

The Apple Tree Public House 45 Mount Pleasant WC1X 0AE

Structural Engineering Planning Report

Prepared by: Michele Galleno MEng James Stevenson MA MEng CEng MIStructE Reviewed by: Job Number: 27610 Date Revision February 2020 0

Consulting Engineers 37 Alfred Place London WC1E 7DP

020 7631 5128 mail@pricemyers.com www.pricemyers.com

Notes/Amendments/Issue Purpose

Contents

1	Introduction	3
2	The site	3
3	Neighbouring Buildings	3
4	Ground Conditions Geology Ground Water and site Hydrology Bomb Damage Other Underground Structures	4 4 5 5
5	Proposed Structure	5
6	Proposed Construction Sequence	6
7	Impact on Adjoining Buildings and Structures	7
8	Party Wall Matters	7
9	Noise, Dust and Vibration	7
10	Design Criteria Loading	8 8
11	Design Risks	8

Appendices:

1)Retaining wall calculations 2)Proposed Construction sequence SK01-SK03 3)Proposed plans and sections SK04-SK09

Contains Ordnance Survey material © Crown copyright. All rights reserved. Licence number 0100058197 Contains British Geological Survey materials © NERC 2020 All rights reserved.

Introduction 1

Price & Myers have been appointed by Phil Hunt to prepare a Structural Planning Report in relation to the Proposed refurbishment works at 45 Mount Pleasant that include the construction of a new section of lower ground below the existing ground floor rear external lightwell as well as the lowering of the existing lower ground floor slab everywhere else to provide a more comfortable floor to ceiling height. At ground floor over the new lower ground floor space, a new single storey construction with a new flat roof will be formed in place of the existing one. Other proposed structural works involve the introduction of new steel beams within the upper levels to allow the removal of some walls as well as the enabling works to allow the construction of a new service stair between lower ground and first floor.

The site 2

Photo 1 - View of the site from Mount Pleasant

The site is located at the junction between mount Pleasant and Warner Street and it is currently a Public House. The original Apple Tree public house along with the adjoining No. 2 and No. 4 Warner Street are thought to have be built in the 1720s. The three-storey front Apple Tree public house and single-storey kitchen were re-built in 1872. No2 and No4 Warner Street were re-built as a two-storey extension to the pub in 1925.

The following is the assumed sequence of site development:

1720s – Original Apple Tree Public House and original 2-4 Warner Street 1872 – 3-storey frontage and kitchen built within courtyard 1890s – Rosebery Square Buildings (the block of flats) 1925 – 2-4 Warner Street re-built

1987 - 1992 - Rosebery Square East and West modernised

The structure of the existing public house is typical of the Victorian period with solid masonry construction forming the external walls and part of the internal walls within the lower ground floor area and internal timber stud walls within the upper levels. A cast iron column is used to support the floor structure above the main ground floor room as it is typical of many public houses of the same period. The floor constructions at ground, first and second floor is formed with timber joists spanning between the external walls and the internal loadbearing elements. Three pitched roofs cover the building structure. They are of timber construction and span between the external walls and the internal loadbearing elements.

Neighbouring Buildings 3

The existing buildings bordering with our site are the following:

- 47 Mount Pleasant
- 20-23 Rosebery Square West
- 8-10 Warner Street

47 Mount Pleasant appears to be still in its original form as it can be seen from the Georgian features of the elevation. A search through the London Picture Archive has revealed two images: Photo 2 is from 1947 and Photo 3 a hand drawing from 1879. In both images 47 Mont Pleasant appears on the left with a small portion of our site just visible by the edge of the images. 47 Mount Pleasant has an existing lower ground assumed to be at approximately the same level of our site lower ground floor. The Rosebery Square buildings constructed around 1890s appear to be constructed with loadbearing masonry walls supporting the internal filler joist floors. From the initial investigations these buildings do not appear to have a lower ground floor.

8-10 Warner Street is a double height building possibly originally built as a stable or garage with no lower ground.

Photo 2 - 47 Mount Pleasant 1947 (London Picture Archive) Image 3 - 47 Mount Pleasant drawing from 1879 (London Picture Archive)

4 Ground Conditions

Geology

The results of the geotechnical investigation carried out by GEA (Report No J19092) show made ground overlying superficial deposits in turn overlain by London Clay. Part of the ground level had been raised above a historic floor level, typically using granular fill of rubble. Below this, the made ground consist of silty sandy gravelly clay with fragments of material such as brick and concrete. The thickness varies with the deepest at 3.2m below ground found in the location of Borehole 1. The superficial deposits are likely to extend across the full footprint of the basement, extending to a maximum depth of 3.6m. These soils are made up of soft to firm yellowish brown mottled orange-brown silty clay. The London clay was proved to the end of the borehole at a depth of 8.5m.

An idealised section through the proposed scheme with the ground model is shown below.

Image 4 - Section through the site ground formation showing the proposed extent of the new excavation

Ground Water and site Hydrology

Groundwater was encountered at a depth of 3m in Borehole 1. The trial pits were dry. Due to the nature of the soil, it was assumed that the water was perched over the reworked London Clay, as shown in the diagram below (extracted from GEA's report. Image 4)

We have further checked the Lost Rivers of London map that indicates the River Fleet running under Phoenix Place and then Warner Street. However as noted in the ground investigation report by GEA and as shown on the 1874 historic map the river Fleet is shown running to the south of the site possibly having been diverted to provide water to the Foundry located on the opposite side of Mount Pleasant. By that date the river had already been culverted as it can also be inferred from the hand drawing from 1879 (Image 3) where no river is visible.

Furthermore, GEA noted that it is understood that the river was eventually diverted into the Thames Water sewer with an invert level of approximately 6m below our site. It is therefore unlikely that the river Fleet would pose a problem to the proposed excavations.

Image 5 - Extract from the 1874 historic map

Image 6 - Extract from The Lost Rivers of London map

Bomb Damage

We have checked the WW2 LCC maps for the local area where it can be seen that, although a V1 Flying bombs was dropped further north along Grays Inn Road, the area surrounding the site remained largely unaffected suffering only minor blast damage (light yellow shading).

Image 7 - Extract from the WW2 LCC bomb damage maps

Other Underground Structures

The London Underground District and Circle Lines run to the north under Farringdon road and are far enough away not to be affected by our proposed works.

Thames Water record also shows an existing combined sewer along Warner Street with an internal dimension of 3124 x 2566mm and invert level of 7.83m. The exact setting out of the sewer is unknown however It is unlikely to be disturbed by the proposed works given its depth and the relatively shallow excavations.

