.2  1.2  2.1  0.73  0.73  0.73  2.1 | 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (W/I<br>6.3<br>5.76<br>5.76<br>3.66<br>12.48<br>5.76<br>16.15<br>84.312<br>57.792<br>-4.65<br>40.87<br>4.9<br>6.01                 |                                                  |                    |        | kJ/K (26) (27) (27) (27) (27) (27) (27) (28) (28) (29) (29) (29) (29)      |
| ELEMENT  Doors  Windows Type 2  Windows Type 3  Windows Type 3  Windows Type 4  Windows Type 6  Floor Type 1  Floor Type 1  Floor Type 2  Walls Type 1  Walls Type 2  Walls Type 3  Walls Type 4  Walls Type 5  Walls Type 5  Walls Type 6 | Gros area  1 2 3 4 5 6 14.1 27.4 6.75 10.3 | 1 8 5 7 4 2           | 16.33<br>8.02<br>0<br>0<br>2.1<br>4.29 | gs<br><sup>2</sup> | A ,n  2.1  1.43  1.43  0.91  3.1  1.43  4.01  70.26  48.16  -2.21  19.46  6.75  6.75  8.27 | m <sup>2</sup>                                    | W/m2  3 /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+ /[1/( 4.8 )+  1.2  2.1  2.1  0.73  0.73                         | 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] | (W/I<br>6.3<br>5.76<br>5.76<br>3.66<br>12.48<br>5.76<br>16.15<br>84.312<br>57.792<br>-4.65<br>40.87<br>4.9<br>4.9<br>6.01<br>32.65 |                                                  |                    |        | kJ/K (26) (27) (27) (27) (27) (27) (27) (28) (28) (29) (29) (29) (29) (29) |

| Walls Type9 2.1                                          | 4             | 0         |            | 2.14        | x                     | 2.1         | =           | 4.49                   |                                  |           |         | (29) |
|----------------------------------------------------------|---------------|-----------|------------|-------------|-----------------------|-------------|-------------|------------------------|----------------------------------|-----------|---------|------|
| Walls Type10 8.1                                         | 8             | 0         |            | 8.18        | x                     | 2.1         | =           | 17.17                  | 7 7                              |           |         | (29) |
| Roof 49.7                                                | 71            | 0         | =          | 49.71       | x                     | 2.3         | <u> </u>    | 114.33                 | T i                              |           | 7 F     | (30) |
| Total area of elements                                   | s, m²         |           |            | 286.5       | 5                     |             |             |                        |                                  |           |         | (31) |
| Party wall                                               |               |           |            | 38.91       | x                     | 0           | =           | 0                      |                                  |           |         | (32) |
| Party wall                                               |               |           |            | 21.31       | x                     | 0           | =           | 0                      |                                  |           |         | (32) |
| Party wall                                               |               |           |            | 2.13        | x                     | 0           | =           | 0                      |                                  |           |         | (32) |
| Party wall                                               |               |           |            | 13.46       | x                     | 0           | <u> </u>    | 0                      | T i                              |           | 7 F     | (32) |
| Party wall                                               |               |           |            | 13.45       | 5 x                   | 0           | <u> </u>    | 0                      | Ħ i                              |           | 7 F     | (32) |
| * for windows and roof wind ** include the areas on both |               |           |            |             | ated using            | formula 1   | /[(1/U-valu | e)+0.04] a             | as given in                      | paragraph | 1 3.2   |      |
| Fabric heat loss, W/K                                    | = S (A x l    | J)        |            |             |                       | (26)(30)    | + (32) =    |                        |                                  |           | 540.45  | (33) |
| Heat capacity Cm = So                                    | (A x k )      |           |            |             |                       |             | ((28)       | .(30) + (32            | 2) + (32a).                      | (32e) =   | 0       | (34) |
| Thermal mass parame                                      | eter (TMP     | = Cm ÷    | TFA) ir    | n kJ/m²K    |                       |             | Indica      | tive Value             | : Medium                         |           | 250     | (35) |
| For design assessments who                               |               |           | constructi | ion are not | t known pr            | ecisely the | indicative  | values of              | TMP in Ta                        | able 1f   |         |      |
| Thermal bridges: S (L                                    |               |           | ısina An   | pendix k    | <                     |             |             |                        |                                  |           | 42.98   | (36) |
| if details of thermal bridging                           | ,             |           | • .        | •           | •                     |             |             |                        |                                  |           | 42.90   | (00) |
| Total fabric heat loss                                   |               |           |            |             |                       |             | (33) +      | (36) =                 |                                  |           | 583.42  | (37) |
| Ventilation heat loss ca                                 | alculated     | monthly   | ′          |             |                       |             | (38)m       | = 0.33 × (             | 25)m x (5)                       |           |         |      |
| Jan Feb                                                  | Mar           | Apr       | May        | Jun         | Jul                   | Aug         | Sep         | Oct                    | Nov                              | Dec       |         |      |
| (38)m= 220.02 215.71                                     | 211.39        | 189.82    | 185.51     | 163.94      | 163.94                | 159.62      | 172.57      | 185.51                 | 194.14                           | 202.77    |         | (38) |
| Heat transfer coefficien                                 | nt, W/K       |           |            |             |                       |             | (39)m       | = (37) + (             | 38)m                             |           | _       |      |
| (39)m= 803.44 799.13                                     | 794.82        | 773.24    | 768.93     | 747.36      | 747.36                | 743.05      | 755.99      | 768.93                 | 777.56                           | 786.19    |         |      |
| Heat loss parameter (H                                   | HLP), W/r     | m²K       |            |             |                       |             |             | Average =<br>= (39)m ÷ | Sum(39) <sub>1.</sub> · (4)      | 12 /12=   | 772.17  | (39) |
| (40)m= 6.78 6.75                                         | 6.71          | 6.53      | 6.49       | 6.31        | 6.31                  | 6.27        | 6.38        | 6.49                   | 6.57                             | 6.64      |         |      |
| Number of days in mo                                     | nth (Tahla    | a 1a)     |            |             |                       |             | ,           | Average =              | Sum(40) <sub>1</sub> .           | 12 /12=   | 6.52    | (40) |
| Jan Feb                                                  | Mar           | Apr       | May        | Jun         | Jul                   | Aug         | Sep         | Oct                    | Nov                              | Dec       | 1       |      |
| (41)m= 31 28                                             | 31            | 30        | 31         | 30          | 31                    | 31          | 30          | 31                     | 30                               | 31        |         | (41) |
| ` '                                                      | <u> </u>      |           |            |             |                       |             |             |                        |                                  |           | J       |      |
| 4. Water heating ene                                     | rgy requir    | rement:   |            |             |                       |             |             |                        |                                  | kWh/y     | ear:    |      |
| Assumed occupancy,                                       | N             |           |            |             |                       |             |             |                        | 2.                               | 86        | 1       | (42) |
| if TFA > 13.9, N = 1<br>if TFA £ 13.9, N = 1             | + 1.76 x      | [1 - exp( | (-0.0003   | 349 x (TF   | FA -13.9              | )2)] + 0.0  | 0013 x (¯   | ΓFA -13.               | .9)                              |           | _       | , ,  |
| Annual average hot wa<br>Reduce the annual average       |               |           |            |             |                       |             |             | se taraet o            |                                  | 7.42      | J       | (43) |
| not more that 125 litres per                             |               |           |            | _           | _                     |             |             |                        |                                  |           |         |      |
| Jan Feb                                                  | Mar           | Apr       | May        | Jun         | Jul                   | Aug         | Sep         | Oct                    | Nov                              | Dec       | ]       |      |
| Hot water usage in litres per                            | r day for ead | ch month  | Vd,m = fa  | ctor from 7 | Table 1c x            | (43)        |             |                        |                                  |           | •       |      |
| (44)m= 118.17 113.87                                     | 109.57        | 105.28    | 100.98     | 96.68       | 96.68                 | 100.98      | 105.28      | 109.57                 | 113.87                           | 118.17    |         |      |
| Energy content of hot water                              | used solo     | ulated ma | inthly - 1 | 100 v V/d = | n v nm v <sup>[</sup> | Tm / 2600   |             |                        | m(44) <sub>112</sub> =           |           | 1289.1  | (44) |
|                                                          |               |           | -          |             |                       |             |             |                        |                                  |           | 1       |      |
| (45)m= 175.24 153.27                                     | 158.16        | 137.88    | 132.3      | 114.17      | 105.79                | 121.4       | 122.85      | 143.17                 | 156.28<br>m(45) <sub>112</sub> = | 169.71    | 1690.21 | (45) |
|                                                          |               |           |            |             |                       |             |             | ı olal = SU            | 111(43)112 =                     | _         | 1090.21 | (+3) |

If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61) (46)26.29 22.99 23.72 20.68 19.85 17.13 15.87 18.43 21.48 23.44 25.46 Water storage loss: Storage volume (litres) including any solar or WWHRS storage within same vessel (47)110 If community heating and no tank in dwelling, enter 110 litres in (47) Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47) Water storage loss: a) If manufacturer's declared loss factor is known (kWh/day): (48)Temperature factor from Table 2b (49)0 Energy lost from water storage, kWh/year  $(48) \times (49) =$ (50)110 b) If manufacturer's declared cylinder loss factor is not known: Hot water storage loss factor from Table 2 (kWh/litre/day) 0.08 (51)If community heating see section 4.3 Volume factor from Table 2a (52)1.03 Temperature factor from Table 2b (53)0.78 Energy lost from water storage, kWh/year  $(47) \times (51) \times (52) \times (53) =$ (54)6.71 Enter (50) or (54) in (55) 6.71 (55)Water storage loss calculated for each month  $((56)m = (55) \times (41)m$ 208.01 187.88 208.01 201.3 208.01 201.3 208.01 208.01 201.3 208.01 201.3 208.01 (56)(56)m =If cylinder contains dedicated solar storage, (57)m = (56)m x [(50) - (H11)] ÷ (50), else (57)m = (56)m where (H11) is from Appendix H 208.01 208.01 201.3 (57)(57)m =187.88 208.01 201.3 201.3 208.01 208.01 201.3 208.01 208.01 (58)0 Primary circuit loss (annual) from Table 3 Primary circuit loss calculated for each month (59)m = (58)  $\div$  365 x (41)m (modified by factor from Table H5 if there is solar water heating and a cylinder thermostat) (59)(59)m =0 Combi loss calculated for each month (61)m = (60) ÷ 365 x (41)m 0 0 0 (61)(61)m =Total heat required for water heating calculated for each month  $(62)m = 0.85 \times (45)m + (46)m + (57)m + (59)m + (61)m$ 383.24 341.14 366.16 339.18 340.31 315.46 313.8 329.4 324.14 351.17 (62)(62)m =Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G) (63)(63)m =0 0 0 0 0 0 Output from water heater (64)m =383.24 341.14 366.16 339.18 340.31 315.46 313.8 324.14 351.17 377.71 329.4 357.58 Output from water heater (annual) 1...12 4139.31 (64)Heat gains from water heating, kWh/month 0.25 [0.85 x (45)m + (61)m] + 0.8 x [(46)m + (57)m + (59)m] 201.26 218.99 206.88 210.39 201.58 206.77 214.01 (65)199 201.88 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 142.85 142.85 142.85 142.85 142.85 142.85 142.85 142.85 142.85 142.85 142.85 142.85 (66)(66)m =Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)42.91 38.11 23.47 17.54 14.81 20.8 27.92 35.45 41.37 (67)m =31 16 44.1

| Appliances ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ins (calcul           | ated in | Append     | dix L, eq | uat   | ion L13 or L1    | 3a),  | also see Tal     | ole 5    |                |        | -            |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|------------|-----------|-------|------------------|-------|------------------|----------|----------------|--------|--------------|------|
| (68)m= 283.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 286.08                | 278.68  | 262.91     | 243.02    | 22    | 24.32 211.82     | 208   | .89 216.29       | 232.0    | 251.95         | 270.65 |              | (68) |
| Cooking gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (calculate            | d in Ap | pendix     | L, equa   | tior  | L15 or L15a)     | , als | o see Table      | 5        |                |        |              |      |
| (69)m= 37.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37.28                 | 37.28   | 37.28      | 37.28     | 3     | 7.28 37.28       | 37.   | 28 37.28         | 37.28    | 37.28          | 37.28  |              | (69) |
| Pumps and fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns gains (            | Table 5 | a)         |           |       |                  |       |                  |          |                |        | _            |      |
| (70)m= 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                    | 10      | 10         | 10        |       | 10 10            | 10    | 0 10             | 10       | 10             | 10     |              | (70) |
| Losses e.g. ev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | vaporation            | (negati | ive valu   | es) (Tab  | ole : | 5)               |       |                  |          |                |        | _            |      |
| (71)m= -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 -114.28 |                       |         |            |           |       |                  |       |                  |          |                |        |              |      |
| Water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gains (Tal            | ble 5)  |            |           |       |                  |       |                  |          |                |        | _            |      |
| (72)m= 301.98 299.5 294.34 287.34 282.79 276.38 270.94 277.92 280.39 287.64 295.83 299.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |         |            |           |       |                  |       |                  |          |                |        |              | (72) |
| Total internal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gains =               |         |            |           |       | (66)m + (67)m    | + (68 | 3)m + (69)m + (  | 70)m +   | (71)m + (72)   | )m     |              |      |
| (73)m= 703.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 699.54                | 679.87  | 649.57     | 619.2     | 59    | 91.37 574.62     | 583   | .46 600.46       | 631      | 665.01         | 690.11 |              | (73) |
| 6. Solar gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s:                    |         |            |           |       |                  |       |                  |          |                |        |              |      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | •       | flux from  | Table 6a  | and   | associated equa  | tions | to convert to th | e applic |                | tion.  |              |      |
| Orientation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Access Fa<br>Table 6d | ctor    | Area<br>m² |           |       | Flux<br>Table 6a |       | g_<br>Table 6b   |          | FF<br>Table 6c |        | Gains<br>(W) |      |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Table ou              |         |            |           |       | Table 0a         |       | Table ob         | _        | Table oc       |        | ( ( ) )      | _    |
| Northeast <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.77                  | X       | 1.4        | 13        | X     | 11.28            | X     | 0.76             | X        | 0.7            | =      | 17.85        | (75) |
| Northeast <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.77                  | X       | 4.0        | )1        | X     | 11.28            | Х     | 0.76             | X        | 0.7            | =      | 33.36        | (75) |
| Northeast <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.77                  | X       | 1.4        | 13        | X     | 22.97            | Х     | 0.76             | X        | 0.7            | =      | 36.32        | (75) |
| Northeast <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.77                  | X       | 4.0        | )1        | X     | 22.97            | X     | 0.76             | X        | 0.7            | =      | 67.91        | (75) |
| Northeast <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.77                  | X       | 1.4        | 13        | X     | 41.38            | X     | 0.76             | X        | 0.7            | =      | 65.45        | (75) |
| Northeast <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.77                  | X       | 4.0        | )1        | X     | 41.38            | X     | 0.76             | X        | 0.7            | =      | 122.35       | (75) |
| Northeast <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.77                  | X       | 1.4        | 13        | X     | 67.96            | X     | 0.76             | X        | 0.7            | =      | 107.48       | (75) |
| Northeast <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.77                  | X       | 4.0        | )1        | X     | 67.96            | X     | 0.76             | X        | 0.7            | =      | 200.93       | (75) |
| Northeast <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.77                  | X       | 1.4        | 13        | X     | 91.35            | X     | 0.76             | X        | 0.7            | =      | 144.47       | (75) |
| Northeast <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.77                  | X       | 4.0        | )1        | X     | 91.35            | X     | 0.76             | X        | 0.7            | =      | 270.09       | (75) |
| Northeast <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.77                  | X       | 1.4        | 13        | X     | 97.38            | X     | 0.76             | X        | 0.7            | =      | 154.03       | (75) |
| Northeast <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.77                  | X       | 4.0        | )1        | X     | 97.38            | X     | 0.76             | X        | 0.7            | =      | 287.94       | (75) |
| Northeast <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.77                  | X       | 1.4        | 13        | X     | 91.1             | x     | 0.76             | X        | 0.7            | =      | 144.09       | (75) |
| Northeast <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.77                  | X       | 4.0        | )1        | X     | 91.1             | X     | 0.76             | X        | 0.7            | =      | 269.37       | (75) |
| Northeast <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.77                  | X       | 1.4        | 13        | X     | 72.63            | X     | 0.76             | X        | 0.7            | =      | 114.87       | (75) |
| Northeast <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X                     | )1      | x          | 72.63     | x     | 0.76             | X     | 0.7              | =        | 214.74         | (75)   |              |      |
| Northeast 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |         |            |           |       |                  |       |                  |          |                | 79.75  | (75)         |      |
| Northeast 0.9x 0.77 x 4.01 x 50.42 x 0.76 x 0.7 = 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |         |            |           |       |                  |       |                  |          |                |        | 149.08       | (75) |
| Northeast 0.9x 0.77 x 1.43 x 28.07 x 0.76 x 0.7 = 44.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |         |            |           |       |                  |       |                  |          |                |        | 44.39        | (75) |
| Northeast <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.77                  | X       | 4.0        | )1        | x     | 28.07            | x     | 0.76             | x        | 0.7            | =      | 82.99        | (75) |
| Northeast 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.77                  | X       | 1.4        | 13        | x     | 14.2             | x     | 0.76             | ×        | 0.7            |        | 22.45        | (75) |
| Northeast <sub>0.9x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.77                  | X       | 4.0        | )1        | x     | 14.2             | х     | 0.76             | x        | 0.7            |        | 41.98        | (75) |

1.43

4.01

9.21

9.21

0.76

0.76

0.7

0.7

0.77

0.77

Northeast 0.9x

Northeast 0.9x

(75)

(75)

14.57

27.24

| O 11 . F                  |      | 1 |          | 1 |        | _        |      | 1 |     | 1   |        | _     |
|---------------------------|------|---|----------|---|--------|----------|------|---|-----|-----|--------|-------|
| Southwest <sub>0.9x</sub> | 0.77 | X | 1.43     | X | 36.79  | Ļ        | 0.76 | X | 0.7 | =   | 58.19  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X | 0.91     | X | 36.79  | Ļ        | 0.76 | X | 0.7 | =   | 37.03  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X | 3.1      | X | 36.79  | <u>_</u> | 0.76 | X | 0.7 | =   | 126.15 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X | 1.43     | X | 36.79  | Ĺ        | 0.76 | X | 0.7 | =   | 58.19  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X | 1.43     | X | 62.67  | L        | 0.76 | X | 0.7 | =   | 99.13  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X | 0.91     | X | 62.67  |          | 0.76 | X | 0.7 | =   | 63.08  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X | 3.1      | X | 62.67  |          | 0.76 | X | 0.7 | =   | 214.89 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X | 1.43     | X | 62.67  |          | 0.76 | X | 0.7 | =   | 99.13  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X | 1.43     | X | 85.75  |          | 0.76 | X | 0.7 | =   | 135.63 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X | 0.91     | x | 85.75  |          | 0.76 | X | 0.7 | =   | 86.31  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X | 3.1      | X | 85.75  |          | 0.76 | X | 0.7 | =   | 294.02 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X | 1.43     | x | 85.75  |          | 0.76 | x | 0.7 | =   | 135.63 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | x | 106.25 |          | 0.76 | x | 0.7 | =   | 168.05 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 0.91     | x | 106.25 |          | 0.76 | x | 0.7 | =   | 106.94 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 3.1      | x | 106.25 |          | 0.76 | x | 0.7 | =   | 364.3  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | x | 106.25 |          | 0.76 | x | 0.7 | ] = | 168.05 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | x | 119.01 | Ī        | 0.76 | x | 0.7 | ] = | 188.23 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 0.91     | x | 119.01 |          | 0.76 | x | 0.7 | ] = | 119.78 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 3.1      | x | 119.01 | Ī        | 0.76 | x | 0.7 | =   | 408.05 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | x | 119.01 | Ī        | 0.76 | x | 0.7 | j = | 188.23 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | x | 118.15 | Ī        | 0.76 | x | 0.7 | j = | 186.87 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 0.91     | x | 118.15 | Ī        | 0.76 | x | 0.7 | j = | 118.92 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 3.1      | x | 118.15 | Ī        | 0.76 | x | 0.7 | =   | 405.1  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | x | 118.15 | Ī        | 0.76 | x | 0.7 | j = | 186.87 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | x | 113.91 | Ī        | 0.76 | x | 0.7 | j = | 180.16 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 0.91     | x | 113.91 | Ī        | 0.76 | x | 0.7 | =   | 114.65 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 3.1      | x | 113.91 | Ī        | 0.76 | x | 0.7 | j = | 390.56 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | х | 1.43     | x | 113.91 | Ī        | 0.76 | x | 0.7 | j = | 180.16 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | х | 1.43     | x | 104.39 | Ī        | 0.76 | x | 0.7 | j = | 165.11 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | х | 0.91     | x | 104.39 | Ī        | 0.76 | x | 0.7 | j = | 105.07 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 3.1      | x | 104.39 | Ī        | 0.76 | x | 0.7 | j = | 357.92 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | x | 104.39 | Ī        | 0.76 | x | 0.7 | j = | 165.11 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | x | 92.85  | Ī        | 0.76 | x | 0.7 | j = | 146.86 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 0.91     | x | 92.85  | Γ        | 0.76 | x | 0.7 | ] = | 93.45  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 3.1      | x | 92.85  | Ī        | 0.76 | x | 0.7 | i = | 318.36 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | × | 92.85  | Γ        | 0.76 | x | 0.7 | =   | 146.86 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | x | 69.27  | ř        | 0.76 | x | 0.7 | =   | 109.55 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 0.91     | × | 69.27  | ř        | 0.76 | x | 0.7 | =   | 69.72  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 3.1      | x | 69.27  | ř        | 0.76 | x | 0.7 | =   | 237.5  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | x | 69.27  | F        | 0.76 | x | 0.7 | =   | 109.55 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | x | 44.07  | F        | 0.76 | x | 0.7 | =   | 69.7   | (79)  |
| L                         |      |   | <u> </u> |   |        | _        |      | ı |     |     |        | _ ` ` |

