Basement Impact Assessment Vine House, Hampstead NW3 1AB

Hydrogeology, Land Stability and Ground Movement Assessment

11 December 2019

MAUND GEO-CONSULTING

Produced for:

Croft Structural Engineers Clock Shop Mews, Rear of 60 Saxon Road London SE25 5EH

Prepared by:

Julian Maund BSc PhD CEng MIMMM CGeol FGS UK and Ireland Registered Ground Engineering Adviser

Maund Geo-Consulting Ltd 3 Coopers Square Chipping Norton OX7 5DG

T 07817018716
E julian.maund@gmail.com

MGC-BIA-19-34-V2

Report Title	Basement Impact Assessment	Site Address	Vine House, Hampstead, London NW3 1AB
Work Stage	Hydrogeology, Land Stability and Ground Movement Assessment	Report Date	December 2019
Brief Description of the Report Contents	Desk study and geotechnical into Impact Assessment and Ground		und and groundwater conditions, for a Basement ent

Document Control Sheet

Project Title Basement Impact Assessment

Vine House, Hampstead, London NW3 1AB

Report Title Hydrogeology, Land Stability and Ground Movement Assessment

Reference MGC-BIA-19-34-V2

Revision 2 Status Final

Control Date 11 December 2019

Record of Issue

Issue	Status	Date	Author	
A	Draft	05/12/19	Julian Maund BSc PhD CEng MIMMM CGeol FGS Registered Ground Engineering Adviser	John M.
В	Final	11/12/19	Julian Maund BSc PhD CEng MIMMM CGeol FGS Registered Ground Engineering Adviser	John W.

Distribution

Organisation	Contact	Copies	Date
Croft Structural Engineers	Geoff Watson	1	11/12/19

Contents

1	Non-Technical Summary	1
2 2.1	Introduction Terms of Reference	
2.1	Scope and Objective	
2.3	Author	3
2.4	Sources of Information	
3	Desk Study - Background Information on the Site	4
3.1 3.2	Location Description	
3.3	Present use	
3.4	Proposed use	
3.5	Topography, geomorphology and drainage	
3.6 3.7	Geology Hydrogeology/groundwater	
3.8	Natural Hazards	
3.9	History of site	
3.10	Underground features	
3.11	Other factors e.g. contamination and archaeology	
4 4.1	Site Investigation Details of laboratory tests	11
5 5.1	Ground Conditions Stratigraphy	
5.2	Groundwater	
5.3	Consideration of the individual strata, with reference to the basement	
6	Geotechnical Assessment of Ground Conditions	17
6.1	Introduction	17
6.2 6.3	Presumed Bearing resistance Effect of vertical ground movement from soil excavation	
6.4	Effect of vertical ground movement from construction	
6.5	Sub –surface Concrete	
7	Screening	22
7.1	Introduction	
7.2	Subterranean (Groundwater) flow	
7.3	Slope / Land Stability	
8 8.1	ScopingIntroduction	
9	Impact Assessment	
9.1	Groundwater	
9.2	Land Stability	30
10	Ground Movement Assessment	32
10.1	Introduction	32
11	References	33
Appe	endix A Drawings and Figures 10.1 & 10.2	
	endix B Ground Investigation Report	

MAUND GEO-CONSULTING

Vine House, Hampstead, London NW3 1AB

Hydrogeology, Land Stability and Ground Movement Assessment

Appendix C Existing Exploratory Hole Records
Appendix D PDisp Output
Appendix E Historical Maps (Groundsure)
Appendix F Groundsure Geo and Enviro Insight Reports

1 Non-Technical Summary

A basement impact assessment (BIA) has been undertaken for hydrogeology and land stability in general accordance with 'CPG Basements' (2018) for the site within the grounds of Vine House, Hampstead, London NW3 1AB, in the London Borough of Camden.

The proposed basement is located at Vine House, a detached house surrounded by gardens and driveway. The basement will extend below the footprint of the building to provide additional accommodation.

The BIA report considered relevant information from existing sources included in the 'Guidance for subterranean development' produced for the London Borough of Camden' (November 2010) and a Groundsure Enviro/Geo insight report with historical maps and BGS records.

A ground investigation at the site was undertaken by Ground and Water Ltd on 04/11/19 which comprised three boreholes to determine the ground conditions and two hand dug trial pits to expose wall footings. The boreholes were drilled to depth of between 5.45 and 8.45 m below ground level (bgl), while the trial pits were excavated to depths of 1.1 and 1.3 m bgl.

The ground investigation determined the ground conditions as a layer of Made Ground of a clayey sand with gravel of flint brick concrete and clinker from circa 125.3 m AOD between 0.9 and 2.1m bgl overlying the Bagshot Formation of gravelly sand, clayey sand and sandy clay.

Groundwater was not encountered during the ground investigation. Subsequent monitoring indicated no groundwater present to at least 4.95m bgl or circa 120.35 m AOD. An existing borehole 50 m to the west of the site indicated possible groundwater at 108m AOD.

An assessment of land stability has been made from the excavation and construction of the basement. It has been calculated that heave in the centre of the basement is not expected to exceed 23 mm resulting from the excavation and construction. The foundation formation will be able to accommodate a maximum imposed load modelled as a conservative worse case from the retaining walls of 200 kPa with net settlement of < 25 mm.

An arboricultural survey undertaken in June 2019 has determined that the basement will not impinge in root protection area from existing trees.

The proposed basement construction will comprise concrete underpins installed on a hit and miss principle.

The analysis of ground movement with reference to CIRIA C760, Boscardin, M.D., and Cording, E.G., (1989) and Burland, J.B., and Wroth, C.P. (1974) has been undertaken. As would be anticipated for the geology and location of the neighbouring property High Close House, the Damage Category is zero, or negligible.

2 Introduction

2.1 Terms of Reference

Maund Geo-Consulting Ltd was instructed on 4 November 2019 by Croft Structural Engineers Ltd (Croft) to undertake the hydrogeology and geology sections of a Basement Impact Assessment (BIA) including a Ground Movement Assessment (GMA) for a proposed development at Vine House, Hampstead, London NW3 1AB. The hydrology section of the BIA is being undertaken separately by Croft.

2.2 Scope and Objective

This report has been written in general accordance with 'Camden geological, hydrogeological and hydrological study - Guidance for subterranean development' produced for the London Borough of Camden (LBC) by Arup (November 2010), hereafter referred to as the GSD. The guidance sets out the methodology for a risk-based impact assessment to be undertaken with regard to hydrology, hydrogeology and land stability in support of Local Plan Policy A5 (2017). The BIA comprises stages in which information is obtained to enable LBC to decide on the impact of the development for the planning application. The LBC Guidance CPG Basements (March 2018) requires a BIA to be undertaken for new basements in 5 stages:

- 1. Screening
- 2. Scoping
- 3. Site investigation
- 4. Impact assessment
- Review and decision making (By LBC)

As a site investigation has already been undertaken as part of the BIA for Vine House (Factual Report included in Appendix B) the screening part of the assessment has been assessed based on existing information including the site investigation, so the project has been completed in the following sequence:

- Desk Study of background information
- 2. Site Investigation including interpretation of ground conditions
- 3. Screening
- 4. Scoping
- 5. Impact Assessment

This report considers the hydrogeological and land stability elements of the BIA only. Hydrology is considered in a separate report by Croft Structural Engineers Ltd.

2.3 Author

This report has been prepared by Dr Julian Maund, director of Maund Geo Consulting Ltd, who is a chartered engineer and chartered geologist with over 35 years' experience. Dr Maund is a UK and Ireland Registered Ground Engineering Adviser and a member of the Association of Geotechnical Specialists.

2.4 Sources of Information

Background information has been derived from Groundsure Geo Insight and Enviro Insight reports obtained on 5/11/19 for the site (Appendix B). Geological information has been derived from on-line BGS sources (Geology of Britain Viewer) and the GSD. Mapping and aerial photography have been obtained from Google Earth. The full list of information is shown below in Table 2.1. Information is also derived from the site investigation undertaken specifically for the proposed development by Ground and Water Ltd on 4/11/19.

The following baseline data indicated in Table 2.1 have been referenced to complete the BIA in relation to the proposed development:

Table 2.1 Information type and sources

Information Type	Source
Site walkover	During SI on 4/11/19
Current/historical mapping	Groundsure Reports, Google Earth
Geological mapping	GSD
Underground tunnels	Groundsure
Hydrogeological data	Groundsure/GSD/EA
Current/historical hydrological data	Groundsure/GSD/EA/ LBC
Flood risk mapping	Groundsure/GSD EA/ LBC
Unexploded Ordnance	(http://bombsight.org)
Ground and groundwater conditions	Site Investigation

3 Desk Study - Background Information on the Site

3.1 Location

The site is located at Vine House Hampstead Square, NW3 1AB in the Hampstead Village area of the London Borough of Camden.

3.2 Description

The existing building comprises a three storey detached house occupying a central location in a garden off Hampstead Square.

Figure 3.1 South Elevation (From Drawing VH-PP-11 2015)

3.3 Present use

Vine House is a residential dwelling and is currently occupied by the owner who is proposing the basement construction. The area of the proposed basement is below the entire footprint of the house and the garden room adjoining the east of the house.

3.4 Proposed use

The proposed development relevant to this BIA is understood to comprise a basement for provision of additional accommodation. The proposed basement measures approximately up to 23 m in an E-W direction and 12 m in an N-S direction as shown on the proposed basement plan SL50 in Appendix A.

3.5 Topography, geomorphology and drainage

The ground level at the site is at approximately 125.30 m AOD. No detailed topographical survey is currently available. The land in the vicinity of the site slopes down to west, south and east from the north, where Hampstead Heath forms an area of high ground at circa 135m AOD as indicated in Figure 3.2, forming a distinctive geomorphological feature.

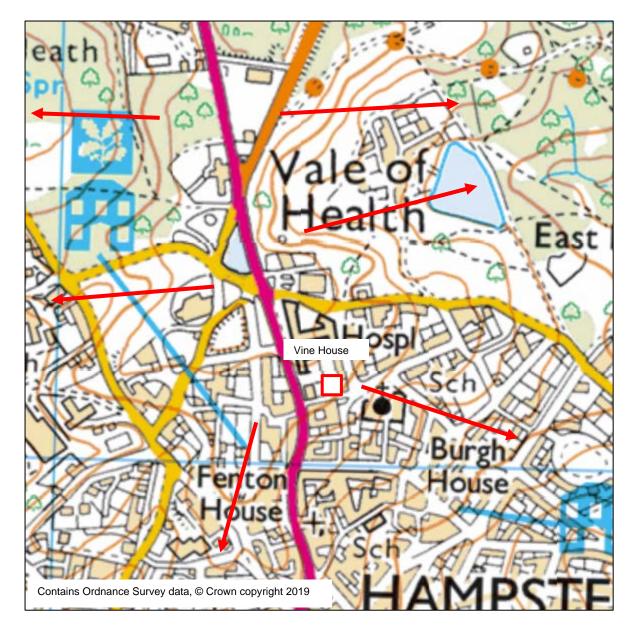


Figure 3.2 Regional topography at Vine House with arrows indicating direction of downwards slopes

Whitestone Pond is located about 200m to the north at approximately 129 m AOD and Vale of Health Pond 500m to the north east at approximately 110m AOD. Further Hampstead Ponds lie 1 km to the east of the site. These Ponds are on lower ground on lower ground between approximately 100 and 70m AOD.

The site itself is not within a Flood Zone. The nearest risk of surface water flooding is located 40m to the south west of the site, which is identified as a low risk from the UK Government Flood risk website https://flood-warning-information.service.gov.uk/long-term-flood-risk/map as indicated on the surface water flooding map in Figure 3.2 below.

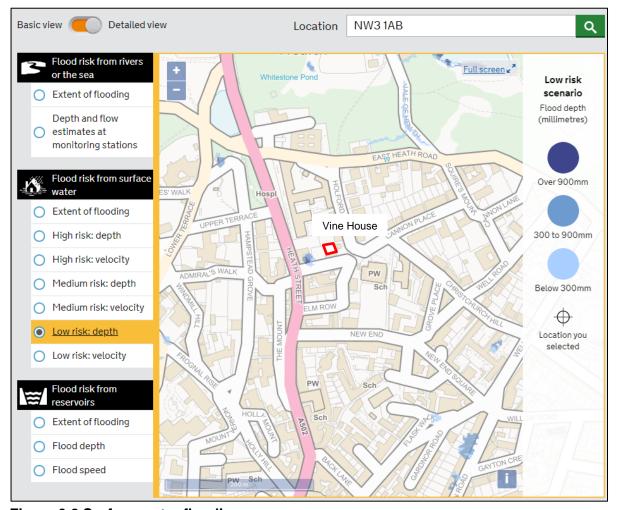


Figure 3.2 Surface water flooding

3.6 Geology

Geological information obtained from Figure 4 of the GSD at 1: 10 000 and the BGS website geological mapping at 1 50 000 scale shows the site to be directly underlain by the Bagshot Formation, which comprises a predominantly fine to coarse sand, locally clayey and gravelly. No superficial deposits are shown as indicated in Figure 3.3

A review of boreholes in the vicinity available from the BGS Geology of Britain Viewer indicates comparable geology. The closest existing available borehole is OF4 (BGS Ref. TQ/28NE/91) located at the corner of Hampstead Square and Heath Street, approximately 50m to the west of the site. The borehole indicates 600mm of Made Ground overlying sandy gravel and sandy clay to a depth of ~3m, then silty sand to a depth of ~9m (Bagshot

Formation), below which is stiff clay probably of the Claygate Member. OF4 is included in Appendix C.

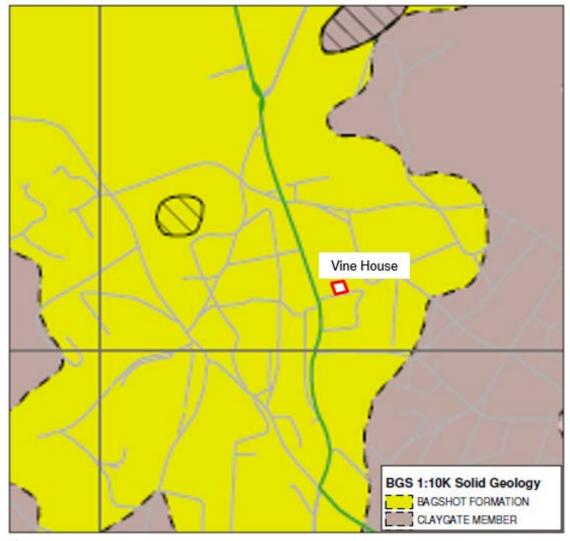


Figure 3.4 Geology

3.7 Hydrogeology/groundwater

The property is located on the Bagshot Formation, which is classified as Secondary (A) Aquifer. Figure 8 of the GSD confirms this classification.

The site does not lie within a ground water protection zone.

The site is located to the south of the Hampstead Heath surface water catchment and drainage as indicated in Figure 3.5 extracted from Figure 14 of the GSD.

3.7.1 Groundwater level

The ground investigation by Ground and Water at the site in November 2019 did not encounter groundwater to a depth of 8.45m (circa 120.35m AOD). Borehole OF4 indicated wet sand at a depth of 17m or approximately 108m AOD.

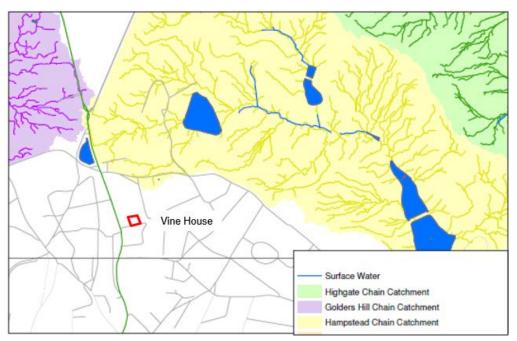


Figure 3.5 Surface water catchments

3.8 Natural Hazards

The Groundsure report (Appendix F) findings on natural hazards are summarised in Table 3.1

Table 3.1 Natural Hazards

Natural Hazard	Risk (Stated by BGS in Groundsure report)	Comment		
Natural ground	Low	No records of subsidence in the		
subsidence		vicinity		
Shrink-Swell	Negligible	The site is underlain by the Bagshot		
		Formation, a predominantly sandy		
		material. This is an important factor		
		giving a very low heave potential		
		from the basement excavation.		
Landslide	Very Low	The site itself is on level ground		
Soluble Rock	Negligible	Not applicable to the site geology		
Compressible Ground	Negligible	Not applicable to the site geology		
Collapsible rock	Very Low	Not applicable to the site geology		
Running Sand	Low	The clay content in the sand may		
		make this a low risk		
Radon	Not in a Radon affected	No Radon protection measures are		
	area	necessary		

3.9 History of site

The Groundsure Insights Maps in Appendix E includes historical mapping surveys from 1870 to 2003. A Heritage Assessment Report by Archangel Heritage (reference AH0268 24/06/19) also provide historical information.

Vine House was constructed around 1715 and is now a Grade II listed property.

Vine House and the land within the property boundary has shown little change since 1870. A heritage assessment by Archangel Heritage (June 2019) indicates that the rear of the house was built in the late 18th century / early 19th century with the parapet being added in the 20th century; the curved bays at the sides were also added after the original construction.

The adjacent property to the north, High Close, appeared on the 1896 map. There was no apparent change to this property until after the 2003 map, where the property has been extended in recent years.

3.9.1 WW2 bomb sites

A record of known bomb sites is presented in Figure 3.6 from the website http://bobsight.org. While this does not claim to be a definitive record, it shows nothing recorded in the environs of the site. The lack of change of building development in the area of the site suggests no bomb related destruction occurred at the site.

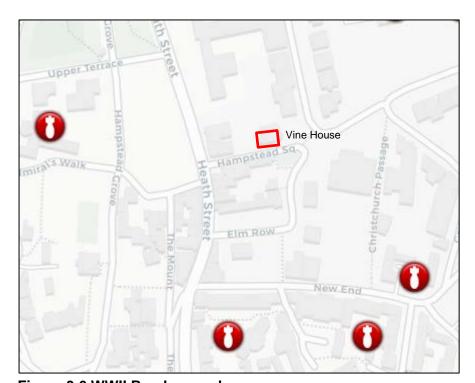


Figure 3.6 WWII Bomb record

3.10 Underground features

The Groundsure Geoinsight Report (Appendix F) has not identified any mining, underground workings or natural cavities within at least 500 m of the site.

The Groundsure Geoinsight Report (Appendix F) has not identified any tunnels or railways within 50m of the site.

3.11 Other factors e.g. contamination and archaeology

The Groundsure Enviroinsight Report (Appendix F) has not identified any 'Environmental Permits, Incidents and Registers' or 'Landfill and Other Waste Sites' within at least 250 m of the site boundary.

The Groundsure Enviroinsight Report has identified one 'potentially contaminative use, 18 m from the site. This is Queens Mary Hospital to the NW of the site.

No specific archaeological investigation has been undertaken. The 'Groundsure' survey has not identified any known 'Environmentally Designated Sensitive Sites' within 250 m of the site.

4 Site Investigation

A site investigation was undertaken by Ground and Water Ltd on 04/11/19. A report of the site investigation comprising exploratory hole records and laboratory testing is included in Appendix B.

The site investigation comprised:

- 3 No. boreholes carried out using windowless sampler borehole methods to a depth between 5.45 to 8.45 m bgl,
- 2 No. hand dug trial pits to expose footings,
- The in-situ strengths of the subsoil encountered were assessed by means of SPTs at 1 m intervals,
- Disturbed soil samples were obtained from the boreholes for laboratory geotechnical and contamination testing and further examination.
- A 50 mm diameter groundwater monitoring well was installed to a depth of 5.0 m in BH WS3

The locations of the above exploratory holes are shown in Figure 4.1 below taken from the Ground and Water Factual report included in Appendix B.

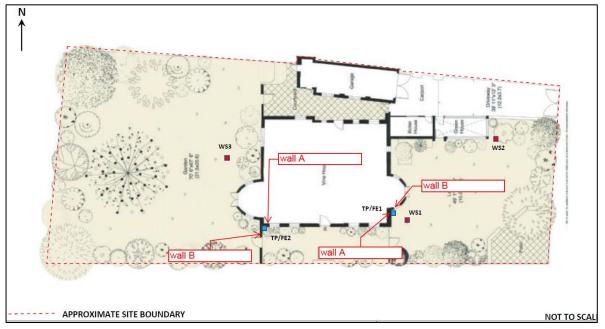


Figure 4.1 Exploratory hole locations

4.1 Details of laboratory tests

Laboratory tests to determine the geotechnical and contaminative properties of the soil were scheduled by Ground and Water Ltd and carried out K4 Soils Ltd and DETS Ltd generally in accordance with BS1377:1990 and UKAS. The tests included:

- 3 PSD (BS1377:1990)
- 1 Water soluble sulphate and pH (BS1377:1990)
- 3 Soil contamination tests which include:

Asbestos Screen, pH, Sulphate, total organic compound, metals, PAH and TPH. For a full list of contaminants refer to the factual report in Appendix B

5 Ground Conditions

5.1 Stratigraphy

The ground conditions encountered are summarised in Table 5.1 below. For a full description refer to exploratory records in Appendix B.

Table 5.1 Summary of ground conditions

Stratum	Description	Depth at top of Strata (mbgl)		Thickness of Stratum (m)	SPT N value
MADE GROUND	Dark brown silty gravelly clayey sand or sandy clay with gravel of flint, concrete, brick, claystone and clinker	0.00	125.30	0.9 to 2.1	1 to 12
Bagshot Formation	Orange to brown gravelly silty SAND	1.8 to 2.10	123.2 to 123.5	0.3 to 1.4	2 to 10
Bagshot Formation	Light Brown slightly clayey SAND, with occasional gravel and pockets of clay	2.1 to 3.5	120.3 to 123.2	Proven for 4.95	10 to 22

5.2 Groundwater

Groundwater was not reported during drilling to a depth of 8.45m.

Groundwater readings from post investigation monitoring on the site are shown in Table 5.2 indicating groundwater was not present to the depth of the monitoring installation.

Table 5.2 Groundwater monitoring in BH01

Date of monitoring	Groundwater Depth (metres below ground level – Approximately 125.3 m AOD)	level (m AOD)
21/11/19	dry (to base of installation at 4.95m)	< 120.35
27/11/19	dry (to base of installation at 4.95m)	< 120.35

5.3 Consideration of the individual strata, with reference to the basement.

The anticipated formation level of the basement floor slab will be approximately 2.5 m bgl at 122.8 m AOD, within the Bagshot Formation. An excavation depth of 3.50 m is assumed for a ground movement assessment.

The overall ground model is illustrated in the conceptual model in Section 6.2 below.

5.3.1 Made Ground

Below existing ground level, the made ground has been described a dark brown silty gravelly clayey sand or sandy clay with gravel of flint, concrete, brick, claystone and clinker. Made ground encountered was 0.9 to 2.1m thick. This material may represent build-up of site levels around the house, although the reason for this is not apparent due to the lack of any significant changes in the site layout since the house was construction in 1715.

The description of the material indicates it is likely to display similar physical properties to the underlying Bagshot Formation, in terms of particle size distribution and stability.

The made ground is appears as an inert material with no visual or olfactory indications of contamination.

Contamination testing has been undertaken from WS1 at 0.3m, for a range of contaminants indicated in the laboratory test report included in Appendix B. The testing for Waste Acceptance Criteria, based on leachate testing, indicates the made ground comprises inert waste. However, an elevated level of lead was noted in WS1 at 0.3m with a concentration of 3980 mg/kg. From a single sample it is not possible to indicate if this is an exception, such as from a piece of lead flashing (it is noted in the Heritage Assessment Report (2019) that work to the roof was undertaken in 1952). As a precaution it is recommended that additional testing is undertaken prior to any excavation works. However, it is not considered to have any impact on the basement construction as the soil is not within the basement footprint itself.

5.3.2 Bagshot Formation

The Bagshot Formation (BF) was encountered during the site investigation at a depth from 0.9 to 2.1 m bgl to termination of BH01 at 8.45 m bgl. Upper layers of the BF have been described as more gravelly sand, in BH WS1 and WS2 before becoming a silty clayey sand. WS3 showed clayey sand directly below the made ground.

Particle size distribution tests for samples from WS1 at 2.5, 3.5 and 5.5 m bgl confirm the BF to have a sand content of 68.9, 79.3 and 85.2% respectively. The fines content (clay and silt $< 63\mu m$) was 7.8, 20.2 and 13.9% respectively.

SPT N values have been corrected for overburden pressure in accordance with BS EN ISO 22476-3: 2005 for sands. A plot of SPT $(N_1)_{60}$ values against depth is shown in Figure 5.1. The SPT $(N_1)_{60}$ plot shows values ranging between 3 and 25 in the BF, with a pattern of N values increasing with depth.

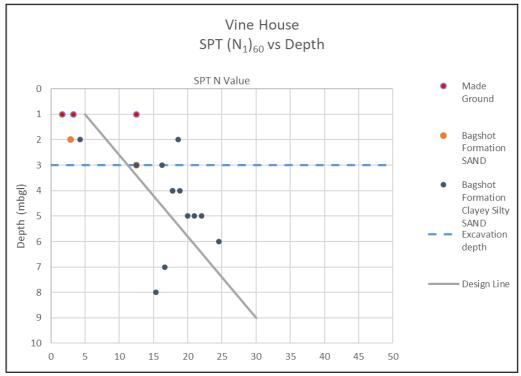


Figure 5.1 SPT (N₁)₆₀ values for the Made Ground and Bagshot Formation

Figure 5.2 shows the drained stiffness (Young's Modulus) profile based on correlation with SPT N values after Burland and Burbidge (in CIRIA C143, 1995) where E'/N = 2.0 MPa which is considered a cautious estimate of the characteristic value.

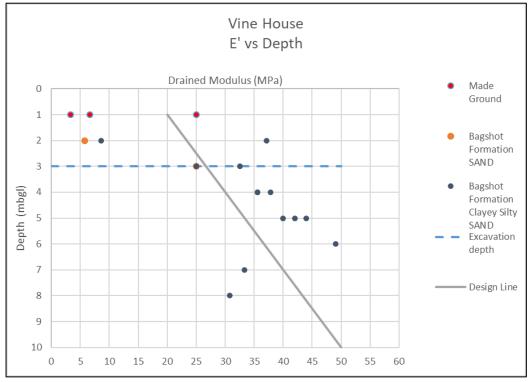


Figure 5.3 Relationship of stiffness with depth in London Clay Formation

Poisson Ratio is taken as v' = 0.3 for the sand and clayey sand of the BF.

