

Panther House, Camden Flood Risk Assessment & Drainage Strategy

Project Number: 1724

Report Issue Date: 04 March 2020

Report Status: Revised Planning Issue – Revision B*

Prepared by: M. Jones Checked by: M. Simmonds

*Note: Amended Clauses are marked with the suffix B

Contents

1. INTRODUCTION	3
2. PLANNING POLICIES	3
3. DISCUSSION	3
4. FLOOD RISK	4
5. DRAINAGE STRATEGY	6
6. FLOOD RISK MANAGEMENT MEASURES	6
7. OFF SITE IMPACTS	6
6. RESIDUAL RISKS	6
APPENDIX 1 – PROPOSED DRAINAGE SCHEME	7
APPENDIX 2 – EXISTING RUN-OFF CALCULATION	8
APPENDIX 3 – PROPOSED RUN-OFF CALCULATIONS WEST CATCHMENT	8
APPENDIX 4 – PROPOSED RUN-OFF CALCULATIONS EAST CATCHMENT	16
APPENDIX 5 – LONDON BOROUGH OF CAMDEN SUDS PROFORMA	22

1 Introduction

- 1.1 Eckersley O'Callaghan are appointed by Panther House Developments Ltd. to provide flood risk and below ground drainage consultancy in relation to the development of Panther House, Grays Inn Road, London, WC1X 0AN.
- 1.2 The site is approximately 0.2 hectares in area and contains a number of office buildings of varying height. Planning permission is sought for the provision of additional floors onto the existing buildings and some infill development.
- 1.3 Although the site is located in Flood Zone 1 and is not within 20m of a Main River, a Flood Risk Assessment (FRA) is required as it is within Critical Drainage Area Group3_003 as defined in London Borough of Camden's Surface Water Management Plan. Furthermore the Camden Local Plan demands that a Flood Risk Assessment and Drainage Statement is submitted as the development is considered to be "Major". This includes 'developments of 10 or more homes or a floorspace of 1,000sqm or more, including student housing and non-residential development'.
- The assessment has been carried out in accordance with the guidelines set out in the National Planning Policy Framework (NPPF), London Borough of Camden (LBC) planning policy and LBC's requirements acting as the Lead Local Flood Authority (LLFA).
- 1.5 This report should be read in conjunction with architectural reports and drawings and other relevant documents supporting the planning application.

2 Planning Policies

2.1 The following policies relevant to flood risk mitigation are taken from The London Plan and incorporate the Further Alterations to the London Plan, which were implemented in March 2015.

Policy 5.12

Flood risk management

Strategic

A. The Mayor will work with all relevant agencies including the Environment Agency to address current and future flood issues and minimise risks in a sustainable and cost effective way.

Planning decisions

- B. Development proposals must comply with the flood risk assessment and management requirements set out in the NPPF and the associated Technical Guidance on flood risk over the lifetime of the development and have regard to measures proposed in Thames Estuary 2100 (TE2100 see paragraph 5.55) and Catchment Flood Management Plans.
- C. Developments which are required to pass the Exceptions Test set out in the NPPF and the Technical guidance will need to address flood resilient design and emergency planning by demonstrating that:
 - a) the development will remain safe and operational under flood conditions
 - b) a strategy of either safe evacuation and/ or safely remaining in the building is followed under flood conditions
 - c) key services including electricity, water etc will continue to be provided under flood conditions d) buildings are designed for quick recovery following a flood.
- D. Development adjacent to flood defences will be required to protect the integrity of existing flood defences and wherever possible should aim to be set back from the banks of watercourses and those defences to allow their management, maintenance and upgrading to be undertaken in a sustainable and cost effective way.

Policy 5.13

Sustainable drainage

Planning decisions

A. Developments should utilise sustainable urban drainage systems (SUDS) unless there are practical reasons for not doing so, and should aim to achieve greenfield runoff rates and ensure that surface water runoff is managed as close to its source as possible in line with the following drainage hierarchy:

- 1) Store rainwater for later use
- 2) Use infiltration techniques, such as porous surfaces in non-clay areas
- 3) Attenuate rainwater in ponds or open water features for gradual release
- 4) Attenuate rainwater by storing in tanks or sealed water features for gradual release
- 5) Discharge rainwater direct to a watercourse
- 6) Discharge rainwater to a surface water sewer/drain
- 7) Discharge rainwater to the combined sewer.

Drainage should be designed and implemented in ways that deliver other policy objectives of this Plan, including water use efficiency and quality, biodiversity, amenity and recreation.

- 2.2 In addition to the London Plan policies, Section 3.4 'Flooding' within the Sustainable Design and Construction Supplementary Planning Guidance supporting The Mayor's London Plan requires the post-development peak runoff rate to be no greater than 50% of the pre-development runoff rate.
- 2.3 The current Draft London Plan (July 2019) retains similar principles with a slight change of emphasis towards green infrastructure and avoidance of impermeable paving. The target of greenfield run-off rates is continued 'depending on site conditions'.
- 2.4 The policies detailed below have been extracted from LBC's Core Strategy and Development Policies:

CS13 – Tackling climate change through promoting higher environmental standards Water and surface water flooding

We will make Camden a water efficient Borough and minimise the potential for surface water flooding by: ... i) requiring development to avoid harm to the water environment, water quality or drainage systems and prevents or mitigates local surface water and downstream flooding, ...

DP22 – Promoting sustainable design and construction

The Council will require development to incorporate sustainable design and construction measures. Schemes must:...

- b) incorporate green or brown roofs and green walls wherever suitable....
- The Council will require development to be resilient to climate change by ensuring schemes include appropriate climate change adaptation measures, such as: ...
- g) limiting run-off;
- h) reducing water consumption;...

DP23 - Water

The Council will require developments to reduce their water consumption, the pressure on the combined sewer network and the risk of flooding by:

- a) incorporating water efficient features and equipment and capturing, retaining and re-using surface water and grey water on-site;
- b) limiting the amount and rate of run-off and waste water entering the combined storm water and sewer network through the methods outlined in part a) and other sustainable urban drainage methods to reduce the risk of flooding;
- c) reducing the pressure placed on the combined storm water and sewer network from foul water and surface water run-off and ensuring developments in the areas identified by the North London Strategic Flood Risk Assessment and shown on Map 2 as being at risk of surface water flooding are designed to cope with the potential flooding;
- d) ensuring that developments are assessed for upstream and downstream groundwater flood risks in areas where historic underground streams are known to have been present; and
- d) encouraging the provision of attractive and efficient water features.
- 2.5 From April 2019, London's 33 Lead Local Flood Authorities (LLFAs) have introduced the London Sustainable Drainage Proforma, which is required to accompany Sustainable Drainage strategies submitted with planning applications and will form part of planning application validation requirements. The completed Proforma is included in Appendix 5.

3 Discussion

- 3.1 The London Plan and the Camden Core Strategy address new development and development on so called 'brownfield' land. Neither discuss refurbishment projects where there is no change to the building footprint and where existing drainage connections would be re-used. From the writer's experience it would not be the norm for extensive sustainable drainage improvements to be imposed on a refurbishment project. Only those elements of a development that add floor area or increase the amount of external impermeable surfacing would normally generate a SuDS requirement.
- 3.2 The layout of Panther House presents particular challenges in terms of meeting the various sustainable drainage targets listed. Whereas the western catchment is being completely rebuilt and has scope for stormwater attenuation storage below the small covered courtyard area, the eastern catchment (the slightly larger of the two) is essentially a refurbishment project. Furthermore in the eastern catchment there is no available surface at ground level to locate any attenuation storage as there is an existing basement under the entire footprint. Attenuation storage could be positioned below the basement floor level (as proposed by previous planning application for this site) but the depth of the outgoing sewer severely limits the depth available

for storage. This means that a very large proportion of the basement floor would need to be removed in order to fit in shallow attenuation storage. Also, by routing roofwater down to basement level, the flood risk to the building would arguably be <u>increased</u> as it relies on fully functioning flow controls and non-return valves, without the comfort of an overland flow route as a failsafe mechanism. With a practicable upper limit to the size of attenuation it is inevitable that at some point the basement would flood, which is undoubtedly contrary to the aims of the London Plan, particularly as in this case there is electrical infrastructure located at basement level.

- In previous submissions of this report the strategy was to over-attenuate run-off from the western part of the site and not reduce or attenuate run-off from the eastern site. Following feedback from Camden's flood risk officer it has become clear that a more stringent control of run-off is required for the whole site. The project team has therefore introduced areas of green/blue roof on the eastern sector of the development and these have been factored into the drainage calculations to achieve a minimum 50% reduction in run-off rate for the 30 and 100 year storm return periods including climate change allowances.
- 3.4 The following assessment and drainage proposals provide more detail on this overall strategy and demonstrate how the drainage proposals are in compliance with the various planning policies listed.

4 Flood Risk

4.1 **Vulnerability Classification -** With reference to Table 2 of the Technical Guidance to the NPPF, the vulnerability classification of the existing site is "Less Vulnerable" due to the office uses. There is no proposed change of use therefore the vulnerability classification of the proposed development will remain as "Less Vulnerable", which is acceptable within Flood Zone 1.

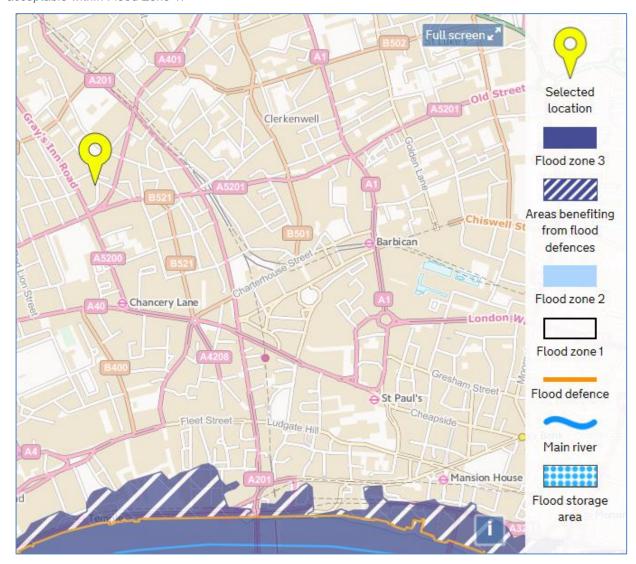


Figure 1 – EA Flood Map Extract

4.2 Sources of Flooding:

- 4.2.1 *Fluvial flooding* An extract from the on-line Environment Agency Flood Maps is shown in Figure 1 below. This confirms that the site is in Flood Zone 1 with the nearest fluvial flood risk zone located over a kilometer away to the south associated with the River Thames. Fluvial flood risk is therefore considered to be **low**.
- Pluvial flooding Localised flooding problems arising from drainage and/or sewer systems with limited capacity will inevitably occur. Sewer systems are generally designed (in accordance with current Government guidance) to cater for 1 in 30 year storms. Some historic London sewers have a higher capacity due to their method of construction and/or the design methodology applied at the time. Storms in excess of the sewer capacity would result in localised flooding and the generation of overland flow driven by the local topography. However, no incidents of surface water or sewer flooding in the vicinity of the Site have been recorded in the Camden SFRA or the Camden Surface Water Management Plan, which confirms that the Critical Drainage Area Group3_003 designation is for administrative purposes rather than to address particular drainage issues at the site itself. The EA's Lidar based Risk of Flooding from Surface Water map (See Figure 2) suggests that there are some areas of the site which would be at low to medium risk of flooding during a pluvial flood event. The pluvial flood maps are based on Lidar topographical data and are therefore a relatively crude but useful assessment of where surface water may accumulate during extreme storm events. The degree of flood risk is based on the parameters in Figure 4 extracted from the Environment Agency's explanatory document for the flood maps. In order to ensure the residual risk of such flooding does not increase post-development, the new drainage system will be designed to store rainfall generated by events up to a 100year return period including allowance for climate change. Thus the proposed attenuation storage will absorb the medium and high risk pluvial flood volume. With these provisions in place, pluvial flood risk is considered to be low.

