

4B Hampstead Hill Gardens. Camden, London.

SUSTAINABILITY ENERGY & SUSTAINABILITY REPORT

REVISION 0 - 19 DECEMBER 2019

Audit Sheet.

Rev.	Date	Description of change / purpose of issue	Prepared	Reviewed	Authorised
0	19/12/2019	Issue for planning submission	JD	LH	MW

This document has been prepared for Mr & Mrs Brearley only and solely for the purposes expressly defined herein. We owe no duty of care to any third parties in respect of its content. Therefore, unless expressly agreed by us in signed writing, we hereby exclude all liability to third parties, including liability for negligence, save only for liabilities that cannot be so excluded by operation of applicable law. The consequences of climate change and the effects of future changes in climatic conditions cannot be accurately predicted. This report has been based solely on the specific design assumptions and criteria stated herein.

Document reference: 191219 4b HHG Energy & Sustainability Report REV 0

2

Contents.

Audit Sheet.	2
Executive Summary.	4
1.1 The Site	5
1.2 Energy Hierarchy	5
1.3 Establishing CO ₂ Emissions	5
1.4 SAP 10 Carbon Emission Factors	5
2. Policy Requirements & Building Regulations.	6
2.1 Building Regulations	6
2.2 National Planning Guidance	6
2.3 Local Planning Guidance	6
3. Demand Reduction (Be Lean).	7
3.1 Passive Measures	7
3.2 Opaque Construction	7
3.3 Active Measures	7
3.4 Be Lean Results	7
3.5 Cooling and Overheating	7
4. Heating Infrastructure (Be Clean).	8
4.1 Area Wide Heat Networks	8
4.2 Site Wide Heat Networks	8
4.3 Be Clean Results	9
5. Renewable Energy (Be Green).	9
5.1 Solar Photovoltaics	9
5.2 Solar Water Heating Panels	9
5.3 Ground Source Heat Pumps	9
5.4 Biomass Boilers	10
5.5 Wind Turbines	10
5.6 Air Source Heat Pumps	10
5.7 Be Green Results	10
6. Sustainability.	11
6.1 Management	11
6.2 Health and Wellbeing	11
6.3 Energy	11
6.4 Transport	11

6.5 Water
6.6 Materials
6.7 Waste
6.8 Land Use and Ecology
6.9 Pollution
7. Conclusion.
7.1 Carbon Reduction
7.2 Sustainability

Appendix A: Be Lean TER & DER SAP Worksheet.

Appendix B: Be Green DER Worksheet.

 13 14
12
12
12
12
12
11
11

Executive Summary.

This report describes the Energy Strategy and Sustainability Statement for the proposed dwelling at 4b Hampstead Hill Gardens in the London Borough of Camden (LBC). A CGI of the proposed development is shown in Figure 1.

Figure 1 Proposed CGI (Credit GRID Architects)

Energy Targets

The proposed development is a single dwelling of approximately 210 m^2 and therefore not considered a *major* development as detailed in the Camden Local Plan. All development in Camden is expected to reduce carbon dioxide emissions by following the energy hierarchy in accordance with Local Plan policy CC1.

A summary of the key energy requirements for the Proposed Development are:

- 1. The Council will require all development to **minimise the effects of climate change** and encourage all developments to meet the highest feasible environmental standards that are financially viable during construction and occupation.
- 2. All new residential development is required to demonstrate a 19% CO₂ reduction below Part L 2013 Building Regulations.

Energy Strategy

The Energy Strategy will seek to achieve targets on site where feasible and will follow the Energy Hierarchy of Be Lean, Be Clean and Be Green to reduce the carbon dioxide emissions of the entire development. The regulated CO_2 emission reduction will be reported using the SAP 10 Carbon Factors, to represent the grid decarbonisation.

Be Lean: Passive Design and Energy Efficiency

As part of the Be Lean strategy, a range of passive and active energy efficiency measures are to be employed within the development.

The investigation into passive design addressed the issue of limiting the effects of heat gains in summer, associated cooling demand alongside the carbon emission targets.

Be Clean: Decentralised Energy

The first part of the Be Clean strategy is to establish if an area or local District Heating Network (DHN) can be used to serve the development with low carbon heating. Initial investigations have shown there are no existing or proposed DHN in proximity of the site.

Be Green: Low and Zero Carbon Technologies

Roof-mounted solar photovoltaic (PV) will be included in order to maximise the energy generation on site.

Results

The overall predicted reduction in CO₂ emissions from the Baseline development model (which is Part L1A 2013 compliant) is approximately 42%, which represents an annual saving of approximately 2 tonnes of CO_2 .

Figure 2 below sets out the Proposed Development reduction in CO_2 emissions in line with the Energy Hierarchy.

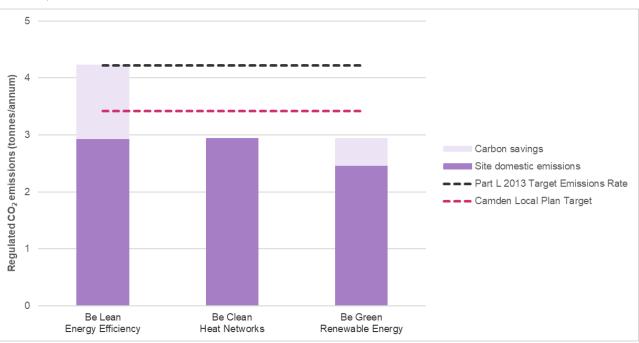


Figure 2 Proposed Development Energy Hierarchy

Sustainability

The wider sustainability measures include the following:

- The contractors will be selected with consideration of their ability to comply with the Considerate Constructors Scheme;
- Internal and external lighting will be designed to promote a healthy, and safe internal and external environment;
- Energy efficient light fittings will be installed for all external areas of the development. In addition, they will be automatically controlled for the prevention of operation during daylight hours:
- The proposed development will reduce potable water consumption through the specification of efficient sanitary ware; and
- Materials with a low environmental impact will be implemented where feasible.

1. Introduction.

1.1 The Site

The proposed development consists of the redevelopment of 1 new dwelling in Hampstead Hill Gardens, Camden. Hereafter referred to as the Proposed Development.

The site location (red line) is shown in Figure 3.

Figure 3: Site Plan (Credit: GRID Architects)

1.2 Energy Hierarchy

The energy assessment for the Proposed Development has taken a three-step approach to reducing the building's carbon dioxide emissions:

Be Lean	Reduce the building's energy requirements by incorporating passive design measures and reduce the building's energy consumption through the use of energy efficient mechanical and electrical engineering systems.
Be Clean	Reduce the building's carbon dioxide emissions by supplying energy more efficiently
Be Green	Reduce the building's carbon dioxide emissions through the use of renewable technologies.

The energy assessment comprised the following stages:

- Estimating a target for total regulated and unregulated annual energy consumption and CO₂ emissions of the Proposed Development. The estimates are based primarily on Part L approved software modelling results.
- Estimating savings in regulated annual energy consumption and CO₂ emissions of the Proposed Development through the incorporation of passive and active energy efficiency measures. The estimates are based primarily on Part L approved software modelling results.
- Estimating the potential contribution to carbon dioxide reductions that could be achieved by the use of energy networks.
- Estimating the potential contribution to carbon dioxide reductions that could be achieved by the use of renewable technologies.

1.3 Establishing CO₂ Emissions

The total regulated carbon emissions at each stage of the energy hierarchy and the percentage savings in regulated emissions over Part L 2013 of the Building Regulations compliant development will be calculated for the Proposed Development.

The first step of this assessment is to establish the regulated CO₂ emissions assuming the development complied with Part L1A 2013 of the Building Regulations using Building Regulations approved compliance software. Elmhurst Design SAP 2012 was used to assess these domestic areas.

The TER outputs from this assessment were then used to calculate the baseline carbon dioxide emissions, these can be located in Appendix A.

1.4 SAP 10 Carbon Emission Factors

In July of 2018, the BRE released an update to the Standard Assessment Procedure (SAP) – used to assess dwellings' compliance with Building Regulations - for consultation. This SAP 10 update incorporated amended carbon emission factors to reflect the decarbonisation of the grid and other national infrastructure changes.

The next update to Building Regulations Part L (likely to be adopted in 2020) will specify a completed update to the SAP methodology alongside the carbon factors associated with natural gas and electricity.

For the purpose of this energy strategy, the updated SAP 10 carbon factors have been used in order to quantify the carbon emission targets. As previously discussed, these carbon factors are a closer representation of the current carbon intensity of the electricity grid and therefore are more appropriate than the Part L 2013 carbon factors for estimating potential carbon emission savings.

2. Policy Requirements & Building Regulations.

Drivers of the energy and sustainability targets for the Proposed Development include national legislations, local planning policies and client aspirations. This section of the report outlines the energy and carbon emissions related targets for the project and identifies the design approach taken to achieve them.

2.1 Building Regulations

Part L Conservation of Fuel and Power deals with energy efficiency requirements in the Building Regulations. New domestic buildings are assessed under Approved Document Part L1A of the Building Regulations.

Part L1A 2013 of the Building Regulations

On a national level, Part L1A of the Building Regulations sets the energy efficiency requirements in new domestic buildings.

Under Building Regulations Approved Document Part L1A, compliance is achieved by demonstrating that the Dwelling Emission Rate (DER) does not exceed the Target Emission Rate (TER) and that the Dwelling Fabric Efficiency (DFEE) does not exceed the Target Fabric Efficiency (TFEE).

In addition, Part L1A also requires that the fabric elements and the fixed building services all meet minimum energy efficiency standards (Criterion 2), and reasonable provision for limiting solar gain through the building fabric (Criterion 3).

SAP 10.0
The Government's Standard Assessment Procedure for Energy Rating of Dwellings
Version 10.0
This version is not currently to be used for any official purpose
SAP 2012 should continue to be used for Building Regulations compliance and the production of EPCs until further notice
This density desides 5.0 series 17.0 (21.07) 2010. Indensities consisting to this version of 5.47 and any optimum of the publication density which follows
Prácilie de Martín de Will Fr Mill Genera Wales, MARS MARS Reminister di program anna gran (1) e Conse a oppigit 2016

SAP 10.0

The Government's Standard Assessment Procedure for Energy Rating of Dwellings Version 10.0 was released for information in July 2018. It is not currently to be used for any official purpose. However, some Local Authorities have already adopted elements of the methodology prior to it being introduced in the next version of Part

The carbon factors have been updated to reflect the current decarbonisation of the grid.

2.2 National Planning Guidance

The National Planning Policy Framework, February 2019

Ministry of Housing, Communities & Local Government	
National Planning Policy Framework	
February 2018 Ministry of Housing, Communities and Load Downward	

The National Planning Policy Framework (NPPF) was published in July 2018 and updated in February 2019. The NPPF sets out the Government's strategy on the delivery of sustainable development through the planning system. It provides a framework within which locally-prepared plans for housing and other development can be produced.

Planning law requires that applications for planning permission be determined in accordance with the development plan, unless material considerations indicate otherwise. The NPPF must be considered in preparing the development plan and is a material consideration in planning decisions. Planning policies and decisions must also reflect relevant international obligations and statutory requirements. The purpose of the planning system is to contribute to the achievement of sustainable development.

At a very high level, the objective of sustainable development can be summarised as meeting the needs of the present without compromising the ability of future generations to meet their own needs.