The characteristic values of geotechnical parameters are a cautious estimate in accordance with BS EN 1997, based on the data obtained from the ground investigation (Appendix B) have been summarised in Table 5.3 as follows:

Table 5.3 Geotechnical Design Parameters

Strata	m a Design Level OOD A	Effective angle of [©] shearing resistance	W/Bulk unit weight	B Deformation Modulus (E') ນ	Poisson ratio v'	Ka	Кр
Made Ground (predominantly granular)	0 (~125.3)	28 ⁰	17*	20	0.3	0.30	4.8
Bagshot Formation	2.0 (~123.3)	28° to 36° (30° @ 3.5m bgl)	17*	16 + 3Z (from GL)	0.3	0.30	4.8

Notes:

Active and Passive pressure coefficients ka and kp from BS EN 1997-1 Annex C

The parameters in Table 5.3 are unfactored (Serviceability Limit State) and considered to be 'a cautious estimate'.

Active and Passive coefficients K_a and K_p are assumed the same for made ground and Bagshot Formation for wall design.

^{*}BS8004 2015 (in the excavation zone)

6 Geotechnical Assessment of Ground Conditions

6.1 Introduction

The information obtained from the ground investigation on the soil conditions in relation to the proposed basement construction has been assessed for impacts on existing building structures. The principle impacts are ground movements from the excavation for the basement. These movements are vertical and horizontal movements of the foundation formation level from isostatic readjustment from the excavation and possible vertical and horizontal impacts of existing structures from the basement wall construction.

6.2 Presumed Bearing resistance

The foundation formation level of the basement will be at approximately 121.80 m AOD or 3.5 m below ground level. At the formation level an angle of friction of 280 has been evaluated from the SPT profile. Wall loads provided by Croft Structural Engineers (Drawing 191025-SL-50 Rev1 in Appendix A) comprise the following shown in Table 6.1, based on an underpin wall thickness of 0.50m: This is a conservative analysis as it does not take into account the support to the wall of the thickened 1500 mm wide return of the underpin as indicated in Drawing 191025-TW-100 in Appendix A.

Table 6.1 Wall loading

Wall No.	Combined SLS kN/m	Total kPa	Net Loading kPa	Adequacy Factor (DA1- 2)
1	100	200	140	4.35
2	70	140	80	5.64
3	100	200	140	4.35
4	70	140	80	5.64
internal walls	100	200	140	4.35

The net loading allows for the removal of 3.5 m depth of soil (~60 kPa, based on a unit weight of 17 kN/m³). The wall loads will be taken by the basement floor slab which will be initially 1m wide (Drawing 191025-SL-100 in Appendix A). Preliminary calculations indicate that there will be an adequacy factor (overdesign factor) of between 4.35 and 5.64 (EC7 DA1

Combination 2). This indicates the ground will accommodate the imposed load without significant (<25 mm) settlement. The actual settlement will however be determined from the net effect from the removal of soil during the basement excavation.

6.3 Effect of vertical ground movement from soil excavation

Dimensions of the excavation is based on Drawing SL-50 dated November 19, included Appendix A.

The ground model is based on the ground conditions assessment in Section 5. As the ground conditions below the excavation comprise the Bagshot Formation, which is a predominantly granular material (fines content ranging from 13.9 to 20.2% in test results from samples below the excavation), heave is expected to be minimal. For the purposes of ground movement analysis, a 'worst case' conservative assessment of a clay material is shown below using PDisp version 20.12, where maximum heave in the centre of the excavation is shown as 12.5mm. In reality this is expected to be less than 2.5mm to allow for the low clay content. The excavation will have minimal effect on neighbouring properties as can be seen from Figures 6.1. 6.2 and 6.3, where ground movement is less than 1 mm. Section B-B, is the closest to High Close House at 3.6m to the boundary wall, with movement of 0.5 mm (heave).

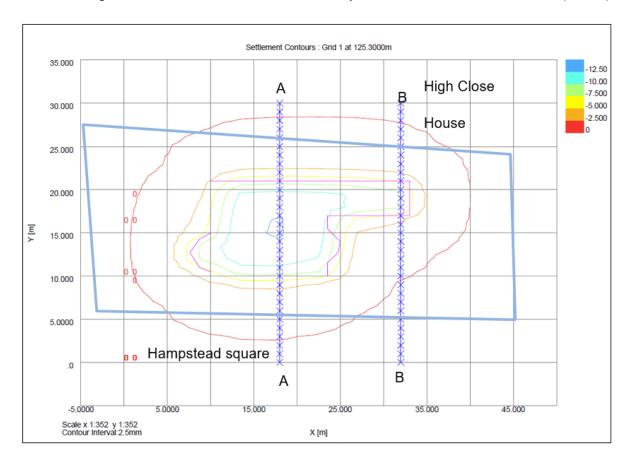


Figure 6.1 Vertical ground movements from excavation

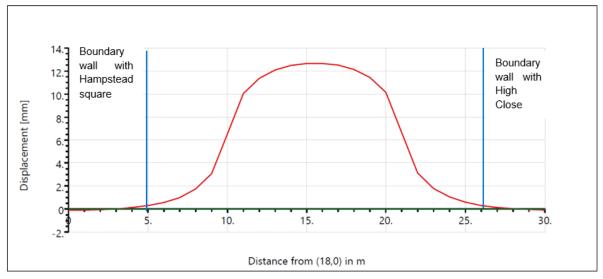


Figure 6.2 Cross Section A-A of vertical ground movements from excavation

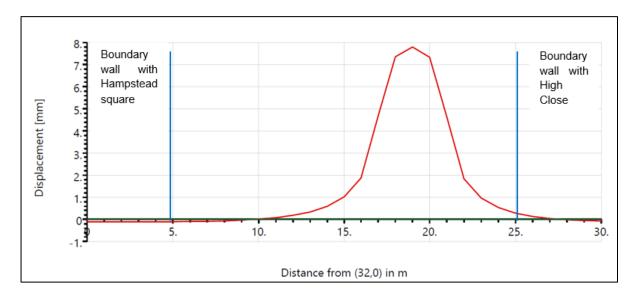


Figure 6.3 Cross Section B-B of vertical ground movements from excavation

6.4 Effect of vertical ground movement from construction

The loading of the soil from the wall loads has been modelled using PDisp version 20.12. Again, for purposes of a conservative worst case no account has been taken of the thickened slab at the underpin location. The analysis indicates that up to 23mm of settlement will occur below the central support and between 5 and 10mm around the walls. The loading of the basement will have minimal effect on neighbouring properties as can be seen from Figures 6.4, 6.5 and 6.6, where ground movement is less than 1 mm. Section B-B, is the closest to High Close House at 3.6m to the boundary wall, with movement of 0.75 mm (settlement).

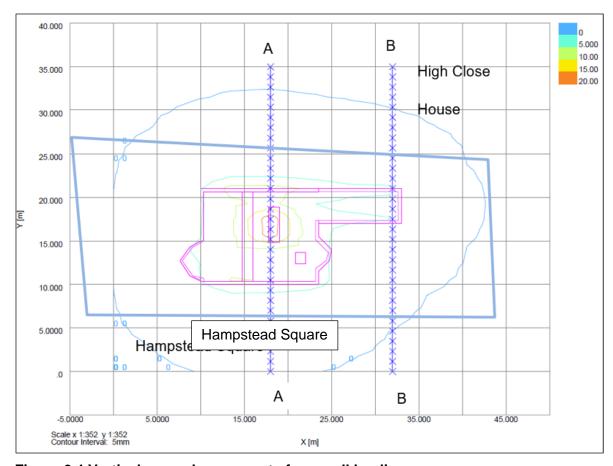


Figure 6.4 Vertical ground movements from wall loading

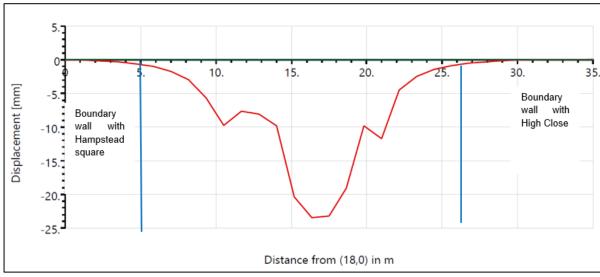


Figure 6.5 Cross Section A-A of vertical ground movements from wall loadings

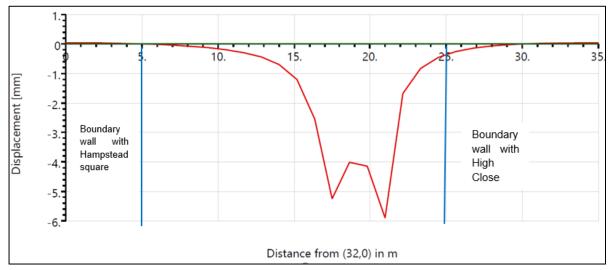


Figure 6.5 Cross Section B-B of vertical ground movements from wall loadings

Full output of the PDisp model is included in Appendix E.

6.5 Sub -surface Concrete

The results of lab testing for sulphate and pH are summarised below in Table 5.1. The full analysis is included in Appendix B.

Table 6.1 Sulphate and pH categories

Sample depth	Sample ID	Soil Type	Sulphate S04 2:1 extract	рН	Sulphate Class (DS)	ACEC Class
0.3	WS1*	Made Ground	<0.01	6.2	DS-1	AC-2z
2.5	WS3 ⁺	Bagshot Formation	<0.01	4.7	DS-1	AC-3z
3.5	WS1 ⁺	Bagshot Formation	0.27	7.53	DS-1	AC1
6.0	WS1 ⁺	Bagshot Formation	<0.01	7.6	DS-1	AC1

^{*} Tested to BS1377

It is recommended that an overall design sulphate class of DS-1 and an Aggressive Chemical Environment for Concrete (ACEC) class of AC-2z is adopted for the basement slab and underpinning. If a concrete piled solution is to be adopted, then DS-1 AC-2z should also be adopted.

⁺ Tested to BRE SD1

7 Screening

7.1 Introduction

Screening is undertaken as outlined in Section 6.2 of the GSD recommendations. It identifies if there are hydrogeological and land stability issues associated with the proposed development that requires detailed analysis and investigation. If there are no significant issues identified in the screening stage, then further stages are not required. The report follows the flow charts set out in CPG Basement (2018) and makes reference to the GSD.

7.2 Subterranean (Groundwater) flow

This section answers questions in Figure 1 of CPG Basements:

The source of information for the assessment of subterranean flow is from the GSD and a site-specific Groundsure Environmental Insight Report obtained on 5th November 2019 for Vine House (Appendices B and C) along with the ground investigation undertaken at Vine House on 4 November 2019 (Appendix B).

Table 7.1: Responses to Figure 1, CPG Basements

Question	Response	Action required
1a. Is the site located directly above an aquifer?	Yes. The site is underlain by the Bagshot Formation, which is classed as a Secondary (A) aquifer. Groundwater is	Assess the risk of impact of/to the basement
1b. Will the proposed basement extend beneath the water table surface?	No Groundwater monitoring shows no groundwater to a depth of at least 4.95 m	None

Question	Response	Action required
2. Is the site within 100m of a watercourse, well, or potential spring line?	No. There are no known wells or spring-lines within 100 m of the site	None
3. Is the site within the catchment of the pond chains on Hampstead Heath?	No. The site is not within the catchment of the ponds. As indicated in Figure 3.5	None
4. Will the proposed basement development result in a change in the proportion of hard surfaced/paved areas?	No The basement is entirely below the existing building	None
5. As part of site drainage, will more surface water than at present be discharged to ground (e.g. via soakaways and/or SUDS)?	No, the basement is entirely below the existing building.	None
6. Is the lowest point of the proposed excavation (allowing for any drainage and foundation space under the basement floor) close to, or lower than, the mean water level in any local pond or spring lines?	No. There are no recorded local ponds or spring lines within 250 m of the site	None

- a. Camden Geological, Hydrogeological, and Hydrological Study, Arup, 2010. (Fig. 8).
- b. Camden Geological, Hydrogeological, and Hydrological Study, Arup, 2010. (Fig. 11).
- c. Camden Geological, Hydrogeological, and Hydrological Study, Arup, 2010. (Fig. 14).

In summary, the site is located on the Bagshot Formation. Post investigation monitoring indicated that groundwater was not encountered to a depth of at least 4.95 m.

7.3 Slope / Land Stability

This section answers questions posed by Figure 2 in CPG Basements.

Table 7.2: Responses to Figure 2, CPG Basements

Question	Response	Action required
1. Does the site include slopes, natural or man-made, greater than about 1 in 8?	No. The site is on level	None
2. Will the proposed re-profiling of the landscaping at site change slopes at the property boundary to greater than about 1 in 8?	No.	None
3. Does the development neighbour's land including railway cuttings and the like with a slope greater than about 1 in 8?	No No railway is present with 500m of the site	None.
4. Is the site within a wider hillside setting in which the general slope is greater than about 1 in 8?	The site is located on a ridge of the Bagshot sands. The ground slopes away on the west, south and east sides, but the slopes are more than 50m from the site (see Figure 3.2)	None
5. Is the London Clay the shallowest stratum on site?	No	None
6. Will any trees be felled as part of the proposed development and/or are any works proposed within any tree protection zones where trees are to be retained	Three trees will be removed, because of damage to the existing building and or disease.	An arboricultural survey has been undertaken
7. Is there a history of shrink/swell subsidence in the local area and/or evidence of such at the site.	No records.	None

Question	Response	Action required
8. Is the site within 100 m of a watercourse or a potential spring line?	No ^{a,b} .	None
9. Is the site within an area of previously worked ground?	Made ground was encountered to a depth of 2.10m. However historical mapping shows no change in land use from at least 1870 to the present day therefore this is not worked ground as defined by CPG Basements.	
10. Is the site within an aquifer?	Yes. The site is underlain by the Bagshot Formation a Secondary (A) Aquifer	Assess the risk of impact of/to the basement
11. Is the site within 50m of the Hampstead Heath Ponds?	No.	None
12. Is the site within 5 m of a highway or pedestrian right of way?	Yes The existing house and proposed basement are 4m from a footway and 6m from the highway.	Assess the ground movement from the basement construction on the pedestrian walkway.
13. Will the proposed basement significantly increase the differential depth of foundations relative to neighbouring properties?	The house is surrounded by a garden and is over 10 m from the neighbour's property	A ground movement assessment will be undertaken to assess impact (Burland Damage Assessment)
14. Is the site over (or within the exclusion zone of) any tunnels?	No.	None.

- a. Camden Geological, Hydrogeological, and Hydrological Study, Arup, 2010. (Fig. 8).
- b. Camden Geological, Hydrogeological, and Hydrological Study, Arup, 2010. (Fig. 11).
- c. Camden Geological, Hydrogeological, and Hydrological Study, Arup, 2010. (Fig. 14).
- d. Groundsure Report (Appendix C) September 2016

In summary, the proposed basement is located on level ground and will be founded within the Bagshot Formation, which is present from 0.9 to 2.1 m depth below the site surface.

8 Scoping

8.1 Introduction

This section considers the output from the screening survey where further actions are required. It considers the scope of information required in addressing these actions and what the potential impacts are of the basement construction. The existing ground conditions and the location of the basement can be summarised in a conceptual site model as indicated in Figure 8.1.

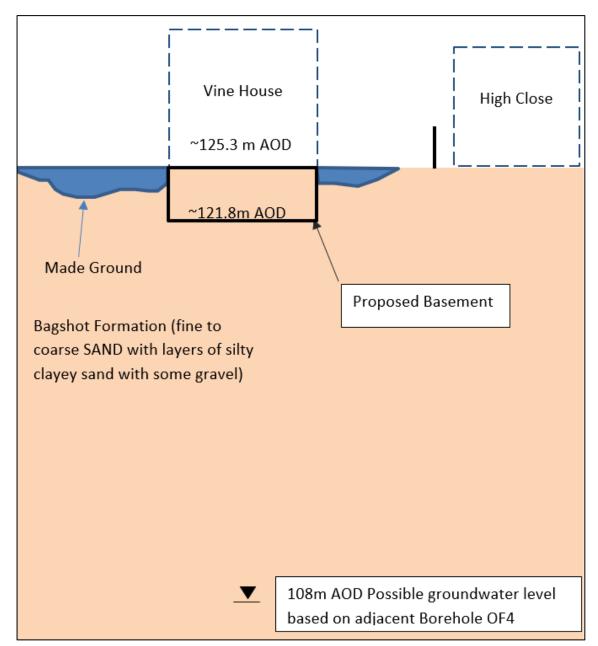


Figure 8.1 Conceptual Site Model (Not to scale, approx. m AOD)

There does not appear to be any requirement for groundwater mitigation measures for groundwater due to the depth of groundwater, as summarised in Table 8.1

Table 8.1 Summary of Scoping Requirements - Hydrogeology

Screening questions of concern - Hydrogeology	Potential Impact	Mitigation
1a. Is the site located directly above an aquifer?	Yes. The site is underlain by the Bagshot Formation, which is classed as a Secondary (A) aquifer. Groundwater is	Assess the risk of impact of/to the basement

The land stability issue relates to the ground movements resulting from the excavation within the London Clay Formation which will be addressed by a ground movement analysis as summarised in Table 8.2

Table 8.2 Summary of Scoping Requirements – Land Stability

Screening questions of concern – Land Stability	Potential Impact	Mitigation
6. Will any trees be felled as part of the proposed development and/or are any works proposed within any tree protection zones where trees are to be retained	Three trees will be removed, because of damage to the existing building and or disease.	An arboricultural survey has been undertaken
10. Is the site within an aquifer?	Yes. The site is underlain by the Bagshot Formation a Secondary (A) Aquifer	Assess the risk of impact of/to the basement

Screening questions of concern – Land Stability	Potential Impact	Mitigation
12. Is the site within 5 m of a highway or pedestrian right of way?	Yes The existing house and proposed basement are 4m from a footway and 6m from the highway.	Assess the ground movement from the basement construction on the pedestrian walkway.
13. Will the proposed basement significantly increase the differential depth of foundations relative to neighbouring properties?	The house is surrounded by a garden and is over 10m from the neighbour's property	A ground movement assessment will be undertaken to assess impact (Burland Damage Assessment) as a precaution

9 Impact Assessment

9.1 Groundwater

9.1.1 Groundwater level

The screening process has shown from borehole information that groundwater occurs at a depth of between at least 4.95m below ground level. An adjacent borehole OF4 located at the corner of Hampstead Square and Heath Street, approximately 50m to the west of the site indicates wet sand at 17m bgl or approximately 108m AOD. The basement construction will therefore have no impact on or be impacted by the flow of groundwater.

9.1.2 Impact on groundwater by any contamination from the made ground

The construction of the basement will remove made ground from the site if it is found that the made ground extends below the house.

The natural strata underlying the site will have variable permeability depending on the clay content. The low permeability layer associated with the clayey sand from 3.5 to 8.45m in BH WS1, and to the base of the shallower boreholes WS2 and WS3 will act as a barrier to leaching into ground water is therefore considered negligible.

9.2 Land Stability

The screening process has identified three issues which require an impact assessment listed below from Tables 7.2 and 8.2.

- Felling of trees,
- Presence of an aquifer
- Proximity to the highway and
- Proximity of an adjacent structure with differential depth of foundations.

9.2.1 Felling of Trees

Three trees have been identified in the arbicultural survey (Tree Sense 2019) that need to be felled. One of these is a Magnolia which is causing damage to the existing building. The other two trees are due to disease and are not related to the basement project. The survey also indicates root zones which need to be protected from compaction from construction plant. The root protection areas do not impinge on the proposed basement construction, as indicated in the tree constraints drawing in the arboricultural survey and included in Appendix A of this report.

9.2.2 Proximity of the basement to the highway

The proposed basement will be approximately 6.0 m from the highway kerb, and 4.0 m from the pedestrian pavement. Based on the PDisp analysis combined net movements indicated heave of less than 3 mm at the boundary with the pedestrian pavement reducing to less than 2 mm at the highway kerb. These movement are not considered significant for the pavement or associated infrastructure.

9.2.3 Proximity to adjacent buildings

Vine House is a detached property surrounded by gardens. The nearest property is High Close House, which is approximately 5 m to the north of Vine House

The land stability issue relates to ground movement from the excavation and construction to form the basement, which is considered in Section 10. There are no other issues such as sloping or unstable ground which are considered significant.

9.2.4 Stability of Temporary Excavations

It is proposed that the basement retaining walls will be constructed using a hit and miss underpinning technique, with temporary propping supporting the excavation, which is set out in the Basement Method Statement by Croft as indicated in Drawing No. 191025-TW-100, included in Appendix A.

9.2.5 Groundwater Control

As discussed in Section 8.1.1 groundwater was not encountered. Although considered unlikely, if localised perched water seepages are encountered, they could be controlled by pumping to a tank prior to disposal by tanker to an approved facility.

9.2.6 Monitoring of groundwater and ground movements

Groundwater levels should be monitored before the works as a precaution. Monitoring of adjacent structures and the highway should be carried out before, during and after construction.

10 Ground Movement Assessment

10.1 Introduction

This section provides an assessment of ground movement that may result from the construction of the basement and to determine how these may affect the adjacent building structures.

The proposed construction sequence for the basement is summarised as:

- 1. Excavate soil mass and prop side walls as excavation progresses
- 2. Cast stems for RC retaining wall in bays not exceeding 1000mm width
- 3. Install below slab drainage
- 4. Construct RC slab and internal foundation pads
- 5. Construct internal basement to load bearing walls
- 6. Proceed with ground floor construction and structure above

The sequence of casting the retaining walls sections is shown in Drawing 191025-TW-100 in Appendix A.

The house is surrounded by gardens and does not directly adjoin any neighbouring property. The geology of the soil is the Bagshot Formation which is a predominantly granular material.

The nearest property High Close House is over 3.5 m north from the basement. Figures 6.1 to 6.6 show that ground movement by calculation on 'worst case' using very conservative parameters assuming a clay soil (grading by particle size distribution shows fines only between 13.9 to 20.2% of the granular soil) is 0.5mm heave from the excavation and 0.75mm settlement from the basement loading.

The analysis of ground movement with reference to CIRIA C760, Boscardin, M.D., and Cording, E.G., (1989) and Burland, J.B., and Wroth, C.P. (1974) has been undertaken and is show in plot in Figures 10.1 and 10.2 in Appendix A. As would be anticipated for the geology and location of the neighbouring property High Close House, the Damage Category is zero, or negligible.

11 References

Boscardin, M.D., and Cording, E.G., (1989). *Building response to excavation induced settlement*. J Geotech Eng, ASCE, 115 (1); pp 1-21

Burland, J.B., and Wroth, C.P. (1974). *Settlement of buildings and associated damage*, State of the art review. Conf on Settlement of Structures, Cambridge, Pentech Press, London, pp611-654

Burland, J. B. (2008) The assessment of the risk of damage to buildings due to tunnelling and excavations. Jornada Tecnica de Movimientos de Edificios Inducidos por Excavaciones, Barcelona 16/12/2008.

BS 1377:1990. British Standard Methods of test for soils for Civil engineering purposes. British Standards Institution.

BS 5930: 2015. Code of practice for Ground Investigation. British Standards Institution.