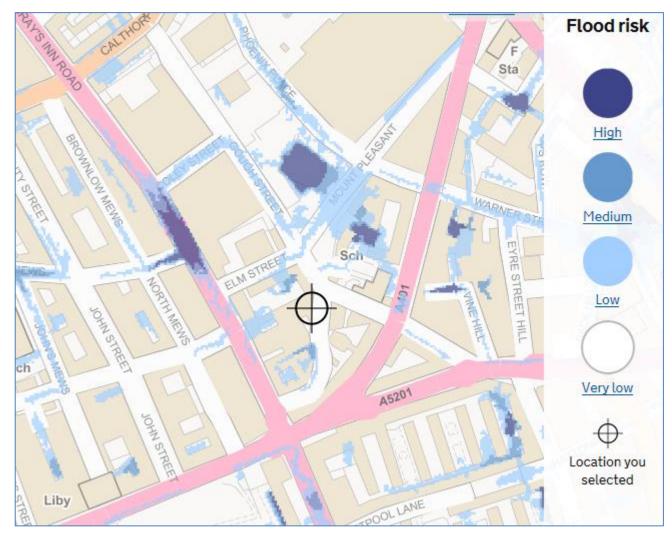


Figure 2 - Surface Water (Pluvial) Flood Risk from gov.uk website (EA data)

High	Flooding occurring as a result of rainfall with a greater than 1 in 30 chance in any given year (annual probability of flooding 3.3%)
Medium	Flooding occurring as a result of rainfall of between 1 in 100 (1%) and 1 in 30 (3.3%) chance in any given year
Low	Flooding occurring as a result of rainfall of between 1 in 1000 (0.1%) and 1 in 100 (1%) chance in any given year
Very Low	Flooding occurring as a result of rainfall with less than 1 in 1000 (0.1%) chance in any given year

Figure 3 - EA Surface Water Flood Map - Zone Definitions

- 4.2.3 Sewer Flooding The Camden SFRA contains a summary of the Thames Water DG5 records of internal and external sewer flooding. No flooding has been recorded at the application site. New drainage systems will be designed to prevent backflows from sewers and critical drainage manholes will be fitted with sealed hatchboxes where required to prevent surcharging within the building footprint. With these facilities in place and site levels designed to direct overland flows away from critical thresholds, flood risk from this source is considered to be **low**.
- 4.2.4 Groundwater flooding The Camden SFRA includes data obtained from the British Geological Society showing areas of 'Increased Susceptibility to Elevated Groundwater'. Although there are patches of land north of the application site where groundwater vulnerability is considered to be a factor, the site itself is not affected. Furthermore the site does not have basements that are set wholly below adjacent land without an escape route for groundwater seepages. Walls that are retaining and floors built off natural ground will be fully waterproofed and formally drained internally so as to prevent any damage to the building fabric. Flood risk from this source is therefore considered to be low.
- 4.2.5 Flooding from Reservoirs, Canals and artificial water bodies Neither the EA website or the Camden SFRA show any risk of flooding from this source therefore the flood risk is considered to be **low**.

5 Drainage Strategy

- In developing a strategy for the drainage changes necessary to accommodate the proposed building works the following overarching principles have been considered:
 - New foul and storm systems will be designed as separate drainage networks, which will combine at the final manhole(s) prior to connecting to the public sewer network.
 - Existing systems will be retained where they are in a suitable condition and will continue to discharge at the
 existing connection points. Some relining and localised replacement may be required subject to detailed CCTV
 survey work.
 - As most of the site is occupied by buildings, infiltration systems are not feasible, therefore attenuation storage will be used to limit off-site flows and thus reduce downstream flood risk.
 - In terms of the attenuation design, the western and eastern catchments will be treated individually, but the overall effect is to reduce existing run-off by at least 50% whilst allowing for climate change.

Storm Drainage

- 5.1 A proposed layout of the storm drainage system is included on the drawing in Appendix 1.
- 5.2 The criteria for determining the stormwater strategy comes primarily from the local planning strategies listed previously and will also need to comply with any restrictions applied by Thames Water where the discharge is to their sewer network. Thames Water's criteria should be coincident with the Camden policies but this will be verified and if necessary formalised through a Section 106 drainage connection application in due course. A Section 106 application should not be required for the eastern catchment as this will utilise the same building footprint and drainage connection as existing.
- The following hierarchy of stormwater disposal methods has been considered in line with current best practice for Sustainable Drainage Systems (SUDS):
 - 1st Recycle
 - 2nd Infiltration/Soakaways;
 - 3rd Discharge to a Watercourse;
 - 4th Discharge to a Sewer.

Roofwater recycling has been discounted on the basis that the roof area is small compared to the number of potential users and the disproportionate investment required to distribute a small water resource over a large number of occupants. Irrigation demand from any soft landscaping is minimal, which further weighs against the cost and ongoing management implications of a roofwater recycling system.

Infiltration systems are not viable for the site given the extent of building foundations and basement areas as well as the proximity to roads and adjacent buildings.

There is no watercourses in reasonable proximity to the site for a direct connection therefore the most sustainable drainage option that can be achieved in the hierarchy is a discharge to the local sewer network at an attenuated rate. Due to the intensity of development already on the site it is considered that achieving a 50% run-off reduction in line with the minimum London Plan and Camden SFRA requirements whilst mitigating climate change impacts would be a practicable response to the site constraints. To establish the required attenuation volumes, Microdrainage calculations have been carried out based on a split in the total run-off to the existing sewer branches in the north east and south west corners of the site. The resulting calculations are shown in Appendices 2-4.

The discharge rates used in the attenuation design are based on not exceeding the existing 1yr return period flow, which keeps the orifice size up to avoid blockages in compliance with the London Plan Supplementary Planning Guidance (SPG) Para. 3.4.9. This rate has been used because the target of greenfield rates would require controls so small as to encourage drainage blockages and possibly *increase* the flood risk. Thus although there will be only slight reduction of peak flows in 1yr storm events to provide protection against climate change, this is not the critical event likely to generate downstream flooding. The more critical 30 year and 100 year flows are reduced by over 50% compared to the total predevelopment flows, thus achieving the minimum 50% reduction required by the London Plan SPG Para. 3.4.8. See Appendix 2. The attenuation on the eastern half of the development will be achieved at roof level through the use of 260m2 of green roof and 104m2 of blue roof. The blue and green roof areas have been modelled as a shallow tank with an orifice control using Microdrainage. Actual outlet controls will be provided by the

- selected roof system manufacturer and will be checked to ensure they meet or exceed the performance of the system modelled in the calculations.
- 5.6 As the below ground volume of attenuation connects to a combined sewer system the risk of backflows from the sewers weighs against the use of cellular crates as the clean up after a flood event would be problematic (despite manufacturers' claims to the contrary). The tank construction will therefore be a combination of in situ and precast concrete with access points to facilitate inspection, jetting and de-silting.
- 5.7 Consideration has been given to the implications of system failure. This could be a rainfall event in excess of the design, on site drainage blockages or failure/surcharge of the local public drainage system. The site levels in the western catchment will be arranged such that surface water always has a route out of the site towards the existing highway infrastructure. This will ensure the depth of water flowing during exceedance events is controlled such that is does not reach door thresholds or overflow into basement areas.
- 5.8 The eastern catchment has restricted capacity for overland flow routes during exceedance events as the buildings will fully occupy the site. The existing central courtyard area will have a canopy fitted over it so whereas this area can currently flow directly out onto the surface of Mount Pleasant, in future this will be achieved by a system of canopy drains at high level directing the run-off into the existing roofwater outlets with overflow weirs at the site perimeter to allow exceedance flows to overspill onto the adjacent streets, thus reflecting the pre-development conditions.
- 5.9 Roof drainage outlet positions on the existing buildings and their outlet branches to the local drainage systems in the eastern catchment will be re-used where practical. Some re-routing at high level in the basement will be needed to suit the revised occupancy and use categories in the basement area. Basement drainage systems below the basement floor carrying any surface water will be fitted with hatchbox chambers to limit the potential for drainage surcharging at basement level.
- 5.10 Construction of surface finishes and wall bases will utilise water resilient materials where they could potentially be affected by shallow flooding or overland flow routes. Electrical distribution and other critical services will be routed at high level in the basements to limit potential impacts of drainage exceedance.

Foul Drainage

- 5.11 Flows from sanitary fittings at or above ground level will be picked up in a network of sanitary floats discharging to the main soil stacks running adjacent to structural columns and/or positioned in dedicated service risers. The foul drainage scheme at ground floor and basement level is shown in Appendix 1. Essentially the site is split into two catchments, one discharging eastwards via the existing sewer branch to the Grays Inn Road TW sewer, the other discharging via the existing basement drainage connection into the Mount Pleasant TW sewer network.
- 5.12 Existing sewer connections will be utilised to avoid disturbance of existing services in the surrounding streets and to avoid the traffic disruption caused by new branches.

Groundwater/Waterproofing - Drainage Issues

- 5.13 The basement area will be refurbished to minimise dampness & groundwater ingress. Where a Type C internal environment to BS8102 is required this will involve cavity drainage and sumps with pumps to remove interstitial water, which will be drained to the foul system due to the potential risk of pollution.
- 5.14 Cavity drainage water would be classified as groundwater by Thames Water, which is normally not permitted to be discharged into the sewer network. Discussions will be needed with TW to establish their position on this issue given the very low flow anticipated. From experience TW will charge a license fee for agreed groundwater discharges.

Below Ground Drainage Specification Generally

- 5.15 New storm and foul drainage will be provided in accordance with BSEN 752 and Building Regulations. Pipe materials for external gravity systems above the groundwater level may be plastic or clay. Internal to the buildings materials will be plastic or ductile iron. External manholes and inspection chambers will typically be plastic non-man-entry type compliant with latest Sewers for Adoption standards and positioned to provide full maintenance access for future inspection/rodding/jetting, augmented with suitably sized access points at gullies, downpipes etc. all as required by current Building Regulations. Larger manholes for silt traps and the like will be constructed using pre-cast concrete sections and large access covers to enable silt removal as part of the ongoing maintenance regime. Any drainage at risk of being affected by elevated groundwater levels will be constructed in a fully welded HDPE system including preformed HDPE inspection chambers welded to the drain runs and capable of resisting external hydrostatic pressure.
- 5.16 During construction and on completion of the drainage works the entire storm and foul drainage pipe network will be tested, cleaned and inspected with CCTV equipment. Any faults discovered will be corrected and re-tested/resurveyed until the entire system is suitable for commissioning.

6 Climate Change

5.1 Climate change is a factor to be assessed for both predicted flood levels and for allowances to be added to rainfall events in order to mitigate the potential impacts of increased site run-off.

The design life of the project will be approximately 50 years in line with current structural Eurocodes. The wording on life spans in the NPPF is as follows (our emphasis) - Residential development should be considered for a minimum of 100 years, unless there is specific justification for considering a shorter period. For example; the time in which flood risk or coastal change is anticipated to impact on it, where a development is controlled by a time-limited planning condition.

The lifetime of a non-residential development <u>depends on the characteristics of that development</u>. Planners should use their experience within their locality to assess how long they anticipate the development being present for. Developers would be expected to justify why they have adopted a given lifetime for the development, for example, when they are preparing a site-specific flood risk assessment.

6.2 As far as the influence of climate change on site run-off is concerned, the EA have reasonably recently revised their climate change predictions upwards and therefore the proposed attenuation storage will be designed to contain an additional 40% climate change induced rainfall. This complies with the EA requirement and will ensure that the effect of potential higher rainfall rates is reasonably mitigated to below pre-development conditions for the anticipated lifespan of the building.