2.3 Local Planning Guidance

Camden Local Plan. 2017

Camden Local Plan

Camden Planning Guidance

adaptation

efficiency and

Energy

March 2019

Camden

Camder

The Local Plan ensures that Camden continues to have robust, effective and up-todate planning policies that respond to changing circumstances and the borough's unique characteristics and contribute to delivering the Camden Plan and other local priorities. The Local Plan will cover the period from 2016-2031.

Green Action for Change: Camden's environmental sustainability plan (2011-2020) commits Camden to a 27% borough wide Carbon Dioxide (CO_2) reduction by 2017 and a 40% borough wide CO₂ reduction by 2020 (London carbon reduction target). Over 90% of Camden's carbon dioxide emissions are produced by the operation of buildings.

- Policy CC1 Climate change mitigation
- Policy CC2 Adapting to climate change
- Policy CC3 Water and flooding
- Policy CC5 Waste
- Policy A3 Biodiversity

Camden Planning Advice (CPA) – Energy Efficiency and Adaption (March 2019)

The Council has prepared this Camden Planning Guidance (CPG) on Energy and resources to support the policies in the Camden Local Plan 2017. This guidance is therefore consistent with the Local Plan and forms a Supplementary Planning Document (SPD) which is an additional "material consideration" in planning decisions.

The following key messages appropriate to the development are highlighted below:

- hierarchy.

- Natural 'passive' measures should be prioritised over active measures to reduce energy.

- There are a variety of renewable energy technologies that can be installed to supplement a development's energy needs.
- All development in Camden is expected to reduce carbon dioxide emissions through the application of the energy hierarchy.
- All new build residential development (of 1 9 dwellings) must meet 19% carbon dioxide reduction:
- Proposals for substantial demolition should be justified in terms of the optimisation of resources and energy use, in comparison with the existing building.
- Where demolition cannot be avoided, developments are expected to divert 85% of waste from landfill (see paragraph 8.17 Local Plan).
- Development is expected to reduce overheating risk through following the steps in the cooling hierarchy. All new development should submit a statement demonstrating how the cooling hierarchy has been followed (Local Plan policy CC2).
- All developments should seek opportunities to make a positive contribution to green space provision or greening.

The following policies have been identified as being appropriate to the development:

- All development in Camden is expected to reduce carbon dioxide emissions by following the energy hierarchy in accordance with Local Plan policy CC1. - Energy strategies are to be designed following the steps set out in the energy

3. Demand Reduction (Be Lean).

A key principle of the design of this development is to provide environments that need minimal intervention of engineering systems to create comfortable spaces. All buildings should maximise the use of energy efficiently and to adopt energy conservation measures in the design, layout and orientation to reduce the overall energy demand.

To be succinct with the above, this energy strategy has considered passive design and energy efficient solutions at the forefront of the design. The Proposed Development is seeking to maximise the potential of the measures by the strategy outlined in the following sections.

3.1 Passive Measures

Passive design and energy efficiency measures form the basis for the reduction in overall energy demand and carbon emissions for the proposed development. This energy strategy aims to reduce the energy demand initially by optimising the envelope and building services within the development.

3.2 Opague Construction

The proposal is to maximise insulation on the external walls, resulting in good U-Values. Table 1 below details the U-value/construction types used within the model for the opaque constructions.

Table 1 Opaque Construction and U-values

•		Exposed Floor (W/m ² K)	Exposed Roof (W/m²K)	External Wall (W/m²K)	Walls to Unheated Spaces (W/m²K)	Walls to Heated Spaces
	Domestic	0.13	0.13	0.15	0.15	N/A

3.2.1 Glazing Specification

Investigations have been carried out to understand the optimum glazing specification to balance the requirements of Criterion 1 & 2 of Part L, alongside Criterion 3 (Solar Gains) and daylighting requirements.

Table 2 below details the glazing parameters used within the model for all glazing constructions.

Table 2 Glazing Specification

	U-Value (W/m²K)	G-Value	Fraction Glazed	Frame Factor	Light Transmittance
Domestic	1.10	0.42	80%	20%	70

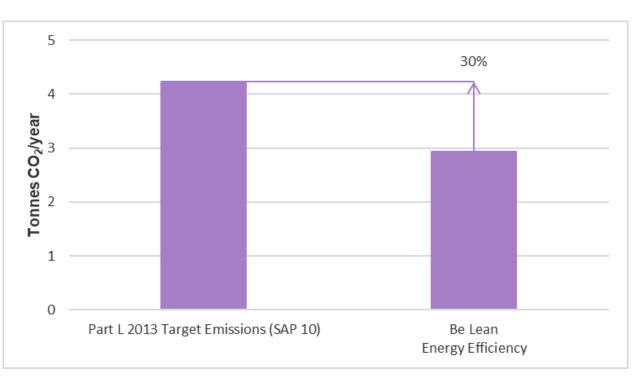
3.2.2 Thermal Mass Parameter

A low/medium thermal mass parameter has been assumed based on the proposed construction details.

3.2.3 Air Permeability

An air permeability of $3 \text{ m}^3/\text{hm}^2$ (@ 50Pa) has been assumed for the development.

3.3 Active Measures


The energy consumption of the development could be further reduced by the incorporation of active energy efficiency measures in the design of the mechanical and electrical engineering systems. The following energy efficiency measures will be considered for this development:

- Windows carefully designed to balance daylight, heat loss and heat gain;
- Efficient ventilation system with heat recovery; and
- Low energy lighting throughout.

3.4 Be Lean Results

The dwelling assessed to gain SAP results were taken from pre-planning issue drawings.

With the inclusion of all feasible passive and active design measures as detailed in Section 2 of the report Figure 4 below shows that the domestic regulated carbon dioxide emissions of the Energy Efficient Scheme are approximately 30% below that of the Baseline Scheme.

3.5 Cooling and Overheating

Policy CC1 states that major development proposals should reduce potential overheating and reliance on air conditioning systems and demonstrate this in accordance with the cooling hierarchy. This policy seeks to reduce the impact of the urban heat island effect.

Below are the steps of the hierarchy and the proposals to demonstrate compliance:

1. Minimise internal heat generation through energy efficient design.

- Heat generation will be minimised through the specification of an energy efficient ventilation system, insulation on pipework and low energy lighting.

2. Reduce the amount of heat entering a building in summer through orientation, shading, fenestration, albedo and insulation.

- The amount of heat entering the building will be reduced by:
- Energy efficient facades with appropriate proportions of glazing; and
- A glazing shading coefficient carefully selected to minimise solar gain in the summer, but also to maximise solar gain in winter.

3. Manage the heat within the building through exposed internal thermal mass and high ceilings.

- Due to the residential nature of the development there is a need to conceal services, which reduces the possibility of incorporating exposed internal thermal mass.

- Ceiling heights in the development have been maximised within the constraints of the overall building height and massing.

4. Passive Ventilation

- Passive Ventilation (openable windows) has been incorporated within the development. In addition, ventilation will be provided through infiltration.

5. Mechanical Ventilation

- Background ventilation will be provided by Mechanical Ventilation with Heat Recovery (MVHR). This unit will incorporate a summer by-pass, which will allow the unit to supply fresh air without heat being transferred from the extract air into the supply air.

6. Active Cooling Systems

- There is no comfort cooling proposed for the development

The dwelling has been designed to minimise internal gains as much as possible within the constraints of the overall architectural design. This includes optimised glazing to limit solar gain without a detrimental effect on beneficial solar gains for heating and the natural daylighting into the dwelling.

The lighting will be low energy fittings that minimise heat omitted to the space. All heating & domestic hot water pipework will be thermally insulated to best practice standards to limit heat given off to the space. Mechanical Ventilation with Heat Recovery systems will be provided incorporating a summer by-pass to allow the utilisation of the ventilation or summer time purge of the space.

4. Heating Infrastructure (Be Clean).

Be Clean measures are those which serve to reduce the overall emissions of the development by supplying energy efficiently.

This section addresses the requirements of London Plan policies 5.5 and 5.6.

4.1 Area Wide Heat Networks

The first step in selecting energy systems according to London Plan Policy 5.6 is to consider a connection to an existing heating and cooling network.

An investigation has been carried out to determine if there are any area wide heat networks currently existing in the area or if any are planned in the future. The London Heat Map for the area, shown in Figure 5 reveals that there is no existing or potential area wide heat networks in the vicinity of the proposed development site. As a result, it has been assumed that no connection is possible

The London Heat Map has identified that the proposed development is not located within an area that has the potential for decentralised energy.

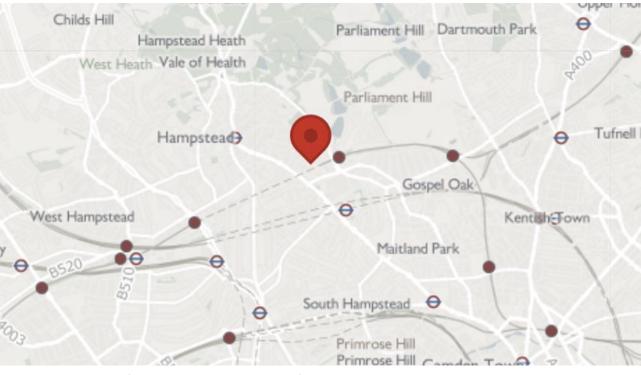


Figure 5 London Heat Map (Existing and Potential DH Networks)

4.2 Site Wide Heat Networks

Due to the development consisting of a single dwelling a central energy centre is not appropriate and therefore no site wide heat network can be established.

With the recognition that the generation of electricity is a much cleaner fuel now than it used to be due to the decarbonisation of the grid, along with the reduction of the electricity carbon factors, it is intended that the heating and hot water for the scheme will be provided by direct electric.

4.3 Be Clean Results

As detailed in Section 3 of the report there are no further measures that have been identified at the Be Clean stage, therefore Figure 6 shows the domestic regulated carbon dioxide emissions at the Be Clean stage remains the same as the Be Lean scheme. 30% below the baseline scheme.

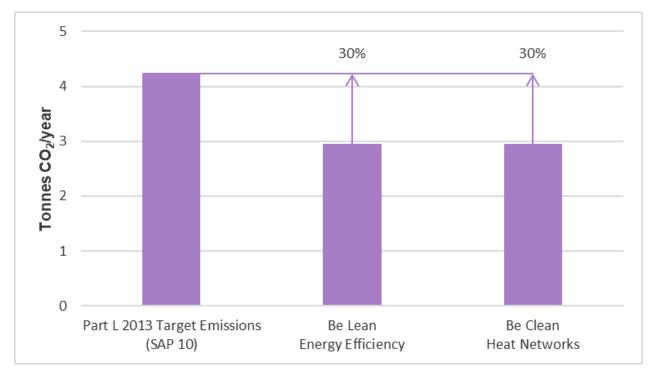


Figure 6 Site Wide Carbon Dioxide Emissions - Be Clean

5. Renewable Energy (Be Green).

Be Green measures are those which serve to reduce the overall emissions of the development through the inclusion of renewable technologies.

The Be Green DER Worksheet is located in Appendix B.

Another key principle of the design of this development is to maximise the carbon reduction over the long-term life of the building. The most effective way to achieve this is through renewable technologies. These measures are those which serve to reduce the overall emissions of the development through the inclusion of these renewable technologies such as Solar Photovoltaic array (PV panels), Ground Source Heat Pump (GSHP), besides others.

A number of renewable technologies have been appraised in terms of technical and physical feasibility as potential renewable systems for use on the project.

