

PHOTOGRAPHIC LOG

Client name: Rocco Ventures

Ltd

Site Location: Royal College Street

Photo No. 11

Date: 26-07-19

Direction Photo Taken: West

Description:

View of Royal College Street and residential properties beyond

Photo No. 12

Date: 26-07-19

Direction Photo Taken: South

Description:

Rubbish adjacent to tyre store

PHOTOGRAPHIC LOG

Client name: Rocco Ventures Ltd **Site Location: Royal College Street**

Photo No.

Date: 26-07-19

Direction Photo Taken: North east

Description:

Japanese Knotweed on central eastern site boundary.

Photo No. 14

Date: 26-07-19

Direction Photo Taken: East

Description:

Japanese Knotweed on central eastern site boundary.

PHOTOGRAPHIC LOG

Client name: Rocco Ventures

Ltd

Site Location: Royal College Street

Photo No. 15

Date: 26-07-19

Direction Photo Taken: South

Description:

Retaining wall to car park outside eastern site boundary

Photo No. 16

Date: 16-08-19

Direction Photo Taken: North

Description:

TP1 - Golden Lion Public House. Masonry wall to public house to the north. Possible footing to northern ATS building to the south.

PHOTOGRAPHIC LOG

Client name: Rocco Ventures

Ltd

Site Location: Royal College Street

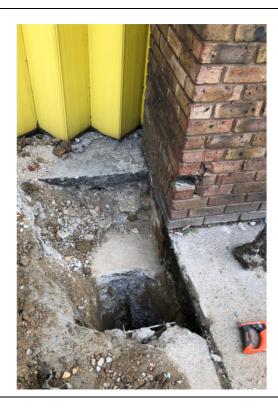
Photo No. 17

Date: 16-08-19

Direction Photo Taken: North

Description:

TP1 – Golden Lion Public House. Masonry wall to public house to the north. Possible footing to northern ATS building to the south.


Photo No. 18 Date: 16-08-19

Direction Photo Taken:

East

Description:

TP2 – Central ATS building to the top of the picture

PHOTOGRAPHIC LOG

Client name: Rocco Ventures

Ltd

Site Location: Royal College Street

Photo No.

Date: 16-08-19

Direction Photo Taken:

East

Description:

TP2 – Central ATS building to the top of the picture

Photo No. 20

Date: 16-08-19

Direction Photo Taken: South

Description:

TP3 – Tyre centre mass concrete footing exposure

APPENDIX G TECHNICAL BACKGROUND

H1 Desk Study

Aquifer designation and Source protection zones

Principal aquifer: layers of rock or drift deposit that have high intergranular and/or fracture permeability (usually providing a high level of water storage). They may support water supply and/or river base flow on a strategic scale.

Secondary A aquifer: permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers.

Secondary B aquifer: predominantly lower permeability layers that may store and yield limited amounts of groundwater due to localised features such as fissures, thin permeable horizons and weathering.

Secondary undifferentiated aquifer: it has not been possible to attribute either a category A or B to a rock type. In most cases this means that it was previously designated as both a minor and non-aquifer in different locations owing to the variable characteristics.

Unproductive' strata: low permeability with negligible significance for water supply or river base flow.

The EA generally adopts a three-fold classification of source protection zones (SPZ) surround abstractions for public water supply. The Site is situated in an area defined as follows:

- Zone 1 or the 'inner protection zone' is located immediately adjacent to the groundwater source and is based on a 50-day travel time from any point below the water table to the source.
 It is designed to protect against the effects of human activity and biological/chemical contaminants that may have an immediate effect on the source
- Zone 2 or the 'outer protection zone' is defined by a 400-day travel time from a point below the water table to the source. The travel time is designed to provide delay and attenuation of slowly degrading pollutants
- Zone 3 or the 'total catchment' is the area around the source within which all groundwater recharge is presumed to be discharged at the source.

Preliminary risk assessment methodology

CLR11 outlines the framework to be followed for risk assessment in the UK. The framework is designed to be consistent with UK legislation and policies including planning. Under CLR11, three stages of risk assessment exist: preliminary, generic quantitative and detailed quantitative. An outline conceptual model should be formed at the preliminary risk assessment stage that collates all the existing information pertaining to a site in text, tabular or diagrammatic form. The outline conceptual model identifies potentially complete (termed possible) contaminant linkages (contaminant–pathway–receptor) and is used as the basis for the design of the site investigation. The outline conceptual model is updated as further information becomes available, for example as a result of the site investigation.

Production of a conceptual model requires an assessment of risk to be made. Risk is a combination of the likelihood of an event occurring and the magnitude of its consequences. Therefore, both the likelihood and the consequences of an event must be taken into account when assessing risk. RSK has adopted guidance provided in CIRIA C552 for use in the production of conceptual models.

The likelihood of an event can be classified on a four-point system using the following terms and definitions based on CIRIA C552:

- highly likely: the event appears very likely in the short term and almost inevitable over the long term or there is evidence at the receptor of harm or pollution
- likely: it is probable that an event will occur or circumstances are such that the event is not inevitable, but possible in the short term and likely over the long term
- low likelihood: circumstances are possible under which an event could occur, but it is not certain even in the long term that an event would occur and it is less likely in the short term
- unlikely: circumstances are such that it is improbable the event would occur even in the long term.

The severity can be classified using a similar system also based on CIRIA C552. The terms and definitions relating to severity are:

- severe: short term (acute) risk to human health likely to result in 'significant harm' as defined by the Environment Protection Act 1990, Part IIA. Short-term risk of pollution of sensitive water resources. Catastrophic damage to buildings or property. Short-term risk to an ecosystem or organism forming part of that ecosystem (note definition of ecosystem in 'Draft Circular on Contaminated Land', DETR 2000)
- medium: chronic damage to human health ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000), pollution of sensitive water resources, significant change in an ecosystem or organism forming part of that ecosystem
- mild: pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000). Damage to sensitive buildings, structures or the environment
- minor: harm, not necessarily significant, but that could result in financial loss or expenditure
 to resolve. Non-permanent human health effects easily prevented by use of personal
 protective clothing. Easily repairable damage to buildings, structures and services.

Once the probability of an event occurring and its consequences have been classified, a risk category can be assigned according to the table below.

			Consequences										
		Severe	Medium	Mild	Minor								
	Highly likely	Very high	High	Moderate	Moderate/low								
Probability	Likely	High	Moderate	Moderate/low	Low								
Prob	Low likelihood	Moderate	Moderate/low	Low	Very low								
	Unlikely	Moderate/low	Low	Very low	Very low								

Definitions of these risk categories are as follows together with an assessment of the further work that may be required:

- very high: there is a high probability that severe harm could occur or there is evidence that severe harm is currently happening. This risk, if realised, could result in substantial liability; urgent investigation and remediation are likely to be required
- high: harm is likely to occur. Realisation of the risk is likely to present a substantial liability.
 Urgent investigation is required. Remedial works may be necessary in the short term and are likely over the long term
- moderate: it is possible that harm could arise, but it is unlikely that the harm would be severe
 and it is more likely that the harm would be relatively mild. Investigation is normally required
 to clarify the risk and determine the liability. Some remedial works may be required in the
 longer term
- low: it is possible that harm could occur, but it is likely that if realised this harm would at worst normally be mild
- very low: there is a low possibility that harm could occur and if realised the harm is unlikely to be severe.

H2 Site Investigation Methodology

Ground gas monitoring

An infrared gas meter was used to measure gas flow, concentrations of carbon dioxide (CO_2), methane (CH_4) and oxygen (O_2) in percentage by volume, while hydrogen sulphide (H_2S) and carbon monoxide (CO) were recorded in parts per million. Initial and steady state concentrations were recorded. In addition, during the first monitoring round, all wells were screened with a PID to establish if there are any interferences and cross-sensitivity of other hydrocarbons with the infrared gas meter.

Low flow groundwater sampling

Groundwater samples were retrieved using a United States Environment Protection Agency (USEPA) approved low-flow purging and sampling methodology.

The low-flow method relies on moving groundwater through the well screen at approximately the same rate as it flows through the geological formation. This results in a significant reduction in the volume of water extracted before sampling and significantly reduces the amount of disturbance of the water in the monitoring well during purging and sampling. Drawdown levels in the monitoring well and water quality indicator parameters (pH, temperature, electrical conductivity, redox potential and dissolved oxygen) are monitored during low-flow purging and sampling, with stabilisation indicating that purging is complete and sampling can begin. As the flow rate used for purging, in most cases, is the same or only slightly higher than the flow rate used for sampling, and because purging and sampling are conducted as one continuous operation in the field, the process is referred to as low-flow purging and sampling.

H3 Site Investigation Methodology

Statistical assessment

Statistical analysis of the results has been conducted in accordance with *Guidance on Comparing Soil Contamination Data with a Critical Concentration* (CIEH and CL:AIRE, 2008) as detailed in Appendix D.

Statistical analysis is utilised to establish whether the land is suitable for the proposed use under the land use planning system by attempting to answer a key question. For a site being developed the key question is: 'can we confidently say that the level of contamination on this land is low relative to some appropriate measure of risk?' More specifically, this is expressed as 'Is there sufficient evidence that the true mean concentration of the contaminant (μ) is less than the critical concentration (C_c)?', where the critical concentration could be the GAC or a site-specific assessment criterion (SSAC). The true mean (μ) is unknown and therefore a conservative estimate, termed the upper confidence limit (UCL), of this value is derived from the data. The UCL is then compared against the GAC.

In statistical terms the question above is handled through the use of a formal hypothesis – the null hypothesis and the alternate hypothesis. The statistical tests are structured to show (with a defined level of confidence, in this case 95%) which of the two hypotheses is most likely to be true, by determining whether the null hypothesis can be rejected.

For consideration under the planning regime, the null (H_0) and alternative (H_1) hypotheses are presented below.

Null and alternative hypotheses

Hypothesis	Equation	Description
Null (H ₀)	µ ≥ C _c	The true mean concentration is equal to, or greater than, the critical concentration
Alternative (H ₁)	μ < C _c	The true mean concentration is less than the critical concentration

Therefore, if the null hypothesis is accepted for a certain contaminant it can be concluded that its concentration is high relative to the critical concentration, which in the case of this assessment is taken to be the GAC/SSAC and as such the whole site may be classed as being contaminated by a particular substance.

In addition, the statistical guidance provides an outlier test (Grubbs' test) that has been used within this assessment for the identification of 'outliers' or 'hotspots'. The 'outlier' test is conducted before undertaking statistical analysis (and 'outliers' may be removed from the dataset) but **only** where the conceptual model supports this.

The statistical tests applied to the dataset are selected based on whether the data is normally or non-normally distributed. The distribution of the dataset has been assessed using the Shapiro-Wilks normality test. Where the dataset has been found to be normally distributed the one sample t-test is undertaken. Where data has been found to be non-normally distributed Chebyshev's theorem is utilised.

Reuse of suitable materials

The Definition of Waste: Development Industry Code of Practice (CL:AIRE, 2011) (CoP) was developed in consultation with the Environment Agency and development industry to enable the re-use of materials under certain scenarios and subject to demonstrating that specific criteria are met. The current reuse scenarios covered by the CoP comprise

- reuse on the site of origin (with or without treatment)
- direct transfer of clean and natural soils between sites
- use in the development of land other than the site of origin following treatment at an authorised Hub site (including a fixed soil treatment facility).

The importation of made ground soils (irrespective of contamination status) or crushed demolition materials is not permitted currently under the CoP and requires either a standard rules environmental permit or a U1 waste exemption (see below).

In the context of excavated materials used on-sites undergoing development, four factors are considered to be of particular relevance in determining if the material is a waste or when it ceases to be waste:

- the aim of the Waste Framework Directive is not undermined, i.e. if the use of the material will create an unacceptable risk of pollution of the environment or harm to human health it is likely to be waste
- the material is certain to be used
- the material is suitable for use both chemically and geotechnically
- only the required quantity of material will be used.

The CoP requires the preparation of a materials management plan (MMP) that confirms the above factors will be met. This plan needs to be reviewed by a 'Qualified Person' (QP) who will then issue a declaration form to the EA. As the project progresses, data must be collated and on completion a verification report produced that shows the MMP was followed and describes any changes.

The MMP establishes whether specific materials are classified as waste and how excavated materials will be treated and/or reused in line with the CoP. The MMP is likely to form part of the site waste management plan.

APPENDIX H EXPLORATORY HOLE RECORDS

										_	• • • • • • • • • • • • • • • • • • • •			
Contract:								Client:				Boreho	le:	
Roy	reet,	Lond	don			Roc	co Ventures L	₋td.			BH1			
Contract Re	f:			Start:	14.08	8.19	Grour	nd Level:		Co-ordinates:		Sheet:		
3	719	944		End:	15.08	8.19					-		1	of 3
Samp	les a	and In-si	tu Tests	 S	er	& 7 5						ped le	Depth	Material
Depth	No	Туре		sults	Water	Backfill & Instru-			Desc	cription of Strata		Reduced Level	(Thick ness)	Graphic Legend
-		_					MAL	E GROUN				-	0.20	
0.25 0.50	1	D PID	0.20	ppm			MAL	DE GROUN d is fine to	ID: Brown	slightly sandy slight Gravel is angular to	tly gravelly CLAY.		-	
0.60	2	D	0.2	ррпп			coar	se flint, brid	ck, asphal	and concrete.	o rounded line to	-		
1.20-1.65	1	SPT(c)	1,2/2	.,1,2,1										
- 1.50	3	D	N	=6								-	(3.20)	
	2	SPT	2 2/2	2,2,3,3								-	- /	
2.00	4	D	N=	=10									-	
2.50	5	Ď												
3.00-3.45	6	U	39 b	olows								-	3.40	
3.50	7	D					Firm	light brown	n silty CLA	Y.				X X
-							(LUI	NDON CLA	AY FURIVIA	ATION)		-	_	xx
4.00-4.45	3	SPT		,5,6,6 =21			oc	casional ba	ands of silf	below 4.00m depth	L	-	-	× ×
- 4.00 - 4.50	8 9	D D										-	-	
5.00-5.45	10	U	56 h	olows								-	- - -	
_ 5.00-5.45 - -	10		30 L	JIOWS								-	-	
5.50	11	D										-	- - -	× _ ×
6.00-6.45	4	SPT		,6,6,7										× _ ×
6.00	12	D	N=	=23			be	comes stiff	below 6.0	00m depth.			(6.20)	× _ ×
-												-	-	<u> </u>
7.00	13	D											-	<u>xx</u>
7.50-7.95	14	U	69 b	olows								-	-	xx
													-	xx
-														xx
8.50	15	D												xx
9.00-9.45	5	SPT	4,4/5	5,5,7,8								-		<u> </u>
- 9.00	16	D	N=	=25									9.60	
-							Stiff	to very stiff	f, grey silty	CLAY.		-		<u>x _ x</u>
10.00	17	D					3					-	-	xx
10.50-10.95	18	U	81 h	olows			oc dept	casional po h.	ockets of	fine selenite crysta	als below 10.00m		-	<u>xx</u>
- 10.00-10.00	'0		016									_	_	xx
												-	-	xx
11.50	19	D										-		
F	1					₩₩	inc	reace in at	nundance	of thin claystone ha	nds to 20 10m	F I	-	XX

Drilled

CJA

	t
ADJT1	4.00 4.50
- 09:57	5.00-5.4
J - v8_0' /09/19 -	5.50
EET.GP.	6.00-6.4
SE STR w.rsk.co	6.00
COLLEC	7.00
ROYAL 37550, W	7.50-7.9
371944 31442 43	- - -
- A4P 3), Fax: 0	8.50
N LOG 2 437500	9.00-9.4
CUSSIC el: 01442	9.00
LE PER 9RT. Te	10.00
og CAB ire, HP3	10.50-1
8_07 L rtfordshi	-
ersion: v :ead, He	11.50
11 PrjV Iempst	
7_00 mel F	
on: v8_0 toad, Her	Date
ersio re Ro	14/08/19
LibV	14/08/19
7.GLB 18 Fro	15/08/19 15/08/19
Y_V8_0 ent Ltd,	
BRAR)	
SINT LI	Method Used:
OH	

Inspection pit +

Cable percussion

E	Boring Pro	gress and	Chiselling / Slow Progress						
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	From	То	Duration (hh:mm)	
14/08/19 14/08/19 15/08/19 15/08/19	08:00 19:00 07:00 19:00	0.00 11.00 11.00 30.45	- 1.70 1.70 1.70	0 150 150 150	Dry Dry Dry	20.20	20.40	00:33	1. 2.
									3.
								[

Dando 2000

Plant Used:

General Remarks

- 1. Inspection pit hand dug to 1.20m depth.
- Down borehole checks for buried ferrous objects carried out during drilling by specialist unexploded ordnance (UXO) officer using magnetometer at regular intervals to 12.00m depth.

 No groundwater encountered.
- 3. No groundwater encountered.

All dimensions in metres | Scale: 1:67

Logged **SAI Hilly** Checked By:

AGS

										DOIL				•	
Contract:	Contract:								Client:			Borehole:			
Royal College Street, London						R	Rocco Ventures Ltd.					E	3H1		
Contract Re	f:			Start:	14.0	8.19	Grour	nd Level:		Co-ordinates:		Sheet:			
;	3719	944		End:	15.0	8.19							2	of	3
Samp	oles a	and In-si	itu Tests	3	Water	ackfill & Instru-		_	_			educed	Depth		aterial
Depth	No	Туре	Res	sults		Back Inst		L	Des	cription of Strata		Redu Le	(Thick ness)	٠ .	raphic egend
12.00-12.45	6	SPT		,6,7,8 =27				to very stiff, grey				-	-	×	- <u>×</u>
12.00	20	D		-21						Om from previous sheet)		- - -		× .	×

	-						Ē	Ē	xx
	13.00	21	D						xx
	13.50-13.95	22	U	91 blows					
							Ē	Ē	<u> </u>
	- - -								xx
	<u></u>		_						
	14.50	23	D				Ē	Ē	×
	_ 15.00-15.45	7	SPT	5,6/7,8,9,9			F	F	××
	-			N=33					<u>xx</u>
	15.00	24	D						<u> </u>
	-						Ė	Ė	
	16.00	25	D						× ×
Ę	- 16.50-16.95	26	U	98 blows			Ė	Ė	<u> </u>
AD	-	20	J	30 blows					× ×
9:57	- -						Ē	-	
9-0	- -								× ×
9- v8 09/1	17.50	27	D						xx
.GP.	_ 18.00-18.45	8	SPT	7,7/10,12,13,14			-	-	X
o.uk.	-			N=49		rare bioturbation noted below 18.00m depth.			
STF rsk.c	18.00	28	D			·	-		× ×
WW.	-						_	_	xx
SOLI (eb:)	19.00	29	D				_	_	x x
9, ¥	19.50-19.95	30	U	114 blows			Ė	Ė	<u>×</u>
1 RO	19.50	30	D	114 510003			-	(20.85)	× ×
1944 142 4	-						-	120.00)	××
137 c: 014	-					grey claystone band from 20.10m to 20.50m.			× ×
, Faÿ	20.50	31	D				Ė	Ė	
7500	_ 	9	SPT	7,8/10,12,14,14					X
12 43	.			N=50					<u>x </u>
USSI 0147	21.00	32	D						
Tel:	- -								×
PRT.	22.00	33	D						× ×
CAB HP3	22.50-22.95	34	U	126 blows					<u>x </u>
Log ire,		0.		120 510110					<u>x</u>
07 ordsl	-						-	-	×
r: v8 Herti	:		_				-	-	X
01 PrjVersion: v8_07 Log CABLE PERCUSSION LOG - A4P 371944 ROYAL COLLEGE STREET GPJ - v8_07. Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437560, Fax: 01442 437560, Web: www.rsk.co.uk. 19009/19 - 09:57 ADJT1	23.50	35	D				Ē	-	xx
PrjV¢ mpsti	-						<u> </u>	<u> </u>	⊢
두후									

23.50	35	D										xx
	Boring F	rogress	s and	Water Ob	servations	3	Chisel	ling / Slow I	Progress	General	Domai	rke
Date	Time	Bore	hole	Casing Depth	Borehole Diameter	Water Depth	From	То	Duration (hh:mm)	General	Nemai	NS
			Pul	2 Spui	(mm)	Бори				4. 50mm diameter wate with flush protective of depth on completion. to 6.00m. 5. 35mm diameter gas of flush protective cover depth on completion. All dimensions in metres	lled to 6.00m zone 2.00m complete with to 1.00m	
Method Used:	Inspe Cable	ection percu				ando 200	00	Drilled By:	CJA	Logged SAI Hilly By:	Checked By:	AGS