Image 8 - Extract from Thames Water sewer records

5 Proposed Structure

The proposal for the site consists in the enlargement of the existing lower ground by excavating the area under the rear lightwell to form a new kitchen and garden room at ground level. A new flat roof with lightwell will cover this new area. Additionally, it is proposed to lower the existing lower ground by approximately 340mm to improve the floor to ceiling height. With regards to the existing boundary conditions, we know that No 47 Mount Pleasant has an existing lower ground assumed to be at about the same level as ours. 8-10 Warner Street and the flats at 20-23 Rosebery Avenue do not have a lower ground floor. With regards to this area of the basement, it has been possible to establish from initial trial pits that the foundations of the corner of 20-23 Rosebery Avenue extends at least 2.1m below ground. Our new basement is expected to be lower than the base of the existing foundations and it is currently proposed to construct the new reinforced concrete wall about 1m away from the existing foundations. Section B-B on SK08 shows the proposal. Section A-A on SK07 shows the proposed underpinning of the two-storey party wall with 8-10 Warner Street. Sections C-C and D-D on SK09 show the proposed relationship between the new lowered slab and the foundations of the existing perimeter walls. To prevent the rotation of the base of the existing retaining walls, it is proposed to form a reinforced concrete upstand connected to the main underpin. The new slab will then prop the base of the new underpins.

Above ground, the structural works are going to be small in nature and are shown on the proposed ground and first floor plan on SK05 and SK06.

The new basement will be founded at the top of the London clay with an allowable bearing capacity of 110KN/m² The new basement floor slab will be reinforced to withstand the expected heave pressures. A ground movement analysis has been carried out by GEA and it is included with the site investigation report.

6 Proposed Construction Sequence

Given the site constraints, it is proposed to construct the basement entirely by hand following a typical underpinning sequence.

With reference to SK01, SK02 and SK03 the proposed construction sequence for the new basement is as follows:

Step 1 - Demolish existing single storey structures within internal courtyard

Step 2 - Assuming a two-stage underpinning sequence, begin the first stage pins forming the lining wall against N47 Mount pleasant. Each pin shall be formed as follows:

- A) Excavate initial pit 1m x 1m x 1m, install props at top and bottom using scaffold boards as spreaders against the central soil mass.
- B) Hand excavate pit to base of proposed pin constantly providing adequate propping.
 Install sacrificial expanded metal sheeting against the earth face to provide adequate propping
- C) Introduce reinforcement to the wall face, introduce also dowel bars (H16 500 long @ 500c/c) to tie the pins together.
- D) Install shuttering and cast pin
- E) Wait 24 hrs and provide dry pack. Do not back fill upon completion. Leave pins open suitably propped against central soil mass

Step 3 - Similarly to Step 2 carry out first stage pins against corner of 20-23 Rosebery Avenue

Step 4 - Reduce level of central soil mass within rear courtyard enough to allow for the installation of the propping system(RMD Superslim props or similar). Props to be installed just below the level of the new ground floor slab.

Step 5 - Excavate central soil mass enough to allow the start of the second stage "L" pins. Leave enough soil to prop the base of the 1st stage pins.

Step 6 - Form the second stage "L" pins along 47 Mount Pleasant and 20-23 Rosebery Avenue.

Step 7 - At the same time as steps 1 to 6 form the shallow underpinning of the external walls by the front of the building following the proposed underpinning sequence. Do not undermine the pad to the existing central column.

Step 8 - Excavate down to formation level and install propping, similarly to upper level. props positioned just above new basement floor slab.

Step 9 - Cast reinforced concrete basement slab connected to the base of the "L" pins.

Step 10 - Cast ground floor suspended slab connected to the top of the pins (Halfen Kwikastrip could be used to form connection between top of pin and ground floor slab) On the side of the existing brick wall form full depth reinforced pockets to support the new ground floor slab along this edge.

Step 11 - Install new drainage and cast 250 RC basement slab to front of building leaving a section around the existing column base.

Step 12 - Starting from the demolition of wall A (see SK02) carefully excavate the ground to allow the start of the underpinning along Warner Street and the party wall with 8-10 Warner Street

Step 13 - Following a typical underpinning sequence form 1st stage pins of RC retaining wall against corner of 20-23 Rosebery Avenue.

Step 14 - Reduce level of central soil mass enough to introduce propping grid just above level of new ground floor slab.

Step 15 - Form RC "L" shaped lining wall in sections along 8-10 Warner Street and form 2nd stage "L" pins against 20-23 Rosebery Avenue.

Step 16 - Introduce lower level of props just above basement floor slab. Cast basement slab

Step 17 - Cast ground floor slab connected to new RC pins, the slab section under the courtyard previously formed and pocketed into the existing front wall along Warner Street

Step 18 - From underpins to remaining section of Warner Street. Reduce ground and cast new 250 RC basement slab connected to the other sections previously cast.

Step 19 - By the front of the building, provide temporary props to allow the removal of the basement column. cast new pad at lower level. introduce new column. Remove props and cast slab around new column.

Step 20 - Construct new roof structure over garden room. Form new stair opening and alterations above principal room.

Based on basement works of similar size we estimate that this basement can be safely formed in 4 months with an overall project program of about 12months.

Impact on Adjoining Buildings and Structures 7

The ground movement analysis carried out by GEA for the neighbouring buildings indicates mostly negligible damage (Category 0) with the exception of the corner of 20-23 Rosebery Avenue where the damage has been predicted to be very slight (Category 1). As noted in the report this analysis is conservative as the foundations have all been assumed to be 1m below ground while we know from trial pits carried out on site that in the corner of 20-23 Rosebery Avenue and along the party wall with 8-10 Warner Street the bases of the existing footings have been found between 1.5m to 2.0m below existing ground level.

A reinforced concrete wall formed in an underpinning sequence will serve as the new basement perimeter wall. This wall will be fully propped during the excavation to minimise potential ground movements as detailed in the proposed construction sequence shown in SK01-SK02-SK03.

With good workmanship and a properly designed and reviewed temporary works scheme, we would expect there to be very little impact on adjacent structures and buildings as a result of these works. The walls will remain propped until the permanent structure is in place and we therefore expect no ground stability issues.

During the construction of the basement, monitoring points will be set up to record any variable movements between properties. By using a system of targets, monitored and logged at regular intervals, any differential movements can be identified and the construction method and sequence altered accordingly to limit movements.

The proposed monitoring strategy is as follows:

3D reflective targets will be applied to all the neighbouring buildings and on the elevations of the pub. Locations to be agreed with the monitoring company to make sure measurements can be safely and easily taken.

Proposed frequency of measurements:

During demolition works – fortnightly.

During underpinning, excavation and until the RC ground slab is completed - weekly. Upon completion of the ground floor slab - 1no fortnightly survey and then monthly surveys to the end of the project.

Proposed trigger values: for both vertical and horizontal movement

Amber ± 7mm Red ± 10mm

Party Wall Matters 8

The proposed development falls within the scope of the Party Wall etc Act 1996. Procedures under the Act will be dealt with in full by The Employer's Party Wall Surveyor. The Party Wall Surveyor will prepare and serve necessary Notices under the provisions of the Act and agree Party Wall Awards in the event of disputes. The Contractor will be required to provide The Party Wall Surveyor with appropriate drawings, Method Statements and other relevant information covering the works that are notifiable under the Act. The resolution of matter under the Act and provision of the Party Wall Awards will protect the interests of all owners.