BS EN 1997-1 Eurocode 7 Geotech Design Part1 General Rules- inc. corrigendum Feb 2009

BS EN 1997-2 Eurocode 7 Geotechnical Design Part 2 Ground Investigation and Testing – inc. corrigendum 2010

BS 8002: 2015 Earth Retaining Structures

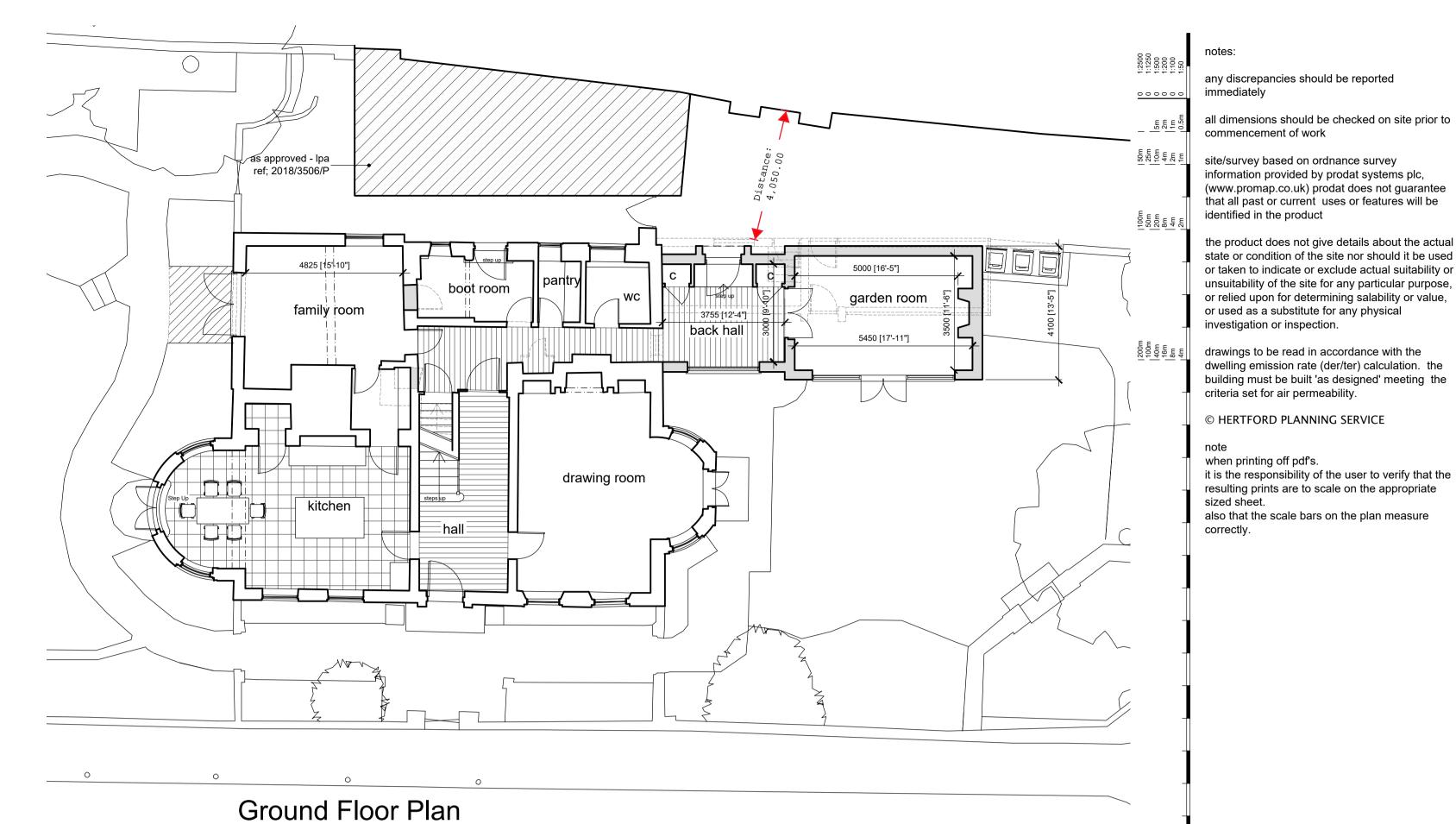
BS 8004: 2015 Code of practice for Foundations

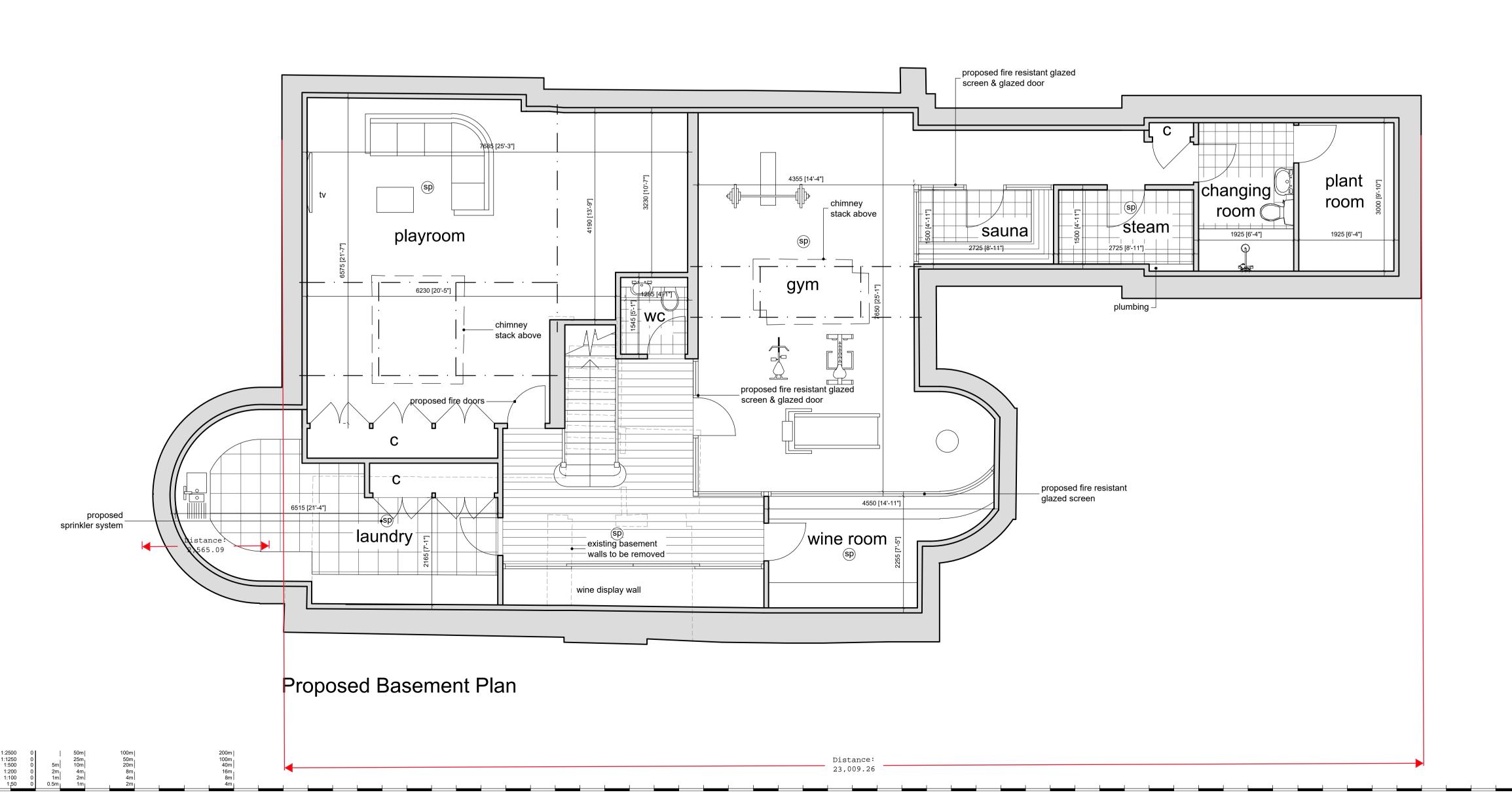
BGS Geology of Britain Viewer (http://mapapps.bgs.ac.uk/geologyofbritain/home.html)

Camden Development Policy DP27 - Basement development.

Camden Planning Guidance – Basements 2018

Camden geological, hydrogeological and hydrological study – Guidance for subterranean development. Arup November 2010


CIRIA C760 Guidance on Embedded retaining wall design 2017.


Heritage Assessment Vine House Hampstead. Archangel Heritage_JPW_2019_V3_FINAL June 2019

Vine House- Arboricultural report. Tree Sense Ltd 21/06/19

Appendix A Drawings and Figures 10.1 & 10.2

Hertford Planning Service

any discrepancies should be reported

commencement of work

identified in the product

all dimensions should be checked on site prior to

the product does not give details about the actual state or condition of the site nor should it be used

or taken to indicate or exclude actual suitability or unsuitability of the site for any particular purpose,

building must be built 'as designed' meeting the criteria set for air permeability.

it is the responsibility of the user to verify that the

resulting prints are to scale on the appropriate

also that the scale bars on the plan measure

© HERTFORD PLANNING SERVICE

when printing off pdf's.

sized sheet.

correctly.

information provided by prodat systems plc, (www.promap.co.uk) prodat does not guarantee that all past or current uses or features will be

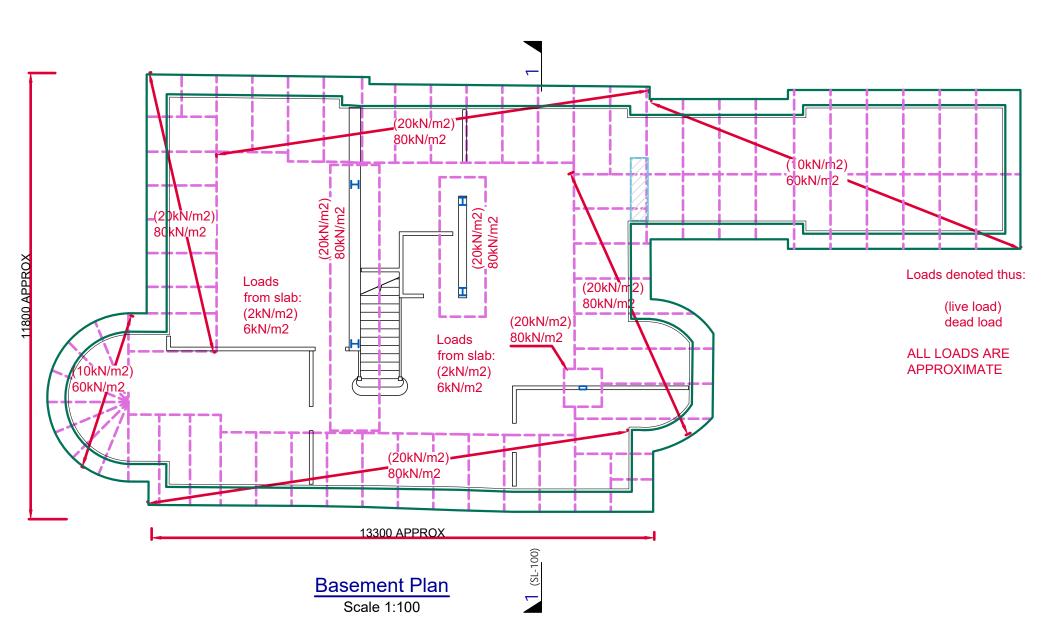
Westgate House, 37-41 Castle Street, Hertford, Herts SG14 1HH Tel: 01992 552173 Fax: 01992 587643 Email: contact@hertfordplanning.co.uk www.hertfordplanning.co.uk

Description

Project Vine House

Hampstead Village NW3 1AB

PROPOSED Drawing


Basement Floor Plan & Section

04/11/2019 1:50; 1:100 Scale Sheet size A1

13441-P009-B

Drawn

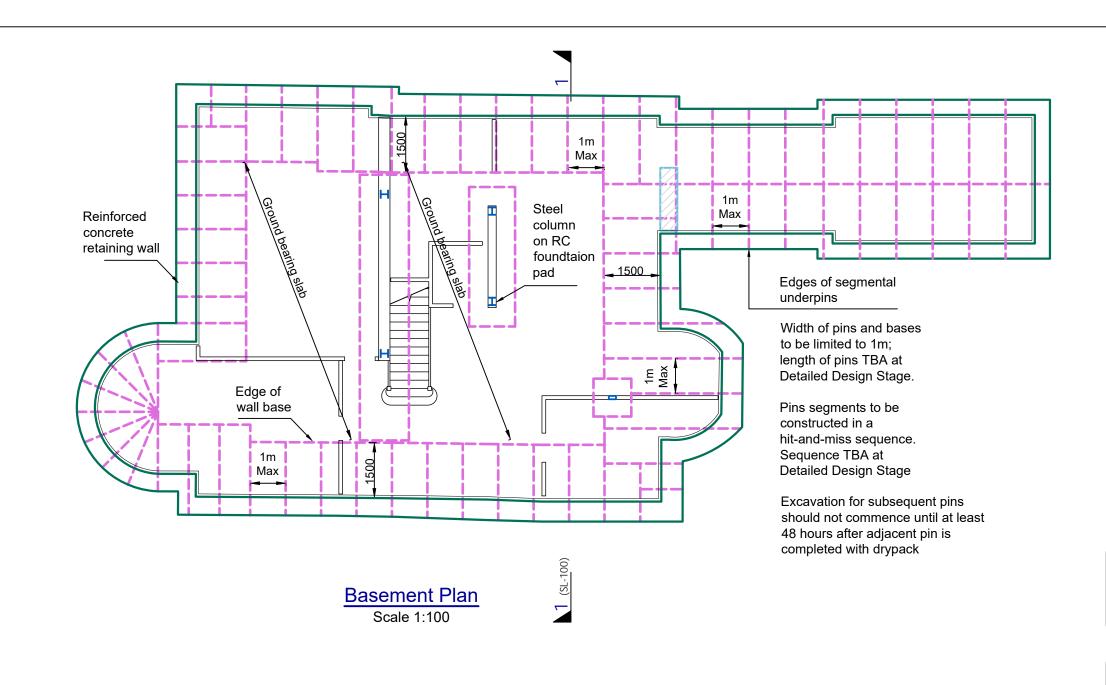
1	10.12.2019	Basement extent altered to latest Architect's proposals
-	25.11.2019	First issue for comment
Rev	Date	Amendments

Job No.	Drawn	GW	Scale As shown
190925	Chk'd	-	@ A3
Dwg No.	Rev.		Date
SL-50		1	Nov 2019

Client: Julia Gosmond

Project: Vine House,

Hampstead Square, Camden, NW3 1AB


Title: Structural Loading

Croft Structural Engineers

Clockshop Mews, r/o 60 Saxon Rd, London, SE25 5EH. 020 8684 4744 www.croftse.co.uk

- PLANNING ISSUE - NOT FOR CONSTRUCTION

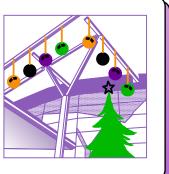
- PLANNING ISSUE NOT FOR
CONSTRUCTION

-	10.12.2019	First issue for comment
Rev	Date	Amendments

Job No.	Drawn	GW	Scale As shown
190925	Chk'd	-	@ A3
Dwg No.	Rev.		Date
SL-100		-	Dec 2019

Client: Julia Gosmond

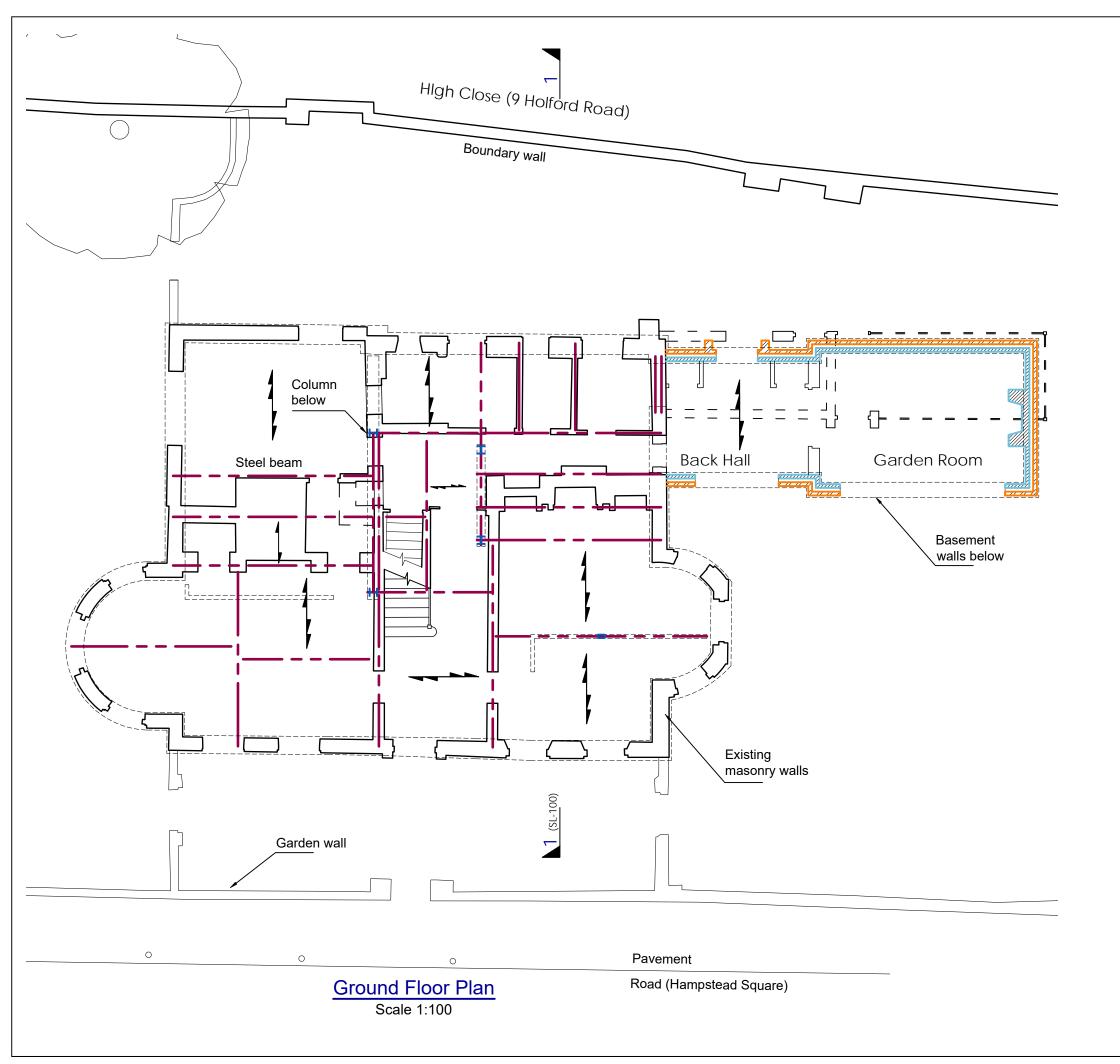
Project: Vine House,


Hampstead Square, Camden, NW3 1AB

Title: Structural Scheme

Design: Basement

Croft Structural Engineers


Clockshop Mews, r/o 60 Saxon Rd, London, SE25 5EH. 020 8684 4744 www.croftse.co.uk

Brickwork Existing garden wall boundary Existing wall Existing wall wall Road Existing **Ground Floor** (Hampstead brickwork wall FFL (Approx) High Close Square) K Garage I Drypack to existing wall Structural beams below Ground Floor * Reinforced Basement concrete slab* * Final design, including RC retaining FFL (TBA) reinforcement details TBA wall * at detailed design stage

Section 1-1

Scale 1:100

- PLANNING ISSUE NOT FOR CONSTRUCTION

-	10.12.2019	First issue for comment
Rev	Date	Amendments

Job No.	Drawn	GW	Scale As shown
190925	Chk'd	-	@ A3
Dwg No.	Rev.		Date
SL-200		-	Nov 2019

Client: Julia Gosmond

Project: Vine House,

Hampstead Square, Camden, NW3 1AB

Title: Structural Scheme

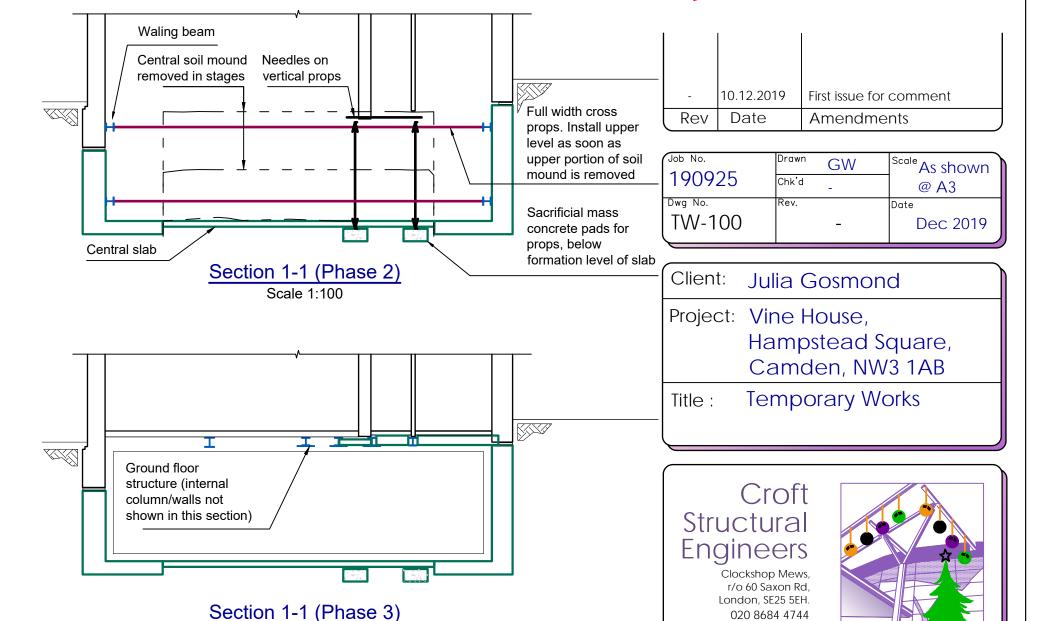
Design: Ground Floor

Croft Structural Engineers

Clockshop Mews, r/o 60 Saxon Rd, London, SE25 5EH. 020 8684 4744 www.croftse.co.uk

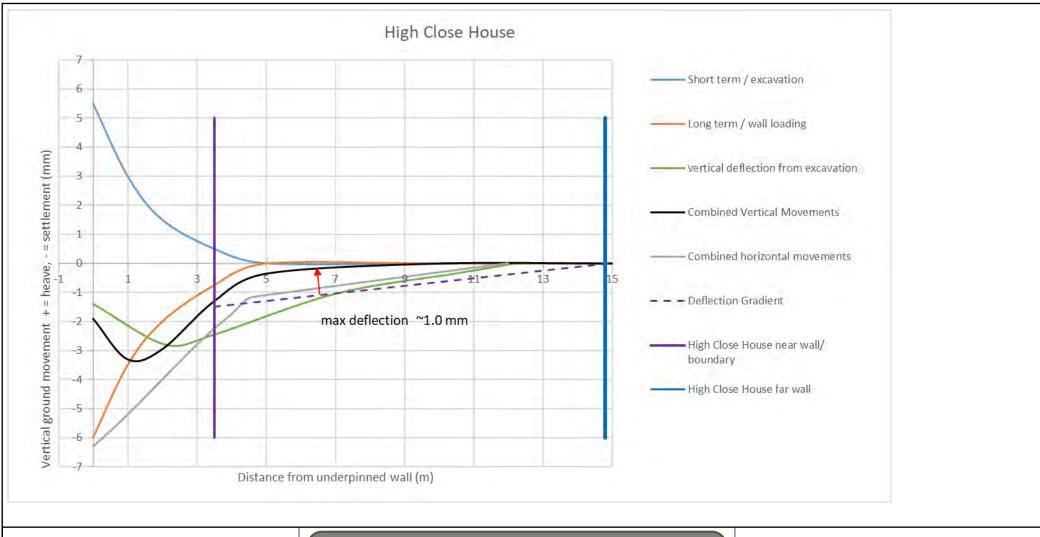
PHASE 1

- 1.3. Demolish ground floor and excavate to level of existing footings
- 1.4. Excavate pits and cast underpins in a hit and miss procedure (segmental outlines shown on plan)
 - 1.4.1. Prop pits against central soil mound as excavation progresses
 - 1.4.2. Do not commence excavation for pin until at least 48 hours after drypacking for adjacent pin is complete (24hours minimum is possible if Conbextra 100 cement accelerator is added to dry pack mix)
 - 1.4.3. For every second pin, extend excavation to allow for subesquent construction of mass concrete thrust block below formation level


Boundary wall **Boundary wall** Ground floor removed High Close Garage KK Perimeter underpins to Pit props, be excavated for and Central soil installed as cast in hit-and-miss mound for excavation segments (see plan - PLANNING ISSUE propping against progresses for segment locations) NOT FOR CONSTRUCTION Section 1-1 (Phase 1)

PHASE 2

- 2.1. After perimeter underpins are complete, excavate remaining soil mass below building
 - 2.1.1. Initial horizontal props may be removed as excavation progresses
 - 2.1.2. Central soil mound to be removed in stages except where vertical propping to internal walls is required
 - 2.1.3. Install full width cross props before excavating to the next stage
- 2.2. Cast sacrificial pads and install needles and props to inernals walls as excavation progresses
 - 2.2.1. Full height of central soil mound may be removed locally at vertical propping locations
 - 2.2.2. Do not excavate more than 1mx1m in plan of soil without installing vertical props to the wall above
 - 2.2.3. As excavatnion progresses downwards for sacrifical pads, install additional horizontal pit props
- 2.3. After central soil mass is completely removed, construct internal concrete pads and floor slab
 - 2.3.1. Place below-slab drainage prior to placing reinforcement for slab


PHASE 3

- 3.1. Proceed with construction of internal walls and columns from Basement to Ground Floor level
- 3.2. Complete Ground floor structure
- 3.3. After ground floor structure is complete, props may be removed.

Scale 1:100

www.croftse.co.uk

Client

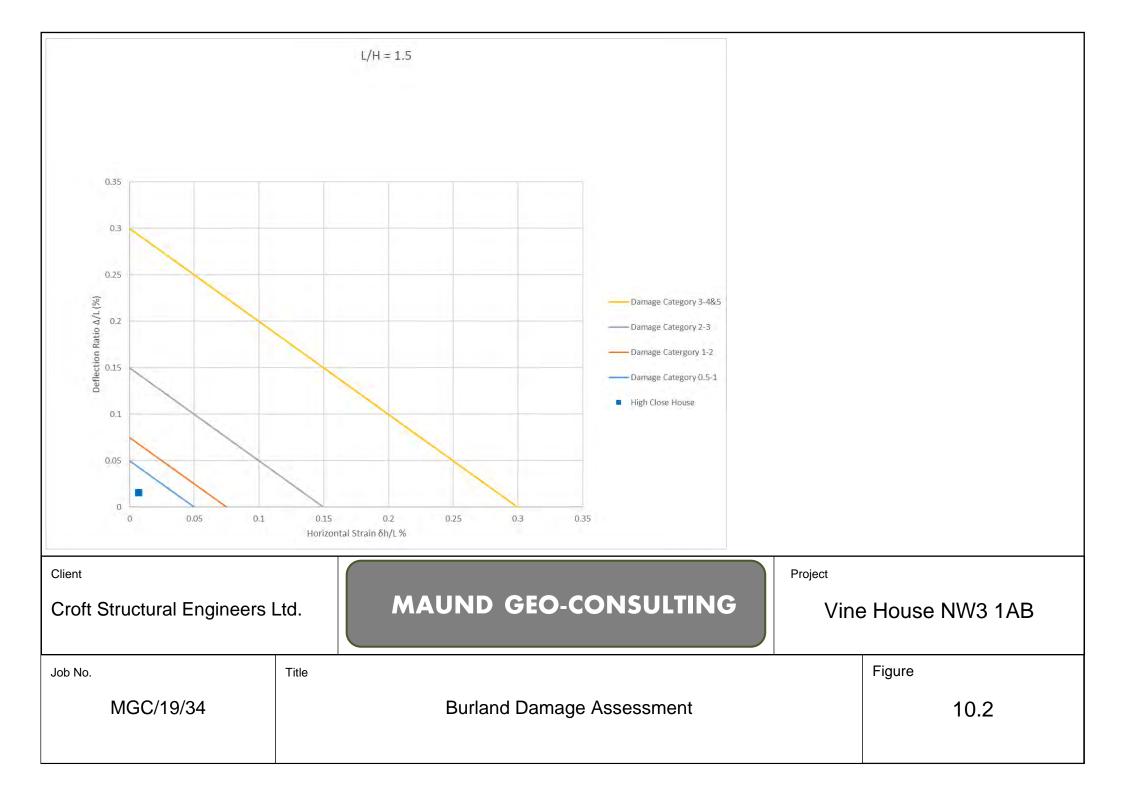
Croft Structural Engineers Ltd.

MAUND GEO-CONSULTING

Project

Vine House, NW3 1AB

Job No.