GINT_LIBRARY_V8_07.GLB LibVersion: v8_07_001 PriVersion: v8_07 | Log CABLE PERCUSSION LOG - A4P | 371944 ROYAL COLLEGE STREET.GPJ - v8_07.
RSK Environment Ltd, 18 Frogmore Road, Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk. | 19/09/19 - 08

Contract:							Client:				Boreho	ole:	
	al (Collec	ge Street	. Lo	ndon			Roc	co Ventures	Ltd.			BH1
Contract Re					I.08.19	Grour	nd Level:		Co-ordinates:		Sheet:		
3	719	944	End	: 1 8	5.08.19				-			3	of 3
Samp	les a	ınd In-si	tu Tests		re ≡ er	5					ced	Depth	Material
Depth	No	Туре	Results		Water Backfill & Instru-			Desc	cription of Strata		Reduced Level	(Thick ness)	Graphic Legend
24.00-24.45	10	SPT	8,8/10,11,13, N=49	15		Stiff	to very stiff, gr	ey silty	CLAY.			_	<u> </u>
24.00	36	D	14-43			(stra	NDON CLAY F atum copied fro	m 9.60	m from previous s	heet)	Ė	-	xx
_ - 25.00 -	37	D										-	xx
25.50-25.95	38	U	156 blows								E	-	xx
											F	- - -	xx
26.50	39	D											× ×
	11	SPT	8,9/11,13,13, for 65mm	13									- xx
27.00	40	D	N=52*									-	xx
28.00	41	D										-	xx
28.50-28.95	42	U	176 blows								Ė	-	× ×
											E	-	
29.50	43	D									Ē	- - - -	xx xx
30.00-30.42	12	SPT	8,10/13,14,15 for 45mm	5,8								30.45	xx
30.00	44	D	N=56*		*****	Bore	ehole terminate	d at 30).45m depth.		E		
-											-	-	
-												-	
-												-	
											E	-	
											E	-	
											Ē		
- - -											-	-	
- - -											Ē		
<u>-</u> -											E	-	
											Ē		

	Boring Progress and Water Observations						ling / Slow F	Progress	General	Domark		
Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration	General	Remair	(5	
Date	11110	Depth	Depth	(mm)	Depth	110111		(hh:mm)	to 1.00m.			
									10 1.00111.			
									All dimensions in metres	Scale: 1	1:67	
Method	Inspec	tion pit -	⊦ Plar				Drilled		Logged SAI Hilly	Checked		
Used:	Cable p	ercussic	n ^{Use}	d: D a	ando 200	0	By:	CJA	By:	By:		AGS

GINT_LIBRARY_V8_07.GLB LibVersion: v8_07_001 PrjVersion: v8_07 | Log_CABLE PERCUSSION LOG - A4P | 371944 ROYAL COLLEGE STREET.GPJ - v8_07.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk. | 19/09/19 - 09:57 | ADJT1 |

Contract:						Client:		Boreho	ole:	
	al (Collec	ge Street,	London			co Ventures Ltd.			BH2
Contract Re			<u> </u>	13.08.19	Grour	nd Level:	Co-ordinates:	Sheet:		
3	719	944	End:	14.08.19						of 3
Samo	les a	ınd In-si	tu Tests	_ ~ @ G	5			pe d	Depth	Material
Depth	No	Туре	Results	Water Backfill & Instru-			cription of Strata	Reduced Level	(Thick ness)	
0.20	1	D		2 💆	- 1/	DE GROUND: Aspha		1	10.08 0.15	
0.50	2	D PID	0.2ppm		MAI San	DE GROUND: Brown	medium to coarse SAND. slightly sandy slightly gravelly CLAY. ravel is angular to subangular fine to nd concrete.		(1.15)	
1.20-1.65	1	SPT	1,2/1,2,2,2				htly gravelly CLAY. Gravel is angular	-	1.30	XXXX x0xc
- - 1.20 - 1.50	3 4	D D	N=7		to r	ounded fine to coal SSIBLE REWORKE	se flint, chert and mixed lithology.	-	(0.90)	X X
2.00-2.45	5	U	38 blows		Fire	a brown grovelly CLA	V. Crovel is angular to rounded fine	E	2.20	**************************************
2.50	6	D			o to	coarse flint, chert WORKED LONDON	Y. Gravel is angular to rounded fine and mixed lithology. (POSSIBLE CLAY)	-	(1.10)	× ×
_ 3.00-3.45	2	SPT	3,3/4,3,4,3					E	3.30	× -×
- - 3.00 - 3.50	7 8	D D	N=14		Firm	n light brown silty CLA NDON CLAY FORMA	Y. ation)		- 0.00	<u> </u>
4.00-4.45	9	U	45 blows							X X
4.50	10	D			he	ecomes dark brown d	rey below 4.50m depth.	- - - -	-	xx
_ 5.00-5.45	3	SPT	4,6/6,10,8,8			Joonnes dank brown gi	cy below 4.com depail.	Ē		<u> </u>
5.00 5.50	11 12	D D	N=32					-	(5.00)	x
- 6.00-6.45	13	U	108 blows		· .			-		
6.50	14	D						-		x - x - x
7.50-7.95	4	SPT	5,6/7,10,9,8					-		
E			N=34		be	ecomes stiff below 7.5	0m depth.	Ė	-	×x
-7.50	15	D			Ctiff	to very stiff grey silty	CLAV	-	8.30	xx
8.50	16	D			(LO	NDON CLAY FORM	ATION)	Ē	-	
9.00-9.45	17	U	80 blows					Ē		xx
9.50	18	D						-	-	xx
-								- - -		
10.50-10.95	5	SPT	5,7/7,8,8,9					Ė		
10.50	19	D	N=32					<u> </u>		× - ×
11.50	20	D						-		- xx

=	ļ
ADJT1	٠
37 A	
_07. - 09:57	F
J - v8_C /09/19 -	1
PJ -	ļ ;
TREET.GPJ - co.uk. 19/0	
TRE	Ė
OLLEGE ST 3: www.rsk	١,
OLLEGE bb: www.	F
ROYAL COLI	Ė
2YAI 550,	ļ.
44 R(
37194 1442	Ė
4P 3	Ė,
3- A 00, F	Ė.
N LOG - A4P 371944 RC 437500, Fax: 01442 437	
SION 442 4	Ė
RCUSSION el: 01442	١.
LE PER(9RT. Te	Ė
3 9R	Ė
ŞΗ	
Log shire	Ė,
rsion: v8_07 Log CA ad, Hertfordshire, HF	Į.
m: v8	
ersic tead,	Ė
PrjV emps	
el He	
⁸ 07 Herr	
ion: v Road,	
LibVersion: v8_07_001 PrjVersion: v8_07 Log CABL gmore Road, Hemel Hempstead, Hertfordshire, HP3 9	1 1 1
B Lib rogm	
7.GL 18 F	1
GINT_LIBRARY_V8_07.GLB L RSK Environment Ltd, 18 Frog	
RY \	
BRA /ironr	
I En	N
SS SS	ľ

nel T	i i	Boring Pro	gress and	Water	Observa	tions	3	Chisel	ling / Slow F	Progress	General Remarks
Heme	Date	Time	Borehole	Casin	ng Borel		Water	From	То	Duration	General Remarks
Road,	Date	Tillic	Depth	Dept			Depth	1 10111	10	(hh:mm)	1. Position checked with Ground Penetrating
ē Ā	13/08/19	08:00	0.00	-	0						Radar, CAT and Genny prior to excavation.
Frogmore	13/08/19	19:00	25.95	3.15	15	0	Dry				2. Inspection pit hand dug to 1.20m depth.
Ď,	14/08/19	07:30	24.70	3.15	1	0	Dry				3. Down borehole checks for buried ferrous
<u>~</u>	14/08/19	13:30	30.45	3.15	15	0	Dry				objects carried out during drilling by specialist
Ę.											unexploded ordnance (UXO) officer using
ent											magnetometer at regular intervals to 12.00m
Environme											All dimensions in metres Scale: 1:67
	Method		tion pit +		lant				Drilled		Logged SAIhilly Checked By: AGS
RSK	Used:	Cable p	ercussio	n U	sed:	Da	ando 200	0	By:	CJA	By: By: AGS

Contract:						Client:		Boreho	ıle.	
	al (Collec	ge Street,	Lond	lon		co Ventures Ltd.	Borone	,io.	BH2
Contract Re		J 0 O ;		13.08			Co-ordinates:	Sheet:		
	3719	944	End:	14.08					2	of 3
			itu Tests					р _—	Depth	Material
Depth	No	Туре	Results	Water	Backfill & Instru- mentation	Desc	cription of Strata	Reduced	(Thick ness)	
12.00-12.45	21	U	125 blows			Stiff to very stiff grey silty	CLAY.	-	-	<u>xx</u>
12.50	22	D				(LONDON CLAY FÓRMA (stratum copied from 8.30		Ė	-	xx
-							fine selenite crystals below 12.00m	-	-	xx
						depth.		-	-	xx
13.50-13.95	6	SPT	6,7/7,8,9,9 N=33							××
13.50	23	D	14-55					Ė		xx
		_						-		x
14.50	24	D				grey claystone band fro	om 14.40m to 14.80m.		-	xx
15.00-15.45	25	U	134 blows			increase in abundance	of thin claystone bands from 14.80m			
15.50	26	D				to 16.60m.		-	-	
-								Ė		- x-
								[-	-	
16.50-16.82	7	SPT	25/31,9,8,2 for 15mm							× _ ×
- - 16.50	27	D	N=62*			grey claystone band fro	om 16.60m to 16.90m.	_		<u> </u>
								-		x
17.50	28	D						-	-	x
18.00-18.45	29	U	116 blows							<u> </u>
-								-	-	<u>xx</u>
19.00	30	D						-	-	× ×
_ 19.00 - -	30	U						-	(22.15)	xx
19.50-19.95	8	SPT	9,10/10,11,12,1 for 70mm	7				-		xx
19.50	31	D	N=51*					-	-	xx
20.50	32	D				occasional pockets and	I bands of silt below 20.00m depth.			xx
	32							_	-	xx
21.00-21.45	33	U	119 blows					-	-	× _ ×
								E		
22.00	34	D						E	-	x
-								Ē		
22.50-22.95	9	SPT	8,9/10,11,13,13 N=47	3				Ė		
-22.50 - 23.00	35 36	D D						F	-	
[XXXX			E	E	× ×

	Boring Pro	ogress and	Water Ol	servations	6	Chisel	ling / Slow	Progress	Conoral	Domarka			
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	From	То	Duration (hh:mm)	General Remarks				
				()						standpipe (complete over) installed to 6.00m Response zone 2.00m			
									All dimensions in metres	Scale: 1:67			
Method Used:	•	tion pit + ercussio	1		ando 200	0	Drilled By:	CJA	Logged SAIhilly By:	Checked By: AGS			

GINT_LIBRARY_V8_07.GLB LibVersion: v8_07_001 PrjVersion: v8_07 | Log_CABLE PERCUSSION LOG - A4P | 371944 ROYAL COLLEGE STREET.GPJ - v8_07.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk. | 19/09/19 - 09:57 | ADJT1 |

0 1 1								Oli I				 		
Contract:	.al (alla.	Ct	4 1		d a .a		Client:	Doo	\/t	4-	Boreho	le:	BUO
Contract Re		Solie	ge Str	Start:			Grour	nd Level:	ROC	Co-ordinates:	es Lia.	Sheet:		BH2
	3719	244				8.19	Groui	id Level.		Co-ordinates.		Officet.	3	of 3
					1		:					ס		I
Samp	les a	ınd In-si	tu Tests		Water	Backfill & Instru-			Desc	cription of Stra	ıta	Reduced Level	Depth (Thick	Material Graphic
Depth	No	Type		sults	>	Bac						Rec	ness)	Legend
24.00-24.45	37	U	125 k	olows			Stiff	to very stif	f grey silty	CLAY.		-	-	x
24.50	38	D					(stra	tum copied	from 8.30	m from previou	us sheet)			<u>× ×</u>
-													_	xx
-														xx
25.50-25.95	10	SPT	8,10/10,	12,12,14									-	× ×
_ _25.50	39	D	N=	=48 			8						_	
26.00	40	D					8						-	
														× ×
- 27.00-27.45	41	U	139 k	olows								-	- -	× ×
													-	<u>x </u>
-														xx
_ 28.00	42	D											-	xx
							8						- - -	<u> </u>
28.50-28.91	11	SPT		0mm			8						-	
- - 28.50	43	D	N=	59*									-	
29.50	44	D											- - -	× _ ×
_ 29.50 - -	44	D										-	-	x
30.00-30.37	12	SPT	10,14/1	7,16,17 '0mm									-	× ×
30.00	45	D	N=	68*		*****	Bore	ehole termi	nated at 30	0.45m depth.		-	30.45	
- 30.00	45	D											-	
-												-		
													- - -	
-												-	- -	
													-	
-												-	-	
													- - -	
													-	
													_	
<u> </u>												_	- - -	
												-	-	
												-	-	
-												-	-	
												Ē		

	Boring Pro	gress and	Water Ob	servations	3	Chiselling / Slow Progress			Conoral	Domarka			
Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration	General	Remarks			
Date	Tille	Depth	Depth	(mm)	Depth	1 10111	10	(hh:mm)	flush protective cover) installed to 1 00m			
									flush protective cover) installed to 1.00m depth on completion. Response zone 0.50m to 1.00m depth.				
									All dimensions in metres	Scale: 1:67			
Method Used:		tion pit + ercussio			ando 200		Drilled By:	CJA	Logged SAIhilly By:	Checked By: AGS			

TRIAL PIT LOG

Contract:								Client:		Trial Pi	t:	
Roy	/al (Colle	ge Sti	reet,	Lond	lon		Roo	co Ventures Ltd.			TP1
Contract Re	f:			Start:	15.08	8.19	Grour	nd Level:	Co-ordinates:	Sheet:		
3	3719	944		End:	15.08	8.19					1	of 1
Samp Depth	oles a	and In-si Type		sults	Water	Backfill		Des	cription of Strata	Reduced Level	Depth (Thick ness)	Material Graphic Legend
2000.		.,,,,,					MAI	DE GROUND: Aspha	ilt:	<u> </u>	0.08	
0.50 0.50	1	ES PID	0.0	ppm			SAN	DE GROUND: Grey I ND. Gravel is angula , concrete, slate, tiles	orown very gravelly medium to coarse r to subrounded fine to coarse brick, and asphalt.	-	(1.12)	
-										-	- - - - 1.20	
							Tria	I pit terminated at 1.2	Om depth.	-	-	

General Remarks

- Checks for buried ferrous objects carried out during excavation by specialist unexploded ordnance (UXO) officer using magnetometer.
 Trial pit remained stable during excavation.
 No groundwater encountered.

- 4. Ease of trial pit excavation: easy.5. On completion, trial pit backfilled with arisings.

			All dimension	ons in metres	Scale:	1:11	
Method Used:	Hand dug	Plant Used:	Hand tools	Logged By:	SAlhilly	Checked By:	AGS

TRIAL PIT LOG

Contract:								Client:				Trial Pi	t:	
	al (Colleg	ge Str	eet,	Lond	don			Roc	co Ventures	Ltd.			TP2
Contract Re	f:			Start:	15.08	8.19	Grour	d Level:		Co-ordinates:		Sheet:		
3	3719	944		End:	16.08	8.19							1	of 1
-			tu Tests Res		Water	Backfill			Desc	cription of Strata		Reduced Level	Depth (Thick	Graphic
Depth	No	Туре	Res	uits	>	ш	NAAF	E GROUN	D: Conor	nto.		8 1	ness)	Legend
-												_	(0.15) 0.15	
-							MAE cors coar	DE GROUN e SAND. (se flint and	D: Light y Gravel is rare fragr	rellow brown very subangular to s nents of brick.	gravelly medium to ubrounded fine to	_	-	
0.50 0.50	1	ES PID	0.2p	opm								-	-	
-												-	_(1.27)	
-												-	-	
							Trial	pit termina	ted at 1.4	2m depth.			- <u>1.42</u> -	

General Remarks

- Position checked with Ground Penetrating Radar, CAT and Genny prior to excavation.
 Checks for buried ferrous objects carried out during excavation by specialist unexploded ordnance (UXO) officer using magnetometer.
- 3. Trial pit remained stable during excavation.
- 4. No groundwater encountered.

GINT_LIBRARY_V8_07,GLB LibVersion: v8_07_001 PrjVersion: v8_07 | Log_TRIAL_PIT_LOG - NO PLAN - A4P | 371944 ROYAL_COLLEGE STREET.GPJ - v8_07.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk. | 13/09/19 - 16:59 | SA5 |

- 5. Ease of trial pit excavation: difficult.6. On completion, trial pit backfilled with arisings.

			All dimension	ons in metres	Scale:	1:11	
Method Used:	Hand dug	Plant Used:	Hand tools	Logged By:	SAlhilly	Checked By:	AGS

TRIAL PIT LOG

Contract:								Client:			Trial Pi	t:	
Roy	al (Colleg	ge Str	eet, l	Lond	don		F	Roc	co Ventures Ltd.			TP3
Contract Re				Start:			Groun	nd Level:		Co-ordinates:	Sheet:		
3	3719	944		End:	15.0							1	of 1
Samp	oles a	and In-si	tu Tests	6	Water	Backfill			Dasi	cription of Strata	Reduced Level	Depth (Thick	
Depth	No	Туре	Res	sults	Š	Ba	1111				Red	ness)	Legend
							MAL	DE GROUND: As	spna	IT.		0.09	
-							MAD Grav	DE GROUND: Fixel is angular to	Pink suba	gravelly medium to coarse SAND. ngular fine to coarse roadstone.	-	0.15	
_							MAC	DE GROUND: Y	ellow	medium to coarse SAND.	-	(0.15)	
_												0.30	
0.30 0.30	1	ES PID	0.3	ppm			Grav	DE GROUND: G vel is angular to crete slate and a	o su	brown gravelly fine to coarse SAND. bangular fine to coarse flint, brick, lt.		(0.25)	
												0.55	
0.60	2	ES PID	0.00	nnm			to c	DE GROUND: Da oarse SAND. (se flint, brick, co	∃rave	rown grey slightly clayey gravelly fine lis angular to subangular fine to te and slate.	-	-	
0.60		PID	0.0	ppm				,,			-	(0.27)	
-											-	0.82	
_							Irial	pit terminated a	t 0.8	2m depth.		-	
												_	
_											-	-	
_											-	-	
-											-	-	
_											-	-	
_											-	-	
-											-	-	
-											-	-	
-												-	
-												-	

General Remarks

- Position checked with Ground Penetrating Radar, CAT and Genny prior to excavation.
 Checks for buried ferrous objects carried out during excavation by specialist unexploded ordnance (UXO) officer using magnetometer.
 Trial pit remained stable during excavation.
- 4. No groundwater encountered.
- 5. Ease of trial pit excavation: easy.6. On completion, trial pit backfilled with arisings.

			All dimen	sions in metres	Scale:	1:11	
Method Used:	Hand dug	Plant Used:	Hand tools	Logged By:	SAlhilly	Checked By:	AGS

Contract:				Client:			Window	/ San	nple:	
Royal College Str	ondon			Roc	co Ventures Ltd.			V	VS1	
Contract Ref:	Start:	15.08.19	Groun	nd Level:		Co-ordinates:	Sheet:			
371944	End:	15.08.19						_1	of	1

Progress Samples / Tests Yes Results Yes Y		1344		Ena:	15.00.19			·····		ı	OT I
MADE GROUND: Concrete (slab). O.40 1 ES TXJXV MADE GROUND: Brown very gravelly medium to coarse SAND. Gravel is angular to subangular fine to coarse flint and concrete.	Progress		Sam	ples / T	Γests		=		9 <u>-</u>	Depth	Materia
MADE GROUND: Concrete (slab). O.40 1 ES TXJXV MADE GROUND: Brown very gravelly medium to coarse SAND. Gravel is angular to subangular fine to coarse flint and concrete.	Window Run	Depth	No	Туре	Results	Wate	Backt	Description of Strata	Reduc Leve	(Thick ness)	Graphic Legend
MADE GROUND: Brown very gravelly medium to coarse SAND. Gravel is angular to 0.50 subangular fine to coarse flint and concrete.		0.04		PID	0.7ppm			MADE GROUND: Concrete (slab).	-	-	
subangular fine to coarse flint and concrete.		-						MADE GROUND: Brown very gravelly medium	-	0.25	
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		0.40	1	ES	TXJXV			to coarse SAND. Gravel is angular to		0.50	
								Subangular fine to coarse flint and concrete. Trial nit terminated at 0.50m depth			
								mai pit terminated at 0.50m deptin.	-		
		-							-	-	
		-							-	-	
		_							-	-	
										_	
		_							-		
		-							-	-	
		-							-	-	
		-							-	-	
		_							_		
		_							_	-	
		-							-	-	
		-							-	-	
		_							-	-	
		_							_	_	
		_							-	-	
		-							-	-	
		-							-	-	
		-							-	-	
		_							-	-	
		-							-	-	
		-							-	-	
		-							-	-	
		-							-	-	
		_							_	_	
		_							-	_	
									F	_	
		-							-	-	
		-							-	-	
		-							-	-	
		-							-	-	
		[F	[

Drilling Progress and Water Observations Borehole Depth (m) Casing Depth Borehole Diameter (mm) Water Depth (m) Date Time Inspection pit +

General Remarks

- Checks for buried ferrous objects carried out during excavation by specialist unexploded ordnance (UXO) officer using magnetometer.
 Trial pit remained stable during excavation.
- 3. No groundwater encountered.
- 4. Ease of trial pit excavation: moderate.
- 5. On completion, trial pit backfilled with arisings.