The design of the new basement will be developed so as not to preclude or inhibit similar, or indeed any, works on the adjoining properties. The Surveyors will verify this as part of the process under the Act.

The neighbours of 8-10 Warner Street, 47 Mount Pleasant and the block of flats on Rosebery Avenue at the back of the pub, have all been contacted and copies of the correspondence can be provided if requested.

Noise, Dust and Vibration 9

The Contractor shall undertake the works in such a way as to minimise noise, dust and vibration when working close to adjacent buildings to protect the amenities of the nearby occupiers.

Noise:

Noise is often a complaint from neighbours however this can be managed by:

- keeping a good relationship with the neighbours by informing them on when higher noise level may be generated. If these times were not acceptable to the neighbours then, within reason, a compromise should be found on when the works can be carried out.

-providing additional noise dampening barriers around the areas of noise generation.

-utilising modern equipment with a lower noise impact than older machinery.

-respecting the allowable hours of works as noted in the planning permission.

Dust:

The contractor must make sure that the site is suitably protected to prevent the spread of dust to the neighbouring properties. Most of the dust will be generated during the basement excavation and the zone generally affecting the neighbouring properties is the entrance area where spoil is taken out of the property via conveyor belts or wheelbarrows. Any dropped soil or waste material is then spread by wind and foot traffic onto the neighbouring properties. The contractor will therefore be required to keep the front area of the site clean at all times especially during windy days.

Vibration:

The contractor shall use power generators and compressors that will minimise noise. These shall be positioned in such a way as to reduce the transmission of vibration via the existing and new structural elements to the neighbouring properties. Suitable vibration isolators may need to be installed to the supporting bases of the most critical equipment. Wherever possible the breaking of existing structure such as concrete floors shall be carried out by saw cutting to minimise vibrations.

10 Design Criteria

Loading

Imposed loading (to BS 6399:part 1)

Café/Restaurant = 2.0 KN/m²

Wind loading (to BS 6399:part 2)

Basic wind speed = 20 m/s

Overburden pressure for retaining wall design generally =10.0 KN/m²

Overburden pressure for retaining wall design in front of 20-23 Rosebery Avenue =150 KN/m²

Soil conditions Ko

Water assumed 1m below ground level

11 Design Risks

The primary design risks identified during the work done to this point are:

Unforeseen underground structures. High or increasing water table across site. Working in confined spaces during the underpinning process.

P&M Calcs for Start page no./Revision Basement Retaining Wall 1 Calcs by Calcs date Checked by Checked date Approved by Approved date	Tekla Tedds	Project The App	ole Tree Public H	louse 45 Moun	t Pleasant	Job no. 27	610
Calcs by Calcs date Checked by Checked date Approved by Approved dat	P&M	Calcs for Basement Retaining Wall			Start page no./Revision 1		
MG 29/01/2020		Calcs by MG	Calcs date 29/01/2020	Checked by	Checked date	Approved by	Approved date

TEDDS calculation version 1.2.01.06

RETAINING WALL ANALYSIS (BS 8002:1994)

Wall details

Retaining wall type Height of retaining wall stem Thickness of wall stem Length of toe Length of heel Overall length of base Thickness of base Depth of downstand Position of downstand Thickness of downstand Height of retaining wall Depth of cover in front of wall Depth of unplanned excavation Height of ground water behind wall Height of saturated fill above base Density of wall construction Density of base construction Angle of rear face of wall Angle of soil surface behind wall Effective height at virtual back of wall

Retained material details

Mobilisation factor Moist density of retained material

Cantilever propped at both h_{stem} = **3100** mm twall = 300 mm I_{toe} = **1000** mm $I_{heel} = 0 \text{ mm}$ $I_{\text{base}} = I_{\text{toe}} + I_{\text{heel}} + t_{\text{wall}} = 1300 \text{ mm}$ t_{base} = **300** mm $d_{ds} = 0 \text{ mm}$ l_{ds} = **900** mm t_{ds} = **300** mm $h_{wall} = h_{stem} + t_{base} + d_{ds} = 3400 \text{ mm}$ $d_{cover} = 0 mm$ $d_{exc} = 0 mm$ h_{water} = 2000 mm $h_{sat} = max(h_{water} - t_{base} - d_{ds}, 0 mm) = 1700 mm$ $\gamma_{wall} = 23.6 \text{ kN/m}^3$ γbase = 23.6 kN/m³ $\alpha = 90.0 \text{ deg}$ $\beta = 0.0 \text{ deg}$ $h_{eff} = h_{wall} + I_{heel} \times tan(\beta) = 3400 \text{ mm}$

M = 1.5 $\gamma_m = 17.0 \text{ kN/m}^3$

🚝 Tekla	Project The Ap	ple Tree Public H	House 45 Moun	t Pleasant	Job no. 27	610
P&M	Calcs for	<u></u>			Start page no./R	evision
		Basement F	Retaining Wall			2
	Calcs by MG	Calcs date 29/01/2020	Checked by	Checked date	Approved by	Approved date
Saturated density of retained n	naterial	γ _s = 20.0 ki	N/m ³			
Design shear strength		φ' = 23.4 de	eg			
Angle of wall friction		δ = 18.0 de	g			
Base material details						
Firm clay						
Moist density		γmb = 17.0	kN/m³			
Design shear strength		φ' _b = 23.0 d	leg			
Design base friction		$\delta_b = 18.0 \text{ d}$	eg			
Allowable bearing pressure		P _{bearing} = 11	1 0 kN/m²			
Using Coulomb theory						
Active pressure coefficient for	retained materia	1				
$K_a = sin(c \label{eq:Ka}$ Passive pressure coefficient fo	$(\alpha + \phi')^2 / (\sin(\alpha)^2)$ or base material	$\times \sin(\alpha - \delta) \times [1 +$	$-\sqrt{(\sin(\phi'+\delta)\times f)}$	sin(φ' - β) / (sir	$n(\alpha - \delta) \times \sin(\alpha + \delta)$	β)))]²) = 0.381
	$K_p = sin(s)$	90 -) - $\delta_{b}) imes$ [1 - $\sqrt{(si)}$	$n(\phi_b + \delta_b) imes sin$	n(φ' _b) / (sin(90 + δ	(5b)))] ²) = 3.854
At-rest pressure						
At-rest pressure for retained m	aterial	$K_0 = 1 - sir$	n(φ') = 0.603			
Loading details						
Surcharge load on plan		Surcharge	= 150.0 kN/m ²			
Applied vertical dead load on v	vall	$W_{dead} = 20.$. 0 kN/m			
Applied vertical live load on wa	ll	W _{live} = 0.0	kN/m			
Position of applied vertical load	d on wall	l _{load} = 1150	mm			
Applied horizontal dead load o	n wall	$F_{dead} = 0.0$	kN/m			
Applied horizontal live load on	wall	F _{live} = 0.0 k	N/m			
Height of applied horizontal loa	ad on wall	$h_{load} = 0 mr$	n			
	Deer	150				
	Prop			Å		
					1	
A 💥	***					
		54.3	3	8.6 7.4 19		
	39.3	39.3				
				Loads sh	own in kN/m, pressure	es shown in kN/m ²