MGC/19/34

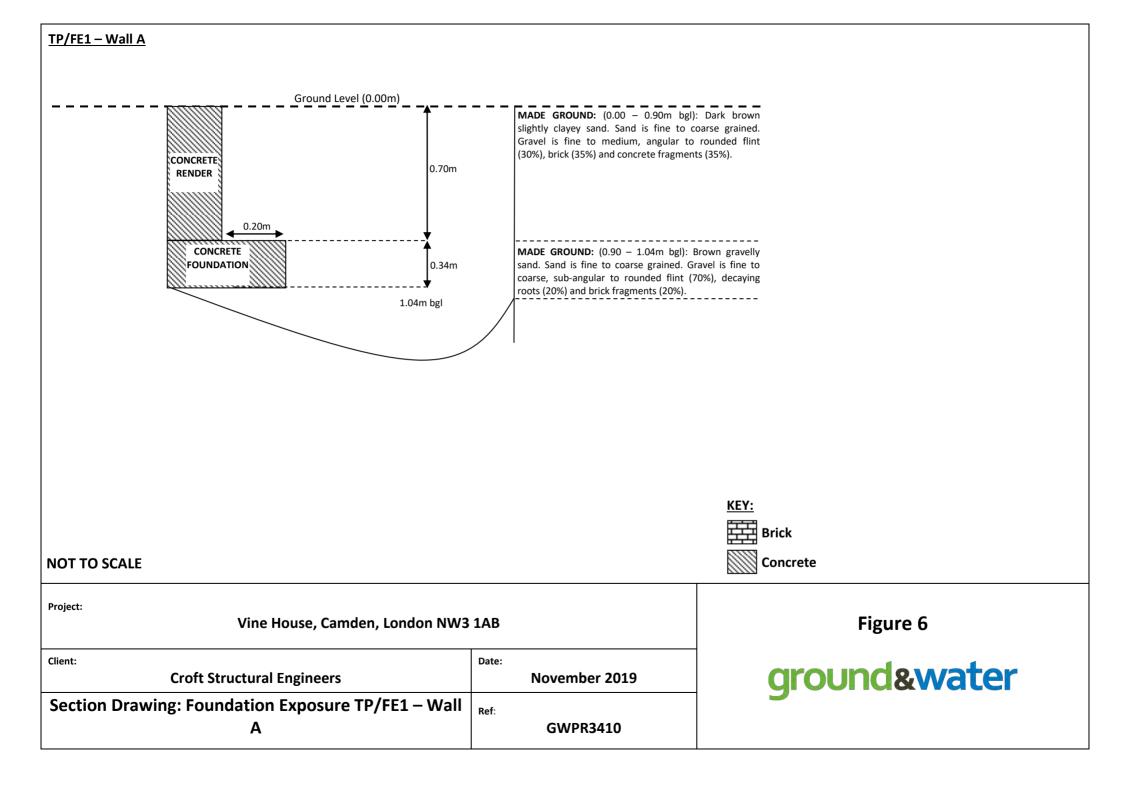
Title

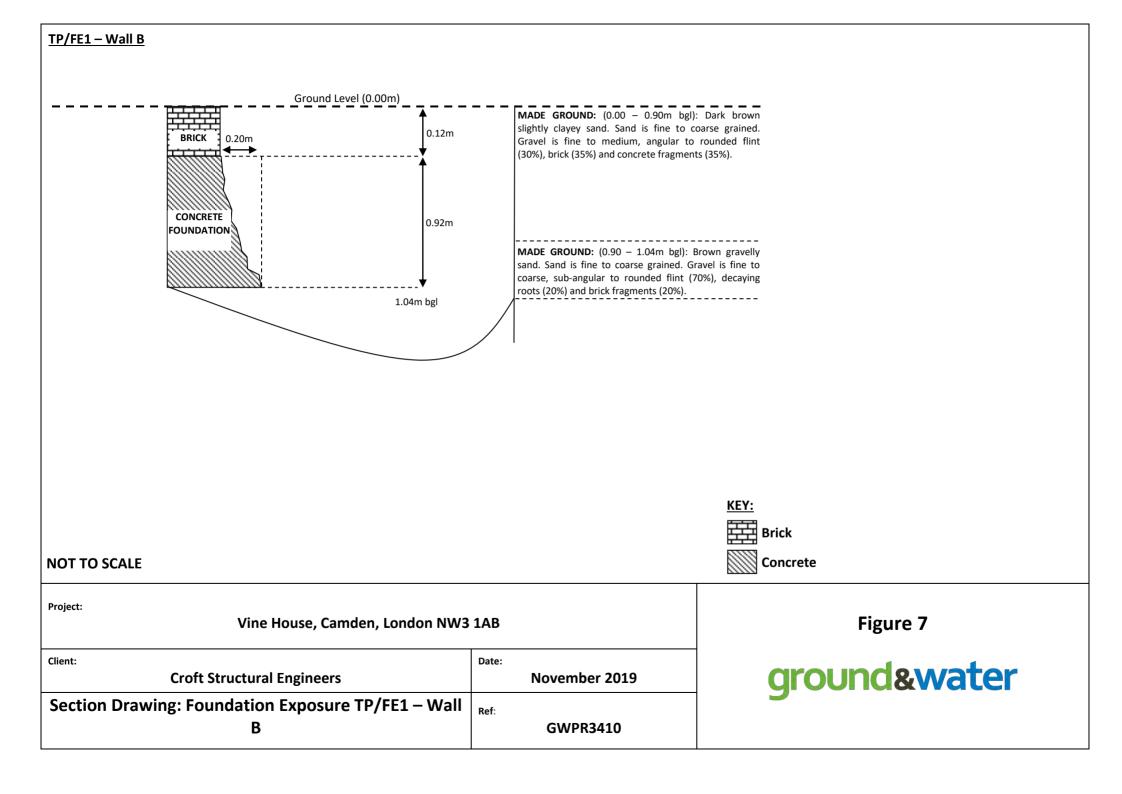
Combined Movements Section B-B, Vine House

Figure

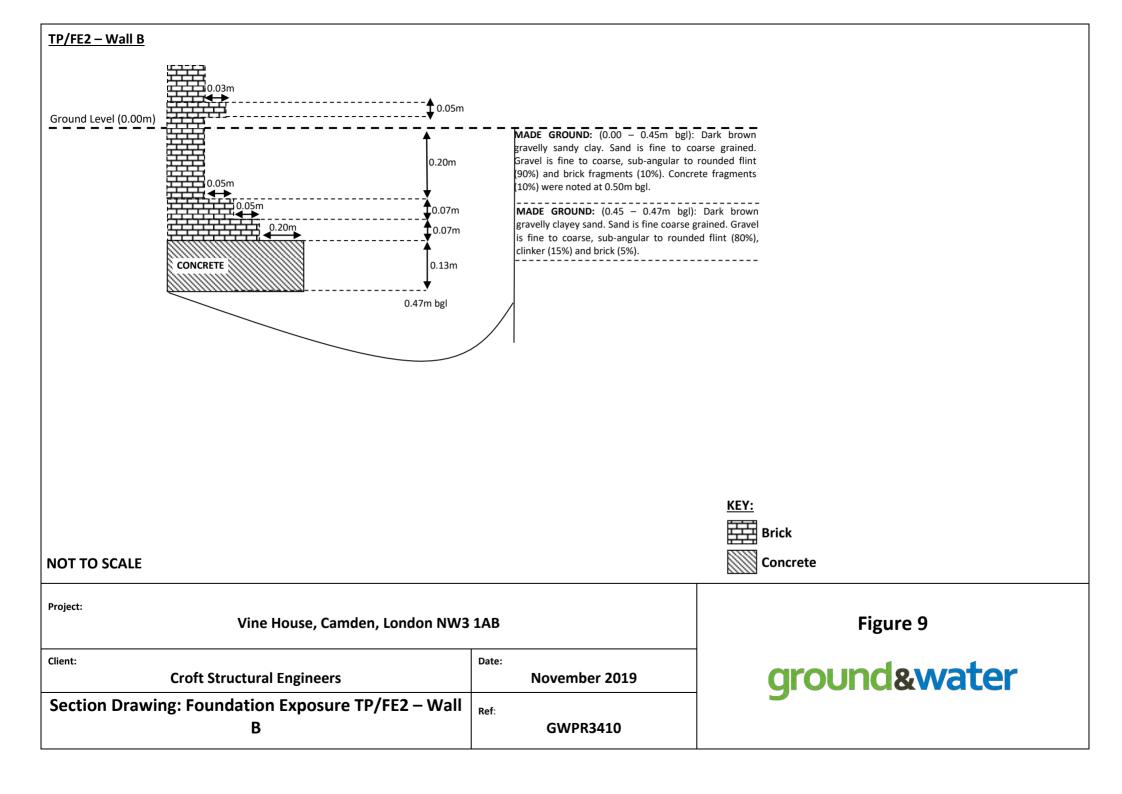
10.1

Appendix B Ground Investigation Report


APPROXIMATE SITE BOUNDARY


NOT TO SCALE

Project: Vine House, Hampstead Square London	ndon NW3 1AB				
Croft Structural Engineers	Date: November 2019				
Trial Hole Location Plan	Ref: GWPR3410				


Figure 1

TP/FE2 - Wall A CONCRETE RENDER Ground Level (0.00m) 0.10m MADE GROUND: (0.00 - 0.45m bgl): Dark brown gravelly sandy clay. Sand is fine to coarse grained. Gravel is fine to coarse, sub-angular to rounded flint (90%) and brick fragments (10%). Concrete fragments CONCRETE (10%) were noted at 0.50m bgl. FOUNDATION ! MADE GROUND: (0.45 - 0.90m bgl): Dark brown gravelly clayey sand. Sand is fine coarse grained. Gravel 1.20m is fine to coarse, sub-angular to rounded flint (80%), clinker (15%) and brick (5%). BAGSHOT FORMATION: (0.90 - 1.30m bgl): Dark brown gravelly clayey SAND. Sand is fine to coarse grained. Gravel is fine to coarse, sub-rounded to rounded flint. 1.30m bgl KEY: Concrete **NOT TO SCALE** Project: Figure 8 Vine House, Camden, London NW3 1AB Client: Date: ground&water **Croft Structural Engineers November 2019 Section Drawing: Foundation Exposure TP/FE2 – Wall** Ref: **GWPR3410**

Percussion Drilling Log

Project Name: Vine House		Croft Structural E	Engineers	Date: 04/11/2019			
∟ocation: London Borough of Camde ∟ondon NW3 1AB	en, Contra	ctor:					
Project No. : GWPR3410	Crew N	Name:		Drilling Equipmen	nt:		
Borehole Number Hole Ty		Level	Logged By	Scale		Number	
WS1 WLS			AA	1:50	She	et 1 of 1	
vveii lou i	_	(m) Level	Legend	Stratum Desc	ription		
Well Water Strikes Depth (m) Type		Depth (m) 0.80 2.10 3.50	Legend MADE G silty clay, to coarse (20%), or fragment MADE G silty sand fine to cobrick (40 (20%). BAGSHC gravel is	Stratum Desc ROUND: Dark grey slig Sand is fine to coarse e, angular to sub-rounde concrete (15%), claystor s (15%). ROUND: Dark brown s d. Sand is fine to coarse earse, angular to sub-ro %), claystone (10%) an OT FORMATION: Orang silty SAND. Sand is fine fine to coarse, sub-ang of FORMATION: Light D, with occasional poc	gription ghtly sandy gravel grained. Gravel is ed flint (40%), bridne (10%) and clint (10%) and clint (30%) and clinker fragmer gish brown to broduce to coarse grained gular to rounded fint (30%) and clinker fragmer	s fine ck - ck	
						10	
Hole Diameter Casing Diar	ımeter	Chise	lling	Inclin	ation and Orientation	10	
Depth Base (m) Diameter (mm) Depth Base (m) Dia			Duration Tool	Depth Top Depth B		Orientation	

Remarks

Roots noted to a depth of 2.00m bgl. No groundwater was noted.

Percussion Drilling Log

-		Vine Hou			Clier	nt: Croft Str	ructural E	Engineers		Date: 04/1	1/2019			
	on: Lond n NW3	don Borou 1AB	igh of Ca	amden,	Cont	tractor:								
Projec	t No. : G	SWPR341	0		Crev	v Name:				Drilling Eq	uipment:			
Bor	ehole No WS2	umber	H	ole Type WLS		Level			ged By EM	1	cale :50	_	e Numbe et 1 of 1	
Well	Water Strikes			n Situ Testin		Depth (m)	Level	Legend		Stratu	m Description	on		
Well		Samp Depth (r 0.30 0.50 0.80 1.00 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.00		T N=10 (2,2/2 T N=16 (3,3/3	0,1,0) 0,1,1)	1.80 2.10 2.90	Level (m)		MADE GReclay. Sand coarse, sul (40%) and BAGSHOT gravelly SA is fine to me BAGSHOT Sand is fine medium, sul	Straturion	m Description brown/black urse grained. rounded flint N: Orangish fine to coars angular to rou N: Brown gra ariened. Grav or rounded flin N: Light brow	gravelly san Gravel is fin (40%), conc brown/brown se grained. Can avelly sandy el is fine to t. wn mottled or o medium gra	dy e to rete Travel CLAY.	1 ————————————————————————————————————
														10 —
														10 —
	Hole Diame			ng Diameter (m) Diameter (mm	ı) Den	th Top Dept	Chise th Base	lling Duration	Tool	Depth Top	Inclination Depth Base	and Orientation	Orienta	ntion
	- (, Didi		5400	, , z.amotor (min	, Dop		2300		1001	23941100	20pm 2000	andion	Shonta	
	ml.a									1		<u> </u>		

Remarks

Roots noted to a depth of 1.00m bgl. No groundwater was noted.

Percussion Drilling Log

Client: Croft Structural Engineers Date: 04/11/2019 Location: London Borough of Camden, Contractor: London NW3 1AB Project No.: GWPR3410 Crew Name: Drilling Equipment: Borehole Number Hole Type Logged By Scale Level Page Number WS3 WLS 1:50 Sheet 1 of 1 AΑ Sample and In Situ Testing Water Depth Level Well Legend Stratum Description Strikes (m) (m) Depth (m) Results Туре MADE GROUND: Dark brown slightly sandy clayey silty gravel. Sand is fine to coarse grained. Gravel is 0.30 D fine to coarse, angular to rounded flint (65%), brick 0.40 0.50 D (15%), and concrete (20%) fragments. MADE GROUND: Brown slightly sandy gravelly silty 0.80 D 0.80 clay. Sand is fine to coarse grained. Gravel is fine to coarse, angular to rounded flint (90%) and brick (10%) 1.00 D fragments. SPT N=12 (2,2/3,2,3,4) 1.00 MADE GROUND: Brown very gravelly clayey silty sand. Sand is fine to coarse grained. Gravel is sub-D 1.50 angular to rounded fine to coarse flint (95%) and brick fragments (5%). 2.00 2.00 BAGSHOT FORMATION: Light brown/ grey clayey 2.00 SPT N=13 (2,3/3,3,4,3) SAND, with occasional pockets of clay. Sand is fine to medium. 2.50 D 3.00 3 3.00 N=13 (2,3/3,3,3,4) 3.50 D 4.00 4.00 N=17 (3,3/4,4,4,5) 4.50 D 5.00 5 N=22 (3,4/5,5,6,6) 5.00 5.45 End of Borehole at 5.450m 6 8 10 Hole Diameter Casing Diameter Chiselling Inclination and Orientation Depth Base (m) Diameter (mm) Depth Base (m) Diameter (mm) Depth Top Depth Base Duration Depth Top Depth Base Inclination Orientation

Remarks

Roots noted to a depth of 1.50m bgl. No groundwater was noted.

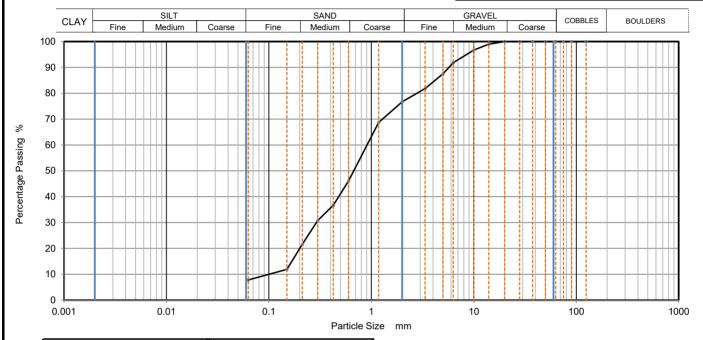
Trial Pit Log

Project Name: Vine	House		Client: Croft Structural Engineers				Date: 04/11/2019				
₋ocation: London B ₋ondon NW3 1AB	Sorough of C	Camden,	Contractor:								
Project No. : GWPF	R3410		Crew Name:				Equipment:				
Location Numbe	r Lo	cation Type	Level			jed By	Scale			ge Numbe	
TP/FE1	`	TP		<u> </u>	E	M	1:25		Sh	neet 1 of 1	
well la		I In Situ Testing /pe Results	()	Level (m)	Legend		Stratum De	scription	1		
	0.30 0.50 0.80 1.00	D D D D D D D D D D D D D D D D D D D	0.90	Support	and Comme	MADE GRO coarse grai to rounded fragments (OUND: Dark brown is to coarse grained ingular to rounded it fragments (35%) OUND: Brown gravined. Gravel is fine flint (70%), decayis (10%). End of Borehold is fine flint (70%), decayis (10%).	d. Gravel flint (30% o).	is fine to), brick (1. Sand is e, sub-ar (20%) ar	s fine to ngular nd brick	2 —
i it Longtii	. At VVIGUI	1 it Gtability	Shoring Osed			TOMAINS		Date	raic	rtemai	
Romarks											

Remarks

Roots noted to a depth of 1.00m bgl. No groundwater was noted.

Trial Pit Log


Project Nar						Client: Croft St	ructural E	Date: 04/11/2019						
_ocation: L _ondon NV	ondo V3 1A	n Boro	ugh o	f Can	nden,	Contractor:								
Project No.			10			Crew Name:				Equipment:				
Location TP/	n Num /FE2	nber	I		ion Type TP	Level	Logged By EM		Scale 1:25		Page Number Sheet 1 of 1			
Well Wate					Situ Testing	()	Level (m)	Legend		Stratum De	scription	1		
	Dimens			Type D D D	Pit Stability	0.45		and Comm	Sand is fin coarse, su fragments (10%) wer MADE GR Sand is fin coarse, su (15%) and BAGSHOT SAND. Sa rounded to	COUND: Dark brown to to coarse grained b-angular to round (10%). At 0.50m be	n gravelly d. Gravel ed flint (9 gl concre n gravelly d. Gravel ed flint (8 6%). ark brown e grained. oarse flint	y sandy c is fine to 0%) and te fragmo y clayey s is fine to 00%), clin gravelly Gravel i	brick ents sand.	2
. it Longii	-		, saul		Japinty	25/mg 050d			· · · · · · · · · · · · · · · · · · · ·		24.0		Toma	

Remarks

Roots noted to a depth of 1.00m bgl. No groundwater was noted.

	DADTI	01 5 0175 010	TRIBUTION	Job Ref	27431		
SOILS	PARTIC	CLE SIZE DIS	IRIBUTION	Borehole/Pit No.	WS1		
Site Name	Vine House			Sample No.	-		
Project No.	GWPR3410	Client	Ground & Water Ltd	Depth Top	2.50	m	
				Depth Base	-	m	
Soil Description	Brown clayey very gra	, ,,	is fm and sub-rounded to sub-	Sample Type	D		
		angular)		Samples received	11/11/2019		
				Schedules received	11/11/2019		
Test Method	BS1377:Part 2: 1990, cla	use 9.0		Project started	12/11/2019		
				Date tested	20/11/2019		

Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	99		
10	97		
6.3	92		
5	88		
3.35	82		
2	77		
1.18	69		
0.6	46		
0.425	37	1	
0.3	31		
0.212	22	1	
0.15	12	1	
0.063	8	1	

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	23.3
Sand	68.9
Fines <0.063mm	7.8

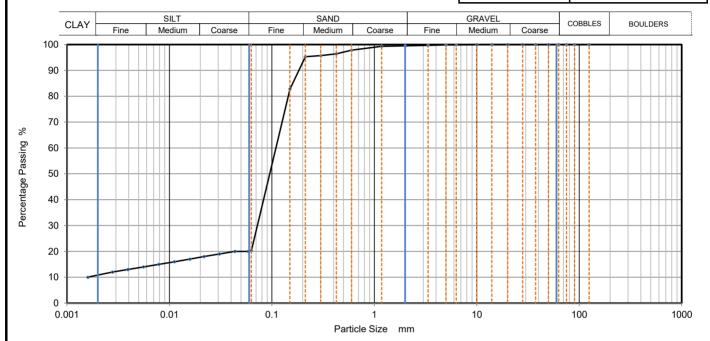
Grading Analysis		
D100	mm	
D60	mm	0.909
D30	mm	0.291
D10	mm	0.101
Uniformity Coefficient		9
Curvature Coefficient		0.93

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Unit 8, Olds Close, Watford, Herts, WD18 9RU Email: james@k4soils.com

K4 Soils Laboratory


Tel: 01923 711288

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

Initials:	J.P
Date:	25/11/2019

Checked and Approved

	DARTI	PARTICLE SIZE DISTRIBUTION		Job Ref	27431	
SOILS	PARTI			Borehole/Pit No.	WS1	
Site Name	Vine House	/ine House		Sample No.	-	
Project No.	GWPR3410	GWPR3410 Client Ground & Water Ltd		Depth Top	3.50	m
		Light brown silty clayey SAND with rare fine gravel		Depth Base	-	m
Soil Description	Light brown			Sample Type	D	
·				Samples received	11/11/2019	
				Schedules received	11/11/2019	
Test Method	BS1377:Part 2: 1990, cla	BS1377:Part 2: 1990, clause 9.0		Project started	12/11/2019	
				Date tested	20/11/2019	

Sieving		Sedim	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0587	20
90	100	0.0436	20
75	100	0.0308	19
63	100	0.0217	18
50	100	0.0158	17
37.5	100	0.0112	16
28	100	0.0079	15
20	100	0.0056	14
14	100	0.0039	13
10	100	0.0028	12
6.3	100	0.0016	10
5	100		
3.35	100		
2	100		
1.18	99		
0.6	98	Particle density	(assumed)
0.425	96	2.70	Mg/m3
0.3	96		
0.212	95		
0.15	83		
0.063	20		

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	0.5
Sand	79.3
Silt	9.5
Clay	10.7

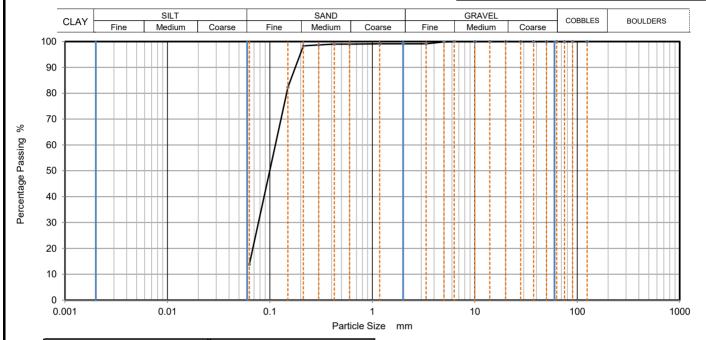
Grading Analysis		
D100	mm	
D60	mm	0.109
D30	mm	0.0721
D10	mm	0.00164
Uniformity Coefficient		67
Curvature Coefficient		29

Remarks

Preparation and testing in accordance with BS1377 unless noted below

K4 Soils Laboratory
Unit 8, Olds Close, Watford, Herts, WD18 9RU
Email: james@k4soils.com

Email: james@k4soils.com Tel: 01923 711288


Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

Checked and Approved
Initials: J.P

Date: 25/11/2019

MSF-5-R3

	PARTICLE SIZE DISTRIBUTION		Job Ref	27431		
SOILS	PARIN	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	WS1	
Site Name	Vine House	/ine House		Sample No.	-	
Project No.	GWPR3410	GWPR3410 Client Ground & Water Ltd		Depth Top	5.50	m
		<u> </u>			-	m
Soil Description	Light brov	Light brown clayey SAND with rare fine gravel		Sample Type	D	
				Samples received	11/11/2019	
			Schedules received	11/11/2019		
Test Method	BS1377:Part 2: 1990, cla	BS1377:Part 2: 1990, clause 9.0		Project started	12/11/2019	
				Date tested	20/11/2019	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	99		
2	99		
1.18	99		
0.6	99		
0.425	99	1	
0.3	99		
0.212	98]	
0.15	82]	
0.063	14]	

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	0.9
Sand	85.2
Fines <0.063mm	13.9

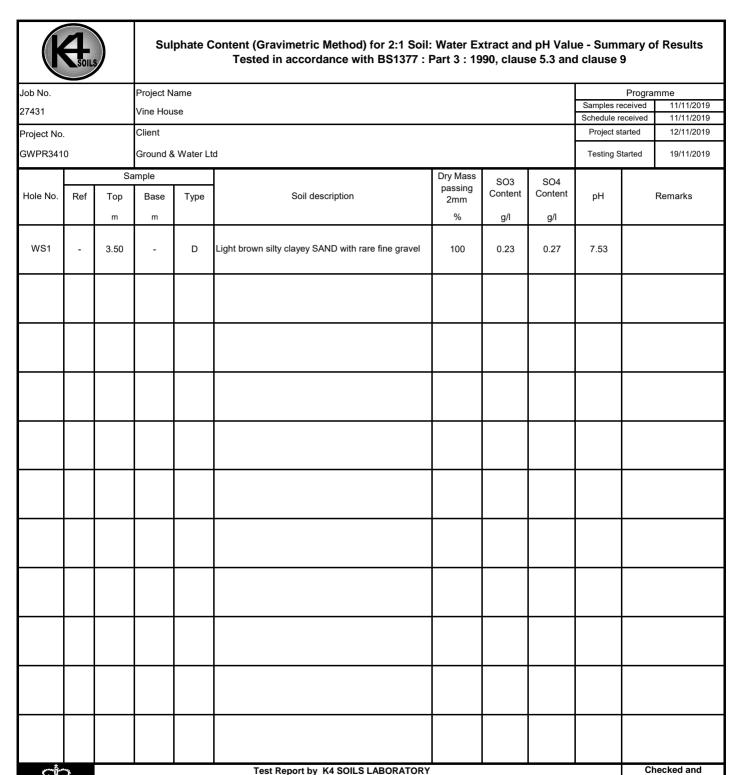
Grading Analysis		
D100	mm	
D60	mm	0.113
D30	mm	0.0772
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS1377 unless noted below

K4 Soils Laboratory Unit 8, Olds Close, Watford, Herts, WD18 9RU Email: james@k4soils.com

Tel: 01923 711288


Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

Checked and Approved

Initials: J.P

25/11/2019 Date:

MSF-5-R3

Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tel: 01923 711 288 Email: James@k4soils.com

Initials

Date:

25/11/2019 MSF-5-R29

J.P

Approved

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

Aaron Abu Ground & Water Ltd 2 The Long Barn Norton Farm Selborne Road Alton Hampshire GU34 3NB DETS Ltd
Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

DETS Report No: 19-15842

Site Reference: Vine House, Comden, London, NW3 1AB

Project / Job Ref: GWPR3410

Order No: None Supplied

Sample Receipt Date: 11/11/2019

Sample Scheduled Date: 11/11/2019

Report Issue Number: 1

Reporting Date: 15/11/2019

Authorised by:

Dave Ashworth Technical Manager

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

DETS Ltd Unit 1, Rose Lane I ndustrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Soil Analysis Certificate					
DETS Report No: 19-15842	Date Sampled	04/11/19	04/11/19	04/11/19	
Ground & Water Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Vine House, Comden, London, NW3	TP / BH No	WS1	WS3	WS1	
1AB					
Project / Job Ref: GWPR3410	Additional Refs	None Supplied	None Supplied	None Supplied	
Order No: None Supplied	Depth (m)	6.00	2.50	0.30	
Reporting Date: 15/11/2019	DETS Sample No	446511	446512	446513	

Determinand	Unit	RL	Accreditation				
Asbestos Screen (S)	N/a	N/a	ISO17025			Not Detected	
pH	pH Units	N/a	MCERTS	7.6	4.7	6.2	
Total Cyanide	mg/kg	< 2	NONE			< 2	
Total Sulphate as SO ₄	mg/kg	< 200	NONE	680	< 200		
Total Sulphate as SO ₄	%	< 0.02	NONE	0.07	< 0.02		
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	< 10	< 10	< 10	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	< 0.01	< 0.01	< 0.01	
Total Sulphur	%	< 0.02	NONE	0.02	< 0.02		
Organic Matter	%	< 0.1	MCERTS			3.2	
Total Organic Carbon (TOC)	%	< 0.1	MCERTS			1.9	
Ammonium as NH ₄	mg/kg	< 0.5	NONE	< 0.5	< 0.5		
Ammonium as NH ₄	mg/l	< 0.05	NONE	< 0.05	< 0.05		
W/S Chloride (2:1)	mg/kg	< 1	MCERTS	4	9		
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS	2.2	4.6		
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS	5	< 3		
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS	2.6	< 1.5		
Arsenic (As)	mg/kg	< 2	MCERTS			24	
W/S Boron	mg/kg	< 1	NONE			< 1	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS			0.4	
Chromium (Cr)	mg/kg	< 2	MCERTS			18	
Chromium (hexavalent)	mg/kg	< 2	NONE			< 2	
Copper (Cu)	mg/kg	< 4	MCERTS			78	
Lead (Pb)	mg/kg	< 3	MCERTS			3980	
W/S Magnesium	mg/l	< 0.1	NONE	0.8	< 0.1		
Mercury (Hg)	mg/kg	< 1	NONE			2.3	
Nickel (Ni)	mg/kg	< 3	MCERTS			14	
Selenium (Se)	mg/kg	< 3	NONE			< 3	
Vanadium (V)	mg/kg	< 2	NONE			40	
Zinc (Zn)	mg/kg	< 3	MCERTS			140	
Total Phenols (monohydric)	mg/kg	< 2	NONE			< 2	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Subcontracted analysis (S)

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Soil Analysis Certificate	 Speciated PAHs 					
DETS Report No: 19-1584	12	Date Sampled		04/11/19		
Ground & Water Ltd			Time Sampled	None Supplied		
Site Reference: Vine Hou	se, Comden,		TP / BH No	WS1		
London, NW3 1AB						
Project / Job Ref: GWPR:	3410	-	Additional Refs	None Supplied		
Order No: None Supplied			Depth (m)	0.30		
Reporting Date: 15/11/2	019	DI	ETS Sample No	446513		
Determinand	Unit	RL	Accreditation			,
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1		
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1		
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1		
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1		
Phenanthrene			MCERTS	0.62		
Anthracene	mg/kg	< 0.1	MCERTS	0.13		
Fluoranthene	mg/kg		MCERTS	1.55		
Pyrene	mg/kg		MCERTS	1.35		
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	0.72		
Chrysene	mg/kg		MCERTS	0.61		
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	0.83		
Benzo(k)fluoranthene	5		MCERTS	0.27		
Benzo(a)pyrene			MCERTS	0.51		
Indeno(1,2,3-cd)pyrene			MCERTS	0.43		
Dibenz(a,h)anthracene			MCERTS	< 0.1		
Benzo(ahi)pervlene	ma/ka	< 0.1	MCERTS	0.28		

mg/kg < 1.6 Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Total EPA-16 PAHs

Aromatic (C5 - C35)

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Soil Analysis Certificate	- TPH CWG Bande	d				
DETS Report No: 19-158	142	Date Sampled		04/11/19		
Ground & Water Ltd			Time Sampled	None Supplied		
Site Reference: Vine Hou	se, Comden,		TP / BH No	WS1		
London, NW3 1AB						
Project / Job Ref: GWPR	3410	A	Additional Refs	None Supplied		
Order No: None Supplied			Depth (m)	0.30		
Reporting Date: 15/11/2	2019	DI	ETS Sample No	446513		
Determinand	Unit	RL	Accreditation			
Aliphatic >C5 - C6		< 0.01	NONE	< 0.01		
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05		
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2		
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2		
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3		
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	< 3		
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	< 10		
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	< 21		
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01		
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05		
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2		
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2		
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2		
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	< 3		
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	< 10		

< 21

< 42

Total >C5 - C35 < 42 NONE mg/kg

mg/kg

< 21

NONE

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Soil Analysis Certificate	- BTEX / MTBE					
DETS Report No: 19-1584	DETS Report No: 19-15842 Date Sampled			04/11/19		
Ground & Water Ltd			Time Sampled	None Supplied		
Site Reference: Vine House	se, Comden,		TP / BH No	WS1		
London, NW3 1AB						
Project / Job Ref: GWPR3410			Additional Refs	None Supplied		
Order No: None Supplied			Depth (m)	0.30		
Reporting Date: 15/11/2	019	DETS Sample No		446513		
Determinand	Unit	RL	Accreditation			
Benzene	ug/kg	< 2	MCERTS	< 2		
Toluene	ug/kg	< 5	MCERTS	< 5		

Toluene	ug/kg	< 5	MCERTS	< 5		
Ethylbenzene	ug/kg	< 2	MCERTS	< 2		
p & m-xylene	ug/kg	< 2	MCERTS	< 2		
o-xylene	ug/kg	< 2	MCERTS	< 2		
MTRE	ua/ka	/ 5	MCEDTS	/ 5		1

MTBE ug/kg < 5 MCERTS

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

DETS Ltd Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

ETS Report No: 19-15842		Data Sampled	04/11/10	Land	dflll \Mac+	e Acceptance (riteria Limi
<u> </u>		Date Sampled	04/11/19	Land	uriii VVaSt	e Acceptance (arteria Liifil
Ground & Water Ltd		Time Sampled	None Supplied				
Site Reference: Vine House, Co ondon, NW3 1AB	mden,	TP / BH No	WS1			Stable Non- reactive	
Project / Job Ref: GWPR3410		Additional Refs	None Supplied		t Waste	HAZARDOUS waste in non-	Hazardou Waste
Order No: None Supplied		Depth (m)	0.30	Lo	anum	hazardous Landfill	Landfill
Reporting Date: 15/11/2019		DETS Sample No	446513			Landini	
Determinand	Unit	MDL					
OCMU	%	< 0.1	1.9		3%	5%	6%
oss on Ignition	%	< 0.01	6.50				10%
STEX ^{MU}	mg/kg	< 0.05	< 0.05		6		
um of PCBs	mg/kg	< 0.1	< 0.1		1		
1ineral Oil ^{™U}	mg/kg	< 10	< 10		500		
otal PAH ^{MU}	mg/kg	< 1.7	7.3		100		
H ^{MU}	pH Units	N/a	6.2			>6	
cid Neutralisation Capacity	mol/kg (+/-)	< 1	< 1			To be	To be
	, 5 (,)			Cumulative Limi	it values f	evaluated for compliance	evaluated
luate Analysis			10:1			N 12457-3 at l	
aato / Waliyolo			mg/l	mg/kg	only DO L	(mg/kg)	., 5 10 1/ Ng
rsenic ^U			< 0.01	< 0.1	0.5	(Hig/kg) 2	25
arium ^U			0.07	0.7	20	100	300
			< 0.0005				
Cadmium ^U					0.04	1	5
Chromium ^U			< 0.005	< 0.05	0.5	10	70
Copper ^U			< 0.01	< 0.1	2	50	100
1ercury ^U			< 0.0005		0.01	0.2	2
1olybdenum ^U			< 0.001	< 0.01	0.5	10	30
lickel ^U			< 0.007	< 0.07	0.4	10	40
ead ^U			0.020	0.20	0.5	10	50
ntimony ^U			< 0.0050		0.06	0.7	5
elenium ^U			< 0.005	< 0.05	0.1	0.5	7
inc ^u			0.006	0.06	4	50	200
chloride ^U			< 1	< 10	800	15000	25000
luoride ^U			< 0.5	< 5	10	150	500
ulphate ^U			2		1000	20000	50000
DS			69	690	4000	60000	100000
henol Index			< 0.01	< 0.1	1	-	-
OOC			7.6	76.1	500	800	1000
each Test Information							
ample Mass (kg)			0.11				
Ory Matter (%)			82.2				
loisture (%)			21.8				
Stage 1							
olume Eluate L10 (litres)			0.88				
esults are expressed on a dry weight be	asis after correc	tion for moisture conte	nt where applica				

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

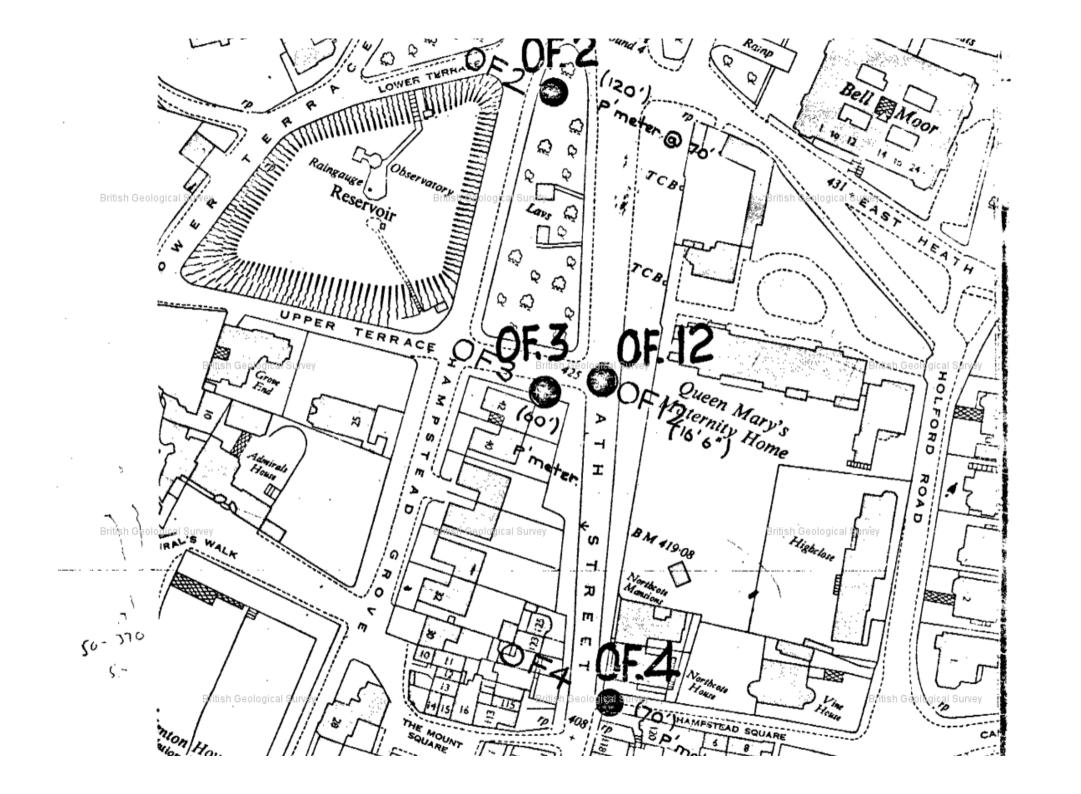
Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 19-15842	
Ground & Water Ltd	
Site Reference: Vine House, Comden, London, NW3 1AB	
Project / Job Ref: GWPR3410	
Order No: None Supplied	
Reporting Date: 15/11/2019	

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
446511	WS1	None Supplied	6.00	8.7	Brown sandy clay
446512	WS3	None Supplied	2.50	8.9	Brown sandy clay
446513	WS1	None Supplied	0.30	17.8	Black loamy sand

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm VS}$

 $\ensuremath{^{\circ}}$ samples received in inappropriate containers for hydrocarbon analysis

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410



Soil Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 19-15842
Ground & Water Ltd
Site Reference: Vine House, Comden, London, NW3 1AB
Project / Job Ref: GWPR3410
Order No: None Supplied
Reporting Date: 15/11/2019

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR	BTEX	Determination of BTEX by headspace GC-MS	E001
Soil	D	Cations	Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
	4.0		Determination of hoveyalout chromium in soil by overaction in water then by acidification, addition of	F046
Soil	AR	Chromium - Hexavalent	1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cvanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
			Determination of electrical conductivity by addition of saturated calcium sulphate followed by	
Soil	AR	Electrical Conductivity	electrometric measurement	E022
Soil	AR	•	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D		Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 – C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH TEXAS (C6-C8, C8-C10, C10-C12,	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	E004
Soil	AK	C12-C16, C16-C21, C21-C40)		⊑004
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
	_		Determination of fraction of organic carbon by oxidising with potassium dichromate followed by	=0.40
Soil	D	FOC (Fraction Organic Carbon)	titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnosium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
	D			
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR		Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021
Soil	D			E009
	D		Determination of phosphate by extraction with water & analysed by ion chromatography	
Soil	D D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil			Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024
Soil	AR	SVOC	GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by evidicing with notaccium dichromate followed by titration with	E010
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)		E004
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried AR As Received

Appendix C Existing Exploratory Hole Records

TOLLENE/91

HAMPSTEAD SQUARE,

Location

KALE 1'=5

:HAMPSTEAD HEATH

Contract No. : 431

Type of Boring: Shell + Auger

Date (started) :

RECORD OF BOREHOLE No. 01-4

Borehole Dia : 8''

Casing

Ground Level: 407.048/ Sheet 1 of 2

Foundation Engineering Ltd.

									Sheet 1 of C
	Britis	n Geologica Water	SAM SAM	PLES		Bri	STRATA	cal Survey	DESCRIPTION OF STRATAritish Ge
	Casing	Level	Depth	Туре	No.	Legend	Depth	Thickness	
							≘ :ဝ	2:0	MADE GROUND/
_			2.6	Б	1	93	4 0	2.0	Loose dark brown sandy GRAVEL (Up to 1"rounder pebbles)
ologica	l Survey		5:0" (N=13)	D Brit	si R eolog	p) consister,	60	2.0	
	7.6 30.0	DRY	تى:7	Þ	3	0.0		3.6	Abundant rounded ham
ر رون ا			0 0	ت	4		10.6	1.0	over finer sand matrix. Firm brown sandy
	Britis •	ı Geologica	Surv i Sirvi	D	5	X = ,pr	IZ: Ö lish Geologi IЗ: Ö	1:65 a SiO	SAND Fine silly clayey SAN
			15.℃	U	6				
			17:6	D	7				Fine dense silly
ologica	l Survey		20:0 (N:32)	D Brit	sh 63 olog	ical•Sui X ey		14:0	(especially well-toward
			0.55	D	9				
			25:0 (N=31)	D	10	*			
	Britis	Geologica	Survey 7:6	D	11		27.0 28.0	ał śi cö y	5+iff/hard gre-CLA: + little fine sand. British G
S (00)	30:0	DRY	30.0	IJ	12			4.0	Firm brown sondy
		,	32:డ	۵	13	¥	32; Ö		motted brown , fami
logica	l Survey		350	U Brit	s i sa plog			9:6.	Silly CLAY of ine Sand. British Geological Survey
		-	5 7.6	D	15		-	9.0.	7
			40:0	ادا	10		140: d		

TOJESNE 191

RECORD OF DOREHOLE No 4:4

Location

HAMPSTEAD SQUARE, HAMPSTEAD HEATH

Contract No. : 431

Type of Boring: Shell + Auger

Date (started) : 5.65

ර් Borehole Dia :

Casing

Ground Level : 407 048

Sheet 2 of 2

-				7						Siveer C Bi C	
·	100	Dapidi	Water	a Survey SAP	IPLES		Bri	STRATA	cal Survey	DESCRIPTION OF STRATA Titish Geologica	al Survey
1		Carina	Level	Dapth	Туре	No.	Lezend	Depth	Thicknes	s	:
- 1	-	1	1		1			(40:0	1	more sandy.	
1	•	1	1	.[-	410	1	, ,	,
	:		1	ĺ	1	1		42:0	1.0	Compact brown SAND	-
,		1		42:00	D	17);	٠.٠٠	ĺ	SAND	
į	Ì	1	1			'					
ı	j i			1 1						Silly clayer SAND	
British	Geologi	ical Survey		45.0	Brit	sh Soo	ical St <u>iry</u> ey		5:ö	Cas District Survey	
}	1				1						
Ì	1	1	1	47.6	D	150	. ×	470		Golden brown large	
÷	,	1		-,, 5				48.0	1.0	Golden brown/grey clayey SAND	
	, :	450	DRY			İ		400		l	
i	1: *	40:0	DRY	50.0	l u	20	Ξ.,		3:0	Firm grey / brown sandy CLAY	
- 1	100	1	ł		l					SURGECLAY	
!	1					1	. y.	51:0			
-		}			D	٦.	[· · · ·]				- (
•		Britis	n Geologic	il Sun§Z∶Ğ		21	- 51	tish Geologi	cal Gurvey	· British Geologica	al Survey
- 1	ĺ	1		١.]		Wat	:
- 1		1	1	55∶Ö	Þ	22		i		micaceous bown	*
ı			ĺ					j		fine someont	
	1	1					: · . ; .	.	II O	fine compact	1
- 1	1		1	57 G	۵	23	·	- 1			į.
,		١.		,				1			
;					i I		::::	1			i
Britis	Geologi	al Survey		60.0	l → Bri	is Postb o	cal Survey	1		British Geological Survey	1
ŧ	1			(M.64)				l			1
				62:6	D	_	أعذينوها	62:Ö	.	Contraction of Contra	
ŧ					ا کا	25		63:Ö	ŀÖ	Grey micaceous firm	
	1				1	ſ	χ.	65.0		SAND	
١	1			65 0	u	26		- 1			
- 1		.					• • • •	1			
- 1						-		l	ا تہ: -	Dark ora mian	
- 1	1		l= 0 = -1 = -1	al Survey 7··· &	Ь	27	\cdots		ر د ر	Dark gray micacous Silly SAND British Geologics	
- 1		BIIII	sn Geologie	ai survey		-/	"	tish Geologic	an Survey	British Geologica	ar Survey
	00)				1	ŀ	× .	1	- 1	·	
	1	70:0	12:0	70∶Ö	וט	28		70:0			
- 1	l				ı				1		- 11
ı	1	.	1					rehd			- 11
١					- 1		COL	~ s e	·e		
	{				- 1	ľ		- 1	- 1		
- 1			.]			·		1	- 1		- 11
British	Geolog	cal Survey	- 1		Birt	ish Geologi	ical Survey	- 1	1	British Geological Survey	
-			ł		- 1	-	.	1			11
						<u> </u>		··- ·· -	i		
ı			- 1	. 1	[-	- 1		İ	
İ					ĺ	Ì	1	. 1	- 1		
	!			•	1		-		İ	·	
	- 42	KS:							1		
				Piezom		1	<u></u>		-		
		· Britis	sh Geologic	al Survey	ere.	11.7.2.	Bri	ط م tish Geologia	cal Survey	British Geologica	al Survey
	1							. '			
	*.1	1'= 5'									
										Foundation Engineering Ltd.	
	11						and the same				- 1

Appendix D PDisp Output

	_		
ne House	Hampstead	NW3	1AB

BIA and GMA

Job No.	Sheet No.	Rev.
MGC-19-34		
Drg. Ref.	-	-
Made by JGM	Date	Checked

Titles

MGC-19-34 Vine House Hampstead NW3 1AB BIA and GMA

Job No.:
Job Title:
Sub-title:
Calculation Heading:
Initials:
Checker:
Date Saved:
Date Saved:
Notes:
File Name:
File Path: JGM jm

vine house excavation section 1 and 2.pdd F:\oneDrive\Documents\Croft Structural Engineers\1-Vine House, London NW3 1AB\07-GIR- Vine House\PDISP

History

Date	Time	Ву	Notes
30-Nov-2019	13:11	Maund Geo Consulting	New
30-Nov-2019	14:44	Maund Geo Consulting	
30-Nov-2019	14:52	Maund Geo Consulting	
04-Dec-2019	10:39	Maund Geo Consulting	
11-Dec-2019	09:40	Maund Geo Consulting	
11-Dec-2019	10:36	Maund Geo Consulting	
11-Dec-2019	15:12	Maund Geo Consulting	Open

Analysis Options

General

Global Poisson's ratio: 0.30 Maximum allowable ratio between values of E: 1.5 Horizontal rigid boundary level: 115.00 [m OD] Displacements at load centroids: Yes GSA piled raft data: No

Elastic Plastic : Yes Analysis: Boussinesq Stiffness for horizontal displacement calculations: Weighted average Using legacy heave correction factor: No

Consolidation

Soil ProfilesSoil Profile 1

Lá	yer Na	me	Level at	Number of	Youngs	Youngs	Poissons	Non-linear
1	ef.		top	intermediate	Modulus	Modulus	ratio	curve
				displacement levels	: Top	: Btm.		
			[mOD]	101010	[kN/m ²]	[kN/m ²]		
	1 Made Ground		125.30		20000.	20000.	0.30000	None
	O December December 1 and	-/ 1 hours 1 courses Charm	100 00	0.0	25000	EOOOO	0 20000	37

Non-linear Curve Coordinates - Non-linear Curve 1

Point Strain [%]

Soil Zones

Polygonal Load Data

Load ref.	Name	Position : Level	Position : Polygon : Coords.		No. of Rectangles	Value : Normal (local z)
		[m]	[m]	[%]		[kN/m ²]
1	Excavation outline	125.30000	(10,10) (23.5,10) (23.5,11.5) (24.8,12.8) (25,14) (23.5,15.5) (23.5,17) (33,17) (33,21) (10,21) (10,15) (8.75,14.3) (7.6,12.7) (8.75,11) (10,10.5) (10,10)	10.000	11	-60.000

Polygonal Loads' Rectangles

NO		Centre :	Centre :	Angle of	Width x	Depth y
		x	У	local x from global X		
		[m]	[m]	[Degrees]	[m]	[m]
Load	d I	L : Excav	ation out	line		
(Ed	ge	2 optima	1)			
	1	16.75000	10.25000	90.000	0.50000	13.500
	2	16.43750	10.75000	90.000	0.50000	14.125
	3	16.04044	11.25000	90.000	0.50000	14.919
	4	16.05294	12.10000	90.000	1.2000	16.094
	5	16.17148	12.72500	90.000	0.050000	17.107
	6	16.48008	13.37500	90.000	1.2500	16.790
	7	16.74609	14.15000	90.000	0.30000	16.208
	8	16.86250	14.65000	90.000	0.70000	14.975
	9	16.87500	15.25000	90.000	0.50000	13.750
	10	16.75000	16.25000	90.000	1.5000	13.500
	11	21.50000	19.00000	90.000	4.0000	23.000

Displacement Lines

	Name	X1	Y1	Z1	X2	¥2	Z2 Intervals Calcu		Calculate	Detailed Results
		[m]	[m]	[m]	[m]	[m]	[m]	[No.]		
cross	section1	18.00000	0.00000	125.30000	18.00000	30.00000	125.30000	30	Yes	Yes
cross	section 2	32.00000	0.00000	125.30000	32.00000	30.00000	125.30000	30	Yes	Yes

Displacement Grids

Name	Extrusion: Direction	X1	¥1	Z1	X2	¥2	Z2	Intervals Along	Extrusion: Distance	Extrusion: Intervals	Calculate	Detailed Results
		[m]	[m]	[m]	[m]	[m]	[m]	Line [No.]	[m]	Along [No.]		