1:36 All dimensions in metres Scale:

Plant Archway Competitor Drilled **GEH** Logged SAI Hilly Checked Groundworks By: Used: 130 **Tracked window**

						Client:				Windo	w Samp	le:
I College	e Str								s Ltd.			WS2
		Start:	15.08.19	Gro	ounc	d Level	:	Co-ordinates:		Sheet:		
1944		End:	15.08.19				•				1	of 1
	Sam	ples / T	ests		ē	fill & ru- ation				ced	Depth	Material
Depth	No	Туре	Results		Wat	Backi Instr menta				Redu	(Thick ness)	Graphic Legend
-										-	0.20	
0.30 0.30	1	ES PID	TXJXV 0.4ppm				to coarse subangular concrete.	SAND. Grav fine to coars	el is angular to se flint, brick and	-	0.50	
_ 0.80 _0.80	2	ES PID	TXJXV 0.3ppm				MADE GF slightly sar fine to	ndy slightly gravi coarse. Gravel	elly CLAY. Sand is is subangular to	- - -	1.20	
1.20-1.65	1	SPT	1,1/1,1,1,1 N=4	1					brick, flint, concrete,			x
_ 1.40 _ 1.40 _ 1.60 _	3 4	ES PID D	TXJXV 0.2ppm				Firm light Gravel is a mixed lith	brown silty sligh angular to suban nology. (POSSI	gular fine to coarse	- - - -	- - -(1.30)	xx xx xx
2.00-2.45	2	SPT	2,2/2,3,3,2 N=10	2			becoming	stiff below 2.00n	n depth.	-	- - -	
2.30	6	ט								_	2.50	
2.80	7	D					CLAY. San to subang	d is fine to coars ular fine to coar	se. Gravel is angular rse mixed lithology.	-	(0.50)	
3 00-3 45	3	SPT	3 3/3 3 4 4	1			-		ONDON CLAT)		3.00	
-		01 1	N=14	•					ON)	-	- (1.00)	
3.50	8	D								-	- - -	X X X
											4.00	<u>xx</u>
							recommend	dation of UXO	specialist due to			
	Depth 0.30 0.30 0.30 0.80 1.20-1.65 1.40 1.60 2.00-2.45 2.30 3.00-3.45	71944 Depth No	Start: Property Start: Samples / T Depth No Type	Samples / Tests Depth No Type Results	Start: 15.08.19 Graph Samples / Tests	Start: 15.08.19 Ground Start: 15.08.19 Ground Start: 15.08.19 Samples / Tests Depth No Type Results No Type Results Start: 15.08.19 TXJXV O.30 O.30 O.4ppm O.4ppm	Start: 15.08.19 Ground Level	Start: 15.08.19 Ground Level:	Samples / Tests Depth No Type Results TXJXV D.3ppm Subangular fine to coarse Concrete Subrounded fine to coarse Cravel Subrounded fine to coarse Chalk and black ash. Firm light brown silty slig Gravel is angular to suban mixed Ithology. (POSSILE REWORKED L.) 2.80 7 D Subrounded fine to coarse Clay Subangular fine to coarse Cravel Subrounded fine to coarse Cravel	Start: 15.08.19 Ground Level: Co-ordinates: Co-ordinates	Start 15.08.19 Ground Level: Co-ordinates: Sheet:	Start: 15.08.19 Ground Level: Co-ordinates: Sheet:

[Drilling Progress and Water Observations												
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)	-							

Inspection pit +

Tracked window

Method

Used:

General Remarks

- 1. Position checked with Ground Penetrating Radar, CAT and Genny prior to excavation.
- 2. Inspection pit hand dug to 1.20m depth.
 3. Down borehole checks for buried ferrous objects carried out during drilling by specialist unexploded ordnance (UXO) officer using magnetometer at regular intervals to 4.00m depth.

Scale:

130

All dimensions in metres

4. No groundwater encountered.5. On completion, borehole backfilled with arisings.

GEH Plant Archway Competitor Drilled **SAlhilly** Checked Logged Groundworks By: Ву:

1:36

GINT_LIBRARY V8 07.GLB LibVersion: v8 07 001 Pr]Version: v8 07 | Log WINDOW SAMPLE LOG - A4P | 371944 ROYAL COLLEGE STREET.GPJ - v8 07. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk | 13/09/19 - 16:57 | SA5 |

								1111201101	X			
Contract:						Clie	nt:			Windo	w Samp	le:
	l College	e Str						co Ventures Ltd.				WS3
Contract Ref:			Start:	15.08.19	Gro	und Le	vel:	Co-ordinates:		Sheet:		
37	1944		End:	15.08.19							1	of 2
Progress		Sam	oles / 1	Tests		e ≅ -	ition			ced	Depth	Material
Window Run	Depth	No	Туре	Results		Water Backfill & Instru-		Description of Strata		Reduced Level	(Thick ness)	Graphic Legend
-	_						_ \	OUND: Asphalt.		-	0.08 \0.15	
	-						SAND.	COUND: Yellow medium to	coarse		L	
- - -	0.40	1	ES PID	TxVxJ 3.7ppm		::	slightly gra	OUND: Grey brown slightly velly CLAY. Sand is fine to cangular to subangular fine to	oarse.	- - -	0.70	
- - -	 0.80 0.80	2	ES PID	TxVxJ 146.6ppm	ı		∷ brick, flint	, concrete, slate and rare Occasional cobbles of bric	shell	-	1.00	
	1.20-1.65	1	SPT	2,1/2,2,2,2 N=8	2		∭ gravelly CL	OUND: Dark grey black brown s AY. Gravel is angular to subro	unded	- -	- -	<u> </u>
1.20 - 2.00	1.20 1.20	3	ES PID	TxVxJ			odour note	se brick and flint. Strong hydrodd. d.	Jarbon			xx
(115mm dia) 100% rec	- 1.50 - 1.50 - 1.50	4	D PID	52.9ppm 10.2ppm			silty CLAY.	orown with dark grey / black siccles	taining	- - -	- - -	xx
Y	2.00-2.45	2	SPT	2,2/2,3,3,3 N=11	3		(LONDON	CLAT FORWIATION)		- 	- -	xx
2.00 - 3.00	2.30 2.30	5	ES PID	TxVxJ 35.0ppm			black stai	ning stops at 2.10m depth.		-	-	xx
(98mm dia) 100% rec	2.50 2.50 2.50	6	D PID	2.9ppm						- -	- -	xx
	3.00-3.45	3	SPT	3,2/3,3,3,2 N=11	2		becomes	slightly sandy with rare band	ds and	- - - -	- - - -(4.45)	xx
3.00 - 4.00 (85mm dia) 100% rec	3.50 3.50	7	D PID	2.3ppm			pockets of	fine sand below 3.00m depth.		- - - -	- - - -	x _ x
Y		4	SPT	3,3/3,3,3,3 N=12	3					- - -	- - -	X X X
4.00 - 5.00 (75mm dia) 100% rec	_ 4.50 _ 4.50	8	D PID	1.6ppm						- - - -	-	x _ x
- V	_ _ 5.00-5.45 _ _	5	SPT	4,4/4,4,4,4 N=16	4					- - - -	- - - 5.45	X X X
- - - -	- - - - -					****	Borehole te	erminated at 5.45m depth.		- - - - -	-	

l I	Drilling Progress and Water Observations											
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)							
						•						

Plant

Used:

Dando Terrier

Inspection pit +

Tracked window

Method

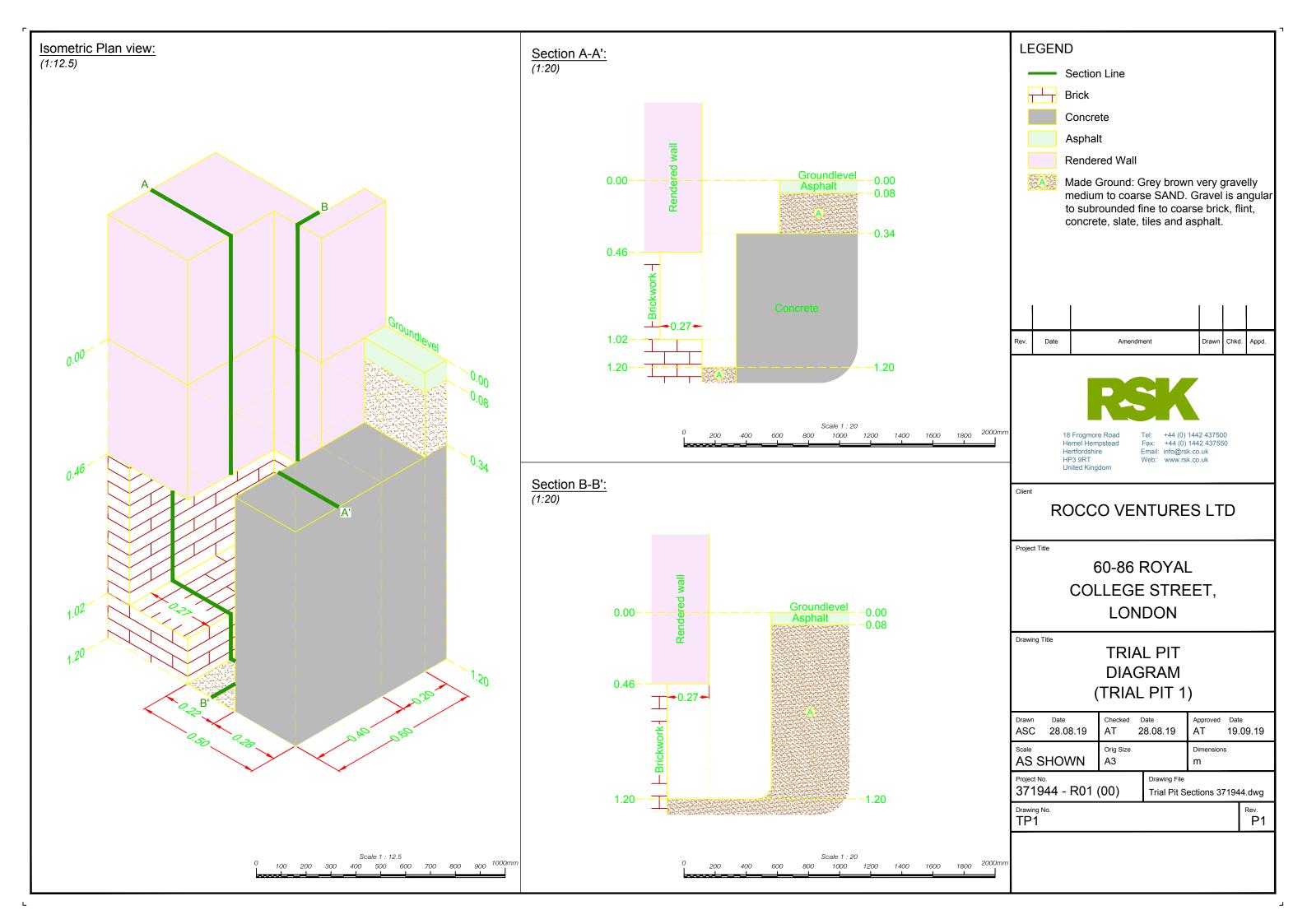
Used:

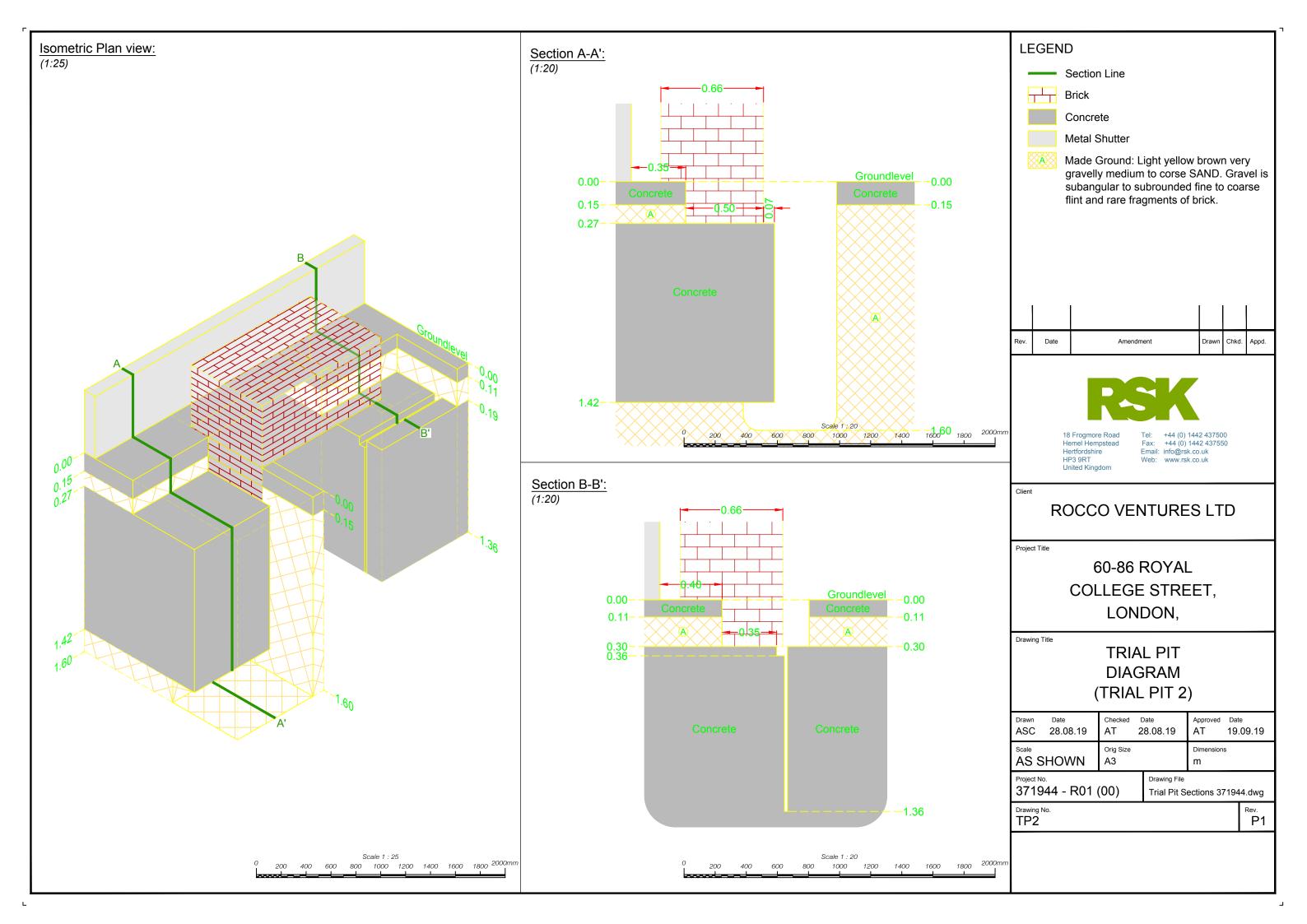
General Remarks

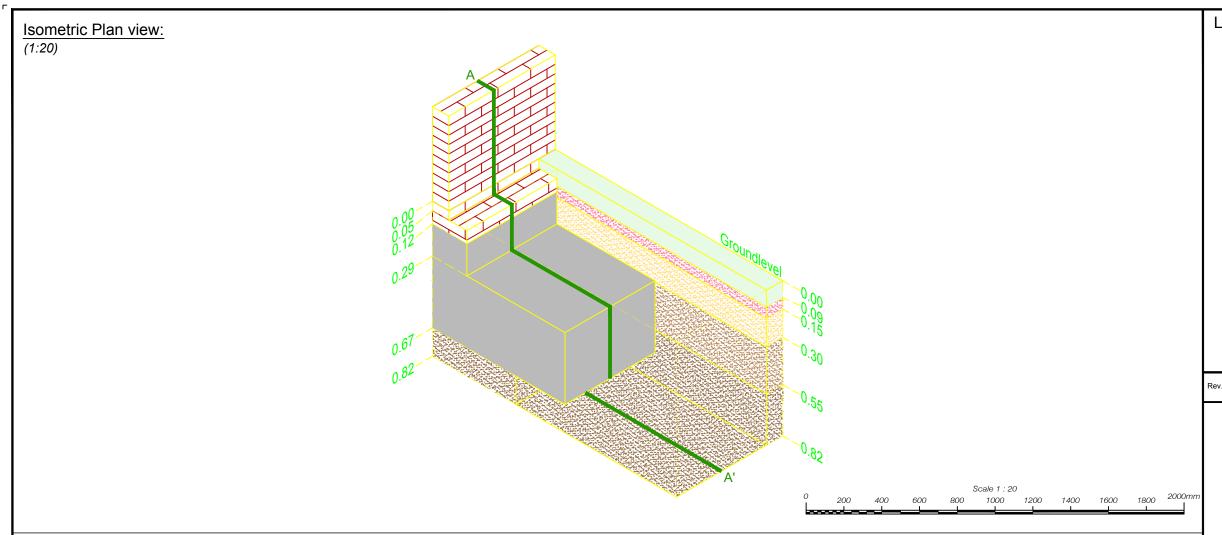
- 1. Position checked with Ground Penetrating Radar, CAT and Genny prior to excavation.
- 2. Inspection pit hand dug to 1.20m depth.
 3. Down borehole checks for buried ferrous objects carried out during drilling by specialist unexploded ordnance (UXO) officer using magnetometer at regular intervals to 4.00m depth.
- 4. No groundwater encountered.
- 5. 35mm diameter standpipe piezometer (complete with flush protective cover)

All dimensions in metres Scale: 1:36 **GEH** Drilled Logged SAI Hilly Checked Groundworks By: Ву:

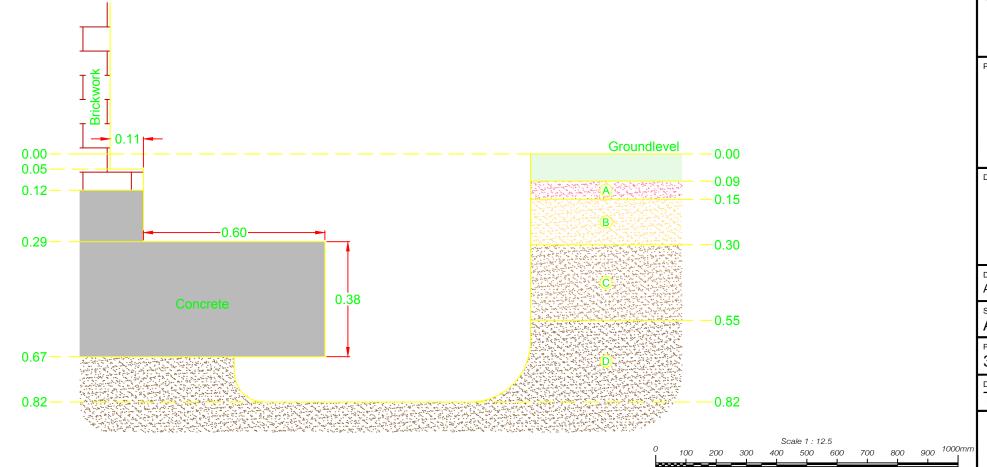
GINT_LIBRARY V8 07.GLB LibVersion: v8 07 001 PrIVersion: v8 07 | Log WINDOW SAMPLE LOG - A4P | 371944 ROYAL COLLEGE STREET.GPJ - v8 07. RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk. | 13/09/19 - 16:57 | SA5 |




							•	VIIIVECTI				
Contract:						Client	:		V	Windov	v Samp	le:
Royal	College	e Str	eet,	London			Roc	co Ventures Ltd.				WS3
Contract Ref:			Start:	15.08.19	Grou	nd Leve	l:	Co-ordinates:	5	Sheet:		
37	1944		End:	15.08.19			-				2	of 2
Progress		Sam	ples / ٦	Tests	ā	tion iii ⊗				ced	Depth	Material
Window Run	Depth	No	Туре	Results	Water	Backfill & Instru-mentation		Description of Strata		Reduced Level	(Thick ness)	Graphic Legend
-	-								-		-	
-	-								-		-	
F F	-								+		-	