| Southwest <sub>0.9x</sub> 0               | 77 x          | 0.9                                          | 91        | x         | 44.07      |           | 0.76            | x         | 0.7         | =         | 44.36  | (79)  |
|-------------------------------------------|---------------|----------------------------------------------|-----------|-----------|------------|-----------|-----------------|-----------|-------------|-----------|--------|-------|
| Southwest <sub>0.9x</sub> 0               | 77 x          | 3.                                           | 1         | x         | 44.07      |           | 0.76            | x         | 0.7         | =         | 151.1  | (79)  |
| Southwest <sub>0.9x</sub> 0               | 77 ×          | 1.4                                          | 13        | x         | 44.07      |           | 0.76            | x         | 0.7         | =         | 69.7   | (79)  |
| Southwest <sub>0.9x</sub> 0               | 77 ×          | 1.4                                          | 13        | x         | 31.49      |           | 0.76            | x         | 0.7         | =         | 49.8   | (79)  |
| Southwest <sub>0.9x</sub> 0               | 77 x          | 0.9                                          | )1        | x         | 31.49      |           | 0.76            | x         | 0.7         | =         | 31.69  | (79)  |
| Southwest <sub>0.9x</sub> 0               | 77 ×          | 3.                                           | 1         | x         | 31.49      |           | 0.76            | x         | 0.7         | _         | 107.96 | (79)  |
| Southwest <sub>0.9x</sub> 0               | 77 ×          | 1.4                                          | 13        | x         | 31.49      |           | 0.76            | _ x [     | 0.7         |           | 49.8   | (79)  |
|                                           |               |                                              |           |           |            |           |                 |           |             |           |        |       |
| Solar gains in watts                      | calculated    | for eac                                      | h month   |           |            | (83)m = 9 | Sum(74)m .      | (82)m     |             |           | •      |       |
| (83)m= 330.78 580.4                       |               |                                              | 1318.86   | <u> </u>  |            | 1122.81   | 934.36          | 653.7     | 399.3       | 281.08    |        | (83)  |
| Total gains – interna                     | <del></del>   | <u>`                                    </u> |           | <u> </u>  | <u> </u>   |           | ,               |           | 1           |           | 1      |       |
| (84)m= 1034.67 1286                       | 1519.25       | 1765.33                                      | 1938.06   | 1931.09   | 1853.6     | 1706.27   | 1534.81         | 1284.7    | 1064.31     | 971.19    |        | (84)  |
| 7. Mean internal te                       | mperature     | (heating                                     | season    | )         |            |           |                 |           |             |           |        |       |
| Temperature durin                         | g heating p   | eriods ir                                    | the livii | ng area   | from Tal   | ble 9, Th | n1 (°C)         |           |             |           | 21     | (85)  |
| Utilisation factor fo                     | gains for     | living are                                   | ea, h1,m  | (see T    | able 9a)   |           | _               |           |             |           | 1      | _     |
| Jan Fe                                    | b Mar         | Apr                                          | May       | Jun       | Jul        | Aug       | Sep             | Oct       | Nov         | Dec       |        |       |
| (86)m= 0.99 0.98                          | 0.97          | 0.95                                         | 0.92      | 0.86      | 0.8        | 0.82      | 0.91            | 0.96      | 0.98        | 0.99      |        | (86)  |
| Mean internal temp                        | erature in    | living are                                   | ea T1 (fo | ollow ste | eps 3 to 7 | 7 in Tab  | le 9c)          |           |             |           |        |       |
| (87)m= 16.26 16.5                         | 4 17.13       | 17.98                                        | 18.88     | 19.75     | 20.27      | 20.19     | 19.48           | 18.33     | 17.18       | 16.24     |        | (87)  |
| Temperature durin                         | g heating p   | eriods ir                                    | rest of   | dwellin   | g from Ta  | able 9, T | h2 (°C)         | -         | -           | -         | •      |       |
| (88)m= 18 18                              | 18            | 18                                           | 18        | 18        | 18         | 18        | 18              | 18        | 18          | 18        |        | (88)  |
| Utilisation factor fo                     | r gains for   | rest of d                                    | welling   | h2 m (s   | ee Table   | 9a)       |                 |           |             |           |        |       |
| (89)m= 0.98 0.97                          | <u> </u>      | 0.93                                         | 0.86      | 0.72      | 0.45       | 0.52      | 0.81            | 0.94      | 0.97        | 0.98      |        | (89)  |
| Mean internal temp                        | oroturo in    | the rest                                     | of dwalli | na T2 (   | follow etc | nno 2 to  | 7 in Tabl       | lo ()o)   |             |           |        |       |
| (90)m= 14.18 14.4                         |               | 15.88                                        | 16.75     | 17.54     | 17.91      | 17.88     | 17.32           | 16.23     | 15.09       | 14.16     |        | (90)  |
| (66)                                      | 1             | 10.00                                        |           |           | 1          |           |                 |           | g area ÷ (4 |           | 0.15   | (91)  |
| Managa intermeditance                     |               |                                              | -11       | U:\       | 41 A T4    | . /4 - £1 | . A) <b>T</b> O |           |             |           |        | ` ′   |
| Mean internal temp<br>(92)m= 14.49 14.7   | <del></del>   | 16.19                                        | 17.07     | 17.87     | 18.27      | 18.22     | LA) × 12        | 16.55     | 15.4        | 14.47     | 1      | (92)  |
| Apply adjustment t                        |               |                                              |           | <u> </u>  |            | 1         | <u> </u>        |           | 13.4        | 14.47     |        | (02)  |
| (93)m= 14.49 14.7                         | 1             | 16.19                                        | 17.07     | 17.87     | 18.27      | 18.22     | 17.64           | 16.55     | 15.4        | 14.47     |        | (93)  |
| 8. Space heating re                       | equiremen     |                                              |           |           |            |           |                 |           |             |           |        |       |
| Set Ti to the mean                        | internal te   | mperatu                                      | e obtair  | ed at s   | tep 11 of  | Table 9   | b, so tha       | ıt Ti,m=( | 76)m an     | d re-calc | culate |       |
| the utilisation facto                     | r for gains   | using Ta                                     | ble 9a    | 1         |            |           |                 |           | 1           |           | i      |       |
| Jan Fe                                    |               | Apr                                          | May       | Jun       | Jul        | Aug       | Sep             | Oct       | Nov         | Dec       |        |       |
| Utilisation factor fo                     | <u> </u>      | 1                                            |           |           | 1          | 1         | T               |           |             |           | Ī      | (0.4) |
| (94)m= 0.97 0.96                          |               | 0.9                                          | 0.83      | 0.71      | 0.51       | 0.56      | 0.79            | 0.92      | 0.96        | 0.98      |        | (94)  |
| Useful gains, hmG<br>(95)m= 1006.71 1229. | <del>``</del> | 4)m x (84<br>1591.25                         |           | 1262.0/   | 936.21     | 055.27    | 1212.76         | 1176.25   | 1022.87     | 947.64    |        | (95)  |
| Monthly average e                         |               |                                              | 1615      | 1363.04   | 936.21     | 955.37    | 1213.76         | 1170.25   | 1022.67     | 947.04    |        | (90)  |
| (96)m= 4.3 4.9                            | 6.5           | 8.9                                          | 11.7      | 14.6      | 16.6       | 16.4      | 14.1            | 10.6      | 7.1         | 4.2       |        | (96)  |
| Heat loss rate for r                      |               |                                              |           | <u> </u>  |            |           |                 |           | <u> </u>    | I         | 1      | . ,   |
| (97)m= 8186.31 7887.                      | _             |                                              |           |           | 1245.89    |           |                 |           | 6454.82     | 8073.53   |        | (97)  |
| Space heating req                         | uirement fo   | r each n                                     | nonth, k  | //h/mor   | 1 = 0.02   | 24 x [(97 | ')m – (95       | )m] x (4  | 1)m         | I.        | 1      |       |
| (98)m= 5341.62 4474                       | T T           | 2915.13                                      |           | 0         | 0          | 0         | 0               | 2526.47   | r -         | 5301.66   |        |       |
|                                           |               |                                              |           |           |            |           |                 |           |             |           |        |       |

|                                                                                               |          |                       | Tota        | l per year      | (kWh/year             | r) = Sum(9              | 8) <sub>15,912</sub> = | 30511.16               | (98)         |
|-----------------------------------------------------------------------------------------------|----------|-----------------------|-------------|-----------------|-----------------------|-------------------------|------------------------|------------------------|--------------|
| Space heating requirement in kWh/m²/year                                                      |          |                       |             |                 |                       |                         | Ī                      | 257.65                 | (99)         |
| 9a. Energy requirements – Individual heating sys                                              | stems ir | ncluding              | micro-C     | HP)             |                       |                         |                        |                        |              |
| Space heating:                                                                                |          |                       |             |                 |                       |                         | r                      |                        | _            |
| Fraction of space heat from secondary/supplem                                                 | entary   | -                     |             |                 |                       |                         | ļ                      | 0                      | (201)        |
| Fraction of space heat from main system(s)                                                    |          |                       | (202) = 1 - | ,               |                       |                         | ļ                      | 1                      | (202)        |
| Fraction of total heating from main system 1                                                  |          |                       | (204) = (20 | 02) × [1 –      | (203)] =              |                         | Į                      | 1                      | (204)        |
| Efficiency of main space heating system 1                                                     |          |                       |             |                 |                       |                         | Ţ                      | 100                    | (206)        |
| Efficiency of secondary/supplementary heating                                                 | system   | , %                   |             |                 |                       |                         | [                      | 0                      | (208)        |
| Jan Feb Mar Apr May                                                                           | Jun      | Jul                   | Aug         | Sep             | Oct                   | Nov                     | Dec                    | kWh/ye                 | ar           |
| Space heating requirement (calculated above)                                                  |          |                       |             | _               | l                     |                         |                        |                        |              |
| 5341.62 4474.2 4171.14 2915.13 1869.93                                                        | 0        | 0                     | 0           | 0               | 2526.47               | 3911.01                 | 5301.66                |                        |              |
| $(211)m = \{[(98)m \times (204)] \} \times 100 \div (206)$                                    |          |                       | 0           | 0               | 0500.47               | 0044.04                 | 5004.00                |                        | (211)        |
| 5341.62 4474.2 4171.14 2915.13 1869.93                                                        | 0        | 0                     | 0<br>Tota   | 0<br>L(k\Wh/vea | 2526.47<br>ar) =Sum(2 |                         | 5301.66                | 20514.46               | 7(211)       |
| Change booting fuel (accorded) IVM/b/month                                                    |          |                       | Tota        | i (KVVII/yCc    | ar) =00m(2            | - ' '/15,1012           |                        | 30511.16               | (211)        |
| Space heating fuel (secondary), kWh/month = $\{[(98)\text{m x}(201)]\} \times 100 \div (208)$ |          |                       |             |                 |                       |                         |                        |                        |              |
| (215)m= 0 0 0 0 0                                                                             | 0        | 0                     | 0           | 0               | 0                     | 0                       | 0                      |                        |              |
|                                                                                               | !        |                       | Tota        | I (kWh/yea      | ar) =Sum(2            | 215) <sub>15,1012</sub> | =                      | 0                      | (215)        |
| Water heating                                                                                 |          |                       |             |                 |                       |                         | _                      |                        | _            |
| Output from water heater (calculated above)                                                   |          |                       |             |                 | l                     | Γ                       | T 1                    |                        |              |
|                                                                                               | 315.46   | 313.8                 | 329.4       | 324.14          | 351.17                | 357.58                  | 377.71                 | 400                    | (216)        |
| Efficiency of water heater (217)m= 100 100 100 100 100                                        | 100      | 100                   | 100         | 100             | 100                   | 100                     | 100                    | 100                    | (217)        |
| Fuel for water heating, kWh/month                                                             | 100      | 100                   | 100         | 100             | 100                   | 100                     | 100                    |                        | (=11)        |
| $(219)$ m = $(64)$ m × $100 \div (217)$ m                                                     |          |                       |             |                 | _                     |                         |                        |                        |              |
| (219)m= 383.24 341.14 366.16 339.18 340.31 3                                                  | 315.46   | 313.8                 | 329.4       | 324.14          | 351.17                | 357.58                  | 377.71                 |                        | _            |
|                                                                                               |          |                       | Tota        | I = Sum(2       |                       |                         | Į                      | 4139.31                | (219)        |
| Annual totals Space heating fuel used, main system 1                                          |          |                       |             |                 | k\                    | Wh/year                 | Г                      | kWh/year               | <u></u>      |
|                                                                                               |          |                       |             |                 |                       |                         | Ĺ                      | 30511.16               | ╡            |
| Water heating fuel used                                                                       |          |                       |             |                 |                       |                         | L                      | 4139.31                |              |
| Electricity for pumps, fans and electric keep-hot                                             |          |                       |             |                 |                       |                         |                        |                        |              |
| central heating pump:                                                                         |          |                       |             |                 |                       |                         | 120                    |                        | (230c)       |
| Total electricity for the above, kWh/year                                                     |          |                       | sum         | of (230a).      | (230g) =              |                         | [                      | 120                    | (231)        |
| Electricity for lighting                                                                      |          |                       |             |                 |                       |                         | [                      | 757.84                 | (232)        |
| 12a. CO2 emissions – Individual heating system                                                | ns inclu | ıding mid             | cro-CHP     |                 |                       |                         |                        |                        |              |
|                                                                                               |          | <b>ergy</b><br>h/year |             |                 | Emiss<br>kg CO        | <b>ion fac</b><br>2/kWh | tor                    | Emissions<br>kg CO2/ye |              |
| Space heating (main system 1)                                                                 | (211     | ) x                   |             |                 | 0.5                   | 19                      | = [                    | 15835.29               | (261)        |
| Space heating (secondary)                                                                     | (215     | s) x                  |             |                 | 0.5                   | 19                      | = [                    | 0                      | (263)        |
|                                                                                               |          |                       |             |                 |                       | ·                       | L                      | -                      | <b>_</b> ` ′ |

| Water heating                                     | (219) x                         | 0.216           | = | 894.09   | (264) |
|---------------------------------------------------|---------------------------------|-----------------|---|----------|-------|
| Space and water heating                           | (261) + (262) + (263) + (264) = |                 |   | 16729.38 | (265) |
| Electricity for pumps, fans and electric keep-hot | (231) x                         | 0.519           | = | 62.28    | (267) |
| Electricity for lighting                          | (232) x                         | 0.519           | = | 393.32   | (268) |
| Total CO2, kg/year                                | sum                             | of (265)(271) = |   | 17184.98 | (272) |
| Dwelling CO2 Emission Rate                        | (272                            | ) ÷ (4) =       |   | 145.12   | (273) |
| EI rating (section 14)                            |                                 |                 |   | 8        | (274) |





#### **SAP Proposed**



















|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                     | Пост Г      | ) otoilo:             |                |                 |                 |           |                         |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------|-------------|-----------------------|----------------|-----------------|-----------------|-----------|-------------------------|--------------|
| Assessor Name:<br>Software Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Su Lee<br>Stroma FSAP 20        | 12                  | User D      | Strom<br>Softwa       |                |                 |                 |           | 0031315<br>on: 1.0.4.18 |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4=4.4=0.0                       |                     |             | Address               |                | Propose         | ed              |           |                         |              |
| Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 151-153, Camden I               | High Stre           | et, LON     | IDON, N               | W1 7JY         |                 |                 |           |                         |              |
| 1. Overall dwelling dim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ensions:                        |                     | ۸۳۵         | o/m²\                 |                | ۸۰، ۵۰          | iaht/m\         |           | Volume(m <sup>3</sup>   | 11           |
| Ground floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |                     |             | <b>a(m²)</b><br>74.67 | (1a) x         |                 | ight(m)<br>2.75 | (2a) =    | 205.34                  | (3a)         |
| Total floor area TFA = (*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1a)+(1b)+(1c)+(1d)+(1           | e)+(1r              | ነ) 7        | 74.67                 | (4)            |                 |                 |           |                         |              |
| Dwelling volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                     |             |                       | (3a)+(3b)      | )+(3c)+(3c      | d)+(3e)+        | (3n) =    | 205.34                  | (5)          |
| 2. Ventilation rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                     |             |                       |                |                 |                 |           |                         |              |
| Number of chimneys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | secondar<br>heating | .y<br>□ + □ | other<br>0            | 7 <b>-</b> F   | total           | x               | 40 =      | m³ per hou              | (6a)         |
| Number of open flues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                     | ┧╻┝         |                       | 」  L<br>1 = 「  |                 | x               | 20 =      |                         | =            |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | 0                   | J . L       | 0                     | 」 <sup>─</sup> | 0               |                 |           | 0                       | (6b)         |
| Number of intermittent fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                     |             |                       | L              | 2               |                 | 10 =      | 20                      | (7a)         |
| Number of passive vent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S                               |                     |             |                       |                | 0               | X               | 10 =      | 0                       | (7b)         |
| Number of flueless gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | fires                           |                     |             |                       |                | 0               | X               | 40 =      | 0                       | (7c)         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                     |             |                       |                |                 |                 | Air ch    | nanges per ho           | our          |
| Infiltration due to chimne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | evs flues and fans = (6         | 6a)+(6b)+(7         | 7a)+(7b)+(  | (7c) =                | Г              | 20              | _               | ÷ (5) =   |                         | (8)          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | been carried out or is intend   |                     |             |                       | continue fr    | 20<br>om (9) to |                 | ÷ (5) =   | 0.1                     | (6)          |
| Number of storeys in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 | ,,,                 | , ,         |                       |                | (1)             | ( -7            |           | 0                       | (9)          |
| Additional infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                     |             |                       |                |                 | [(9)            | -1]x0.1 = | 0                       | (10)         |
| Structural infiltration: (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.25 for steel or timber        | frame or            | 0.35 fo     | r masonı              | y constr       | ruction         |                 |           | 0                       | (11)         |
| if both types of wall are p<br>deducting areas of open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | present, use the value corre    | sponding to         | the great   | ter wall are          | a (after       |                 |                 |           |                         |              |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | floor, enter 0.2 (unsea         | aled) or 0.         | .1 (seale   | ed), else             | enter 0        |                 |                 |           | 0                       | (12)         |
| If no draught lobby, er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                               | ,                   | (           | ,,                    |                |                 |                 |           | 0                       | (13)         |
| • .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vs and doors draught s          | tripped             |             |                       |                |                 |                 |           | 0                       | (14)         |
| Window infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                     |             | 0.25 - [0.2           | x (14) ÷ 1     | 00] =           |                 |           | 0                       | (15)         |
| Infiltration rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                     |             | (8) + (10)            | + (11) + (1    | 2) + (13)       | + (15) =        |           | 0                       | (16)         |
| Air permeability value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , q50, expressed in cul         | bic metre           | s per ho    | our per s             | quare m        | etre of e       | envelope        | area      | 4.5                     | (17)         |
| If based on air permeab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                               |                     |             |                       |                |                 |                 |           | 0.32                    | (18)         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ies if a pressurisation test ha | is been don         | ne or a de  | gree air pe           | rmeability     | is being u      | sed             |           |                         | 7,40         |
| Number of sides shelter<br>Shelter factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ea                              |                     |             | (20) = 1 -            | 0.075 x (1     | 9)] <b>=</b>    |                 |           | 0.85                    | (19)<br>(20) |
| Infiltration rate incorpora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ating shelter factor            |                     |             | (21) = (18            |                | / <del>-</del>  |                 |           | 0.03                    | (21)         |
| Infiltration rate modified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                               | d                   |             |                       |                |                 |                 |           | 0.21                    | (=:)         |
| Jan Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mar Apr May                     | 1                   | Jul         | Aug                   | Sep            | Oct             | Nov             | Dec       | 1                       |              |
| Monthly average wind s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                     |             | 1 1119                |                |                 | 1               |           | 1                       |              |
| (22)m= 5.1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.9 4.4 4.3                     | 3.8                 | 3.8         | 3.7                   | 4              | 4.3             | 4.5             | 4.7       | ]                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I                               | 1                   | <u> </u>    | <u> </u>              | <u> </u>       | I               |                 | <u> </u>  | 1                       |              |
| Wind Factor $(22a)m = (2a)m =$ | <del>'</del> 1 1                |                     | Π.          | 1 .                   |                | 1               | 1               |           | 1                       |              |
| (22a)m= 1.27 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.23 1.1 1.08                   | 0.95                | 0.95        | 0.92                  | 1              | 1.08            | 1.12            | 1.18      | J                       |              |