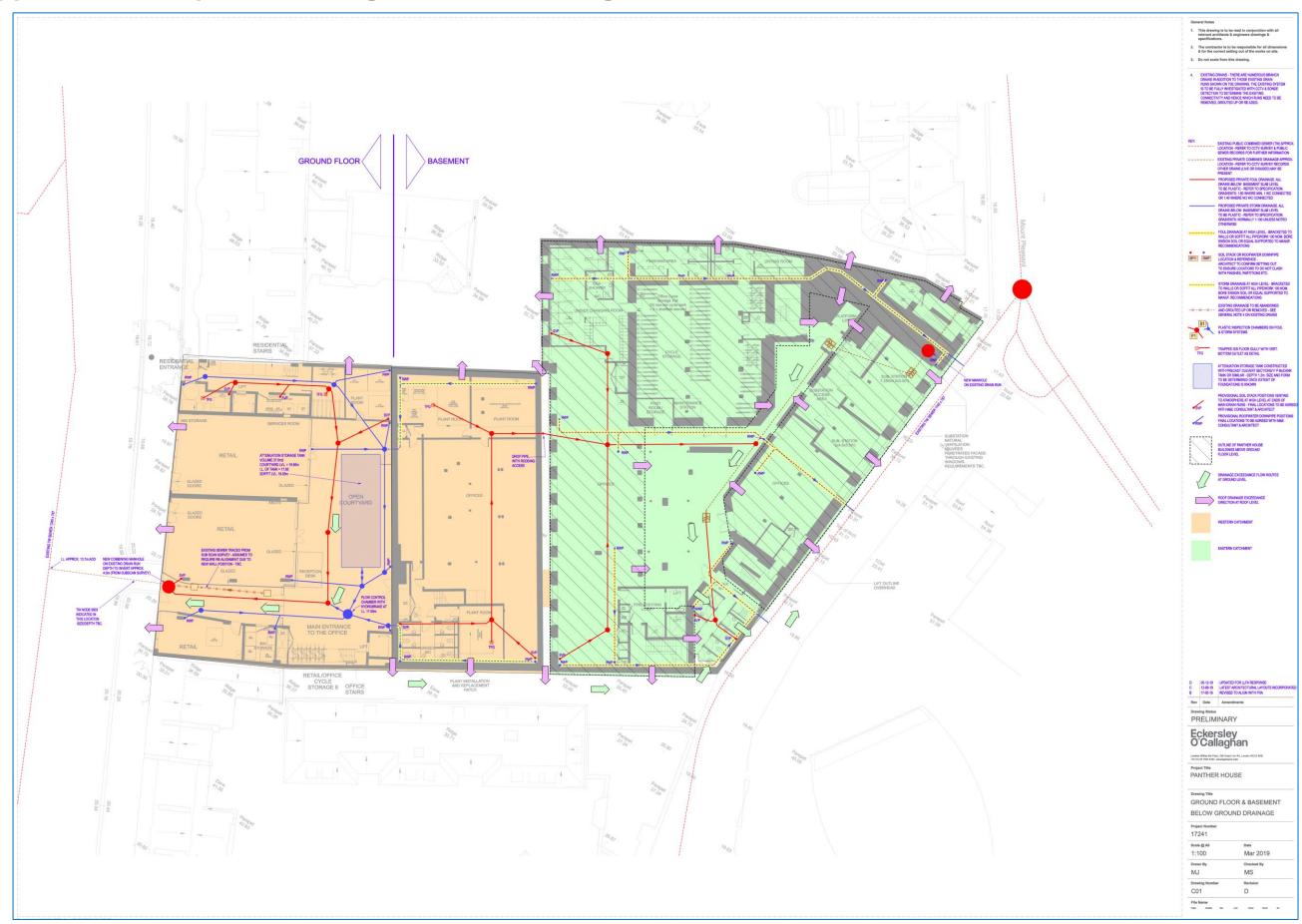
7 Flood Risk Management Measures

- 7.1 To avoid any increase in flood risk due to the development's own drainage network the proposed site drainage systems will be designed so that they are easy to inspect and simple to clean with plenty of access points and provision for the use of conventional jetting equipment. The developer will employ experienced facility managers to operate, inspect and maintain the drainage system as part of the overall building maintenance schedule.
- 7.2B Potential issues that will need to be addressed in order to sustain the low level of flood risk on the site will be:
 - Regular checking of the attenuation tank(s) and the associated outlet controls to ensure the system is functioning properly, together with clearing of any contributing drainage gullies and silt traps.
 - Regular checking of green roof and blue roof outlet controls to ensure they are not blocked by debris
 - · Periodical inspection and jetting of drain runs.
 - Clearing of drainage channels and gutters to prevent carry-over of debris to the attenuation tank (where necessary leaf guards will be fitted to gutters and downpipe outlets to prevent the ingress of leaves and moss from roofs as the development becomes more mature).

Where regular checks are required these would be carried out at no more than 6 monthly intervals for the drainage system initially and the need for checking would be reviewed on an ongoing basis depending on how the various elements are performing.

8 Off Site Impacts

8.1 Potential off site impacts are addressed through the use of a sustainable drainage strategy as described herein. With the proposed sustainable drainage measures in place together with the drainage management procedures described, it is considered that there will be negligible increase in flood risk to off-site receptors, including for the effects of climate change.


9 Residual Risks

- 9.1 The residual flood risks to the application site following development taking account of climate change effects are considered to be as follows:
 - Less than 1% annual probability of fluvial flooding.
 - · Less than 1% annual probability of pluvial flooding.
 - 1% annual risk of exceedance flows due to surcharged drain systems within the site but negligible risk of flood damage from this source bearing in mind the site levels, which are designed to marshal exceedance flows safely towards adjacent lower land.
 - Risk of downstream flooding due to run-off from the development significantly reduced through sustainable drainage measures, with 40% capacity allowance for climate change.

Overall residual flood risk post-development is therefore considered to be low.

Appendix 1 – Proposed Drainage Scheme Drawing

Appendix 2 – Existing v Proposed Run-off

To determine the amount of attenuation required we have assessed the existing run-off from the site using a Wallingford calculation as follows:

Wallingford Method: Calculation of Pre development run-off rates

Where Qp = discharge rate $C = Coefficient where <math>C = Cv \times Cr$ (Cv = volumetric run-off coefficient & Cr = routing coefficient) (formula 7.19) i = mean rainfall intensity mm/hr A = Area (ha).

For Qp in litres per second the formula becomes Qp=CiA÷0.36

Determination of C:

From Wallingford Procedure Vol.1 Cv = 0.9 for full urbanised catchment and Cr = 1.3. \therefore C= 1.17

The storm duration will be taken as 30 minutes as standard practice

Determination of i from FEH for OS Grid Reference E531014 N182085 1 year 30 min. rainfall depth = 7.61mm mean rainfall for design = 15.22mm/hr 30 year 30 min. rainfall depth = 30.17mm mean rainfall for design = 60.34mm/hr 100 year 30 min. rainfall depth = 40.4mm mean rainfall for design = 80.8mm/hr

Using these values the following existing flow rates have been generated for comparison with the Microdrainage calculations for proposed run-off shown in Appendix 3 & 4:

EXISTING FLOW RATES								SED RATI	ES I/s
Catchment	Area m2	% imp. area	Imp. area m2	1 yr 30min. Rate I/s	30 yr 30min. Rate I/s	100 yr 30min. Rate I/s	1 yr	30 yr	100 yr
West	966	100	966	4.78	18.94	25.37	4.78	4.78	4.78
East	1154	100	1154	5.71	22.63	30.30	4.41	15.54	21.35
Whole Site	2120	100	2120	10.49	41.57	55.67	9.19	20.32	26.13

By comparing the proposed and existing flows it can be seen that the post development peak flow reduction is as follows:

Catchment	1yr Reduction	30yr reduction	100yr reduction
West	0%	74.8%	81.1%
East	22.8%	31.3%	29.5%
Whole Site	12.4%	51.1%	52.1%