Tekla Tedds	Project The A	pple Tree Public I	Job no. 27610			
P&M	Calcs for Basement Retaining Wall			Start page no./Revision 3		
	Calcs by MG	Calcs date 29/01/2020	Checked by	Checked date	Approved by	Approved date
	•		•			•

Vertical forces on wall	
Wall stem	$w_{\text{wall}} = h_{\text{stem}} \times t_{\text{wall}} \times \gamma_{\text{wall}} = \textbf{21.9} \text{ kN/m}$
Wall base	$w_{\text{base}} = I_{\text{base}} \times t_{\text{base}} \times \gamma_{\text{base}} = \textbf{9.2 kN}/m$
Applied vertical load	$W_v = W_{dead} + W_{live} = 20 \text{ kN/m}$
Total vertical load	$W_{total} = W_{wall} + W_{base} + W_v = 51.2 \text{ kN/m}$
Horizontal forces on wall	
Surcharge	$F_{sur} = K_a \times cos(90 - \alpha + \delta) \times Surcharge \times h_{eff} = \textbf{184.6 kN/m}$
Moist backfill above water table	$F_{m_a} = 0.5 \times K_a \times cos(90 - \alpha + \delta) \times \gamma_m \times (h_{eff} - h_{water})^2 = \textbf{6} \text{ kN/m}$
Moist backfill below water table	$F_{m_b} = K_a \times cos(90 - \alpha + \delta) \times \gamma_m \times (h_{eff} - h_{water}) \times h_{water} = 17.2 \text{ kN/m}$
Saturated backfill	$F_{s} = 0.5 \times K_{a} \times cos(90 - \alpha + \delta) \times (\gamma_{s}\text{-} \gamma_{water}) \times h_{water}^{2} = \textbf{7.4 kN/m}$
Water	$F_{water} = 0.5 \times h_{water}^2 \times \gamma_{water} = 19.6 \text{ kN/m}$
Total horizontal load	$F_{total} = F_{sur} + F_{m_a} + F_{m_b} + F_s + F_{water} = 234.8 \text{ kN/m}$
Calculate total propping force	
Passive resistance of soil in front of wall	$F_{\text{p}} = 0.5 \times K_{\text{p}} \times \text{cos}(\delta_{\text{b}}) \times (d_{\text{cover}} + t_{\text{base}} + d_{\text{ds}} - d_{\text{exc}})^2 \times \gamma_{\text{mb}} = 2.8 \text{ kN/m}$
Propping force	$F_{prop} = max(F_{total} - F_p - (W_{total}) \times tan(\delta_b), 0 \text{ kN/m})$
	F _{prop} = 215.4 kN/m
Overturning moments	
Surcharge	$M_{sur} = F_{sur} \times (h_{eff} - 2 \times d_{ds}) / 2 = 313.8 \text{ kNm/m}$
Moist backfill above water table	$M_{m_a} = F_{m_a} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{ds}) / 3 = \textbf{14.9} \text{ kNm/m}$
Moist backfill below water table	$M_{m_b} = F_{m_b} \times (h_{water} - 2 \times d_{ds}) / 2 = 17.2 \text{ kNm/m}$
Saturated backfill	$M_{s} = F_{s} \times (h_{water} - 3 \times d_{ds}) / 3 = 4.9 \text{ kNm/m}$
Water	$M_{water} = F_{water} \times (h_{water} - 3 \times d_{ds}) / 3 = 13.1 \text{ kNm/m}$
Total overturning moment	$M_{ot} = M_{sur} + M_{m_a} + M_{m_b} + M_s + M_{water} = 363.9 \text{ kNm/m}$
Restoring moments	
Wall stem	$M_{wall} = w_{wall} \times (I_{toe} + t_{wall} / 2) = 25.2 \text{ kNm/m}$
Wall base	$M_{base} = w_{base} \times I_{base} / 2 = 6 \text{ kNm/m}$
Design vertical dead load	$M_{dead} = W_{dead} \times I_{load} = 23 \text{ kNm/m}$
Total restoring moment	$M_{rest} = M_{wall} + M_{base} + M_{dead} = 54.2 \text{ kNm/m}$
Check bearing pressure	
Total vertical reaction	$R = W_{total} = 51.2 \text{ kN/m}$
Distance to reaction	x _{bar} = I _{base} / 2 = 650 mm
Eccentricity of reaction	$e = abs((I_{base} / 2) - x_{bar}) = 0 mm$
	Reaction acts within middle third of base
Bearing pressure at toe	$p_{toe} = (H / I_{base}) - (6 \times H \times e / I_{base^2}) = 39.3 \text{ kN/m}^2$
Bearing pressure at heel	$p_{\text{heel}} = (\text{H} / \text{I}_{\text{base}}) + (6 \times \text{H} \times \text{e} / \text{I}_{\text{base}^2}) = 39.3 \text{ kN/m}^2$
PA	<i>55 - Maximum bearing pressure is less than allowable bearing pressure</i>
Calculate propping forces to top and base	of wall
Propping force to top of wall	

Propping force to base of wall

$$\label{eq:Fprop_top} \begin{split} F_{prop_top} &= (M_{ot} - M_{rest} + R \times I_{base} \slasse \sl$$