| Adjusted infiltra                        | ation rate       | e (allowi | ng for sh   | nelter an    | nd wind s   | peed) =     | (21a) x               | (22a)m                    |             |              |                     |                          |         |
|------------------------------------------|------------------|-----------|-------------|--------------|-------------|-------------|-----------------------|---------------------------|-------------|--------------|---------------------|--------------------------|---------|
| 0.35                                     | 0.34             | 0.34      | 0.3         | 0.29         | 0.26        | 0.26        | 0.25                  | 0.27                      | 0.29        | 0.31         | 0.32                | ]                        |         |
| Calculate effect                         |                  | •         | rate for t  | he appli     | cable ca    | se          | •                     | •                         |             |              |                     | _                        |         |
| If mechanica                             |                  |           | endix N (2  | 3h) = (23:   | a) × Fmv (e | equation (I | N5)) othe             | rwise (23h                | n) = (23a)  |              |                     | 0                        |         |
| If balanced with                         |                  |           |             |              |             |             |                       |                           | ) - (20u)   |              |                     | 0                        |         |
|                                          |                  | -         | -           | _            |             |             |                       |                           | 26\m . (    | 22h) [       | 1 (225)             | 0                        | (230    |
| a) If balance (24a)m= 0                  |                  | 0         | 0           | o with the   | 0           | 0           | 0                     | $\frac{1}{1} \frac{1}{0}$ | 0           | 23D) X [     | $\frac{1-(230)}{0}$ | ) <del>-</del> 100]<br>] | (24a    |
| · · ·                                    |                  |           |             |              |             |             |                       |                           |             |              |                     | J                        | (2.10   |
| b) If balance                            | o mecha          | o 0       | o nulation  | without<br>0 | neat rec    | overy (r    | 0 0                   | 0                         | 0           | 23D)<br>0    | 0                   | 1                        | (24)    |
|                                          |                  |           |             |              |             | <u> </u>    |                       |                           |             | 0            |                     | J                        | (2-1)   |
| c) If whole he<br>if (22b)m              |                  |           |             | •            | •           |             |                       |                           | 5 × (23h    | )            |                     |                          |         |
| (24c)m = 0                               | 0                | 0         | 0           | 0            | 0           | 0           | 0) = (22.             | 0                         | 0           | 0            | 0                   | 1                        | (240    |
| d) If natural                            |                  | n or wh   | ole hous    |              |             | ventilati   |                       |                           |             |              |                     | J                        | `       |
| if (22b)m                                |                  |           |             |              | •           |             |                       |                           | 0.5]        |              |                     |                          |         |
| (24d)m= 0.56                             | 0.56             | 0.56      | 0.55        | 0.54         | 0.53        | 0.53        | 0.53                  | 0.54                      | 0.54        | 0.55         | 0.55                | ]                        | (240    |
| Effective air                            | change           | rate - er | nter (24a   | ) or (24h    | o) or (24   | c) or (24   | d) in bo              | x (25)                    | •           |              | •                   | -                        |         |
| (25)m= 0.56                              | 0.56             | 0.56      | 0.55        | 0.54         | 0.53        | 0.53        | 0.53                  | 0.54                      | 0.54        | 0.55         | 0.55                | ]                        | (25)    |
| 2 Heat lease                             | مطلمين           | ot loop i |             | ~ #.         | •           |             | •                     | •                         | •           |              | •                   | •                        |         |
| 3. Heat losses                           | s and ne<br>Gros |           |             |              | Net Ar      | 00          | U-val                 | 110                       | AXU         |              | k-valu              | 2                        | ΑΧk     |
| ELEMENT                                  | area             | -         | Openin<br>m |              | A,r         |             | W/m2                  |                           | (W/F        | <)           | kJ/m².              |                          | kJ/K    |
| Doors                                    |                  |           |             |              | 2.12        | X           | 1.2                   | =                         | 2.544       |              |                     |                          | (26)    |
| Windows Type                             | : 1              |           |             |              | 0.91        | x1          | /[1/( 1.2 )+          | 0.04] =                   | 1.04        |              |                     |                          | (27)    |
| Windows Type                             | 2                |           |             |              | 1.53        |             | /[1/( 1.2 )+          | 0.04] =                   | 1.75        | =            |                     |                          | (27)    |
| Windows Type                             | 3                |           |             |              | 4.42        | 〓 ,         | /[1/( 1.2 )+          | 0.04] =                   | 5.06        |              |                     |                          | (27)    |
| Windows Type                             |                  |           |             |              | 4.01        |             | - ` /<br>/[1/( 1.2 )+ |                           | 4.59        |              |                     |                          | (27)    |
| Floor                                    | •                |           |             |              |             | =           | 0.22                  |                           |             | <del> </del> |                     |                          | (28)    |
| Walls Type1                              |                  |           |             |              | 74.67       | =           |                       | =                         | 16.4274     | <u>-</u>     |                     | 북 늗                      |         |
|                                          | 28.6             |           | 6.86        | _            | 21.82       | =           | 0.55                  | =                         | 12          | 亅 !          |                     | ⊣                        | (29)    |
| Walls Type2                              | 30.9             | 1         | 8.02        |              | 22.89       | ) ×         | 0.55                  | =                         | 12.59       | _            |                     | 닠   =                    | (29)    |
| Walls Type3                              | 12.2             | 4         | 2.12        |              | 10.12       | 2 X         | 0.55                  | = !                       | 5.56        | _            |                     | <b>ᆜ</b>                 | (29)    |
| Roof                                     | 6.42             |           | 0           |              | 6.42        | X           | 0.18                  | =                         | 1.16        |              |                     |                          | (30)    |
| Total area of e                          | lements,         | , m²      |             |              | 152.9       | 2           |                       |                           |             |              |                     |                          | (31)    |
| Party wall                               |                  |           |             |              | 28.6        | X           | 0                     | =                         | 0           |              |                     |                          | (32)    |
| Party wall                               |                  |           |             |              | 16.44       | X           | 0                     | =                         | 0           |              |                     |                          | (32)    |
| * for windows and<br>** include the area |                  |           |             |              |             | ated using  | g formula 1           | /[(1/U-valu               | ue)+0.04] a | s given in   | paragrapi           | h 3.2                    |         |
| Fabric heat los                          | s, W/K =         | = S (A x  | U)          |              |             |             | (26)(30)              | ) + (32) =                |             |              |                     | 67.3                     | 32 (33) |
| Heat capacity                            | Cm = S(          | Axk)      |             |              |             |             |                       | ((28).                    | (30) + (32  | 2) + (32a).  | (32e) =             | 0                        | (34)    |
| Thermal mass                             | paramet          | ter (TMF  | o = Cm -    | - TFA) ir    | n kJ/m²K    |             |                       | Indica                    | tive Value: | Medium       |                     | 25                       | 0 (35)  |
| For design assess                        |                  |           |             | construct    | ion are no  | t known pi  | ecisely the           | e indicative              | e values of | TMP in Ta    | able 1f             |                          |         |
| can be used instead                      |                  |           |             |              |             | ,           |                       |                           |             |              |                     |                          |         |
| Thermal bridge                           | es : S (L        | x Y) cal  | culated i   | using Ap     | ppendix I   | `           |                       |                           |             |              |                     | 22.9                     | 94 (36) |

| 411 41 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                   |                                                                          | ` '                                             | (36) =                                                          | , ,_,                                                                             | l                          | 90.26   | (3                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------|---------|---------------------------------|
| entilation he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                             |                                                                                   | 1                                                                        | ` '                                             | = 0.33 × (                                                      | 25)m x (5)<br>I                                                                   |                            |         |                                 |
| Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jun                                                                           | Jul                                                                               | Aug                                                                      | Sep                                             | Oct                                                             | Nov                                                                               | Dec                        |         |                                 |
| 38.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36.18                                                                         | 36.18                                                                             | 36.06                                                                    | 36.43                                           | 36.82                                                           | 37.1                                                                              | 37.39                      |         | (3                              |
| at transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | coefficie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt, W/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                   |                                                                          | (39)m                                           | = (37) + (3                                                     | 38)m                                                                              |                            |         |                                 |
| )m= 128.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 128.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 127.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 127.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 127.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 126.44                                                                        | 126.44                                                                            | 126.32                                                                   | 126.69                                          | 127.08                                                          | 127.36                                                                            | 127.65                     |         |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                   |                                                                          |                                                 | Average =                                                       |                                                                                   | 12 /12=                    | 127.22  | (:                              |
| at loss para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del>r `</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                   |                                                                          | ` ′                                             | = (39)m ÷                                                       | <u>`                                    </u>                                      | 1                          |         |                                 |
| )m= 1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.69                                                                          | 1.69                                                                              | 1.69                                                                     | 1.7                                             | 1.7                                                             | 1.71                                                                              | 1.71                       |         | <b>—</b> ,                      |
| ımber of da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vs in mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nth <i>(</i> Tahl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | le 1a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                   |                                                                          | ,                                               | Average =                                                       | Sum(40) <sub>1</sub>                                                              | 12 /12=                    | 1.7     | (-                              |
| Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jun                                                                           | Jul                                                                               | Aug                                                                      | Sep                                             | Oct                                                             | Nov                                                                               | Dec                        |         |                                 |
| )m= 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                            | 31                                                                                | 31                                                                       | 30                                              | 31                                                              | 30                                                                                | 31                         |         | (-                              |
| )III= <u>31</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                               | 1 31                                                                              | ] 31                                                                     | 30                                              |                                                                 |                                                                                   | J 31                       |         | (                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                   |                                                                          |                                                 |                                                                 |                                                                                   |                            |         |                                 |
| Water hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ting ene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rgy requi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                   |                                                                          |                                                 |                                                                 |                                                                                   | kWh/ye                     | ear:    |                                 |
| sumed occ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | upancy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                   |                                                                          |                                                 |                                                                 | 2                                                                                 | 35                         |         | (                               |
| f TFA > 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [1 - exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (-0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 349 x (TI                                                                     | FA -13.9                                                                          | )2)] + 0.0                                                               | 0013 x (                                        | ΓFA -13.                                                        |                                                                                   |                            |         | •                               |
| f TFA £ 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9, N = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                   |                                                                          |                                                 |                                                                 |                                                                                   |                            |         |                                 |
| nual avera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                             | _                                                                                 | ` ,                                                                      |                                                 |                                                                 |                                                                                   | ).11                       |         | (                               |
| duce the annu<br>more that 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                             | •                                                                                 | to acnieve                                                               | a water us                                      | se target o                                                     | Ť                                                                                 |                            |         |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                             | <del></del>                                                                       |                                                                          |                                                 |                                                                 |                                                                                   |                            |         |                                 |
| Jan<br>water usage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mar<br>day for ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jun                                                                           | Jul<br>Table 1c v                                                                 | Aug                                                                      | Sep                                             | Oct                                                             | Nov                                                                               | Dec                        |         |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                   |                                                                          |                                                 |                                                                 |                                                                                   |                            |         |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               | 1                                                                                 | . /                                                                      |                                                 |                                                                 |                                                                                   |                            |         |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 84.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.1                                                                          | 81.1                                                                              | 84.7                                                                     | 88.3                                            | 91.91                                                           | 95.51                                                                             | 99.12                      |         | <b>_</b>                        |
| )m= 99.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 84.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.1                                                                          | 81.1                                                                              | 84.7                                                                     |                                                 | I<br>Total = Su                                                 | l<br>m(44) <sub>112</sub> =                                                       | =                          | 1081.28 | (                               |
| )m= 99.12<br>ergy content o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91.91<br>used - cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 88.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 84.7<br>onthly = 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 81.1<br>190 x Vd,ı                                                            | 81.1<br>m x nm x E                                                                | 84.7<br>DTm / 3600                                                       | kWh/mor                                         | Total = Su<br>oth (see Ta                                       | l<br>m(44) <sub>112</sub> =<br>ables 1b, 1                                        | c, 1d)                     | 1081.28 | (                               |
| )m= 99.12<br>ergy content o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 84.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.1                                                                          | 81.1                                                                              | 84.7                                                                     | 0 <i>kWh/mor</i><br>103.04                      | Total = Sunth (see Ta                                           | m(44) <sub>112</sub> = ables 1b, 1                                                | c, 1d)                     |         | `<br>                           |
| 99.12<br>ergy content o<br>)m= 146.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95.51<br>f hot water<br>128.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 91.91<br>used - cald                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88.3<br>culated mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 84.7<br>onthly = 4.<br>110.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 81.1<br>190 x Vd,r<br>95.76                                                   | 81.1<br>m x nm x E<br>88.74                                                       | 84.7<br>0Tm / 3600<br>101.83                                             | ) kWh/mor<br>103.04                             | Total = Su<br>oth (see Ta                                       | m(44) <sub>112</sub> = ables 1b, 1                                                | c, 1d)                     | 1081.28 | `<br>                           |
| 99.12 ergy content o m= 146.99 estantaneous i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95.51  f hot water  128.56  water heati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 91.91<br>used - calc<br>132.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88.3  culated model 115.66  of use (no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 84.7  onthly = 4.  110.97  o hot water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81.1<br>190 x Vd,r<br>95.76<br>r storage),                                    | 81.1<br>m x nm x L<br>88.74<br>enter 0 in                                         | 84.7<br>0Tm / 3600<br>101.83<br>boxes (46)                               | 103.04<br>) to (61)                             | Total = Sunth (see Tail 120.09  Total = Sunth (see Sunth 120.09 | m(44) <sub>112</sub> = ables 1b, 1 131.09 m(45) <sub>112</sub> =                  | c, 1d)                     |         |                                 |
| 99.12 ergy content o m= 146.99 estantaneous v m= 22.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95.51  f hot water  128.56  water heatin  19.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91.91<br>used - cald                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88.3<br>culated mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 84.7<br>onthly = 4.<br>110.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 81.1<br>190 x Vd,r<br>95.76                                                   | 81.1<br>m x nm x E<br>88.74                                                       | 84.7<br>0Tm / 3600<br>101.83                                             | ) kWh/mor<br>103.04                             | Total = Sunth (see Ta                                           | m(44) <sub>112</sub> = ables 1b, 1                                                | c, 1d)                     |         |                                 |
| ergy content of the stantaneous of the storage of t | 95.51  f hot water 128.56  water heatin 19.28 Floss:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 91.91<br>used - cald<br>132.66<br>ng at point<br>19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88.3  culated mo 115.66  of use (no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84.7  onthly = 4.  110.97  o hot water  16.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 81.1<br>190 x Vd,r<br>95.76<br>r storage),<br>14.36                           | 81.1<br>m x nm x E<br>88.74<br>enter 0 in<br>13.31                                | 84.7<br>07m / 3600<br>101.83<br>boxes (46)<br>15.27                      | 103.04<br>106 (61)<br>15.46                     | Total = Su tth (see Ta 120.09 Total = Su 18.01                  | m(44) <sub>112</sub> = m(44) <sub>112</sub> = 19.66                               | c, 1d)  142.35  21.35      |         | (,                              |
| ergy content of the property o | 95.51  f hot water  128.56  water heatin  19.28  loss: ne (litres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91.91  used - calc  132.66  ng at point  19.9  includin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 88.3  culated mo 115.66  of use (no 17.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 84.7  onthly = 4.  110.97  o hot water  16.65  olar or W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.1<br>190 x Vd,r<br>95.76<br>r storage),<br>14.36<br>/WHRS                  | 81.1  m x nm x E  88.74  enter 0 in  13.31  storage                               | 84.7<br>07m / 3600<br>101.83<br>boxes (46)<br>15.27<br>within sa         | 103.04<br>106 (61)<br>15.46                     | Total = Su tth (see Ta 120.09 Total = Su 18.01                  | m(44) <sub>112</sub> = m(44) <sub>112</sub> = 19.66                               | c, 1d)                     |         | (,                              |
| ergy content of the stantaneous of the storage or stora | 95.51  f hot water  128.56  water heati  19.28  loss: ne (litres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 91.91  used - calc  132.66  ng at point  19.9  includin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 88.3  culated mo 115.66  of use (no 17.35  g any so nk in dw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 84.7  onthly = 4.  110.97  o hot water  16.65  clar or W  relling, e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.1<br>190 x Vd,r<br>95.76<br>r storage),<br>14.36<br>/WHRS                  | 81.1  m x nm x E  88.74  enter 0 in  13.31  storage ) litres in                   | 84.7<br>07m / 3600<br>101.83<br>boxes (46)<br>15.27<br>within sa<br>(47) | 103.04<br>106 (61)<br>15.46                     | Total = Su  th (see Ta  120.09  Total = Su  18.01  sel          | m(44) <sub>112</sub> = m(44) <sub>112</sub> = 19.66                               | c, 1d)  142.35  21.35      |         | (,                              |
| ergy content of the property o | 95.51  f hot water  128.56  vater heatin  19.28  closs: ne (litres) neating a o stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 91.91  used - calc  132.66  ng at point  19.9  includin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 88.3  culated mo 115.66  of use (no 17.35  g any so nk in dw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 84.7  onthly = 4.  110.97  o hot water  16.65  clar or W  relling, e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.1<br>190 x Vd,r<br>95.76<br>r storage),<br>14.36<br>/WHRS                  | 81.1  m x nm x E  88.74  enter 0 in  13.31  storage ) litres in                   | 84.7<br>07m / 3600<br>101.83<br>boxes (46)<br>15.27<br>within sa<br>(47) | 103.04<br>106 (61)<br>15.46                     | Total = Su  th (see Ta  120.09  Total = Su  18.01  sel          | m(44) <sub>112</sub> = m(44) <sub>112</sub> = 19.66                               | c, 1d)  142.35  21.35      |         | (<br>(                          |
| ergy content of the property o | 95.51  f hot water  128.56  water heatin  19.28  loss: ne (litres) neating a o stored a loss:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 91.91  used - calc  132.66  ng at point  19.9  including and no tall hot water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88.3  culated mo 115.66  of use (no 17.35  ag any so nk in dw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 84.7  onthly = 4.  110.97  o hot water  16.65  olar or W yelling, e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 81.1  190 x Vd,r  95.76  r storage),  14.36  /WHRS  nter 110  nstantar        | 81.1  m x nm x E  88.74  enter 0 in  13.31  storage 0 litres in neous co          | 84.7<br>07m / 3600<br>101.83<br>boxes (46)<br>15.27<br>within sa<br>(47) | 103.04<br>106 (61)<br>15.46                     | Total = Su  th (see Ta  120.09  Total = Su  18.01  sel          | m(44) <sub>112</sub> = m(44) <sub>112</sub> = 19.66                               | c, 1d)  142.35  21.35      |         | (                               |
| ergy content or  m= 146.99  stantaneous v  m= 22.05  ater storage  orage volunt  community l  nerwise if n  ater storage  If manufac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95.51  f hot water  128.56  vater heatin  19.28 Floss: ne (litres) neating a o stored e loss: turer's de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 91.91  used - calc  132.66  ng at point  19.9  including and no tale hot water eclared le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88.3  culated mo 115.66  of use (no 17.35  og any so nk in dw er (this in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 84.7  onthly = 4.  110.97  o hot water  16.65  olar or W yelling, e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 81.1  190 x Vd,r  95.76  r storage),  14.36  /WHRS  nter 110  nstantar        | 81.1  m x nm x E  88.74  enter 0 in  13.31  storage 0 litres in neous co          | 84.7<br>07m / 3600<br>101.83<br>boxes (46)<br>15.27<br>within sa<br>(47) | 103.04<br>106 (61)<br>15.46                     | Total = Su  th (see Ta  120.09  Total = Su  18.01  sel          | m(44) <sub>112</sub> = 131.09 m(45) <sub>112</sub> = 19.66                        | c, 1d)  142.35  21.35      |         | (                               |
| ergy content of the property o | 95.51  f hot water  128.56  vater heatin  19.28  loss: ne (litres) neating a o stored e loss: turer's defactor fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91.91  used - calc  132.66  139.9  19.9  including and no tale hot water  eclared lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88.3  culated moderate and service and ser | 84.7  onthly = 4.  110.97  o hot water  16.65  clar or Water  velling, eacludes in the control of the control o | 81.1  190 x Vd,r  95.76  r storage),  14.36  /WHRS  nter 110  nstantar        | 81.1  m x nm x E  88.74  enter 0 in  13.31  storage 0 litres in neous co          | 84.7<br>07m / 3600<br>101.83<br>boxes (46)<br>15.27<br>within sa<br>(47) | 103.04<br>103.04<br>15.46<br>15.46<br>ers) ente | Total = Su  th (see Ta  120.09  Total = Su  18.01  sel          | m(44) <sub>112</sub> = 131.09 m(45) <sub>112</sub> = 19.66                        | 21.35<br>21.35             |         | (4)                             |
| )m= 99.12 ergy content o )m= 146.99 estantaneous i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95.51  f hot water  128.56  vater heatin  19.28 Floss: ne (litres) neating a o stored e loss: turer's defactor from water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91.91  used - calc  132.66  ng at point  19.9  including and no tale hot water eclared learn Table ristorage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88.3  culated mo 115.66  of use (no 17.35  ag any so nk in dw er (this in coss facto 2b , kWh/ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84.7  onthly = 4.  110.97  o hot water  16.65  clar or Water  velling, eacludes in the control of the control o | 81.1  190 x Vd,r  95.76  r storage),  14.36  /WHRS enter 110 nstantar wn (kWh | 81.1  m x nm x E  88.74  enter 0 in  13.31  storage 0 litres in neous con h/day): | 84.7  27m / 3600  101.83  boxes (46)  15.27  within sa (47)  pmbi boil   | 103.04<br>103.04<br>15.46<br>15.46<br>ers) ente | Total = Su  th (see Ta  120.09  Total = Su  18.01  sel          | m(44) <sub>112</sub> = 131.09 m(45) <sub>112</sub> = 19.66                        | 21.35<br>125               |         | (·) (·) (·) (·) (·) (·) (·) (·) |
| ergy content of the property o | 95.51  f hot water  128.56  water heatin  19.28  loss: ne (litres) neating a o stored closs: turer's defactor fro om water turer's de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91.91  used - calc  132.66  ng at point  19.9  including and no tale and no tale and read leading at the colored l | 88.3  culated mo 115.66  of use (no 17.35  ag any so nk in dw er (this in coss facto 2b , kWh/ye cylinder I om Tabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84.7  onthly = 4.  110.97  o hot water  16.65  clar or W relling, e reludes i  or is kno  ear oss fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81.1  190 x Vd,r 95.76  r storage), 14.36  /WHRS enter 110 nstantar wn (kWh   | 81.1  m x nm x E  88.74  enter 0 in  13.31  storage 0 litres in neous con h/day): | 84.7  27m / 3600  101.83  boxes (46)  15.27  within sa (47)  pmbi boil   | 103.04<br>103.04<br>15.46<br>15.46<br>ers) ente | Total = Su  th (see Ta  120.09  Total = Su  18.01  sel          | m(44) <sub>112</sub> = 131.09 m(45) <sub>112</sub> = 19.66                        | 21.35<br>21.35             |         | (,<br>(,<br>(,<br>(,            |
| ergy content or  ergy lost from  ergy lost from  ergy lost from  ergy lost from  ergy content or  ergy lost from  ergy los | 95.51  f hot water  128.56  vater heating 19.28 closs: ne (litres) neating a o stored closs: turer's defactor fro om water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 91.91  used - calc  132.66  ng at point  19.9  includin  ind no ta  hot wate  eclared le  m Table  storage eclared of factor fr iee section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 88.3  culated mo 115.66  of use (no 17.35  ag any so nk in dw er (this in coss facto 2b , kWh/ye cylinder I om Tabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84.7  onthly = 4.  110.97  o hot water  16.65  clar or W relling, e reludes i  or is kno  ear oss fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81.1  190 x Vd,r 95.76  r storage), 14.36  /WHRS enter 110 nstantar wn (kWh   | 81.1  m x nm x E  88.74  enter 0 in  13.31  storage 0 litres in neous con h/day): | 84.7  27m / 3600  101.83  boxes (46)  15.27  within sa (47)  pmbi boil   | 103.04<br>103.04<br>15.46<br>15.46<br>ers) ente | Total = Su  th (see Ta  120.09  Total = Su  18.01  sel          | m(44) <sub>112</sub> = 131.09 m(45) <sub>112</sub> = 19.66                        | 21.35<br>21.35<br>19<br>54 |         | (,<br>(,<br>(,<br>(,            |
| ergy content or one of the standard or one of | 95.51  f hot water  128.56  vater heating 19.28 Floss: ne (litres) neating a to stored floss: turer's defactor from turer's defactor | 91.91  used - calc  132.66  ng at point  19.9  including and no tale hot water eclared lower than the storage eclared of factor from the section of the sect | 88.3  culated mo 115.66  of use (no 17.35  ag any so nk in dw er (this in coss facto 2b , kWh/ye cylinder I om Tabl on 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 84.7  onthly = 4.  110.97  o hot water  16.65  clar or W relling, e reludes i  or is kno  ear oss fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81.1  190 x Vd,r 95.76  r storage), 14.36  /WHRS enter 110 nstantar wn (kWh   | 81.1  m x nm x E  88.74  enter 0 in  13.31  storage 0 litres in neous con h/day): | 84.7  27m / 3600  101.83  boxes (46)  15.27  within sa (47)  pmbi boil   | 103.04<br>103.04<br>15.46<br>15.46<br>ers) ente | Total = Su  th (see Ta  120.09  Total = Su  18.01  sel          | m(44) <sub>112</sub> = sbles 1b, 1 131.09 m(45) <sub>112</sub> = 19.66 47)        | 21.35<br>21.35<br>19<br>54 |         |                                 |
| ergy content of the property o | 95.51  f hot water  128.56  vater heating 19.28 Floss: ne (litres) neating a to stored floss: turer's defactor from turer's defactor | 91.91  used - calc  132.66  ng at point  19.9  including and no tale hot water eclared lower than the storage eclared of factor from the section of the sect | 88.3  culated mo 115.66  of use (no 17.35  ag any so nk in dw er (this in coss facto 2b , kWh/ye cylinder I om Tabl on 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 84.7  onthly = 4.  110.97  o hot water  16.65  clar or W relling, e reludes i  or is kno  ear oss fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81.1  190 x Vd,r 95.76  r storage), 14.36  /WHRS enter 110 nstantar wn (kWh   | 81.1  m x nm x E  88.74  enter 0 in  13.31  storage 0 litres in neous con h/day): | 84.7  27m / 3600  101.83  boxes (46)  15.27  within sa (47)  pmbi boil   | 103.04<br>103.04<br>15.46<br>15.46<br>ers) ente | Total = Su  th (see Ta  120.09  Total = Su  18.01  sel          | m(44) <sub>112</sub> = m(44) <sub>112</sub> = 131.09 m(45) <sub>112</sub> = 19.66 | 21.35  19 54 64            |         | (4)                             |