Solar photovoltaic (PV) cells generate electricity from the sun's energy. Solid PV panels can be either roof or façade mounted (although solar modules fitted on a south facing façade have only 75% the output of roof mounted modules).

Solar PV can be seen as an on-site zero carbon energy source as it will produce useable electrical energy without requiring any energy input. Although the output from the panels is unpredictable and weather dependent, the electrical energy produced by Solar PV panels could be used to provide additional carbon emission reductions and are compatible with the use of other energy generating technologies. Once installed they are very low maintenance

and will also have a low visual impact at street level. In addition, this development has suitable south facing roof space available.

Taking the above into account, solar PV is considered an appropriate technology for this development and will be adopted into the site.

Closed Loop System:

5.2 Solar Water Heating Panels

Solar water heating systems use heat from the sun to heat domestic hot water. The system requires solar panels on the roof, ideally south facing, linked to hot water storage cylinders. For solar water panels to be effective the development should have a high hot water demand.

This development has suitable south facing roof space available

and has a high hot water demand due to the residential nature of the development, which initially makes this technology suitable for this development. However the panels have a higher maintenance than PV and they are highly dependent on the weather/season, arguably more so than photovoltaics. leading to unpredictability with the hot water load. In addition, the heat gained from the panels cannot be sold back to the grid and so if the hot water is not used once it has been produced it will eventually be wasted.

Due to the reasons highlighted above, solar water heating panels are therefore not proposed for this development.

5.3 Ground Source Heat Pumps

Ground source heat pumps (GSHP) utilise either water extracted from an aquifer (open loop) or water circulated within underground pipework (closed loop) as the heat source in a refrigeration process. This enables them to produce hot water, typically at around 45°C that can be used as means of space heating in buildings. Due to the relatively constant temperature of the ground at depth (typically 10-14°C in the UK) this produces heat more efficiently in winter than an air source heat pump, and usually with lower carbon emissions than a gas-fired boiler.

Open loop systems require the water extracted to be re-injected into the aguifer at another borehole on another part of the site. A licence from the

Environment Agency (EA) is required for both abstraction and discharge although these licences cannot be obtained until a test borehole has been constructed and the appropriate EA tests undertaken.

The high capital cost and the configuration of the site makes the use of GSHPs unsuitable due to the relatively small area available for ground coupling. GSHP is therefore not proposed for the development.

5.1 Solar Photovoltaics

4B HAMPSTEAD HILL GARDENS

SUSTAINABILITY ENERGY & SUSTAINABILITY REPORT - REV. 0

5.4 Biomass Boilers

A biomass boiler uses a natural fuel such as wood chips or wood pellets for combustion. Since it uses a natural resource that can be replanted it is considered as a renewable energy source subject to the distance the fuel is transported. The carbon dioxide emitted from burning biomass is balanced by that absorbed during the fuel's production. Biomass heating therefore approaches a carbon neutral process.

The primary disadvantage of a biomass boiler is that it would require a substantial amount of fuel storage for a development of this size, which would make for an inefficient use of space. Further to this, regular deliveries are required to ensure the boiler works as efficiently and continuously as possible and biomass exhaust gases would require significant treatment to avoid degrading local air quality. In addition, the nature of the fuel within the boiler would require regular cleaning which would increase the downtime of the boiler, whilst also effecting air quality through the

emissions.

Due to the reasons highlighted above, biomass boilers are therefore not proposed for the development.

5.5 Wind Turbines

Wind turbines use the wind's lift forces to turn aerodynamic blades that turn a rotor thus generating electricity. There are three basic types to consider: horizontal axis (propeller type), vertical access (helical type) and building integrated (where the building design is adapted to suit the wind turbine).

Wind turbines have a significant visual impact and the roof space will be sensitive in townscape terms, which is likely to preclude wind turbines. They can create noise and vibration problems. Additionally, there is limited roof area across the site where clean air flows and good wind speeds can be realised and which are vital to delivering a

useful electrical output. Even if a suitable location could be found, the output of a wind turbine and the consequential carbon dioxide emissions will be very limited when compared to the emissions of the whole development.

Due to the reasons highlighted above, wind turbines are therefore not proposed for the development.

5.6 Air Source Heat Pumps

Air Source Heat Pumps (ASHP) employ the same technology as Ground Source Heat Pumps (GSHP). However, instead of using heat exchangers buried in the ground, heat is extracted from the external ambient air.

The efficiency of heat pumps is very much dependent on the temperature difference between the heat source and the space required to be heated. As a result, ASHPs tend to have a lower Coefficient of Performance (COP) than GSHP. This is due to the varying levels of air temperature throughout the year when compared to the relatively stable ground temperature. The lower the difference between internal and external air temperature, the more efficient the system. The use of ASHPs will also impact on rights of light and outside space for the occupant, whilst also being a source of noise to local residents.

Taking the above into account, ASHP is not considered an appropriate technology for this development.

5.7 Be Green Results

With the inclusion of the contribution of the PV Array, Figure 7 below shows the estimated reduction in domestic regulated carbon dioxide emissions is 42% below the baseline scheme.

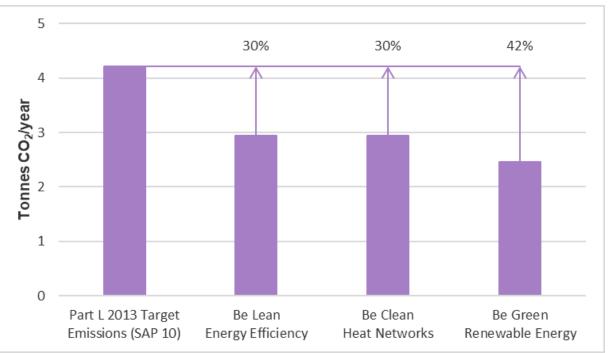


Figure 7 Site Wide Carbon Dioxide Emissions - Be Green

6. Sustainability.

Sustainability has been a key design consideration for this development from the outset of the project. Consideration has been given to the impact of the design proposals and measures with regard to the sustainable credentials of the development throughout the design development to date and will continue throughout the design and construction process going forwards.

The following is a summary of the key sustainability issues for the overall strategy for the project.

6.1 Management

To encourage an integrated design process, the project delivery stakeholders will identify and define roles. responsibilities for each of the key phases of project delivery.

To ensure that the construction site is managed in an environmentally and socially considerate, responsible and accountable manner, the contractor will be selected with consideration of their ability to comply with the Considerate Constructors Scheme.

6.2 Health and Wellbeing

The development will be designed to encourage a healthy and safe internal and external environment.

All external lighting will be photocell and time controlled. Luminaires will be carefully selected to limit night sky pollution.

6.3 Energy

An overall carbon reduction of 42% over Part L 2013 has been targeted. This reduction in carbon dioxide emissions will be achieved through the incorporation of passive and active energy efficiency measures and the inclusion of a PV Array.

Please refer to Sections 2-5 for further details on the performance.

Energy efficient light fittings will be installed for all external areas of the development.

Heat recovery will be incorporated into the mechanical ventilation reducing the overall energy demand.

6.4 Transport

The application site is located at 4b Hampstead Hill Gardens, which is to the north of the London Borough of Camden (LBC), within the Hampstead Town Ward of the Borough.

Hampstead Hill Gardens forms a loop between Pond Street and Rosslyn Hill and is within a few minutes' walk of Hampstead Heath, Hampstead Heath Railway Station, Hampstead Village, Belsize Park Underground and Hampstead Underground.

Figure 8 below demonstrates that the PTAL rating for the site is 4.

You can click anywhere on the map to change the selected location.

PTAL output for Base Year 4

NW3 2PL

Hampstead Hill Gardens, Hampstead, London NW3 2PL, UK Easting: 527016, Northing: 185543

Figure 8 PTAL Image

Cycle storage is housed in a secure enclosure against the existing boundary wall to 4b.

6.5 Water

Reducing the consumption of potable water will be a significant consideration in the design process. Water use will be reduced as much as possible mainly through the specification of efficient sanitary ware.

The dwelling will be designed to comply with the requirements of Building Regulations Part G.

A water meter will be specified on the mains water supply to the building, ensuring that water consumption can be monitored and managed and therefore encourage reductions.

6.6 Materials

Materials with low environmental impact will be implemented were feasible. Recycled, sustainable and locally sourced materials will be used where possible.

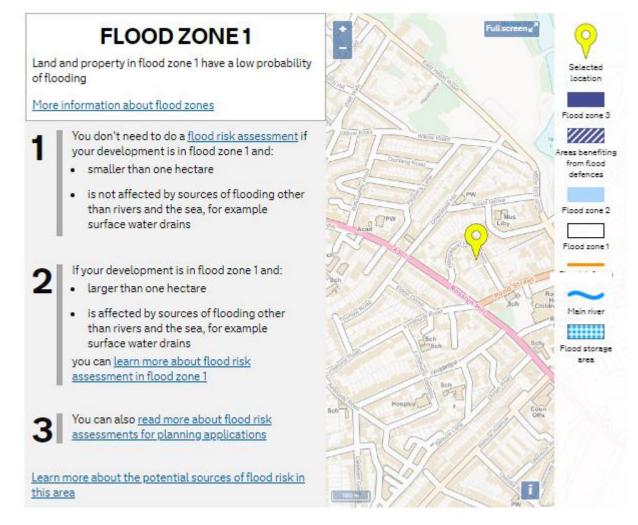
Thermal insulation used in the building fabric and services will be selected with consideration of their embodied environmental impact relative to its thermal properties.

6.7 Waste

Storage facilities for waste and recycling will be provided in accordance with, as a minimum, BS5906.

The refuse and recyclable storage will be located on hard, level surface and easily accessible to all users.

In line with the Local Plan requirements, the development will divert a minimum of 85% of waste from landfill.



6.8 Land Use and Ecology

At least 75% of the proposed development's footprint is on an area of land which has previously been occupied by an existing building.

6.9 Pollution

The site is located in Flood Zone 1 as demonstrated in Figure 9 below and will not lead to an increase in surface water run-off; this principle will be followed as far as possible within the drainage design.

Figure 9 Flood Zone Map

Permeable paving has been adopted into design for the hard-landscaping at the front of the property to assist with reducing surface water run-off, compared with the existing development.

External lighting will be designed to ensure upward lighting is minimised, reducing unnecessary light pollution, energy consumption and nuisance to neighbouring properties.

7. Conclusion.

An energy assessment has been undertaken in line with LBC guidance to address the Camden Local Plan.

A range of passive and active energy efficiency measures will be employed on the Proposed Development.

Considering there is no opportunity for connection to a local DHN, provision of standalone heating plant to supply all the heat requirements of the development will be proposed.

For the Be Green stage a number of renewable technologies were appraised in terms of their technical, physical and financial feasibility, as potential renewable systems for use on the project. The technology which best suited the Proposed Development is Photovoltaics (PV).

7.1 Carbon Reduction

The requirement of Camden's Local Plan (Policy CC1) is 19% below Part L 2013

The CO₂ emissions after the incorporation of the passive and active energy efficiency measures (Be Lean) are 30% lower than a Part L1A compliant development.

No Be Clean measures have been identified for inclusion in the development and therefore there is no further carbon reduction at this stage.

Be Green measures include a PV Array. This renewable technology is delivering an additional 12% reduction over the Be Lean case.

The reduction in CO_2 emissions from the Baseline development model (which is Part L1A 2013 compliant) is approximately 42% which represents an annual saving of approximately 2 tonnes of CO_2 .