Appendix 3 — Proposed Run-off Calculation- West Catchment 1yr

Infrastructure Design St	udio						Page 1
31 Dyer Street		Pant	her Hou	ıse			
Cirencester		West	Catchn	nent			4
Glos GL7 2PP							
Date 21/05/2019 17:29		Desi	gned by	, F. D	artri	dae	- MICLO
File 1461-TANK WEST.SRCX					age	Drainacc	
		1	ked by			_	
Causeway		Sour	ce Cont	crol 2	017.1	. 2	
Summary of F	Results	for 1	l year l	Return	Peri	od (+40%)	
Stor		Max		Max	Max	Status	
Even			Depth Co				
		(m)	(m) ((1/s)	(m³)		
15 min	Summer 17	7.964	0.114	4.6	4.3	O K	
30 min	Summer 17	7.967	0.117	4.6	4.4	O K	
60 min	Summer 17	7.950	0.100	4.6	3.8	O K	
	Summer 17			4.6		O K	
	Summer 17			4.6	1.0		
	Summer 17			4.6	0.3		
	Summer 17			3.9	0.0		
	Summer 17			2.7	0.0		
	Summer 17			2.7	0.0		
	Summer 17			1.9	0.0		
	Summer 17			1.4	0.0		
2160 min	Summer 17	7.850	0.000	1.0	0.0		
2880 min	Summer 17	7.850	0.000	0.8	0.0	O K	
4320 min	Summer 17	7.850	0.000	0.6	0.0	O K	
	Summer 17			0.5	0.0		
	Summer 17			0.4	0.0		
	Summer 17			0.4	0.0		
10080 min	Winter 17			0.3 4.6	0.0 5.0		
	Winter 17			4.6			
30 MIII	WINCOI I		0.100		0.2	0 11	
Storm			Flooded		_		
Storm Event			Volume	Volu	me	.me-Peak (mins)	
					me		
Event		m/hr)	Volume (m³)	Volum (m³)	me		
Event	; (m	m/hr)	Volume (m³)	Volum (m³)	me)	(mins)	
Event 15 min : 30 min :	Summer 4	m/hr) 6.523	Volume (m³) 0.0 0.0	Volum (m³)	me) 8.4	(mins)	
15 min : 30 min : 60 min : 120 min :	Summer 4 Summer 2 Summer 1 Summer 1	m/hr) 6.523 9.955 8.628 1.334	Volume (m³) 0.0 0.0 0.0 0.0	Volum (m ³)	8.4 0.8	(mins) 17 26	
15 min : 30 min : 60 min : 120 min : 180 min :	Summer 4 Summer 2 Summer 1 Summer 1 Summer 1	m/hr) 6.523 9.955 8.628 1.334 8.429	Volume (m³) 0.0 0.0 0.0 0.0	Volum (m ³)	8.4 10.8 13.4 16.3	17 26 42 74 102	
15 min : 30 min : 60 min : 120 min : 180 min : 240 min :	Summer 4 Summer 2 Summer 1 Summer 1 Summer 1	m/hr) 6.523 9.955 8.628 1.334 8.429 6.823	Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0	Volum (m ³)	8.4 10.8 13.4 16.3 18.1	17 26 42 74 102 130	
15 min : 30 min : 60 min : 120 min : 180 min : 240 min : 360 min :	Summer 4 Summer 2 Summer 1 Summer 1 Summer Summer Summer	6.523 9.955 8.628 1.334 8.429 6.823 5.037	Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volum (m ³) 1 1 1 1 2	8.4 10.8 13.4 16.3 18.1 19.6	17 26 42 74 102 130 0	
15 min : 30 min : 60 min : 120 min : 180 min : 240 min : 360 min :	Summer 4 Summer 2 Summer 1 Summer 1 Summer Summer Summer Summer	.6.523 .9.955 .8.628 1.334 8.429 6.823 5.037 4.049	Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volum (m³)	8.4 0.8 3.4 6.3 8.1 9.6 21.8	17 26 42 74 102 130 0	
15 min : 30 min : 60 min : 120 min : 180 min : 240 min : 360 min : 480 min :	Summer 4 Summer 2 Summer 1 Summer 1 Summer 1 Summer Summer Summer Summer	6.523 9.955 8.628 1.334 8.429 6.823 5.037 4.049 3.417	Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Volum (m³)	8.4 .0.8 .3.4 .66.3 .8.1 .9.6 .11.8 .23.3 .44.6	17 26 42 74 102 130 0 0	
15 min : 30 min : 60 min : 120 min : 180 min : 240 min : 360 min : 480 min : 600 min : 720 min :	Summer 4 Summer 2 Summer 1 Summer 1 Summer Summer Summer Summer Summer Summer	6.523 29.955 8.628 1.334 8.429 6.823 5.037 4.049 3.417 2.975	Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Volum (m³)	8.4 10.8 13.4 16.3 18.1 19.6 21.8 23.3 24.6 25.7	17 26 42 74 102 130 0 0 0	
15 min : 30 min : 60 min : 120 min : 180 min : 240 min : 360 min : 480 min : 600 min : 720 min :	Summer 4 Summer 2 Summer 1 Summer 1 Summer 1 Summer Summer Summer Summer Summer	m/hr) 66.523 9.955 8.628 1.334 8.429 6.823 5.037 4.049 3.417 2.975 2.391	Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Volum (m 3)	8.4 10.8 13.4 16.3 18.1 19.6 21.8 23.3 24.6 25.7 27.5	17 26 42 74 102 130 0 0	
15 min : 30 min : 60 min : 120 min : 180 min : 240 min : 360 min : 480 min : 600 min : 720 min :	Summer 4 Summer 2 Summer 1 Summer 1 Summer Summer Summer Summer Summer Summer Summer Summer	m/hr) 66.523 9.955 8.628 1.334 8.429 6.823 5.037 4.049 3.417 2.975 2.391	Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Volum (m 3) 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3	8.4 10.8 13.4 16.3 18.1 19.6 21.8 23.3 24.6 25.7	(mins) 17 26 42 74 102 130 0 0 0 0	
15 min : 30 min : 60 min : 120 min : 180 min : 240 min : 360 min : 480 min : 600 min : 720 min : 960 min :	Summer 4 Summer 2 Summer 1 Summer 1 Summer 5 Summer Summer Summer Summer Summer Summer Summer Summer	m/hr) 6.523 9.955 8.628 1.334 8.429 6.823 7.4049 3.417 2.975 2.391 1.757 1.292	Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Volum (m 3)	8.4 0.8 3.3 4.6 6.3 8.1 9.6 11.8 23.3 24.6 25.7 27.5	(mins) 17 26 42 74 102 130 0 0 0 0	
15 min : 30 min : 60 min : 120 min : 180 min : 240 min : 360 min : 480 min : 600 min : 720 min : 960 min : 1440 min :	Summer 4 Summer 2 Summer 1 Summer 1 Summer 5 Summer Summer Summer Summer Summer Summer Summer Summer Summer	m/hr) 6.523 9.955 8.628 1.334 8.429 6.823 5.037 4.049 2.975 2.391 1.757 1.292 1.039	Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Volum (m 3)	8.4 0.8 3.4 6.3 8.1 9.6 21.8 23.3 24.6 25.7 27.5 80.4 33.5	(mins) 17 26 42 74 102 130 0 0 0 0 0	
15 min : 30 min : 60 min : 120 min : 180 min : 240 min : 360 min : 480 min : 600 min : 720 min : 960 min : 1440 min : 2160 min : 2880 min :	Summer 4 Summer 2 Summer 1 Summer 1 Summer	6.523 9.955 8.628 1.334 8.429 6.823 5.037 4.049 7.2975 2.391 1.757 1.292 1.039 0.763	Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Volum (m³)	8.4 0.8 3.4 6.3 8.1 9.6 21.8 23.3 24.6 25.7 27.5 30.4 33.5 35.9	(mins) 17 26 42 74 102 130 0 0 0 0 0 0	
15 min : 30 min : 60 min : 120 min : 180 min : 240 min : 360 min : 480 min : 600 min : 720 min : 960 min : 1440 min : 2160 min : 2880 min : 4320 min : 5760 min :	Summer 4 Summer 2 Summer 1 Summer 1 Summer	6.523 9.955 8.628 1.334 8.429 6.823 5.037 4.049 3.417 2.975 2.975 1.757 1.292 1.039 0.763 0.613 0.517	Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Volum (m³,	8.4 .0.8 .3.4 .6.3 .8.1 .9.6 .21.8 .23.3 .24.6 .25.7 .77.5 .80.4 .83.5 .83.5 .83.5 .83.5 .83.5 .83.6 .84.6 .85.7 .7	(mins) 17 26 42 74 102 130 0 0 0 0 0 0 0 0 0 0	
15 min : 30 min : 60 min : 120 min : 180 min : 240 min : 360 min : 480 min : 600 min : 720 min : 960 min : 1440 min : 2880 min : 4320 min : 5760 min : 7200 min :	Summer 4 Summer 2 Summer 1 Summer 1 Summer	m/hr) 66.523 9.955 8.628 1.334 8.429 6.823 5.037 4.049 3.417 2.975 2.391 1.757 1.292 1.039 0.763 0.613 0.517 0.450	Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Volum (m 3) 11 11 11 12 22 22 23 33 33 34 44	8.4 10.8 13.4 16.3 19.6 11.8 12.3 12.4 14.7 16.7	(mins) 17 26 42 74 102 130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
15 min : 30 min : 60 min : 120 min : 120 min : 240 min : 360 min : 480 min : 600 min : 720 min : 960 min : 1440 min : 2160 min : 2880 min : 4320 min : 5760 min : 7200 min : 8640 min :	Summer 4 Summer 2 Summer 1 Summer 1 Summer	m/hr) .6.523 .9.955 .8.628 1.334 8.429 6.823 5.037 4.049 3.417 2.975 2.391 1.757 1.292 1.039 0.763 0.613 0.517 0.450 0.401	Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Volum (m 3) 11 11 11 12 22 22 23 33 33 34 44	8.4 10.8 13.4 16.3 19.6 11.8 12.3 12.4 13.5 1	(mins) 17 26 42 74 102 130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
15 min : 30 min : 60 min : 120 min : 120 min : 120 min : 360 min : 480 min : 480 min : 600 min : 720 min : 960 min : 1440 min : 2160 min : 2880 min : 4320 min : 5760 min : 7200 min : 8640 min : 10080 min :	Summer 4 Summer 2 Summer 1 Summer 1 Summer	m/hr) .6.523 .9.955 .8.628 1.334 8.429 6.823 5.037 4.049 3.417 2.975 2.391 1.757 1.292 1.039 0.763 0.763 0.517 0.450 0.401 6.523	Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Volum (m 3) 11 11 11 12 22 22 23 33 33 34 44 44	8.4 0.8 1.3 1.6 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	(mins) 17 26 42 74 102 130 0 0 0 0 0 0 0 0 17	
15 min : 30 min : 60 min : 120 min : 120 min : 120 min : 360 min : 480 min : 600 min : 720 min : 960 min : 1440 min : 2160 min : 2880 min : 4320 min : 5760 min : 7200 min : 8640 min : 10080 min :	Summer 4 Summer 2 Summer 1 Summer 1 Summer	m/hr) .6.523 .9.955 .8.628 1.334 8.429 6.823 5.037 4.049 3.417 2.975 2.391 1.757 1.292 1.039 0.763 0.763 0.517 0.450 0.401 6.523	Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Volum (m 3) 11 11 11 12 22 22 23 33 33 34 44	8.4 0.8 1.3 1.6 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	(mins) 17 26 42 74 102 130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
15 min : 30 min : 60 min : 120 min : 120 min : 120 min : 360 min : 480 min : 600 min : 720 min : 960 min : 1440 min : 2880 min : 2880 min : 4320 min : 5760 min : 7200 min : 8640 min : 10080 min :	Summer 4 Summer 2 Summer 1 Summer 1 Summer 1 Summer	m/hr) 6.523 9.955 8.628 1.334 8.429 6.823 5.037 4.049 3.417 2.975 2.391 1.757 1.292 1.039 0.763 0.613 0.517 0.450 0.401 6.523	Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Volum (m 3) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.4 0.8 3.3 4.6 6.3 8.1 9.6 11.8 13.3 14.6 17.5 18.3 19.5 1	(mins) 17 26 42 74 102 130 0 0 0 0 0 0 0 0 17	

Infrastructure Design Studio		Page 2
31 Dyer Street	Panther House	
Cirencester	West Catchment	
Glos GL7 2PP		Micro
Date 21/05/2019 17:29	Designed by E. Partridge	
File 1461-TANK WEST.SRCX	Checked by M. Jones	Drainage
Санкемач	Source Control 2017 1 2	•

	2PP								Micco
Date 21/05/2	019 17:29	9		Des	igned l	oy E. Pa	artrid	.ge	Desipage
File 1461-TA	NK WEST.	SRCX		Che	cked by	у М. Јог	nes		Drainage
Causeway				Sou	rce Co	ntrol 20	017.1.	2	
	Summary	of	Results	s for	1 year	Return	Perio	od (+40%)	
		Stor	:m	Max	Max	Max		Status	
		Ever	it		-	Control V			
				(m)	(m)	(1/s)	(m³)		
	60	min	Winter	17.957	0.107	4.6	4.0	O K	
	120	min	Winter	17.892	0.042	4.6	1.6	O K	
			Winter			4.5	0.1	O K	
			Winter			3.8	0.0	O K	
			Winter			2.8	0.0	O K	
			Winter			2.3	0.0	O K	
			Winter			1.9	0.0	O K	
			Winter			1.7	0.0	O K	
			Winter Winter			1.4	0.0	O K	
			Winter Winter			1.0 0.7	0.0	O K	
			Winter			0.7	0.0	O K	
			Winter			0.4	0.0	o k	
			Winter			0.3	0.0	O K	
			Winter			0.3		O K	
			Winter			0.3	0.0	ОК	
			Winter			0.2	0.0	ОК	
		Stor Even			Floode Volume (m³)	d Discha Volum (m³)	ne (ne-Peak mins)	
					(111-)	(111-)			
			Winter			0 1	5.1	44	
			Winter				8.3	76	
			Winter				0.4	100	
			Winter Winter				2.0	0	
			Winter	5.03			4.4 6.1	0	
			Winter	3.41			7.6	0	
			Winter				8.8	0	
			Winter	2.391			0.8	0	
			Winter	1.75			4.0	0	
	2160	min	Winter	1.292	2 0.	0 3	7.5	0	
	2000	min	Winter	1.039	9 0.	0 4	0.2	0	
	2000	******					1 2	0	
			Winter	0.763	3 0.	0 4	4.3		
	4320 5760	min min	Winter	0.613	0.	0 4	7.4	0	
	4320 5760 7200	min min min	Winter Winter	0.613 0.517	0. 7 0.	0 4 0 5	7.4 0.1	0	
	4320 5760 7200 8640	min min min min	Winter Winter Winter	0.613 0.517 0.450	3 0. 7 0. 0 0.	0 4 0 5 0 5	7.4 0.1 2.3	0	
	4320 5760 7200 8640	min min min min	Winter Winter	0.613 0.517	3 0. 7 0. 0 0.	0 4 0 5 0 5	7.4 0.1	0	
	4320 5760 7200 8640	min min min min	Winter Winter Winter	0.613 0.517 0.450	3 0. 7 0. 0 0.	0 4 0 5 0 5	7.4 0.1 2.3	0	
	4320 5760 7200 8640	min min min min	Winter Winter Winter	0.613 0.517 0.450	3 0. 7 0. 0 0.	0 4 0 5 0 5	7.4 0.1 2.3	0	
	4320 5760 7200 8640	min min min min	Winter Winter Winter	0.613 0.517 0.450	3 0. 7 0. 0 0.	0 4 0 5 0 5	7.4 0.1 2.3	0	
	4320 5760 7200 8640	min min min min	Winter Winter Winter	0.613 0.517 0.450	3 0. 7 0. 0 0.	0 4 0 5 0 5	7.4 0.1 2.3	0	

Appendix 3 — Proposed Run-off Calculation- West Catchment 1yr

Infrastructure Design Studio		Page 3
31 Dyer Street	Panther House	
Cirencester	West Catchment	٧
Glos GL7 2PP		
Date 21/05/2019 17:29	Designed by E. Partridge	Micco
File 1461-TANK WEST.SRCX	Checked by M. Jones	Drainage
Causeway	Source Control 2017.1.2	
<u>Ra</u>	infall Details	
Dainfall Madal	EGD Winton Storms V	
Rainfall Model Return Period (years)	FSR Winter Storms You 1 Cv (Summer) 0.7	
_	and and Wales Cv (Winter) 0.8	
M5-60 (mm)	20.700 Shortest Storm (mins)	
Ratio R	0.443 Longest Storm (mins) 100	
Summer Storms	Yes Climate Change % +	40
Tin	ne Area Diagram	
Tota	al Area (ha) 0.096	
	Area Time (mins) Area (ha) From: To: (ha)	
0 4	0.048 4 8 0.048	
©1982-	2017 XP Solutions	

Appendix 3 — Proposed Run-off Calculation- West Catchment 30yr

Infrastructure Design Studio				
31 Dyer Street	Panther House			
Cirencester	West Catchment			
Glos GL7 2PP		Micco		
Date 21/05/2019 17:24	Designed by E. Partridge	Desipage		
File 1461-TANK WEST.SRCX	Checked by M. Jones	Drainage		
Causeway	Source Control 2017.1.2			