	pple Tree Public I	Job no. 27610					
P&M	Calcs for				Start page no./F	Revision	
		Basement Retaining Wall				4	
	Calcs by MG	Calcs date 29/01/2020	Checked by	Checked date	Approved by	Approved	
RETAINING WALL DESIG	iN (BS 8002:1994)	2					
Ultimate limit state load f	actors				TEDDS calculatio	in version 1.2.	
Dead load factor		$\gamma_{f_d} = 1.4$					
Live load factor		$\gamma_{f_{-}} = 1.6$					
Earth and water pressure f	actor	$\gamma_{f_e} = 1.4$					
Factored vertical forces of	on wall						
Wall stem		$W_{wall_f} = \gamma_{f_d}$	imes h _{stem} $ imes$ t _{wall} $ imes$	$\gamma_{wall} = 30.7 \text{ kN/n}$	n		
Wall base		$W_{base_f} = \gamma_{f_f}$	$_{ m d} imes {\sf I}_{ m base} imes {\sf t}_{ m base}$	<γ _{base} = 12.9 kN	/m		
Applied vertical load		$W_{v_f} = \gamma_{f_d}$	\times W _{dead} + γ_{f_l} \times	W _{live} = 28 kN/m			
Total vertical load		$W_{total_f} = W_v$	vall_f + Wbase_f +	W _{v_f} = 71.6 kN/m	ı		
Factored horizontal at-re	st forces on wall						
Surcharge		$F_{sur f} = \gamma_{f}$	$< K_0 \times Surchard$	ae × h _{eff} = 491.9	kN/m		
Moist backfill above water	table	$F_{m,a,f} = \gamma_{f,e}$	$\times 0.5 \times K_0 \times \gamma_0$	_m × (h _{eff} - h _{water}) ² =	= 14.1 kN/m		
Moist backfill below water t	able	$F_{m,b,f} = \gamma_{f,e}$	$\times K_0 \times \gamma_m \times (h_i)$	$_{\rm eff}$ - hwater) × hwater	= 40.2 kN/m		
Saturated backfill		Fsf=Vfe×	$0.5 \times K_0 \times (\gamma_s)$	$\gamma_{water} \times h_{water}^2 = 1$	17.2 kN/m		
Water		$F_{water f} = \gamma_f$	$ \times 0.5 \times h_{water^2} $	$2 \times \gamma_{water} = 27.5 \text{ k}$	N/m		
Total horizontal load		$F_{\text{total } f} = F_{\text{su}}$	r f + Fm a f + Fn	n b f + Fs f + Fwater	r f = 590.8 kN/n	n	
Calculate total propping	force						
Passive resistance of soil i	n front of wall	$F_{n,i} = \gamma_{i,n} \times X_{i,n}$	$0.5 \times K_{\rm a} \times cos$	$(\delta_{\rm b}) \times (d_{\rm source} + t_{\rm bo})$	$a_{2} \pm d_{2} = d_{2}a_{2}^{2}$	× Vmh - 30	
kN/m		i p_i − <i>f</i> i_e ∧	0.0 Λ τφ Λ 000		se + dus dexc)	× 1110 - 0.0	
Propping force		$F_{prop_f} = ma$	ax(F _{total_f} - F _{p_f} -	$(W_{total_f}) \times tan(\delta_b)$), 0 kN/m)		
		F _{prop_f} = 56	3.6 kN/m				
Factored overturning mo	ments						
Surcharge		M _{sur f} = F _{su}	$f \times (h_{eff} - 2 \times d)$	d _{ds}) / 2 = 836.3 k	Nm/m		
Moist backfill above water	table	M _{m a f} = F _m	 f × (h _{eff} + 2 >	< h _{water} - 3 × d _{ds}) /	3 = 34.7 kNm/	′m	
Moist backfill below water t	able	$M_{m_b_f} = F_m$	$_{1_b_f} \times (h_{water} - 2)$	× d _{ds}) / 2 = 40.2	kNm/m		
Saturated backfill		$M_{s f} = F_{s f}$	< (h _{water} - 3 × d _o	us) / 3 = 11.5 kNm	n/m		
Water		$M_{water_f} = F_v$	$_{water_f} \times (h_{water} -$	$3 \times d_{ds}) / 3 = 18.3$	3 kNm/m		
Total overturning moment		M _{ot_f} = M _{sur}	_f + Mm_a_f + Mr	n_b_f + Ms_f + Mwat	er_f = 940.9 kN	m/m	
Restoring moments							
Wall stem		$M_{wall f} = W_{wall}$	$_{all_f} \times (I_{toe} + t_{wall})$	/ 2) = 35.3 kNm/	m		
Wall base		$M_{\text{base f}} = W_{\text{f}}$	$_{\text{base f}} \times I_{\text{base}} / 2 =$	= 8.4 kNm/m			
Design vertical load		$M_v f = W_v f$	× l _{load} = 32.2 k	Nm/m			
Total restoring moment		M _{rest_f} = M _w	all_f + Mbase_f +	M _{v_f} = 75.9 kNm/	m		
Factored bearing pressu	re	_	_				
Total vertical reaction	-	$R_f = W_{total}$ f	= 71.6 kN/m				
Distance to reaction		$x_{bar_f} = I_{base}$	/ 2 = 650 mm				
Eccentricity of reaction		$e_f = abs((I_b$	_{ase} / 2) - x _{bar_f}) =	= 0 mm			
				Reaction acts	within middle	e third of l	
Bearing pressure at toe		$p_{toe_f} = (R_f)$	$(I_{base}) - (6 \times R_{f})$	$\times e_f / I_{base}^2$) = 55.	1 kN/m ²		
Bearing pressure at heel		$p_{\text{heel}_f} = (R_f$	$/ I_{base}) + (6 \times F$	$R_f \times e_f / I_{base}^2$ = 58	5.1 kN/m²		
Rate of change of base rea	action	rate = (p _{toe}	_f - p_{heel_f} / I_{base}	e = 0.00 kN/m ² /m	_	_	
Bearing pressure at stem /	toe	pstem_toe_f =	max(ptoe_f - (ra	$te \times I_{toe}$), 0 kN/m ²	²) = 55.1 kN/m ²	2	