| Water                                                                                                | storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | loss cal                                                                                                    | culated t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | or each                                                                                                | month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            |                                                                              | ((56)m = (                                                                         | 55) × (41)                                                     | m                                                |                                               |                                      |               |                                      |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|--------------------------------------|---------------|--------------------------------------|
| (56)m=                                                                                               | 19.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.99                                                                                                       | 19.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.28                                                                                                  | 19.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.28                                                                      | 19.92                                                                        | 19.92                                                                              | 19.28                                                          | 19.92                                            | 19.28                                         | 19.92                                |               | (56)                                 |
| If cylind                                                                                            | er contains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s dedicate                                                                                                  | d solar sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rage, (57)ı                                                                                            | m = (56)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x [(50) – (                                                                | H11)] ÷ (5                                                                   | 0), else (5                                                                        | 7)m = (56)                                                     | m where (                                        | H11) is fro                                   | m Append                             | ix H          |                                      |
| (57)m=                                                                                               | 19.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.99                                                                                                       | 19.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.28                                                                                                  | 19.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.28                                                                      | 19.92                                                                        | 19.92                                                                              | 19.28                                                          | 19.92                                            | 19.28                                         | 19.92                                |               | (57)                                 |
| Prima                                                                                                | ry circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | loss (an                                                                                                    | nual) fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m Table                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            |                                                                              |                                                                                    |                                                                |                                                  |                                               | 0                                    |               | (58)                                 |
| Prima                                                                                                | ry circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | loss cal                                                                                                    | culated t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | for each                                                                                               | month (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59)m = (                                                                   | (58) ÷ 36                                                                    | 55 × (41)                                                                          | m                                                              |                                                  |                                               |                                      |               |                                      |
| (mo                                                                                                  | dified by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | factor fi                                                                                                   | om Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | le H5 if t                                                                                             | here is s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | solar wat                                                                  | er heatii                                                                    | ng and a                                                                           | cylinde                                                        | r thermo                                         | stat)                                         |                                      |               |                                      |
| (59)m=                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                          | 0                                                                            | 0                                                                                  | 0                                                              | 0                                                | 0                                             | 0                                    |               | (59)                                 |
| Comb                                                                                                 | i loss ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lculated                                                                                                    | for each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | month (                                                                                                | (61)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (60) ÷ 36                                                                  | 65 × (41)                                                                    | )m                                                                                 |                                                                |                                                  |                                               |                                      |               |                                      |
| (61)m=                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                          | 0                                                                            | 0                                                                                  | 0                                                              | 0                                                | 0                                             | 0                                    |               | (61)                                 |
| Total I                                                                                              | neat requ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | uired for                                                                                                   | water h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eating ca                                                                                              | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I for eacl                                                                 | h month                                                                      | (62)m =                                                                            | 0.85 ×                                                         | (45)m +                                          | (46)m +                                       | (57)m +                              | (59)m + (61)m |                                      |
| (62)m=                                                                                               | 166.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 146.55                                                                                                      | 152.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 134.93                                                                                                 | 130.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 115.04                                                                     | 108.66                                                                       | 121.75                                                                             | 122.32                                                         | 140.01                                           | 150.36                                        | 162.27                               |               | (62)                                 |
| Solar D                                                                                              | HW input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | calculated                                                                                                  | using App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | endix G or                                                                                             | Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H (negati                                                                  | ve quantity                                                                  | /) (enter '0                                                                       | ' if no sola                                                   | r contribut                                      | ion to wate                                   | r heating)                           |               |                                      |
| (add a                                                                                               | dditiona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l lines if                                                                                                  | FGHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and/or V                                                                                               | VWHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | applies                                                                    | , see Ap                                                                     | pendix C                                                                           | 3)                                                             |                                                  |                                               |                                      |               |                                      |
| (63)m=                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                          | 0                                                                            | 0                                                                                  | 0                                                              | 0                                                | 0                                             | 0                                    |               | (63)                                 |
| Outpu                                                                                                | t from w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ater hea                                                                                                    | ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                              |                                                                                    |                                                                |                                                  |                                               |                                      |               |                                      |
| (64)m=                                                                                               | 166.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 146.55                                                                                                      | 152.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 134.93                                                                                                 | 130.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 115.04                                                                     | 108.66                                                                       | 121.75                                                                             | 122.32                                                         | 140.01                                           | 150.36                                        | 162.27                               |               |                                      |
|                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                              | Outp                                                                               | out from w                                                     | ater heate                                       | r (annual)₁                                   | 12                                   | 1652.28       | (64)                                 |
| Heat o                                                                                               | gains fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m water                                                                                                     | heating,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | kWh/mo                                                                                                 | onth 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 ´ [0.85                                                                  | × (45)m                                                                      | + (61)m                                                                            | n] + 0.8 x                                                     | k [(46)m                                         | + (57)m                                       | + (59)m                              | ]             | _                                    |
| (65)m=                                                                                               | 64.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57.14                                                                                                       | 60.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53.88                                                                                                  | 52.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47.26                                                                      | 45.44                                                                        | 49.79                                                                              | 49.68                                                          |                                                  | 50.04                                         | 62.27                                |               | (65)                                 |
|                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00.00                                                                                                  | 02.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77.20                                                                      | 45.44                                                                        | 49.79                                                                              | 49.00                                                          | 55.87                                            | 59.01                                         | 63.27                                |               | (03)                                 |
| incl                                                                                                 | ude (57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m in calc                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ                                                                          | !                                                                            |                                                                                    | ļ                                                              | ļ                                                | ļ                                             |                                      | eating        | (03)                                 |
|                                                                                                      | ude (57)<br>ternal da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                             | ulation (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m                                                                                               | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ļ                                                                          | !                                                                            |                                                                                    | ļ                                                              | ļ                                                | ļ                                             |                                      | eating        | (00)                                 |
| 5. In                                                                                                | ternal ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ains (see                                                                                                   | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of (65)m<br>and 5a                                                                                     | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ļ                                                                          | !                                                                            |                                                                                    | ļ                                                              | ļ                                                | ļ                                             |                                      | eating        | (00)                                 |
| 5. In                                                                                                | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ains (see                                                                                                   | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of (65)m<br>and 5a)                                                                                    | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ylinder i                                                                  | !                                                                            | dwelling                                                                           | or hot w                                                       | ļ                                                | ļ                                             |                                      | eating        | (00)                                 |
| 5. In                                                                                                | ternal ga<br>olic gain<br>Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ains (see                                                                                                   | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of (65)m<br>and 5a                                                                                     | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ļ                                                                          | s in the o                                                                   |                                                                                    | ļ                                                              | rater is fr                                      | om com                                        | munity h                             | eating        | (66)                                 |
| 5. In Metab                                                                                          | ternal ga<br>olic gain<br>Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ains (see<br>s (Table<br>Feb<br>117.7                                                                       | Eulation of Table 5 (25), Wat Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of (65)m<br>and 5a<br>ts<br>Apr<br>117.7                                                               | only if c : : : : : : : : : : : : : : : : : : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jun                                                                        | Jul                                                                          | Aug                                                                                | Sep                                                            | rater is fr                                      | om com                                        | munity h                             | eating        |                                      |
| 5. In Metab                                                                                          | ternal gan<br>olic gain<br>Jan<br>117.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ains (see<br>s (Table<br>Feb<br>117.7                                                                       | Eulation of Table 5 (25), Wat Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of (65)m<br>and 5a<br>ts<br>Apr<br>117.7                                                               | only if c : : : : : : : : : : : : : : : : : : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jun                                                                        | Jul                                                                          | Aug                                                                                | Sep                                                            | rater is fr                                      | om com                                        | munity h                             | eating        |                                      |
| 5. In Metab  (66)m= Lightir (67)m=                                                                   | ternal gar<br>oolic gain<br>Jan<br>117.7<br>ng gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rins (see<br>s (Table<br>Feb<br>117.7<br>(calcula<br>16.59                                                  | Table 5  5), Wat  Mar  117.7  ted in Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of (65)m<br>and 5a<br>ts<br>Apr<br>117.7<br>opendix                                                    | May 117.7 L, equati 7.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jun<br>117.7<br>ion L9 o                                                   | Jul<br>117.7<br>r L9a), a                                                    | Aug<br>117.7<br>Iso see                                                            | Sep 117.7 Table 5 12.15                                        | Oct 117.7                                        | Nov                                           | Dec                                  | eating        | (66)                                 |
| 5. In Metab  (66)m= Lightir (67)m=                                                                   | dernal gain<br>Jan<br>117.7<br>ng gains<br>18.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rins (see<br>s (Table<br>Feb<br>117.7<br>(calcula<br>16.59                                                  | Table 5  5), Wat  Mar  117.7  ted in Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of (65)m<br>and 5a<br>ts<br>Apr<br>117.7<br>opendix                                                    | May 117.7 L, equati 7.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jun<br>117.7<br>ion L9 o                                                   | Jul<br>117.7<br>r L9a), a                                                    | Aug<br>117.7<br>Iso see                                                            | Sep 117.7 Table 5 12.15                                        | Oct 117.7                                        | Nov                                           | Dec                                  | eating        | (66)                                 |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m=                                                     | ternal gain Jan 117.7 ng gains 18.68 ances ga 207.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | reins (see<br>s (Table<br>Feb<br>117.7<br>(calcula<br>16.59<br>ins (calc                                    | Table 5 Table | ts Apr 117.7 ppendix 10.21 Appendix 193.09                                                             | May 117.7 L, equati 7.63 dix L, eq 178.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jun<br>117.7<br>ion L9 o<br>6.45<br>uation L                               | Jul<br>117.7<br>r L9a), a<br>6.96<br>13 or L1                                | Aug<br>117.7<br>Iso see<br>9.05<br>3a), also                                       | Sep 117.7 Table 5 12.15 see Ta 158.85                          | Oct 117.7 15.43 ble 5 170.42                     | Nov<br>117.7                                  | Dec 117.7                            | eating        | (66)<br>(67)                         |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m=                                                     | ternal gains Jan 117.7 ng gains 18.68 nces ga 207.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | reins (see<br>s (Table<br>Feb<br>117.7<br>(calcula<br>16.59<br>ins (calc                                    | Table 5 Table | ts Apr 117.7 ppendix 10.21 Appendix 193.09                                                             | May 117.7 L, equati 7.63 dix L, eq 178.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jun<br>117.7<br>ion L9 o<br>6.45<br>uation L                               | Jul<br>117.7<br>r L9a), a<br>6.96<br>13 or L1                                | Aug<br>117.7<br>Iso see<br>9.05<br>3a), also                                       | Sep 117.7 Table 5 12.15 see Ta 158.85                          | Oct 117.7 15.43 ble 5 170.42                     | Nov<br>117.7                                  | Dec 117.7                            | eating        | (66)<br>(67)                         |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m= Cookii (69)m=                                       | Jan 117.7 ng gains 18.68 nnces ga 207.94 ng gains 34.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | res (Table Feb 117.7 (calcular 16.59 ins (calcular 210.1 (calcular 34.77                                    | Table 5 25), Wat Mar 117.7 ted in Ap 13.49 ulated ir 204.66 ted in A 34.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of (65)m<br>s and 5a<br>ts<br>Apr<br>117.7<br>opendix<br>10.21<br>Append<br>193.09<br>opendix<br>34.77 | May 117.7 L, equati 7.63 dix L, equate 178.47 L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jun 117.7 ion L9 of 6.45 uation L 164.74 ion L15                           | Jul<br>117.7<br>r L9a), a<br>6.96<br>13 or L1<br>155.57<br>or L15a)          | Aug<br>117.7<br>Iso see 9.05<br>3a), also<br>153.41                                | Sep 117.7 Table 5 12.15 See Ta 158.85                          | Oct 117.7 15.43 ble 5 170.42                     | Nov<br>117.7<br>18.01                         | Dec 117.7 19.2 198.77                | eating        | (66)<br>(67)<br>(68)                 |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m= Cookii (69)m=                                       | Jan 117.7 ng gains 18.68 nnces ga 207.94 ng gains 34.77 s and fai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | res (Table Feb 117.7 (calcular 16.59 ins (calcular 210.1 (calcular 34.77                                    | Table 5 25), Wat Mar 117.7 ted in Ap 13.49 ulated ir 204.66 ted in A 34.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of (65)m<br>s and 5a<br>ts<br>Apr<br>117.7<br>opendix<br>10.21<br>Append<br>193.09<br>opendix<br>34.77 | May 117.7 L, equati 7.63 dix L, equate 178.47 L, equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jun 117.7 ion L9 of 6.45 uation L 164.74 ion L15                           | Jul<br>117.7<br>r L9a), a<br>6.96<br>13 or L1<br>155.57<br>or L15a)          | Aug<br>117.7<br>Iso see 9.05<br>3a), also<br>153.41                                | Sep 117.7 Table 5 12.15 See Ta 158.85                          | Oct 117.7 15.43 ble 5 170.42                     | Nov<br>117.7<br>18.01                         | Dec 117.7 19.2 198.77                | eating        | (66)<br>(67)<br>(68)                 |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m= Cookii (69)m= Pump (70)m=                           | Jan 117.7 ng gains 18.68 nnces ga 207.94 ng gains 34.77 s and fai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | resins (see Feb 117.7 (calcular 16.59 ins (calcular 34.77 ins gains 3                                       | Mar 117.7 ted in Ap 13.49 ulated ir 204.66 ted in A 34.77 (Table \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of (65)m and 5a ts Apr 117.7 ppendix 10.21 Appendix 193.09 ppendix 34.77 5a)                           | only if controls:  May 117.7  L, equati 7.63  dix L, equati 178.47  L, equati 34.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jun 117.7 ion L9 of 6.45 uation L 164.74 ion L15 34.77                     | Jul<br>117.7<br>r L9a), a<br>6.96<br>13 or L1<br>155.57<br>or L15a)<br>34.77 | Aug<br>117.7<br>Iso see<br>9.05<br>3a), also<br>153.41<br>, also se<br>34.77       | Sep 117.7 Table 5 12.15 see Ta 158.85 ee Table 34.77           | Oct 117.7 15.43 ble 5 170.42 5 34.77             | Nov<br>117.7<br>18.01<br>185.03               | Dec 117.7 19.2 198.77 34.77          | eating        | (66)<br>(67)<br>(68)<br>(69)         |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m= Cookir (69)m= Pump (70)m=                           | ternal gain Jan 117.7 ng gains 18.68 nnces ga 207.94 ng gains 34.77 s and fai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | resins (see Feb 117.7 (calcular 16.59 ins (calcular 34.77 ins gains 3                                       | Mar 117.7 ted in Ap 13.49 ulated ir 204.66 ted in A 34.77 (Table \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of (65)m and 5a ts Apr 117.7 ppendix 10.21 Appendix 193.09 ppendix 34.77 5a)                           | only if controls:  May 117.7  L, equati 7.63  dix L, equati 178.47  L, equati 34.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jun 117.7 ion L9 of 6.45 uation L 164.74 ion L15 34.77                     | Jul<br>117.7<br>r L9a), a<br>6.96<br>13 or L1<br>155.57<br>or L15a)<br>34.77 | Aug<br>117.7<br>Iso see<br>9.05<br>3a), also<br>153.41<br>, also se<br>34.77       | Sep 117.7 Table 5 12.15 see Ta 158.85 ee Table 34.77           | Oct 117.7 15.43 ble 5 170.42 5 34.77             | Nov<br>117.7<br>18.01<br>185.03               | Dec 117.7 19.2 198.77 34.77          | eating        | (66)<br>(67)<br>(68)<br>(69)         |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m= Cookir (69)m= Pump (70)m= Losse (71)m=              | ternal gain Jan 117.7 ng gains 18.68 nnces ga 207.94 ng gains 34.77 s and fai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s (Table Feb 117.7 (calcula 16.59 ins (calcula 210.1 (calcula 34.77 ns gains 3 raporatio -94.16             | ted in Apulated in 204.66 ted in Apulated | of (65)m s and 5a ts Apr 117.7 opendix 10.21 n Append 193.09 opendix 34.77 sa) 3 tive valu             | only if construction only if c | Jun<br>117.7<br>ion L9 o<br>6.45<br>uation L<br>164.74<br>ion L15<br>34.77 | Jul<br>117.7<br>r L9a), a<br>6.96<br>13 or L1<br>155.57<br>or L15a)<br>34.77 | Aug<br>117.7<br>Iso see<br>9.05<br>3a), also<br>153.41<br>, also se<br>34.77       | Sep 117.7 Table 5 12.15 see Ta 158.85 ee Table 34.77           | Oct 117.7  15.43 ble 5 170.42 5 34.77            | Nov<br>117.7<br>18.01<br>185.03               | Dec 117.7 19.2 198.77 34.77          | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70) |
| 5. In Metab  (66)m= Lightir (67)m= Applia (68)m= Cookir (69)m= Pump (70)m= Losse (71)m=              | ternal garage olic gain Jan 117.7 ang gains 18.68 ances ga 207.94 ang gains 34.77 and fair 3 as e.g. ev -94.16 heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s (Table Feb 117.7 (calcula 16.59 ins (calcula 210.1 (calcula 34.77 ns gains 3 raporatio -94.16             | ted in Apulated in 204.66 ted in Apulated | of (65)m s and 5a ts Apr 117.7 opendix 10.21 n Append 193.09 opendix 34.77 sa) 3 tive valu             | only if construction only if c | Jun<br>117.7<br>ion L9 o<br>6.45<br>uation L<br>164.74<br>ion L15<br>34.77 | Jul<br>117.7<br>r L9a), a<br>6.96<br>13 or L1<br>155.57<br>or L15a)<br>34.77 | Aug<br>117.7<br>Iso see<br>9.05<br>3a), also<br>153.41<br>, also se<br>34.77       | Sep 117.7 Table 5 12.15 see Ta 158.85 ee Table 34.77           | Oct 117.7  15.43 ble 5 170.42 5 34.77            | Nov<br>117.7<br>18.01<br>185.03               | Dec 117.7 19.2 198.77 34.77          | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70) |
| 5. In Metab  (66)m= Lightin (67)m= Applia (68)m= Cookin (69)m= Pump (70)m= Losse (71)m= Water (72)m= | ternal garage olic gain Jan 117.7 ang gains 18.68 ances ga 207.94 ang gains 34.77 and fair 3 as e.g. ev -94.16 heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s (Table Feb 117.7 (calcular 16.59 ins (calcular 210.1 (calcular 34.77 ns gains 3 raporatio -94.16 gains (T | ted in Apulated in 204.66 ted in Apulated | of (65)m s and 5a ts Apr 117.7 opendix 10.21 Appendix 193.09 opendix 34.77 5a) 3 tive valu -94.16      | only if construction only if c | Jun 117.7 ion L9 o 6.45 uation L 164.74 ion L15 34.77  3 le 5) -94.16      | Jul<br>117.7<br>r L9a), a<br>6.96<br>13 or L1<br>155.57<br>or L15a)<br>34.77 | Aug<br>117.7<br>Iso see<br>9.05<br>3a), also<br>153.41<br>1, also se<br>34.77<br>3 | Sep 117.7 Table 5 12.15 See Ta 158.85 ee Table 34.77  3 -94.16 | Oct 117.7 15.43 ble 5 170.42 15 34.77 3          | Nov<br>117.7<br>18.01<br>185.03<br>34.77<br>3 | Dec 117.7 19.2 198.77 34.77 3 -94.16 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70) |
| 5. In Metab  (66)m= Lightin (67)m= Applia (68)m= Cookin (69)m= Pump (70)m= Losse (71)m= Water (72)m= | ternal gain Jan 117.7  Ing gains 18.68 Inces ga 207.94  Ing gains 34.77  Is and fair Inces gains Inces | s (Table Feb 117.7 (calcular 16.59 ins (calcular 210.1 (calcular 34.77 ns gains 3 raporatio -94.16 gains (T | ted in Apulated in 204.66 ted in Apulated | of (65)m s and 5a ts Apr 117.7 opendix 10.21 Appendix 193.09 opendix 34.77 5a) 3 tive valu -94.16      | only if construction only if c | Jun 117.7 ion L9 o 6.45 uation L 164.74 ion L15 34.77  3 le 5) -94.16      | Jul<br>117.7<br>r L9a), a<br>6.96<br>13 or L1<br>155.57<br>or L15a)<br>34.77 | Aug<br>117.7<br>Iso see<br>9.05<br>3a), also<br>153.41<br>1, also se<br>34.77<br>3 | Sep 117.7 Table 5 12.15 See Ta 158.85 ee Table 34.77  3 -94.16 | Oct 117.7  15.43 ble 5 170.42 5 34.77  3  -94.16 | Nov<br>117.7<br>18.01<br>185.03<br>34.77<br>3 | Dec 117.7 19.2 198.77 34.77 3 -94.16 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:              | Access Factor<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |     | Gains<br>(W) |      |
|---------------------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|-----|--------------|------|
| Northeast 0.9x            | 0.77                      | x | 4.01       | x | 11.28            | x | 0.76           | x | 0.7            | =   | 33.36        | (75) |
| Northeast 0.9x            | 0.77                      | x | 4.01       | x | 22.97            | x | 0.76           | x | 0.7            | =   | 67.91        | (75) |
| Northeast 0.9x            | 0.77                      | x | 4.01       | x | 41.38            | x | 0.76           | x | 0.7            | =   | 122.35       | (75) |
| Northeast 0.9x            | 0.77                      | x | 4.01       | x | 67.96            | x | 0.76           | x | 0.7            | =   | 200.93       | (75) |
| Northeast 0.9x            | 0.77                      | x | 4.01       | x | 91.35            | x | 0.76           | X | 0.7            | =   | 270.09       | (75) |
| Northeast 0.9x            | 0.77                      | x | 4.01       | x | 97.38            | x | 0.76           | x | 0.7            | =   | 287.94       | (75) |
| Northeast 0.9x            | 0.77                      | x | 4.01       | x | 91.1             | x | 0.76           | x | 0.7            | =   | 269.37       | (75) |
| Northeast 0.9x            | 0.77                      | x | 4.01       | x | 72.63            | X | 0.76           | x | 0.7            | =   | 214.74       | (75) |
| Northeast 0.9x            | 0.77                      | x | 4.01       | x | 50.42            | x | 0.76           | x | 0.7            | =   | 149.08       | (75) |
| Northeast 0.9x            | 0.77                      | x | 4.01       | x | 28.07            | x | 0.76           | x | 0.7            | =   | 82.99        | (75) |
| Northeast 0.9x            | 0.77                      | X | 4.01       | x | 14.2             | X | 0.76           | X | 0.7            | =   | 41.98        | (75) |
| Northeast 0.9x            | 0.77                      | x | 4.01       | x | 9.21             | x | 0.76           | x | 0.7            | =   | 27.24        | (75) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 0.91       | x | 36.79            | ] | 0.76           | x | 0.7            | =   | 12.34        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 1.53       | x | 36.79            |   | 0.76           | x | 0.7            | =   | 20.75        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 4.42       | x | 36.79            |   | 0.76           | x | 0.7            | =   | 59.96        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 0.91       | x | 62.67            |   | 0.76           | X | 0.7            | =   | 21.03        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 1.53       | x | 62.67            |   | 0.76           | x | 0.7            | =   | 35.35        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 4.42       | x | 62.67            |   | 0.76           | x | 0.7            | =   | 102.13       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 0.91       | x | 85.75            |   | 0.76           | X | 0.7            | =   | 28.77        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 1.53       | x | 85.75            |   | 0.76           | X | 0.7            | =   | 48.37        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 4.42       | x | 85.75            |   | 0.76           | x | 0.7            | =   | 139.74       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 0.91       | x | 106.25           |   | 0.76           | X | 0.7            | =   | 35.65        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 1.53       | x | 106.25           |   | 0.76           | x | 0.7            | =   | 59.93        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 4.42       | x | 106.25           | ] | 0.76           | x | 0.7            | =   | 173.14       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 0.91       | x | 119.01           |   | 0.76           | x | 0.7            | =   | 39.93        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 1.53       | x | 119.01           |   | 0.76           | X | 0.7            | =   | 67.13        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 4.42       | x | 119.01           |   | 0.76           | x | 0.7            | =   | 193.93       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 0.91       | x | 118.15           | ] | 0.76           | x | 0.7            | =   | 39.64        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 1.53       | x | 118.15           |   | 0.76           | X | 0.7            | =   | 66.65        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 4.42       | x | 118.15           |   | 0.76           | x | 0.7            | =   | 192.53       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 0.91       | x | 113.91           |   | 0.76           | x | 0.7            | =   | 38.22        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 1.53       | x | 113.91           |   | 0.76           | x | 0.7            | =   | 64.25        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 4.42       | x | 113.91           | ] | 0.76           | x | 0.7            | =   | 185.62       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 0.91       | x | 104.39           |   | 0.76           | X | 0.7            | =   | 35.02        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 1.53       | x | 104.39           |   | 0.76           | x | 0.7            | =   | 58.88        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 4.42       | x | 104.39           | ] | 0.76           | x | 0.7            | =   | 170.11       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 0.91       | x | 92.85            | ] | 0.76           | x | 0.7            | ] = | 31.15        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 1.53       | x | 92.85            | ] | 0.76           | x | 0.7            | ] = | 52.38        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 4.42       | x | 92.85            | ] | 0.76           | x | 0.7            | j = | 151.31       | (79) |
|                           |                           |   |            |   |                  |   |                |   |                |     |              |      |