Figure 10 below sets out how the proposed domestic energy efficiency measures and LZC systems reduce CO₂ emissions in line with the CPA Guidance.

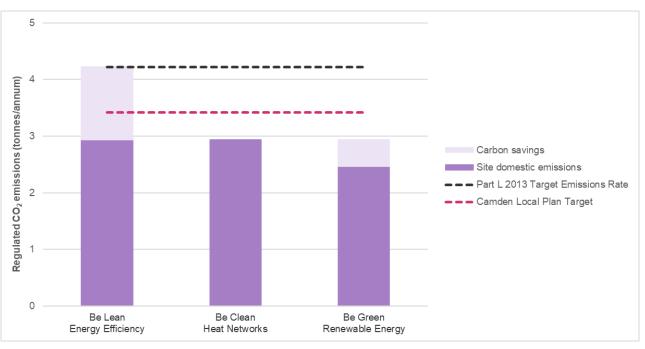


Figure 10 The Energy Hierarchy and targets

Table 3 below shows the CO₂ emissions breakdown and Table 4 shows the percentage breakdown at each stage of the hierarchy.

Table 3 CO₂ Emissions Breakdown

	Carbon Dioxide Emissions (tonnes CO ₂ per annum)					
	Regulated	Unregulated				
Baseline: Part L1A 2013 Compliant Development	4	1				
After energy demand reduction (Be Lean)	3	1				
After heat network (Be Clean)	3	1				
After renewable energy (Be Green)	2	1				

Table 4 CO₂ Emissions Savings

	Regulated Carbon Dic	Regulated Carbon Dioxide Savings				
	(Tonnes CO ₂ per annum)	(%)				
Savings from energy demand reduction	1	30%				
Savings from heat network	0	0%				
Savings from renewable energy	1	12%				
Cumulative on-site savings	2	42%				

7.2 Sustainability

The sustainability measures include the following:

- The project design team will identify and define roles, responsibilities of each of the key phases of project delivery;
- The contractors will be selected with consideration of their ability to comply with the Considerate Constructors Scheme;
- Internal and external lighting will be designed to promote a healthy, and safe internal and external environment;
- Energy efficient light fittings will be installed for all external areas of the development. In addition, they will be automatically controlled for the prevention of operation during daylight hours;
- The proposed development will reduce potable water consumption through the specification of efficient sanitary ware;
- Materials with a low environmental impact will be implemented where feasible; and
- External lighting will be designed to reduce night time light pollution.

13

4B HAMPSTEAD HILL GARDENS

SUSTAINABILITY ENERGY & SUSTAINABILITY REPORT - REV. 0

Appendix A: Be Lean TER & DER SAP Worksheet.

14

Calculation Type: New Build (As Designed)

Design SAP elmhurst energy

Property Reference 4B HH Issued on Date 18/12/2019 Assessment V01 Prop Type Ref 01 Reference Property SAP Ratin 65 D 31.62 TER 21.91 % DER<TER -44.29 Environmental 68 D CO₂ Emissions (t/year DFEE 56.65 56.34 5.32 General Requirements Compliance -0.56 Fail % DFEE<TFEE Assessor Details Mr. Liam Holden, Liam Holden, Tel: 01202 654600, Assessor ID P624-0001 liamholden@hoarelea.com Client

FULL SAP CALCULATION PRINTOUT Calculation Type: New Build (As Designed)

REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England DWELLING AS DESIGNED Semi-Detached House, total floor area 207 m² This report covers items included within the SAP calculations. It is not a complete report of regulations compliance. The TER and DER Fuel for main heating:Electricity Fuel factor:1.55 (electricity) Target Carbon Dioxide Emission Rate (TER) 21.91 kgCO[/m² Dwelling Carbon Dioxide Emission Rate (DER) 31.62 kgCO/m²Fail Excess emissions =9.71 kgCO/m² (44.3%) D TFEE and DFEE Target Fabric Energy Efficiency (TFEE)56.3 kWh/m⁺/yr Dwelling Fabric Energy Efficiency (DFEE)56.7 kWh/m⁺/yrFail Excess energy -0.4 kWh/m⁺/yr (0.7%) 2 Fabric U-values Element Average External wall 0.15 (max. 0.30) Party wall 0.00 (max. 0.20) Floor 0.13 (max. 0.25) Highest 0.15 (max. 0.70) OK OK OK 0.13 (max. 0.70) Roof 0.13 (max. 0.20) 0.13 (max. 0.35) OK Openings and curtain wall 0.92 (max. 2.00) 2.00 (max. 3.30) OK 2a Thermal bridging Thermal bridging calculated using default y-value of 0.15 3 Air permeability Air permeability at 50 pascals: Maximum 3.00 (design value) 10.0 OK 4 Heating efficiency Main heating system: Electric une Underfloor heating in thin screed (standard tariff) Electric underfloor heating - Electric Secondary heating system: None 5 Cylinder insulation Hot water storage Permitted by DBSCG 2.86 Primary pipework insulated: Measured cylinder loss: 1.89 kWh/day No primary pipework 6 Controls Space heating controls: Time and temperature zone control Hot water controls: Cylinderstat OK 7 Low energy lights Percentage of fixed lights with low-energy fittings:100% Minimum 75% OK 8 Mechanical ventilation Continuous supply and extract system Specific fan power: 0.66 1.5 93% 70% OK Maximum MVHR efficiency: Minimum: OK 9 Summertime temperature Overheating risk (Thames Valley): Based on: Overshading: Not significant OK Average Overshading: Windows facing South East: Windows facing South West: Windows facing North West: Air change rate: Blinds/curtains: Average 14.86 m², No overhang 11.60 m², Voerhang 11.60 m², Voerhang width less than twice window, ratio 0.70 8.00 ach Dark-coloured curtain or roller blind, closed 100% of daylight hours 10 Kev features Party wall U-value Party wall U-value Window U-value Roof window U-value 0.00 W/m²K 0.00 W/m²K 1.10 W/m²K 1.10 W/m²K 3.0 m²/m²h Air permeability

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.11r11

Page 2 of 9

Calculation Type: New Build (As Designed)

Design SAP elmhurst energy

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

1. Overall dwelling dimensions									
		Area (m2)	Storey	height (m)			Volume (m3)		
Ground floor		52.9900 (1b)	x	2.5300	(2b)	-	134.0647	(1b)	- (3b)
First floor		52.5400 (1c)	x	2.6500	(2c)	-	139.2310	(1c)	- (3c)
Second floor		55.5900 (1d)	x	2.5000	(2d)	-	138.9750	(1d)	- (3d)
Third floor		45.9300 (le)	x	2.5900	(2e)	-	118.9587	(1e)	- (3e)
Total floor area TFA = $(1a) + (1b) + (1c) + (1d) + (1e) \dots (1n)$ Dwelling volume	207.0500	(3a) + (3	b)+(3c)+(3	d)+(3e)	(3n)	-	531.2294	(4) (5)	

2. Ventilation rate

					main heating		econdary heating		other	total	L m3	per hour	
Number of chimn	evs				0	+	0	+	0 -	() * 40 =	0.0000	(6a)
Number of open					0	+	õ	+	0 =) * 20 =	0.0000	
Number of inter					-		-		-) * 10 =	0.0000	
Number of passi		15) * 10 =	0.0000	
Number of fluel	ess gas fil	:es								() * 40 =	0.0000	(7c)
											Air changes		
Infiltration du	e to chimne	eys, flues a	ind fans =	<pre>(6a)+(6b)+</pre>	(7a) + (7b) + (7c) =				0.0000 /	(5) =	0.0000	(8)
Pressure test												Yes	
Measured/design	AP50											3.0000	
Infiltration ra	te											0.1500	(18)
Number of sides	sheltered											2	(19)
Shelter factor									(20) = 1 -	[0.075 x	(19)1 =	0.8500	(20)
Infiltration ra	to adjuster	to include	shaltar fo	etor						$(0.010)_{x}$		0.1275	
1011111111111111111	tee aajastee	1 00 1001000		10001					(2.	1) - (10) X	(20) -	0.12/0	(22)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Wind speed	5.1000	5.0000	4.9000	4,4000	4.3000	3.8000	3.8000	3.7000	4.0000	4.3000	4.5000	4.7000	(22)
Wind factor	1.2750	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1750	
Adj infilt rate		1.2500	1.2250	1.1000	1.0/50	0.9500	0.9500	0.9250	1.0000	1.0/50	1.1250	1.1/50	(228)
Adj infilt fate													
	0.1626	0.1594	0.1562	0.1403	0.1371	0.1211	0.1211	0.1179	0.1275	0.1371	0.1434	0.1498	(22b)
Balanced mecha			heat recou	very									
If mechanical v												0.5000	
If balanced wit	h heat reco	overy: effic	iency in %	allowing fo	r in-use fa	ctor (from	n Table 4h)	-				65.1000	(23c)
Effective ac	0.3371	0.3339	0.3307	0.3148	0.3116	0.2956	0.2956	0.2924	0.3020	0.3116	0.3179	0.3243	(25)

3. Heat losses and heat loss parameter

Element	Gross	Openings	Net	Area	U-value	A x		-value	A x K	
	m2	m2		m2	W/m2K	W/	K	kJ/m2K	kJ/K	
Windows (Uw = 1.10)			28.	5900	1.0536	30.123	6			(27)
Doors			2.	9000	2.0000	5.800	0			(26)
Rooflights (Uw = 1.10)			2.	8400	1.0536	2.992	3			(27a)
Heat Loss Floor 1			49.	5400	0.1300	6.440	2			(28)
Heat Loss Floor 2			3.	4500	0.1300	0.448	5			(28b)
Basement Wall	90.5500		90.	5500	0.1500	13.582	5			(29a)
External Wall 1	75.3500	31,4900	43	8600	0.1500	6.579	0			(29a)
External Wall 2	66.4400			4400	0.1500	9,966				(29a)
External Wall 3	75.4000		75.	4000	0.1500	11.310	0			(29a)
Curtain Walling	13.0800		13	0800	0.2500	3.270	0			(29a)
External Roof 1	6.0600	2.8400		2200	0.1300	0.418				(30)
External Roof 2	9.6500			6500	0.1300	1.254				(30)
External Roof 3	45.9900			9900	0.1300	5.978				(30)
Total net area of external elements Au				5100						(31)
Fabric heat loss, W/K = Sum (A x U)					30) + (32) =	98.163	9			(33)
Party Wall 1			17	.2800	0.0000	0.000				(32)
Party Wall 2				0500	0.0000	0.000				(32)
Party Floor 1				5400	0.0000	0.000				(32d)
Party Floor 2				1400						(32d)
Party Floor 3				9300						(32d)
Party Ceilings 1				9300						(32b)
Party Ceilings 1 Party Ceilings 2				.5400						(32b)
Party Ceilings 3				9400						(32b)
raity ceriings 5			40.	5400						(320)
Thermal mass parameter (TMP = Cm / TFA)	in kT/m2K								175.0000	(35)
Thermal bridges (Default value 0.150 *		`							65.3265	
Total fabric heat loss	cotur exposed area	,					(22)	+ (36) =	163.4904	
iotal labiit Heat 1055							(55)	+ (50) =	103.4504	(37)
Ventilation heat loss calculated month:	$1 \times (38) m = 0.33 \times (38) m =$	25)m x (5)								
Jan Feb	Mar Apr		Jun	Jul	Aug	Sep	Oct	Nov	Dec	
	57.9714 55.1775			51.8247	51.2660		54.6187	55.7363	56.8538	(38)
Heat transfer coeff	57.5714 55.1775	54.0107	51.0247	51.0247	51.2000	52.5425	54.0107	33.7303	50.0550	(30)
222.5794 222.0206 22	21.4618 218.6679	218.1091	215.3151	215.3151	214.7564	216.4327	218.1091	219.2267	220.3442	(39)
Average = Sum(39)m / 12 =	210.0075	210.1001	210.0101	210.0101	224.7504	210.4327	210.1051	210.2201	218.5282	
Average - bum(b)/m / 11 -									210.5202	(33)
Jan Feb	Mar Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
	1.0696 1.0561		1.0399	1.0399	1.0372	1.0453	1.0534	1.0588	1.0642	(40)
HLP (average)		2.0004		2.0000		2.0400	2.0004	2.0000	1.0554	
Davs in month									2.0004	
bays an monon										