Results: Immediate: Load Centres: Polygonal

Ref.	Name	x	У	z	δz	Stress: Calc.	Stress: Vertical	Stress: Sum Princ.	Vert. Strain
		[m]	[m]	[mOD]	[mm]	Level [mOD]	[kN/m²]	[kN/m ²]	[µ]
1	Excavation outline	18.84163	16.04225	125.30000	-12.59680	125.13	-59.999	-152.23	-0.0016164

MAUND

GEO-CONSULTING LTD

Vine House Hampstead NW3 1AB BIA and GMA

Job No.	Sheet No.	Rev.
MGC-19-34		
Drg. Ref.		
Made by JGM	Date	Checked

Ref.	Name	x	У	z	δz	Stress:	Stress:	Stress:	Vert.
						Calc.	Vertical	Sum Princ.	Strain
						Level			
		[m]	[m]	[mon]	Fmm 1	[mOD]	[leN /m 2]	[leN / m 2]	F 1 2 1

Results: Consolidation: Load Centres: Polygonal

Results : Total : Load Centres : Polygonal

Results : Immediate : Displacement Data : Lines

Ref.	Name	x	У	z	δz	Stress: Calc. Level	Stress: Vertical	Stress: Sum Princ.	Vert. Strain
		[m]	[m]	[mOD]	[mm]	[mOD]	[kN/m ²]	[kN/m ²]	[µ]
1 cros	s section1	18.00000	0.00000	125.30000	0.10048	125.13	-36.669E-6	-0.21807	3.2687E-6
	s section1	18.00000	1.00000	125.30000	0.07981		-53.785E-6	-0.26916	4.0340E-6
	s section1	18.00000	2.00000	125.30000	0.04216		-81.891E-6	-0.33823	5.0681E-6
	s section1	18.00000	3.00000	125.30000	-0.02196		-130.62E-6	-0.43433	6.5065E-6
	s section1	18.00000	4.00000	125.30000	-0.12731		-221.18E-6	-0.57302	8.5809E-6
	s section1	18.00000	5.00000	125.30000	-0.29720		-405.96E-6	-0.78289	11.717E-6
	s section1	18.00000 18.00000	6.00000 7.00000	125.30000	-0.56958 -1.00962		-836.59E-6	-1.1220 -1.7270	16.776E-6 25.771E-6
	s section1	18.00000	8.00000	125.30000	-1.74263		-0.0020702	-3.0076	44.648E-6
	s section1	18.00000	9.00000	125.30000	-3.07207	125.13	-0.056873	-6.9792	100.99E-6
	s section1	18.00000	10.00000	125.30000	-6.57096	125.13	-30.000		-799.93E-6
	s section1	18.00000	11.00000	125.30000	-10.06574	125.13	-59.943		-0.0017010
	s section1	18.00000	12.00000	125.30000	-11.38104	125.13	-59.992	-150.30	-0.0016450
1 cros	s section1	18.00000	13.00000	125.30000	-12.08425	125.13	-59.998	-151.54	-0.0016268
1 cros	s section1	18.00000	14.00000	125.30000	-12.46931	125.13	-59.999		-0.0016189
	s section1	18.00000	15.00000	125.30000	-12.64660	125.13	-59.999		-0.0016157
	s section1	18.00000	16.00000	125.30000	-12.65769	125.13	-59.999		-0.0016155
	s section1	18.00000	17.00000	125.30000	-12.50170	125.13	-59.999		-0.0016183
	s section1	18.00000 18.00000	18.00000	125.30000	-12.13510 -11.44538	125.13 125.13	-59.998 -59.992		-0.0016259 -0.0016438
	s section1	18.00000	20.00000	125.30000	-10.13695	125.13	-59.943		-0.0016438
	s section1	18.00000	21.00000	125.30000	-6.64197	125.13	-30.000		-798.57E-6
	s section1	18.00000	22.00000	125.30000	-3.13697	125.13	-0.056928	-7.0661	102.29E-6
	s section1	18.00000	23.00000	125.30000	-1.79760		-0.0072185	-3.0863	45.825E-6
1 cros	s section1	18.00000	24.00000	125.30000	-1.05313	125.13	-0.0021035	-1.7957	26.799E-6
1 cros	s section1	18.00000	25.00000	125.30000	-0.60186	125.13	-861.15E-6	-1.1805	17.652E-6
1 cros	s section1	18.00000	26.00000	125.30000	-0.31955		-423.80E-6	-0.83212	12.454E-6
	s section1	18.00000	27.00000	125.30000	-0.14144		-234.09E-6	-0.61417	9.1973E-6
	s section1	18.00000	28.00000	125.30000	-0.02965		-140.00E-6	-0.46866	7.0209E-6
	s section1	18.00000 18.00000	29.00000	125.30000	0.03931		-88.761E-6 -58.862E-6	-0.36689 -0.29316	5.4976E-6 4.3935E-6
	s section 2	32.00000	0.00000	125.30000	0.10471		-8.4251E-6	-0.095488	1.4318E-6
	s section 2	32.00000	1.00000	125.30000	0.10471		-10.493E-6	-0.10803	1.6198E-6
	s section 2	32.00000	2.00000	125.30000	0.11145		-13.162E-6	-0.12264	1.8388E-6
2 cros	s section 2	32.00000	3.00000	125.30000	0.11272	125.13	-16.631E-6	-0.13972	2.0947E-6
2 cros	s section 2	32.00000	4.00000	125.30000	0.11177		-21.172E-6	-0.15973	2.3945E-6
	s section 2	32.00000	5.00000	125.30000	0.10777		-27.165E-6	-0.18327	2.7473E-6
	s section 2	32.00000	6.00000	125.30000	0.09964		-35.160E-6	-0.21110	3.1643E-6
	s section 2	32.00000	7.00000	125.30000	0.08595		-45.998E-6	-0.24424	3.6606E-6
	s section 2	32.00000	9.00000	125.30000	0.06472		-61.084E-6	-0.28414 -0.33315	4.2582E-6 4.9919E-6
	s section 2 s section 2	32.00000	10.00000	125.30000	-0.01343		-83.022E-6	-0.33315	5.9225E-6
	s section 2	32.00000	11.00000	125.30000	-0.08183		-176.36E-6	-0.47840	7.1645E-6
	s section 2	32.00000	12.00000	125.30000	-0.18401		-293.78E-6	-0.59807	8.9520E-6
2 cros	s section 2	32.00000	13.00000	125.30000	-0.34076	125.13	-573.17E-6	-0.78984	11.810E-6
2 cros	s section 2	32.00000	14.00000	125.30000	-0.59122	125.13	-0.0014265	-1.1461	17.098E-6
2 cros	s section 2	32.00000	15.00000	125.30000	-1.02027		-0.0053556	-1.9770	29.307E-6
	s section 2	32.00000	16.00000	125.30000	-1.87021	125.13	-0.050050	-5.0412	72.364E-6
	s section 2	32.00000	17.00000	125.30000	-4.66347	125.13	-29.971		-854.73E-6
	s section 2	32.00000	18.00000	125.30000	-7.34216	125.13	-59.891		-0.0017846
	s section 2	32.00000	19.00000	125.30000	-7.79966	125.13	-59.932		-0.0017532
	s section 2	32.00000	20.00000	125.30000	-7.32665 -4.63359	125.13 125.13	-59.891 -29.971		-0.0017851 -855.54E-6
	s section 2	32.00000	22.00000	125.30000	-1.82826	125.13	-0.050019	-4.9633	71.198E-6
	s section 2	32.00000	23.00000	125.30000	-0.96952		-0.0053165	-1.8795	27.846E-6
	s section 2	32.00000	24.00000	125.30000	-0.53567		-0.0013824	-1.0338	15.418E-6
	s section 2	32.00000	25.00000	125.30000	-0.28474	125.13	-526.94E-6	-0.66844	9.9923E-6
	s section 2	32.00000	26.00000	125.30000	-0.13164		-248.28E-6	-0.47289	7.0773E-6
	s section 2	32.00000	27.00000	125.30000	-0.03647		-133.86E-6	-0.35424	5.3048E-6
	s section 2	32.00000	28.00000	125.30000	0.02257		-79.227E-6	-0.27600	4.1348E-6
	s section 2	32.00000	29.00000	125.30000	0.05853		-50.208E-6	-0.22128	3.3160E-6
2 cros	s section 2	32.00000	30.00000	125.30000	0.07953	125.13	-33.518E-6	-0.18131	2.7175E-6

Results: Consolidation: Displacement Data: Lines

Results : Total : Displacement Data : Lines

Results: Immediate: Displacement Data: Grids

Ref.	Name	x	У	z	δz	Stress: Calc. Level	Stress: Vertical	Stress: Sum Princ.	Vert. Strain
l		[m]	[m]	[mOD]	[mm]	[mOD]	[kN/m ²]	[kN/m ²]	[µ]
1	grid	0.00000	0.00000	125.30000	0.08539	125.13	-5.6738E-6	-0.070806	1.0617E-6
1	grid	4.50000	0.00000	125.30000	0.09844	125.13	-12.639E-6	-0.11155	1.6724E-6
	grid	9.00000	0.00000	125.30000	0.10055		-24.259E-6		2.4604E-6
	grid	13.50000	0.00000	125.30000	0.09799		-34.643E-6		3.1092E-6
	grid	18.00000	0.00000	125.30000	0.10048		-36.669E-6		3.2687E-6
	grid	22.50000	0.00000	125.30000	0.10866		-29.268E-6	-0.19142	2.8695E-6
	grid	27.00000	0.00000	125.30000	0.11400		-17.575E-6	-0.14400	2.1588E-6
	grid	31.50000	0.00000	125.30000	0.10631		-9.0851E-6	-0.099683	
	grid	36.00000	0.00000	125.30000	0.08908		-4.6317E-6		1.0103E-6
	grid	40.50000	0.00000	125.30000	0.07017		-2.3978E-6		0.0
	grid	45.00000	0.00000	125.30000	0.05367		-1.2635E-6		0.0
	grid	0.00000	1.50000	125.30000	0.08988		-7.5769E-6	-0.082676	1.2396E-6
	grid	4.50000	1.50000	125.30000	0.09704		-19.138E-6		2.0791E-6
	grid	9.00000	1.50000	125.30000	0.08240		-41.502E-6	-0.21788	3.2655E-6
	grid	13.50000	1.50000	125.30000	0.06334		-62.277E-6		4.2754E-6
	grid	18.00000	1.50000	125.30000	0.06360		-66.024E-6		
	grid	22.50000	1.50000	125.30000	0.08523		-51.023E-6		3.8660E-6
	grid	27.00000	1.50000	125.30000	0.10970		-27.608E-6		2.7582E-6
	grid	31.50000	1.50000	125.30000	0.11140		-12.784E-6		1.8100E-6
	grid	36.00000	1.50000	125.30000	0.09536		-6.0690E-6	-0.078364	
	grid	40.50000	1.50000	125.30000	0.07517		-2.9788E-6	-0.051246	0.0
	grid	45.00000	1.50000	125.30000	0.05714		-1.4990E-6	-0.034074	0.0
	grid	0.00000	3.00000	125.30000	0.09296		-10.173E-6		1.4491E-6
	grid	4.50000	3.00000	125.30000	0.08759		-30.099E-6		
	grid	9.00000	3.00000	125.30000	0.03708		-77.356E-6		4.4953E-6
	grid	13.50000	3.00000	125.30000	-0.01720		-123.26E-6		
	grid	18.00000	3.00000	125.30000	-0.02196		-130.62E-6		
	grid	22.50000	3.00000	125.30000	0.02689		-97.651E-6	-0.36174	
	grid	27.00000	3.00000	125.30000	0.09193		-45.553E-6		3.5982E-6
	grid	31.50000	3.00000	125.30000	0.11301		-18.307E-6	-0.14745	2.2105E-6
	grid	36.00000	3.00000	125.30000	0.10080		-8.0432E-6	-0.091525	1.3723E-6
	grid	40.50000	3.00000	125.30000	0.08000		-3.7249E-6	-0.057786	0.0
	grid	45.00000	3.00000	125.30000	0.06057		-1.7809E-6		0.0
	grid	0.00000	4.50000	125.30000	0.09405		-13.669E-6		1.6920E-6
	grid	4.50000	4.50000	125.30000	0.06517		-49.431E-6		3.3647E-6
	grid	9.00000	4.50000	125.30000	-0.05954		-163.34E-6	-0.43490	6.5129E-6
	grid	13.50000	4.50000	125.30000	-0.18735		-280.73E-6		9.4142E-6
1	grid	18.00000	4.50000	125.30000	-0.20226	125.13	-296.13E-6	-0.66643	9.9772E-6
I									

Vine House Hampstead NW3 1AB BIA and GMA

Job No.	Sheet No.	Rev.
MGC-19-34		
Drg. Ref.		
Made by	Date	Checked

Ref. Name	x	Y	z	δz	Stress: Calc.	Stress: Vertical	Stress: Sum Princ.	Vert. Strain
	[m]	[m]	[mOD]	[mm]	Level [mOD]	[kN/m ²]	[kN/m ²]	[4]
1 grid 1 grid	22.50000 27.00000	4.50000 4.50000	125.30000 125.30000	-0.09930 0.05078	125.13	-215.22E-6 -79.862E-6	-0.53709 -0.32109	8.0423E-6 4.8112E-6
1 grid 1 grid	31.50000 36.00000	4.50000 4.50000	125.30000 125.30000	0.10881	125.13	-26.688E-6 -10.813E-6	-0.18164 -0.10739	2.7229E-6 1.6102E-6
1 grid 1 grid	40.50000 45.00000	4.50000 4.50000	125.30000	0.08440	125.13	-4.6950E-6 -2.1178E-6	-0.065233 -0.040869	0.0
1 grid 1 grid	0.00000 4.50000	6.00000 6.00000 6.00000	125.30000	0.09268 0.02342 -0.25399	125.13 125.13	-18.247E-6 -85.043E-6	-0.13120 -0.29281 -0.68195	1.9668E-6 4.3866E-6
1 grid 1 grid 1 grid	9.00000 13.50000 18.00000	6.00000	125.30000 125.30000 125.30000	-0.25399 -0.53574 -0.56958	125.13	-419.96E-6 -802.54E-6 -836.59E-6	-1.0611 -1.1220	10.202E-6 15.864E-6 16.776E-6
1 grid 1 grid	22.50000	6.00000	125.30000 125.30000	-0.36026 -0.02889	125.13	-602.08E-6 -150.53E-6	-0.87401 -0.44201	13.071E-6 6.6203E-6
1 grid 1 grid	31.50000 36.00000	6.00000	125.30000 125.30000	0.09538 0.10555	125.13	-39.636E-6 -14.830E-6	-0.22576 -0.12673	3.3838E-6 1.9000E-6
1 grid 1 grid	40.50000 45.00000	6.00000	125.30000 125.30000	0.08802	125.13 125.13	-5.9760E-6 -2.5196E-6	-0.073718 -0.044630	1.1054E-6 0.0
1 grid 1 grid	0.00000 4.50000	7.50000 7.50000	125.30000 125.30000	0.08879 -0.04402	125.13	-23.930E-6 -152.62E-6	-0.15108 -0.38703	2.2647E-6 5.7955E-6
1 grid 1 grid	9.00000 13.50000	7.50000	125.30000	-0.64278 -1.26152	125.13	-0.0015313 -0.0035581	-1.2261 -2.1321	18.291E-6 31.751E-6
1 grid 1 grid	18.00000 22.50000	7.50000 7.50000	125.30000 125.30000	-1.32740 -0.91039	125.13	-0.0036344 -0.0027272	-2.2318 -1.7007	33.241E-6 25.333E-6
1 grid 1 grid	27.00000 31.50000	7.50000 7.50000	125.30000 125.30000	-0.16790 0.06769	125.13	-305.80E-6 -60.198E-6	-0.62744 -0.28341	9.3917E-6 4.2473E-6
1 grid 1 grid 1 grid	36.00000 40.50000 45.00000	7.50000 7.50000 7.50000	125.30000 125.30000 125.30000	0.10176 0.09042 0.06975	125.13	-20.948E-6 -7.6970E-6 -2.9955E-6	-0.15073 -0.083395 -0.048595	2.2596E-6 1.2504E-6 0.0
1 grid 1 grid 1 grid	0.00000 4.50000	9.00000	125.30000 125.30000 125.30000	0.08301		-30.372E-6 -278.84E-6	-0.17125 -0.51264	2.5668E-6 7.6715E-6
1 grid 1 grid	9.00000 13.50000	9.00000	125.30000 125.30000	-1.46410 -2.95902	125.13 125.13	-0.011579 -0.056719	-2.9427 -6.8223	43.388E-6 98.648E-6
1 grid 1 grid	18.00000 22.50000	9.00000	125.30000 125.30000	-3.07207 -2.25448	125.13 125.13	-0.056873 -0.050686	-6.9792 -5.6074	100.99E-6 80.816E-6
1 grid 1 grid	27.00000 31.50000	9.00000	125.30000	-0.38885 0.01772	125.13 125.13	-649.86E-6 -94.879E-6	-0.91219 -0.36081	13.641E-6 5.4060E-6
1 grid 1 grid	36.00000 40.50000	9.00000	125.30000 125.30000	0.09022 0.09103	125.13 125.13	-30.970E-6 -10.047E-6	-0.18141 -0.094423	2.7191E-6 1.4157E-6
1 grid 1 grid	45.00000 0.00000	9.00000	125.30000 125.30000	0.07206 0.07675	125.13	-3.5521E-6 -36.673E-6	-0.052703 -0.18971	0.0 2.8432E-6
1 grid 1 grid	4.50000 9.00000 13.50000	10.50000 10.50000 10.50000	125.30000 125.30000 125.30000	-0.24933 -3.53173 -8.73703	125.13 125.13 125.13	-482.32E-6 -0.74788 -59.584	-0.66103 -16.854 -138.41	9.8841E-6 204.20E-6 -0.0017968
1 grid 1 grid	18.00000	10.50000	125.30000	-8.90836	125.13	-59.584	-138.64	-0.0017934
1 grid 1 grid 1 grid	22.50000 27.00000 31.50000	10.50000 10.50000 10.50000	125.30000 125.30000 125.30000	-7.50945 -0.70539 -0.06916	125.13 125.13 125.13	-59.546 -0.0013620 -161.94E-6	-135.24 -1.3303 -0.47146	-0.0018419 19.866E-6 7.0613E-6
1 grid 1 grid	36.00000 40.50000	10.50000	125.30000 125.30000	0.06622 0.08924	125.13	-49.037E-6 -13.283E-6	-0.22237 -0.10692	3.3323E-6 1.6030E-6
1 grid 1 grid	45.00000 0.00000	10.50000	125.30000 125.30000	0.07382 0.07191	125.13	-4.1880E-6 -41.504E-6	-0.056851 -0.20403	0.0 3.0578E-6
1 grid 1 grid	4.50000 9.00000	12.00000	125.30000 125.30000	-0.34056 -7.92605	125.13 125.13	-683.09E-6 -59.860	-0.78731 -140.80	11.765E-6 -0.0017788
1 grid 1 grid	13.50000 18.00000	12.00000 12.00000	125.30000 125.30000	-11.14216 -11.38104	125.13 125.13	-59.992 -59.992	-150.01 -150.30	-0.0016494 -0.0016450
1 grid 1 grid	22.50000 27.00000	12.00000 12.00000	125.30000 125.30000	-9.82280 -1.11619	125.13 125.13	-59.973 -0.0027767	-1.9049	-0.0016894 28.393E-6
1 grid 1 grid	31.50000 36.00000	12.00000	125.30000 125.30000	-0.22337 0.02263	125.13	-330.40E-6 -85.477E-6	-0.65184 -0.28029	9.7561E-6 4.1988E-6
1 grid 1 grid 1 grid	40.50000 45.00000 0.00000	12.00000 12.00000 13.50000	125.30000 125.30000 125.30000	0.08455 0.07495 0.07003	125.13	-17.699E-6 -4.8867E-6 -43.731E-6	-0.12085 -0.060881 -0.21224	1.8117E-6 0.0 3.1808E-6
1 grid 1 grid 1 grid	4.50000 9.00000	13.50000	125.30000 125.30000 125.30000	-0.37362 -8.12941	125.13 125.13 125.13	-701.35E-6 -59.812	-0.82893	12.388E-6 -0.0017864
1 grid 1 grid 1 grid	13.50000 18.00000	13.50000 13.50000	125.30000 125.30000 125.30000	-11.98491 -12.30744	125.13 125.13 125.13	-59.998 -59.998	-151.47	-0.0017884 -0.0016279 -0.0016220
1 grid 1 grid	22.50000	13.50000	125.30000 125.30000	-10.79868 -1.61611	125.13	-59.990 -0.0046915	-149.41 -2.6064	-0.0016582 38.791E-6
1 grid 1 grid	31.50000 36.00000	13.50000 13.50000	125.30000 125.30000	-0.51582 -0.04993	125.13 125.13	-972.09E-6 -167.61E-6	-1.0241 -0.36722	15.299E-6 5.4974E-6
1 grid 1 grid	40.50000 45.00000	13.50000 13.50000	125.30000 125.30000	0.07692 0.07545	125.13 125.13	-23.476E-6 -5.6078E-6	-0.13577 -0.064569	2.0351E-6 0.0
1 grid 1 grid	0.00000 4.50000	15.00000 15.00000	125.30000 125.30000	0.07160 -0.34568	125.13	-43.098E-6 -552.50E-6	-0.21352 -0.78523	3.2000E-6 11.743E-6
1 grid 1 grid	9.00000 13.50000	15.00000 15.00000	125.30000 125.30000	-4.43871 -12.23024	125.13 125.13	-0.56916 -59.998	-16.476 -151.78	210.14E-6 -0.0016233
1 grid 1 grid	18.00000 22.50000 27.00000	15.00000 15.00000	125.30000	-12.64660 -11.08328 -2.35818	125.13 125.13	-59.999 -59.977 -0.0094256	-152.29 -149.14	-0.0016157 -0.0016615
1 grid 1 grid 1 grid	31.50000 36.00000	15.00000 15.00000 15.00000	125.30000 125.30000 125.30000	-1.14357 -0.15922	125.13	-0.0059514 -364.23E-6	-3.8663 -2.1764 -0.50114	57.382E-6 32.260E-6 7.4934E-6
1 grid 1 grid	40.50000 45.00000	15.00000	125.30000	0.06720 0.07540	125.13	-30.334E-6 -6.2817E-6	-0.15048 -0.067632	2.2552E-6 1.0141E-6
1 grid 1 grid	0.00000 4.50000	16.50000 16.50000	125.30000 125.30000	0.07596 -0.28595	125.13 125.13	-40.226E-6 -404.40E-6	-0.20835 -0.70785	3.1227E-6 10.592E-6
1 grid 1 grid	9.00000 13.50000	16.50000 16.50000	125.30000 125.30000	-3.33818 -12.11177	125.13 125.13	-0.060992 -59.998 -59.999	-7.5709 -151.62	109.60E-6 -0.0016255 -0.0016165
1 grid 1 grid	18.00000 22.50000	16.50000	125.30000 125.30000	-12.60216 -11.21177	125.13 125.13	-59.960	-148.80	-0.0016654
1 grid 1 grid	27.00000 31.50000 36.00000	16.50000 16.50000 16.50000	125.30000 125.30000 125.30000	-4.35193 -2.98682 -0.29587	125.13 125.13	-0.41589 -0.40945 -771.00E-6	-12.788	196.09E-6 165.20E-6 10.251E-6
1 grid 1 grid	40.50000 45.00000	16.50000	125.30000	0.05742 0.07495	125.13	-37.095E-6 -6.8152E-6	-0.16277	2.4391E-6
1 grid 1 grid 1 grid	0.00000 4.50000	18.00000	125.30000 125.30000 125.30000	0.08187	125.13	-36.013E-6 -308.96E-6	-0.19796	2.9671E-6
1 grid 1 grid	9.00000 13.50000	18.00000	125.30000 125.30000	-2.88930	125.13 125.13	-0.056687	-6.7276	9.3706E-6 97.229E-6 -0.0016354
1 grid 1 grid	18.00000 22.50000	18.00000	125.30000 125.30000	-12.13510 -11.34265	125.13 125.13	-59.998	-151.60 -150.25	-0.0016259 -0.0016457
1 grid 1 grid	27.00000 31.50000	18.00000 18.00000	125.30000 125.30000	-9.38871 -7.85958	125.13 125.13	-59.941 -59.928	-142.68	-0.0017142 -0.0017551
1 grid 1 grid	36.00000 40.50000	18.00000 18.00000	125.30000 125.30000	-0.40850 0.05035	125.13	-0.0012270 -41.697E-6	-0.85270 -0.16982	12.711E-6 2.5445E-6
1 grid 1 grid	45.00000 0.00000 4.50000	18.00000	125.30000 125.30000 125.30000	0.07428 0.08810 -0.14619	125.13	-7.1122E-6 -31.162E-6	-0.070672 -0.18379	1.0596E-6 2.7549E-6
1 grid 1 grid	9.00000	19.50000	125.30000		125.13	-239.84E-6 -0.053734	-0.54185 -5.9004	8.1122E-6 85.013E-6 -0.0016713
1 grid 1 grid 1 grid	13.50000 18.00000 22.50000	19.50000 19.50000 19.50000	125.30000 125.30000 125.30000	-10.90270 -10.51542	125.13 125.13 125.13	-59.982 -59.983 -59.982	-149.08	-0.0016713 -0.0016626 -0.0016700
1 grid 1 grid	27.00000 31.50000	19.50000	125.30000 125.30000	-9.67513 -8.23782	125.13 125.13	-59.979 -59.965	-147.41	-0.0016876 -0.0017280
1 grid 1 grid	36.00000 40.50000		125.30000 125.30000	-0.42768 0.04830	125.13 125.13	-0.0013085 -42.238E-6	-0.87689 -0.16937	13.068E-6 2.5378E-6
1 grid 1 grid	45.00000 0.00000	19.50000 21.00000	125.30000 125.30000	0.07353	125.13 125.13	-7.1073E-6 -26.142E-6	-0.070204 -0.16724	1.0526E-6 2.5070E-6
1 grid 1 grid	4.50000 9.00000	21.00000	125.30000 125.30000	-0.07635 -1.57265	125.13	-177.48E-6 -0.028525	-3.7267	6.8086E-6 54.046E-6
1 grid 1 grid	13.50000 18.00000	21.00000	125.30000 125.30000	-6.27157 -6.64197	125.13	-29.999 -30.000	-76.761	-805.42E-6 -798.57E-6
1 grid 1 grid	22.50000 27.00000	21.00000	125.30000	-6.46055 -6.03929	125.13	-29.999	-76.013	-801.79E-6 -809.74E-6
1 grid 1 grid	31.50000 36.00000 40.50000	21.00000	125.30000	-4.99353 -0.34026 0.05164	125.13 125.13	-29.991 -936.76E-6 -38.398E-6	-0.73602	-837.28E-6 10.979E-6
1 grid 1 grid 1 grid	45.00000 0.00000	21.00000	125.30000 125.30000 125.30000	0.07272	125.13	-38.398E-6 -6.7931E-6 -21.306E-6	-0.068356	2.4149E-6 1.0249E-6 2.2428E-6
1 grid 1 grid 1 grid	4.50000 9.00000	22.50000	125.30000 125.30000 125.30000	-0.01319 -0.78471	125.13	-121.79E-6 -0.0033542	-0.37005	5.5428E-6
1 grid 1 grid 1 grid	13.50000 18.00000	22.50000	125.30000 125.30000	-2.10535 -2.35848	125.13 125.13	-0.016804 -0.017111	-4.0950 -4.4078	60.333E-6 65.005E-6
1 grid 1 grid	22.50000 27.00000	22.50000	125.30000 125.30000	-2.27823 -2.05660	125.13 125.13	-0.017043 -0.016858	-4.3069 -4.0074	63.496E-6 59.016E-6
1 grid 1 grid	31.50000 36.00000	22.50000	125.30000 125.30000	-1.45889 -0.20445	125.13 125.13	-0.014982 -469.41E-6	-3.1173 -0.53412	45.786E-6 7.9812E-6
1 grid 1 grid	40.50000		125.30000	0.05865	125.13 125.13	-31.720E-6 -6.2249E-6	-0.14709 -0.065303	2.2042E-6 0.0
1 grid 1 grid 1 grid	0.00000 4.50000 9.00000	24.00000 24.00000 24.00000	125.30000 125.30000 125.30000	0.10003 0.03715 -0.34119	125.13	-16.936E-6 -79.000E-6 -696.29E-6	-0.13204 -0.29543 -0.82853	
1 9110	9.00000	27.00000		-0.34119	123.13	090.29E-6	-0.02853	16.303E=0