ledds	The A	The Apple Tree Public House 45 Mount Pleasant Calcs for						
P&M	Calcs for							
		Basement Retaining Wall				5		
	Calcs by MG	Calcs date 29/01/2020	Checked by	Checked date	Approved by	Approved		
Bearing pressure at mid ster	m	$p_{stem_mid_f} =$	max(p _{toe_f} - (ra	ate × (I_{toe} + t_{wall} / 2	2)), 0 kN/m²) =	55.1 kN/m		
Bearing pressure at stem / h	eel	p _{stem_heel_f} =	= max(p _{toe_f} - (r	ate × ($I_{toe} + t_{wall}$)),	0 kN/m²) = 55	.1 kN/m ²		
Calculate propping forces Propping force to top of wall	to top and base	of wall				054 400		
Propping force to base of wa	Fprop_top_f =	(Mot_f - Mrest_f + Rf Fprop_base_f =	× Ibase / 2 - Fpro = F _{prop_f} - F _{prop_f}	p_f × lbase / 2) / (Ns top_f = 309.175 kN	tem + lbase / 2) = I/m	: 204.403 K		
Design of reinforced conc	rete retaining wa	all toe (BS 8002:1	994)					
Material properties								
Characteristic strength of co	ncrete	$f_{cu} = 40 \text{ N/r}$	mm²					
Characteristic strength of rei	nforcement	$f_y = 500 \text{ N/}$	mm²					
Base details								
Minimum area of reinforcem	ent	k = 0.13 %						
Cover to reinforcement in too	Э	c _{toe} = 50 m	m					
Calculate shear for toe des	sian							
Shear from bearing pressure	, and the second s	Vtoo boor = (Dtoo f + Datam too	(1) × Itoo / 2 = 55 1	kN/m			
Shear from weight of base	·	Vice_bear = ($V_{\text{toe_bear}} = (p_{\text{toe_1}} + p_{\text{stem_toe_1}}) \times v_0 \times v_0 = 23.1 \text{ kV/m}$					
Total shear for too design		Vice_wi_base -	$V_{too} = V_{too} \text{ bose} - V_{too} \text{ with bose} = 45.9 \text{ kN/m}$					
			oear - v toe_wt_base	- 43.2 KN/III				
Calculate moment for toe of	design			`	1000 100 00			
Moment from bearing pressu	ire	M _{toe_bear} = ($M_{\text{toe_bear}} = (2 \times p_{\text{toe_f}} + p_{\text{stem_mid_f}}) \times (_{\text{toe}} + t_{\text{wall}} / 2)^2 / 6 = 36.4 \text{ kNm/m}$ $M_{\text{toe_wt_base}} = (\gamma_{\text{f_d}} \times \gamma_{\text{base}} \times t_{\text{base}} \times (_{\text{toe}} + t_{\text{wall}} / 2)^2 / 2) = 6.6 \text{ kNm/m}$					
Moment from weight of base		M _{toe_wt_base}						
		IVItoe = IVItoe_	_bear - IVItoe_wt_bas	se = 29.9 KINIII/III				
▲ ▲								
300	> • •	• • •	• •	•••	•			
200 244	► • •	•••		• •	•			
Check toe in bending	→ • • •	• • •	•••	• •	•			
Check toe in bending Width of toe	- 100→	• • • •	• •) - 244 0 mm	•			
Check toe in bending Width of toe Depth of reinforcement Constant	 ▲ 100-▶ 	• • • • • • • • • • • • • • • • • • •	• nm/m - c _{toe} - (\\$toe / 2) / (b x du-2 x f) = 244.0 mm	•			
Check toe in bending Width of toe Depth of reinforcement Constant	- • •	• • • • • • • • • • • • • • • • • • •	• nm/m - c _{toe} - (φ _{toe} / 2) / (b × d _{toe} ² × f _{cu}) = 244.0 mm) = 0.013	·	s not regu		
Check toe in bending Width of toe Depth of reinforcement Constant	 ● ● ● 	$b = 1000 \text{ m}$ $d_{toe} = t_{base} - K_{toe} = M_{toe}$	$hm/m = C_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cu})$) = 244.0 mm .) = 0.013 <i>Compression re</i>	• • • • •	's not requ		
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm	→ • • •	$b = 1000 \text{ m}$ $d_{toe} = t_{base} - K_{toe} = M_{toe}$ $z_{toe} = min(0)$	$f(b) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}$) = 244.0 mm .) = 0.013 <i>Compression re</i> (min(K _{toe} , 0.225) /	• • • • • • • •	t s not requ dtoe		
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm	 ▲ 100→ 	$b = 1000 \text{ m}$ $d_{toe} = t_{base} - K_{toe} = M_{toe} - Z_{toe} = min(t_{toe} - 232 \text{ m})$ $Z_{toe} = 232 \text{ m}$	$hm/m = c_{toe} - (\phi_{toe}/2)$ $/ (b \times d_{toe}^2 \times f_{cu})$ $0.5 + \sqrt{0.25 - (mm)}$ Marge / (0.87 × f_{cu})) = 244.0 mm) = 0.013 <i>Compression re</i> (min(K _{toe} , 0.225) /	• • • • • • • • • • • • • •	's not requ d _{toe}		
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcemer	I + 100→	$b = 1000 \text{ m}$ $d_{toe} = t_{base} - K_{toe} = M_{toe}$ $Z_{toe} = M_{toe}$ $Z_{toe} = 232 \text{ m}$ $A_{s_toe_des} = A_{s_toe_des} = A_{s_toe_des}$	hm/m $- c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cu})$ $0.5 + \sqrt{0.25 - (mm)}$ $M_{toe} / (0.87 \times f_{toe})$) = 244.0 mm) = 0.013 <i>Compression re</i> (min(K _{toe} , 0.225) / $_{y} \times z_{toe}$) = 296 mr 390 mm ² /m	• • • • • • • • • • • • • • • • • • •	t <mark>is not requ</mark>		
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement Minimum area of tension reinforcement	→ •	$b = 1000 \text{ m}$ $d_{toe} = t_{base} - K_{toe} = M_{toe} - K_{toe} = M_{toe} - K_{toe} = 1000 \text{ m}$ $Z_{toe} = 232 \text{ m}$ $A_{s_toe_des} = A_{s_toe_min} = A$	$hm/m = c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cu})$ $D.5 + \sqrt{0.25 - (mm)}$ $M_{toe} / (0.87 \times f_{k} \times b \times t_{base} = 3$ $Max/A = 3$) = 244.0 mm) = 0.013 <i>Compression re</i> (min(K _{toe} , 0.225) / $_{y} \times z_{toe}$) = 296 mr 390 mm ² /m A to a to b = 200 s	• • • • • • • • • • • • • • • • • • •	t <mark>is not requ</mark>		
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement Minimum area of tension reinforcement Area of tension reinforcement Beinforcement provided	• • • • • •	$b = 1000 \text{ m}$ $d_{toe} = t_{base} - K_{toe} = M_{toe}$ $Z_{toe} = M_{toe}$ $Z_{toe} = 232 \text{ m}$ $A_{s_toe_des} = A_{s_toe_min} = A_{s_toe_req} = 12 \text{ mm dis}$	hm/m - $c_{toe} - (\phi_{toe} / 2)$ / $(b \times d_{toe}^2 \times f_{cu})$ 0.5 + $\sqrt{(0.25 - (mm)^2)}$ M _{toe} / $(0.87 \times f_{toe} \times b \times t_{base} = 3$ Max $(A_{s_toe_des}, b_{toe_des})$) = 244.0 mm) = 0.013 <i>Compression re</i> (min(K _{toe} , 0.225) / _y × z _{toe}) = 296 mr 390 mm ² /m A _{s_toe_min}) = 390 r mm centres	• • • • • • • • • • • • • • • • • • •	's not reqι dtoe		
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement Minimum area of tension rein Area of tension reinforcement Reinforcement provided	Int required afforcement at required	$b = 1000 \text{ m}$ $d_{toe} = t_{base} - K_{toe} = M_{toe}$ $z_{toe} = M_{toe}$ $z_{toe} = 232 \text{ m}$ $A_{s_toe_des} = A_{s_toe_min} = A_{s_toe_min} = A_{s_toe_req} = 12 \text{ mm dia}$	$hm/m = -(\phi_{toe} / 2)$ $/(b \times d_{toe}^2 \times f_{cu})$ $/(b \times d_{toe}^2 \times f_{cu})$ $/(0.5 + \sqrt{(0.25 - (mmmm))}$ $M_{toe} / (0.87 \times f_{toe})$) = 244.0 mm) = 0.013 <i>Compression re</i> (min(K _{toe} , 0.225) / $y \times z_{toe}$) = 296 mr 390 mm ² /m $A_{s_toe_min}$) = 390 r mm centres	• • • • • • • • • • • • • • • • • • •	t <mark>s not requ</mark>		