|              |                          |             |            |           |           |                                                  |         |           |                                                   |                                                |             |           |              |          |      |        | _    |
|--------------|--------------------------|-------------|------------|-----------|-----------|--------------------------------------------------|---------|-----------|---------------------------------------------------|------------------------------------------------|-------------|-----------|--------------|----------|------|--------|------|
| Southwe      | <u> </u>                 | 0.77        | х          | 0.9       | 91        | X                                                | 6       | 9.27      |                                                   |                                                | 0.76        | X         | 0.7          |          | =    | 23.24  | (79) |
| Southwe      | est <sub>0.9x</sub>      | 0.77        | X          | 1.5       | i3        | X                                                | 6       | 9.27      |                                                   |                                                | 0.76        | X         | 0.7          |          | =    | 39.07  | (79) |
| Southwe      | est <sub>0.9x</sub>      | 0.77        | X          | 4.4       | 12        | X                                                | 6       | 9.27      |                                                   |                                                | 0.76        | X         | 0.7          |          | =    | 112.87 | (79) |
| Southwe      | est <sub>0.9x</sub>      | 0.77        | X          | 0.9       | 91        | x                                                | 4       | 4.07      |                                                   |                                                | 0.76        | x         | 0.7          |          | =    | 14.79  | (79) |
| Southwe      | est <sub>0.9x</sub>      | 0.77        | X          | 1.5       | 53        | x                                                | 4       | 4.07      |                                                   |                                                | 0.76        | x         | 0.7          |          | =    | 24.86  | (79) |
| Southwe      | est <sub>0.9x</sub>      | 0.77        | Х          | 4.4       | 12        | x                                                | 4       | 4.07      |                                                   |                                                | 0.76        | x [       | 0.7          |          | =    | 71.82  | (79) |
| Southwe      | est <sub>0.9x</sub>      | 0.77        | X          | 0.9       | )1        | x                                                | 3       | 1.49      |                                                   |                                                | 0.76        | x         | 0.7          |          | =    | 10.56  | (79) |
| Southwe      | est <sub>0.9x</sub>      | 0.77        | X          | 1.5       | 53        | X                                                | 3       | 1.49      |                                                   |                                                | 0.76        | X         | 0.7          |          | =    | 17.76  | (79) |
| Southwe      | est <sub>0.9x</sub>      | 0.77        | X          | 4.4       | 12        | x                                                | 3       | 1.49      | ] [                                               |                                                | 0.76        | x         | 0.7          |          | =    | 51.31  | (79) |
|              |                          |             |            |           |           |                                                  |         |           |                                                   |                                                |             |           |              |          |      |        |      |
| Solar g      | ains in wa               | atts, ca    | lculated   | for eac   | h month   |                                                  |         |           | (83)m                                             | = St                                           | ım(74)m .   | (82)m     | _            |          |      | •      |      |
| (83)m=       |                          | 226.42      | 339.23     | 469.65    | 571.08    | _                                                | 36.76   | 557.46    | 478.                                              | .76                                            | 383.92      | 258.17    | 153.44       | 106.8    | 88   |        | (83) |
| Total ga     | ains – inte              | ernal a     | nd solar   | (84)m =   | = (73)m   | + (8                                             | 33)m    | , watts   |                                                   |                                                |             |           |              |          |      |        |      |
| (84)m=       | 501.46                   | 599.44      | 699.4      | 809.09    | 889.52    | 8                                                | 84.9    | 842.37    | 769.                                              | .46                                            | 685.23      | 580.42    | 499.74       | 471.     | 19   |        | (84) |
| 7. Mea       | an interna               | ıl temp     | erature    | (heating  | season    | )                                                |         |           |                                                   |                                                |             |           |              |          |      |        |      |
| Tempe        | erature du               | uring h     | eating p   | eriods ir | the livi  | ng                                               | area f  | from Tab  | ole 9,                                            | Th                                             | 1 (°C)      |           |              |          |      | 21     | (85) |
| Utilisa      | tion facto               | r for ga    | ains for I | iving are | ea, h1,m  | ı (s                                             | ee Ta   | ble 9a)   |                                                   |                                                |             |           |              |          |      |        | _    |
|              | Jan                      | Feb         | Mar        | Apr       | May       |                                                  | Jun     | Jul       | Αι                                                | ug                                             | Sep         | Oct       | Nov          | De       | ЭС   |        |      |
| (86)m=       | 1                        | 0.99        | 0.98       | 0.95      | 0.88      | (                                                | 0.75    | 0.61      | 0.6                                               | 7                                              | 0.87        | 0.97      | 0.99         | 1        |      |        | (86) |
| Mean         | internal te              | empera      | ature in   | living ar | ea T1 (fo | ollo                                             | w ste   | ps 3 to 7 | in T                                              | able                                           | 9c)         |           |              |          |      | •      |      |
| (87)m=       |                          | 19.33       | 19.67      | 20.12     | 20.55     | _                                                | 0.84    | 20.95     | 20.9                                              |                                                | 20.68       | 20.14     | 19.55        | 19.0     | 9    |        | (87) |
| Temna        | erature du               | ırina h     | eating n   | arinde ir | rest of   | dw                                               | مراالم  | from Ta   | hla C                                             | Th                                             | <br>\2 (°C\ |           |              | 1        |      |        |      |
| (88)m=       |                          | 19.53       | 19.53      | 19.54     | 19.54     | _                                                | 9.55    | 19.55     | 19.5                                              | _                                              | 19.54       | 19.54     | 19.54        | 19.5     | 3    |        | (88) |
| L            |                          |             |            |           |           | <u> </u>                                         |         |           | 0-1                                               |                                                |             |           | 1            | <u> </u> |      |        |      |
| (89)m=       | tion facto               | 0.99        | 0.98       | 0.93      | 0.83      | <del>-                                    </del> | m (se   | 0.43      | 9a)<br>0.4                                        | <u>.                                      </u> | 0.79        | 0.96      | 0.99         | 1        |      |        | (89) |
| ` ′          |                          |             |            |           |           | <u> </u>                                         |         |           | <u> </u>                                          | ļ                                              |             |           | 0.99         | <u> </u> |      |        | (00) |
| г            | internal te              | <del></del> |            |           |           | Ť                                                |         |           | <del>i                                     </del> | _                                              |             |           | 1            |          |      | l      | (22) |
| (90)m=       | 17.1                     | 17.39       | 17.89      | 18.54     | 19.11     | 1                                                | 9.44    | 19.53     | 19.5                                              | 52                                             | 19.3        | 18.57     | 17.72        | 17.0     | )5   |        | (90) |
|              |                          |             |            |           |           |                                                  |         |           |                                                   |                                                | ı           | LA = LIVI | ng area ÷ (4 | +) =     |      | 0.45   | (91) |
| Mean         | internal te              | empera      | ature (fo  | r the wh  | ole dwe   | llin                                             | g) = fl | _A × T1   | + (1 -                                            | – fL                                           | A) × T2     |           |              |          |      | •      |      |
| (92)m=       | 18.02                    | 18.26       | 18.69      | 19.25     | 19.76     | 2                                                | 0.07    | 20.17     | 20.1                                              | 15                                             | 19.92       | 19.28     | 18.54        | 17.9     | 7    |        | (92) |
|              | adjustme                 |             |            |           |           | _                                                |         |           | r                                                 | $\overline{}$                                  |             |           | _            |          |      | I      |      |
| (93)m=       |                          | 18.11       | 18.54      | 19.1      | 19.61     | 1                                                | 9.92    | 20.02     | 20                                                | )                                              | 19.77       | 19.13     | 18.39        | 17.8     | 2    |        | (93) |
|              | ice heatir               |             |            |           |           |                                                  |         |           |                                                   |                                                |             |           | <b>()</b>    |          |      |        |      |
|              | to the me<br>lisation fa |             |            |           |           | ned                                              | at ste  | ep 11 of  | Table                                             | e 9b                                           | , so tha    | t Ti,m=   | (76)m an     | d re-c   | calc | culate |      |
|              | Jan                      | Feb         | Mar        | Apr       | May       |                                                  | Jun     | Jul       | Αı                                                | ug                                             | Sep         | Oct       | Nov          | De       | .C   |        |      |
| L<br>Utilisa | tion facto               |             |            |           | Iviay     |                                                  | Jan     | - Oui     |                                                   | <u> </u>                                       | ООР         | 001       | 1101         |          | ,,,  |        |      |
| (94)m=       | 0.99                     | 0.99        | 0.97       | 0.93      | 0.83      |                                                  | 0.67    | 0.49      | 0.5                                               | 5                                              | 0.81        | 0.95      | 0.99         | 0.99     | 9    |        | (94) |
| Useful       | I gains, hi              | mGm ,       | W = (94    | 4)m x (8  | 4)m       | _                                                |         |           | <u> </u>                                          |                                                |             |           |              | !        |      |        |      |
| (95)m=       | 497.85 5                 | 91.05       | 678.35     | 750.19    | 741.29    | ,                                                | 593     | 414.05    | 426.                                              | .53                                            | 552.89      | 552.53    | 493.27       | 468.4    | 47   |        | (95) |
| Month        | ly averag                | e exte      | rnal tem   | perature  | from T    | abl                                              | e 8     |           |                                                   |                                                |             |           |              |          |      |        |      |
| (96)m=       | 4.3                      | 4.9         | 6.5        | 8.9       | 11.7      | _                                                | 14.6    | 16.6      | 16.                                               | 4                                              | 14.1        | 10.6      | 7.1          | 4.2      |      |        | (96) |
| Heat le      | oss rate f               |             |            |           |           | _                                                | , W =   | =[(39)m   | x [(93                                            | 3)m-                                           | - (96)m     | ]         |              |          |      | ı      |      |
| (97)m=       | 1740.11 1                | 692.97      | 1540.67    | 1298.18   | 1004.94   | 67                                               | 72.73   | 432.25    | 45                                                | 5                                              | 718.62      | 1083.45   | 1438.04      | 1738.    | .39  |        | (97) |
|              |                          |             |            |           |           |                                                  |         |           |                                                   |                                                |             |           |              |          |      |        |      |

| opase nearing requir                                                                                                              | ement fo                         | r each m  | nonth, k\ | Wh/mon   | th = 0.02 | 24 x [(97)    | )m – (95         | )m] x (4              | 1)m                               |                        |         |                          |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------|-----------|----------|-----------|---------------|------------------|-----------------------|-----------------------------------|------------------------|---------|--------------------------|
| (98)m= 924.24 740.49                                                                                                              | 641.56                           | 394.55    | 196.15    | 0        | 0         | 0             | 0                | 395.01                | 680.24                            | 944.82                 |         | _                        |
|                                                                                                                                   |                                  |           |           |          |           | Tota          | l per year       | (kWh/yeaı             | r) = Sum(9                        | 8) <sub>15,912</sub> = | 4917.07 | (98)                     |
| Space heating requir                                                                                                              | ement in                         | kWh/m²    | ?/year    |          |           |               |                  |                       |                                   |                        | 65.85   | (99)                     |
| 9a. Energy requirement                                                                                                            | nts – Indi                       | ividual h | eating sy | ystems i | ncluding  | micro-C       | CHP)             |                       |                                   |                        |         |                          |
| Space heating:                                                                                                                    |                                  |           | , .       |          |           |               |                  |                       |                                   | г                      |         | ¬,,,,,                   |
| Fraction of space hea                                                                                                             |                                  | •         |           | mentary  | -         |               | (004)            |                       |                                   | Ļ                      | 0       | (201)                    |
| Fraction of space hea                                                                                                             |                                  | -         | . ,       |          |           | (202) = 1 -   | ` '              | (222)                 |                                   | Ļ                      | 1       | (202)                    |
| Fraction of total heati                                                                                                           | •                                | -         |           |          |           | (204) = (204) | 02) × [1 –       | (203)] =              |                                   | Ĺ                      | 1       | (204)                    |
| Efficiency of main sp                                                                                                             |                                  |           |           |          |           |               |                  |                       |                                   | Ĺ                      | 100     | (206)                    |
| Efficiency of seconda                                                                                                             | ıry/supple                       | ementar   | y heating | g system | า, %      |               |                  |                       |                                   |                        | 0       | (208)                    |
| Jan Feb                                                                                                                           | Mar                              | Apr       | May       | Jun      | Jul       | Aug           | Sep              | Oct                   | Nov                               | Dec                    | kWh/ye  | ear                      |
| Space heating requir                                                                                                              |                                  | 1         |           | 1        |           |               |                  |                       |                                   |                        |         |                          |
| 924.24 740.49                                                                                                                     | 641.56                           | 394.55    | 196.15    | 0        | 0         | 0             | 0                | 395.01                | 680.24                            | 944.82                 |         |                          |
| $(211)$ m = {[(98)m x (20                                                                                                         | <del></del>                      | <u> </u>  |           |          |           |               |                  | 205.04                | 000.04                            | 044.00                 |         | (211)                    |
| 924.24 740.49                                                                                                                     | 641.56                           | 394.55    | 196.15    | 0        | 0         | 0<br>Tota     | 0<br>L(k\\/h/ves | 395.01                | 680.24<br>211) <sub>15.1012</sub> | 944.82                 | 4047.07 | (211)                    |
| Space booting fuel (c                                                                                                             | ooondor                          | v/ k//h/  | month     |          |           | Tota          | ii (KVVII/ yCc   | ar) =00m(2            | - 1 15,1012                       | L                      | 4917.07 | (211)                    |
| Space heating fuel (s = $\{[(98)m \times (201)]\}$ x 1                                                                            |                                  | - /       | monun     |          |           |               |                  |                       |                                   |                        |         |                          |
| (215)m = 0 0                                                                                                                      | 0                                | 0         | 0         | 0        | 0         | 0             | 0                | 0                     | 0                                 | 0                      |         |                          |
| •                                                                                                                                 | .!                               |           |           |          |           | Tota          | l (kWh/yea       | ar) =Sum(2            | 215) <sub>15,1012</sub>           | =                      | 0       | (215)                    |
| Water heating                                                                                                                     |                                  |           |           |          |           |               |                  |                       |                                   | _                      |         | _                        |
| Output from water hea                                                                                                             |                                  |           |           | 145.04   | 400.00    | 104 75        | 400.00           | 440.04                | 450.00                            | 100.07                 |         |                          |
| 166.91 146.55                                                                                                                     | 152.58                           | 134.93    | 130.89    | 115.04   | 108.66    | 121.75        | 122.32           | 140.01                | 150.36                            | 162.27                 | 400     | 7(246)                   |
| Efficiency of water hea                                                                                                           | 100                              | 100       | 100       | 100      | 100       | 100           | 100              | 100                   | 100                               | 100                    | 100     | (216)                    |
| Fuel for water heating                                                                                                            |                                  |           | 100       | 100      | 100       | 100           | 100              | 100                   | 100                               | 100                    |         | (211)                    |
| $(219)m = (64)m \times 100$                                                                                                       | •                                |           |           |          |           |               |                  |                       |                                   |                        |         |                          |
| (219)m= 166.91 146.55                                                                                                             | 152.58                           | 134.93    | 130.89    | 115.04   | 108.66    | 121.75        | 122.32           | 140.01                | 150.36                            | 162.27                 |         | _                        |
|                                                                                                                                   |                                  |           |           |          |           | Tota          | I = Sum(2        | 19a) <sub>112</sub> = |                                   | L                      | 1652.28 | (219)                    |
|                                                                                                                                   |                                  |           |           |          |           |               |                  | k\                    | Wh/year                           | _                      | kWh/yea | <u>r</u>                 |
| Annual totals                                                                                                                     | منحمد امح                        |           | 4         |          |           |               |                  |                       |                                   |                        |         |                          |
| Space heating fuel use                                                                                                            | •                                | system    | 1         |          |           |               |                  |                       |                                   | Ĺ                      | 4917.07 | =                        |
|                                                                                                                                   | •                                | system    | 1         |          |           |               |                  |                       |                                   |                        | 1652.28 |                          |
| Space heating fuel use                                                                                                            | ed                               | ·         |           | t        |           |               |                  |                       |                                   |                        |         |                          |
| Space heating fuel use<br>Water heating fuel use                                                                                  | ed<br>fans and                   | ·         |           | t        |           |               |                  |                       |                                   | 30                     |         | (2300                    |
| Space heating fuel use<br>Water heating fuel use<br>Electricity for pumps, f                                                      | ed<br>fans and                   | electric  | keep-ho   | t        |           | sum           | of (230a).       |                       |                                   | 30                     |         | _                        |
| Space heating fuel use<br>Water heating fuel use<br>Electricity for pumps, f<br>central heating pump                              | ed<br>fans and                   | electric  | keep-ho   | t        |           | sum           | of (230a).       |                       |                                   | 30                     | 1652.28 | (230c)<br>(231)<br>(232) |
| Space heating fuel use<br>Water heating fuel use<br>Electricity for pumps, f<br>central heating pump<br>Total electricity for the | ed<br>fans and<br>o:<br>above, k | electric  | keep-ho   | t        |           | sum           | of (230a).       |                       |                                   | 30                     | 1652.28 | (231)                    |