BIA and GMA

MAUND

GEO-CONSULTING LTD

Vine House Hampstead NW3 1AB

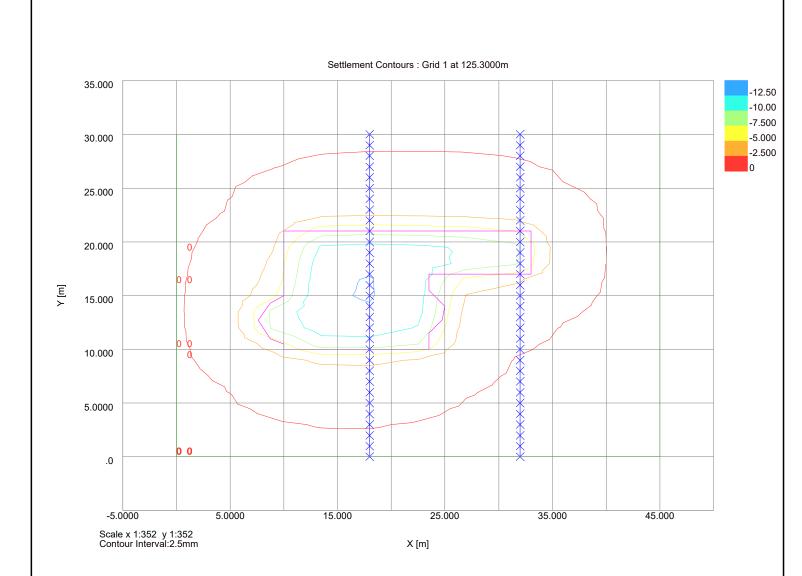
Job No.	Sheet No.	Rev.
MGC-19-34		
Drg. Ref.		
Made by	Date	Checked

Ref. Nam	e x	У	z	δz	Stress:	Stress:	Stress:	Vert.
1					Calc. Level	Vertical	Sum Princ.	Strain
1	[m]	[m]	[mOD]	[mm]	[mOD]	[kN/m ²]	[kN/m ²]	[µ]
1 grid	13.50000	24.00000	125.30000	-0.89880	125.13	-0.0019601	-1.5970	23.828E-6
1 grid	18.00000	24.00000	125.30000	-1.05313	125.13	-0.0021035	-1.7957	26.799E-6
1 grid	22.50000	24.00000	125.30000	-1.02079	125.13	-0.0020799	-1.7458	26.052E-6
1 grid	27.00000	24.00000	125.30000	-0.90515		-0.0019956	-1.5607	23.281E-6
1 grid	31.50000	24.00000	125.30000	-0.59494		-0.0015330	-1.1201	16.702E-6
1 grid	36.00000	24.00000	125.30000	-0.08497		-208.77E-6	-0.37366	5.5913E-6
1 grid	40.50000	24.00000	125.30000	0.06658		-24.404E-6	-0.13014	
1 grid	45.00000	24.00000	125.30000	0.07062		-5.4979E-6	-0.061346	0.0
1 grid	0.00000	25.50000	125.30000	0.10022		-13.209E-6	-0.11538	1.7299E-6
1 grid	4.50000	25.50000	125.30000	0.07201		-50.249E-6	-0.23453	3.5147E-6
1 grid	9.00000	25.50000	125.30000	-0.10741		-237.51E-6	-0.51601	7.7247E-6
1 grid	13.50000	25.50000	125.30000	-0.35828		-526.94E-6	-0.85962	12.860E-6
1 grid	18.00000	25.50000	125.30000	-0.44448		-593.57E-6	-0.98436	14.727E-6
1 grid	22.50000	25.50000	125.30000	-0.43370		-584.80E-6	-0.95850	14.339E-6
1 grid	27.00000	25.50000	125.30000	-0.37685		-541.83E-6		12.546E-6
1 grid	31.50000	25.50000	125.30000	-0.22493		-387.75E-6	-0.59526	8.9037E-6
1 grid	36.00000	25.50000	125.30000	-0.00309		-98.297E-6	-0.26799	
1 grid	40.50000	25.50000	125.30000	0.07310		-17.986E-6	-0.11294	1.6930E-6
1 grid	45.00000	25.50000	125.30000	0.06906		-4.7137E-6	-0.056834	0.0
1 grid	0.00000 4.50000	27.00000	125.30000	0.09845		-10.178E-6	-0.10019 -0.18690	1.5023E-6 2.8014E-6
1 grid		27.00000	125.30000	0.09262		-32.226E-6		
1 grid 1 grid	9.00000 13.50000	27.00000 27.00000	125.30000 125.30000	0.01402		-105.12E-6 -201.72E-6	-0.35184 -0.53467	5.2707E-6 8.0070E-6
1 grid 1 grid	18.00000	27.00000	125.30000	-0.09724		-201.72E-6	-0.53467	9.1973E-6
1 grid	22.50000	27.00000	125.30000	-0.13968		-230.66E-6	-0.60006	8.9859E-6
1 grid	27.00000	27.00000	125.30000	-0.11546		-207.45E-6	-0.52053	7.7944E-6
1 grid	31.50000	27.00000	125.30000	-0.04746		-144.66E-6	-0.37446	5.6075E-6
1 grid	36.00000	27.00000	125.30000	0.04596		-50.963E-6	-0.19937	2.9872E-6
1 grid	40.50000	27.00000	125.30000	0.07703		-13.009E-6	-0.097059	1.4550E-6
1 grid	45.00000	27.00000	125.30000	0.06704		-3.9529E-6	-0.052089	0.0
1 grid	0.00000	28.50000	125.30000	0.09502		-7.7991E-6	-0.086723	
1 grid	4.50000	28.50000	125.30000	0.10222		-21.125E-6	-0.15022	2.2520E-6
1 grid	9.00000	28.50000	125.30000	0.07422		-54.278E-6	-0.25392	3.8053E-6
1 grid	13.50000	28.50000	125.30000	0.02913		-94.165E-6	-0.36165	5.4186E-6
1 grid	18.00000	28.50000	125.30000	0.00909		-110.77E-6	-0.41350	6.1952E-6
1 grid	22.50000	28.50000	125.30000	0.00748		-109.35E-6	-0.40535	6.0732E-6
1 grid	27.00000	28.50000	125.30000	0.01412		-96.315E-6	-0.35142	5.2651E-6
1 grid	31.50000	28.50000	125.30000	0.03881		-67.001E-6	-0.25847	3.8727E-6
1 grid	36.00000	28.50000	125.30000	0.07218		-28.840E-6	-0.15323	2.2965E-6
1 grid	40.50000	28.50000	125.30000	0.07822	125.13	-9.3864E-6	-0.083143	1.2465E-6
1 grid	45.00000	28.50000	125.30000	0.06456	125.13	-3.2655E-6	-0.047366	0.0
1 grid	0.00000	30.00000	125.30000	0.09038	125.13	-5.9726E-6	-0.074994	1.1245E-6
1 grid	4.50000	30.00000	125.30000	0.10425	125.13	-14.214E-6	-0.12199	1.8290E-6
1 grid	9.00000	30.00000	125.30000	0.10094	125.13	-31.008E-6	-0.19060	2.8570E-6
1 grid	13.50000	30.00000	125.30000	0.08734	125.13	-49.897E-6	-0.25851	3.8745E-6
1 grid	18.00000	30.00000	125.30000	0.08047	125.13	-58.862E-6	-0.29316	4.3935E-6
1 grid	22.50000	30.00000	125.30000	0.07791	125.13	-58.233E-6	-0.28818	4.3189E-6
1 grid	27.00000	30.00000	125.30000	0.07560	125.13	-50.668E-6	-0.25093	3.7606E-6
1 grid	31.50000	30.00000	125.30000	0.07876	125.13	-35.597E-6	-0.18910	2.8343E-6
1 grid	36.00000	30.00000	125.30000	0.08396		-17.523E-6	-0.12090	1.8124E-6
1 grid	40.50000	30.00000	125.30000	0.07711		-6.8226E-6	-0.071277	1.0687E-6
1 grid	45.00000	30.00000	125.30000	0.06168	125.13	-2.6731E-6	-0.042841	0.0

Results : Consolidation : Displacement Data : Grids

Results : Total : Displacement Data : Grids

Oasys


MAUND GEO-CONSULTING LTD

Vine House Hampstead NW3 1AB

BIA and GMA

Drg. Ref.

Made by Date Checked
JGM

Vine House Hampstead NW3 1AB

BIA and GMA

Job No.	Sheet No.	Rev.
MGC-19-34		
Drg. Ref.		
Made by JGM	Date	Checked

Titles

MGC-19-34 Vine House Hampstead NW3 1AB BIA and GMA

Job No.:
Job Title:
Sub-title:
Calculation Heading:
Initials:
Checker:
Date Saved:
Date Checked:
Notes:
File Name:
File Path: JGM jm

vine house excavation and wall loads section 1 and 2.pdd F:\OneDrive\Documents\Croft Structural Engineers\1-Vine House, London NW3 1AB\07-GIR- Vine House\PDISP

History

Date	Time	Ву	Notes
30-Nov-2019	13:11	Maund Geo Consulting	New
30-Nov-2019	14:44	Maund Geo Consulting	
30-Nov-2019	16:29	Maund Geo Consulting	
30-Nov-2019	16:44	Maund Geo Consulting	
04-Dec-2019	12:13	Maund Geo Consulting	
11-Dec-2019	10:24	Maund Geo Consulting	
11-Dec-2019	15:15	Maund Geo Consulting	Open

Analysis Options

General

Global Poisson's ratio: 0.30 Maximum allowable ratio between values of E: 1.5 Horizontal rigid boundary level: 115.00 [m OD] Displacements at load centroids: Yes GSA piled raft data: No

Elastic Pes Relatic: Yes Analysis: Boussinesq Stiffness for horizontal displacement calculations: Weighted average Using legacy heave correction factor: No

Consolidation

Soil ProfilesSoil Profile 1

Laye ref		me	Level at top	Number of intermediate displacement levels	Youngs Modulus : Top	Youngs Modulus : Btm.	Poissons ratio	Non-linear curve
			[mOD]		[kN/m ²]	[kN/m ²]		
	1 Made Ground		125.30	5	20000.	20000.	0.20000	None
	2 Bagshot Formation	silty clayey SAND	123.30	25	25000.	50000.	0.20000	None

Non-linear Curve Coordinates - Non-linear Curve 1

Point Strain [%]

Soil Zones

Zone	Name	X min	X max	Y min	Y max	Profile
		[m]	[m]	[m]	[m]	
1 7	A	0.0	45.000	0.0	35.000	Soil Profile 1

Polygonal Load Data

Load ref.	Name	Position : Level	Position : Polygon : Coords.		No. of Rectangles	Value :
101.				: Rect. tolerance	Receasing	(local z)
		[m]	[m]	[%]		[kN/m ²]
1 wall 1 286	kpa	125.30000	(10,10) (23.5,10) (23.5,11.5)	10.000	32	235.00
			(24,8,12.8) (25,14) (23.5,15.5) (23.5,17.4) (23.1,17.4) (23.1,15.2) (24,6,13.7) (24.4,12.8) (23.1,11.8) (23.1,10.3)			
2 wall 2 200	kpa	125.30000	(10,10.3) (10,10) (23.5,17) (33,17) (33,21) (23.5,21) (23.5,20.6) (32.6,20.6) (32.6,17.4) (23.5,17.4) (23.5,17)	10.000	3	149.00
3 wall 3 286	kpa	125.30000	(23.5,20.6) (23.5,21) (10.21)	10.000	2	235.00
			(10,15) (10.3,15) (10.3,20.6) (23.5,20.6)		_	
4 wall 4 200	фа	125.30000	(10.3,15) (9.1,14.3) (7.85,12.7) (9.1,11) (10.3,10.7) (10.3,10.3) (10,10.3) (8.75,11) (7.6,12.7) (8.75,14.3) (10,15) (10.3,15)	10.000	33	149.00
5 internal wa	all 1 286 kpa	125.30000	(14.7,10.3) (16,10.3)	10.000	1	235.00
			(16,20.6) (14.7,20.6) (14.7,10.3)			
6 internal wa	all 2 286 kpa	125.30000	(17.8,14.8) (19,14.8) (19,18.9) (17.8,18.9) (17.8,14.8)	10.000	1	235.00
7 internal wa	all 3 286 kpa	125.30000	(20.9,12.3) (22,12.3)	10.000	1	235.00
8 basement fl	Loor slab 8 kpa	125.30000	(22,13.7) (20.9,13.7) (20.9,12.3) (10,10) (23.5,10) (23.5,11.5) (24.8,12.8) (25,14) (23.5,15.5) (23.5,17) (33,17)	10.000	11	8.0000
			(33,21) (10,21) (10,15) (8.75,14.3) (7.6,12.7) (8.75,11) (10,10.5) (10,10)			

Polygonal Loads' Rectangles

i diygonai Loads ikectangles									
No.	Centre :	Centre :	Angle of	Width x	Depth y				
	x	У	local x						
			from						
			global X						
	[m]	[m]	[Degrees]	[m]	[m]				
Load	1 : wall :	1 286 kpa							
	1 optima								
	16.57500		0.0	13.150	0.35000				
2	23.32500	10.98800	0.0	0.35000	1.9760				
3	23.55000	11.84400	0.0		0.58800				
		11.93000	0.0	0.10000	0.56000				
5	23.75000	12.01600	0.0	0.10000	0.53200				
6	23.85000	12.10200	0.0	0.10000	0.50400				
7	23.95000	12.18800	0.0	0.10000	0.47600				
8	24.05000	12.27400	0.0	0.10000	0.44800				
9			0.0	0.10000	0.42000				
10	24.25000	12.44600	0.0	0.10000	0.39200				
11	24.35000	12.53200	0.0	0.10000	0.36400				
12	24.42500	12.63250	0.0	0.050000	0.41500				
13	24.47500	12.74750	0.0	0.050000	0.54500				
14	24.52500	12.86250	0.0	0.050000	0.67500				

BIA and GMA

Vine House Hampstead NW3 1AB

MAUND GEO-CONSULTING LTD

MGC-19-34

Sheet No. Rev.

Drg. Ref.

Job No.

Made by Date Checked JGM

No. Centre : Centre : Angle of Width x Depth y x y local x from global X 0.0 0.050000 0.80500 0.0 0.050000 0.93500 15 24.57500 12.97750 16 24.62500 13.09250 19 24.82500 13.65000 20 24.87500 13.75000 21 24.92500 13.85000 22 24.97500 13.95000 23 23.32500 16.16250 24 23.56389 15.08611 25 23.69167 14.95833 26 23.81944 14.83056 31 10.16685 14.91250 - 55.922 0.060294 0.31233 Load 5: internal wall 1 286 kpa (Edge 1 optimal) 115.35000 15.50000 0.0 1.3000 10.300 Load 6: internal wall 2 286 kpa (Edge 1 optimal) 118.40000 1.85000 0.0 1.2000 4.0000 Load 7: internal wall 3 286 kpa Load 7: internal wall 3 286 kpa
(Edge 1 optimal)
1 21.42500 13.00000 0.0 1.1500
Load 8: basement filoor slab 8 kpa
(Edge 2 optimal)
1 16.75000 10.250000 90.000 0.50000
2 16.43750 10.75000 90.000 0.50000
3 16.04044 11.25000 90.000 0.500000
4 16.05294 12.10000 90.000 1.20000 90.000 1.2000 90.000 0.050000 90.000 1.2500 90.000 0.30000 90.000 0.70000 90.000 0.50000 90.000 1.5000 90.000 4.0000 4 16.05294 12.10000 5 16.17148 12.72500 6 16.48008 13.37500 7 16.74609 14.15000 8 16.86250 14.65000 9 16.87500 15.25000 10 16.75000 16.25000 11 21.50000 19.00000 Displacement Lines X1 Y1 Z1 X2 Y2 **Z**2 Intervals Calculate Detailed Results [m] [m] [m] [m] [m] [m] [No.] 30 Yes Yes 30 Yes Yes Displacement Grids X1 Y1 z_1 **Z**2

Results : Immediate : Load Centres : Polygonal

Ref.	Name	x	У	z	δz	Stress: Calc. Level	Stress: Vertical	Stress: Sum Princ.	Vert. Strain
		[m]	[m]	[mOD]	[mm]	[mOD]	[kN/m ²]	[kN/m ²]	[µ]
1 wall 1 286	kpa	19.57926	11.64500	125.30000	6.79004	125.13	8.0718	29.954	184.77E-6
2 wall 2 200	kpa	28.96578	19.00575	125.30000	3.64789	125.13	8.0265	24.301	238.58E-6
3 wall 3 286	kpa	14.81012	19.93988	125.30000	20.94350	125.13	203.53	412.74	0.0080846
4 wall 4 200	kpa	8.89817	12.41668	125.30000	4.04013	125.13	8.2946	29.859	199.08E-6
5 internal w	rall 1 286 kpa	15.35000	15.50000	125.30000	26.52279	125.13	241.45	536.00	0.0091270
6 internal w	rall 2 286 kpa	18.40000	16.85000	125.30000	24.83567	125.13	241.04	526.57	0.0091967
7 internal w	rall 3 286 kpa	21.42500	13.00000	125.30000	18.30702	125.13	239.70	489.79	0.0094840
8 basement f	loor slab 8 kpa	18.84163	16.04225	125.30000	21.56595	125.13	219.44	440.09	0.0087657

Results: Consolidation: Load Centres: Polygonal

None

Results: Total: Load Centres: Polygonal

None

Results : Immediate : Displacement Data : Lines

 $\mbox{Ref.} \qquad \mbox{Name} \qquad \mbox{x} \qquad \mbox{y} \qquad \mbox{z} \qquad \mbox{\delta z} \qquad \mbox{Stress:} \quad \mbox{Stress:} \quad \mbox{Vert.}$

Vine House Hampstead NW3 1AB BIA and GMA

Job No.	Sheet No.	Rev.
MGC-19-	34	
Drg. Ref.		
Made by JGM	Date	Checked

							Calc. Level	Vertical	Sum Princ.	Strain
			[m]	[m]	[mOD]	[mm]	[mOD]	[kN/m ²]	[kN/m ²]	[µ]
1	cross	section1	18.00000	0.00000	125.30000	0.03280	125.13	42.457E-6		-2.2638E-6
1	cross	section1	18.00000	1.16667	125.30000	0.08956	125.13	68.548E-6		-2.9410E-6
1		section1	18.00000	2.33333	125.30000	0.18263	125.13	117.41E-6		-3.9313E-6
1		section1	18.00000	3.50000	125.30000	0.33467	125.13	217.23E-6		-5.4492E-6
1		section1	18.00000	4.66667	125.30000	0.58366	125.13	446.85E-6		-7.9249E-6
1		section1	18.00000	5.83333	125.30000	0.99563	125.13	0.0010754		-12.332E-6
1		section1	18.00000	7.00000 8.16667	125.30000	1.69362 2.94671	125.13 125.13	0.0033664		-21.330E-6 -45.140E-6
		section1	18.00000	9.33333	125.30000	5.64913	125.13	0.54170		-166.78E-6
		section1	18.00000	10.50000	125.30000	9.70661	125.13	31.819	123.03	678.85E-6
1	cross	section1	18.00000	11.66667	125.30000	7.64925	125.13	8.0695	31.076	173.41E-6
1	cross	section1	18.00000	12.83333	125.30000	8.06996	125.13	8.0358	29.990	182.24E-6
1	cross	section1	18.00000	14.00000	125.30000	9.76341	125.13	8.2161	37.962	113.35E-6
		section1	18.00000	15.16667	125.30000	20.36172	125.13	223.52	424.42	0.0091667
1		section1	18.00000	16.33333	125.30000	23.43254	125.13	227.59	465.47	0.0090006
1		section1	18.00000	17.50000	125.30000	23.22515	125.13	227.58	464.88	0.0090060
		section1	18.00000	18.66667	125.30000	19.10363	125.13	212.47	387.50	0.0088734
		section1 section1	18.00000 18.00000	19.83333	125.30000	9.76253 11.77677	125.13 125.13	8.3891 117.31	43.568 233.88	67.668E-6 0.0046997
		section1	18.00000	22.16667	125.30000	4.48504	125.13	0.085821		-88.590E-6
		section1	18.00000	23.33333	125.30000	2.47322	125.13	0.0081916		-33.271E-6
		section1	18.00000	24.50000	125.30000	1.44033	125.13	0.0020521		-17.520E-6
		section1	18.00000	25.66667	125.30000	0.84953	125.13	753.35E-6		-10.695E-6
		section1	18.00000	26.83333	125.30000	0.49704	125.13	339.92E-6		-7.1181E-6
1	cross	section1	18.00000	28.00000	125.30000	0.28261	125.13	174.87E-6	0.50302	-5.0197E-6
1	cross	section1	18.00000	29.16667	125.30000	0.15102	125.13	98.597E-6	0.36977	-3.6918E-6
		section1	18.00000	30.33333	125.30000	0.07016	125.13	59.503E-6		-2.8038E-6
		section1	18.00000	31.50000	125.30000	0.02074	125.13	37.851E-6		-2.1844E-6
		section1	18.00000	32.66667	125.30000	-0.00903	125.13	25.111E-6		-1.7375E-6
		section1	18.00000	33.83333	125.30000	-0.02645 -0.03612	125.13 125.13	17.242E-6 12.185E-6		-1.4063E-6 -1.1551E-6
2		section1	32.00000	0.00000	125.30000	-0.03916	125.13	8.3965E-6	0.11558	0.0
2		section 2	32.00000	1.16667	125.30000	-0.03564	125.13	10.889E-6		-1.0444E-6
		section 2	32.00000	2.33333	125.30000	-0.02959	125.13	14.257E-6		-1.2101E-6
		section 2	32.00000	3.50000	125.30000	-0.02016	125.13	18.842E-6		-1.4077E-6
		section 2	32.00000	4.66667	125.30000	-0.00629	125.13	25.125E-6		-1.6437E-6
2	cross	section 2	32.00000	5.83333	125.30000	0.01329	125.13	33.799E-6	0.19283	-1.9263E-6
		section 2	32.00000	7.00000	125.30000	0.04019	125.13	45.919E-6		-2.2657E-6
		section 2	32.00000	8.16667	125.30000	0.07657	125.13	63.328E-6		-2.6774E-6
		section 2	32.00000	9.33333	125.30000	0.12573	125.13	89.910E-6		-3.1891E-6
		section 2	32.00000	10.50000	125.30000	0.19347	125.13	135.70E-6		-3.8594E-6
		section 2	32.00000	11.66667	125.30000	0.29085	125.13 125.13	231.92E-6 498.93E-6		-4.8299E-6 -6.4843E-6
		section 2	32.00000	14.00000	125.30000	0.44072	125.13	0.0015807		-6.4843E-6
		section 2	32.00000	15.16667	125.30000	1.19578	125.13	0.0013807		-21.335E-6
		section 2	32.00000	16.33333	125.30000	2.55743	125.13	0.34754		-95.088E-6
		section 2	32.00000	17.50000	125.30000	5.24639	125.13	23.270	86.536	530.87E-6
2	cross	section 2	32.00000	18.66667	125.30000	4.02116	125.13	8.3693	32.161	180.55E-6
		section 2	32.00000	19.83333	125.30000	4.15155	125.13	8.4767	34.613	162.48E-6
		section 2	32.00000	21.00000	125.30000	5.89858	125.13	75.836	149.81	0.0030521
		section 2	32.00000	22.16667	125.30000	1.67506	125.13	0.050505		-42.220E-6
2		section 2	32.00000	23.33333	125.30000	0.82863	125.13	0.0039056		-13.396E-6
		section 2	32.00000	24.50000	125.30000	0.45438	125.13	842.20E-6		-6.8008E-6
2		section 2 section 2	32.00000	25.66667 26.83333	125.30000	0.25313	125.13 125.13	286.13E-6 125.70E-6		-4.2558E-6 -2.9787E-6
		section 2	32.00000	28.00000	125.30000	0.13388	125.13	65.066E-6		-2.2297E-6
		section 2	32.00000	29.16667	125.30000	0.00508	125.13	37.687E-6		-1.7435E-6
		section 2	32.00000	30.33333	125.30000	-0.00477	125.13	23.657E-6		-1.4049E-6
		section 2	32.00000	31.50000	125.30000	-0.02075	125.13	15.759E-6		-1.1569E-6
2	cross	section 2	32.00000	32.66667	125.30000	-0.03005	125.13	10.982E-6	0.096914	0.0
		section 2	32.00000	33.83333	125.30000	-0.03508	125.13	7.9250E-6	0.082175	0.0
2	cross	section 2	32.00000	35.00000	125.30000	-0.03737	125.13	5.8795E-6	0.070409	0.0