Summary of Results for 30 year Return Period (+40%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	18.349	0.499	4.6	18.7	O K
30	min	Summer	18.441	0.591	4.6	22.2	O K
60	min	Summer	18.445	0.595	4.6	22.3	O K
120	min	Summer	18.453	0.603	4.6	22.6	O K
180	min	Summer	18.415	0.565	4.6	21.2	O K
240	min	Summer	18.351	0.501	4.6	18.8	O K
360	min	Summer	18.214	0.364	4.6	13.7	O K
480	min	Summer	18.094	0.244	4.6	9.2	O K
600	min	Summer	18.000	0.150	4.6	5.6	O K
720	min	Summer	17.932	0.082	4.6	3.1	O K
960	min	Summer	17.859	0.009	4.6	0.3	O K
1440	min	Summer	17.850	0.000	3.4	0.0	O K
2160	min	Summer	17.850	0.000	2.4	0.0	O K
2880	min	Summer	17.850	0.000	1.9	0.0	O K
4320	min	Summer	17.850	0.000	1.3	0.0	O K
5760	min	Summer	17.850	0.000	1.1	0.0	O K
7200	min	Summer	17.850	0.000	0.9	0.0	O K
8640	min	Summer	17.850	0.000	0.8	0.0	O K
10080	min	Summer	17.850	0.000	0.7	0.0	O K
15	min	Winter	18.427	0.577	4.6	21.6	O K
30	min	Winter	18.539	0.689	4.6	25.8	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	132.279	0.0	23.7	20
30	min	Summer	84.469	0.0	30.3	33
60	min	Summer	51.378	0.0	37.0	58
120	min	Summer	32.718	0.0	47.0	92
180	min	Summer	24.557	0.0	53.1	126
240	min	Summer	19.794	0.0	56.9	158
360	min	Summer	14.333	0.0	62.1	222
480	min	Summer	11.282	0.0	64.9	282
600	min	Summer	9.334	0.0	67.2	338
720	min	Summer	7.978	0.0	68.8	392
960	min	Summer	6.212	0.0	71.6	496
1440	min	Summer	4.354	0.0	75.2	0
2160	min	Summer	3.061	0.0	79.4	0
2880	min	Summer	2.396	0.0	82.8	0
4320	min	Summer	1.716	0.0	88.9	0
5760	min	Summer	1.367	0.0	94.5	0
7200	min	Summer	1.155	0.0	99.8	0
8640	min	Summer	1.011	0.0	104.9	0
10080	min	Summer	0.909	0.0	109.9	0
15	min	Winter	132.279	0.0	26.6	20
30	min	Winter	84.469	0.0	34.0	33
		©19	82-2017	XP Sol	utions	·

Infrastructure Design Studio		Page 2
31 Dyer Street	Panther House	
Cirencester	West Catchment	4
Glos GL7 2PP		Micro
Date 21/05/2019 17:24	Designed by E. Partridge	
File 1461-TANK WEST.SRCX	Checked by M. Jones	Drainage
Caugarian	Sourge Control 2017 1 2	

File 1461-7	TANK WEST.SRCX	Chec	cked by	M. Jone	es		nialilar
Causeway		Sour	rce Cont	trol 201	7.1.	2	•
	Summary of Results	s for 3	0 year	Return	Peri	od (+40%)	
	Storm	Max	Max			Status	
	Event		_	ontrol Vo			
		(m)	(m)	(1/s) (m³)		
	60 min Winter	18.559	0.709	4.6	26.6	о к	
	120 min Winter	18.557	0.707	4.6	26.5	O K	
	180 min Winter	18.499	0.649	4.6	24.3	O K	
	240 min Winter				20.9		
	360 min Winter				12.6	O K	
	480 min Winter			4.6	6.2	O K	
	600 min Winter 720 min Winter			4.6 4.5	1.9	O K	
	960 min Winter			3.5	0.0	O K	
	1440 min Winter			2.5	0.0	O K	
	2160 min Winter			1.7	0.0	O K	
	2880 min Winter			1.4	0.0	O K	
	4320 min Winter			1.0	0.0	O K	
	5760 min Winter			0.8	0.0	O K	
	7200 min Winter			0.7	0.0	O K	
	8640 min Winter 10080 min Winter			0.6	0.0	O K	
	10080 MIN WINCER	17.850	0.000	0.5	0.0	O K	
			Volume (m³)	(m³)		mins)	
	60 min Winter	51.378	0.0	41.	5	60	
	120 min Winter	32.718	0.0	52.	. 5	98	
	180 min Winter					136	
	240 min Winter					174	
	360 min Winter 480 min Winter					236 292	
	600 min Winter					340	
	720 min Winter					0	
	960 min Winter	6.212	0.0	80.	2	0	
	1440 min Winter					0	
	2160 min Winter					0	
	2880 min Winter 4320 min Winter	2.396 1.716				0	
	5760 min Winter					0	
	7200 min Winter					0	
	8640 min Winter					0	
	10080 min Winter	0.909	0.0	123.	1	0	
	6100	22 2015	7 XP Sol	n+i			
	@198	52-201/	VE 201	LUCTORS			

Appendix 3 — Proposed Run-off Calculation- West Catchment 30yr

T. C		
Infrastructure Design Studio	D 11 "	Page 3
31 Dyer Street	Panther House	
Cirencester	West Catchment	
Glos GL7 2PP		Mirrn
Date 21/05/2019 17:24	Designed by E. Partridge	Drainage
File 1461-TANK WEST.SRCX	Checked by M. Jones	Drainage
Causeway	Source Control 2017.1.2	
<u>Ra</u>	infall Details	
Rainfall Model Return Period (years)	FEH Winter Storms 30 Cv (Summer) 0.	
FEH Rainfall Version	30 Cv (Summer) 0. 2013 Cv (Winter) 0.	
	31001 182083 Shortest Storm (mins)	
Data Type	Point Longest Storm (mins) 10	
Summer Storms	Yes Climate Change %	+40
m.i.	D'anna	
Tin	e Area Diagram	
Tota	l Area (ha) 0.096	
Time (mins)	Area Time (mins) Area	
	(ha) From: To: (ha)	
0 4	0.048 4 8 0.048	
©1982-	2017 XP Solutions	
•		

Appendix 3 — Proposed Run-off Calculation- West Catchment 100yr

Infrastructure Design Studio					
31 Dyer Street	Panther House				
Cirencester	West Catchment				
Glos GL7 2PP		Micco			
Date 21/05/2019 17:23	Designed by E. Partridge	Desipago			
File 1461-TANK WEST.SRCX	Checked by M. Jones	Drainage			
Causeway	Source Control 2017.1.2	•			

Summary of Results for 100 year Return Period (+40%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)		Status	
15	min	Summer	18.555	0.705	4.6	26.4	ОК
30	min	Summer	18.703	0.853	4.6	32.0	O K
60	min	Summer	18.751	0.901	4.6	33.8	O K
120	min	Summer	18.785	0.935	4.6	35.1	O K
180	min	Summer	18.775	0.925	4.6	34.7	O K
240	min	Summer	18.740	0.890	4.6	33.4	O K
360	min	Summer	18.633	0.783	4.6	29.4	O K
480	min	Summer	18.508	0.658	4.6	24.7	O K
600	min	Summer	18.357	0.507	4.6	19.0	O K
720	min	Summer	18.219	0.369	4.6	13.8	O K
960	min	Summer	18.026	0.176	4.6	6.6	O K
1440	min	Summer	17.859	0.009	4.6	0.3	O K
2160	min	Summer	17.850	0.000	3.3	0.0	O K
2880	min	Summer	17.850	0.000	2.5	0.0	O K
4320	min	Summer	17.850	0.000	1.8	0.0	O K
5760	min	Summer	17.850	0.000	1.4	0.0	O K
7200	min	Summer	17.850	0.000	1.1	0.0	O K
8640	min	Summer	17.850	0.000	1.0	0.0	O K
10080	min	Summer	17.850	0.000	0.9	0.0	O K
15	min	Winter	18.655	0.805	4.6	30.2	O K
30	min	Winter	18.833	0.983	4.6	36.9	ОК

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	175.809	0.0	31.6	21
30	min	Summer	113.111	0.0	40.8	34
60	min	Summer	69.025	0.0	49.7	60
120	min	Summer	44.121	0.0	63.4	96
180	min	Summer	33.455	0.0	72.5	130
240	min	Summer	27.202	0.0	78.4	166
360	min	Summer	19.935	0.0	86.0	234
480	min	Summer	15.794	0.0	90.8	304
600	min	Summer	13.106	0.0	94.4	368
720	min	Summer	11.215	0.0	96.9	422
960	min	Summer	8.721	0.0	100.5	530
1440	min	Summer	6.080	0.0	105.0	738
2160	min	Summer	4.213	0.0	109.2	0
2880	min	Summer	3.249	0.0	112.3	0
4320	min	Summer	2.263	0.0	117.3	0
5760	min	Summer	1.760	0.0	121.7	0
7200	min	Summer	1.458	0.0	125.9	0
8640	min	Summer	1.256	0.0	130.2	0
10080	min	Summer	1.112	0.0	134.5	0
15	min	Winter	175.809	0.0	35.3	21
30	min	Winter	113.111	0.0	45.5	34
		©198	82-2017	XP Sol	utions	

Infrastructure Design Studio	Page 2	
31 Dyer Street	Panther House	
Cirencester	West Catchment	<u></u>
Glos GL7 2PP		Micco
Date 21/05/2019 17:23	Designed by E. Partridge	Desipago
File 1461-TANK WEST.SRCX	Checked by M. Jones	Drainage
Санкоман	Source Control 2017 1 2	

1401-	/2019 17:23		_	_	Partri	490	Dra
	TANK WEST.SRCX			у М. Јо			5.0
eway		Sour	rce Coi	ntrol 2	2017.1	. 2	
	Cummanu of Decults	for 1	00	Do+	nn Dan	ind (1108)	
	Summary of Results	for 1	uu yea	r Ketui	rn Per	10a (+4U%)	-
	Storm	Max	Max	Max	Max	Status	
	Event			Control		beacus	
		(m)	(m)	(1/s)	(m ³)		
		(/	(/	(-/-/	(/		
	60 min Winter			4.6	39.8	O K	
	120 min Winter			4.6			
	180 min Winter				40.5		
	240 min Winter				38.3		
	360 min Winter 480 min Winter			4.6	32.1 24.9		
	600 min Winter			4.6	15.9		
	720 min Winter			4.6	9.1		
	960 min Winter			4.6	1.1		
	1440 min Winter			3.4	0.0		
	2160 min Winter			2.4			
	2880 min Winter			1.8		ОК	
	4320 min Winter	17.850	0.000	1.3	0.0	ОК	
	5760 min Winter	17.850	0.000	1.0	0.0	O K	
	7200 min Winter	17.850	0.000	0.8	0.0	O K	
	8640 min Winter	17.850	0.000	0.7	0.0	O K	
	10080 min Winter	17.850	0.000	0.6	0.0	O K	
	Event	(11411/111)	Volume (m³)	e Volu (m³		(mins)	
			(m-)	(1117	,		
	60 min Winter	69.025	0.	0	55.7	60	
	120 min Winter		0.	0	71.0	102	
	180 min Winter			0	81.0	140	
	240 min Winter	27.202	0.	0	81.0 87.7	140 178	
	240 min Winter 360 min Winter	27.202 19.935	0. 0.	0 0 0	81.0 87.7 96.3	140 178 254	
	240 min Winter 360 min Winter 480 min Winter	27.202 19.935 15.794	0. 0. 0.	0 0 0 0 1	81.0 87.7 96.3 02.1	140 178 254 328	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter	27.202 19.935 15.794 13.106	0. 0. 0.	0 0 0 0 1 0 1	81.0 87.7 96.3 02.1 05.8	140 178 254 328 386	
	240 min Winter 360 min Winter 480 min Winter	27.202 19.935 15.794 13.106 11.215	0. 0. 0. 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	81.0 87.7 96.3 02.1	140 178 254 328	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter	27.202 19.935 15.794 13.106 11.215 8.721	0. 0. 0. 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	81.0 87.7 96.3 02.1 05.8 08.6	140 178 254 328 386 436	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter	27.202 19.935 15.794 13.106 11.215 8.721 6.080 4.213	0. 0. 0. 0. 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	81.0 87.7 96.3 02.1 05.8 08.6 12.5	140 178 254 328 386 436 522	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter	27.202 19.935 15.794 13.106 11.215 8.721 6.080	0. 0. 0. 0. 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	81.0 87.7 96.3 02.1 05.8 08.6 12.5	140 178 254 328 386 436 522	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter	27.202 19.935 15.794 13.106 11.215 8.721 6.080 4.213 3.249 2.263	0. 0. 0. 0. 0. 0.	0	81.0 87.7 96.3 02.1 05.8 08.6 12.5 17.7 22.3 25.8 31.4	140 178 254 328 386 436 522 0 0	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter	27.202 19.935 15.794 13.106 11.215 8.721 6.080 4.213 3.249 2.263 1.760	0. 0. 0. 0. 0. 0. 0.	0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	81.0 87.7 96.3 02.1 05.8 08.6 12.5 17.7 22.3 25.8 31.4 36.3	140 178 254 328 386 436 522 0 0 0	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter	27.202 19.935 15.794 13.106 11.215 8.721 6.080 4.213 3.249 2.263 1.760 1.458	0. 0. 0. 0. 0. 0. 0.	0	81.0 87.7 96.3 02.1 05.8 08.6 112.5 117.7 222.3 25.8 31.4 36.3 41.1	140 178 254 328 386 436 522 0 0 0	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 7200 min Winter	27.202 19.935 15.794 13.106 11.215 8.721 6.080 4.213 3.249 2.263 1.760 1.458 1.256	0. 0. 0. 0. 0. 0. 0. 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	81.0 87.7 96.3 02.1 05.8 08.6 12.5 17.7 22.3 25.8 31.4 36.3 41.1 445.8	140 178 254 328 386 436 522 0 0 0 0	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter	27.202 19.935 15.794 13.106 11.215 8.721 6.080 4.213 3.249 2.263 1.760 1.458	0. 0. 0. 0. 0. 0. 0. 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	81.0 87.7 96.3 02.1 05.8 08.6 112.5 117.7 222.3 25.8 31.4 36.3 41.1	140 178 254 328 386 436 522 0 0 0	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 7200 min Winter	27.202 19.935 15.794 13.106 11.215 8.721 6.080 4.213 3.249 2.263 1.760 1.458 1.256	0. 0. 0. 0. 0. 0. 0. 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	81.0 87.7 96.3 02.1 05.8 08.6 12.5 17.7 22.3 25.8 31.4 36.3 41.1 445.8	140 178 254 328 386 436 522 0 0 0	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 7200 min Winter	27.202 19.935 15.794 13.106 11.215 8.721 6.080 4.213 3.249 2.263 1.760 1.458 1.256	0. 0. 0. 0. 0. 0. 0. 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	81.0 87.7 96.3 02.1 05.8 08.6 12.5 17.7 22.3 25.8 31.4 36.3 41.1 445.8	140 178 254 328 386 436 522 0 0 0	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 7200 min Winter	27.202 19.935 15.794 13.106 11.215 8.721 6.080 4.213 3.249 2.263 1.760 1.458 1.256	0. 0. 0. 0. 0. 0. 0. 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	81.0 87.7 96.3 02.1 05.8 08.6 12.5 17.7 22.3 25.8 31.4 36.3 41.1 445.8	140 178 254 328 386 436 522 0 0 0	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 7200 min Winter	27.202 19.935 15.794 13.106 11.215 8.721 6.080 4.213 3.249 2.263 1.760 1.458 1.256	0. 0. 0. 0. 0. 0. 0. 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	81.0 87.7 96.3 02.1 05.8 08.6 12.5 17.7 22.3 25.8 31.4 36.3 41.1 445.8	140 178 254 328 386 436 522 0 0 0	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 7200 min Winter	27.202 19.935 15.794 13.106 11.215 8.721 6.080 4.213 3.249 2.263 1.760 1.458 1.256	0. 0. 0. 0. 0. 0. 0. 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	81.0 87.7 96.3 02.1 05.8 08.6 12.5 17.7 22.3 25.8 31.4 36.3 41.1 445.8	140 178 254 328 386 436 522 0 0 0	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 7200 min Winter	27.202 19.935 15.794 13.106 11.215 8.721 6.080 4.213 3.249 2.263 1.760 1.458 1.256	0. 0. 0. 0. 0. 0. 0. 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	81.0 87.7 96.3 02.1 05.8 08.6 12.5 17.7 22.3 25.8 31.4 36.3 41.1 445.8	140 178 254 328 386 436 522 0 0 0	
	240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 7200 min Winter	27.202 19.935 15.794 13.106 11.215 8.721 6.080 4.213 3.249 2.263 1.760 1.458 1.256	0. 0. 0. 0. 0. 0. 0. 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	81.0 87.7 96.3 02.1 05.8 08.6 12.5 17.7 22.3 25.8 31.4 36.3 41.1 445.8	140 178 254 328 386 436 522 0 0 0	