**Energy** 

kWh/year

Stroma FSAP 2012 Version: 1.0.4.18 (SAP 9.92) - http://www.stroma.com

**Emissions** 

kg CO2/year

**Emission factor** 

kg CO2/kWh

| Space heating (main system 1)                     | (211) x                         | 0.519 =           | 2551.96 | (261) |
|---------------------------------------------------|---------------------------------|-------------------|---------|-------|
| Space heating (secondary)                         | (215) x                         | 0.519 =           | 0       | (263) |
| Water heating                                     | (219) x                         | 0.519 =           | 857.53  | (264) |
| Space and water heating                           | (261) + (262) + (263) + (264) = |                   | 3409.49 | (265) |
| Electricity for pumps, fans and electric keep-hot | (231) x                         | 0.519 =           | 15.57   | (267) |
| Electricity for lighting                          | (232) x                         | 0.519 =           | 171.18  | (268) |
| Energy saving/generation technologies Item 1      |                                 | 0.519 =           | -721.19 | (269) |
| Total CO2, kg/year                                | sum                             | n of (265)(271) = | 2875.05 | (272) |
| Dwelling CO2 Emission Rate                        | (272                            | 2) ÷ (4) =        | 38.5    | (273) |
| El rating (section 14)                            |                                 |                   | 68      | (274) |

|                               |                                                          | User Details:                 |                           |                                                                |              |                 |
|-------------------------------|----------------------------------------------------------|-------------------------------|---------------------------|----------------------------------------------------------------|--------------|-----------------|
| Assessor Name:                | Su Lee                                                   | Stroma N                      | lumber:                   | STRO                                                           | 031315       |                 |
| Software Name:                | Stroma FSAP 2012                                         | Software                      |                           | Versio                                                         | n: 1.0.4.18  |                 |
|                               |                                                          | Property Address: Fla         |                           |                                                                |              |                 |
| Address :                     | 151-153, Camden High S                                   | treet, LONDON, NW1            | 7JY                       |                                                                |              |                 |
| 1. Overall dwelling dime      | nsions:                                                  |                               |                           |                                                                |              |                 |
| Ground floor                  |                                                          | Area(m²)  70.26 (1a)          | Av. Height(n              | <b>n)</b><br>(2a) = [                                          | Volume(m³)   | )<br> <br> (3a) |
| First floor                   |                                                          | 48.16 (1b)                    |                           | $(2b) = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$ | 115.1        | ](3b)           |
|                               | a)+(1b)+(1c)+(1d)+(1e)+(                                 |                               | ^                         | (20) -                                                         | 115.1        | (00)            |
| ·                             | a)+(1b)+(1c)+(1a)+(1e)+(                                 | ` '                           | . (21.) (2.) (2.) (2.)    | (α.)                                                           |              | _               |
| Dwelling volume               |                                                          | (3a                           | )+(3b)+(3c)+(3d)+(3e)+    | +(3n) =                                                        | 328.69       | (5)             |
| 2. Ventilation rate:          |                                                          |                               |                           |                                                                |              |                 |
|                               | main second<br>heating heating                           | lary other<br>g               | total                     |                                                                | m³ per hou   | •               |
| Number of chimneys            | 0 + 0                                                    |                               | = 0                       | x 40 =                                                         | 0            | (6a)            |
| Number of open flues          | 0 + 0                                                    | + 0                           | = 0                       | x 20 =                                                         | 0            | (6b)            |
| Number of intermittent fa     | ns                                                       |                               | 4                         | x 10 =                                                         | 40           | (7a)            |
| Number of passive vents       |                                                          |                               | 0                         | x 10 =                                                         | 0            | (7b)            |
| Number of flueless gas fi     | res                                                      |                               | 0                         | x 40 =                                                         | 0            | (7c)            |
|                               |                                                          |                               |                           |                                                                | _            | _               |
|                               |                                                          |                               |                           | Air ch                                                         | anges per ho | ur<br>          |
| •                             | ys, flues and fans = $(6a)+(6b)$                         |                               | 40                        | ÷ (5) =                                                        | 0.12         | (8)             |
| Number of storeys in the      | een carried out or is intended, prod<br>oe dwelling (ns) | eea to (17), otnerwise contil | nue from (9) to (16)      | Г                                                              |              | (9)             |
| Additional infiltration       | ic dwelling (113)                                        |                               | ſ                         | (9)-1]x0.1 =                                                   | 0            | (10)            |
|                               | .25 for steel or timber frame                            | or 0.35 for masonry co        |                           | [                                                              | 0            | (11)            |
|                               | resent, use the value corresponding                      | -                             |                           | L                                                              |              | \` ′            |
|                               | loor, enter 0.2 (unsealed) or                            | 0.1 (sealed), else ente       | er 0                      |                                                                | 0            | (12)            |
| If no draught lobby, en       | ter 0.05, else enter 0                                   |                               |                           |                                                                | 0            | (13)            |
| Percentage of windows         | s and doors draught stripped                             | d                             |                           |                                                                | 0            | (14)            |
| Window infiltration           |                                                          | 0.25 - [0.2 x (1              | 4) ÷ 100] =               | Ī                                                              | 0            | (15)            |
| Infiltration rate             |                                                          | (8) + (10) + (11)             | 1) + (12) + (13) + (15) = | • [                                                            | 0            | (16)            |
| Air permeability value,       | q50, expressed in cubic me                               | tres per hour per squa        | re metre of envelo        | pe area                                                        | 4.5          | (17)            |
| If based on air permeabil     | ity value, then $(18) = [(17) \div 20]$                  | ]+(8), otherwise (18) = (16)  |                           | Ī                                                              | 0.35         | (18)            |
| Air permeability value applie | s if a pressurisation test has been o                    | done or a degree air permea   | bility is being used      | _                                                              |              | _               |
| Number of sides sheltere      | d                                                        | (00) 4 [0.07]                 | 75 · · (40)1              | -                                                              | 2            | (19)            |
| Shelter factor                |                                                          | (20) = 1 - [0.07              |                           |                                                                | 0.85         | (20)            |
| Infiltration rate incorporat  | _                                                        | $(21) = (18) \times (2)$      | 20) =                     |                                                                | 0.29         | (21)            |
| Infiltration rate modified f  | <del></del>                                              |                               |                           |                                                                |              |                 |
| Jan Feb                       | Mar Apr May Jur                                          | n Jul Aug S                   | Sep Oct No                | v Dec                                                          |              |                 |
| Monthly average wind sp       | eed from Table 7                                         |                               |                           |                                                                |              |                 |

4.3

3.8

3.8

3.7

4

4.3

4.5

4.7

| Wind Factor (2                                                                                                                                                                                                                                            | 2a)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (22)m ÷                                 | 4                                      |                    |                                                                                            |                                         |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |                                                  |                    |        |                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|--------------------|--------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------|--------|----------------------------------------------------------------------------|
| (22a)m= 1.27                                                                                                                                                                                                                                              | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.23                                    | 1.1                                    | 1.08               | 0.95                                                                                       | 0.95                                    | 0.92                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.08                                                                                                                     | 1.12                                             | 1.18               |        |                                                                            |
| Adjusted infiltre                                                                                                                                                                                                                                         | otion rote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o (allowi                               | na for ok                              | oltor on           | d wind o                                                                                   | nood) –                                 | (21a) v                                                                                                                    | (220)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | !                                                                                                                        |                                                  |                    |        |                                                                            |
| Adjusted infiltra                                                                                                                                                                                                                                         | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.36                                    | 0.32                                   | 0.32               | 0.28                                                                                       | 0.28                                    | 0.27                                                                                                                       | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.32                                                                                                                     | 0.33                                             | 0.35               |        |                                                                            |
| Calculate effec                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |                    |                                                                                            |                                         | 0.27                                                                                                                       | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02                                                                                                                     | 0.00                                             | 0.00               |        |                                                                            |
| If mechanica                                                                                                                                                                                                                                              | al ventila                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tion:                                   |                                        |                    |                                                                                            |                                         |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |                                                  |                    | 0      | (23a)                                                                      |
| If exhaust air he                                                                                                                                                                                                                                         | eat pump u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | using Appe                              | endix N, (2                            | 3b) = (23a         | ı) × Fmv (e                                                                                | equation (N                             | N5)) , othe                                                                                                                | rwise (23b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | o) = (23a)                                                                                                               |                                                  |                    | 0      | (23b)                                                                      |
| If balanced with                                                                                                                                                                                                                                          | heat reco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | very: effic                             | iency in %                             | allowing for       | or in-use fa                                                                               | actor (fron                             | n Table 4h                                                                                                                 | ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                          |                                                  |                    | 0      | (23c)                                                                      |
| a) If balance                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |                    |                                                                                            |                                         | <del>- ` ` - </del>                                                                                                        | ŕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>-                                    </del>                                                                         | <del></del>                                      | <del>r ` ´</del>   | ÷ 100] |                                                                            |
| (24a)m= 0                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                       | 0                                      | 0                  | 0                                                                                          | 0                                       | 0                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                        | 0                                                | 0                  |        | (24a)                                                                      |
| b) If balance                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |                    |                                                                                            |                                         | <u> </u>                                                                                                                   | <del>í `</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>-                                    </del>                                                                         | <del>-                                    </del> | 1                  |        | (0.41.)                                                                    |
| (24b)m= 0                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                       | 0                                      | 0                  | 0                                                                                          | 0                                       | 0                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                        | 0                                                | 0                  |        | (24b)                                                                      |
| c) If whole he                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |                    | •                                                                                          |                                         |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E (22h                                                                                                                   | .\                                               |                    |        |                                                                            |
| if (22b)m<br>(24c)m= 0                                                                                                                                                                                                                                    | 0.5 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (23b), t                                | nen (240                               | c) = (230<br>0     | o); otnerv                                                                                 | wise (24                                | C) = (220)                                                                                                                 | ) m + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .5 × (230                                                                                                                | 0                                                | 0                  |        | (24c)                                                                      |
| ( ' '                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |                    |                                                                                            |                                         |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          | 0                                                | 0                  |        | (240)                                                                      |
| d) If natural v<br>if (22b)m                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |                    |                                                                                            |                                         |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5]                                                                                                                     |                                                  |                    |        |                                                                            |
| (24d)m= 0.57                                                                                                                                                                                                                                              | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.57                                    | 0.55                                   | 0.55               | 0.54                                                                                       | 0.54                                    | 0.54                                                                                                                       | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.55                                                                                                                     | 0.55                                             | 0.56               |        | (24d)                                                                      |
| Effective air                                                                                                                                                                                                                                             | change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rate - er                               | iter (24a                              | or (24b            | o) or (24                                                                                  | c) or (24                               | d) in box                                                                                                                  | · (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                          |                                                  |                    |        |                                                                            |
| (25)m= 0.57                                                                                                                                                                                                                                               | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.57                                    | 0.55                                   | 0.55               | 0.54                                                                                       | 0.54                                    | 0.54                                                                                                                       | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.55                                                                                                                     | 0.55                                             | 0.56               |        | (25)                                                                       |
|                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |                    |                                                                                            |                                         |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |                                                  |                    |        |                                                                            |
| <ol><li>Heat losses</li></ol>                                                                                                                                                                                                                             | s and he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | at loss r                               | paramete                               | er:                |                                                                                            |                                         |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |                                                  |                    |        |                                                                            |
| 3. Heat losses                                                                                                                                                                                                                                            | s and he<br>Gros<br>area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S                                       | oaramete<br>Openin<br>m                | gs                 | Net Ar                                                                                     |                                         | U-valı<br>W/m2                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A X U<br>(W/I                                                                                                            | <b>&lt;</b> )                                    | k-value<br>kJ/m²-k |        | A X k<br>kJ/K                                                              |
|                                                                                                                                                                                                                                                           | Gros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S                                       | Openin                                 | gs                 |                                                                                            |                                         |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          | <)<br>                                           |                    |        |                                                                            |
| ELEMENT                                                                                                                                                                                                                                                   | Gros<br>area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S                                       | Openin                                 | gs                 | A ,n                                                                                       | m² x                                    | W/m2                                                                                                                       | = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (W/I                                                                                                                     | <)<br>                                           |                    |        | kJ/K                                                                       |
| <b>ELEMENT</b> Doors                                                                                                                                                                                                                                      | Gros<br>area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S                                       | Openin                                 | gs                 | A ,r                                                                                       | m <sup>2</sup> x x x 1.                 | W/m2<br>1.2                                                                                                                | = 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (W/I<br>2.52                                                                                                             | <)<br>                                           |                    |        | kJ/K<br>(26)                                                               |
| ELEMENT  Doors  Windows Type                                                                                                                                                                                                                              | Gros<br>area<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S                                       | Openin                                 | gs                 | A ,n 2.1 1.43                                                                              | x x1.                                   | W/m2<br>1.2<br>/[1/( 1.6 )+                                                                                                | 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.52<br>2.15                                                                                                             | <)<br>                                           |                    |        | kJ/K<br>(26)<br>(27)                                                       |
| ELEMENT  Doors  Windows Type  Windows Type                                                                                                                                                                                                                | Gros<br>area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S                                       | Openin                                 | gs                 | A ,n 2.1 1.43 1.43                                                                         | x1. x1. x1.                             | W/m2<br>1.2<br>/[1/( 1.6 )+<br>/[1/( 1.6 )+                                                                                | 0.04] =<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.52<br>2.15<br>2.15                                                                                                     | <)<br>                                           |                    |        | kJ/K<br>(26)<br>(27)<br>(27)                                               |
| ELEMENT  Doors  Windows Type  Windows Type  Windows Type                                                                                                                                                                                                  | Gros<br>area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S                                       | Openin                                 | gs                 | A ,n 2.1 1.43 1.43 0.91                                                                    | x1.                                     | W/m2<br>1.2<br>/[1/( 1.6 )+<br>/[1/( 1.6 )+<br>/[1/( 1.6 )+                                                                | 0.04] = 0.04] = 0.04] = 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.52<br>2.15<br>2.15<br>1.37                                                                                             | <)                                               |                    |        | kJ/K (26) (27) (27) (27)                                                   |
| ELEMENT  Doors  Windows Type  Windows Type  Windows Type  Windows Type                                                                                                                                                                                    | Gros<br>area<br>1<br>2<br>2<br>3<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S                                       | Openin                                 | gs                 | A ,n  2.1  1.43  1.43  0.91  3.1                                                           | x1. x1. x1. x1. x1.                     | W/m2<br>1.2<br>/[1/( 1.6 )+<br>/[1/( 1.6 )+<br>/[1/( 1.6 )+                                                                | 0.04] = 0.04] = 0.04] = 0.04] = 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.52<br>2.15<br>2.15<br>1.37<br>4.66                                                                                     | <)                                               |                    |        | kJ/K (26) (27) (27) (27) (27)                                              |
| ELEMENT  Doors  Windows Type  Windows Type  Windows Type  Windows Type  Windows Type                                                                                                                                                                      | Gros<br>area<br>1<br>2<br>2<br>3<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S                                       | Openin                                 | gs                 | A ,n  2.1  1.43  1.43  0.91  3.1  1.43                                                     | x1. x1. x1. x1. x1.                     | W/m2  1.2  /[1/( 1.6 )+  /[1/( 1.6 )+  /[1/( 1.6 )+  /[1/( 1.6 )+  /[1/( 1.6 )+                                            | 0.04] = 0.04] = 0.04] = 0.04] = 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.52<br>2.15<br>2.15<br>1.37<br>4.66<br>2.15                                                                             |                                                  |                    |        | kJ/K (26) (27) (27) (27) (27) (27)                                         |
| ELEMENT  Doors  Windows Type  Windows Type  Windows Type  Windows Type  Windows Type  Windows Type                                                                                                                                                        | Gros<br>area<br>1<br>2<br>2<br>3<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S                                       | Openin                                 | gs                 | A ,n  2.1  1.43  1.43  0.91  3.1  1.43  4.01                                               | x1. | W/m2  1.2 /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+                                    | 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (W/I<br>2.52<br>2.15<br>2.15<br>1.37<br>4.66<br>2.15<br>6.03                                                             |                                                  |                    |        | kJ/K (26) (27) (27) (27) (27) (27) (27)                                    |
| ELEMENT  Doors  Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Floor Type 1                                                                                                                                                | Gros<br>area<br>1<br>2<br>2<br>3<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | es<br>(m²)                              | Openin                                 | gs<br><sup>2</sup> | A ,n  2.1  1.43  1.43  0.91  3.1  1.43  4.01  70.26                                        | x1. | W/m2  1.2 /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+                       | 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] | 2.52<br>2.15<br>2.15<br>1.37<br>4.66<br>2.15<br>6.03                                                                     |                                                  |                    |        | kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (28)                          |
| ELEMENT  Doors  Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Floor Type 1 Floor Type 2                                                                                                                                   | Gros<br>area<br>1<br>2<br>3<br>4<br>4<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | es (m²)                                 | Openin<br>m                            | gs<br><sup>2</sup> | A ,n  2.1  1.43  1.43  0.91  3.1  1.43  4.01  70.26                                        | x1. | W/m2  1.2 /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ 0.25  0.15                         | 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] | (W/I<br>2.52<br>2.15<br>2.15<br>1.37<br>4.66<br>2.15<br>6.03<br>17.565<br>7.224                                          |                                                  |                    |        | kJ/K (26) (27) (27) (27) (27) (27) (27) (28)                               |
| ELEMENT  Doors  Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Floor Type 1 Floor Type 2 Walls Type1                                                                                                                       | Gros area 1 2 2 3 4 4 5 5 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ss (m²)                                 | Openin m                               | gs<br><sup>2</sup> | A ,n  2.1  1.43  1.43  0.91  3.1  1.43  4.01  70.26  48.16                                 | x1. | W/m2  1.2  /[1/( 1.6 )+  /[1/( 1.6 )+  /[1/( 1.6 )+  /[1/( 1.6 )+  /[1/( 1.6 )+  /[1/( 1.6 )+  0.25  0.15                  | 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] | (W/I<br>2.52<br>2.15<br>2.15<br>1.37<br>4.66<br>2.15<br>6.03<br>17.565<br>7.224                                          |                                                  |                    |        | kJ/K (26) (27) (27) (27) (27) (27) (27) (28) (28)                          |
| ELEMENT  Doors  Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Floor Type 1 Floor Type 2 Walls Type1 Walls Type2                                                                                                           | Gros area  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1<br>8<br>5                             | 16.33<br>8.02                          | gs<br><sup>2</sup> | A ,n  2.1  1.43  1.43  0.91  3.1  1.43  4.01  70.26  48.16  -2.21  19.46                   | x1. | W/m2  1.2 /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ 0.25  0.15  0.28                   | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (W/I<br>2.52<br>2.15<br>2.15<br>1.37<br>4.66<br>2.15<br>6.03<br>17.565<br>7.224<br>-0.62<br>5.45                         |                                                  |                    |        | kJ/K (26) (27) (27) (27) (27) (27) (27) (28) (28) (29)                     |
| ELEMENT  Doors  Windows Type Floor Type 1 Floor Type 2 Walls Type1 Walls Type2 Walls Type3                                                        | Gros area  1 1 2 2 3 3 4 4 5 5 6 6 14.1 27.4 6.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 16.33<br>8.02                          | gs<br><sup>2</sup> | A ,n  2.1  1.43  1.43  0.91  3.1  1.43  4.01  70.26  48.16  -2.21  19.46  6.75             | x1. | W/m2  1.2 /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ 0.25 0.15 0.28 0.28 0.13           | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (W/I<br>2.52<br>2.15<br>2.15<br>1.37<br>4.66<br>2.15<br>6.03<br>17.565<br>7.224<br>-0.62<br>5.45                         |                                                  |                    |        | kJ/K (26) (27) (27) (27) (27) (27) (28) (28) (29) (29)                     |
| ELEMENT  Doors  Windows Type Floor Type 1 Floor Type 2 Walls Type1 Walls Type2 Walls Type3 Walls Type4                                                         | Gros area  1 1 2 2 3 3 4 4 5 5 6 6 6 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 | 1 8 5 7 7                               | 16.33<br>8.02<br>0                     | gs<br>2            | A ,n  2.1  1.43  1.43  0.91  3.1  1.43  4.01  70.26  48.16  -2.21  19.46  6.75  6.75       | x1. | W/m2  1.2  /[1/( 1.6 )+  /[1/( 1.6 )+  /[1/( 1.6 )+  /[1/( 1.6 )+  /[1/( 1.6 )+  0.25  0.15  0.28  0.28  0.13  0.13        | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (W/I<br>2.52<br>2.15<br>2.15<br>1.37<br>4.66<br>2.15<br>6.03<br>17.565<br>7.224<br>-0.62<br>5.45<br>0.89                 |                                                  |                    |        | kJ/K (26) (27) (27) (27) (27) (27) (27) (28) (28) (29) (29) (29)           |
| ELEMENT  Doors  Windows Type Floor Type 1 Floor Type 2 Walls Type1 Walls Type2 Walls Type3 Walls Type4 Walls Type5                                             | Gros area  1 1 2 2 3 3 4 4 5 5 6 6 6 6 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 | 1 8 5 7 4                               | 16.33<br>8.02<br>0<br>0<br>2.1         | gs<br><sup>2</sup> | A ,n  2.1  1.43  1.43  0.91  3.1  1.43  4.01  70.26  48.16  -2.21  19.46  6.75  6.75  8.27 | x1. | W/m2  1.2 /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ 0.25 0.15 0.28 0.28 0.13 0.13      | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (W/I<br>2.52<br>2.15<br>2.15<br>1.37<br>4.66<br>2.15<br>6.03<br>17.565<br>7.224<br>-0.62<br>5.45<br>0.89<br>0.89         |                                                  |                    |        | (26) (27) (27) (27) (27) (27) (28) (28) (29) (29) (29) (29)                |
| ELEMENT  Doors  Windows Type Floor Type 1 Floor Type 2 Walls Type 1 Walls Type 2 Walls Type 2 Walls Type 3 Walls Type 4 Walls Type 5 Walls Type 6 | Gros area  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 8 5 7 4 2 2                           | 16.33<br>8.02<br>0<br>0<br>2.1<br>4.29 | gs<br><sup>2</sup> | A ,n  2.1  1.43  1.43  0.91  3.1  1.43  4.01  70.26  48.16  -2.21  19.46  6.75  6.75  8.27 | x1. | W/m2  1.2 /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ /[1/( 1.6 )+ 0.25 0.15 0.28 0.13 0.13 0.13 0.15 | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (W/I<br>2.52<br>2.15<br>1.37<br>4.66<br>2.15<br>6.03<br>17.565<br>7.224<br>-0.62<br>5.45<br>0.89<br>0.89<br>1.09<br>2.33 |                                                  |                    |        | kJ/K (26) (27) (27) (27) (27) (27) (27) (28) (28) (29) (29) (29) (29) (29) |