GINT_LIBRARY_V8_07.GLB LibVersion; v8_07_001 Pr]Version; v8_07 | Log_WINDOW SAMPLE LOG - A4P | 371944 ROYAL COLLEGE STREET.GPJ - v8_07.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk | 13/09/19 - 16:57 | SA5 |

<u> </u>	[Orilling Pro	gress and	Water Ob	oservations	3				Con	oral I	Remarks		
i,	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth				Gen	erari	Remarks		
ZCA.			(m)	(m)	(mm)	(m)	instal	led to 1	.00m d	lepth on co	mpletion	. Response zon	e 0.50m to 1.00	0m.
DIIO DI														
0														
, L														
ב ב														
5							P	All dime	nsions	in metres		Scale:	1:36	
10 VON	Method Used:		tion pit + d windov			ndo Terr	ier	Drilled By:	Grou	GEH Indworks	Logged By:	SAI Hilly	Checked By:	
		san	npling						Spe	cialists	-			


Checked Ву:

Section A-A': (1:12.5)

LEGEND Section Line Brick Concrete Asphalt Made Ground: Pink gravelly medium to coarse SAND. Gravel is angular to subangular fine to coarse roadstone. Made Ground: Yellow medium to coarse SAND. Made Ground: Grey brown gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse flint, brick, concrete slate and asphalt. Made Ground: Dark brown grey slightly clayey gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse flint, brick, concrete and slate. Drawn Chkd. 18 Frogmore Road +44 (0) 1442 437550 Hertfordshire Email: info@rsk.co.uk HP3 9RT Web: www.rsk.co.uk United Kingdom **ROCCO VENTURES LTD** Project Title

60-86 ROYAL COLLEGE STREET, LONDON,

Drawing Title

TRIAL PIT DIAGRAM (TRIAL PIT 3)

ASC	28.08.19	AT	28.08.19	Approved	19.09.19
Scale AS S	HOWN	Orig Size A3		Dimension m	ns

371944 - R01 (00) Trial

Trial Pit Sections 371944.dwg

TP3 Rev. P1

STANDARD PENETRATION TEST SUMMARY TABLE

Contract:					Clien		Contract ref:		
	al Colle	ne Stra	et Lo	ndon		Rocco Ventures Ltd.	371944		
		Cootin	g Drive	TIGOTI			371344		
Exploratory Position ID	Depth (m)		_	Blows	R	Test Drive	Comments		
1 OSILIOIT ID	(111)	Blows	Pen (mm)			Result			
BH1	1.20	1,2	150	2,1,2,1		1,2/2,1,2,1	SPT(c)		
						N=6			
	2.00	2,2	150	2,2,3,3		2,2/2,2,3,3			
						N=10			
	4.00	3,3	150	4,5,6,6		3,3/4,5,6,6			
						N=21			
	6.00	4,5	150	4,6,6,7		4,5/4,6,6,7			
						N=23			
	9.00	4,4	150	5,5,7,8		4,4/5,5,7,8			
						N=25			
	12.00	4,5	150	6,6,7,8		4,5/6,6,7,8			
						N=27			
	15.00	5,6	150	7,8,9,9		5,6/7,8,9,9			
						N=33			
	18.00	7,7	150	10,12,13,14		7,7/10,12,13,14			
						N=49			
	21.00	7,8	150	10,12,14,14		7,8/10,12,14,14			
						N=50			
	24.00	8,8	150	10,11,13,15		8,8/10,11,13,15			
						N=49			
	27.00	8,9	150	11,13,13,13+	290	8,9/11,13,13,13			
						for 65mm			
						N=52*			
	30.00	8,10	150	13,14,15,8+	270	8,10/13,14,15,8			
						for 45mm			
						N=56*			
BH2	1.20	1,2	150	1,2,2,2		1,2/1,2,2,2			
						N=7			
	3.00	3,3	150	4,3,4,3		3,3/4,3,4,3			
						N=14			
	5.00	4,6	150	6,10,8,8		4,6/6,10,8,8			
						N=32			
		1	1	I		02			

- Tests carried out in general accordance with BS EN ISO 22476-3:2005
 Reported blows are for 75mm penetration unless indicated "+".
 Where full test drive was not achieved, actual penetration (R) and extrapolated N value (N*) reported.
- 4. Tests carried out using a split spoon sampler unless noted as SPT(c) (denotes use of solid cone method) in the comments column.

STANDARD PENETRATION TEST SUMMARY TABLE

Contract:			<u> </u>		Clien		Contract ref:		
	al Colle	ae Stre	et. Lo	ndon		Rocco Ventures Ltd.	371944		
		Soction	g Drive			Test Drive	0.1044		
Exploratory Position ID	Depth (m)	Blows	Pen (mm)	Blows	R (mm)	Result	Comments		
BH2	7.50	5,6	150	7,10,9,8		5,6/7,10,9,8			
		-,-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		N=34			
	10.50	5,7	150	7,8,8,9		5,7/7,8,8,9			
						N=32			
	13.50	6,7	150	7,8,9,9		6,7/7,8,9,9			
						N=33			
	16.50	25,0	75	31,9,8,2+	240	25/31,9,8,2			
						for 15mm			
						N=62*			
	19.50	9,10	150	10,11,12,17+	295	9,10/10,11,12,17			
						for 70mm			
						N=51*			
	22.50	8,9	150	10,11,13,13		8,9/10,11,13,13			
						N=47			
	25.50	8,10	150	10,12,12,14		8,10/10,12,12,14			
						N=48			
	28.50	8,11	150	13,15,15,7+	255	8,11/13,15,15,7			
						for 30mm			
						N=59*			
	30.00	10,14	150	17,16,17+,0+	220	10,14/17,16,17			
						for 70mm			
						N=68*			
WS2	1.20	1,1	150	1,1,1,1		1,1/1,1,1,1			
						N=4			
	2.00	2,2	150	2,3,3,2		2,2/2,3,3,2			
						N=10			
	3.00	3,3	150	3,3,4,4		3,3/3,3,4,4			
						N=14			
WS3	1.20	2,1	150	2,2,2,2		2,1/2,2,2,2			
						N=8			
	2.00	2,2	150	2,3,3,3		2,2/2,3,3,3			
1						N=11			

- Tests carried out in general accordance with BS EN ISO 22476-3:2005
 Reported blows are for 75mm penetration unless indicated "+".
 Where full test drive was not achieved, actual penetration (R) and extrapolated N value (N*) reported.
- 4. Tests carried out using a split spoon sampler unless noted as SPT(c) (denotes use of solid cone method) in the comments column.

STANDARD PENETRATION TEST SUMMARY TABLE

Contract:					Clien	t:	Contract ref:
Roy	al Colle	ge Stre	et, Lo	ndon		Rocco Ventures Ltd.	371944
Exploratory	Depth	Seatin	g Drive			Test Drive	
Position ID	(m)	Blows	Pen (mm)	Blows	R (mm)	Result	Comments
WS3	3.00	3,2	150	3,3,3,2		3,2/3,3,3,2	
						N=11	
	4.00	3,3	150	3,3,3,3		3,3/3,3,3,3	
						N=12	
	5.00	4,4	150	4,4,4,4		4,4/4,4,4,4	
						N=16	

- Tests carried out in general accordance with BS EN ISO 22476-3:2005
 Reported blows are for 75mm penetration unless indicated "+".
 Where full test drive was not achieved, actual penetration (R) and extrapolated N value (N*) reported.
- 4. Tests carried out using a split spoon sampler unless noted as SPT(c) (denotes use of solid cone method) in the comments column.

Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

Dynamic sampling uk ltd 5-8 victory parkway victory road Derby **DE24 8ZF**

Hammer Ref:

CJ08

Test Date:

07/06/2019

Report Date:

07/06/2019

File Name:

CJ08.spt

Test Operator:

TP

Instrumented Rod Data

Diameter d_r (mm):

54

Wall Thickness t_r (mm):

6.0

Assumed Modulus Ea (GPa): 208

9603

Accelerometer No.1: Accelerometer No.2:

6457

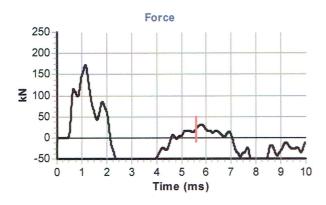
Hammer Information

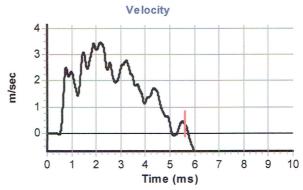
Hammer Mass m (kg):

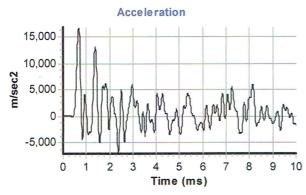
63.5

Falling Height h (mm):

760


String Length L (m):


15.0


Comments / Location

CJ associates hammer tested at Dynamic

samplings yard.

Calculations

Area of Rod A (mm2):

905

Theoretical Energy E_{theor} (J):

473

Measured Energy E_{meas} (J):

317

Signed: A.parker.

Energy Ratio E_r (%):

67

Title: Associate Director.

The recommended calibration interval is 12 months

APPENDIX I GROUND GAS MONITORING DATA

Pressures <u>Start</u> <u>End</u> 1024 1024 Start Date End Date **Previous** <u>During</u> **Equipment Used & Remarks** 23/08/19 23/08/19 Round 1 Round 2 02/09/19 02/09/19 1021 1022 Round 3 18/09/19 10127 -18/09/19

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH1	2	35	1	1.00	1.00	0.50 to 1.00	30/12/1899 00:00:15	-	1024	-	DRY	0.3	0.0	20.4	0.0	-	-	-
BH1	2	35	1		1.00	0.50 to 1.00	30 secs	-	1024	-	DRY	0.3	0.0	20.2	0.0	-	-	-
BH1	2	35	1		1.00	0.50 to 1.00	60 secs	-	1024	-	DRY	0.4	0.0	19.9	0.0	-	-	-
BH1	2	35	1		1.00	0.50 to 1.00	90 secs	-	1024	-	DRY	0.5	0.0	19.7	0.0	-	-	-
BH1	2	35	1		1.00	0.50 to 1.00	120 secs	-	1024	-	DRY	0.5	0.0	19.7	0.0	-	-	-
BH1	2	35	1		1.00	0.50 to 1.00	150 secs	-	1024	-	DRY	0.5	0.0	19.7	0.0	-	-	-
BH1	2	35	1	1.00	1.00	0.50 to 1.00	23/08/2019 12:00:00	-	1024	0.0 _(SS)	DRY	0.3	0.0	20.7	0.0	-	-	-
BH1	1	50	2	6.00	5.64	2.00 to 6.00	02/09/2019 10:09:00	-	1022	0.0 _(SS)	3.31	0.1	0.0	20.9	0.0	0.3	0	0
BH1	1	50	2		5.64	2.00 to 6.00	15 secs	-	1022	-	3.31	0.6	0.0	20.3	0.0	0.3	0	0
BH1	1	50	2		5.64	2.00 to 6.00	30 secs	-	1022	-	3.31	0.6	0.0	20.0	0.0	0.3	0	0
BH1	1	50	2		5.64	2.00 to 6.00	60 secs	-	1022	-	3.31	0.7	0.0	19.8	0.0	0.3	0	0
BH1	1	50	2		5.64	2.00 to 6.00	90 secs	-	1022	-	3.31	0.8	0.0	19.8	0.0	0.3	0	0
BH1	1	50	2		5.64	2.00 to 6.00	120 secs	-	1022	-	3.31	0.7	0.0	19.8	0.0	0.3	0	0
BH1	1	50	2		5.64	2.00 to 6.00	180 secs	-	1022	-	3.31	0.7	0.0	19.8	0.0	0.3	0	0
BH1	1	50	2		5.64	2.00 to 6.00	240 secs	-	1022	-	3.31	0.7	0.0	19.8	0.0	0.3	0	0
BH1	1	50	2		5.64	2.00 to 6.00	300 secs	-	1022	-	3.31	0.7	0.0	19.8	0.0	0.3	0	0
BH1	1	50	3	6.00	5.82	2.00 to 6.00	18/09/2019 12:38:00	-	1029	0.0(1)	2.69	0.1	0.0	20.9	-	0.2	0	0
BH1	1	50	3			2.00 to 6.00	15 secs	-	-	0.0 _(SS)	-	0.3	0.0	20.6		•	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd
18 Frogmore Road
Hemel Hempstead
Hertfordshire
HP3 9RT

Compiled By	Date	Checked By	Date	Contract Ref:	
4. Tyl	19/09/19				371944
Contract:	•			Page:	

Royal College Street, London

of **5**

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH1	1	50	3			2.00 to 6.00	30 secs	-	-	-	-	0.4	0.0	20.3	-	-	0	0
BH1	1	50	3			2.00 to 6.00	60 secs	-	-	-	-	0.7	0.0	20.0	-	-	0	0
BH1	1	50	3			2.00 to 6.00	90 secs	-	-	-	-	0.8	0.0	20.0	-	-	0	0
BH1	1	50	3			2.00 to 6.00	120 secs	-	-	-	-	0.8	0.0	20.0	-	-	0	0
BH1	1	50	3			2.00 to 6.00	180 secs	-	-	-	-	0.8	0.0	20.0	-	-	0	0
BH1	1	50	3			2.00 to 6.00	240 secs	-	-	-	-	0.8	0.0	20.1	-	-	0	0
BH1	1	50	3			2.00 to 6.00	300 secs	-	-	-	-	0.7	0.0	20.1	-	-	0	0
BH2	2	35	1	1.00	1.00	0.50 to 1.00	23/08/2019	-	1024	0.0	DRY	0.3	0.0	20.6	0.0	-	-	-
BH2	2	35	1		1.00	0.50 to 1.00	15 secs	-	1024	0.0	DRY	0.3	0.0	20.7	0.0	-	-	-
BH2	2	35	1		1.00	0.50 to 1.00	30 secs	-	1024	0.0	DRY	0.3	0.0	20.7	0.0	-	-	-
BH2	2	35	1		1.00	0.50 to 1.00	60 secs	-	1024	0.0	DRY	0.3	0.0	20.6	0.0	-	-	-
BH2	2	35	1		1.00	0.50 to 1.00	90 secs	-	1024	0.0	DRY	0.3	0.0	20.6	0.0	-	-	-
BH2	2	35	1		1.00	0.50 to 1.00	120 secs	-	1024	0.0	DRY	0.4	0.0	20.6	0.0	-	-	-
BH2	2	35	1		1.00	0.50 to 1.00	150 secs	-	1024	0.0	DRY	0.4	0.0	20.6	0.0	-	-	-
BH2	1	50	2	6.00	5.72	2.00 to 6.00	02/09/2019 09:05:00	-	1021	0.0 _(I)	3.26	0.2	0.0	20.9	0.0	0.3	0	0
BH2	1	50	2		5.72	2.00 to 6.00	15 secs	-	1021	-0.1 _(SS)	3.26	0.2	0.0	20.6	0.0	0.3	0	0
BH2	1	50	2		5.72	2.00 to 6.00	30 secs	-	1021	-	3.26	0.3	0.0	20.5	0.0	0.3	0	0
BH2	1	50	2		5.72	2.00 to 6.00	60 secs	-	1021	-	3.26	0.3	0.0	20.4	0.0	0.3	0	1
BH2	1	50	2		5.72	2.00 to 6.00	90 secs	-	1021	-	3.26	0.4	0.0	20.4	0.0	0.3	0	1
BH2	1	50	2		5.72	2.00 to 6.00	120 secs	-	1021	-	3.26	0.3	0.0	20.4	0.0	0.3	0	1
BH2	1	50	2		5.72	2.00 to 6.00	190 secs	-	1021	-	3.26	0.3	0.0	20.4	0.0	0.3	0	1
BH2	1	50	2		5.72	2.00 to 6.00	240 secs	-	1021	-	3.26	0.3	0.0	20.4	0.0	0.3	0	1
BH2	1	50	2		5.72	2.00 to 6.00	300 secs	-	1021	-	3.26	0.3	0.0	20.4	0.0	0.3	0	1
BH2	1	50	3	6.00	5.94	2.00 to 6.00	18/09/2019 11:57:00	-	1027	0.0 _(I)	3.48	0.1	0.0	20.9	-	-	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd
18 Frogmore Road
Hemel Hempstead
Hertfordshire
HP3 9RT

Compiled By	Date	Checked By	Date	Contract Ref:
A. Tyl	19/09/19			
Contract:				Page:

Royal College Street, London

2 of **5**

371944

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH2	1	50	3			2.00 to 6.00	15 secs	-	-	0.0 _(SS)	-	0.1	0.0	20.7	-	-	0	0
BH2	1	50	3			2.00 to 6.00	30 secs	-	-	-	-	0.2	0.0	20.6	-	-	0	0
BH2	1	50	3			2.00 to 6.00	60 secs	-	-	-	-	0.2	0.0	20.5	-	-	0	1
BH2	1	50	3			2.00 to 6.00	90 secs	-	-	-	-	0.2	0.0	20.5	-	-	0	1
BH2	1	50	3			2.00 to 6.00	120 secs	-	-	-	-	0.2	0.0	20.5	-	-	0	1
BH2	1	50	3			2.00 to 6.00	190 secs	-	-	-	-	0.2	0.0	20.4	-	-	0	1
BH2	1	50	3			2.00 to 6.00	240 secs	-	-	-	-	0.2	0.0	20.3	-	-	0	1
BH2	1	50	3			2.00 to 6.00	300 secs	-	-	-	-	0.2	0.0	20.3	-	-	0	1
WS2	1	35	2	1.00	0.80	0.50 to 1.00	02/09/2019 09:52:00	-	1022	0.0 _(SS)	DRY	0.1	0.0	20.9	0.0	0.0	0	0
WS2	1	35	2		0.80	0.50 to 1.00	15 secs	-	1022	-	DRY	0.1	0.0	19.8	0.0	0.0	1	0
WS2	1	35	2		0.80	0.50 to 1.00	30 secs	-	1022	-	DRY	0.0	0.0	19.2	0.0	0.0	1	0
WS2	1	35	2		0.80	0.50 to 1.00	60 secs	-	1022	-	DRY	0.0	0.0	19.1	0.0	0.0	1	0
WS2	1	35	2		0.80	0.50 to 1.00	90 secs	-	1022	-	DRY	0.0	0.0	19.1	0.0	0.0	1	0
WS2	1	35	2		0.80	0.50 to 1.00	120 secs	-	1022	-	DRY	0.0	0.0	19.2	0.0	0.0	1	0
WS2	1	35	2		0.80	0.50 to 1.00	180 secs	-	1022	-	DRY	0.0	0.0	19.2	0.0	0.0	1	0
WS2	1	35	2		0.80	0.50 to 1.00	240 secs	-	1022	-	DRY	0.0	0.0	19.2	0.0	0.0	1	0
WS2	1	35	2		0.80	0.50 to 1.00	300 secs	-	1022	-	DRY	0.0	0.0	19.3	0.0	0.0	1	0
WS2	1	35	3	1.00	0.91	0.50 to 1.00	18/09/2019 12:23:00	-	1028	0.0(1)	0.91	0.1	0.0	20.9	-	0.1	0	0
WS2	1	35	3			0.50 to 1.00	15 secs	-	-	0.0 _(SS)	-	0.0	0.0	18.7	-	-	1	0
WS2	1	35	3			0.50 to 1.00	30 secs	-	-	-	-	0.0	0.0	17.4	-	-	1	1
WS2	1	35	3			0.50 to 1.00	60 secs	-	-	-	-	0.0	0.0	17.2	-	-	1	1
WS2	1	35	3			0.50 to 1.00	90 secs	-	-	-	-	0.0	0.0	17.2	-	-	1	1
WS2	1	35	3			0.50 to 1.00	120 secs	-	-	-	-	0.0	0.0	17.2	-	-	1	1
WS2	1	35	3			0.50 to 1.00	180 secs	-	-	-	-	0.0	0.0	17.3	-	-	1	1

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire

HP3 9RT

Compiled By	Date	Checked By	Date	Contract Ref:
A.Tyl	19/09/19			
Contract:	•	•	•	Page:

Royal College Street, London

3 of **5**

371944

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS2	1	35	3			0.50 to 1.00	240 secs	-	-	-	-	0.0	0.0	17.3	-	-	1	1
WS2	1	35	3			0.50 to 1.00	300 secs	-	-	-	-	0.0	0.0	17.4	-	-	1	1
WS3	1	35	1	1.00	1.00	0.50 to 1.00	23/08/2019	_	1024	0.0	DRY	0.5	0.0	20.8	0.0	_	_	_
WS3	1	35	<u>·</u> 1	1.00	1.00	0.50 to 1.00	15 secs	_	1024	0.0	DRY	0.5	0.0	20.1	0.0	_	_	_
WS3	1	35	<u>·</u> 1		1.00	0.50 to 1.00	30 secs	_	1024	0.0	DRY	0.5	0.0	20.0	0.0	_	_	_
WS3	1	35	1		1.00	0.50 to 1.00	60 secs	_	1024	0.0	DRY	0.6	0.0	19.8	0.0	_	_	_
WS3	1	35	1		1.00	0.50 to 1.00	90 secs	_	1024	0.0	DRY	0.6	0.0	19.7	0.0	_	-	-
WS3	1	35	1		1.00	0.50 to 1.00	120 secs	_	1024	0.0	DRY	0.6	0.0	19.7	0.0	_	-	-
WS3	1	35	1		1.00	0.50 to 1.00	150 secs	_	1024	0.0	DRY	0.6	0.0	19.7	0.0	-	-	-
WS3	1	35	2	1.00	0.81	0.50 to 1.00	02/09/2019 09:37:00	_	1022	0.0(1)	DRY	0.1	0.0	20.9	0.0	0.0	0	0
WS3	1	35	2		0.81	0.50 to 1.00	15 secs	-	1022	0.0 _(SS)	DRY	0.9	0.0	19.9	0.0	0.0	1	0
WS3	1	35	2		0.81	0.50 to 1.00	30 secs	-	1022	-	DRY	0.9	0.0	19.4	0.0	0.0	0	0
WS3	1	35	2		0.81	0.50 to 1.00	60 secs	-	1022	-	DRY	1.0	0.0	19.3	0.0	0.0	0	0
WS3	1	35	2		0.81	0.50 to 1.00	90 secs	-	1022	-	DRY	1.0	0.0	19.3	0.0	0.0	0	0
WS3	1	35	2		0.81	0.50 to 1.00	120 secs	-	1022	-	DRY	1.0	0.0	19.3	0.0	0.0	0	0
WS3	1	35	2		0.81	0.50 to 1.00	180 secs	-	1022	-	DRY	1.0	0.0	19.3	0.0	0.0	0	0
WS3	1	35	2		0.81	0.50 to 1.00	240 secs	-	1022	-	DRY	1.0	0.0	19.3	0.0	0.0	0	0
WS3	1	35	2		0.81	0.50 to 1.00	300 secs	-	1022	-	DRY	1.0	0.0	19.4	0.0	0.0	0	0
WS3	1	35	3	1.00	0.99	0.50 to 1.00	18/09/2019 12:09:00	-	1028	0.0 _(I)	0.99	0.1	0.0	20.9	-	-	0	0
WS3	1	35	3			0.50 to 1.00	15 secs	-	ı	0.0 _(SS)	-	0.7	0.0	20.2	-	-	1	0
WS3	1	35	3			0.50 to 1.00	30 secs	_	-	-	-	0.7	0.0	19.9	-	-	0	0
WS3	1	35	3			0.50 to 1.00	60 secs	_	-	-	-	0.8	0.0	19.8	-	-	0	0
WS3	1	35	3			0.50 to 1.00	90 secs	_	-	-	-	0.8	0.0	19.8	-	-	0	0
WS3	1	35	3			0.50 to 1.00	120 secs	-	-	-	-	0.8	0.0	19.7	-	-	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire

HP3 9RT

Compiled By	Date	Checked By	Date
4. Tyl	19/09/19		
ontract:			-

Royal College Street, London

371944

Page:

Contract Ref:

4 of 5

IN-SITU GAS MONITORING RESULTS

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Dioxide	Methane (% / vol)	,,	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS3	1	35	3			0.50 to 1.00	180 secs	-	-	-	-	0.8	0.0	19.7	-	-	0	0
WS3	1	35	3			0.50 to 1.00	240 secs	-	-	-	-	0.7	0.0	19.7	-	-	0	0
WS3	1	35	3			0.50 to 1.00	300 secs	-	-	-	-	0.7	0.0	19.7	-	-	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By	Date	Checked By	Date	Contract Ref:
A. Tyl	19/09/19			
Contract:	•			Page:

371944

Page:

Royal College Street, London

5 of **5**

APPENDIX J LABORATORY CERTIFICATES FOR SOIL ANALYSIS

Final Test Report

Envirolab Job Number	19/07826

Issue Number: 1 Date: 3-Sep-19

Client: RSK Environment Ltd Hemel

18 Frogmore Road Hemel Hempstead Hertfordshire

UK HP3 9RT

Project Manager: Andrew Tyler

Project Name: 60 - 86 Royal College Street, London

Project Ref: 371944 Order No: N/A

Date Samples Received: 20-Aug-19
Date Instructions Received: 20-Aug-19
Date Analysis Completed: 2-Sep-19

Notes - Soil analysis

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones > 10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - Genera

This report shall not be reproduced, except in full, without written approval from Envirolab

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supercedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples from outside the European Union and this supercedes any "D" subscripts

For complex, multi-compound analysis, quality control results do not always fall within chart limits for every compound and we have criteria for reporting in these situations.

If results are in italic font they are associated with such quality control failures and may be unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid

Predominant Matrix Codes: 1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample

Secondary Matrix Codes: A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs

IS indicates Insufficient sample for analysis, NDP indicates No Determination Possible and NAD indicates No Asbestos Detected.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

Prepared by:

Melanie Marshall Laboratory Coordinator

Marshall

Holly Neary-King Client Manager

ildly beary-king

Approved by:

Landfill WAC analysis must not be used for hazardous waste classification purposes. This analysis is only applicable for landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

		10				1		
ab Sample ID	Method	ISO17025	MCERTS	19/07826/8	3	Landfill W	aste Acceptance Crite	eria Limits
Client Sample Number				ES1				
Client Sample ID				WS3				
Depth to Top				0.4			Stable Non-reactive Hazardous Waste in	Hazardous Waste
Depth to Bottom						Inert Waste Landfill	Non-Hazardous	Landfill
Date Sampled				14/08/2019)		Landfill	
Sample Type				Soil - ES				
Sample Matrix Code				5A				
Solid Waste Analysis								
pH (pH Units) _D	A-T-031	N	N	9.20		-	>6	-
ANC to pH 4 (mol/kg) _D	A-T-ANC	N	N	0.57		-	to be evaluated	to be evaluated
ANC to pH 6 (mol/kg) _D	A-T-ANC	N	N	0.07		-	to be evaluated	to be evaluated
oss on Ignition (%) _D	A-T-030	N	N	6.8		-	-	10
Fotal Organic Carbon (%) _D	A-T-032	N	N	3.25		3	5	6
PAH Sum of 17 (mg/kg) A	A-T-019	N	N	4.95		100	-	-
Mineral Oil (mg/kg) _A	A-T-007	N	N	62		500	-	-
Sum of 7 PCBs (mg/kg) _A	A-T-007	N	N	<0.007		1	_	_
Sum of BTEX (mg/kg) _A	A-T-004 A-T-022	N	N	<0.007		6		-
Bull of BTEX (Ilig/kg)A	A-1-022	IN	IA	10:1	10:1		for compliance leachin	
Eluate Analysis							•	-
Arsenic	A-T-025	N	N	mg/l 0.016	mg/kg 0.160	0.5	1 12457-2 at L/S 10 l/kg (r 2	11g/kg) 25
Barium	A-T-025	N	N	0.018	0.180	20	100	300
Cadmium	A-T-025	N	N	<0.026	<0.01	0.04	100	5
Chromium	A-T-025	N	N	0.003	0.030	0.5	10	70
Copper	A-T-025	N	N	0.003	0.030	2	50	100
Mercury	A-T-025	N	N	<0.0005	<0.005	0.01	0.2	2
Molybdenum	A-T-025	N	N	0.005	0.050	0.5	10	30
Nickel	A-T-025	N	N	0.003	0.030	0.4	10	40
_ead	A-T-025	N	N	0.198	1.980	0.5	10	50
Antimony	A-T-025	N	N	0.004	0.040	0.06	0.7	5
Selenium	A-T-025	N	N	<0.004	<0.01	0.1	0.5	7
Zinc	A-T-025	N	N	0.032	0.320	4	50	200
Chloride	A-T-025	N	N	6	60	800	15000	25000
Fluoride	A-T-026	N	N	0.4	4.0	10	150	500
Sulphate as SO₄	A-T-026	N	N	13	128	1000	20000	50000
Fotal Dissolved Solids	A-T-026 A-T-035	N	N	73	730	4000	60000	100000
Phenol Index	A-T-050	N	N	<0.01	<0.1	1	-	-
Dissolved Organic Carbon	A-T-030 A-T-032	N	N	<0.01	<200	500	800	1000
each Test Information	A-1-03Z	14	14	٧٠.٧	~200	000	000	1000
pH (pH Units)	A-T-031	N	N	6.9	1			
Conductivity (µS/cm)	A-T-037	N N	N	147				
	A-1-03/	N	IN	0.229				
Mass Sample (kg)								

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 19/07826

Issue Number: Date: 03 September, 2019

Client: **RSK Environment Ltd Hemel**

> 18 Frogmore Road Hemel Hempstead

Hertfordshire

UK

HP3 9RT

Project Manager: Andrew Tyler

Project Name: 60 - 86 Royal College Street, London

Project Ref: 371944 Order No: N/A

Date Samples Received: 20/08/19 **Date Instructions Received:** 20/08/19 **Date Analysis Completed:** 02/09/19

Prepared by: Approved by:

Melanie Marshall

Holly Neary-King **Laboratory Coordinator** Client Manager

					onone i roj	ect Kei. 31				
Lab Sample ID	19/07826/1	19/07826/2	19/07826/3	19/07826/4	19/07826/5	19/07826/6	19/07826/7			
Client Sample No	ES1	ES1	ES1	ES1	ES1	ES2	ES3			
Client Sample ID	TP1	BH1	WS1	TP2	WS2	WS2	WS2			
Depth to Top	0.50	0.50	0.40	0.50	0.30	0.80	1.40			
Depth To Bottom									ion	
Date Sampled	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19		etect	<u>_</u>
Sample Type	Soil - ES	Soil - ES	Soil - ES		Limit of Detection	Method ref				
Sample Matrix Code	4AB	8	4AB	4A	4A	5A	5A	Units	Limit	Meth
% Moisture at <40C _A	12.4	8.6	-	6.3	-	-	-	% w/w	0.1	A-T-044
% Stones >10mm _A	30.1	<0.1	17.1	30.8	54.2	6.7	<0.1	% w/w	0.1	A-T-044
pH _D ^{M#}	8.85	12.91	-	11.34	12.33	-	-	рН	0.01	A-T-031s
Total Organic Carbon _D M#	-	-	0.23	-	-	-	0.41	% w/w	0.03	A-T-032s
Arsenic _D ^{M#}	22	6	-	3	4	-	-	mg/kg	1	A-T-024s
Cadmium _D M#	0.8	<0.5	-	<0.5	<0.5	-	-	mg/kg	0.5	A-T-024s
Copper _D M#	43	24	-	3	22	-	-	mg/kg	1	A-T-024s
Chromium _D M#	14	48	-	6	11	-	-	mg/kg	1	A-T-024s
Chromium (hexavalent) _D	<1	<1	-	<1	-	-	-	mg/kg	1	A-T-040s
Lead _D ^{M#}	514	72	-	13	17	-	-	mg/kg	1	A-T-024s
Mercury _D	0.78	0.26	-	<0.17	<0.17	-	-	mg/kg	0.17	A-T-024s
Nickel _D ^{M#}	37	41	-	3	9	-	-	mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	<1	-	<1	<1	-	-	mg/kg	1	A-T-024s
Zinc _D ^{M#}	215	58	-	10	26	-	-	mg/kg	5	A-T-024s

a										
Lab Sample ID	19/07826/1	19/07826/2	19/07826/3	19/07826/4	19/07826/5	19/07826/6	19/07826/7			
Client Sample No	ES1	ES1	ES1	ES1	ES1	ES2	ES3			
Client Sample ID	TP1	BH1	WS1	TP2	WS2	WS2	WS2			
Depth to Top	0.50	0.50	0.40	0.50	0.30	0.80	1.40			
Depth To Bottom									ion	
Date Sampled	15-Aug-19		Detection	÷.						
Sample Type	Soil - ES		of	od ref						
Sample Matrix Code	4AB	8	4AB	4A	4A	5A	5A	Units	Limit	Method
Asbestos in Soil (inc. matrix)										
Asbestos in soil _D #	NAD	NAD	NAD	NAD	NAD	NAD	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test?	N/A	N/A	N/A	N/A	N/A	N/A	-			

_						ect itel. or				
Lab Sample ID	19/07826/1	19/07826/2	19/07826/3	19/07826/4	19/07826/5	19/07826/6	19/07826/7			
Client Sample No	ES1	ES1	ES1	ES1	ES1	ES2	ES3			
Client Sample ID	TP1	BH1	WS1	TP2	WS2	WS2	WS2			
Depth to Top	0.50	0.50	0.40	0.50	0.30	0.80	1.40			
Depth To Bottom									ion	
Date Sampled	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19		etect	<u>_</u>
Sample Type	Soil - ES	Soil - ES		Limit of Detection	Method ref					
Sample Matrix Code	4AB	8	4AB	4A	4A	5A	5A	Units	Limit	Meth
PAH-16MS plus Coronene										
Acenaphthene _A ^{M#}	<0.01	<0.01	-	<0.01	-	-	-	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	-	<0.01	-	-	-	mg/kg	0.01	A-T-019s
Anthracene _A M#	<0.02	0.03	-	<0.02	-	-	-	mg/kg	0.02	A-T-019s
Benzo(a)anthracene _A M#	0.05	0.33	-	<0.04	-	-	-	mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04	0.38	-	<0.04	-	-	-	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	0.49	-	<0.05	-	-	-	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	0.28	-	<0.05	-	-	-	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	0.16	-	<0.07	-	-	-	mg/kg	0.07	A-T-019s
Chrysene _A M#	<0.06	0.36	-	<0.06	-	-	-	mg/kg	0.06	A-T-019s
CoroneneA	0.02	0.10	-	<0.01	-	-	-	mg/kg	0.01	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	0.05	-	<0.04	-	-	-	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	<0.08	0.44	-	<0.08	-	-	-	mg/kg	0.08	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	-	<0.01	-	-	-	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.03	0.32	-	<0.03	-	-	-	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03	-	<0.03	-	-	-	mg/kg	0.03	A-T-019s
Phenanthrene _A M#	0.05	0.11	-	<0.03	-	-	-	mg/kg	0.03	A-T-019s
Pyrene _A M#	<0.07	0.42	-	<0.07	-	-	-	mg/kg	0.07	A-T-019s
Total PAH-16MS plus Coronene _A	0.15	3.47	-	<0.08	-	-	-	mg/kg	0.01	A-T-019s

						ect Rei: 37				
Lab Sample ID	19/07826/1	19/07826/2	19/07826/3	19/07826/4	19/07826/5	19/07826/6	19/07826/7			
Client Sample No	ES1	ES1	ES1	ES1	ES1	ES2	ES3			
Client Sample ID	TP1	BH1	WS1	TP2	WS2	WS2	WS2			
Depth to Top	0.50	0.50	0.40	0.50	0.30	0.80	1.40			
Depth To Bottom									on	
Date Sampled	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19		stecti	_
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		of Do	od re
Sample Matrix Code	4AB	8	4AB	4A	4A	5A	5A	Units	Limit of Detection	Method ref
Speciated PCB-EC7 & WHO12										
PCB BZ 28 _A M#	-	-	<0.002	-	-	-	-	mg/kg	0.002	A-T-004s
PCB BZ 52 _A M#	-	-	<0.002	-	-	-	-	mg/kg	0.002	A-T-004s
PCB BZ 81 _A	-	-	<0.005	-	-	-	-	mg/kg	0.005	A-T-004s
PCB BZ 101 _A M#	-	-	<0.004	-	-	-	-	mg/kg	0.004	A-T-004s
PCB BZ 105 _A	-	-	<0.005	-	-	-	-	mg/kg	0.005	A-T-004s
PCB BZ 114 _A	-	-	<0.005	-	-	-	-	mg/kg	0.005	A-T-004s
PCB BZ 118 _A M#	-	-	<0.007	-	-	-	-	mg/kg	0.007	A-T-004s
PCB BZ 123 _A	-	-	<0.005	-	-	-	-	mg/kg	0.005	A-T-004s
PCB BZ 126 _A	-	-	<0.005	-	-	-	-	mg/kg	0.005	A-T-004s
PCB BZ 138 _A M#	-	-	<0.006	-	-	-	-	mg/kg	0.006	A-T-004s
PCB BZ 153 _A M#	-	-	<0.004	-	-	-	-	mg/kg	0.004	A-T-004s
PCB BZ 156 _A	-	-	<0.005	-	-	-	-	mg/kg	0.005	A-T-004s
PCB BZ 157 _A	-	-	<0.005	-	-	1	-	mg/kg	0.005	A-T-004s
PCB BZ 167 _A	-	-	<0.005	-	-	1	-	mg/kg	0.005	A-T-004s
PCB BZ 169 _A	-	-	<0.005	-	-	-	-	mg/kg	0.005	A-T-004s
PCB BZ 180 _A M#	-	-	<0.004	-	-	-	-	mg/kg	0.004	A-T-004s
PCB BZ 189 _A	-	-	<0.005	-	-	-	-	mg/kg	0.005	A-T-004s
PCB BZ 77 _A	-	-	<0.005	-	-	-	-	mg/kg	0.005	A-T-004s
Total Speciated PCB-EC7 & WHO12A	-	-	<0.007	-	-	-	-	mg/kg	0.002	A-T-004s
TPH Total with ID + GC Trace										
TPH total (>C6-C40) _A ^{M#}	30	176	-	<10	-	-	-	mg/kg	10	A-T-007s
TPH FID Chromatogram _A	Appended	Appended	-	Appended	-	-	-			A-T-007s
TPH ID (for FID characterisations) _A	Concentratio n too low to identify	Possible PAHs and other unknown heavier hydrocarbon s	-	Concentratio n too low to identify	-	-	-			A-T-007s

						ect Kei. 31				
Lab Sample ID	19/07826/1	19/07826/2	19/07826/3	19/07826/4	19/07826/5	19/07826/6	19/07826/7			
Client Sample No	ES1	ES1	ES1	ES1	ES1	ES2	ES3			
Client Sample ID	TP1	BH1	WS1	TP2	WS2	WS2	WS2			
Depth to Top	0.50	0.50	0.40	0.50	0.30	0.80	1.40			
Depth To Bottom									uo	
Date Sampled	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19		etecti	-
Sample Type	Soil - ES	Soil - ES		Limit of Detection	Method ref					
Sample Matrix Code	4AB	8	4AB	4A	4A	5A	5A	Units	Limit	Meth
voc										
DichlorodifluoromethaneA	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Chloromethane _A	-	-	-	-	-	<10	-	μg/kg	10	A-T-006s
Vinyl Chloride (Chloroethene) _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Bromomethane _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Chloroethane _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Trichlorofluoromethane _A #	-	-	-	-	-	<4	-	μg/kg	1	A-T-006s
1,1-Dichloroethene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Carbon Disulphide _A #	-	-	-	-	-	1	-	μg/kg	1	A-T-006s
Dichloromethane₄	-	-	-	-	-	<5	-	μg/kg	5	A-T-006s
trans 1,2-Dichloroethene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,1-Dichloroethane _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
cis 1,2-Dichloroethene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
2,2-Dichloropropane _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Bromochloromethane _A #	-	-	-	-	-	<5	-	μg/kg	5	A-T-006s
Chloroform _A #	-	-	1	1	-	<1	-	μg/kg	1	A-T-006s
1,1,1-Trichloroethane _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,1-Dichloropropene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Carbon Tetrachloride _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,2-Dichloroethane _A #	-	-	-	-	-	<2	-	μg/kg	2	A-T-006s
Benzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Trichloroethene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,2-Dichloropropane _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Dibromomethane _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Bromodichloromethane _A #	-	-	-	-	-	<10	-	μg/kg	10	A-T-006s
cis 1,3-Dichloropropene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Toluene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
trans 1,3-Dichloropropene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,1,2-Trichloroethane _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,3-Dichloropropane _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Tetrachloroethene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Dibromochloromethane _A #	-	-	-	-	-	<3	-	μg/kg	3	A-T-006s
1,2-Dibromoethane _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s