Appendix 3 — Proposed Run-off Calculation- West Catchment 100yr

Infrastructure Design Studio		Page 3
31 Dyer Street	Panther House	
Cirencester	West Catchment	L
Glos GL7 2PP		Micco
Date 21/05/2019 17:23	Designed by E. Partridge	Desipago
File 1461-TANK WEST.SRCX	Checked by M. Jones	Drainage
Causeway	Source Control 2017.1.2	
Ra	infall Details	
Site Location GB 5 Data Type Summer Storms	FEH Winter Storms Your 100 Cv (Summer) 0.79 2013 Cv (Winter) 0.89 31001 182083 Shortest Storm (mins) Point Longest Storm (mins) 1000 Yes Climate Change % +-	50 40 15 80
Tin	ne Area Diagram	
Tota	al Area (ha) 0.096	
	Area Time (mins) Area (ha) From: To: (ha)	
0 4	0.048 4 8 0.048	
	'	
	0047 VD 0 1	
©1982-	-2017 XP Solutions	

Infrastructure Design Studio		Page 4
31 Dyer Street	Panther House	
Cirencester	West Catchment	٩
Glos GL7 2PP		Micco
Date 21/05/2019 17:23	Designed by E. Partridge	Desipage
File 1461-TANK WEST.SRCX	Checked by M. Jones	Drainage
Causeway	Source Control 2017.1.2	•

Model Details

Storage is Online Cover Level (m) 19.850

Tank or Pond Structure

Invert Level (m) 17.850

Depth (m	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	
0.00)	37.5	1.	100		37.5	1.	101		1.0	2.	000		1.0	

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0096-4800-1500-4800
Design Head (m) 1.500
Design Flow (1/s) 4.8
Flush-Flo™ Calculated
Objective Minimise upstream storage
Application Surface
Sump Available Yes
Diameter (mm) 96
Invert Level (m) 17.550
Minimum Outlet Pipe Diameter (mm) 150
Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.500	4.8
	Flush-Flo™	0.423	4.6
	Kick-Flo®	0.860	3.7
Mean Flow ove	r Head Range	_	4.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	3.1	1.200	4.3	3.000	6.6	7.000	9.9
0.200	4.2	1.400	4.6	3.500	7.1	7.500	10.2
0.300	4.5	1.600	4.9	4.000	7.6	8.000	10.5
0.400	4.6	1.800	5.2	4.500	8.0	8.500	10.8
0.500	4.6	2.000	5.5	5.000	8.4	9.000	11.1
0.600	4.5	2.200	5.7	5.500	8.8	9.500	11.4
0.800	4.0	2.400	6.0	6.000	9.2		
1.000	4.0	2.600	6.2	6.500	9.5		

©1982-2017 XP Solutions

Appendix 4 — Proposed Run-off Calculation- East Catchment 1yr

Infrastructure Design Studio		Page 1
31 Dyer Street	Existing Roof Attenuation	
Cirencester	East Catchment	
Glos GL7 2PP	Panther House	Micro
Date 04/03/2020 15:59	Designed by E. Partridge	Drainage
File 1461-GREEN ROOF EAST.SRCX	Checked by M. Jones	Drainage
Causeway	Source Control 2019 1	<u> </u>

Summary	of	Results	for	lucar	Roturn	Pariod	(+40%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	10.001	0.001	0.5	0.3	O K
30	min	Summer	10.002	0.002	0.5	0.9	O K
60	min	Summer	10.004	0.004	0.5	1.6	O K
120	min	Summer	10.006	0.006	0.5	2.1	O K
180	min	Summer	10.006	0.006	0.5	2.2	O K
240	min	Summer	10.006	0.006	0.5	2.2	O K
360	min	Summer	10.006	0.006	0.5	2.0	O K
480	min	Summer	10.005	0.005	0.5	1.7	O K
600	min	Summer	10.004	0.004	0.5	1.3	O K
720	min	Summer	10.003	0.003	0.5	1.0	O K
960	min	Summer	10.001	0.001	0.5	0.5	O K
1440	min	Summer	10.000	0.000	0.5	0.0	O K
2160	min	Summer	10.000	0.000	0.4	0.0	O K
2880	min	Summer	10.000	0.000	0.3	0.0	O K
4320	min	Summer	10.000	0.000	0.2	0.0	O K
5760	min	Summer	10.000	0.000	0.2	0.0	O K
7200	min	Summer	10.000	0.000	0.1	0.0	O K
8640	min	Summer	10.000	0.000	0.1	0.0	O K
10080	min	Summer	10.000	0.000	0.1	0.0	O K
15	min	Winter	10.001	0.001	0.5	0.5	O K
30	min	Winter	10.003	0.003	0.5	1.2	O K
60	min	Winter	10.006	0.006	0.5	2.0	O K
120	min	Winter	10.007	0.007	0.5	2.7	ОК
180	min	Winter	10.007	0.007	0.5	2.7	O K
240	min	Winter	10.007	0.007	0.5	2.6	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	46.758	0.0	1.3	41
30	min	Summer	30.115	0.0	2.2	54
60	min	Summer	18.730	0.0	3.0	76
120	min	Summer	11.397	0.0	4.1	120
180	min	Summer	8.477	0.0	4.7	150
240	min	Summer	6.862	0.0	5.2	182
360	min	Summer	5.063	0.0	5.9	246
480	min	Summer	4.070	0.0	6.5	308
600	min	Summer	3.436	0.0	6.9	370
720	min	Summer	2.991	0.0	7.4	430
960	min	Summer	2.404	0.0	7.9	542
1440	min	Summer	1.767	0.0	8.6	744
2160	min	Summer	1.299	0.0	9.3	0
2880	min	Summer	1.044	0.0	9.7	0
4320	min	Summer	0.767	0.0	10.0	0
5760	min	Summer	0.616	0.0	10.0	0
7200	min	Summer	0.520	0.0	9.8	0
8640	min	Summer	0.453	0.0	9.5	0
10080	min	Summer	0.403	0.0	9.3	0
15	min	Winter	46.758	0.0	1.7	44
30	min	Winter	30.115	0.0	2.7	57
60	min	Winter	18.730	0.0	3.6	78
120	min	Winter	11.397	0.0	4.8	122
180	min	Winter	8.477	0.0	5.5	160
240	min	Winter	6.862	0.0	6.1	192

@1982-2019 Innovyze

Infrastructure Design Studio	Page 2	
31 Dyer Street	Existing Roof Attenuation	
Cirencester	East Catchment	
Glos GL7 2PP	Panther House	Micro
Date 04/03/2020 15:59	Designed by E. Partridge	Drainage
File 1461-GREEN ROOF EAST.SRCX	Checked by M. Jones	Drainage
Causeway	Source Control 2019.1	

			Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Stati	18
360	min	Winter	10.006	0.006	0.5	2.2	0	K
480	min	Winter	10.004	0.004	0.5	1.6	0	K
600	min	Winter	10.003	0.003	0.5	1.0	0	K
720	min	Winter	10.002	0.002	0.5	0.6	0	K
960	min	Winter	10.000	0.000	0.5	0.0	0	K
1440	min	Winter	10.000	0.000	0.4	0.0	0	K
2160	min	Winter	10.000	0.000	0.3	0.0	0	K
2880	min	Winter	10.000	0.000	0.2	0.0	0	K
4320	min	Winter	10.000	0.000	0.2	0.0	0	K
5760	min	Winter	10.000	0.000	0.1	0.0	0	K
7200	min	Winter	10.000	0.000	0.1	0.0	0	R
8640	min	Winter	10.000	0.000	0.1	0.0	0	K
10080	min	Winter	10.000	0.000	0.1	0.0	0	K
	480 600 720 960 1440 2160 2880 4320 5760 7200 8640	360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 7200 min Winter 8640 min Winter	## 10.000 360 min Winter 10.006 480 min Winter 10.004 600 min Winter 10.003 720 min Winter 10.002 960 min Winter 10.000 1440 min Winter 10.000 2160 min Winter 10.000 2880 min Winter 10.000 4320 min Winter 10.000 5760 min Winter 10.000 7200 min Winter 10.000 8640 min Winter 10.000	Event Level Depth (m) (m) 360 min Winter 10.006 0.006 480 min Winter 10.004 0.004 600 min Winter 10.003 0.003	Sevent	Sevent	Event Level (m) Depth (m) Control (1/s) Volume (m³) 360 min Winter 10.006 0.006 0.5 2.2 0 480 min Winter 10.004 0.004 0.5 1.6 0 600 min Winter 10.003 0.003 0.5 1.0 0 720 min Winter 10.000 0.002 0.5 0.6 0 960 min Winter 10.000 0.000 0.5 0.0 0 1440 min Winter 10.000 0.000 0.4 0.0 0 2160 min Winter 10.000 0.000 0.3 0.0 0 2880 min Winter 10.000 0.000 0.2 0.0 0 4320 min Winter 10.000 0.000 0.1 0 0 7200 min Winter 10.000 0.000 0.1 0.0 0 8640 min Winter 10.000 0.000 0.1 0.0 0