| Walls Type9                              | 2.1          | 4                     | 0            |             | 2.14        | х          | 0.15        | = [          | 0.32                   |                                       |           |          | (29) |
|------------------------------------------|--------------|-----------------------|--------------|-------------|-------------|------------|-------------|--------------|------------------------|---------------------------------------|-----------|----------|------|
| Walls Type10                             | 8.1          | 8                     | 0            |             | 8.18        | x          | 0.15        | <u> </u>     | 1.23                   |                                       |           |          | (29) |
| Roof                                     | 49.7         | 71                    | 0            |             | 49.71       | X          | 0.18        | =            | 8.95                   |                                       |           |          | (30) |
| Total area of e                          | lements      | , m²                  |              | <u> </u>    | 286.5       | 5          |             |              |                        |                                       |           |          | (31) |
| Party wall                               |              |                       |              |             | 38.91       | x          | 0           | = [          | 0                      |                                       |           |          | (32) |
| Party wall                               |              |                       |              |             | 21.31       | x          | 0           | <u> </u>     | 0                      |                                       |           |          | (32) |
| Party wall                               |              |                       |              |             | 2.13        | x          | 0           | =            | 0                      |                                       |           |          | (32) |
| Party wall                               |              |                       |              |             | 13.46       | x          | 0           | <u> </u>     | 0                      |                                       |           |          | (32) |
| Party wall                               |              |                       |              |             | 13.45       | 5 x        | 0           | <u> </u>     | 0                      |                                       |           | <b>=</b> | (32) |
| * for windows and<br>** include the area |              |                       |              |             |             | ated using | formula 1   | /[(1/U-valu  | ie)+0.04] á            | as given in                           | paragraph | n 3.2    |      |
| Fabric heat los                          | s, W/K       | = S (A x              | U)           |             |             |            | (26)(30)    | + (32) =     |                        |                                       |           | 100.12   | (33) |
| Heat capacity                            | Cm = S       | (A x k )              |              |             |             |            |             | ((28)        | (30) + (32             | 2) + (32a).                           | (32e) =   | 0        | (34) |
| Thermal mass                             | parame       | eter (TMI             | ⊃ = Cm ÷     | - TFA) ir   | kJ/m²K      |            |             | Indica       | tive Value             | : Medium                              |           | 250      | (35) |
| For design assess can be used instead    |              |                       |              | construct   | ion are not | t known pr | ecisely the | e indicative | values of              | TMP in Ta                             | able 1f   |          |      |
| Thermal bridge                           |              |                       |              | ısina An    | pendix k    | <          |             |              |                        |                                       |           | 42.98    | (36) |
| if details of therma                     | ,            | ,                     |              | • .         | •           | •          |             |              |                        |                                       |           | 42.50    | (00) |
| Total fabric hea                         | at loss      |                       |              |             |             |            |             | (33) +       | (36) =                 |                                       |           | 143.09   | (37) |
| Ventilation hea                          | t loss c     | alculated             | monthly      | /           |             | -          |             | (38)m        | = 0.33 × (             | (25)m x (5)                           |           | ,        |      |
| Jan                                      | Feb          | Mar                   | Apr          | May         | Jun         | Jul        | Aug         | Sep          | Oct                    | Nov                                   | Dec       |          |      |
| (38)m= 61.89                             | 61.59        | 61.3                  | 59.93        | 59.68       | 58.48       | 58.48      | 58.26       | 58.94        | 59.68                  | 60.2                                  | 60.74     |          | (38) |
| Heat transfer of                         | oefficie     | nt, W/K               |              |             |             |            |             |              | = (37) + (             | · · · · · · · · · · · · · · · · · · · |           | 1        |      |
| (39)m= 204.98                            | 204.69       | 204.39                | 203.03       | 202.77      | 201.58      | 201.58     | 201.36      | 202.04       | 202.77                 | 203.29                                | 203.83    |          |      |
| Heat loss para                           | meter (l     | HLP), W               | /m²K         |             |             |            |             |              | Average =<br>= (39)m ÷ | Sum(39) <sub>1.</sub><br>· (4)        | 12 /12=   | 203.02   | (39) |
| (40)m= 1.73                              | 1.73         | 1.73                  | 1.71         | 1.71        | 1.7         | 1.7        | 1.7         | 1.71         | 1.71                   | 1.72                                  | 1.72      |          |      |
| NI C -l                                  |              | - (l. / <b>T</b> - l. |              |             |             | -          | -           |              | Average =              | Sum(40) <sub>1</sub> .                | 12 /12=   | 1.71     | (40) |
| Number of day                            |              |                       | <u> </u>     | Mov         | lun         | 11         | ۸۰۰۰        | Con          | Oct                    | Nov                                   | Doo       | 1        |      |
| (41)m= 31                                | Feb<br>28    | Mar<br>31             | Apr<br>30    | May<br>31   | Jun<br>30   | Jul<br>31  | Aug<br>31   | Sep<br>30    | Oct<br>31              | Nov<br>30                             | Dec<br>31 |          | (41) |
| (41)1112 31                              | 20           |                       |              | - 31        | 30          | J 1        | J 31        | ] 30         | J 31                   | ] 30                                  | J 31      | J        | ( ,  |
| 4. Water heat                            | ing ene      | rgy requ              | irement:     |             |             |            |             |              |                        |                                       | kWh/y     | ear:     |      |
| Assumed seen                             | nono.        | N I                   |              |             |             |            |             |              |                        |                                       |           | 1        | (40) |
| Assumed occu<br>if TFA > 13.9            |              |                       | (1 - exp     | (-0.0003    | 349 x (TF   | A -13.9    | )2)] + 0.0  | 0013 x (     | TFA -13.               |                                       | .86       | J        | (42) |
| if TFA £ 13.9                            | 9, N = 1     |                       |              |             |             |            |             |              |                        |                                       |           | 1        |      |
| Annual averag Reduce the annua           |              |                       |              |             |             |            |             |              | se target o            |                                       | 2.05      |          | (43) |
| not more that 125                        | litres per   | person pe             | r day (all w | ater use, l | not and co  | ld)        |             |              |                        |                                       |           |          |      |
| Jan                                      | Feb          | Mar                   | Apr          | May         | Jun         | Jul        | Aug         | Sep          | Oct                    | Nov                                   | Dec       | ]        |      |
| Hot water usage in                       | n litres per | r day for e           | ach month    | Vd,m = fa   | ctor from 7 | Table 1c x | (43)        |              |                        |                                       |           | _        |      |
| (44)m= 112.26                            | 108.18       | 104.09                | 100.01       | 95.93       | 91.85       | 91.85      | 95.93       | 100.01       | 104.09                 | 108.18                                | 112.26    |          |      |
| Energy content of                        | hot water    | used - ca             | lculated mo  | onthlv – 4  | 190 x Vd n  | n x nm v 「 | )Tm / 360(  |              |                        | m(44) <sub>112</sub> =                |           | 1224.64  | (44) |
| (45)m= 166.48                            | 145.6        | 150.25                | 130.99       | 125.69      | 108.46      | 100.5      | 115.33      | 116.71       | 136.01                 | 148.47                                | 161.22    | 1        |      |
| 100.46                                   | 140.0        | 130.23                | 130.99       | 120.08      | 100.40      | 100.5      | 110.00      |              |                        | m(45) <sub>112</sub> =                |           | 1605.7   | (45) |
|                                          |              |                       |              |             |             |            |             |              | . o.a. – ou            | (10)112 -                             |           | 1000.7   | ()   |

If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61) 22.27 (46)24.97 21.84 22.54 19.65 18.85 16.27 15.08 17.51 20.4 24.18 Water storage loss: Storage volume (litres) including any solar or WWHRS storage within same vessel (47)145 If community heating and no tank in dwelling, enter 110 litres in (47) Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47) Water storage loss: a) If manufacturer's declared loss factor is known (kWh/day): (48)1.32 Temperature factor from Table 2b (49)0.54 Energy lost from water storage, kWh/year  $(48) \times (49) =$ (50)0.71 b) If manufacturer's declared cylinder loss factor is not known: Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51)If community heating see section 4.3 Volume factor from Table 2a (52)0 Temperature factor from Table 2b 0 (53)Energy lost from water storage, kWh/year  $(47) \times (51) \times (52) \times (53) =$ (54)n Enter (50) or (54) in (55) 0.71 (55)Water storage loss calculated for each month  $((56)m = (55) \times (41)m$ 22.1 19.96 22 1 21.38 22 1 21.38 22 1 22 1 21.38 22 1 21.38 (56)(56)m =22.1 If cylinder contains dedicated solar storage, (57)m = (56)m x [(50) - (H11)] ÷ (50), else (57)m = (56)m where (H11) is from Appendix H (57)(57)m =22.1 19.96 22.1 21.38 22.1 21.38 22.1 22.1 21.38 22.1 21.38 22.1 (58)0 Primary circuit loss (annual) from Table 3 Primary circuit loss calculated for each month (59)m = (58)  $\div$  365 x (41)m (modified by factor from Table H5 if there is solar water heating and a cylinder thermostat) (59)(59)m =0 Combi loss calculated for each month (61)m = (60) ÷ 365 x (41)m 0 0 0 (61)(61)m =Total heat required for water heating calculated for each month  $(62)m = 0.85 \times (45)m + (46)m + (57)m + (59)m + (61)m$ 188.57 165.56 172.34 152.37 147.78 129.84 122.6 137.43 138.09 158.11 (62)(62)m =Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G) (63)(63)m =0 0 0 0 0 0 Output from water heater 188.57 165.56 172.34 152.37 147.78 129.84 122.6 137.43 158.11 (64)m =138.09 169.85 183.32 Output from water heater (annual) 1...12 1865.87 (64)Heat gains from water heating, kWh/month  $0.25 (0.85 \times (45)m + (61)m] + 0.8 \times ((46)m + (57)m + (59)m]$ 67.63 51.09 56.02 55.91 (65)(65)m =73.03 60.66 59.47 53.17 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 142.85 142.85 142.85 142.85 142.85 142.85 142.85 142.85 142.85 142.85 142.85 142.85 (66)(66)m =Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 16.42 (67)25.24 22.42 18.23 13.8 10.32 8.71 9.41 20.85 24.34 (67)m =12.24 25.94

| Appliances ga                                                                                                                                                                                                                                                                                | ins (calc                                                                    | ulated in                             | Append                                                             | dix L, eq                                                                                                                                                                  | uatio      | on L1                                                           | 3 or L1:                                                                                     | 3a), a                                | also  | see Tab                                                                                              | ole 5                                 |                                                      |                                         | _                                                                                                     |                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------|-------|------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| (68)m= 283.14                                                                                                                                                                                                                                                                                | 286.08                                                                       | 278.68                                | 262.91                                                             | 243.02                                                                                                                                                                     | 224        | 4.32                                                            | 211.82                                                                                       | 208                                   | .89   | 216.29                                                                                               | 232.05                                | 251.95                                               | 270.65                                  |                                                                                                       | (68)                                                         |
| Cooking gains                                                                                                                                                                                                                                                                                | (calcula                                                                     | ted in Ap                             | pendix                                                             | L, equat                                                                                                                                                                   | tion       | L15 c                                                           | or L15a)                                                                                     | , als                                 | o se  | e Table                                                                                              | 5                                     |                                                      |                                         | _                                                                                                     |                                                              |
| (69)m= 37.28                                                                                                                                                                                                                                                                                 | 37.28                                                                        | 37.28                                 | 37.28                                                              | 37.28                                                                                                                                                                      | 37         | .28                                                             | 37.28                                                                                        | 37.                                   | 28    | 37.28                                                                                                | 37.28                                 | 37.28                                                | 37.28                                   |                                                                                                       | (69)                                                         |
| Pumps and fa                                                                                                                                                                                                                                                                                 | ns gains                                                                     | (Table 5                              | ia)                                                                |                                                                                                                                                                            |            |                                                                 |                                                                                              |                                       |       |                                                                                                      |                                       |                                                      |                                         |                                                                                                       |                                                              |
| (70)m= 3                                                                                                                                                                                                                                                                                     | 3                                                                            | 3                                     | 3                                                                  | 3                                                                                                                                                                          | ;          | 3                                                               | 3                                                                                            | 3                                     |       | 3                                                                                                    | 3                                     | 3                                                    | 3                                       |                                                                                                       | (70)                                                         |
| Losses e.g. ev                                                                                                                                                                                                                                                                               | /aporatio                                                                    | n (negat                              | ive valu                                                           | es) (Tab                                                                                                                                                                   | ole 5      | )                                                               |                                                                                              |                                       |       |                                                                                                      |                                       |                                                      |                                         | _                                                                                                     |                                                              |
| (71)m= -114.28                                                                                                                                                                                                                                                                               | -114.28                                                                      | -114.28                               | -114.28                                                            | -114.28                                                                                                                                                                    | -114       | 4.28                                                            | -114.28                                                                                      | -114                                  | .28   | -114.28                                                                                              | -114.28                               | 3 -114.28                                            | -114.28                                 |                                                                                                       | (71)                                                         |
| Water heating                                                                                                                                                                                                                                                                                | gains (T                                                                     | able 5)                               |                                                                    |                                                                                                                                                                            |            |                                                                 |                                                                                              |                                       |       |                                                                                                      |                                       |                                                      |                                         | _                                                                                                     |                                                              |
| (72)m= 98.16                                                                                                                                                                                                                                                                                 | 95.8                                                                         | 90.91                                 | 84.25                                                              | 79.93                                                                                                                                                                      | 73         | .85                                                             | 68.68                                                                                        | 75.                                   | .3    | 77.66                                                                                                | 84.54                                 | 92.32                                                | 95.81                                   |                                                                                                       | (72)                                                         |
| Total internal                                                                                                                                                                                                                                                                               | gains =                                                                      |                                       |                                                                    |                                                                                                                                                                            |            | (66)n                                                           | n + (67)m                                                                                    | + (68                                 | 3)m + | - (69)m + (1                                                                                         | 70)m +                                | (71)m + (72)                                         | m                                       | _                                                                                                     |                                                              |
| (73)m= 475.4                                                                                                                                                                                                                                                                                 | 473.16                                                                       | 456.67                                | 429.82                                                             | 402.12                                                                                                                                                                     | 375        | 5.73                                                            | 358.77                                                                                       | 365                                   | .28   | 379.22                                                                                               | 406.3                                 | 437.46                                               | 461.26                                  |                                                                                                       | (73)                                                         |
| 6. Solar gain                                                                                                                                                                                                                                                                                |                                                                              |                                       |                                                                    |                                                                                                                                                                            |            |                                                                 |                                                                                              |                                       |       |                                                                                                      |                                       |                                                      |                                         |                                                                                                       |                                                              |
| Solar gains are                                                                                                                                                                                                                                                                              |                                                                              | _                                     |                                                                    |                                                                                                                                                                            | and a      |                                                                 |                                                                                              | tions                                 | to co | nvert to the                                                                                         | e applica                             |                                                      | ion.                                    |                                                                                                       |                                                              |
| Orientation:                                                                                                                                                                                                                                                                                 | Access F<br>Table 6d                                                         | actor                                 | Area<br>m²                                                         |                                                                                                                                                                            |            | Flux                                                            | t<br>le 6a                                                                                   |                                       | т,    | g_<br>able 6b                                                                                        | •                                     | FF<br>Table 6c                                       |                                         | Gains<br>(W)                                                                                          |                                                              |
|                                                                                                                                                                                                                                                                                              | i abic oa                                                                    |                                       | 111                                                                |                                                                                                                                                                            |            |                                                                 |                                                                                              |                                       |       |                                                                                                      |                                       |                                                      |                                         |                                                                                                       |                                                              |
| Namela a a 4 a a 5                                                                                                                                                                                                                                                                           |                                                                              |                                       |                                                                    |                                                                                                                                                                            | _          |                                                                 |                                                                                              | ı :                                   |       |                                                                                                      | - I                                   |                                                      | _                                       | . ,                                                                                                   | <b>–</b>                                                     |
| Northeast 0.9x                                                                                                                                                                                                                                                                               | 0.77                                                                         | x                                     | 1.4                                                                | 13                                                                                                                                                                         | x [        |                                                                 | 1.28                                                                                         | x                                     |       | 0.76                                                                                                 | _ x [                                 | 0.7                                                  | =                                       | 17.85                                                                                                 | (75)                                                         |
| Northeast <sub>0.9x</sub>                                                                                                                                                                                                                                                                    | 0.77                                                                         | x                                     | 4.0                                                                | )1                                                                                                                                                                         | x [        | 11                                                              | 1.28                                                                                         | x                                     |       | 0.76                                                                                                 | x [                                   | 0.7                                                  | =                                       | 17.85                                                                                                 | (75)                                                         |
| Northeast <sub>0.9x</sub>                                                                                                                                                                                                                                                                    | 0.77                                                                         |                                       | 4.0                                                                | 13                                                                                                                                                                         | 늗          | 11<br>11<br>22                                                  | 1.28<br>1.28<br>2.97                                                                         |                                       |       | 0.76                                                                                                 | _ x [                                 | 0.7<br>0.7<br>0.7                                    | =                                       | 17.85<br>33.36<br>36.32                                                                               | (75)<br>(75)                                                 |
| Northeast <sub>0.9x</sub> Northeast <sub>0.9x</sub> Northeast <sub>0.9x</sub>                                                                                                                                                                                                                | 0.77                                                                         | x                                     | 4.0                                                                | 13                                                                                                                                                                         | x [        | 11<br>11<br>22                                                  | 1.28                                                                                         | x                                     |       | 0.76                                                                                                 | x [                                   | 0.7                                                  | =                                       | 17.85                                                                                                 | (75)<br>(75)<br>(75)                                         |
| Northeast 0.9x Northeast 0.9x Northeast 0.9x Northeast 0.9x                                                                                                                                                                                                                                  | 0.77                                                                         | x<br>x                                | 4.0                                                                | 13                                                                                                                                                                         | x [        | 11<br>11<br>22<br>22                                            | 1.28<br>1.28<br>2.97                                                                         | x<br>x                                |       | 0.76<br>0.76<br>0.76                                                                                 | x [ x [ x [                           | 0.7<br>0.7<br>0.7                                    | = =                                     | 17.85<br>33.36<br>36.32                                                                               | (75)<br>(75)<br>(75)<br>(75)                                 |
| Northeast 0.9x Northeast 0.9x Northeast 0.9x Northeast 0.9x Northeast 0.9x Northeast 0.9x                                                                                                                                                                                                    | 0.77<br>0.77<br>0.77                                                         | x<br>x<br>x                           | 4.0                                                                | )1<br> 3<br> )1<br> 3                                                                                                                                                      | x [<br>x [ | 111<br>111<br>222<br>222<br>41                                  | 1.28<br>1.28<br>2.97                                                                         | x<br>x<br>x                           |       | 0.76<br>0.76<br>0.76<br>0.76                                                                         | x     x                               | 0.7<br>0.7<br>0.7<br>0.7                             | = = =                                   | 17.85<br>33.36<br>36.32<br>67.91                                                                      | (75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75)                 |
| Northeast 0.9x                                                                                                                                                                                     | 0.77<br>0.77<br>0.77<br>0.77                                                 | x x x x x                             | 4.0<br>1.4<br>4.0<br>1.4                                           | 01                                                                                                                                                                         | x          | 111<br>111<br>222<br>222<br>411                                 | 1.28<br>1.28<br>2.97<br>2.97                                                                 | x<br>x<br>x                           |       | 0.76<br>0.76<br>0.76<br>0.76<br>0.76                                                                 | x     x                               | 0.7<br>0.7<br>0.7<br>0.7<br>0.7                      | = = = = = = = = = = = = = = = = = = = = | 17.85<br>33.36<br>36.32<br>67.91<br>65.45                                                             | (75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75)         |
| Northeast 0.9x                                                                                                                                                                      | 0.77<br>0.77<br>0.77<br>0.77<br>0.77                                         | x x x x x                             | 4.0<br>1.4<br>4.0<br>1.4                                           | 01                                                                                                                                                                         | x          | 111<br>111<br>222<br>222<br>411<br>411                          | 1.28<br>1.28<br>2.97<br>2.97<br>1.38                                                         | x<br>x<br>x<br>x                      |       | 0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76                                                         | x   x   x   x   x   x   x   x   x   x | 0.7<br>0.7<br>0.7<br>0.7<br>0.7                      | =<br>=<br>=<br>=<br>=<br>=              | 17.85<br>33.36<br>36.32<br>67.91<br>65.45<br>122.35                                                   | (75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75) |
| Northeast 0.9x                                                                                                                                        | 0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77                         | x x x x x x x                         | 4.0<br>1.4<br>4.0<br>1.4<br>4.0<br>1.4                             | 01                                                                                                                                                                         | x          | 111<br>222<br>22<br>41<br>41<br>67<br>67                        | 1.28<br>1.28<br>2.97<br>2.97<br>1.38<br>1.38<br>7.96<br>7.96                                 | x<br>x<br>x<br>x<br>x                 |       | 0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76                                 | x   x   x   x   x   x   x   x   x   x | 0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7 | =<br>=<br>=<br>=<br>=<br>=<br>=         | 17.85<br>33.36<br>36.32<br>67.91<br>65.45<br>122.35<br>107.48<br>200.93<br>144.47                     | (75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75) |
| Northeast 0.9x                                                                                                                         | 0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77                                 | x x x x x x x x                       | 4.0<br>1.4<br>4.0<br>1.4<br>4.0<br>1.4                             | 01                                                                                                                                                                         | x          | 111<br>222<br>22<br>41<br>41<br>67<br>67                        | 1.28<br>1.28<br>2.97<br>2.97<br>1.38<br>1.38<br>7.96                                         | x x x x x x                           |       | 0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76                                         | x   x   x   x   x   x   x   x   x   x | 0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7 | -<br>-<br>-<br>-<br>-<br>-<br>-         | 17.85<br>33.36<br>36.32<br>67.91<br>65.45<br>122.35<br>107.48<br>200.93                               | (75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75) |
| Northeast 0.9x                                                                                           | 0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77                         | x x x x x x x x                       | 4.0<br>1.4<br>4.0<br>1.4<br>4.0<br>1.4                             | 01<br>13<br>01<br>13<br>01<br>13<br>01<br>13<br>01                                                                                                                         | x          | 111<br>222<br>222<br>411<br>411<br>677<br>91                    | 1.28<br>1.28<br>2.97<br>2.97<br>1.38<br>1.38<br>7.96<br>7.96                                 | x<br>x<br>x<br>x<br>x<br>x            |       | 0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76                                 | x   x   x   x   x   x   x   x   x   x | 0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7 | -<br>-<br>-<br>-<br>-<br>-<br>-         | 17.85<br>33.36<br>36.32<br>67.91<br>65.45<br>122.35<br>107.48<br>200.93<br>144.47                     | (75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75) |
| Northeast 0.9x                                                             | 0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77                 | x x x x x x x x x x x x               | 4.0<br>1.4<br>4.0<br>1.4<br>4.0<br>1.4<br>4.0                      | 01<br>13<br>01<br>13<br>01<br>13<br>01<br>13<br>01                                                                                                                         | ×          | 111<br>222<br>222<br>411<br>411<br>677<br>6791<br>91997         | 1.28<br>1.28<br>2.97<br>2.97<br>1.38<br>1.38<br>7.96<br>1.35                                 | x x x x x x x x x                     |       | 0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76                         | x   x   x   x   x   x   x   x   x   x | 0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7 |                                         | 17.85<br>33.36<br>36.32<br>67.91<br>65.45<br>122.35<br>107.48<br>200.93<br>144.47<br>270.09           | (75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75) |
| Northeast 0.9x                               | 0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77                 | x x x x x x x x x x x x x x x x x x x | 4.0<br>1.4<br>4.0<br>1.4<br>4.0<br>1.4<br>4.0<br>1.4               | 01                                                                                                                                                                         | x          | 111<br>222<br>222<br>411<br>411<br>677<br>91<br>91<br>97        | 1.28<br>1.28<br>2.97<br>2.97<br>1.38<br>1.38<br>7.96<br>1.35<br>1.35                         | x x x x x x x x x                     |       | 0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76                 | x   x   x   x   x   x   x   x   x   x | 0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7 |                                         | 17.85<br>33.36<br>36.32<br>67.91<br>65.45<br>122.35<br>107.48<br>200.93<br>144.47<br>270.09<br>154.03 | (75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75) |
| Northeast 0.9x | 0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77 | x x x x x x x x x x x x x x x x x x x | 4.0<br>1.4<br>4.0<br>1.4<br>4.0<br>1.4<br>4.0<br>1.4<br>4.0        | 01<br>13<br>01<br>13<br>01<br>13<br>13<br>11<br>13<br>13<br>11<br>13<br>13<br>14<br>13<br>14<br>15<br>16<br>17<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18 | x          | 111<br>222<br>222<br>411<br>411<br>67<br>67<br>91<br>91<br>97   | 1.28<br>1.28<br>2.97<br>2.97<br>1.38<br>1.38<br>7.96<br>1.35<br>1.35<br>1.35                 | x x x x x x x x x x x x x x x x x x x |       | 0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76         | x   x   x   x   x   x   x   x   x   x | 0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7 |                                         | 17.85 33.36 36.32 67.91 65.45 122.35 107.48 200.93 144.47 270.09 154.03 287.94                        | (75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75) |
| Northeast 0.9x                               | 0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77 | x x x x x x x x x x x x x x x x x x x | 4.0<br>1.4<br>4.0<br>1.4<br>4.0<br>1.4<br>4.0<br>1.4<br>4.0<br>1.4 | 01<br>13<br>01<br>13<br>01<br>13<br>01<br>13<br>13<br>101<br>13<br>13<br>101                                                                                               | x          | 111<br>22<br>22<br>41<br>41<br>67<br>67<br>91<br>97<br>97<br>97 | 1.28<br>1.28<br>2.97<br>2.97<br>1.38<br>1.38<br>7.96<br>1.35<br>1.35<br>1.35<br>7.38<br>7.38 | x x x x x x x x x x x x x x x x x x x |       | 0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76 | x   x   x   x   x   x   x   x   x   x | 0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7 |                                         | 17.85 33.36 36.32 67.91 65.45 122.35 107.48 200.93 144.47 270.09 154.03 287.94 144.09                 | (75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75)<br>(75) |