Page 3 of 9

Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.11r11

Regs Region: England

FULL SAP CALCULATION PRINTOUT

Design SAP elmhurst energy

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

 31
 28
 31
 30
 31
 31
 30
 31
 30
 31
 41)

Assumed occup Average daily		use (litres	/day)									3.0111 111.2773	
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot wate		117.9539	113.5028	109.0517	104.6006	100.1495	100.1495	104.6006	109.0517	113.5028	117.9539	122.4050	
Energy conte	122.4050	158.7613	163.8274	142.8287	137.0475	118.2616	100.1495	125.7524	127.2543	113.5028	161.8839	175.7954	
Energy conte Energy conten!		100./013	103.02/4	142.020/	137.0475	110.2010	109.3808	123./324	127.2045	Total = S		1750.8249	
Distribution :		- 0 15 (4.5.) m							Total = S	um(45)m =	1/30.8249	(45
DISCIIDUCION .	27.2285		24.5741	21.4243	20.5571	17.7392	16.4380	18.8629	19.0881	22.2454	24.2826	26.3693	105
Water storage		23.0142	24.3/41	21.4245	20.3371	17.7352	10.4300	10.0025	19.0001	22.2434	24.2020	20.3055	(40)
Store volume	1000.											300.0000	(47)
a) If manufa	cturer decl	ared loss f	actor is kn	own (kWh/d	av) •							1.8900	
Temperature				(,	-1),.							0.6000	
Enter (49) or												1.1340	
Total storage	1088												
	35,1540	31.7520	35.1540	34.0200	35,1540	34.0200	35.1540	35.1540	34.0200	35.1540	34.0200	35.1540	(56)
If cylinder co	ontains ded	icated sola	r storage										
	35.1540	31.7520	35.1540	34.0200	35.1540	34.0200	35.1540	35.1540	34.0200	35.1540	34.0200	35.1540	(57)
Primary loss	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(59)
Total heat rea													
	216.6771	190.5133	198.9814	176.8487	172.2015	152.2816	144.7408	160.9064	161.2743	183.4566	195.9039	210.9494	(62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63)
								Solar inp	ut (sum of	months) = S	um(63)m =	0.0000	(63)
Output from w.													
	216.6771	190.5133	198.9814	176.8487	172.2015	152.2816	144.7408	160.9064	161.2743	183.4566	195.9039	210.9494	(64)
								Total p	er year (kW	h/year) = S	um (64) m =	2164.7349	(64)
Heat gains fro													
	88.4796	78.1897	82.5958	74.7065	73.6915	66.5380	64.5608	69.9359	69.5280	77.4338	81.0424	86.5752	(65)

5. Internal g	ains (see Ta	able 5 and 1	5a)										
Metabolic gai	ns (Table 5)). Watts											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(66) m	150.5546	150.5546	150.5546	150.5546	150.5546	150.5546	150.5546	150.5546	150.5546	150.5546	150.5546	150.5546	(66)
Lighting gain	s (calculate	ed in Appen	dix L, equa	tion L9 or	L9a), also	see Table 5							
	34.4954	30.6385	24.9169	18.8637	14.1008	11.9045	12.8632	16.7201	22.4417	28.4949	33.2578	35.4541	(67)
Appliances ga	ins (calcula	ated in App	endix L, eq	uation L13	or L13a), a	lso see Tab	le 5						
	377.6972	381.6165	371.7400	350.7140	324.1724	299.2271	282.5621	278.6428	288.5193	309.5453	336.0869	361.0322	(68)
Cooking gains	(calculated	d in Append	ix L, equat	ion L15 or	L15a), also	see Table	5						
	38.0555	38.0555	38.0555	38.0555	38.0555	38.0555	38.0555	38.0555	38.0555	38.0555	38.0555	38.0555	
Pumps, fans	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(70)
Losses e.g. e													
			-120.4436	-120.4436	-120.4436	-120.4436	-120.4436	-120.4436	-120.4436	-120.4436	-120.4436	-120.4436	(71)
Water heating													
		116.3537	111.0159	103.7591	99.0477	92.4139	86.7753	93.9998	96.5667	104.0777	112.5589	116.3645	(72)
Total interna													
	599.2832	596.7751	575.8391	541.5031	505.4873	471.7119	450.3670	457.5291	475.6942	510.2844	550.0699	581.0172	(73)

Jan]		Ar	m2	Solar flux Table 6a W/m2	Specific or Tab		Specific or Tab		Acce facto Table (or	Gains W
outheast	 	14.86		36.7938		.4200		.8000	0.77		127.3111
outhwest		2.13		36.7938		1.4200		.8000	0.77		18.2485
lorthwest		11.60	000	11.2829	c	.4200	0	.8000	0.77	00	30.4756
lorizontal		2.84	100	26.0000	C	.4200	0	.8000	1.00	00	22.3292

	21.0000 (85
New	21.0000 (85
	21.0000 (85
17	
	Dec
63 45.9111	45.6782
64 4.0607	4.0452
50 0.9969	0.9988 (86
04 19.9037	19.5881 (87
91 20.0346	20.0302 (88
92 0.9960	0.9984 (89
56 18.5698	18.1046 (90
area / (4) =	0.1037 (91
43 18.7081	18.2584 (92
	0.0000
43 18.7081	18.2584 (9)
6 57 00 0 57 8 4	64 4.0607 50 0.9969 04 19.9037 91 20.0346 92 0.9960 56 18.5698 area / (4) = 43 48.7081

Page 4 of 9

Calculation Type: New Build (As Designed)

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

8. Space heating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9968	0.9933	0.9839	0.9554	0.8815	0.7277	0.5397	0.6046	0.8550	0.9725	0.9940	0.9976	(94)
Useful gains	795.1331	946.7437	1091.4890	1217.3970	1223.4935	999.7423	706.6211	726.3886	921.7136	891.6081	786.3483	746.6928	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rat	e W												
	3111.3016	3012.5744	2723.6704	2263.9946	1736.8703	1150.9807	738.8915	777.4341	1237.1361	1894.1221	2544.8004	3097.6966	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	(97a)
Space heating	kWh												
	1723.2294	1388.2383	1214.3429	753.5503	381.9523	0.0000	0.0000	0.0000	0.0000	745.8705	1266.0855	1749.1468	(98)
Space heating												9222.4161	(98)
Space heating	per m2									(98) / (4) =	44.5420	(99)

8c. Space	cooling	requirement	
-----------	---------	-------------	--

Calculated for	June, July	and August.	. See Table	10b									
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Ext. temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	
Heat loss rate	W												
	0.0000	0.0000	0.0000	0.0000	0.0000	2023.9624	1593.3321	1632.1483	0.0000	0.0000	0.0000	0.0000	(100)
Utilisation	0.0000	0.0000	0.0000	0.0000	0.0000	0.7317	0.8145	0.7737	0.0000	0.0000	0.0000	0.0000	(101)
Useful loss	0.0000	0.0000	0.0000	0.0000	0.0000	1480.9842	1297.7030	1262.8376	0.0000	0.0000	0.0000	0.0000	(102)
Total gains	0.0000	0.0000	0.0000	0.0000	0.0000	1710.6196	1633.6116	1514.8072	0.0000	0.0000	0.0000	0.0000	(103)
Month fracti	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	(103a
Space cooling	kWh												
	0.0000	0.0000	0.0000	0.0000	0.0000	165.3375	249.9160	187.4654	0.0000	0.0000	0.0000	0.0000	(104)
Space cooling												602.7189	(104)
Cooled fractio	n								fC =	cooled area	/ (4) =	0.5931	(105)
Intermittency	factor (Tab	le 10b)											
	0.0000	0.0000	0.0000	0.0000	0.0000	0.2500	0.2500	0.2500	0.0000	0.0000	0.0000	0.0000	(106)
Space cooling	kWh												
	0.0000	0.0000	0.0000	0.0000	0.0000	24.5151	37.0559	27.7961	0.0000	0.0000	0.0000	0.0000	(107)
Space cooling												89.3672	(107)
Space cooling	per m2											0.4316	(108)

9a. Energy requirements - Individual heating systems, including micro-CMP												
9a. Energy requireme												
Fraction of space heat from main system(s) 10 Efficiency of main space heating system 1 (in %) 10 Efficiency of secondary/supplementary heating system, % Space heating requirement 922 Cooling System Energy Efficiency Ratio (see Table 10c)												(201) (202) (206) (208) (211) (209)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating requir												
Space heating effici	1388.2383		753.5503	381.9523	0.0000	0.0000	0.0000	0.0000	745.8705	1266.0855	1749.1468	(98)
100.0 Space heating fuel (100.0000	100.0000	100.0000	100.0000	0.000	0.0000	0.0000	0.0000	100.0000	100.0000	100.0000	(210)
	294 1388.2383		753.5503	381.9523	0.0000	0.0000	0.0000	0.0000	745.8705	1266.0855	1749.1468	(211)
Water heating requir												
0.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating												
Water heating requir												
216.6 Efficiency of water	71 190.5133	198.9814	176.8487	172.2015	152.2816	144.7408	160.9064	161.2743	183.4566	195.9039	210.9494 100.0000	
(217)m 100.0		100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	
Fuel for water heati		10010000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	(22))
	190.5133	198.9814	176.8487	172.2015	152.2816	144.7408	160.9064	161.2743	183.4566	195.9039	210.9494	
Water heating fuel u Space cooling fuel r											2164.7349	(219)
(221)m 0.0		0.0000	0.0000	0.0000	5.1884	7.8425	5.8828	0.0000	0.0000	0.0000	0.0000	
Cooling											18.9137	(221)
Annual totals kWh/ye Space heating fuel -											9222.4161	(211)
Space heating fuel -											0.0000	
Electricity for pump (BalancedWithHea		ahaee. in-us	e factor =	1 4000 SEP	= 0.9240)							
mechanical ventil	tion fans (SF	P = 0.	.9240)	1.4000, 511	- 0.0240)						598.8443	
Total electricity fo											598.8443	
Electricity for ligh Total delivered ener			iix L)								609.1991 12614.1080	
Total activered ener	17 IOI AII USE											(~~0)

12a. Carbon dioxide emissions - Individual heating systems including micro-CHP

	Energy	Emission factor	Emissions	
	kWh/year	kq CO2/kWh	kg CO2/year	
Space heating - main system 1	9222.4161	0.5190	4786.4339	(261)
Space heating - secondary	0.0000	0.0000	0.0000	(263)
Water heating (other fuel)	2164.7349	0.5190	1123.4974	(264)
Space and water heating			5909.9313	(265)
Space cooling	18.9137	0.5190	9.8162	(266)
Pumps and fans	598.8443	0.5190	310.8002	(267)
Energy for lighting	609.1991	0.5190	316.1744	(268)
Total CO2, kg/year			6546.7221	(272)
Dwelling Carbon Dioxide Emission Rate (DER)			31.6200	(273)