	Apple Tree Public H	House 45 Mou	nt Pleasant	2	7610		
P&M	Calcs for				Start page no./	Revision	
		Basement Retaining Wall			6		
	Calcs by MG	Calcs date 29/01/2020	Checked by	Checked date	Approved by	Approved	
Check shear resistance a	t toe						
Design shear stress		$v_{toe} = V_{toe} /$	$(b \times d_{toe}) = 0.1$	85 N/mm²			
Allowable shear stress		$v_{adm} = min($	0.8 × √(f _{cu} / 1 ľ	N/mm^{2}), 5) × 1 N	/mm² = 5.000 l	N/mm²	
		PASS -	Design shea	r stress is less t	than maximur	n shear si	
From BS8110:Part 1:1997	– Table 3.8		17 N1/				
Design concrete snear stre	SS	Vc_toe = U.0 4	•/ IN/MIM- V•/	n < Va tao • No si	hear reinforce	ment rea	
			•			mentreq	
Design of reinforced cond	crete retaining wa	all stem (BS 8002	:1994 <u>)</u>				
Material properties							
Characteristic strength of c	oncrete	f _{cu} = 40 N/r	nm²				
Characteristic strength of re	einforcement	f _y = 500 N/r	nm²				
Wall details							
Minimum area of reinforcen	nent	k = 0.13 %					
Cover to reinforcement in s	tem	C _{stem} = 50 n	nm				
Cover to reinforcement in w	all	$C_{wall} = 25 \text{ m}$	m				
Factored horizontal at-res	st forces on stem	l 					
Surcharge		$F_{s_sur_f} = \gamma_{f_i}$	$\times K_0 \times Surcha$	$arge \times (h_{eff} - t_{base})$	- d _{ds}) = 448.5 k	KN/m	
Moist backfill above water t	able	$F_{s_m_a_f} = 0$	$.5 \times \gamma_{f_e} \times K_0 \times$	$\gamma_{m} imes (h_{eff} - t_{base} - t_{base})$	$d_{ds} - h_{sat})^2 = 14$.1 kN/m	
Moist backfill below water to	able	$F_{s_m_b_f} = \gamma_f$	$_{e} \times K_{0} \times \gamma_{m} \times ($	h _{eff} - t _{base} - d _{ds} - h	h_{sat}) × h_{sat} = 34.	1 kN/m	
Saturated backfill		$F_{s_s_f} = 0.5 \times \gamma_{f_0} \times K_0 \times (\gamma_s - \gamma_{water}) \times h_{sat}^2 = 12.4 \text{ kIN/m}$					
Water		$F_{s_water_f} = 0$	$0.5 imes \gamma_{f_e} imes \gamma_{wate}$	$h_{r} \times h_{sat^{2}} = 19.8 \text{ km}$	N/m		
Calculate shear for stem	design						
Surcharge		$V_{s_sur_f} = 5$:	$\times F_{s_sur_f} / 8 = 2$	2 80.3 kN/m			
Moist backfill above water t	able	$V_{s_m_a_f} = F$	$s_m_a_f \times b_I \times (($	5 × L²) - bl²) / (5 >	< L ³) = 5.8 kN/r	n	
Moist backfill below water ta	able	$V_{s_m_b_f} = F$	s_m_b_f × (8 - (n	² × (4 - n))) / 8 =	29.4 kN/m		
Saturated backfill		$V_{s_s_f} = F_{s_s}$	$a_{f} \times (1 - (a_{f}^{2} \times (a_{f}^{2}))))$	(5 × L) - a _i) / (20	\times L ³))) = 11.5	kN/m	
Water		$V_{s_water_f} = F$	⁻ s_water_f × (1 - ($a^2 \times ((5 \times L) - a)$	$/(20 \times L^3))) =$	18.4 kN/m	
I otal shear for stem design	I	$V_{stem} = V_{s_s}$	ur_f + Vs_m_a_f +	$V_{s_m_b_f} + V_{s_s_f}$	+ Vs_water_f = 34	5.5 kN/m	
Calculate moment for ste	m design						
Surcharge		$M_{s_sur} = F_{s_sur}$	$sur_f \times L / 8 = 1$	82.2 kNm/m			
Moist backfill above water t	able	$M_{s_m_a} = F_{s_a}$	_m_a_f × b _l × ((5	\times L ²) - (3 × b ₁ ²))	/ (15 × L ²) = 5. 8	B kNm/m	
Moist backfill below water to	able	$M_{s_m_b} = F_{s_b}$	$_{m_b_f} \times a_l \times (2)$	- n)² / 8 = 16.2 kľ	Nm/m		
Saturated backfill		$M_{s_s} = F_{s_s_}$	$f \times a_{i} \times ((3 \times a_{i}^{2})))$	$15 \times a \times L$)+(20×L ²)	$))/(60 \times L^2) = 4.8$	s kNm/m	
vvater		$M_{s_water} = F_s$	s_water_f ×ai×((3>	<aŕ)-(15×a⊧×l)+(2< td=""><td>20×L²))/(60×L²)</td><td>) = 7.6 kNr</td></aŕ)-(15×a⊧×l)+(2<>	20×L²))/(60×L²)) = 7.6 kNr	
i otal moment for stem desi	gn	M _{stem} = M _s _	sur + Ms_m_a + N	/Is_m_b + Ms_s + M	s_water = 216.6	kinm/m	
Calculate moment for wal	l design		_				
Surcharge		$M_{w_sur} = 9 \times$	$F_{s_{s_{s_{s_{s_{s_{s_{s_{s_{s_{s_{s_{s_$	28 = 102.5 kNm/	'm		
Moist backfill above water t kNm/m	able	$M_{w_m_a} = F_s$	_m_a_f × 0.577×	 kbi×[(bi ³ +5×ai×L ²),	/(5×L³)-0.577²/	3] = 5.4	
Moist backfill below water ta	able	$M_{w_m_b} = F_s$	$a_{m_b_f} \times a_l \times [((a_{m_b_f} \times a_l) \times a_l)]$	8-n²×(4-n))² /16)-	4+n×(4-n)]/8 =	7.3 kNm/	
Saturated backfill		$M_{w_s} = F_{s_s_}$	$f \times [a_1^2 \times x \times ((5 \times 10^{-1}))]$	L)-a _l)/(20×L ³)-(x-l	$(3 \times a^2) = 1$.5 kNm/m	
Water		$M_{w_water} = F$	$s_water_f \times [a_l^2 \times x]$	×((5×L)-a _l)/(20×L	³)-(x-b₁) ³ /(3×a₁	²)] = 2.5	
kNm/m							
Total moment for wall desig	In	$M_{wall} = M_{w_s}$	_{sur} + M _{w_m_a} + N	$M_{w_m_b} + M_{w_s} + N$	l _{w_water} = 119.1	kNm/m	

Tekla Tedds	Project The Apple Tree Public House 45 Mount Pleasant				Job no. 27610	
P&M	Calcs for Basement Retaining Wall			Start page no./Revision 8		
	Calcs by MG	Calcs date 29/01/2020	Checked by	Checked date	Approved by	Approved date

Check retaining wall deflection	on	
Basic span/effective depth ratio)	ratio _{bas} = 20
Design service stress		$f_{s} = 2 \times f_{y} \times A_{s_stem_req} \ / \ (3 \times A_{s_stem_prov}) = \textbf{249.7} \ N/mm^{2}$
Modification factor	factor _{tens} = min(0.55	+ (477 N/mm ² - f _s)/(120 × (0.9 N/mm ² + (M _{stem} /(b × d _{stem} ²)))),2) = 0.96
Maximum span/effective depth	ratio	ratio _{max} = ratio _{bas} × factor _{tens} = 19.13
Actual span/effective depth rati	0	ratio _{act} = h _{stem} / d _{stem} = 12.92
		PASS - Span to depth ratio is acceptable

PROPOSED CONSTRUCTION SEQUENCE

() DEMOLISH SINGLE STOREY BUILDINGS WITHIN DEAR COURTYARD INCLUDING TOILET BLOCK

- 2 BEGIN THE FIRST STAGE REINFORCED CONCRETE PINS FORMING THE LINING WALL AGAINTST No 47 MOUNT PLEASANT DO NOT BACK FILL UPON COMPLETION LEAVE PINS OPEN SUITABLY PROPPED AGAINST SOIL. CARRY OUT PINS FOLLOWING TYPICAL UNDERPINNING SEQUENCE
- (3) SIMILARLY TO STEP (2) CARRY OUT FIRST STAGE PINS AGAINST CORNER OF 20-23 ROSEBERY AVERIVE. PINS DEPTH ~ 1.5 M

- THE CENTRAL SOIL MASS
- TO CENTRAL COLUMN.

