

Inertia Structures Ltd

_							
Project				Job Ref.	Job Ref.		
56A King Henry's Road, London, NW3 3RP					19079		
Section				Sheet no./rev	Sheet no./rev.		
Attenuation Tank					1		
Calc. by	Date	Chk'd by	Date	App'd by	Date		
M	19/11/2019						

ATTENUATION DESIGN

In accordance with CIRIA publication C753 - The SUDS Manual

Tedds calculation version 1.0.04

Allowable discharge method

Site characteristics

Location; London

Hydrological region; 6; Soil type (W.R.A.P map); 2

Standard percentage runoff; SPR = 0.30; Average annual rainfall; SAAR = 600 mm

5yr rainfall of 60min duration; $M5_60min = 20.0 mm$; Rainfall ratio; r = 0.44

Global warming rainfall factor; pclimate = 40%

Catchment details

Subcatchment	Name	Area (ha)	PIMP (%);	Impermeable. area (ha)
1;	Extended	0.00;	100.0;	0.00;
	Basment;			
	Total	0.00;	100.0;	0.00;

Greenfield runoff rates

Catchment area; AREA = **50.00** hectare; Greenfield runoff rate (50 ha); \overline{Q}_{rural} = **76.1** l/s

Greenfield runoff rate; $\overline{Q} = 0.0 \text{ l/s}$; G'field runoff rate (unit area); $\overline{Q}_A = 1.5 \text{ l/s}$ / hectare

Estimated site discharges

FSR growth rate (2 year); FSR $_{2yr}$ = **0.96**; Discharge (2 year); Q $_{2yr}$ = **0.0** l/s FSR growth rate (30 year); FSR $_{30yr}$ = **2.30**; Discharge (30 year); Q $_{30yr}$ = **0.0** l/s FSR growth rate (100 year); FSR $_{100yr}$ = **3.19**; Discharge (100 year); Q $_{100yr}$ = **0.0** l/s

Table equations

Total surface water; $V_w = A_{imp} \times M$; Permitted dischrage; $Q_{allow} = Q_{2yr} \times D$

Storage volume required; $V_{req} = V_w - Q_{allow}$

Attenuation storage

Duration (min)	Growth factor Z1	M5 rainfalls (mm)	Growth factor Z2	30 year rainfall (mm)	Total surf water (m³)	Permit dischrge (2 years) (m³)	Storage vol. reqd (m³)
5;	0.39;	10.8;	1.50;	16.2;	0.24;	0.00;	0.24
10;	0.54;	15.0;	1.53;	22.9;	0.34;	0.00;	0.34
15;	0.65;	18.1;	1.54;	27.8;	0.42;	0.00;	0.42
30;	0.82;	22.9;	1.54;	35.2;	0.53;	0.00;	0.52
60;	1.00;	28.0;	1.52;	42.6;	0.64;	0.01;	0.63
120;	1.19;	33.4;	1.50;	50.0;	0.75;	0.02;	0.73
240;	1.39;	39.0;	1.47;	57.4;	0.86;	0.03;	0.83
360;	1.53;	42.8;	1.45;	62.3;	0.93;	0.05;	0.89
600;	1.70;	47.6;	1.43;	68.1;	1.02;	0.08;	0.94
1440;	2.07;	58.1;	1.40;	81.0;	1.22;	0.19;	1.03

Attenuation storage required

Max attenuation storage reqd; $V_{req_max} = 1.3 \text{ m}^3$

WARNING - Maximum storage required coincides with the maximum duration and may be greater with a longer

nterception storage				
nterception rainfall depth;	d _{int} = 10 mm;	Interception storage reqd;	V _{int_req} = 0.12 m ³	