Page 5 of 9

Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.11r11

Regs Region: England

Design SAP

elmhurst energy

FULL SAP CALCULATION PRINTOUT Calculation Type: New Build (As Designed)

Design SAP elmhurst energy

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

5 CO2 EMISSIONS ASSOCIATED WITH APPLIANCES AND COOKING AND SITE-WIDE ELECTRICITY GENERATION TECHNOLOGIES		
SR ST		31.6200 ZC
btal Floor Area	TFA	207.0500
asumed number of occupants	N	3.0111
02 emission factor in Table 12 for electricity displaced from grid	EF	0.5190
02 emissions from appliances, equation (L14)		10.8097 ZC
02 emissions from cooking, equation (L16)		0.9238 ZC
btal CO2 emissions		43.3535 ZC
esidual CO2 emissions offset from biofuel CHP		0.0000 ZC
iditional allowable electricity generation, kWh/m²/year		0.0000 ZC
esulting CO2 emissions offset from additional allowable electricity generation		0.0000 ZC
et CO2 emissions		43.3535 ZC

Calculation Type: New Build (As Designed)

Design SAP elmhurst energy

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

SAP 2012 WORKSHE CALCULATION OF T	ET FOR Ne	w Build (As SSIONS	Designed) 09 Jan 20	(Version	9.92, Janua	ry 2014)							
1. Overall dwell	ing dimen	sions											
Ground floor First floor Second floor Third floor Total floor area Dwelling volume	: TFA = (1	a)+(1b)+(1c	:)+(1d)+(1e)	(1n)	2	07.0500		Area (m2) 52.9900 55.5900 45.9300 (:	(1b) x	2.5900	(2c) = (2d) = (2e) =	Volume (m3) 134.0647 139.2310 138.9750 118.9587 531.2294	(1d) - (1e) - (4)
2. Ventilation r	ate												
Number of chimne Number of open f Number of interm Number of passiv Number of fluele	lues nittent fa ve vents				main heating 0 0	34 + +	econdary heating 0 0	* *	other 0 = 0 =	tot	al m 0 * 40 = 0 * 20 = 4 * 10 = 0 * 10 = 0 * 40 =	3 per hour 0.0000 0.0000 40.0000 0.0000 0.0000	(6b) (7a) (7b)
Infiltration due Pressure test Measured/design Infiltration rat Number of sides	AP50		and fans	= (6a)+(6b)+(7a)+(7b)+	(7c) =				40.0000	Air change / (5) =	0.0753 Yes 5.0000 0.3253	
Shelter factor Infiltration rat	e adjuste	d to includ	ie shelter :	factor					(20) = 1 - (2	[0.075 x 1) = (18)	(19)] = x (20) =	0.8500 0.2765	(20) (21)
Wind speed Wind factor	Jan 5.1000 1.2750	Feb 5.0000 1.2500	Mar 4.9000 1.2250	Apr 4.4000 1.1000	May 4.3000 1.0750	Jun 3.8000 0.9500	Jul 3.8000 0.9500	Aug 3.7000 0.9250	Sep 4.0000 1.0000	Oct 4.3000 1.0750	Nov 4.5000 1.1250	Dec 4.7000 1.1750	
Adj infilt rate Effective ac	0.3525	0.3456	0.3387	0.3042	0.2972	0.2627 0.5345	0.2627	0.2558	0.2765	0.2972	0.3111 0.5484	0.3249	(22b) (25)
llement ER Opaque door ER Opaque door ER Room Window leat Loss Floor leat Loss Floor leat Loss Floor leat Loss Floor leat Nall Xternal Wall 2 Xternal Wall 2 Xternal Roof 2 Xterna	1 2	1 elements	Aum(A, m2)	Gross m2 90.5500 75.3500 66.4400 75.4000 13.0800 6.0600 9.6500 45.9900	Openings m2 31.4900 2.8400	2 28 29 3 90 43 66 75 13 3 9 9 45	EArea m2 9000 5900 5400 5500 5500 8600 4400 0800 22200 6500 9900 5100 (26)(U-value W/m2K 1.0000 1.3258 1.5918 0.1300 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1300 0.1800	A x W/ 2.900 37.903 4.520 6.440 16.299 7.894 11.959 13.572 2.354 0.418 1.254 5.978 = 111.943	0 4 6 2 5 5 0 8 2 0 4 6 5 7	-value kJ/m2K		(26) (27) (28) (28) (29a) (29a) (29a) (29a) (29a) (30) (30) (31) (33)
Fhermal mass par Fhermal bridges Fotal fabric hea	(User def	MP = Cm / T ined value	2FA) in kJ/r 0.050 * to	n2K tal exposed	area)					(33)	+ (36) =	250.0000 21.7755 133.7194	(36)
	Jan 98.5468	culated mon Feb 98.1238	Mar 97.7091	= 0.33 x () Apr 95.7615	25)m x (5) May 95.3971	Jun 93.7008	Jul 93.7008	Aug 93.3867	Sep 94.3542	Oct 95.3971	Nov 96.1343	Dec 96.9049	(38)
leat transfer cc 2 Average = Sum(39	32.2662	231.8432	231.4285	229.4809	229.1165	227.4203	227.4203	227.1061	228.0736	229.1165	229.8537	230.6243 229.4792	(39) (39)
iLP iLP (average)	Jan 1.1218	Feb 1.1197	Mar 1.1177	Apr 1.1083	May 1.1066	Jun 1.0984	Jul 1.0984	Aug 1.0969	Sep 1.1015	Oct 1.1066	Nov 1.1101	Dec 1.1139 1.1083	(40) (40)
Days in month	31	28	31	30	31	30	31	31	30	31	30	31	(41)
4. Water heating	enerav r	equiremente	(kWh/year)										
Assumed occupanc Average daily ho												3.0111 105.7134	
-	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
e e	lmh	urst				Page	e 7 of 9			Eli SA	mhurst Ei	n: England nergy Syst alculator (tems (Desi

FULL SAP CALCULATION PRINTOUT Calculation Type: New Build (As Designed)

Design SAP elmhurst energy

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

Daily hot wat	er use												
	116.2848	112.0562	107.8277	103.5991	99.3706	95.1421	95.1421	99.3706	103.5991	107.8277	112.0562	116.2848	(44)
Energy conte	172.4469	150.8232	155.6360	135.6873	130.1952	112.3485	104.1074	119.4648	120.8916	140.8875	153.7897	167.0056	(45)
Energy conter	nt (annual)									Total = S	um(45)m =	1663.2836	(45)
Distribution													
	25.8670	22.6235	23.3454	20.3531	19.5293	16.8523	15.6161	17.9197	18.1337	21.1331	23.0685	25.0508	(46)
Water storage	e loss:												
Store volume												300.0000	(47)
a) If manufa			actor is kn	own (kWh/d	ay):							2.1127	
	e factor fro											0.5400	
Enter (49) or		5)										1.1409	(55)
Total storage													
	35.3664	31.9439	35.3664	34.2256	35.3664	34.2256	35.3664	35.3664	34.2256	35.3664	34.2256	35.3664	(56)
If cylinder o													
	35.3664	31.9439	35.3664	34.2256	35.3664	34.2256	35.3664	35.3664	34.2256	35.3664	34.2256	35.3664	
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624	(59)
Total heat re													
	231.0757	203.7782	214.2648	192.4248	188.8240	169.0861	162.7362	178.0936	177.6291	199.5163	210.5273	225.6345	
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
								Solar inp	ut (sum of	months) = S	um(63)m =	0.0000	(63)
Output from w													
	231.0757	203.7782	214.2648	192.4248	188.8240	169.0861	162.7362	178.0936	177.6291	199.5163	210.5273	225.6345	
								Total p	er year (kW	h/year) = S	um(64)m =	2353.5906	(64)
Heat gains fr													
	104.2417	92.5128	98.6520	90.5061	90.1929	82.7459	81.5188	86.6251	85.5865	93.7481	96.5251	102.4324	(65)

Metabolic gai	ns (Table 5), Watts											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(66) m	150.5546	150.5546	150.5546	150.5546	150.5546	150.5546	150.5546	150.5546	150.5546	150.5546	150.5546	150.5546	(66)
Lighting gair	s (calculat	ed in Appen	dix L, equa	tion L9 or	L9a), also	see Table 5							
	35.3722	31.4172	25.5502	19.3432	14.4592	12.2071	13.1902	17.1451	23.0121	29.2192	34.1031	36.3553	(67)
Appliances ga	ins (calcul	ated in App	endix L, eq	uation L13	or L13a), a	lso see Tab	le 5						
	377.6972	381.6165	371.7400	350.7140	324.1724	299.2271	282.5621	278.6428	288.5193	309.5453	336.0869	361.0322	(68)
Cooking gains	(calculate	d in Append	ix L, equat	ion L15 or	L15a), also	see Table	5						
	38.0555	38.0555	38.0555	38.0555	38.0555	38.0555	38.0555	38.0555	38.0555	38.0555	38.0555	38.0555	(69)
Pumps, fans	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	(70)
Losses e.g. e													
	-120.4436	-120.4436	-120.4436	-120.4436	-120.4436	-120.4436	-120.4436	-120.4436	-120.4436	-120.4436	-120.4436	-120.4436	(71)
Water heating	gains (Tab	le 5)											
	140.1098	137.6678	132.5968	125.7029	121.2271	114.9249	109.5682	116.4316	118.8701	126.0056	134.0627	137.6780	(72)
Fotal interna													
	624.3455	621.8679	601.0534	566.9264	531.0251	497.5255	476.4869	483.3859	501.5680	535,9365	575.4191	606.2318	(73)

Jan]			A	rea	Solar flux	g	FF	Access	Gains
				m2	Table 6a W/m2	Specific data or Table 6b	Specific data or Table 6c	factor Table 6d	W
outheast		14.8	600	36.7938	0.6300	0.7000	0.7700	167.0958 (7	
Southwest			2.1	300	36.7938	0.6300	0.7000	0.7700	23.9512 (7
Northwest			11.6	000	11.2829	0.6300	0.7000	0.7700	39.9993 (8
Horizontal			2.8	400	26.0000	0.6300	0.7000	1.0000	29.3071 (8

7. Mean inte	ernal temperat	ure (heatin	g season)										
Temperature	during heatin	q periods i	n the livin	q area from	Table 9, T	h1 (C)						21.0000	(85)
Utilisation	factor for ga	ins for liv	ing area, n	il,m (see T	able 9a)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau	61.9051	62.0181	62.1292	62.6565	62.7562	63.2242	63.2242	63.3117	63.0431	62.7562	62.5549	62.3459	
alpha	5.1270	5.1345	5.1419	5.1771	5.1837	5.2149	5.2149	5.2208	5.2029	5.1837	5.1703	5.1564	
util living	area												
-	0.9996	0.9987	0.9953	0.9790	0.9184	0.7730	0.6027	0.6751	0.9091	0.9913	0.9990	0.9997	(86
MIT	19.6347	19.7938	20.0598	20.4149	20.7351	20.9288	20.9845	20.9729	20.8174	20.3953	19.9473	19.6080	(87
Th 2	19.9831	19.9847	19.9864	19.9940	19.9955	20.0022	20.0022	20.0034	19.9996	19.9955	19.9926	19.9895	(88)
util rest of	house												
	0.9995	0.9983	0.9935	0.9702	0.8834	0.6859	0.4767	0.5482	0.8553	0.9864	0.9986	0.9996	(89)
MIT 2	18.1411	18.3751	18.7645	19.2826	19.7220	19.9518	19.9961	19.9913	19.8384	19.2604	18.6054	18.1065	(90)
Living area	fraction								fLA =	Living area	/ (4) =	0.1037	(91
MIT	18.2959	18.5222	18.8988	19.4000	19.8271	20.0531	20.0986	20.0931	19.9399	19.3781	18.7445	18.2622	(92)
Temperature	adjustment											0.0000	
adjusted MIT		18,5222	18.8988	19,4000	19.8271	20.0531	20.0986	20.0931	19.9399	19.3781	18.7445	18.2622	