X

X

X

Х

1.43

4.01

1.43

4.01

1.43

4.01

1.43

4.01

50.42

50.42

28.07

28.07

14.2

14.2

9.21

9.21

X

X

Х

X

X

X

X

X

X

X

0.76

0.76

0.76

0.76

0.76

0.76

0.76

0.76

X

X

X

х

X

X

X

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

Northeast 0.9x

Northeast 0.9x

Northeast <sub>0.9x</sub>

Northeast 0.9x

Northeast 0.9x

Northeast 0.9x

Northeast 0.9x

Northeast 0.9x

0.77

0.77

0.77

0.77

0.77

0.77

0.77

0.77

(75)

(75)

(75)

(75)

(75)

(75)

(75)

(75)

79.75

149.08

44.39

82.99

22.45

41.98

14.57

27.24

| O 11 . F                  |      | 1 |          | 1 |        | _ |      | 1 |     | 1   |        | _     |
|---------------------------|------|---|----------|---|--------|---|------|---|-----|-----|--------|-------|
| Southwest <sub>0.9x</sub> | 0.77 | X | 1.43     | X | 36.79  | Ļ | 0.76 | X | 0.7 | =   | 58.19  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X | 0.91     | X | 36.79  | Ļ | 0.76 | X | 0.7 | =   | 37.03  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X | 3.1      | X | 36.79  | Ĺ | 0.76 | X | 0.7 | =   | 126.15 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X | 1.43     | X | 36.79  | Ĺ | 0.76 | X | 0.7 | =   | 58.19  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X | 1.43     | X | 62.67  | L | 0.76 | X | 0.7 | =   | 99.13  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X | 0.91     | X | 62.67  |   | 0.76 | X | 0.7 | =   | 63.08  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X | 3.1      | X | 62.67  |   | 0.76 | X | 0.7 | =   | 214.89 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X | 1.43     | X | 62.67  |   | 0.76 | X | 0.7 | =   | 99.13  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X | 1.43     | X | 85.75  |   | 0.76 | X | 0.7 | =   | 135.63 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X | 0.91     | x | 85.75  |   | 0.76 | X | 0.7 | =   | 86.31  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 3.1      | x | 85.75  |   | 0.76 | x | 0.7 | =   | 294.02 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | X | 1.43     | x | 85.75  |   | 0.76 | x | 0.7 | =   | 135.63 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | x | 106.25 |   | 0.76 | x | 0.7 | =   | 168.05 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 0.91     | x | 106.25 |   | 0.76 | x | 0.7 | =   | 106.94 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 3.1      | x | 106.25 |   | 0.76 | x | 0.7 | =   | 364.3  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | x | 106.25 |   | 0.76 | x | 0.7 | ] = | 168.05 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | x | 119.01 | Ī | 0.76 | x | 0.7 | ] = | 188.23 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 0.91     | x | 119.01 |   | 0.76 | x | 0.7 | ] = | 119.78 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 3.1      | x | 119.01 | Ī | 0.76 | x | 0.7 | =   | 408.05 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | x | 119.01 | Ī | 0.76 | x | 0.7 | j = | 188.23 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | x | 118.15 | Ī | 0.76 | x | 0.7 | j = | 186.87 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 0.91     | x | 118.15 | Ī | 0.76 | x | 0.7 | j = | 118.92 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 3.1      | x | 118.15 | Ī | 0.76 | x | 0.7 | =   | 405.1  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | x | 118.15 | Ī | 0.76 | x | 0.7 | j = | 186.87 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | х | 1.43     | x | 113.91 | Ī | 0.76 | x | 0.7 | j = | 180.16 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 0.91     | x | 113.91 | Ī | 0.76 | x | 0.7 | =   | 114.65 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 3.1      | x | 113.91 | Ī | 0.76 | x | 0.7 | j = | 390.56 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | х | 1.43     | x | 113.91 | Ī | 0.76 | x | 0.7 | j = | 180.16 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | х | 1.43     | x | 104.39 | Ī | 0.76 | x | 0.7 | j = | 165.11 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | х | 0.91     | x | 104.39 | Ī | 0.76 | x | 0.7 | j = | 105.07 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 3.1      | x | 104.39 | Ī | 0.76 | x | 0.7 | j = | 357.92 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | x | 104.39 | Ī | 0.76 | x | 0.7 | j = | 165.11 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | x | 92.85  | Ī | 0.76 | x | 0.7 | j = | 146.86 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 0.91     | x | 92.85  | Γ | 0.76 | x | 0.7 | ] = | 93.45  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 3.1      | x | 92.85  | Ī | 0.76 | x | 0.7 | i = | 318.36 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | × | 92.85  | Γ | 0.76 | x | 0.7 | =   | 146.86 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | x | 69.27  | ř | 0.76 | x | 0.7 | =   | 109.55 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 0.91     | × | 69.27  | ř | 0.76 | x | 0.7 | =   | 69.72  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 3.1      | x | 69.27  | ř | 0.76 | x | 0.7 | =   | 237.5  | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | x | 69.27  | F | 0.76 | x | 0.7 | =   | 109.55 | (79)  |
| Southwest <sub>0.9x</sub> | 0.77 | x | 1.43     | X | 44.07  | F | 0.76 | x | 0.7 | =   | 69.7   | (79)  |
| L                         |      |   | <u> </u> |   |        | _ |      | ı |     |     |        | _ ` ` |

| Southwest <sub>0.9x</sub> 0.77              | X            | 0.9                                              | 1         | x .       | 44.07        | 1 [          | 0.76                                              | х         | 0.7        | =         | 44.36  | (79) |
|---------------------------------------------|--------------|--------------------------------------------------|-----------|-----------|--------------|--------------|---------------------------------------------------|-----------|------------|-----------|--------|------|
| Southwest <sub>0.9x</sub> 0.77              | X            | 3.1                                              | 1         | x         | 44.07        | Ī            | 0.76                                              | _ x [     | 0.7        |           | 151.1  | (79) |
| Southwest <sub>0.9x</sub> 0.77              | X            | 1.4                                              | 3         | X         | 44.07        |              | 0.76                                              | x         | 0.7        | =         | 69.7   | (79) |
| Southwest <sub>0.9x</sub> 0.77              | X            | 1.4                                              | 3         | X         | 31.49        |              | 0.76                                              | x         | 0.7        | =         | 49.8   | (79) |
| Southwest <sub>0.9x</sub> 0.77              | X            | 0.9                                              | 1         | X         | 31.49        |              | 0.76                                              | x         | 0.7        | =         | 31.69  | (79) |
| Southwest <sub>0.9x</sub> 0.77              | X            | 3.1                                              | 1         | X         | 31.49        |              | 0.76                                              | x         | 0.7        | =         | 107.96 | (79) |
| Southwest <sub>0.9x</sub> 0.77              | X            | 1.4                                              | 3         | X         | 31.49        |              | 0.76                                              | x         | 0.7        | =         | 49.8   | (79) |
|                                             |              |                                                  |           |           |              |              |                                                   |           |            |           |        |      |
| Solar gains in watts, ca                    |              |                                                  |           |           |              | <del>`</del> | Sum(74)m .                                        | (82)m     |            |           | •      |      |
| (83)m= 330.78 580.45                        |              |                                                  |           |           | 1278.98      | 1122.81      | 934.36                                            | 653.7     | 399.3      | 281.08    |        | (83) |
| Total gains – internal a                    |              | <del>`                                    </del> | ` '       | <u> </u>  | <del> </del> |              |                                                   |           |            |           | Ī      |      |
| (84)m= 806.18 1053.61                       | 1296.05      | 1545.58                                          | 1720.98   | 1715.45   | 1637.75      | 1488.09      | 1313.58                                           | 1060.01   | 836.76     | 742.34    |        | (84) |
| 7. Mean internal temp                       | erature      | (heating                                         | season    | )         |              |              |                                                   |           |            |           |        |      |
| Temperature during h                        | eating p     | eriods ir                                        | the livi  | ng area   | from Tal     | ble 9, Th    | n1 (°C)                                           |           |            |           | 21     | (85) |
| Utilisation factor for ga                   | ains for l   | iving are                                        | a, h1,m   | (see Ta   | able 9a)     |              | _                                                 |           |            |           | •      |      |
| Jan Feb                                     | Mar          | Apr                                              | May       | Jun       | Jul          | Aug          | Sep                                               | Oct       | Nov        | Dec       |        |      |
| (86)m= 1 0.99                               | 0.97         | 0.92                                             | 0.82      | 0.66      | 0.51         | 0.58         | 0.81                                              | 0.96      | 0.99       | 1         |        | (86) |
| Mean internal tempera                       | ature in I   | iving are                                        | ea T1 (fo | ollow ste | eps 3 to 7   | 7 in Tab     | le 9c)                                            |           |            |           |        |      |
| (87)m= 19.12 19.38                          | 19.78        | 20.26                                            | 20.66     | 20.89     | 20.97        | 20.95        | 20.76                                             | 20.21     | 19.57      | 19.07     |        | (87) |
| Temperature during h                        | eating p     | eriods in                                        | rest of   | dwelling  | g from Ta    | able 9, T    | h2 (°C)                                           | -         | -          |           |        |      |
| (88)m= 19.52 19.52                          | 19.52        | 19.53                                            | 19.53     | 19.54     | 19.54        | 19.54        | 19.54                                             | 19.53     | 19.53      | 19.53     |        | (88) |
| Utilisation factor for ga                   | ains for r   | est of du                                        | welling   | h2 m (s   | ee Table     | (9a)         |                                                   |           |            |           | ı      |      |
| (89)m= 0.99 0.99                            | 0.96         | 0.9                                              | 0.75      | 0.55      | 0.36         | 0.41         | 0.71                                              | 0.94      | 0.99       | 1         |        | (89) |
| Mean internal temper                        | oturo in t   | ho root                                          | of dwolli | na T2 /:  | follow etc   | 2 to         | I<br>7 in Tabl                                    | lo ()o)   |            |           | l      |      |
| (90)m= 17.08 17.47                          | 18.04        | 18.72                                            | 19.23     | 19.48     | 19.53        | 19.52        | 19.37                                             | 18.67     | 17.74      | 17.02     |        | (90) |
| (00)                                        |              |                                                  |           |           | 10.00        | 1 .0.02      |                                                   |           | g area ÷ ( |           | 0.15   | (91) |
| Maran Satawa al tanan an                    | -1 //        | . 11                                             |           | III \     | (I A T4      | . /4 (1      |                                                   |           |            |           |        | `    |
| Mean internal tempera<br>(92)m= 17.39 17.75 | 18.3         | 18.95                                            | 19.44     | 19.69     | 19.75        | + (1 - fi    | _A) × 12<br>19.57                                 | 18.9      | 18.01      | 17.32     | ]      | (92) |
| Apply adjustment to the                     |              |                                                  |           | <u> </u>  | <u> </u>     | <u> </u>     |                                                   |           | 10.01      | 17.32     |        | (32) |
| (93)m= 17.24 17.6                           | 18.15        | 18.8                                             | 19.29     | 19.54     | 19.6         | 19.59        | 19.42                                             | 18.75     | 17.86      | 17.17     |        | (93) |
| 8. Space heating requ                       |              |                                                  |           |           |              |              | -                                                 |           |            |           |        |      |
| Set Ti to the mean into                     |              | nperatur                                         | e obtair  | ed at st  | tep 11 of    | Table 9      | b, so tha                                         | ıt Ti,m=( | 76)m an    | d re-calc | culate |      |
| the utilisation factor fo                   |              |                                                  |           |           |              |              |                                                   | `         | ,          |           | •      |      |
| Jan Feb                                     | Mar          | Apr                                              | May       | Jun       | Jul          | Aug          | Sep                                               | Oct       | Nov        | Dec       |        |      |
| Utilisation factor for ga                   | ī            | i                                                |           | i         |              |              |                                                   | 1         | 1          |           | 1      |      |
| (94)m= 0.99 0.98                            | 0.95         | 0.88                                             | 0.74      | 0.55      | 0.36         | 0.42         | 0.7                                               | 0.92      | 0.98       | 0.99      |        | (94) |
| Useful gains, hmGm,                         | <del>`</del> | <del></del>                                      |           | 205.00    | T 504.40     | 005.7        | 1 000 05                                          | 070.04    | T 204.0    | 707.44    | 1      | (OE) |
| ` '                                         | 1229.24      |                                                  |           | 935.68    | 594.43       | 625.7        | 923.65                                            | 976.31    | 821.8      | 737.41    |        | (95) |
| Monthly average exte (96)m= 4.3 4.9         | 6.5          | 8.9                                              | 11.7      | 14.6      | 16.6         | 16.4         | 14.1                                              | 10.6      | 7.1        | 4.2       |        | (96) |
| Heat loss rate for mea                      |              |                                                  |           | l         | 1            | <u> </u>     |                                                   |           |            | 7.2       |        | (55) |
| (97)m= 2652.36 2600.41                      | 2380.46      |                                                  |           |           | <del></del>  | 641.97       | <del>- `                                   </del> |           | 2188.02    | 2644.67   |        | (97) |
| Space heating require                       |              |                                                  |           | <u> </u>  |              | <u> </u>     | ļ .                                               |           |            | I         | I      |      |
| (98)m= 1378.83 1054.85                      | 856.51       | 471.16                                           | 195.92    | 0         | 0            | 0            | 0                                                 | 503.51    | 983.67     | 1419      |        |      |
| <u> </u>                                    | !            |                                                  |           |           | •            |              | •                                                 | •         | •          |           | •      |      |

|                                                                                                           |                           | Tota                 | l per year        | (kWh/yeaı      | r) = Sum(9              | 8) <sub>15,912</sub> = | 6863.46                | (98)     |
|-----------------------------------------------------------------------------------------------------------|---------------------------|----------------------|-------------------|----------------|-------------------------|------------------------|------------------------|----------|
| Space heating requirement in kWh/m²/year                                                                  |                           |                      |                   |                |                         |                        | 57.96                  | (99)     |
| 9a. Energy requirements – Individual heating syste                                                        | ems including             | micro-C              | CHP)              |                |                         |                        |                        |          |
| Space heating:                                                                                            |                           |                      |                   |                |                         | ı                      |                        | <b>-</b> |
| Fraction of space heat from secondary/suppleme                                                            |                           | (222)                | (224)             |                |                         |                        | 0                      | (201)    |
| Fraction of space heat from main system(s)                                                                |                           | (202) = 1 -          | ` '               |                |                         |                        | 1                      | (202)    |
| Fraction of total heating from main system 1                                                              |                           | (204) = (20          | 02) <b>x</b> [1 – | (203)] =       |                         |                        | 1                      | (204)    |
| Efficiency of main space heating system 1                                                                 |                           |                      |                   |                |                         |                        | 100                    | (206)    |
| Efficiency of secondary/supplementary heating sy                                                          | ystem, %                  |                      |                   | •              | ,                       | •                      | 0                      | (208)    |
|                                                                                                           | Jun Jul                   | Aug                  | Sep               | Oct            | Nov                     | Dec                    | kWh/ye                 | ear      |
| Space heating requirement (calculated above)  1378.83 1054.85 856.51 471.16 195.92                        | 0 0                       | 0                    | 0                 | E02 E4         | 002.67                  | 1410                   |                        |          |
|                                                                                                           | 0 0                       | 0                    | U                 | 503.51         | 983.67                  | 1419                   |                        | (0.4.4)  |
| $(211)m = \{[(98)m \times (204)] \} \times 100 \div (206)$ $1378.83 \ 1054.85 \ 856.51 \ 471.16 \ 195.92$ | 0 0                       | 0                    | 0                 | 503.51         | 983.67                  | 1419                   |                        | (211)    |
| 1010.00 100 100 00001 111110 100.02                                                                       | Ů Ů                       |                      |                   |                | 211),5.1012             |                        | 6863.46                | (211)    |
| Space heating fuel (secondary), kWh/month                                                                 |                           |                      |                   |                |                         |                        |                        | `′       |
| $= \{[(98) \text{m x } (201)] \} \times 100 \div (208)$                                                   |                           |                      |                   |                |                         |                        |                        |          |
| (215)m= 0 0 0 0 0                                                                                         | 0 0                       | 0                    | 0                 | 0              | 0                       | 0                      |                        |          |
|                                                                                                           |                           | Tota                 | I (kWh/yea        | ar) =Sum(2     | 215) <sub>15,1012</sub> | F                      | 0                      | (215)    |
| Water heating                                                                                             |                           |                      |                   |                |                         |                        |                        |          |
| Output from water heater (calculated above)  188.57   165.56   172.34   152.37   147.78   12              | 29.84 122.6               | 137.43               | 138.09            | 158.11         | 169.85                  | 183.32                 |                        |          |
| Efficiency of water heater                                                                                |                           |                      | .00.00            |                | 100.00                  | .00.02                 | 100                    | (216)    |
| ·                                                                                                         | 100 100                   | 100                  | 100               | 100            | 100                     | 100                    |                        | (217)    |
| Fuel for water heating, kWh/month                                                                         | l .                       |                      |                   |                | l                       |                        |                        |          |
| $(219)$ m = $(64)$ m x $100 \div (217)$ m<br>(219)m = $188.57$ $165.56$ $172.34$ $152.37$ $147.78$ $12$   | 29.84 122.6               | 137.43               | 138.09            | 158.11         | 169.85                  | 102.22                 |                        |          |
| (219)m= 188.57   165.56   172.34   152.37   147.78   12                                                   | 29.84 122.6               |                      | I = Sum(2         |                | 169.85                  | 183.32                 | 1865.87                | (219)    |
| Annual totals                                                                                             |                           |                      |                   |                | Wh/year                 |                        | kWh/yea                |          |
| Space heating fuel used, main system 1                                                                    |                           |                      |                   |                | , oa.                   |                        | 6863.46                | T        |
| Water heating fuel used                                                                                   |                           |                      |                   |                |                         |                        | 1865.87                | Ħ        |
| Electricity for pumps, fans and electric keep-hot                                                         |                           |                      |                   |                |                         |                        |                        |          |
| central heating pump:                                                                                     |                           |                      |                   |                |                         | 30                     |                        | (230c)   |
| Total electricity for the above, kWh/year                                                                 |                           | sum                  | of (230a).        | (230g) =       |                         |                        | 30                     | (231)    |
| Electricity for lighting                                                                                  |                           |                      |                   | ,              |                         |                        | 445.79                 | (232)    |
| Electricity generated by PVs                                                                              |                           |                      |                   |                |                         |                        | -2203.75               | (233)    |
| 12a. CO2 emissions – Individual heating systems                                                           | s including mi            | cro_CHD              | )                 |                |                         |                        | -2200.10               |          |
| 12a. CO2 emissions – mulvidual neating systems                                                            | <del>s melaaling mi</del> | <del>oro-</del> OFIP |                   |                |                         |                        |                        |          |
|                                                                                                           | <b>Energy</b><br>kWh/year |                      |                   | Emiss<br>kg CO | <b>ion fac</b><br>2/kWh | tor                    | Emissions<br>kg CO2/ye |          |
| Space heating (main system 1)                                                                             | (211) x                   |                      |                   | 0.5            | 19                      | =                      | 3562.14                | (261)    |

| Space heating (secondary)                         | (215) x                         | 0.519           | = | 0        | (263) |
|---------------------------------------------------|---------------------------------|-----------------|---|----------|-------|
| Water heating                                     | (219) x                         | 0.519           | = | 968.39   | (264) |
| Space and water heating                           | (261) + (262) + (263) + (264) = |                 |   | 4530.52  | (265) |
| Electricity for pumps, fans and electric keep-hot | (231) x                         | 0.519           | = | 15.57    | (267) |
| Electricity for lighting                          | (232) x                         | 0.519           | = | 231.36   | (268) |
| Energy saving/generation technologies Item 1      |                                 | 0.519           | = | -1143.75 | (269) |
| Total CO2, kg/year                                | sum                             | of (265)(271) = |   | 3633.71  | (272) |
| Dwelling CO2 Emission Rate                        | (272                            | 2) ÷ (4) =      |   | 30.68    | (273) |
| EI rating (section 14)                            |                                 |                 |   | 70       | (274) |