Results : Consolidation : Displacement Data : Lines

None

Results: Total: Displacement Data: Lines

None

Results: Immediate: Displacement Data: Grids

Ref.	Name	x	У	z	δz	Stress: Calc. Level	Stress: Vertical	Stress: Sum Princ.	Vert. Strain
		[m]	[m]	[mOD]	[mm]	[mOD]	[kN/m ²]	[kN/m ²]	[µ]
1 0	grid	0.00000	0.00000	125.30000	-0.03798	125.13	5.2910E-6	0.066997	0.0
	grid	4.50000	0.00000	125.30000	-0.03010	125.13	12.274E-6	0.10717	-1.0710E-6
1 0	grid	9.00000	0.00000	125.30000	-0.00374	125.13	25.584E-6	0.16327	-1.6312E-6
1 4	grid	13.50000	0.00000	125.30000	0.02737	125.13	39.738E-6	0.21435	-2.1411E-6
1 9	grid	18.00000	0.00000	125.30000	0.03280	125.13	42.457E-6	0.22664	-2.2638E-6
	grid	22.50000	0.00000	125.30000	0.00918	125.13	32.752E-6		-1.9454E-6
1 9	grid	27.00000	0.00000	125.30000	-0.02152	125.13	18.827E-6	0.14198	-1.4186E-6
1 9	grid	31.50000	0.00000	125.30000	-0.03837	125.13	9.1216E-6	0.094885	0.0
1 9	grid	36.00000	0.00000	125.30000	-0.04005	125.13	4.3805E-6	0.062358	0.0
	grid	40.50000	0.00000	125.30000	-0.03487	125.13	2.1816E-6	0.041399	0.0
	grid	45.00000	0.00000	125.30000	-0.02820	125.13	1.1257E-6	0.028016	0.0
	grid	0.00000	1.75000	125.30000	-0.03653	125.13	7.3078E-6	0.079741	0.0
	grid	4.50000	1.75000	125.30000	-0.01535	125.13	19.749E-6		-1.3728E-6
	grid	9.00000	1.75000	125.30000	0.04539	125.13	48.886E-6		-2.2855E-6
	grid	13.50000	1.75000	125.30000	0.11794	125.13	83.509E-6		-3.1889E-6
	grid	18.00000	1.75000	125.30000	0.13040	125.13	88.967E-6		-3.3867E-6
	grid	22.50000	1.75000	125.30000	0.07783	125.13	65.381E-6		-2.8072E-6
	grid	27.00000	1.75000	125.30000	0.00858	125.13	32.951E-6		-1.9074E-6
	grid	31.50000	1.75000	125.30000	-0.03083	125.13	13.703E-6		-1.1852E-6
	grid	36.00000	1.75000	125.30000	-0.03992	125.13	5.9715E-6	0.073972	0.0
	grid	40.50000	1.75000	125.30000	-0.03639	125.13	2.7849E-6	0.047253	0.0
	grid	45.00000	1.75000	125.30000	-0.02972 -0.03273	125.13 125.13	1.3622E-6 10.127E-6	0.031034	0.0
	grid grid	4.50000	3.50000	125.30000	0.01222	125.13	33.348E-6		-1.7886E-6
	grid grid	9.00000	3.50000	125.30000	0.14363	125.13	33.348E-6 106.46E-6		-3.3725E-6
	grid	13.50000	3.50000	125.30000	0.30897	125.13	206.71E-6		-5.1264E-6
	grid	18.00000	3.50000	125.30000	0.33467	125.13	217.23E-6		-5.4492E-6
	grid	22.50000	3.50000	125.30000	0.21957	125.13	152.28E-6		-4.3175E-6
	grid	27.00000	3.50000	125.30000	0.06751	125.13	62.696E-6		-2.6506E-6
	grid	31.50000	3.50000	125.30000	-0.01560	125.13	21.083E-6		-1.4968E-6
	grid	36.00000	3.50000	125.30000	-0.03759	125.13	8.2485E-6	0.088085	0.0
	grid	40.50000	3.50000	125.30000	-0.03727	125.13	3.5827E-6	0.053954	0.0
	grid	45.00000	3.50000	125.30000	-0.03105	125.13	1.6502E-6	0.034301	0.0
	grid	0.00000	5.25000	125.30000	-0.02608	125.13	13.978E-6		-1.1219E-6
	grid	4.50000	5.25000	125.30000	0.05896	125.13	59.570E-6		-2.3692E-6
	grid	9.00000	5.25000	125.30000	0.33635	125.13	288.45E-6	0.54068	-5.3895E-6
	grid	13.50000	5.25000	125.30000	0.71655	125.13	665.77E-6	0.93327	-9.2927E-6
1 4	grid	18.00000	5.25000	125.30000	0.76346	125.13	676.58E-6	0.98262	-9.7856E-6
1 9	grid	22.50000	5.25000	125.30000	0.51361	125.13	464.33E-6	0.74027	-7.3748E-6
1 9	grid	27.00000	5.25000	125.30000	0.17676	125.13	133.11E-6	0.38498	-3.8418E-6
1 9	grid	31.50000	5.25000	125.30000	0.01127	125.13	33.159E-6	0.19104	-1.9084E-6
1 9	grid	36.00000	5.25000	125.30000	-0.03187	125.13	11.604E-6	0.10535	-1.0528E-6
	grid	40.50000	5.25000	125.30000	-0.03713	125.13	4.6592E-6	0.061620	0.0
	grid	45.00000	5.25000	125.30000	-0.03210	125.13	2.0011E-6	0.037803	0.0
	grid	0.00000	7.00000	125.30000	-0.01658	125.13	18.982E-6		-1.3145E-6
	grid	4.50000	7.00000	125.30000	0.13128	125.13	112.84E-6		-3.1820E-6
	grid	9.00000	7.00000	125.30000	0.71885	125.13	0.0011958		-9.9979E-6
	grid	13.50000	7.00000	125.30000	1.63074	125.13	0.0035035		-20.954E-6
	grid	18.00000	7.00000	125.30000	1.69362	125.13	0.0033664		-21.330E-6
	grid	22.50000	7.00000	125.30000	1.15970	125.13	0.0024725		-15.633E-6
	grid	27.00000	7.00000	125.30000	0.36908	125.13	320.64E-6		-5.8584E-6
	grid	31.50000	7.00000	125.30000	0.05496	125.13	53.197E-6		-2.4542E-6
	grid	36.00000	7.00000	125.30000	-0.02084	125.13	16.834E-6		-1.2670E-6
	grid	40.50000	7.00000	125.30000	-0.03551	125.13	6.1533E-6	0.070405	0.0
1 9	grid	45.00000	7.00000	125.30000	-0.03275	125.13	2.4275E-6	0.041504	0.0

Vine House Hampstead NW3 1AB BIA and GMA

Job No.	Sheet No.	Rev.
MGC-19-34		
Drg. Ref.		
Made by JGM	Date	Checked

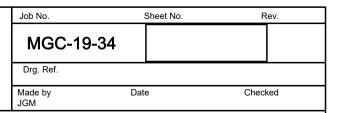
Ref. Nam	ne x	у	z	δz	Stress:	Stress:	Stress:	Vert.
					Calc. Level	Vertical	Sum Princ.	Strain
1 grid	[m] 0.00000	[m] 8.75000	[mOD] 125.30000	[mm] -0.00511	[mOD] 125.13	[kN/m ²] 24.905E-6		[µ] -1.5131E-6
1 grid 1 grid	4.50000 9.00000	8.75000 8.75000	125.30000 125.30000	0.23084 1.54280	125.13 125.13	223.23E-6 0.012612	2.7341	-4.2896E-6 -26.585E-6
1 grid 1 grid	13.50000	8.75000 8.75000	125.30000 125.30000	4.02659 3.98943	125.13 125.13	0.070549	8.1250	-80.857E-6 -77.217E-6
1 grid 1 grid 1 grid	22.50000 27.00000 31.50000	8.75000 8.75000 8.75000	125.30000 125.30000 125.30000	2.93862 0.68140 0.12282	125.13 125.13 125.13	0.062066 836.96E-6 87.785E-6	0.93794	-63.206E-6 -9.3292E-6 -3.1871E-6
1 grid 1 grid 1 grid	36.00000 40.50000	8.75000 8.75000 8.75000	125.30000 125.30000 125.30000	-0.00127 -0.03177	125.13 125.13 125.13	25.855E-6 8.2979E-6		-1.5429E-6 0.0
1 grid 1 grid 1 grid	45.00000 0.00000	8.75000 10.50000	125.30000 125.30000 125.30000	-0.03177 -0.03292 0.00639	125.13 125.13 125.13	2.9409E-6 30.857E-6	0.045338	0.0 -1.6964E-6
1 grid 1 grid 1 grid	4.50000 9.00000	10.50000	125.30000 125.30000	0.34492 3.71163	125.13 125.13	432.15E-6 2.4912	0.56700	-5.6441E-6 -123.65E-6
1 grid 1 grid	13.50000 18.00000	10.50000	125.30000 125.30000	10.32294 9.70661	125.13 125.13	31.873 31.819	126.63 123.03	646.05E-6 678.85E-6
1 grid 1 grid	22.50000 27.00000	10.50000	125.30000 125.30000	8.86102 1.12463	125.13 125.13	32.128 0.0021200	127.88	648.90E-6 -14.889E-6
1 grid 1 grid	31.50000 36.00000	10.50000 10.50000	125.30000 125.30000	0.22843	125.13 125.13	157.33E-6 44.069E-6	0.19265	-4.2335E-6 -1.9238E-6
1 grid 1 grid	40.50000 45.00000	10.50000	125.30000 125.30000	-0.02521 -0.03253	125.13 125.13	11.463E-6 3.5445E-6	0.092124 0.049189	0.0
1 grid 1 grid	0.00000 4.50000	12.25000	125.30000 125.30000	0.01539 0.43569	125.13 125.13	35.357E-6 659.67E-6	0.68225	-1.8377E-6 -6.7829E-6
1 grid 1 grid 1 grid	9.00000 13.50000 18.00000	12.25000 12.25000 12.25000	125.30000 125.30000 125.30000	4.06479 8.55918 7.74296	125.13 125.13 125.13	8.2916 8.1244 8.0374	29.725 35.261 29.724	200.25E-6 134.86E-6 185.01E-6
1 grid 1 grid 1 grid	22.50000 27.00000	12.25000 12.25000	125.30000 125.30000	8.13661 1.66555	125.13 125.13	8.8090 0.0054502	47.160 2.3460	56.943E-6 -23.133E-6
1 grid 1 grid	31.50000 36.00000	12.25000 12.25000	125.30000 125.30000	0.40677	125.13 125.13	368.59E-6 88.880E-6	0.60734	-6.0513E-6 -2.5094E-6
1 grid 1 grid	40.50000 45.00000	12.25000 12.25000	125.30000 125.30000	-0.01533 -0.03161	125.13 125.13	16.131E-6 4.2209E-6	0.10531	-1.0521E-6 0.0
1 grid 1 grid	0.00000 4.50000	14.00000 14.00000	125.30000 125.30000	0.01997 0.46235	125.13 125.13	37.235E-6 600.10E-6	0.70009	-1.9166E-6 -6.9649E-6
1 grid 1 grid	9.00000 13.50000	14.00000 14.00000	125.30000 125.30000	5.29488 8.89577	125.13 125.13	31.873 8.1173	88.574 35.013	0.0010266 136.91E-6
1 grid 1 grid	18.00000 22.50000 27.00000	14.00000	125.30000 125.30000	9.76341 7.66461	125.13 125.13 125.13	8.2161 8.3466 0.0091598	37.962 38.379	113.35E-6 117.00E-6 -31.377E-6
1 grid 1 grid 1 grid	31.50000 36.00000	14.00000 14.00000 14.00000	125.30000 125.30000 125.30000	2.18422 0.76838 0.18740	125.13 125.13 125.13	0.0091598 0.0017248 221.47E-6	1.1036	-10.932E-6 -3.5210E-6
1 grid 1 grid	40.50000 45.00000	14.00000	125.30000 125.30000	-0.00252 -0.03030	125.13 125.13	22.607E-6 4.9144E-6	0.11950 0.056087	-1.1937E-6 0.0
1 grid 1 grid	0.00000 4.50000	15.75000 15.75000	125.30000 125.30000	0.01966	125.13 125.13	36.535E-6 421.21E-6	0.19287	-1.9265E-6 -6.5338E-6
1 grid 1 grid	9.00000 13.50000	15.75000 15.75000	125.30000 125.30000	3.68729 9.15849	125.13 125.13	0.15375 8.1180	10.350 35.324	-94.276E-6 133.84E-6
1 grid 1 grid	18.00000 22.50000	15.75000 15.75000	125.30000 125.30000	22.63186 7.27297	125.13 125.13	227.46 8.5577	460.28 39.698	0.0090449 116.48E-6
1 grid 1 grid	27.00000 31.50000	15.75000 15.75000	125.30000 125.30000	2.99018 1.80125	125.13 125.13	0.045400 0.041760	5.9297 4.4022	-56.573E-6 -41.517E-6
1 grid 1 grid	36.00000 40.50000	15.75000 15.75000	125.30000 125.30000	0.33199 0.01113	125.13 125.13	621.81E-6 30.211E-6	0.13282	-5.2958E-6 -1.3264E-6
1 grid 1 grid 1 grid	45.00000 0.00000 4.50000	15.75000 17.50000 17.50000	125.30000 125.30000 125.30000	-0.02889 0.01514 0.40016	125.13 125.13 125.13	5.5221E-6 34.050E-6 330.29E-6	0.058481 0.18748 0.60640	0.0 -1.8727E-6 -6.0441E-6
1 grid 1 grid 1 grid	9.00000 13.50000	17.50000 17.50000	125.30000 125.30000 125.30000	3.63941 9.14570	125.13 125.13	0.13939 8.1189		-90.903E-6 132.64E-6
1 grid 1 grid	18.00000 22.50000	17.50000 17.50000	125.30000 125.30000	23.22515 6.04852	125.13 125.13	227.58 8.2268	464.88 31.321	0.0090060 180.39E-6
1 grid 1 grid	27.00000 31.50000	17.50000 17.50000	125.30000 125.30000	5.84488 5.18294	125.13 125.13	23.076 23.098	83.499 83.741	549.57E-6 548.45E-6
1 grid 1 grid	36.00000 40.50000	17.50000 17.50000	125.30000 125.30000	0.48067	125.13 125.13	0.0013160 36.494E-6	0.14181	-7.4440E-6 -1.4159E-6
1 grid 1 grid	45.00000 0.00000	17.50000 19.25000	125.30000 125.30000	-0.02774 0.00740	125.13 125.13	5.9106E-6 30.379E-6	0.059666 0.17666	0.0 -1.7648E-6
1 grid 1 grid	4.50000 9.00000	19.25000 19.25000	125.30000 125.30000	0.34301 3.45261	125.13 125.13	276.12E-6 0.13951	9.7677	-5.4511E-6 -89.306E-6
1 grid 1 grid 1 grid	13.50000 18.00000 22.50000	19.25000 19.25000 19.25000	125.30000 125.30000 125.30000	8.93271 11.42207 5.19677	125.13 125.13 125.13	8.1476 10.175 8.0423	36.803 62.893 26.581	120.83E-6 -18.413E-6 216.73E-6
1 grid 1 grid 1 grid	27.00000 31.50000	19.25000 19.25000	125.30000 125.30000	3.92343 3.68644	125.13 125.13	8.0321 8.0745	24.772 26.432	234.21E-6 220.15E-6
1 grid 1 grid	36.00000 40.50000	19.25000 19.25000	125.30000 125.30000	0.52793	125.13 125.13	0.0015678 38.247E-6	0.82353	-8.1413E-6 -1.4264E-6
1 grid 1 grid	45.00000 0.00000	19.25000 21.00000	125.30000 125.30000	-0.02714 -0.00242	125.13 125.13	5.9679E-6 25.873E-6		0.0 -1.6146E-6
1 grid 1 grid	4.50000 9.00000	21.00000 21.00000	125.30000 125.30000	0.26542 2.56896	125.13 125.13	211.12E-6 0.082578	6.6295	-4.6486E-6 -61.340E-6
1 grid 1 grid 1 grid	13.50000 18.00000 22.50000	21.00000 21.00000 21.00000	125.30000 125.30000 125.30000	11.78278 11.77677 9.39850	125.13 125.13 125.13	117.33 117.31 117.28	235.23 233.88 229.50	0.0046876 0.0046997 0.0047417
1 grid 1 grid 1 grid	27.00000 31.50000	21.00000 21.00000 21.00000	125.30000 125.30000 125.30000	6.40496 5.99374	125.13 125.13 125.13	75.833 75.839	149.86 149.76	0.0030513 0.0030528
1 grid 1 grid	36.00000 40.50000	21.00000 21.00000	125.30000 125.30000	0.43455	125.13 125.13	0.0011111 34.318E-6	0.67728 0.13493	-6.7061E-6 -1.3472E-6
1 grid 1 grid	45.00000 0.00000	22.75000	125.30000 125.30000	-0.02720 -0.01293	125.13 125.13	20.987E-6	0.057543 0.14391	0.0 -1.4378E-6
1 grid 1 grid	4.50000 9.00000	22.75000 22.75000	125.30000 125.30000	0.17790 1.24937	125.13 125.13	138.84E-6 0.0051239	1.8995	-3.7263E-6 -18.688E-6
1 grid 1 grid	18.00000	22.75000	125.30000	3.20090 3.29184	125.13 125.13	0.021742	5.2075	-51.175E-6 -50.770E-6
1 grid 1 grid 1 grid	22.50000 27.00000 31.50000	22.75000	125.30000 125.30000 125.30000	2.27773 1.60634 1.23694	125.13 125.13 125.13	0.018538 0.013024 0.012294	2.8473	-38.193E-6 -27.692E-6 -23.262E-6
1 grid 1 grid	36.00000	22.75000	125.30000 125.30000	0.27243	125.13	453.19E-6 26.816E-6	0.44298	-4.4026E-6 -1.2023E-6
1 grid 1 grid	45.00000	22.75000	125.30000 125.30000	-0.02776 -0.02262	125.13 125.13	5.0689E-6 16.300E-6	0.054411 0.12533	0.0 -1.2523E-6
1 grid 1 grid	4.50000 9.00000	24.50000 24.50000	125.30000 125.30000	0.09906 0.59814	125.13 125.13	82.340E-6 739.33E-6	0.84060	-2.8736E-6 -8.3616E-6
1 grid 1 grid	13.50000 18.00000	24.50000 24.50000	125.30000 125.30000	1.35922 1.44033 1.01815	125.13 125.13 125.13	0.0020765 0.0020521	1.7643	-16.789E-6 -17.520E-6 -13.277E-6
1 grid 1 grid 1 grid	22.50000 27.00000 31.50000	24.50000 24.50000 24.50000	125.30000 125.30000 125.30000	0.70993 0.49020	125.13 125.13 125.13	0.0015197 0.0011198 912.32E-6	0.99108	-9.8436E-6 -7.2523E-6
1 grid 1 grid 1 grid		24.50000 24.50000	125.30000 125.30000	0.13879	125.13 125.13	157.59E-6 19.022E-6	0.28049	-2.7954E-6 -1.0324E-6
1 grid 1 grid		24.50000 26.25000	125.30000 125.30000	-0.02848 -0.03032	125.13 125.13	4.3183E-6 12.263E-6	0.050375	0.0 -1.0734E-6
1 grid 1 grid	4.50000 9.00000	26.25000 26.25000	125.30000 125.30000	0.04001	125.13 125.13	47.649E-6 213.57E-6	0.21950	-2.1921E-6 -4.8039E-6
1 grid 1 grid	18.00000	26.25000	125.30000 125.30000	0.60155 0.65121	125.13 125.13	496.08E-6	0.81189 0.86804	-8.6507E-6
1 grid 1 grid	22.50000 27.00000	26.25000	125.30000 125.30000	0.47270 0.32135	125.13 125.13	367.06E-6 271.54E-6	0.69843	-6.9623E-6 -5.2548E-6 -3.7252E-6
1 grid 1 grid 1 grid	31.50000 36.00000 40.50000	26.25000	125.30000 125.30000 125.30000	0.20304 0.05528 -0.01685	125.13 125.13 125.13	198.87E-6 62.317E-6 12.865E-6	0.18966	-1.8929E-6
1 grid 1 grid 1 grid	45.00000 0.00000	26.25000	125.30000 125.30000 125.30000	-0.02903 -0.03551	125.13 125.13	3.5461E-6 9.0561E-6	0.045886	0.0
1 grid 1 grid	4.50000 9.00000	28.00000 28.00000	125.30000 125.30000	0.00129	125.13 125.13	28.179E-6 86.090E-6	0.16830 0.31064	-1.6813E-6 -3.1012E-6
1 grid 1 grid	13.50000 18.00000	28.00000 28.00000	125.30000 125.30000	0.25565	125.13 125.13	163.67E-6 174.87E-6	0.46659	-4.6561E-6 -5.0197E-6 -4.2576E-6
1 grid 1 grid	22.50000 27.00000	28.00000 28.00000	125.30000 125.30000	0.20623 0.13226	125.13 125.13	135.47E-6 100.17E-6	0.32957	-3.2897E-6
1 grid 1 grid	31.50000 36.00000		125.30000 125.30000	0.07236	125.13 125.13	69.447E-6 29.024E-6	0.13694	-2.3414E-6 -1.3677E-6
1 grid 1 grid	40.50000 45.00000 0.00000	28.00000 28.00000 29.75000	125.30000 125.30000 125.30000	-0.02477 -0.02919 -0.03825	125.13 125.13 125.13	8.6218E-6 2.8432E-6 6.6387E-6	0.072884 0.041321 0.076981	0.0
1 grid 1 grid 1 grid		29.75000 29.75000 29.75000	125.30000 125.30000 125.30000	-0.03825 -0.02155 0.02987	125.13 125.13 125.13	17.284E-6 41.587E-6	0.13060	-1.3050E-6 -2.1425E-6
1 grid 1 grid	13.50000 18.00000	29.75000 29.75000	125.30000 125.30000	0.09214	125.13 125.13	70.122E-6 76.031E-6	0.29768 0.32105	-2.9726E-6 -3.2059E-6
1 grid 1 grid	22.50000 27.00000	29.75000 29.75000	125.30000 125.30000	0.07297	125.13 125.13	61.894E-6 46.148E-6	0.28302 0.22445	-2.8265E-6 -2.2418E-6
1 grid 1 grid	31.50000 36.00000	29.75000 29.75000	125.30000 125.30000	0.01000 -0.01651	125.13 125.13	31.415E-6 15.441E-6	0.16311	-1.6292E-6 -1.0365E-6

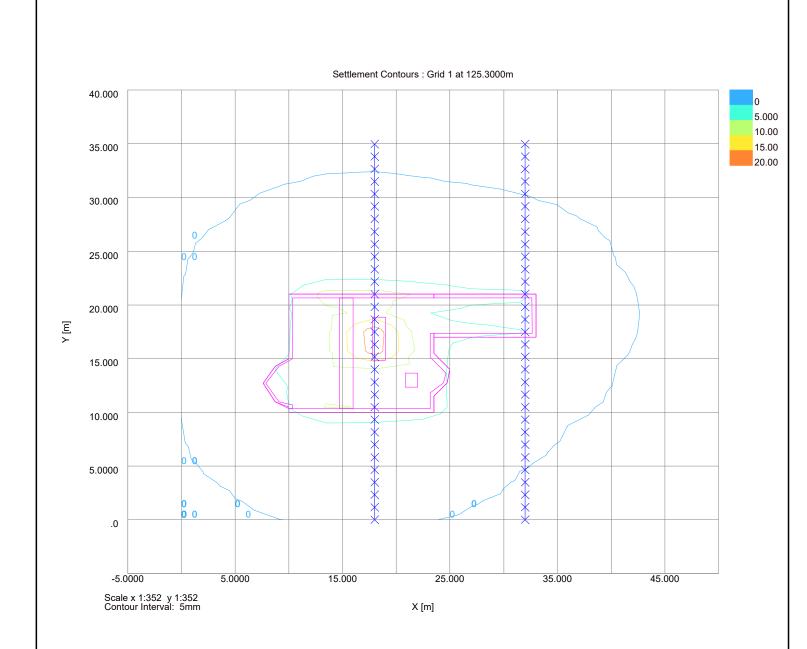
Vine House Hampstead NW3 1AB BIA and GMA

Job No.	Sheet No.	Rev.	
MGC-19-3	34		
Drg. Ref.			
Made by JGM	Date	Checked	

Ref.	Name	ж	У	z	δz	Stress: Calc. Level	Stress: Vertical	Stress: Sum Princ.	Vert. Strain
l .		[m]	[m]	[mOD]	[mm]	[mOD]	[kN/m ²]	[kN/m ²]	[µ]
1	grid	40.50000	29.75000	125.30000	-0.02937	125.13	5.8533E-6	0.061161	0.0
1	grid	45.00000	29.75000	125.30000	-0.02886	125.13	2.2502E-6	0.036938	0.0
1	grid	0.00000	31.50000	125.30000	-0.03899	125.13	4.8687E-6	0.064943	0.0
	grid	4.50000	31.50000	125.30000	-0.03356	125.13	11.005E-6		-1.0267E-6
1	grid	9.00000	31.50000	125.30000	-0.01186	125.13	22.499E-6	0.15513	-1.5499E-6
1	grid	13.50000	31.50000	125.30000	0.01455	125.13	34.711E-6	0.20341	-2.0320E-6
1	grid	18.00000	31.50000	125.30000	0.02074	125.13	37.851E-6		-2.1844E-6
1	grid	22.50000	31.50000	125.30000	0.00699	125.13	32.120E-6	0.19819	-1.9800E-6
1	grid	27.00000	31.50000	125.30000	-0.00823	125.13	24.346E-6		-1.6113E-6
1	grid	31.50000	31.50000	125.30000	-0.01959	125.13	16.641E-6	0.12035	-1.2025E-6
1	grid	36.00000	31.50000	125.30000	-0.02863	125.13	9.0712E-6	0.081295	0.0
1	grid	40.50000	31.50000	125.30000	-0.03139	125.13	4.0640E-6	0.051598	0.0
1	grid	45.00000	31.50000	125.30000	-0.02809	125.13	1.7724E-6	0.032882	0.0
	grid	0.00000		125.30000	-0.03826	125.13	3.5895E-6	0.054866	0.0
	grid	4.50000		125.30000	-0.03875	125.13	7.2481E-6	0.081930	0.0
	grid	9.00000	33.25000	125.30000	-0.03136	125.13	13.169E-6		-1.1604E-6
	grid	13.50000		125.30000	-0.02130	125.13	18.999E-6		-1.4583E-6
	grid	18.00000	33.25000	125.30000	-0.01895	125.13	20.727E-6		-1.5601E-6
	grid	22.50000	33.25000	125.30000	-0.02439	125.13	18.166E-6		-1.4426E-6
	grid	27.00000	33.25000	125.30000	-0.02990	125.13	14.060E-6		-1.2022E-6
	grid	31.50000	33.25000	125.30000	-0.03278	125.13	9.7692E-6	0.092253	0.0
	grid	36.00000	33.25000	125.30000	-0.03369	125.13	5.7321E-6	0.065267	
	grid	40.50000		125.30000	-0.03162	125.13	2.8918E-6	0.043809	0.0
	grid	45.00000		125.30000	-0.02695	125.13	1.3969E-6	0.029214	
	grid	0.00000		125.30000	-0.03657	125.13	2.6680E-6	0.046494	
	grid	4.50000	35.00000	125.30000	-0.03990	125.13	4.9187E-6	0.066178	
	grid	9.00000	35.00000	125.30000	-0.03921	125.13	8.1747E-6	0.089297	
	grid	13.50000	35.00000	125.30000	-0.03656	125.13	11.197E-6		-1.0856E-6
	grid	18.00000		125.30000	-0.03612	125.13	12.185E-6		-1.1551E-6
	grid	22.50000	35.00000	125.30000	-0.03793	125.13	10.946E-6		-1.0838E-6
	grid	27.00000	35.00000	125.30000	-0.03880	125.13	8.6621E-6	0.092301	0.0
	grid	31.50000	35.00000	125.30000	-0.03760	125.13	6.1554E-6	0.072633	0.0
	grid	36.00000		125.30000	-0.03489	125.13	3.8230E-6	0.053357	0.0
	grid	40.50000		125.30000	-0.03071	125.13	2.1061E-6	0.037434	0.0
1	arid	45 00000	32 00000	125 20000	_0 02557	125 12	1 1053E-6	0 025044	0.0

Results : Consolidation : Displacement Data : Grids


Results : Total : Displacement Data : Grids


Oasys

MAUND GEO-CONSULTING LTD

Vine House Hampstead NW3 1AB

BIA and GMA