8. Space heating requirement

Utilisation Useful gains Ext temp.	Jan 0.9991 883.8837 4.3000	Feb 0.9972 1086.5527 4.9000				Jun 0.6909 1161.8392 14.6000				Oct 0.9819 1050.1449 10.6000		Dec 0.9994 825.5317 4.2000	(95)
Heat loss rate		3158.2079	2869.4387	2409.5514	1862.0438	1240.1504	795.6477	838.7251	1331.9340	2011.2054	2676.5354	3243.0916	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	

Page 8 of 9

Calculation Type: New Build (As Designed)

Design SAP elmhurst energy

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

Space heating Space heating		1392.1523	1175.8978	674.8614	284.1710	0.0000	0.0000	0.0000	0.0000		1286.4861	1798.6646 9088.2354 43.8939	(98)
8c. Space coo													
Not applicabl													
9a. Energy re	quirements ·	- Individual	L heating s	vstems, inc	luding micro	D-CHP							
Fraction of s Fraction of s Efficiency of Efficiency of Space heating	pace heat f pace heat f main space secondary/	rom secondar rom main sys heating sys supplementar	ry/suppleme stem(s) stem 1 (in	ntary system %)								0.0000 1.0000 93.5000 0.0000 9720.0379	(202) (206) (208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating		t 1392.1523	1175.8978	674.8614	284.1710	0.0000	0.0000	0.0000	0.0000	715.0290	1286.4861	1798.6646	(98)
Space heating	efficiency 93.5000	(main heati 93.5000	ing system 93.5000	1) 93.5000	93.5000	0.0000	0.0000	0.0000	0.0000	93.5000	93.5000	93.5000	(210)
Space heating		heating sys 1488.9329		721.7769	303.9262	0.0000	0.0000	0.0000	0.0000	764 7369	1375.9210	1923.7054	(211)
Water heating			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Water heating													
Water heating	requirement	t 203.7782	214.2648	192.4248	188.8240	169.0861	162.7362	178.0936	177.6291	199.5163	210.5273	225.6345	(64)
Efficiency of	water heate	er										79.8000	(216)
(217)m Fuel for wate	89.1139 r heating, 1	88.9766 kWh/month	88.6676	87.8855	85.9018	79.8000	79.8000	79.8000	79.8000	87.9279	88.8251	89.1673	(217)
Water heating	259.3037	229.0244	241.6496	218.9496	219.8136	211.8873	203.9301	223.1749	222.5929	226.9089	237.0133	253.0461 2747.2945	
Annual totals	kWh/year												
Space heating Space heating												9720.0379 0.0000	
	ating pump ng flue fan			ix L)								30.0000 45.0000 75.0000 624.6836	(230e (231)

12a. Carbon dioxide emissions - Individual heating systems including micro-CHP

Ene	rgy Emission f	factor Emission:	3
kWh/y	ear kg CC	02/kWh kg CO2/year	£
Space heating - main system 1 9720.0	379 C	2099.5282	2 (261)
Space heating - secondary 0.0	000 0	0.0000 0.0000	0 (263)
Water heating (other fuel) 2747.2	945 C	0.2160 593.415	5 (264)
Space and water heating		2692.943	3 (265)
Pumps and fans 75.0	000 C	38.9250) (267)
Energy for lighting 624.6	836 C	324.210	3 (268)
Total CO2, kg/m2/year		3056.079	5 (272)
Emissions per m2 for space and water heating		13.006	2 (272a)
Fuel factor (electricity)		1.550	3
Emissions per m2 for lighting		1.565	9 (272b)
Emissions per m2 for pumps and fans		0.188	0 (272c)
Target Carbon Dioxide Emission Rate (TER) = (13.0062 * 1.55) + 1.5659 + 0.1880, rounded to 2 d.p.		21.9100) (273)

Page 9 of 9

4B HAMPSTEAD HILL GARDENS

SUSTAINABILITY ENERGY & SUSTAINABILITY REPORT - REV. 0

Appendix B: Be Green DER Worksheet.

15

Calculation Type: New Build (As Designed)

Design SAP elmhurst energy

Property Reference 4B HH Issued on Date 18/12/2019 Assessment V02 Prop Type Ref 01 Reference Property SAP Ratin 71 C 26.42 TER 21.91 Environmental 74 C % DER<TER -20.56 CO₂ Emissions (t/year) TFEE 4.18 DFEE 56.65 56.34 **General Requirements Compliance** Fail % DFEE<TFEE -0.56 Assessor Details Mr. Liam Holden, Liam Holden, Tel: 01202 654600, Assessor ID P624-0001 liamholden@hoarelea.com Client

FULL SAP CALCULATION PRINTOUT

Calculation Type: New Build (As Designed)

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

1. Overall dwelling dimensions

		Area	Stor	ey height			Volume		
		(m2)		(m)			(m3)		
Ground floor		52.9900 (1b)	x	2.5300	(2b)	-	134.0647	(1b)	- (3b)
First floor		52.5400 (1c)	х	2.6500	(2c)	-	139.2310	(1c)	- (3c)
Second floor		55.5900 (1d)	x	2.5000	(2d)	-	138.9750	(1d)	- (3d)
Third floor		45.9300 (le)	х	2.5900	(2e)	-	118.9587	(1e)	- (3e)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)(1n)	207.0500							(4)	
Dwelling volume		(3a)+(3	b)+(3c)	+(3d)+(3e)	(3n)	-	531.2294	(5)	

2. Ventilation rate

					main heating		condary heating	0	ther	total	L m3	per hour	
Number of chimne	eys				ō	+	ō	+	0 =	() * 40 =	0.0000	(6a)
Number of open i	flues				0	+	0	+	0 =	c	* 20 =	0.0000	(6b)
Number of intern	mittent fan	s								(* 10 =	0.0000	(7a)
Number of passiv	ve vents									c	* 10 =	0.0000	(7b)
Number of fluele		es								ć	* 40 =	0.0000	(7c)
Infiltration due Pressure test Measured/design Infiltration rat Number of sides Shelter factor	AP50 te	ys, flues a	nd fans =	• (6a)+(6b)+	(7a)+(7b)+	(7c) =		,	20) = 1 -	0.0000)		0.0000 Yes 3.0000 0.1500	(18) (19)
Shelter factor Infiltration rat	-								(21) = (18) x	(20) =	0.1275	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Wind speed	5.1000	5.0000	4.9000	4.4000	4.3000	3.8000	3.8000	3.7000	4.0000	4.3000	4.5000	4.7000	
Wind factor	1.2750	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1750	(22a)
Adj infilt rate	0.1626	0.1594	0.1562	0.1403	0.1371	0.1211	0.1211	0.1179	0.1275	0.1371	0.1434	0.1498	(22b)
Balanced mechar		lation with	heat recov	rery									
If mechanical ve If balanced with		very: effic	iency in %	allowing fo	r in-use fa	actor (from	Table 4h)	-				0.5000	
Effective ac	0.3371	0.3339	0.3307	0.3148	0.3116	0.2956	0.2956	0.2924	0.3020	0.3116	0.3179	0.3243	(25)

Element				Gross	Opening		tArea	U-value W/m2K	Ax		K-value	AxK	
				m2	m		m2		W/		kJ/m2K	kJ/K	
Vindows (Uw = 1	.10)						.5900	1.0536	30.123				(27
Doors									5.800				(26
Rooflights (Uw							.8400	1.0536	2.992				(27
leat Loss Floor							.5400	0.1300	6.440				(28
leat Loss Floor	2						.4500	0.1300	0.448				(28
Basement Wall				90.5500			.5500	0.1500	13.582				(29
xternal Wall 1				75.3500	31.490		.8600	0.1500	6.579				(29
xternal Wall 2				66.4400 75.4000			.4400	0.1500	9.966				(29
xternal Wall 3							.4000	0.1500	11.310				(29
urtain Walling				13.0800 6.0600	2.840		.0800	0.2500	3.270				(29
xternal Roof 1					2.840								(30
xternal Roof 2				9.6500			.6500	0.1300	1.254				(30
xternal Roof 3				45.9900			.9900	0.1300	5.978	17			(3
otal net area			Aum(A, m2)			435	.5100						(3
abric heat los	s, W/K = 3	Sum (A x U)						30) + (32)					(3
arty Wall 1							.2800	0.0000	0.000				(3)
arty Wall 2							.0500	0.0000	0.000	10			(3
arty Floor 1							.5400						(3)
arty Floor 2							.1400						(3)
arty Floor 3							.9300						(3)
Party Ceilings							.9300						(3)
Party Ceilings							.5400						(32
Party Ceilings	3					45	.9400						(32
'hermal mass pa												175.0000	(35
'hermal bridges		value 0.150) * total e:	cposed area)							65.3265	(3f
Total fabric he	at loss									(33) + (36) =	163.4904	(31
entilation hea	t loss cai	lculated mor	thly (38)m	= 0.33 x (25)m x (5)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
38)m	59.0890	58,5302	57,9714	55,1775	54,6187	51.8247	51.8247	51,2660	52,9423	54.6187	55.7363	56.8538	(3
eat transfer c	oeff												
	222.5794	222.0206	221.4618	218.6679	218,1091	215.3151	215.3151	214.7564	216.4327	218.1091	219.2267	220.3442	(3
verage = Sum(3												218.5282	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
LP	1.0750	1.0723	1.0696	1.0561	1.0534	1.0399	1.0399	1.0372	1.0453	1.0534	1.0588	1.0642	(4
						0000	0355	2.0372	2.0400	0554	2.0000	1.0554	

Page 3 of 9

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.11r11

Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.11r11

Regs Region: England

Calculation Type: New Build (As Designed)

Design SAP elmhurst energy

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

31 28 31 30 31 30 31 31 30 31 31 30 31 30 31 (41)