	Stor		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
360	min	Winter	5.063	0.0	7.0	260
480	min	Winter	4.070	0.0	7.6	326
600	min	Winter	3.436	0.0	8.2	386
720	min	Winter	2.991	0.0	8.6	440
960	min	Winter	2.404	0.0	9.2	520
1440	min	Winter	1.767	0.0	10.0	0
2160	min	Winter	1.299	0.0	10.9	0
2880	min	Winter	1.044	0.0	11.4	0
4320	min	Winter	0.767	0.0	11.9	0
5760	min	Winter	0.616	0.0	12.0	0
7200	min	Winter	0.520	0.0	12.0	0
8640	min	Winter	0.453	0.0	11.8	0
10080	min	Winter	0.403	0.0	11.6	0

@1982-2019 Innovyze

Appendix 4 — Proposed Run-off Calculation- East Catchment 1yr

Infrastructure Design Studio		Page 3
31 Dyer Street	Existing Roof Attenuation	
Cirencester	East Catchment	
Glos GL7 2PP	Panther House	Micro
Date 04/03/2020 15:59	Designed by E. Partridge	Drainage
File 1461-GREEN ROOF EAST.SRCX	Checked by M. Jones	Drainage
Causeway	Source Control 2019.1	•

Rainfall Details

Green Roof

Area (m³) 364 Evaporation (mm/day) 3
Depression Storage (mm) 5 Decay Coefficient 0.050

Time From:	(mins) To:	Area (ha)									
0	4	0.006615	32	36	0.001335	64	68	0.000270	96	100	0.000054
4	8	0.005416	36	40	0.001093	68	72	0.000221	100	104	0.000045
8	12	0.004434	40	44	0.000895	72	76	0.000181	104	108	0.000036
12	16	0.003630	44	48	0.000733	76	80	0.000148	108	112	0.000030
16	20	0.002972	48	52	0.000600	80	84	0.000121	112	116	0.000024
20	24	0.002433	52	56	0.000491	84	88	0.000099	116	120	0.000020
24	28	0.001992	56	60	0.000402	88	92	0.000081			
28	32	0.001631	60	64	0.000329	92	96	0.000066			

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

©1982-2019 Innovyze

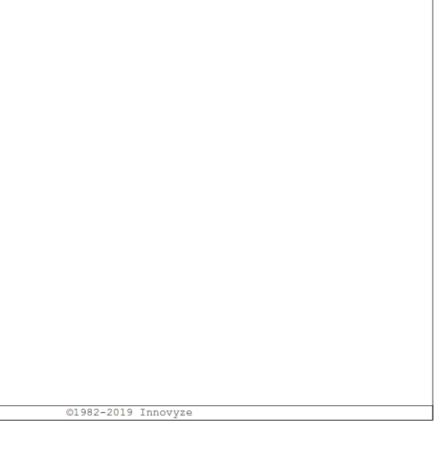
0 4 0.000

Infrastructure Design Studio		Page 4
31 Dyer Street	Existing Roof Attenuation	
Cirencester	East Catchment	
Glos GL7 2PP	Panther House	Micro
Date 04/03/2020 15:59	Designed by E. Partridge	Drainage
File 1461-GREEN ROOF EAST.SRCX	Checked by M. Jones	Drainage
Causeway	Source Control 2019.1	•

Model Details

Storage is Online Cover Level (m) 10.100

Tank or Pond Structure


Invert Level (m) 10.000

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 364.0 0.100 364.0

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.850

Appendix 4 — Proposed Run-off Calculation- East Catchment 30yr

Infrastructure Design Studio		Page 1
31 Dyer Street	Existing Roof Attenuation	
Cirencester	East Catchment	
Glos GL7 2PP	Panther House	Micro
Date 04/03/2020 15:58	Designed by E. Partridge	Drainage
File 1461-GREEN ROOF EAST.SRCX	Checked by M. Jones	Drainage
Caneovay	Source Control 2019 1	·

Summaru	of	Results	for	3.0	wear	Poturn	Pariod	(+40%)
Summary	o_{\perp}	Kesuits	TOT	30	year	Recurn	rerrod	(T4US)

	Stor	m.	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Control	Volume	
			(m)	(m)	(1/s)	(m ³)	
15	min	Summer	10.011	0.011	0.5	4.0	O K
30	min	Summer	10.016	0.016	0.5	6.0	O K
60	min	Summer	10.021	0.021	0.5	7.8	O K
120	min	Summer	10.026	0.026	0.5	9.3	O K
180	min	Summer	10.027	0.027	0.5	9.7	O K
240	min	Summer	10.026	0.026	0.5	9.5	O K
360	min	Summer	10.025	0.025	0.5	8.9	O K
480	min	Summer	10.023	0.023	0.5	8.3	O K
600	min	Summer	10.021	0.021	0.5	7.7	O K
720	min	Summer	10.020	0.020	0.5	7.1	O K
960	min	Summer	10.017	0.017	0.5	6.1	O K
1440	min	Summer	10.011	0.011	0.5	4.2	O K
2160	min	Summer	10.006	0.006	0.5	2.0	O K
2880	min	Summer	10.002	0.002	0.5	0.7	O K
4320	min	Summer	10.000	0.000	0.4	0.0	O K
5760	min	Summer	10.000	0.000	0.3	0.0	O K
7200	min	Summer	10.000	0.000	0.3	0.0	O K
8640	min	Summer	10.000	0.000	0.2	0.0	O K
0080	min	Summer	10.000	0.000	0.2	0.0	O K
15	min	Winter	10.013	0.013	0.5	4.8	O K
30	min	Winter	10.019	0.019	0.5	7.0	O K
60	min	Winter	10.025	0.025	0.5	9.1	O K
120	min	Winter	10.030	0.030	0.5	10.8	O K
180	min	Winter	10.031	0.031	0.5	11.4	O K
240	min	Winter	10.031	0.031	0.5	11.3	O K

	Stor Even		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	114.845	0.0	5.7	59
30	min	Summer	73.480	0.0	7.9	71
60	min	Summer	44.885	0.0	10.3	92
120	min	Summer	26.607	0.0	12.5	136
180	min	Summer	19.397	0.0	13.7	184
240	min	Summer	15.438	0.0	14.6	224
360	min	Summer	11.172	0.0	16.0	286
480	min	Summer	8.877	0.0	17.0	350
600	min	Summer	7.423	0.0	17.7	416
720	min	Summer	6.411	0.0	18.4	482
960	min	Summer	5.085	0.0	19.4	612
1440	min	Summer	3.665	0.0	20.9	866
2160	min	Summer	2.639	0.0	22.3	1216
2880	min	Summer	2.089	0.0	23.3	1544
4320	min	Summer	1.502	0.0	24.4	0
5760	min	Summer	1.188	0.0	24.9	0
7200	min	Summer	0.990	0.0	25.1	0
8640	min	Summer	0.853	0.0	25.1	0
10080	min	Summer	0.752	0.0	25.0	0
15	min	Winter	114.845	0.0	6.7	61
30	min	Winter	73.480	0.0	9.1	73
60	min	Winter	44.885	0.0	11.8	94
120	min	Winter	26.607	0.0	14.3	138
180	min	Winter	19.397	0.0	15.6	186
240	min	Winter	15.438	0.0	16.7	236

@1982-2019 Innovyze

Infrastructure Design Studio	Page 2	
31 Dyer Street Cirencester	Existing Roof Attenuation East Catchment	
Glos GL7 2PP	Panther House	Micro
Date 04/03/2020 15:58	Designed by E. Partridge	Drainage
File 1461-GREEN ROOF EAST.SRCX	Checked by M. Jones	Dialilage
Causeway	Source Control 2019.1	his .

Summary	of	Results	for	30	vear	Return	Period	(+40%)

	Stor		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Statu	ıs	
360	min	Winter	10.029	0.029	0.5	10.5	0	K	
		Winter				9.7	1000	73	
600	min	Winter	10.024	0.024	0.5	8.8	0	K	
720	min	Winter	10.022	0.022	0.5	7.9	0	K	
960	min	Winter	10.017	0.017	0.5	6.3	0	K	
1440	min	Winter	10.009	0.009	0.5	3.4	0	K	
2160	min	Winter	10.002	0.002	0.5	0.6	0	K	
2880	min	Winter	10.000	0.000	0.4	0.0	0	K	
4320	min	Winter	10.000	0.000	0.3	0.0	0	K	
5760	min	Winter	10.000	0.000	0.2	0.0	0	K	
7200	min	Winter	10.000	0.000	0.2	0.0	0	K	
8640	min	Winter	10.000	0.000	0.2	0.0	0	K	
10080	min	Winter	10.000	0.000	0.1	0.0	0	K	

	Stor		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
360	min	Winter	11.172	0.0	18.2	304
480	min	Winter	8.877	0.0	19.3	374
600	min	Winter	7.423	0.0	20.2	448
720	min	Winter	6,411	0.0	21.0	520
960	min	Winter	5.085	0.0	22.1	656
1440	min	Winter	3.665	0.0	23.8	910
2160	min	Winter	2,639	0.0	25.6	1220
2880	min	Winter	2.089	0.0	26.7	0
4320	min	Winter	1.502	0.0	28.0	0
5760	min	Winter	1,188	0.0	28.7	0
7200	min	Winter	0.990	0.0	29.1	0
8640	min	Winter	0.853	0.0	29.3	0
10080	min	Winter	0.752	0.0	29.3	0

@1982-2019 Innovyze

Appendix 4 — Proposed Run-off Calculation- East Catchment 30yr

Infrastructure Design Studio	Page 3	
31 Dyer Street	Existing Roof Attenuation	
Cirencester	East Catchment	
Glos GL7 2PP	Panther House	Micro
Date 04/03/2020 15:58	Designed by E. Partridge	Drainage
File 1461-GREEN ROOF EAST.SRCX	Checked by M. Jones	Drainage
Сапеонач	Source Control 2019 1	<u>'</u>

Rainfall Details

Yes	er Storms	Winter	FSR	Rainfall Model
0.750	(Summer)	Cv	30	Return Period (years)
0.840	(Winter)	Cv	gland and Wales	Region
15	m (mins)	Shortest Storm	20.800	M5-60 (mm)
10080	m (mins)	Longest Storm	0.443	Ratio R
+40	Change &	Climate (Voc	Cummor Storma

Green Roof

Time	(mins)	Area									
From:	To:	(ha)									
0	4	0.006615	32	36	0.001335	64	68	0.000270	96	100	0.000054
4	8	0.005416	36	40	0.001093	68	72	0.000221	100	104	0.000045
8	12	0.004434	40	44	0.000895	72	76	0.000181	104	108	0.000036
12	16	0.003630	44	48	0.000733	76	80	0.000148	108	112	0.000030
16	20	0.002972	48	52	0.000600	80	84	0.000121	112	116	0.000024
20	24	0.002433	52	56	0.000491	84	88	0.000099	116	120	0.000020
24	28	0.001992	56	60	0.000402	88	92	0.000081			
28	32	0.001631	60	64	0.000329	92	96	0.000066			

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

@1982-2019 Innovyze

0 4 0.000

Infrastructure Design Studio						
31 Dyer Street	Existing Roof Attenuation					
Cirencester	East Catchment					
Glos GL7 2PP	Panther House	Micro				
Date 04/03/2020 15:58	Designed by E. Partridge	Drainage				
File 1461-GREEN ROOF EAST.SRCX	Checked by M. Jones	Drainage				
Causeway	Source Control 2019.1					

Model Details

Storage is Online Cover Level (m) 10.100

Tank or Pond Structure

Invert Level (m) 10.000

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 364.0 0.100 364.