_					Ciletit F10	ect Ref: 37	1344			
Lab Sample ID	19/07826/1	19/07826/2	19/07826/3	19/07826/4	19/07826/5	19/07826/6	19/07826/7			
Client Sample No	ES1	ES1	ES1	ES1	ES1	ES2	ES3			
Client Sample ID	TP1	BH1	WS1	TP2	WS2	WS2	WS2			
Depth to Top	0.50	0.50	0.40	0.50	0.30	0.80	1.40			
Depth To Bottom									uo	
Date Sampled	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19		stecti	_
Sample Type	Soil - ES	Soil - ES	Soil - ES		Limit of Detection	Method ref				
Sample Matrix Code	4AB	8	4AB	4A	4A	5A	5A	Units	Limit	Meth
Chlorobenzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,1,1,2-Tetrachloroethane _A	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Ethylbenzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
m & p Xylene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
o-Xylene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Styrene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Bromoform _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Isopropylbenzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,1,2,2-Tetrachloroethane _A	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,2,3-Trichloropropane _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
Bromobenzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
n-Propylbenzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
2-Chlorotoluene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,3,5-Trimethylbenzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
4-Chlorotoluene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
tert-Butylbenzene _A #	-	-	-	-	-	<2	-	μg/kg	2	A-T-006s
1,2,4-Trimethylbenzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
sec-Butylbenzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
4-Isopropyltoluene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,3-Dichlorobenzene _A	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,4-Dichlorobenzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
n-Butylbenzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,2-Dichlorobenzene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,2-Dibromo-3-chloropropane (DCBP) _A	-	-	-	-	=	<2	-	μg/kg	2	A-T-006s
1,2,4-Trichlorobenzene _A	-	-	-	-	-	<3	-	μg/kg	3	A-T-006s
Hexachlorobutadiene _A #	-	-	-	-	-	<1	-	μg/kg	1	A-T-006s
1,2,3-Trichlorobenzene _A	-	-	-	-	-	<3	-	μg/kg	3	A-T-006s

					Onone i roj	ect Ret: 37	10-1-1			
Lab Sample ID	19/07826/8	19/07826/9	19/07826/10	19/07826/11	19/07826/12	19/07826/13	19/07826/14			
Client Sample No	ES1	ES2	ES3	ES4	ES1	ES2	ES1			
Client Sample ID	WS3	WS3	WS3	WS3	TP3	TP3	BH2			
Depth to Top	0.40	0.80	1.20	2.30	0.30	0.60	0.60			
Depth To Bottom									ion	
Date Sampled	14-Aug-19	14-Aug-19	15-Aug-19	15-Aug-19	14-Aug-19	14-Aug-19	13-Aug-19		eteci	J.
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	un.	Limit of Detection	Method ref
Sample Matrix Code	5A	5A	5A	5A	4A	5AB	5AB	Units	Limi	Meth
% Moisture at <40C _A	-	-	19.5	-	-	-	20.8	% w/w	0.1	A-T-044
% Stones >10mm _A	13.9	3.3	3.7	9.2	21.7	24.2	<0.1	% w/w	0.1	A-T-044
pH _D ^{M#}	9.20	-	8.35	1	i	8.70	8.60	рН	0.01	A-T-031s
Total Organic Carbon _D M#	3.25	2.53	-	0.08	0.61	-	-	% w/w	0.03	A-T-032s
Arsenic _D ^{M#}	-	-	7	-	-	17	29	mg/kg	1	A-T-024s
Cadmium _D ^{M#}	-	-	0.8	-	-	1.4	0.8	mg/kg	0.5	A-T-024s
Copper _D ^{M#}	-	-	15	1	i	99	104	mg/kg	1	A-T-024s
Chromium _D M#	-	-	47	1	i	24	28	mg/kg	1	A-T-024s
Chromium (hexavalent) _D	-	-	<1	1	i	-	<1	mg/kg	1	A-T-040s
Lead _D M#	-	-	20	-	-	487	302	mg/kg	1	A-T-024s
Mercury _D	-	-	<0.17	-	-	1.73	1.73	mg/kg	0.17	A-T-024s
Nickel _D ^{M#}	-	-	26	-	-	23	22	mg/kg	1	A-T-024s
Selenium _D ^{M#}	-	-	<1	-	-	<1	<1	mg/kg	1	A-T-024s
Zinc _D ^{M#}	-	-	56	-	-	666	124	mg/kg	5	A-T-024s

a										
Lab Sample ID	19/07826/8	19/07826/9	19/07826/10	19/07826/11	19/07826/12	19/07826/13	19/07826/14			
Client Sample No	ES1	ES2	ES3	ES4	ES1	ES2	ES1			
Client Sample ID	WS3	WS3	WS3	WS3	TP3	TP3	BH2			
Depth to Top	0.40	0.80	1.20	2.30	0.30	0.60	0.60			
Depth To Bottom									ion	
Date Sampled	14-Aug-19	14-Aug-19	15-Aug-19	15-Aug-19	14-Aug-19	14-Aug-19	13-Aug-19		Detection	<u>.</u>
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		of	od ref
Sample Matrix Code	5A	5A	5A	5A	4A	5AB	5AB	Units	Limit	Method
Asbestos in Soil (inc. matrix)										
Asbestos in soil _D #	-	NAD	NAD	-	NAD	-	NAD			A-T-045
Asbestos ACM - Suitable for Water Absorption Test?	-	N/A	N/A	-	N/A	-	N/A			

					onone i roj	ect itel. or				
Lab Sample ID	19/07826/8	19/07826/9	19/07826/10	19/07826/11	19/07826/12	19/07826/13	19/07826/14			
Client Sample No	ES1	ES2	ES3	ES4	ES1	ES2	ES1			
Client Sample ID	WS3	WS3	WS3	WS3	TP3	TP3	BH2			
Depth to Top	0.40	0.80	1.20	2.30	0.30	0.60	0.60			
Depth To Bottom									ion	
Date Sampled	14-Aug-19	14-Aug-19	15-Aug-19	15-Aug-19	14-Aug-19	14-Aug-19	13-Aug-19		etect	<u>_</u>
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		Limit of Detection	Method ref
Sample Matrix Code	5A	5A	5A	5A	4A	5AB	5AB	Units	Limit	Meth
PAH-16MS plus Coronene										
Acenaphthene _A ^{M#}	-	-	<0.01	-	-	-	<0.01	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	-	-	<0.01	-	-	-	<0.01	mg/kg	0.01	A-T-019s
Anthracene _A M#	-	-	<0.02	-	-	-	<0.02	mg/kg	0.02	A-T-019s
Benzo(a)anthracene _A ^{M#}	-	-	<0.04	-	-	-	<0.04	mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A M#	-	-	<0.04	-	-	-	<0.04	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	-	-	<0.05	-	-	-	<0.05	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A ^{M#}	-	-	<0.05	-	-	-	<0.05	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	-	-	<0.07	-	-	-	<0.07	mg/kg	0.07	A-T-019s
Chrysene _A M#	-	-	<0.06	-	-	-	<0.06	mg/kg	0.06	A-T-019s
Coronene	-	-	<0.01	-	-	-	<0.01	mg/kg	0.01	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	-	-	<0.04	-	-	-	<0.04	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	-	-	<0.08	-	-	-	<0.08	mg/kg	0.08	A-T-019s
Fluorene _A ^{M#}	-	-	<0.01	-	-	-	<0.01	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A M#	-	-	<0.03	-	=	=	<0.03	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	-	-	<0.03	-	=	=	<0.03	mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	-	-	<0.03	-	=	=	<0.03	mg/kg	0.03	A-T-019s
Pyrene _A M#	-	-	<0.07	-	=	=	<0.07	mg/kg	0.07	A-T-019s
Total PAH-16MS plus Coronene _A	-	-	<0.08	-	=	=	<0.08	mg/kg	0.01	A-T-019s
<u> </u>										

					Onent i roj	ect Kei. 31	1344			
Lab Sample ID	19/07826/8	19/07826/9	19/07826/10	19/07826/11	19/07826/12	19/07826/13	19/07826/14			
Client Sample No	ES1	ES2	ES3	ES4	ES1	ES2	ES1			
Client Sample ID	WS3	WS3	WS3	WS3	TP3	TP3	BH2			
Depth to Top	0.40	0.80	1.20	2.30	0.30	0.60	0.60			
Depth To Bottom									uo	
Date Sampled	14-Aug-19	14-Aug-19	15-Aug-19	15-Aug-19	14-Aug-19	14-Aug-19	13-Aug-19		stecti	_
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		Limit of Detection	od re
Sample Matrix Code	5A	5A	5A	5A	4A	5AB	5AB	Units	Limit	Method ref
Speciated PCB-EC7 & WHO12										
PCB BZ 28 _A ^{M#}	-	-	-	-	-	<0.002	-	mg/kg	0.002	A-T-004s
PCB BZ 52 _A M#	-	-	-	-	-	<0.002	-	mg/kg	0.002	A-T-004s
PCB BZ 81 _A	-	-	-	-	-	<0.005	-	mg/kg	0.005	A-T-004s
PCB BZ 101 _A M#	-	-	-	-	-	<0.004	-	mg/kg	0.004	A-T-004s
PCB BZ 105 _A	-	-	-	-	-	<0.005	-	mg/kg	0.005	A-T-004s
PCB BZ 114 _A	-	-	-	-	-	<0.005	-	mg/kg	0.005	A-T-004s
PCB BZ 118 _A M#	-	-	-	-	-	<0.007	-	mg/kg	0.007	A-T-004s
PCB BZ 123 _A	-	-	-	-	-	<0.005	-	mg/kg	0.005	A-T-004s
PCB BZ 126 _A	-	-	-	-	-	<0.005	-	mg/kg	0.005	A-T-004s
PCB BZ 138 _A ^{M#}	-	-	-	-	-	<0.006	-	mg/kg	0.006	A-T-004s
PCB BZ 153 _A M#	-	-	-	-	-	<0.004	-	mg/kg	0.004	A-T-004s
PCB BZ 156 _A	-	-	-	-	-	<0.005	-	mg/kg	0.005	A-T-004s
PCB BZ 157 _A	-	-	-	-	-	<0.005	-	mg/kg	0.005	A-T-004s
PCB BZ 167 _A	-	-	-	-	-	<0.005	-	mg/kg	0.005	A-T-004s
PCB BZ 169 _A	-	-	-	-	-	<0.005	-	mg/kg	0.005	A-T-004s
PCB BZ 180 _A M#	-	-	-	-	-	<0.004	-	mg/kg	0.004	A-T-004s
PCB BZ 189 _A	-	-	-	-	-	<0.005	-	mg/kg	0.005	A-T-004s
PCB BZ 77 _A	-	-	-	-	-	<0.005	-	mg/kg	0.005	A-T-004s
Total Speciated PCB-EC7 & WHO12A	-	-	-	-	-	<0.007	-	mg/kg	0.002	A-T-004s
TPH Total with ID + GC Trace										
TPH total (>C6-C40)A ^{M#}	-	-	84	-	-	-	<10	mg/kg	10	A-T-007s
TPH FID Chromatogram _A	-	-	Appended	-	-	-	Appended			A-T-007s
TPH ID (for FID characterisations) _A	-	-	Possible kerosene	-	-	-	N/A			A-T-007s

						ect Kei. 31				
Lab Sample ID	19/07826/8	19/07826/9	19/07826/10	19/07826/11	19/07826/12	19/07826/13	19/07826/14			
Client Sample No	ES1	ES2	ES3	ES4	ES1	ES2	ES1			
Client Sample ID	WS3	WS3	WS3	WS3	TP3	TP3	BH2			
Depth to Top	0.40	0.80	1.20	2.30	0.30	0.60	0.60			
Depth To Bottom									on	
Date Sampled	14-Aug-19	14-Aug-19	15-Aug-19	15-Aug-19	14-Aug-19	14-Aug-19	13-Aug-19		etecti	.
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		Limit of Detection	Method ref
Sample Matrix Code	5A	5A	5A	5A	4A	5AB	5AB	Units	Limit	Meth
voc										
Dichlorodifluoromethane _A	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Chloromethane _A	-	<10	-	-	-	-	-	μg/kg	10	A-T-006s
Vinyl Chloride (Chloroethene) _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Bromomethane _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Chloroethane _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Trichlorofluoromethane _A #	-	<4	-	-	-	-	-	μg/kg	1	A-T-006s
1,1-Dichloroethene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Carbon Disulphide _A #	-	<1	=	-	-	-	-	μg/kg	1	A-T-006s
Dichloromethane _A	-	<5	-	-	-	-	-	μg/kg	5	A-T-006s
trans 1,2-Dichloroethene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,1-Dichloroethane _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
cis 1,2-Dichloroethene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
2,2-Dichloropropane _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Bromochloromethane _A #	-	<5	-	-	-	-	-	μg/kg	5	A-T-006s
Chloroform _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,1,1-Trichloroethane _A #	-	<1	-	1	-	-	-	μg/kg	1	A-T-006s
1,1-Dichloropropene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Carbon Tetrachloride _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,2-Dichloroethane _A #	-	<2	-	-	-	-	-	μg/kg	2	A-T-006s
Benzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Trichloroethene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,2-Dichloropropane _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Dibromomethane _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Bromodichloromethane [#]	-	<10	-	-	-	-	-	μg/kg	10	A-T-006s
cis 1,3-Dichloropropene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Toluene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
trans 1,3-Dichloropropene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,1,2-Trichloroethane _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,3-Dichloropropane _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Tetrachloroethene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Dibromochloromethane _A #	-	<3	-	-	-	-	-	μg/kg	3	A-T-006s
1,2-Dibromoethane _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s

<u> </u>						ect Rei. 37				
Lab Sample ID	19/07826/8	19/07826/9	19/07826/10	19/07826/11	19/07826/12	19/07826/13	19/07826/14			
Client Sample No	ES1	ES2	ES3	ES4	ES1	ES2	ES1			
Client Sample ID	WS3	WS3	WS3	WS3	TP3	TP3	BH2			
Depth to Top	0.40	0.80	1.20	2.30	0.30	0.60	0.60			
Depth To Bottom									ion	
Date Sampled	14-Aug-19	14-Aug-19	15-Aug-19	15-Aug-19	14-Aug-19	14-Aug-19	13-Aug-19		Limit of Detection	J e
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		of D	Method ref
Sample Matrix Code	5A	5A	5A	5A	4A	5AB	5AB	Units	Limit	Meth
Chlorobenzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,1,1,2-Tetrachloroethane _A	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Ethylbenzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
m & p Xylene _A #	-	<1	-	-	=	=	=	μg/kg	1	A-T-006s
o-Xylene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Styrene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Bromoform _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Isopropylbenzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,1,2,2-Tetrachloroethane _A	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,2,3-Trichloropropane _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
Bromobenzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
n-Propylbenzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
2-Chlorotoluene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,3,5-Trimethylbenzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
4-Chlorotoluene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
tert-Butylbenzene _A #	-	<2	-	-	-	-	-	μg/kg	2	A-T-006s
1,2,4-Trimethylbenzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
sec-Butylbenzene [#]	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
4-Isopropyltoluene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,3-Dichlorobenzene _A	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,4-Dichlorobenzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
n-Butylbenzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,2-Dichlorobenzene _A #	-	<1	-	-	-	-	-	μg/kg	1	A-T-006s
1,2-Dibromo-3-chloropropane (DCBP)A	-	<2	-	-	-	-	-	μg/kg	2	A-T-006s
1,2,4-Trichlorobenzene _A	-	<3	-	-	=	=	=	μg/kg	3	A-T-006s
Hexachlorobutadiene _A #	-	<1	-	-	=	-	-	μg/kg	1	A-T-006s
1,2,3-Trichlorobenzene _A	-	<3	-	-	-	-	-	μg/kg	3	A-T-006s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900μS/cm @ 25°C / 11550μS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Client: RSK Environment Ltd Hemel, 18 Frogmore Road, Hemel Hempstead, Project

Hertfordshire, UK, HP3 9RT

Project: 60 - 86 Royal College Street, London

Clients Project No: 371944

Project No: 19/07826

Date Received: 20/08/2019 (am)

Cool Box Temperatures (°C): 16.0, 15.6

NO DEVIATIONS IDENTIFIED

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 19/08021

Issue Number: Date: 09 September, 2019

Client: **RSK Environment Ltd Hemel**

> 18 Frogmore Road Hemel Hempstead

Hertfordshire

UK

HP3 9RT

Project Manager: Andrew Tyler

Project Name: Royal College Street, London

Project Ref: 371944 Order No: N/A

Date Samples Received: 27/08/19 **Date Instructions Received:** 27/08/19 **Date Analysis Completed:** 09/09/19

Prepared by: Approved by:

Melanie Marshall

Holly Neary-King **Laboratory Coordinator** Client Manager

						,000 11011 01				
Lab Sample ID	19/08021/1	19/08021/2	19/08021/3	19/08021/4	19/08021/5	19/08021/6	19/08021/7			
Client Sample No										
Client Sample ID	WS2	WS3	BH1	BH1	BH2	BH2	BH1			
Depth to Top	3.50	4.50	8.50	18.00	12.50	24.50	2.00			
Depth To Bottom			9.00	18.45	13.00	25.00	2.45		ion	
Date Sampled	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19	15-Aug-19		etect	-
Sample Type	Soil - D	Soil - D		Limit of Detection	Method ref					
Sample Matrix Code	5A	5A	5A	5A	5A	5A	5A	Units	Limit	Meth
% Stones >10mm _A	<0.1	<0.1	<0.1	<0.1	<0.1	3.1	<0.1	% w/w	0.1	A-T-044
pH BRE _D M#	8.07	7.67	7.69	8.15	7.88	8.23	8.27	pН	0.01	A-T-031s
Ammonium NH4 BRE (water sol 2:1) _D	=	-	-	-	-	-	<1.00	mg/l	1	A-T-033s
Chloride BRE, SO4 equiv. (water sol 2:1) _D ^{M#}	-	-	-	-	-	-	14	mg/l	7	A-T-026s
Nitrate BRE, SO4 equiv. (water sol 2:1) _D	-	-	-	-	-	-	<0.4	mg/l	0.4	A-T-026s
Sulphate BRE (water sol 2:1) _D M#	192	2240	2380	678	714	712	124	mg/l	10	A-T-026s
Sulphate BRE (acid sol) _D M#	0.04	0.97	1.94	0.22	0.15	0.22	0.05	% w/w	0.02	A-T-028s
Sulphur BRE (total) _D	0.02	0.31	0.61	0.69	0.38	0.75	0.05	% w/w	0.01	A-T-024s
Magnesium BRE (water sol 2:1) _D	=	-	-	-	-	-	24	mg/l	1	A-T-SOLMETS

_				,000 11011 01			
Lab Sample ID	19/08021/8						
Client Sample No							
Client Sample ID	BH2						
Depth to Top	0.50						
Depth To Bottom	1.20					ion	
Date Sampled	15-Aug-19					etect	<u>_</u>
Sample Type	Soil - D				,	Limit of Detection	Method ref
Sample Matrix Code	5A				Units	Limit	Meth
% Stones >10mm _A	0.6				% w/w	0.1	A-T-044
pH BRE _D M#	8.01				рН	0.01	A-T-031s
Ammonium NH4 BRE (water sol 2:1) _D	<1.00				mg/l	1	A-T-033s
Chloride BRE, SO4 equiv. (water sol 2:1) _D M#	<7				mg/l	7	A-T-026s
Nitrate BRE, SO4 equiv. (water sol 2:1) _D	1.8				mg/l	0.4	A-T-026s
Sulphate BRE (water sol 2:1) _D M#	<10				mg/l	10	A-T-026s
Sulphate BRE (acid sol) _D M#	0.06				% w/w	0.02	A-T-028s
Sulphur BRE (total) _D	0.04				% w/w	0.01	A-T-024s
Magnesium BRE (water sol 2:1) _D	2				mg/l	1	A-T-SOLMETS

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900μS/cm @ 25°C / 11550μS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Client: RSK Environment Ltd Hemel, 18 Frogmore Road, Hemel Hempstead,

Hertfordshire, UK, HP3 9RT

Project: Royal College Street, London

Clients Project No: 371944

Project No: 19/08021

Date Received: 27/08/2019 (am)

Cool Box Temperatures (°C): 19.3

NO DEVIATIONS IDENTIFIED

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

APPENDIX K LABORATORY CERTIFICATES FOR GEOTECHNICAL ANALYSIS

STRUCTURAL SOILS LTD TEST REPORT

Report No. 584118-01 (00) 1774

Date 10-September-2019 Contract Royal College Street, London

Client RSK

Address 18 Frogmore Rd

Apsley

Hemel Hempstead Hertfordshire HP3 9RT

For the Attention of Sammy Al Hilly

Samples submitted by client 21-August-2019 Client Reference 371944
Testing Started 21-August-2019 Client Order No. n/a
Testing Completed 09-September-2019 Instruction Type Written

Tests marked 'Not UKAS Accredited' in this report are not included in the UKAS Accreditation Schedule for our Laboratory.