4. Water heat													
Assumed occup Average daily	ancy											3.0111 111.2773	
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot wat													
	122.4050	117.9539	113.5028	109.0517	104.6006	100.1495	100.1495	104.6006	109.0517	113.5028	117.9539	122.4050	
	181.5231	158.7613	163.8274	142.8287	137.0475	118.2616	109.5868	125.7524	127.2543	148.3026	161.8839	175.7954	
Energy conten										Total = Si	um(45)m =	1750.8249	(45)
Distribution	loss (46)m	= 0.15 x (45) m										
	27.2285	23.8142	24.5741	21.4243	20.5571	17.7392	16.4380	18.8629	19.0881	22.2454	24.2826	26.3693	(46)
Water storage	loss:												
Store volume												300.0000	
a) If manufa	cturer decl	ared loss f	actor is kn	own (kWh/da	ay):							1.8900	(48)
Temperature	factor fro	m Table 2b										0.6000	(49)
Enter (49) or	(54) in (5	5)										1.1340	(55)
Total storage	loss												
	35.1540	31.7520	35.1540	34.0200	35.1540	34.0200	35.1540	35.1540	34.0200	35.1540	34.0200	35.1540	(56)
If cylinder c	ontains ded	icated sola	r storage										
	35.1540	31.7520	35.1540	34.0200	35.1540	34.0200	35.1540	35.1540	34.0200	35.1540	34.0200	35.1540	(57)
Primary loss	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(59)
Total heat re	guired for	water heati	ng calculat	ed for each	month								
	216.6771	190.5133	198.9814	176.8487	172.2015	152.2816	144.7408	160.9064	161.2743	183.4566	195.9039	210.9494	(62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63)
								Solar inpu	it (sum of	months) = Si	um(63)m =	0.0000	(63)
Output from w	/h												
	216.6771	190.5133	198.9814	176.8487	172.2015	152.2816	144.7408	160.9064	161.2743	183.4566	195.9039	210.9494	(64)
								Total pe	er vear (kW	h/year) = S	um (64) m =	2164.7349	(64)
Heat gains fr	om water he	ating, kWh/	month										
	88.4796	78.1897	82.5958	74.7065	73.6915	66.5380	64.5608	69,9359	69.5280	77.4338	81.0424	86.5752	(65)
													(

 Metabolic gains (Table 5), Watts

 Jan
 Feb
 Mar
 Apr
 May
 Jun
 Jul
 Aug
 Sep
 Oct
 Nov
 Dec

 (66)m
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 150.5546
 <t

6. Solar gains [Jan] Area m2 Solar flux Gains g Specific data Specific data Table 6a factor W/m2 or Table 6b or Table 6c Table 6d 0.7700 0.7700 0.7700 1.0000 Southeast Southwest Northwest 14.8600 2.1300 11.6000 2.8400 36.7938 36.7938 11.2829 0.4200 0.4200 0.4200 0.4200 0.4200 127.3111 (77) 18.2485 (79) 30.4756 (81) 22.3292 (82) 0.8000 0.8000 Horizontal 26.0000 Solar gains 198.3645 356.3520 533.4569 732.7145 882.4384 902.2144 859.0191 743.9800 602.2825 406.5210 241.0340 167.4918 (83) 797.6477 953.1271 1109.2960 1274.2177 1387.9257 1373.9263 1309.3861 1201.5091 1077.9767 916.8053 791.1040 748.5090 (84) Total gains

Mean inte	ernal temperat	ure (heatin	ig season)										
Temperature	during heatin	g periods i	n the livir	ng area from	Table 9, 5	Fh1 (C)						21.0000	(85)
Utilisation	factor for ga	ins for liv	ing area, r	nil,m (see 7	able 9a)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau	45.2195	45.3333	45.4477	46.0284	46.1463	46.7451	46.7451	46.8667	46.5037	46.1463	45.9111	45.6782	
alpha	4.0146	4.0222	4.0298	4.0686	4.0764	4.1163	4.1163	4.1244	4.1002	4.0764	4.0607	4.0452	
util living	area												
	0.9984	0.9964	0.9909	0.9728	0.9213	0.8057	0.6583	0.7192	0.9098	0.9850	0.9969	0.9988	(86)
MIT	19.6064	19.7401	19.9726	20.2920	20.5914	20.8101	20.8951	20.8777	20.6995	20.3104	19.9037	19.5881	
Th 2	20.0213	20.0235	20.0257	20.0368	20.0391	20.0502	20.0502	20.0524	20.0457	20.0391	20.0346	20.0302	(88)
util rest of													
	0.9980	0.9955	0.9884	0.9645	0.8946	0.7365	0.5422	0.6088	0.8680	0.9792	0.9960	0.9984	(89)
MIT 2	18.1248	18.3218	18.6628	19.1334	19.5559	19.8455	19.9318	19.9209	19.7138	19.1656	18.5698	18.1046	(90)
Living area	fraction								fLA =	Living area	/ (4) =	0.1037	(91)
MIT	18.2784	18.4689	18.7986	19.2536	19.6633	19.9456	20.0317	20.0201	19.8160	19.2843	18.7081	18.2584	(92)
Temperature	adjustment											0.0000	
adjusted MIT	18.2784	18.4689	18.7986	19.2536	19.6633	19.9456	20.0317	20.0201	19.8160	19.2843	18.7081	18.2584	(93)

Page 4 of 9

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.11r11

Design SAP elmhurst energy

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

8. Space heating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9968	0.9933	0.9839	0.9554	0.8815	0.7277	0.5397	0.6046	0.8550	0.9725	0.9940	0.9976	(94)
Useful gains	795.1331	946.7437	1091.4890	1217.3970	1223.4935	999.7423	706.6211	726.3886	921.7136	891.6081	786.3483	746.6928	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rat	e W												
	3111.3016	3012.5744	2723.6704	2263.9946	1736.8703	1150.9807	738.8915	777.4341	1237.1361	1894.1221	2544.8004	3097.6966	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	(97a)
Space heating	kWh												
	1723.2294	1388.2383	1214.3429	753.5503	381.9523	0.0000	0.0000	0.0000	0.0000	745.8705	1266.0855	1749.1468	(98)
Space heating												9222.4161	(98)
Space heating	per m2									(98) / (4) =	44.5420	(99)

Calculated for	June, July	and August.	See Table	10b									
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Ext. temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	
Heat loss rate	W												
	0.0000	0.0000	0.0000	0.0000	0.0000	2023.9624	1593.3321	1632.1483	0.0000	0.0000	0.0000	0.0000	(100)
Utilisation	0.0000	0.0000	0.0000	0.0000	0.0000	0.7317	0.8145	0.7737	0.0000	0.0000	0.0000	0.0000	(101)
Useful loss	0.0000	0.0000	0.0000	0.0000	0.0000	1480.9842	1297.7030	1262.8376	0.0000	0.0000	0.0000	0.0000	(102)
Total gains	0.0000	0.0000	0.0000	0.0000	0.0000	1710.6196	1633.6116	1514.8072	0.0000	0.0000	0.0000	0.0000	(103)
Month fracti	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	(103a)
Space cooling &	Wh												
	0.0000	0.0000	0.0000	0.0000	0.0000	165.3375	249.9160	187.4654	0.0000	0.0000	0.0000	0.0000	(104)
Space cooling												602.7189	(104)
Cooled fraction	1								fC =	cooled area	/ (4) =	0.5931	(105)
Intermittency i	actor (Tab	le 10b)											
-	0.0000	0.0000	0.0000	0.0000	0.0000	0.2500	0.2500	0.2500	0.0000	0.0000	0.0000	0.0000	(106)
Space cooling H	Wh												
	0.0000	0.0000	0.0000	0.0000	0.0000	24.5151	37.0559	27,7961	0.0000	0.0000	0.0000	0.0000	(107)
Space cooling												89.3672	
Space cooling m	ar m2											0.4316	

9a. Energy requir													
Fraction of space Fraction of space Efficiency of mai Efficiency of sec Space heating req Cooling System En	heat from se heat from mi n space heat: condary/supple guirement	econda ain sy ing sy ementa	ry/supplemen stem(s) stem 1 (in 3 ry heating s	htary system 8) System, %								0.0000 1.0000 100.0000 0.0000 9222.4161 4.7250	(202) (206) (208) (211)
		eb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating req 172 Space heating eff	3.2294 1388				381.9523	0.0000	0.0000	0.0000	0.0000	745.8705	1266.0855	1749.1468	(98)
10	0.0000 100	.0000	100.0000	100.0000	100.0000	0.0000	0.0000	0.0000	0.0000	100.0000	100.0000	100.0000	(210)
	3.2294 1388			753.5503	381.9523	0.0000	0.0000	0.0000	0.0000	745.8705	1266.0855	1749.1468	(211)
Water heating req		.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating Water heating reg													
21	6.6771 190	.5133	198.9814	176.8487	172.2015	152.2816	144.7408	160.9064	161.2743	183.4566	195.9039	210.9494	
Efficiency of wat (217)m 10 Fuel for water he	0.0000 100		100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	
21 Water heating fue	.6.6771 190 1 used	.5133	198.9814	176.8487	172.2015	152.2816	144.7408	160.9064	161.2743	183.4566	195.9039	210.9494 2164.7349	
Space cooling fue (221)m Cooling		t .0000	0.0000	0.0000	0.0000	5.1884	7.8425	5.8828	0.0000	0.0000	0.0000	0.0000	
Annual totals kWh Space heating fue Space heating fue	1 - main sys 1 - secondar	У										9222.4161 0.0000	(211)
Electricity for p (BalancedWith mechanical ven Total electricity Electricity for 1	HeatRecovery, tilation fan for the abo ighting (cale	, Data s (SFP ve, kW culate	h/year d in Appendi	9240) ix L)		= 0.9240)						598.8443 598.8443 609.1991	(231)
Energy saving/generation technologies (Appendices M ,N and Q) FV Unit 0 (0.80 \pm 3.00 \pm 1080 \pm 0.80) = Total delivered energy for all uses										-2072.6873		-2072.6873 10541.4208	
12a. Carbon dioxi	de emissions	- Ind	lividual heat	ing system		micro-CHP							
Space heating - m Space heating - s Water heating (ot Space and water h	ain system 1 econdary her fuel)							Energy kWh/year 9222.4161 0.0000 2164.7349		ion factor kg CO2/kWh 0.5190 0.0000 0.5190	1	Emissions cg CO2/year 4786.4339 0.0000 1123.4974 5909.9313	(263) (264) (265)
Space cooling Pumps and fans Energy for lighti	.ng							18.9137 598.8443 609.1991		0.5190 0.5190 0.5190		9.8162 310.8002 316.1744	(267)
	-												,

Page 5 of 9

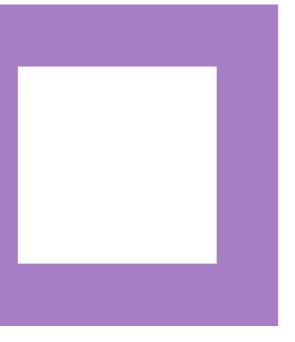
Calculation Type: New Build (As Designed)

Design SAP elmhurst energy

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

Energy saving/generation technologies FV Unit Total CO2, kg/year Dwelling Carbon Dioxide Emission Rate (DER)	-2072.6873	0.5190		-1075.7247 5470.9974 26.4200	(272)
16 GO2 EMISSIONS ASSOCIATED WITH APPLIANCES AND COOKING AND SITE-WIDE ELECTRIC DER Total Floor Area Assumed number of occupants CO2 emissions from applances, equation (L14) CO2 emissions from applances, equation (L14) CO2 emissions from cooking, equation (L16) Total CO2 emissions offset from biofuel CHP Additional allowable electricity generation, KMh/m ² /year Residual CO2 emissions offset from additional allowable electricity generation Net CO2 emissions			TFA N EF	26.4200 207.0500 3.0111 0.5190 10.8097 0.9238 38.1535 0.0000 0.0000 0.0000 38.1535	ZC2 ZC3 ZC4 ZC5 ZC6 ZC6 ZC7

Page 6 of 9



JO DRANE ASSOCIATE

+44 1202 654 650 jodrane@hoarelea.com

HOARELEA.COM

Enterprise House Old School Close Ferndown Bournemouth BH22 9UN England