PRICE&MYERS

Consulting Engineers 37 Alfred Place London WC1E 7DP T 020 7631 5128

REDUCE LEVEL OF CENTRAL SOIL MASS IN REAP COURTYARD ENOUGH TO ALLOW INSTALLATION OF PROPS BELOW LINE OF NEW TERRACE EC SLAB

EXCAVATE CENTRAL SOIL MASS ENOUGH TO START THE SECOND STAGE "L" PINS ALONG 47 MOUNT PLEASALT AND 20-23 ROSEBEDY AVENUE 6 CARRY OUT 2ND STAGE "L" PINS LEAVING THE PINS OPEN AND SUITABLY PROPPED AGAINST

(F) AT THE SAME TIME AS STEPS D TO (G) THE SHALLOW UNDERPINING OF THE EXTERNAL WALLS BY THE FRANT OF THE PUB CAN BE CARRIED OUT FOLLOWING A TYPICAL UNDERPINNING SEQUENCE THE WALLS BY THE EXISTING SERVICE STAIR CAN ALSO BE UNDERPINHED. DO NOT UNDERMINE PAD

107 Job No 27610 Page SKO1 Date FEB 20 Eng MG JOD 45 MOUNT PLEASANT WOIX DAE

NEW 250 RC BASEMENT SLAB

- SOIL MASS.
- (1+)
- AGAINST 20-23 ROSEBERY AVENUE
- (16) INTRODUCE LOWER LEVEL OF PROPS JUST ABOVE
- (17) WALL ALONG WARNER ST.

- (8) EXCAVATE DOWN TO FORMATION LEVEL AND INSTALL PROPPING SIMILAR TO UPPER LEVEL JUST ABOVE BASEMENT FLOOR SLAB
- CAST DEINFORCED CONCRETE BASEMENT SLAB 9 CONNECTED TO THE BASE OF THE PINS
- CAST GROUND FLOOR SUSPENDED SLAB (10) COMNECTED TO THE TOP OF THE PINS AT OHE END AND POCKETED INTO THE EXISTING BRICK WALLS AT THE OTHER END
- CAST 250 RC BASEMENT SLAB TO FRONT OF (11)PUB LEAVING A SECTION ABOUND EXISTING COLUMN BASE
- STARTING FROM THE DEMOLITION OF WALL A (12)CAREFULLY EXCAVATE THE GROUND TO ALLOW THE START OF THE UNDERPINHING ALONG WARNER STREET AND THE PARTY WALL WITH 8-10 WARNER STREET

PRICE&MYERS

Consulting Engineers 7 Alfred Place London WC1E 7DP T 020 7631 5128

(3) FOLLOWING A TYPICAL SEQUENCE FORM 1ST STAGE PINS OF RC RETAINING WALL AGAINST CORNER OF 20-23 ROSEBERY AVENUE. KEEP PROPS AGAINST

REDUCE LEVEL OF SOIL MASS ENOUGH TO INTRODUCE PROP GRID JUST ABOVE NEW GROUND FLOOR SLAB

(B) FORM RC "L' LINING WALL IN SECTIONS ALONG 8-10 WARHER ST. AND FORM STAGE TWO "L" PINS

BASEMENT FLOOD SLAB. CAST BASEMENT SLAB

CAST GROUND FLOOD SLAB CONNECTED TO NEW BC PINS, THE SLAB SECTION PREVIOUSLY CAST AND POCKETED INTO EXISTING FRONT

- (18) FORM UNDERPINES TO REMAINING SECTION OF WAR HER STREET. REDUCE GROUND AND CAST NEW 250 RC BASEMENT SLAB CONNECTED TO OTHER SECTIONS PREVIOUSLY CAST
- (9) PROVIDE TEMPORARY PROPS TO ALLOW THE REMOVAL OF BASEMENT COLUMN. CAST NEW PAD. INTRODUCE NEW COLUMN. REMOVE PROPS AND CAST SLAB AROUND NEW COLUMN
- 20 CONSTRUCT NEW ROOF STRUCTURE OVER GARDEN ROOM. FORM NEW STAIR OPENING AND ALTERATIONS ABOVE PRINCIPAL ROOM.

PRICE&MYERS

Consulting Engineers 37 Alfred Place London WC1E 7DP T 020 7631 5128

100

Job No 27610 Page SKO3. Ver Date FEB 20 Eng MG Chd JOB 45 MOUNT PLEASANT WOLX DAE

~ 1:100 A3

EXTERNAL WALL UNDERPINNED AS SHOWN OH SECTIONS C-C \$ D-D

Consulting Engineers 37 Alfred Place London WC1E 7DP 020) 7631 5128
Job No 27610 Page 5K04	Ver
Date FEB 20 Eng MG	Chd
JOB 45 MOUNT PLEASA	MT WOLX DAE

PRICE&MYERS

Consulting Engineers37 Alfred Place London WC1E 7DP020 7631 5128Job No 27610Page SK 05VerDate FEB 20EngMGChdJob 45 MOUNT PLEASANT WCLX DAE

PRICE&MYERS

PROPOSED FIRST FLOOR PLAN ~ 1:100 @ A3

POSSIBLY STRENGTHENED TO CAPELY DEVISED LOADING ARRANGEMENT NEW COLUMN TO PICK UP EXISTING

PRICE&M	IYERS
Consulting Engineers	2

37 Alfred Place London WC1E 7DP 020 7631 5128

JOB NO 27610			Page	SK06	Ver	
Date	FEB	20	Eng	MG	Chd	
Job	45	Mou	tr	PLEASANT WOLK		WCIX DAE

PRICE&MYERS

Consulting Engineers 37 Alfred Place London WC1E 7DP 020 7631 5128

PRICE & MYERS Consulting Engineers 37 Alfred Place London WC1E 7DP 020 7631 5128

Consulting Engineers 37 Alfred Place London WC1E 7DP 020 7631 5128

Job No 27	610	Page	skog	Ver	-
Date TEP	520	Eng	MG	Chd	
Job 45	MOU	tt	PLEASA	NT WUX	DAE