UKAS Accredited Tests

1.01	Moisture Content (oven drying method) BS1377:Part 2:1990:clause 3.2 (superceded)
1.03	Liquid Limit (one point method) & Plastic Limit BS1377:Part 2:1990,clause 4.4/5.3*
5.04	Undrained shear strength triaxial compression without pore pressure measurement
	(definitive method) 100mm diameter specimens BS1377:Part 7:1990,clause 8.4*
4.01	One-dimensional consolidation BS1377:Part 5:1990,clause 3.5 (superseded)*

Please Note: Remaining samples will be retained for a period of one month from today and will then be disposed of . Test were undertaken on samples 'as received' unless otherwise stated.

Opinions and interpretations expressed in this report are outside the scope of accreditation for this laboratory.

Structural Soils Ltd 18 Frogmore Rd Hemel Hempstead HP3 9RT Tel.01442 416661 e-mail dimitris.xirouchakis@soils.co.uk

QMF 26.00_Reports_Hemel_Rev 00 584118 RSK

1 of 1

^{*} This clause of BS1377 is no longer the most up to date method due to the publication of ISO17892

TESTING VERIFICATION CERTIFICATE

1774

The test results included in this report are certified as:-

ISSUE STATUS: FINAL

In accordance with the Structural Soils Ltd Laboratory Quality Management System, results sheets and summaries of results issued by the laboratory are checked by an approved signatory. The integrity of the test data and results are ensured by control of the computer system employed by the laboratory as part of the Software Verification Program as detailed in the Laboratory Quality Manual.

This testing verification certificate covers all testing compiled on or before the following datetime: **06/09/2019 08:46:34**.

Testing reported after this date is not covered by this Verification Certificate.

A.D. fre

Approved Signatory **Alan Frost (Deputy Laboratory Manager)**

(Head Office)
Bristol Laboratory
Unit 1A, Princess Street
Bedminster
Bristol
BS3 4AG

Castleford Laboratory
The Potteries, Pottery Street
Castleford
West Yorkshire
WF10 1NJ

Hemel Laboratory 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT Tonbridge Laboratory
Anerley Court, Half Moon Lane
Hildenborough
Tonbridge
TN11 9HU

STRUCTURAL SOILS LTD

Contract:

Job No:

Royal College Street, London

TESTING VERIFICATION CERTIFICATE

1774

The test results included in this report are certified as:-

ISSUE STATUS: FINAL

In accordance with the Structural Soils Ltd Laboratory Quality Management System, results sheets and summaries of results issued by the laboratory are checked by an approved signatory. The integrity of the test data and results are ensured by control of the computer system employed by the laboratory as part of the Software Verification Program as detailed in the Laboratory Quality Manual.

This testing verification certificate covers all testing compiled on or before the following datetime: 10/09/2019 12:19:03.

Testing reported after this date is not covered by this Verification Certificate.

56

Approved Signatory

Sharon Cairns (Laboratory Manager)

(Head Office)
Bristol Laboratory
Unit 1A, Princess Street
Bedminster
Bristol
BS3 4AG

Castleford Laboratory
The Potteries, Pottery Street
Castleford
West Yorkshire
WF10 1NJ

Hemel Laboratory 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT Tonbridge Laboratory
Anerley Court, Half Moon Lane
Hildenborough
Tonbridge
TN11 9HU

STRUCTURAL SOILS LTD

Contract:

Job No:

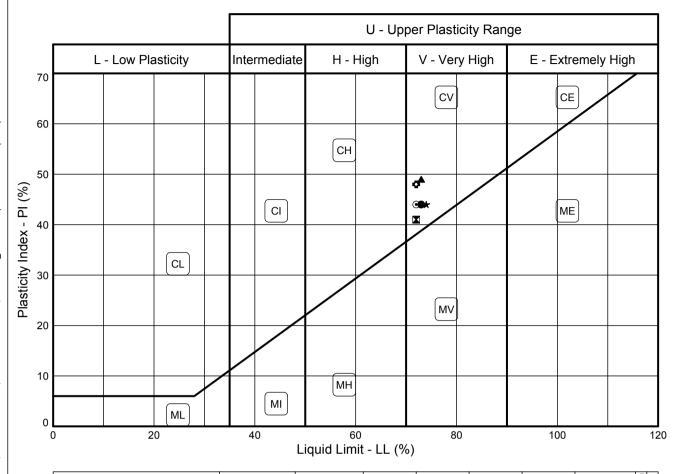
Royal College Street, London

584118

SUMMARY OF SOIL CLASSIFICATION TESTS

In accordance with clauses 3.2,4.3,4.4,5.3,5.4,7.2,8.2,8.3 of BS1377:Part 2:1990

Exploratory Position ID	Sample Ref	Sample Type	Depth (m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425um	Description of Sample
BH1		U	10.50	25	73	29	44	100	Dark brown silty CLAY with rare selenite crystals
BH1		U	13.50	21	72	31	41	100	Dark brown silty CLAY with rare selenite crystals
BH1		U	22.50	25	73	24	49	100	Dark brown silty CLAY
BH2		U	4.00	31	74	30	44	100	Brown silty CLAY
BH2		U	18.00	26	72	28	44	100	Dark brown silty CLAY with rare selenite crystals
BH2		U	24.00	20	72	24	48	100	Dark brown slightly silty CLAY



Contract: Contract Ref:

Royal College Street, London

PLASTICITY CHART - PI Vs LL
In accordance with BS5930:2015
Testing in accordance with BS1377-2:1990

	Sample Identification		tion	BS Test	Preparation	МС	LL	PL	PI	<425um	cation
	Exploratory Position ID	Sample	Depth (m)	Method #	Method +	%	%	%	%	%	Lab location
•	BH1	U	10.50	3.2/4.4/5.3/5.4	4.2.4	25	73	29	44	100	Н
	BH1	U	13.50	3.2/4.4/5.3/5.4	4.2.4	21	72	31	41	100	Н
	BH1	U	22.50	3.2/4.4/5.3/5.4	4.2.4	25	73	24	49	100	Н
*	BH2	С	4.00	3.2/4.4/5.3/5.4	4.2.4	31	74	30	44	100	Н
•	BH2	U	18.00	3.2/4.4/5.3/5.4	4.2.4	26	72	28	44	100	Н
O	BH2	U	24.00	3.2/4.4/5.3/5.4	4.2.4	20	72	24	48	100	Н
											Ш
											Ш
											Ш

Tested in accordance with the following clauses of BS1377-2:1990

- 3.2 Moisture Content
- 4.3 Cone Penetrometer Method
- 4.4 One Point Cone Penetrometer Method
- 4.6 One Point Casagrande Method
- 5.3 Plastic Limit Method
- 5.4 Plasticity Index

- + Tested in accordance with the following clauses of BS1377-2:1990.
- 4.2.3 Natural State 4.2.4 - Wet Sieved
- Key: * = Non-standard test, NP = Non plastic.

Lab location: B = Bristol (BS3 4AG), C = Castleford (WF10 1NJ), H = Hemel Hempstead (HP3 9RT), T = Tonbridge (TN11 9HU)

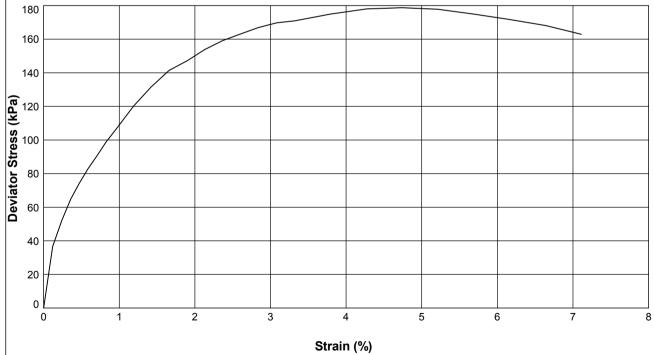
STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

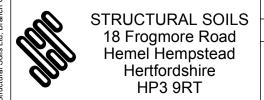
Compiled By				
56-	SHARON CAIRNS	10/09/19		
Contract	Contract Ref:	•		

Royal College Street, London

584118

AGS


UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST


In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH1 U Sample Ref: Sample Type: Depth (m): 5.00

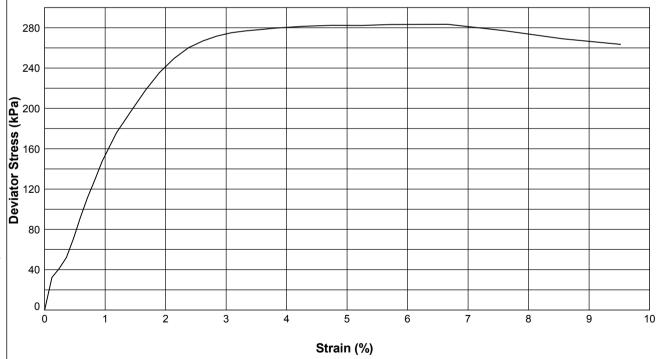
Description: Brown mottled dark brown silty CLAY

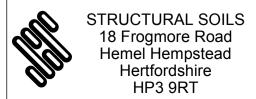
STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.27		
	Height	(mm)	210.97		
	Moisture Content	(%)	29		
	Bulk Density	(Mg/m³)	1.92		
	Dry Density	(Mg/m³)	1.49		
TEST DETAILS	Membrane Thickness	(mm)	0.12		
	Rate of Axial Displacement	(%/min)	1.00		
	Cell Pressure	(kPa)	100		
	Membrane Correction	(kPa)	0.15		
	Corrected Deviator Stress	(kPa)	179		
	Undrained Shear Strength	(kPa)	89		
	Strain at Failure	(%)	4.7		
	Mode of Failure		Brittle		

Comp	Compiled By			
Johnster	JONATHAN BAKER	10/09/19		
Contract	Contract Ref:			

Contract Ref:

Royal College Street, London


UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST


In accordance with BS1377:Part 7:1990, Clause 8

Borehole: **BH1** Sample Ref: - Sample Type: **U** Depth (m): **10.50**

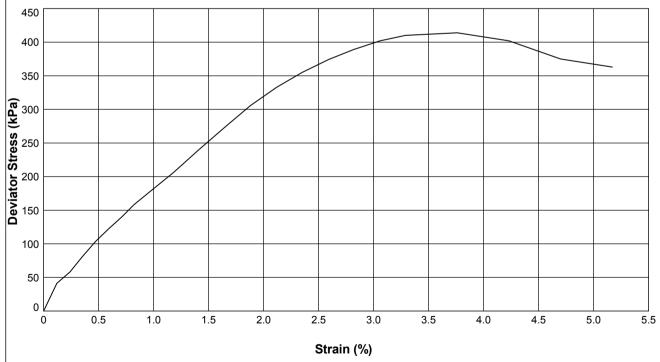
Description: Dark brown silty CLAY with rare selenite crystals

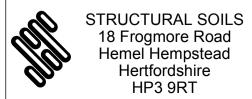
STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	102.41		
	Height	(mm)	210.16		
	Moisture Content	(%)	27		
	Bulk Density	(Mg/m ³)	2.02		
	Dry Density	(Mg/m ³)	1.60		
TEST DETAILS	Membrane Thickness	(mm)	0.23		
	Rate of Axial Displacement	(%/min)	0.90		
	Cell Pressure	(kPa)	210		
	Membrane Correction	(kPa)	0.37		
	Corrected Deviator Stress	(kPa)	283		
	Undrained Shear Strength	(kPa)	142		
	Strain at Failure	(%)	6.7		
	Mode of Failure		Brittle		

Compiled By		Date
Johnster	JONATHAN BAKER	10/09/19
Contract	Contract Ref:	

aut Contra

Royal College Street, London


UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST


In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH1 Sample Ref: - Sample Type: U Depth (m): 13.50

Description: Dark brown silty CLAY with rare selenite crystals

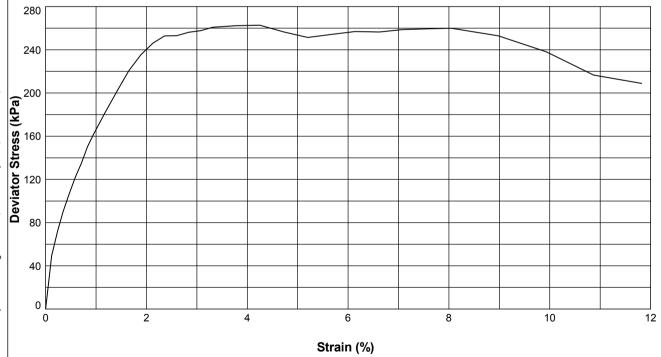
STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	101.86		
	Height	(mm)	212.65		
	Moisture Content	(%)	26		
	Bulk Density	(Mg/m³)	2.02		
	Dry Density	(Mg/m³)	1.60		
TEST DETAILS	Membrane Thickness	(mm)	0.20		
	Rate of Axial Displacement	(%/min)	0.94		
	Cell Pressure	(kPa)	270		
	Membrane Correction	(kPa)	0.20		
	Corrected Deviator Stress	(kPa)	414		
	Undrained Shear Strength	(kPa)	207		
	Strain at Failure	(%)	3.8		
	Mode of Failure		Brittle		

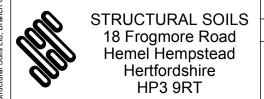
Compiled By		
Jethaker	JONATHAN BAKER	10/09/19
Contract	Contract Ref:	•

Royal College Street, London

584118

AGS


UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST


In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH1 Sample Ref: Sample Type: Depth (m): 16.50

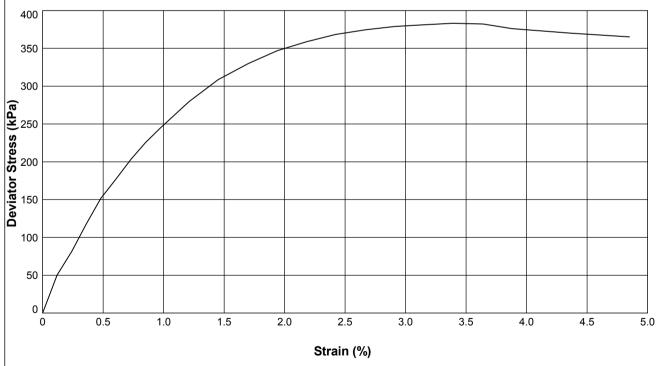
Description: Dark brown silty CLAY

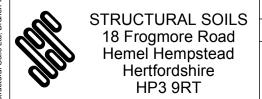
STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	101.44		
	Height	(mm)	211.57		
	Moisture Content	(%)	30		
	Bulk Density	(Mg/m³)	1.97		
	Dry Density	(Mg/m³)	1.51		
TEST DETAILS	Membrane Thickness	(mm)	0.36		
	Rate of Axial Displacement	(%/min)	0.90		
	Cell Pressure	(kPa)	330		
	Membrane Correction	(kPa)	0.41		
	Corrected Deviator Stress	(kPa)	263		
	Undrained Shear Strength	(kPa)	131		
	Strain at Failure	(%)	4.2		
	Mode of Failure		Brittle		

Compiled By		
Jelhaker	JONATHAN BAKER	10/09/19
Contract	Contract Ref:	•

Contract Ref:

Royal College Street, London


UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST


In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH1 Sample Ref: Sample Type: Depth (m): 19.50

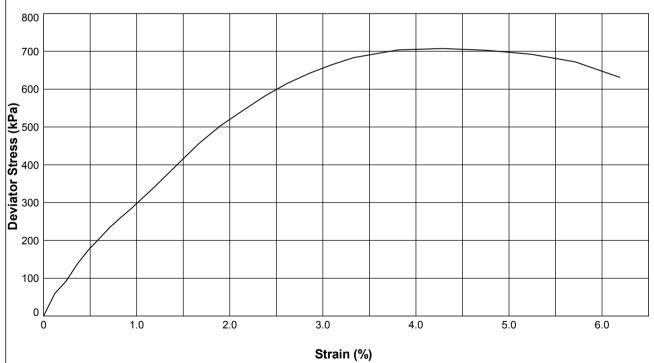
Description: Dark brown silty CLAY

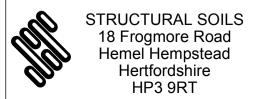
STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.19		
	Height	(mm)	206.29		
	Moisture Content	(%)	28		
	Bulk Density	(Mg/m³)	1.98		
	Dry Density	(Mg/m³)	1.54		
TEST DETAILS	Membrane Thickness	(mm)	0.11		
	Rate of Axial Displacement	(%/min)	1.02		
	Cell Pressure	(kPa)	390		
	Membrane Correction	(kPa)	0.10		
	Corrected Deviator Stress	(kPa)	383		
	Undrained Shear Strength	(kPa)	192		
	Strain at Failure	(%)	3.4		
	Mode of Failure		Brittle		

Compiled By		Date
Johnster	JONATHAN BAKER	10/09/19
Contract	Contract Ref:	•

Royal College Street, London

Contract Ref:


UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST

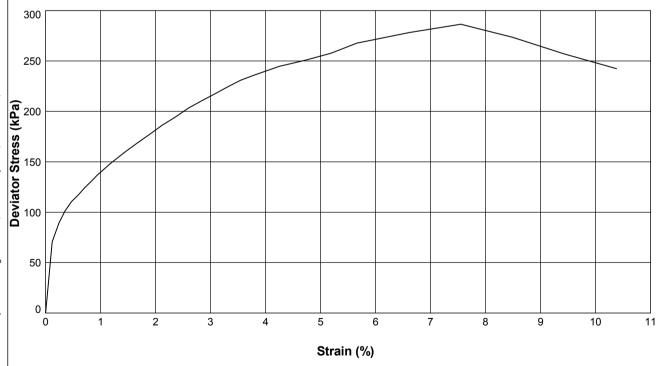

In accordance with BS1377:Part 7:1990, Clause 8

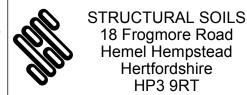
Borehole: BH1 Sample Ref: - Sample Type: U Depth (m): 22.50

Description: Dark brown silty CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	102.69		
	Height	(mm)	209.99		
	Moisture Content	(%)	24		
	Bulk Density	(Mg/m³)	2.05		
	Dry Density	(Mg/m³)	1.66		
TEST DETAILS	Membrane Thickness	(mm)	0.36		
	Rate of Axial Displacement	(%/min)	0.86		
	Cell Pressure	(kPa)	450		
	Membrane Correction	(kPa)	0.41		
	Corrected Deviator Stress	(kPa)	708		
	Undrained Shear Strength	(kPa)	354		
	Strain at Failure	(%)	4.3		
	Mode of Failure		Brittle		

Compiled By		Date
Johnster	JONATHAN BAKER	10/09/19
Contract	Contract Ref:	•


Royal College Street, London


.....