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.850

@1982-2019 Innovyze

Appendix 4 — Proposed Run-off Calculation- East Catchment 100yr

Infrastructure Design Studio						
31 Dyer Street	Existing Roof Attenuation					
Cirencester	East Catchment					
Glos GL7 2PP	Panther House	Micro				
Date 04/03/2020 15:57	Designed by E. Partridge	Drainage				
File 1461-GREEN ROOF EAST.SRCX	Checked by M. Jones	Drainage				
Causeway	Source Control 2019.1					

Summary of Results for 100 year Return Period	d /±/0%\

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Control	Volume	
			(m)	(m)	(1/s)	(m³)	
		Summer			0.5	6.2	O K
30	min	Summer	10.024	0.024	0.5	8.8	O K
60		Summer		0.031	0.5	11.4	O K
120	min	Summer	10.037	0.037	0.5	13.5	O K
180	min	Summer	10.039	0.039	0.5	14.1	O K
240	min	Summer	10.038	0.038	0.5	14.0	O K
360	min	Summer	10.036	0.036	0.5	13.2	O K
480	min	Summer	10.034	0.034	0.5	12.4	O K
600	min	Summer	10.032	0.032	0.5	11.7	O K
720	min	Summer	10.030	0.030	0.5	11.1	O K
960	min	Summer	10.027	0.027	0.5	9.8	O K
1440	min	Summer	10.021	0.021	0.5	7.5	O K
2160	min	Summer	10.013	0.013	0.5	4.8	O K
2880	min	Summer	10.007	0.007	0.5	2.7	O K
4320	min	Summer	10.001	0.001	0.5	0.3	O K
5760	min	Summer	10.000	0.000	0.4	0.0	O K
7200	min	Summer	10.000	0.000	0.4	0.0	O K
8640	min	Summer	10.000	0.000	0.3	0.0	O K
10080	min	Summer	10.000	0.000	0.3	0.0	O K
15	min	Winter	10.020	0.020	0.5	7.3	O K
30	min	Winter	10.028	0.028	0.5	10.3	O K
60	min	Winter	10.036	0.036	0.5	13.2	O K
120	min	Winter	10.043	0.043	0.6	15.6	O K
180	min	Winter	10.045	0.045	0.6	16.4	O K
240	min	Winter	10.045	0.045	0.6	16.4	ОК

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	149.442	0.0	8.3	64
30	min	Summer	96.326	0.0	11.2	76
60	min	Summer	59.033	0.0	14.0	98
120	min	Summer	34.948	0.0	16.9	140
180	min	Summer	25.392	0.0	18.6	188
240	min	Summer	20.134	0.0	19.7	242
360	min	Summer	14.493	0.0	21.4	304
480	min	Summer	11.475	0.0	22.7	368
600	min	Summer	9.568	0.0	23.6	434
720	min	Summer	8.244	0.0	24.4	500
960	min	Summer	6.513	0.0	25.6	632
1440	min	Summer	4.667	0.0	27.4	894
2160	min	Summer	3.339	0.0	29.1	1264
2880	min	Summer	2.631	0.0	30.3	1616
4320	min	Summer	1.878	0.0	31.8	2256
5760	min	Summer	1.478	0.0	32.5	0
7200	min	Summer	1.226	0.0	32.9	0
8640	min	Summer	1.053	0.0	33.0	0
10080	min	Summer	0.925	0.0	33.0	0
15	min	Winter	149.442	0.0	9.5	66
30	min	Winter	96.326	0.0	12.8	78
60	min	Winter	59.033	0.0	15.9	100
120	min	Winter	34.948	0.0	19.2	142
180	min	Winter	25.392	0.0	21.1	190
240	min	Winter	20.134	0.0	22.4	240
		©:	1982-20	19 Inno	vyze	

Infrastructure Design Studio	Page 2	
31 Dyer Street	Existing Roof Attenuation	
Cirencester	East Catchment	
Glos GL7 2PP	Panther House	Micco
Date 04/03/2020 15:57	Designed by E. Partridge	Desipage
File 1461-GREEN ROOF EAST.SRCX	Checked by M. Jones	Drainage
Causeway	Source Control 2019.1	

irencester	East	Catchme	ent			
los GL7 2PP	Panth	ner Hous	se			Micro
ate 04/03/2020 15:57	Desig	Designed by E. Partridge				
ile 1461-GREEN ROOF EAST.SRCX		Checked by M. Jones				
auseway	0.532250.1.355	e Conti				
				50000		
Summary of Resu	lts for 1	00 year	Retur	n Per	iod (+40%)	
Storm	Max	Max	Max	Max	Status	
Event	Level (m)	Depth Co	(1/s)	(m³)		
	()	(111)	(1/5)	(m.)		
	ter 10.043					
	ter 10.040					
600 min Win 720 min Win	ter 10.035	0.035	0.5	12.7	O K	
960 min Win						
1440 min Win	ter 10.020	0.020	0.5	7.4	OK	
2160 min Win						
2880 min Win						
4320 min Win 5760 min Win						
5760 min Win 7200 min Win	ter 10.000	0.000	0.3	0.0	OK	
8640 min Win	ter 10.000	0.000	0.2	0.0	OK	
10080 min Win	ter 10.000	0.000	0.2	0.0	OK	
Storm	Rain	Flooded	Discha	rge Ti	me-Peak	
Event		Volume			(mins)	
		(m³)			S-17/2	
aca second	14 400	0.0	58 5	A 9	224	
360 min Win 480 min Win	ter 11.493	0.0	2	5.7	334 392	
480 min Win 600 min Win	ter 9.568	0.0	2	6.8	466	
720 min Win	ter 8 244	0.0	2	7.7	540	
960 min Win 1440 min Win 2160 min Win 2880 min Win	ter 6.513	0.0	2	9.1	684	
1440 min Win	ter 4.667	0.0	3	1.1	956	
2880 min Win	ter 2.631	0.0	3	4.6	1320 1620	
4320 min Win	ter 1.878	0.0	3	6.3	0	
4320 min Win 5760 min Win 7200 min Win	ter 1.478	0.0	3	7.2	0	
7200 min Win	ter 1.226	0.0	3	7.8	0	
8640 min Win 10080 min Win	ter 1.053	0.0	3	8.1	0	
1000 min win	0.323	0.0	-	0.2		

Appendix 4 — Proposed Run-off Calculation- East Catchment 100yr

Infrastructure Design Studio		Page 3
31 Dyer Street	Existing Roof Attenuation	
Cirencester	East Catchment	
Glos GL7 2PP	Panther House	Micro
Date 04/03/2020 15:57	Designed by E. Partridge	Drainage
File 1461-GREEN ROOF EAST.SRCX	Checked by M. Jones	Drainage
Causeway	Source Control 2019.1	

Rainfall Details

Rainfall Model FSR Winter Storms 798
Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.800 Shortest Storm (mins) 15
Ratio R 0.443 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Green Roof

Area (m³) 364 Evaporation (mm/day) 3
Depression Storage (mm) 5 Decay Coefficient 0.050

Time	(mins)	Area									
From:	To:	(ha)									
0	4	0.006615	32	36	0.001335	64	68	0.000270	96	100	0.000054
4	8	0.005416	36	40	0.001093	68	72	0.000221	100	104	0.000045
8	12	0.004434	40	44	0.000895	72	76	0.000181	104	108	0.000036
12	16	0.003630	44	48	0.000733	76	80	0.000148	108	112	0.000030
16	20	0.002972	48	52	0.000600	80	84	0.000121	112	116	0.000024
20	24	0.002433	52	56	0.000491	84	88	0.000099	116	120	0.000020
24	28	0.001992	56	60	0.000402	88	92	0.000081			
28	32	0.001631	60	64	0.000329	92	96	0.000066			

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

@1982-2019 Innovyze

0 4 0.000

Infrastructure Design Studio			
31 Dyer Street	Existing Roof Attenuation		
Cirencester	East Catchment		
Glos GL7 2PP	Panther House		
Date 04/03/2020 15:57	Designed by E. Partridge		
File 1461-GREEN ROOF EAST.SRCX	Checked by M. Jones		
Causeway	Source Control 2019.1		
Storage is	Model Details Online Cover Level (m) 10.100		
Storage is t	SHITHE COVEL DEVEL (M) 10.100		
<u>Tank</u>	or Pond Structure		
Inv	ert Level (m) 10.000		
Depth (m) A	rea (m²) Depth (m) Area (m²)		
0.000	364.0 0.100 364.0		
Orif	ice Outflow Control		
Diameter (m) 0.025 Dischar	ge Coefficient 0.600 Invert Level (m) 9.850		
I			

@1982-2019 Innovyze

Page 4

Drainage

Appendix 5 — Sustainable Drainage Proforma — Sheet 1

GREATERLONDONAUTHORITY

	Project / Site Name (including sub- catchment / stage / phase where appropriate)	Panther House	
	Address & post code	Grays Inn Road, London, WC1X 0AN	
	OS Grid ref. (Easting, Northing)	E 530982	
	Os Grid Fer. (Easting, Northing)	N 182069	
tails	LPA reference (if applicable)		
1. Project & Site Details	Brief description of proposed work	Redevelopment and addition of extra floors to existing commercial/office development	
	Total site Area	2120 m ²	
	Total existing impervious area	2120 m ²	
	Total proposed impervious area	2120 m ²	
	Is the site in a surface water flood risk catchment (ref. local Surface Water Management Plan)?	Critical Drainage Area Group3_003 - See FRA section 4.2.2	
	Existing drainage connection type and location	1 Connection onto Mount Pleasant & 1 connection onto Grays Inn Road	
	Designer Name	M. Jones	
	Designer Position	Director	
	Designer Company	IDS Ltd. (for Eckersley O'Callaghan)	

	2a. Infiltration Feasibility						
	Superficial geology classification Lynch Hill Gravel						
	Bedrock geology classification		London Clay				
	Site infiltration rate	N/A	m/s				
	Depth to groundwater level	4	m belo	w ground level			
	Is infiltration feasible?		No				
	2b. Drainage Hierarchy						
ements			Feasible (Y/N)	Proposed (Y/N)			
ang	1 store rainwater for later use		N	N			
rge Arr	2 use infiltration techniques, such a surfaces in non-clay areas	N	N				
2. Proposed Discharge Arrangements	3 attenuate rainwater in ponds or of features for gradual release	open water	N	N			
ropose	4 attenuate rainwater by storing in sealed water features for gradual re		Υ	Y			
2. P	5 discharge rainwater direct to a w	atercourse	N	N			
	6 discharge rainwater to a surface sewer/drain	water	N	N			
	7 discharge rainwater to the comb	ined sewer.	Υ	Υ			
	2c. Proposed Discharge Details						
	Proposed discharge location	As existing					
	Has the owner/regulator of the discharge location been consulted?	See Drainage Strategy					

Appendix 5 — Sustainable Drainage Proforma — Sheet 2

GREATER LONDON AUTHORITY

	3a. Discharge Rat	tes & Required Sto	rage				
		Greenfield (GF) runoff rate (I/s)	Existing discharge rate (l/s)	Required storage for GF rate (m³)	Proposed discharge rate (I/s)		
	Qbar	0.8	> <	> <	> <		
	1 in 1	0.6	10.49	26	9.19		
	1 in 30	1.7	41.57	57	20.32		
	1 in 100	2.5	55.67	71	26.13		
	1 in 100 + CC		><	108	26.13		
	Climate change o	allowance used	40%				
rategy	3b. Principal Met Control	hod of Flow	Hydrobrake & Roof Outlet Orifice				
e St	3c. Proposed Sul	OS Measures					
Drainage Strategy			Catchment area (m²)	Plan area (m²)	Storage vol. (m³)		
3.	Rainwater harves	sting	0	$\overline{}$	0		
	Infiltration syster	ns	0		0		
	Green roofs		260	260	11.7		
	Blue roofs		104	104	4.68		
	Filter strips		0	0	0		
	Filter drains		0	0	0		
	Bioretention / tre	ee pits	0	0	0		
	Pervious paveme	ents	0	0	0		
	Swales		0	0	0		
	Basins/ponds		0	0	0		
	Attenuation tank	S	2120	\geq	38		
	Total		2484	364	54.38		

	4a. Discharge & Drainage Strategy	Page/section of drainage report		
	Infiltration feasibility (2a) – geotechnical factual and interpretive reports, including infiltration results	5.4		
	Drainage hierarchy (2b)	5.4		
uc	Proposed discharge details (2c) – utility plans, correspondence / approval from owner/regulator of discharge location	Drainage Connections re-used 5.12		
4. Supporting Information	Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations	Appendix 2 - 6		
ting Inf	Proposed SuDS measures & specifications (3b)	5.6		
bod	4b. Other Supporting Details	Page/section of drainage report		
Sup	Detailed Development Layout	Appendix 1		
4.	Detailed drainage design drawings, including exceedance flow routes	Appendix 1		
	Detailed landscaping plans	Appendix 1		
	Maintenance strategy	Section 7		
	Demonstration of how the proposed SuDS measures improve:			
	a) water quality of the runoff?	Roofwater discharge only		
	b) biodiversity?	No Change		
	c) amenity?	No Change		