Borehole: BH1 Sample Ref: Sample Type: Depth (m): 28.50

Description: Dark brown silty CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	102.41		
	Height	(mm)	211.93		
	Moisture Content	(%)	26		
	Bulk Density	(Mg/m³)	2.03		
	Dry Density	(Mg/m³)	1.62		
TEST DETAILS	Membrane Thickness	(mm)	0.24		
	Rate of Axial Displacement	(%/min)	0.94		
	Cell Pressure	(kPa)	570		
	Membrane Correction	(kPa)	0.43		
	Corrected Deviator Stress	(kPa)	286		
	Undrained Shear Strength	(kPa)	143		
	Strain at Failure	(%)	7.6		
	Mode of Failure		Compound		

Compiled By		Date
Jetheter	JONATHAN BAKER	10/09/19

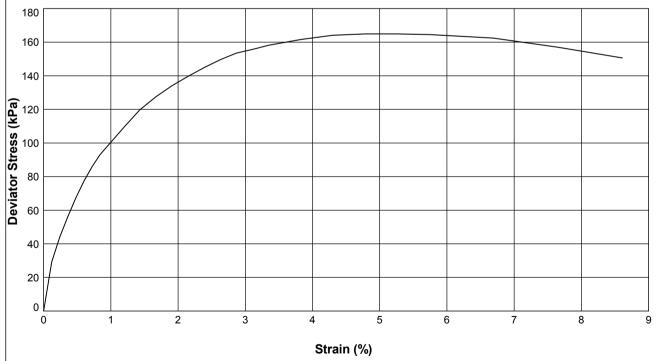
Contract

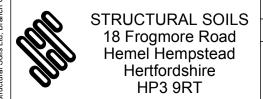
Contract Ref:

Royal College Street, London

584118

GINT_LIBRARY_V8_07.GLB LibVersion: v8_07_001 PrjVersion: v8_07 | Graph L - TRIAXIAL - BS - A4P | 584118 ROYAL COLLEGE STREET, LONDON - RSK 371944.GPJ - v8_07.
Structural Soils Lid, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hemel Hempstead, Herifordshire, HP3 9RT. Tel: 01442-262323, Fax: 01442-262683, Web: www.soils.co.uk, Email: ask@soils.co.uk | 10/09/19 - 12:52 | SC1 |


UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST


In accordance with BS1377:Part 7:1990, Clause 8

Borehole: **BH2** Sample Ref: - Sample Type: **U** Depth (m): **4.00**

Description: Brown silty CLAY

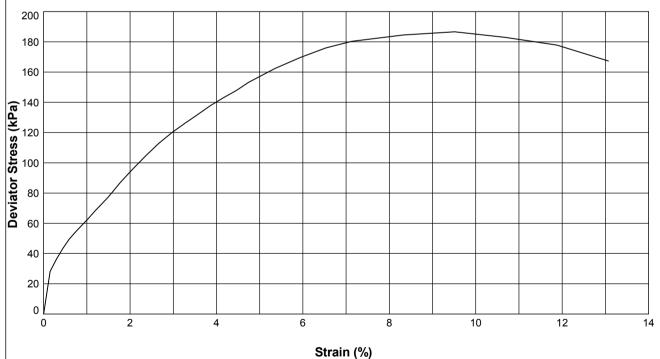
STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	101.02		
	Height	(mm)	209.13		
	Moisture Content	(%)	31		
	Bulk Density	(Mg/m³)	2.00		
	Dry Density	(Mg/m³)	1.53		
TEST DETAILS	Membrane Thickness	(mm)	0.20		
	Rate of Axial Displacement	(%/min)	52.12		
	Cell Pressure	(kPa)	80		
	Membrane Correction	(kPa)	0.26		
	Corrected Deviator Stress	(kPa)	165		
	Undrained Shear Strength	(kPa)	82		
	Strain at Failure	(%)	4.8		
	Mode of Failure		Brittle		

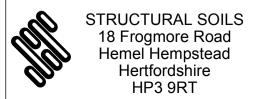
Compiled By		Date
Jobaker	JONATHAN BAKER	10/09/19

Contract

Contract Ref:

Royal College Street, London


UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST


In accordance with BS1377:Part 7:1990, Clause 8

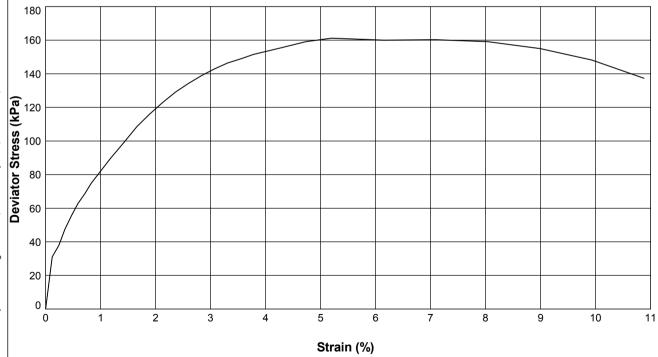
Borehole: BH2 Sample Ref: - Sample Type: U Depth (m): 6.00

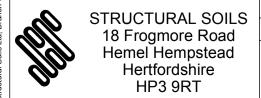
Description: Brown silty CLAY (with occasional gypsum)

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	102.88		
	Height	(mm)	168.32		
	Moisture Content	(%)	28		
	Bulk Density	(Mg/m³)	2.32		
	Dry Density	(Mg/m³)	1.81		
TEST DETAILS	Membrane Thickness	(mm)	0.30		
	Rate of Axial Displacement	(%/min)	1.19		
	Cell Pressure	(kPa)	120		
	Membrane Correction	(kPa)	0.64		
	Corrected Deviator Stress	(kPa)	187		
	Undrained Shear Strength	(kPa)	93		
	Strain at Failure	(%)	9.5		
	Mode of Failure		Brittle		

Compiled By		Date
Jelhaker	JONATHAN BAKER	10/09/19
Contract	Contract Ref:	

Royal College Street, London


UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST


In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH2 Sample Type: Depth (m): Sample Ref: 9.00

Description: Brown silty CLAY

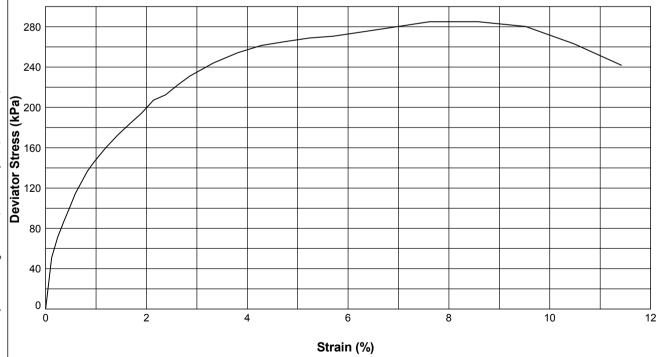
STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	101.04		
	Height	(mm)	211.42		
	Moisture Content	(%)	30		
	Bulk Density	(Mg/m³)	2.01		
	Dry Density	(Mg/m³)	1.54		
TEST DETAILS	Membrane Thickness	(mm)	0.23		
	Rate of Axial Displacement	(%/min)	1.04		
	Cell Pressure	(kPa)	180		
	Membrane Correction	(kPa)	0.32		
	Corrected Deviator Stress	(kPa)	161		
	Undrained Shear Strength	(kPa)	81		
	Strain at Failure	(%)	5.2		
	Mode of Failure		Brittle		

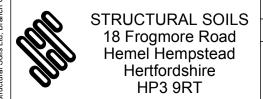
Comp	ompiled By	
Johnster	JONATHAN BAKER	10/09/19
Contract	Contract Ref:	•

Contract Ref:

584118

Royal College Street, London


UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST


In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH2 Sample Ref: - Sample Type: U Depth (m): 12.00

Description: Brown silty CLAY

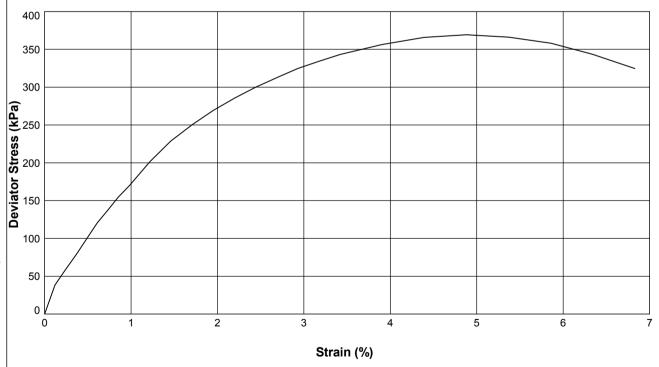
STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	102.92		
	Height	(mm)	210.13		
	Moisture Content	(%)	28		
	Bulk Density	(Mg/m³)	1.97		
	Dry Density	(Mg/m³)	1.54		
TEST DETAILS	Membrane Thickness	(mm)	0.12		
	Rate of Axial Displacement	(%/min)	1.00		
	Cell Pressure	(kPa)	240		
	Membrane Correction	(kPa)	0.24		
	Corrected Deviator Stress	(kPa)	285		
	Undrained Shear Strength	(kPa)	142		
	Strain at Failure	(%)	8.6		
	Mode of Failure		Compound		

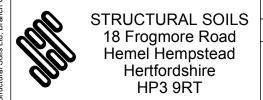
Compiled By		Date
Jethoker	JONATHAN BAKER	10/09/19

Contract

Royal College Street, London

Contract Ref:


UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST


In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH2 Sample Ref: Sample Type: Depth (m): 15.00

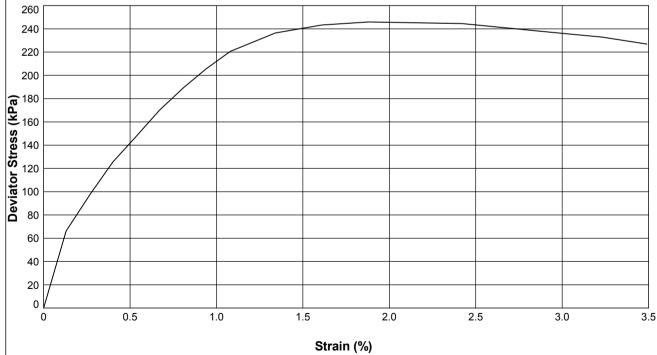
Description: Dark brown silty CLAY

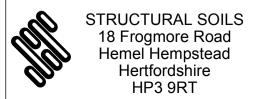
STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	100.98		
	Height	(mm)	204.89		
	Moisture Content	(%)	28		
	Bulk Density	(Mg/m³)	1.99		
	Dry Density	(Mg/m³)	1.56		
TEST DETAILS	Membrane Thickness	(mm)	0.11		
	Rate of Axial Displacement	(%/min)	1.12		
	Cell Pressure	(kPa)	300		
	Membrane Correction	(kPa)	0.15		
	Corrected Deviator Stress	(kPa)	369		
	Undrained Shear Strength	(kPa)	185		
	Strain at Failure	(%)	4.9		
	Mode of Failure		Brittle		

Comp	Compiled By	
Johnster	JONATHAN BAKER	10/09/19
Contract	Contract Ref:	

Royal College Street, London

Contract Ref:


UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST


In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH2 Sample Ref: - Sample Type: U Depth (m): 18.00

Description: Dark brown silty CLAY with rare selenite

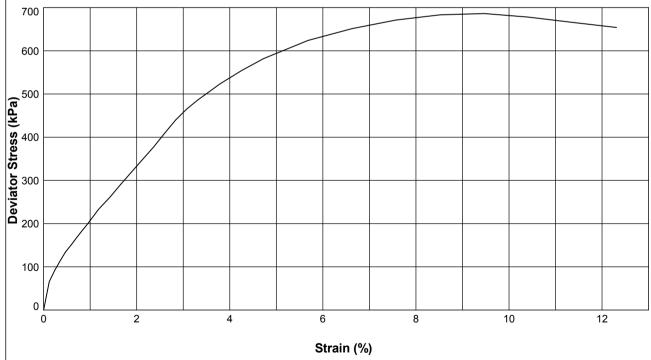
STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	101.69		
	Height	(mm)	186.00		
	Moisture Content	(%)	26		
	Bulk Density	(Mg/m³)	1.99		
	Dry Density	(Mg/m³)	1.58		
TEST DETAILS	Membrane Thickness	(mm)	0.11		
	Rate of Axial Displacement	(%/min)	1.13		
	Cell Pressure	(kPa)	360		
	Membrane Correction	(kPa)	0.06		
	Corrected Deviator Stress	(kPa)	246		
	Undrained Shear Strength	(kPa)	123		
	Strain at Failure	(%)	1.9		
	Mode of Failure		Brittle		

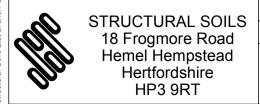
Compiled By		Date
Jethoker	JONATHAN BAKER	10/09/19
Contract	Contract Ref:	•

Royal College Street, London

584118

AGS


UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST


In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH2 Sample Ref: - Sample Type: U Depth (m): 24.00

Description: Dark brown slightly silty CLAY

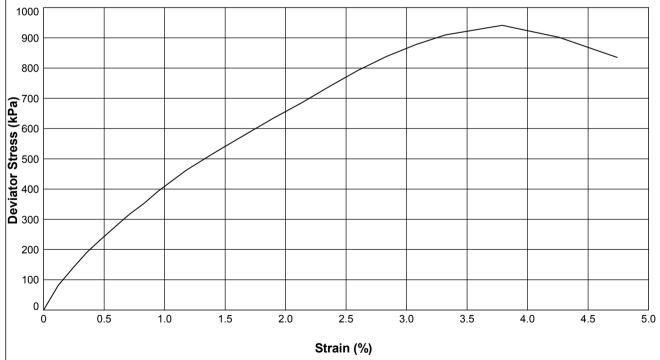
STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	102.01		
	Height	(mm)	211.27		
	Moisture Content	(%)	20		
	Bulk Density	(Mg/m³)	2.11		
	Dry Density	(Mg/m³)	1.75		
TEST DETAILS	Membrane Thickness	(mm)	0.20		
	Rate of Axial Displacement	(%/min)	0.85		
	Cell Pressure	(kPa)	480		
	Membrane Correction	(kPa)	0.43		
	Corrected Deviator Stress	(kPa)	686		
	Undrained Shear Strength	(kPa)	343		
	Strain at Failure	(%)	9.5		
	Mode of Failure		Plastic		

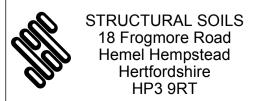
Comp	Compiled By	
Johnster	JONATHAN BAKER	10/09/19
Contract	Contract Ref:	

Royal College Street, London

584118

AC


UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST


In accordance with BS1377:Part 7:1990, Clause 8

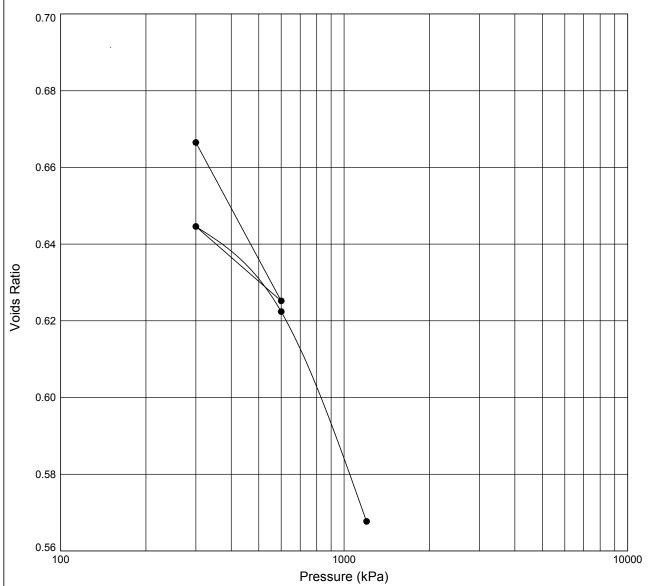
Borehole: BH2 U Sample Ref: Sample Type: Depth (m): 27.00

Description: Dark brown slightly silty CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	102.76		
	Height	(mm)	211.13		
	Moisture Content	(%)	22		
	Bulk Density	(Mg/m³)	2.06		
	Dry Density	(Mg/m³)	1.68		
TEST DETAILS	Membrane Thickness	(mm)	0.23		
	Rate of Axial Displacement	(%/min)	0.99		
	Cell Pressure	(kPa)	540		
	Membrane Correction	(kPa)	0.23		
	Corrected Deviator Stress	(kPa)	941		
	Undrained Shear Strength	(kPa)	471		
	Strain at Failure	(%)	3.8		
	Mode of Failure		Brittle		

Compiled By		Date
Johnster	JONATHAN BAKER	10/09/19
Contract	Contract Ref:	

Contract Ref:


Royal College Street, London

GINT_LIBRARY_V8_07.GLB LibVersion: v8_07_001 PrjVersion: v8_07 | Graph L - 1D CONSOL DL -1- A4P | 584118 ROYAL COLLEGE STREET, LONDON - RSK 371944.GPJ - v8_07. Structural Soils Ltd, Branch Office - Bristol Lab: 1a Princess Street, Bedminster, Bristol, BS3 4AG. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk | 06/09/19 - 08/43 | AF3 |

Borehole: **BH1** Sample Ref: - Sample Type: **U** Depth (m): **7.53**

Initial Specime	en Co	ondition	Final Specimer	ı Co	ndition
Moisture Content (%) Bulk Density (Mg/m³) Dry Density (Mg/m³) Void Ratio	:	28 1.99 1.55 0.7052	Moisture Content (%) Bulk Density (Mg/m³) Dry Density (Mg/m³) Void Ratio	: : : : : : : : : : : : : : : : : : : :	25 2.12 1.70 0.5677

void ratio .	0.7002	void i tatio .		0.0077			
Specimen Details							
Description		Height (mm)	:	18.93			
Greyish brown CLAY		Diameter (mm) Particle Density (Mg/m³) (assumed)	:	74.94 2.65			
		Swelling Pressure (kPa)	:	NA			

	Test Results						
	Pressure Mv Cv Voids Range (kPa) (m²/MN) (m²/yr) Ratio						
	Range (kPa)	(m4MN)	(m²/yr)	Ratio			
	0 - 150 Sample Swelling 0.691						
i	150 - 300	0.098	4.8	0.6665			
	300 - 600	0.083	2.7	0.6252			
	600 - 300	NA	NA	0.6446			
	300 - 600	0.045	4.9	0.6224			
	600 - 1200	0.056	2.4	0.5677			

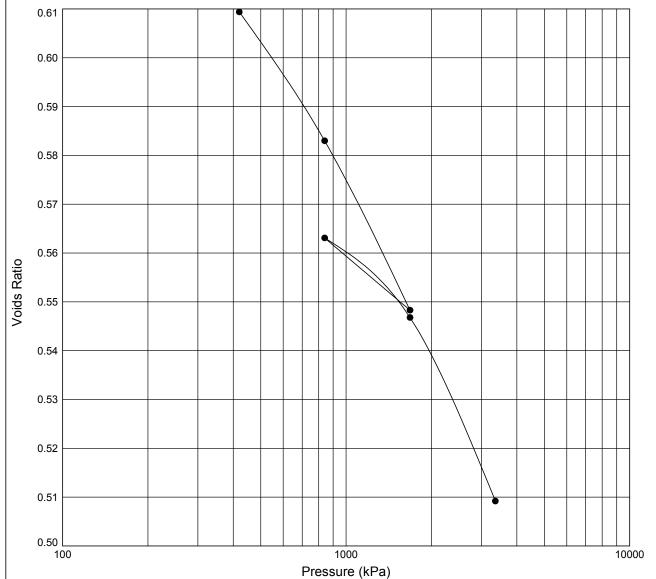
Notes: Method of time-setting used: **T90.** Temperature range during test (degC): **19.8 - 22.5.**

STRUCTURAL SOILS 1a Princess Street Bedminster Bristol BS3 4AG

	Compiled By		
Francesca	Bennett	FRANCESCA BENNETT	06/09/19

Contract

Contract Ref:


Royal College Street, London

GINT_LIBRARY_V8_07.GLB LibVersion: v8_07_001 PrjVersion: v8_07 | Graph L - 1D CONSOL DL -1- A4P | 584118 ROYAL COLLEGE STREET, LONDON - RSK 371944.GPJ - v8_07. Structural Soils Ltd, Branch Office - Bristol Lab: 1a Princess Street, Bedminster, Bristol, BS3 4AG. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk | 06/09/19 - 08/43 | AF3 |

ONE DIMENSIONAL CONSOLIDATION TEST In accordance with BS1377:Part 5:1990

Borehole: BH2 Sample Ref: Sample Type: Depth (m): 21.11

Moisture Content (%) : 25 Moisture Content (%) : 22 Bulk Density (Mg/m³) : 2.02 Bulk Density (Mg/m³) : 2.15 Dry Density (Mg/m³) : 1.62 Dry Density (Mg/m³) : 1.76 Void Ratio : 0.5092	Initial Specimen Condition		Final Specime	n Co	ndition	
	Bulk Density (Mg/m³) Dry Density (Mg/m³)	:	2.02 1.62	Bulk Density (Mg/m³) Dry Density (Mg/m³)	: : : : : : : : : : : : : : : : : : : :	2.15 1.76

void Ratio .	0.6350	void Ratio .	0.5092		
Specimen Details					
Description		Height (mm)	20.14		
Dark grey silty CLAY		Diameter (mm) Particle Density (Mg/m³) (assumed)	74.97 2.65		
		Swelling Pressure (kPa)	: NA		

	Test Results				
	Pressure Range (kPa)	Mv (m ² /MN)	Cv (m²/yr)	Voids Ratio	
	0 - 420	0.037	8.4	0.6094	
]	420 - 840	0.039	1.5	0.5830	
	840 - 1680	0.026	1.4	0.5483	
	1680 - 840	NA	NA	0.5631	
	840 - 1680	0.012	3.1	0.5468	
	1680 - 3360	0.014	2.9	0.5092	
l					

Notes: Method of time-setting used: T90. Temperature range during test (degC): 20 - 22.5.

STRUCTURAL SOILS 1a Princess Street Bedminster Bristol **BS3 4AG**

	Compiled By		Date
Francesca Be	nnett	FRANCESCA BENN	ETT 06/09/19
Contract		Contract Ref:	

Royal College Street, London

Contract Ref:

