BRTLL PLACE

ENERGY & SUSTAINABILT STAIEMENT

Author Hoare Lea Client Brill Place Ltd Project Brill Place Central Somers Town

Date 15.11.2019 BRILL PLACE BRILL PLACE LIMITED SUSTAINABILITY REVISED ENERGY STRATEGY -REV. 04

Audit sheet.

Rev.	Date	Description	Prepared	Reviewed	Verified
01	04.11.2019	Draft issue for comment	L. Wille	M. Wang	C. Williamson
02	15.11.2019	Issued for planning amendment	L. Wille	M. Wang	C. Williamson
03	19.11.2019	Updated with client comments	L. Wille	M. Wang	C. Williamson
04	20.11.2019	Updated development description	L. Wille	M. Wang	C. Williamson

This document has been prepared for Brill Place Limited only and solely for the purposes expressly defined herein. We owe no duty of care to any third parties in respect of its content. Therefore, unless expressly agreed by us in signed writing, we hereby exclude all liability to third parties, including liability for negligence, save only for liabilities that cannot be so excluded by operation of applicable law. The consequences of climate change and the effects of future changes in climatic conditions cannot be accurately predicted. This report has been based solely on the specific design assumptions and criteria stated herein.

Document reference: REP-2323397-5A-LFW-20191029-Revised Energy & Sustainability Strategy-Rev04

Contents.

Audit sheet.	2
Introduction.	4
Further elements covered in the previous application 'energy $\&$	
sustainability statement':	4
Executive summary.	5
Development Description	5
Consented site-wide energy strategy	5
Revised site-wide energy strategy	5
Overheating risk assessment	6
1. The Strategy.	7
1.1 Development Description	7
National Drivers	7
Masterplan Drivers	7
Local Policy Drivers (GLA and London Borough of Camden (LBC))	7
1.2 Revised energy strategy	8
1.3 Approach to the strategy	8
1.4 Definitions and limitations	8
2. Be lean.	10
2.1 Passive design and energy efficiency features	10
2.2 Be lean results	11
3. Be clean.	12
3.1 Development demand	12
3.2 Be clean: network and technologies	12
3.3 Be clean summary	12
4. Be green.	13
4.1 Low and zero carbon (LZC) technology assessment	13
4.2 Be green summary	13
5. Cooling and overheating.	14
5.1 Cooling hierarchy	14
5.2 Mitigation strategy	14
5.3 Residential overheating risk assessment – original application	14
6. Conclusion.	17
6.1 The energy strategy	17

6.2 Overheating risk assessment

 Appendix A: SAP data sheets.

 Be lean data sheets

 Be clean data sheets

 Appendix B: Correspondence with Central Somers Town District E

 Operator (Vital Energy / Camden Council)

 Appendix C: Proposed basement plan sketch, showing connection incoming DEN Network

 Appendix D: GLA Overheating Checklist

 Appendix E: CHP data sheet (select pages)

Appendix F: Typical thermal mass for illustrative constructions (sou SAP conventions)

	18
	19
	19
	22
Energ	y
	25
n to	
	26
	27
	28
urce:	
	20

BRILL PLACE BRILL PLACE LIMITED SUSTAINABILITY REVISED ENERGY STRATEGY – REV. 04

Introduction.

This report has been prepared on behalf of Brill Place Limited in support of the S73 application for Brill Place, Central Somers Town, Camden. This scheme has received planning approval, however this S73 application summarises the results of the intent to amend the energy strategy of the site, to a strategy fully served from the existing Central Somers Town energy centre. This application falls under the planning jurisdiction of the London Borough of Camden.

The previous energy strategy proposed to use the district energy connection for hot water only, with heating provided from gas absorption heat pumps. It was also proposed to implement a PV array incorporated into the glazed façade of the staircase on the southern elevation of the Proposed Development.

This update proposes to simplify the strategy, to provide all heating and domestic hot water from the Somers Town Energy District Heating Network which incorporates CHP and gas fired boilers. Correspondence with Vital Energy, who operate the network on behalf of Camden, confirms that there is capacity to supply the required energy from this low carbon energy source.

This report does not represent a full viability study of all available low or zero carbon technologies applicable to the development. These details are contained in the original Energy Strategy report, submitted in the original planning application.

As such this document sets out the changes and improvements to energy efficiency on site brought about by the updated strategy, and sets out how that differs (if at all) from the previously consented scheme.

Further elements covered in the previous application 'energy & sustainability statement':

The consented Energy and Sustainability Statements also covered the following items:

- Water consumption
- Surface water run-off and flooding
- Materials, waste and recycling
- Ecology

No change is proposed to the above items and therefore they are not covered in this report.

Executive summary.

This report describes the revised energy strategy for approval under Section 73, following the approved full planning application submitted in 2016 (application number 2015/2704/P) for the development of a residential building at Brill Place Tower (plot 7), as part of the Central Somers Town development in the London Borough of Camden.

Development Description

'An application pursuant to s73 of the Town and Country Planning Act 1990 (as amended) to vary conditions 2 (approved drawings), 3 (approved documents), 15 (quantum of housing, plot 7) and 80 (cycle parking, plot 7) of planning permission ref. 2015/2704/P) in relation to Plot 7, Central Somers Town.'

This application regards Amendments in relation to Plot 7; including: revisions to external appearance, revisions to floorplans including residential layout and ground floor layout, including internal and external structural columns, an increase in residential unit numbers from 54 to 68 units, and revisions to the energy strategy.

Table 1: Area schedule.

Space Type	Space Use	Floor Area
Domestic (C3):	68 apartments	4,501 m² (NSA)
Non-domestic: Flexible retail units (A1-A4)		60 m² (NIA)
	Residential lobby	72 m² (NIA)

Consented site-wide energy strategy

The consented scheme proposed an energy strategy in line with the energy hierarchy Be Lean, Be Clean, Be Green as follows:

- Be Lean: Use of energy efficiency measures to achieve 7.9% improvements over a baseline (Part L _ 2013). Attention was given to achieving a building fabric energy efficiency in line with Camden targets
- Be Clean: Connecting to the district heating scheme with combined heat and power (CHP) technology. To supply all hot water to the building, resulting in a further carbon emission reduction of 14.9% over the baseline.
- Be Green: Gas Absorption Heat Pump (GAHP) was proposed to provide all of the space heating, and integrated Photovoltaics (PVs) to provide a proportion of the electricity for the development. This was estimated to result in further carbon emission reductions of 17.2% (combined for the two systems).

Total carbon emission reductions of 40% were therefore expected, resulting from the approach set out above.

Revised site-wide energy strategy

Since the original planning application was made, there have been several changes to building design guidance and policy, most notably fire regulations (following on from the Grenfell fire), and the GLA guidance to preparing energy strategies (including the introduction of CIBSE TM59 - Design methodology for the assessment of overheating risk in homes), as well as new policies published by LB Camden. This has warranted a number of changes to the design of the development, including changes to the design of the facade.

Furthermore, it was decided also to simplify the energy strategy for the Proposed Development, and it is now proposed to provide all heating and domestic hot water from the Somers Town Energy District Heating Network, which has been confirmed to have capacity for this supply. This is in line with the London Plan Policy.

The energy strategy has been developed in line with the London Plan and local planning policies set out by the London Borough of Camden. The energy strategy exceeds the targets set in the extant planning permission through following the Energy Hierarchy described in London Plan policy 5.2; Be Lean, Be Clean, Be Green.

Regulated CO_2 emissions reductions after each stage of the energy hierarchy are set out in Table 2 to Table 4 below.

Be lean

The Proposed Development is anticipated to meet the requirements of the Building Regulations Part L 2013 'gas boiler baseline' prior to the consideration of any Low or Zero Carbon (LZC) technologies, i.e. via passive design and energy efficiency measures. Section 2.1 details the target fabric and system performance parameters.

Table 2: Be lean results summary.

Domestic	Non-Domestic	Site-wide	
Meet Part L 2013 'gas boiler baseline'	5-10% Reduction over Part L2A 2013 'gas boiler baseline'	0.9% Reduction over Part L2A 2013 'gas boiler baseline'*	

*) The team will continue to endeavour to improve on the Be Lean target by further optimising the facade and system efficiencies to target a 7.9% improvement, in line with the consented scheme target.

Be clean

The strategy has been consolidated and simplified since the previous application.

The Proposed Development is expected to connect to the Somers Town Energy District Heating Network, which incorporates Combined Heat and Power (CHP).

This connection is anticipated to result in a further 53.7% reduction in CO₂ emissions beyond the baseline.

Table 3: Be clean results summary.

Domestic	Non-Domestic	Site-wide
57.3%	10-15%**	53.7%
Reduction over Part L1A baseline	Reduction over Part L2A baseline	Reduction over Part L baseline

**) This will depend on the use class of the commercial area. For this planning amendment, this area has been assumed to be retail A3.

Be green

Due to changes in fire regulations, it is no longer proposed to incorporate PVs in the south-facing staircase glazing. A review has been undertaken of potentially incorporating PV on the rooftop, but it has been found that it would not be possible to access this area for maintenance and repairs, and therefore PV is not proposed.

Table 4: Be green results summary.

Domestic	Non-Domestic	Site-wide
57.3% Reduction over Part L1A baseline	10-15% Reduction over Part L2A baseline	53.7% Reduction over Part L baseline
(No change from Be Clean)	(No change from Be Clean)	(No change from Be Clean)

The results confirm the proposed development is expected to achieve 53.7% carbon emission reductions over the Part L 2013 'gas boiler baseline'. This represents a 13.7% improvement in total carbon emission reductions compared to the consented scheme.

Tables and graphs overleaf give further detail.

Carbon dioxide emissions after each stage of the energy hierarchy Table 5: Carbon emissions after each stage of energy hierarchy.

	Approved Strategy	Revised Strategy
	Total Regulated Emissions Tonnes CO ₂ /year	Total Regulated Emissions Tonnes CO ₂ /year
Part L baseline	71.4	83.4
Be lean.	65.8	82.6
Be clean.	55.2	38.6
Be green.	42.86	38.6

Regulated carbon dioxide savings from each stage of the energy hierarchy Table 6: Regulated carbon emissions savings from each stage of the energy hierarchy.

	Approved Strategy		Revised Strategy	
	Tonnes CO ₂ /year	Percentage	Tonnes CO ₂ /year	Percentage
Savings from Be lean.	5.6	7.9%	1	0.9%
Savings from Be clean.	10.6	14.9%	44	52.8%
Savings from Be green.	12.34 (6.4 GAHP + 5.94 from PV)	17.2% (8.9% from GAHP + 8.3% from PV)	0	0%
Total reduction:	28.6	40%	45	53.7%
Target reduction:	71.4	35%	30	35%
Annual shortfall	none	none	none	none
Carbon offset payment Rate (£/tCO ₂)		_	£1,800	
Offset payment -		N,	/A	

Figure 1: Estimated sitewide regulated carbon emissions for each stage of the energy hierarchy against the 'gas boiler baseline'.

Overheating risk assessment

A CIBSE TM52 overheating study was conducted for the Approved Application. As part of this supplementary energy strategy, an overheating risk assessment using the CIBSE TM59 methodology has been undertaken in line with current policy guidance on mitigation of residential overheating risk.

This has concluded that 100% of tested rooms are expected to pass the criteria in the 'adaptive criteria' scenario, i.e. with windows opened, when testing against the DSY1 summer weather file. This is in line with GLA guidance. Apartments have also been tested against the DSY2&3 weather files.

Please refer to Chapter 5 for details and results of the overheating risk assessment carried out for the Proposed Development.

1. The Strategy.

Brill Place Tower, hereafter referred to as the Approved Development, is located in the London Borough of Camden. The Approved Development is part of the Central Somers Town masterplan. The site is situated within a park near a residential area between Purchese Street and Midland Road.

1.1 Development Description

'An application pursuant to s73 of the Town and Country Planning Act 1990 (as amended) to vary conditions 2 (approved drawings), 3 (approved documents), 15 (quantum of housing, plot 7) and 80 (cycle parking, plot 7) of planning permission ref. 2015/2704/P) in relation to Plot 7, Central Somers Town.'

This application regards Amendments in relation to Plot 7: including: revisions to external appearance, revisions to floorplans including residential layout and ground floor layout, including internal and external structural columns, an increase in residential unit numbers from 54 to 68 units, and revisions to the energy strategy.

Table 7: Comparison of area schedules used in the energy strategy for the Approved Development and Revised scheme.

	Approved Scheme	Revised Scheme
Residential (C3)	54 dwellings	68 dwellings
Non-residential (m²)		
Flexible Floorspace A1/A2/A3/D1	Non-residential areas were not	60
Residential Amenities (D1)	included in previous energy	72
Non-residential total		132

National Drivers

The following section outlines the policy targets at the time of the planning application.

Approved Document Part L of the Building Regulations

In line with the consented planning application, this supplementary energy strategy has been carried out using the carbon factors set within Part L 2013.

Masterplan Drivers

The following summarises the targets for energy strategy and carbon emission reductions as set out within the original application energy & sustainability strategy:

Sustainability Implementation Plan

The sustainability Implementation Plan (SIP) provides guidelines for the design team to deliver sustainability across the Central Somers Town development. The list below defines the targets as set out by the SIP which are relevant to Brill Place.

Site wide targets

- The Development is to achieve a minimum of 20% reduction in CO_2 emissions through on-site renewable energy generation
- 100% of internal and external light fittings to be energy efficient
- 100% of white goods to be energy efficient
- 100% of energy uses to be monitored and recorded
- Residential spaces to target 35% carbon emission reduction in CO₂ emissions for regulated uses

Residential targets

- All residential buildings to achieve a minimum 35% improvement on 2013 Part L of the Building Regulations
- All residential buildings to include appropriate clothes drying spaces (to reduce use of tumble driers).

Non-domestic targets

- Non-residential areas should target 35% reduction in CO₂ emissions for regulated uses on-site, when compared to Part L 2013 as a baseline.¹

Local Policy Drivers (GLA and London Borough of Camden (LBC))

London Plan Policy

The policy for the application of energy and CO_2 emissions as set out in the original application document, and which is still targeted:

- Residential spaces should target 35% reduction in CO₂ emissions for regulated uses on-site, when compared to Part L 2013 as a baseline.
- Non-residential areas should target 35% reduction in CO₂ emissions for regulated uses on-site, when compared to Part L 2013 as a baseline.

Camden Local Plan (2017)

- Policy CC1: Climate change mitigation
- Policy CC2: Adapting to climate change

Camden Planning Guidance – Energy efficiency and adaptation (2019) This document provides further detail on achieving the policies set out within the Camden Local Plan.

¹ There is a further target for non-domestic buildings to achieve a minimum Energy Performance Ratio for New Construction (EPR_{NC}) of 0.375 - however as this is a BREEAM-related target, it is considered to be applicable only to buildings targeting BREEAM ratings.

1.2 Revised energy strategy

Due to various policy changes since the planning consent was given for the Approved Development, the building design has been updated, especially the façade design and performance, as follows:

- Removal of motorised blinds (due to fire risk)
- Removal of integrated photovoltaics to glazed staircase (due to fire risk)
- Change to building façade build-up and the type insulation used (due to fire risk)

In summary, this has resulted in the requirement to update the facade design as follows:

- Amendments to the glazed-to-solid ratio of the façade elements to ensure high thermal performance, due to the move away from phenolic foam insulation
- Amendments to the glazed-to-solid ratio of the façade elements to mitigate overheating risk as far as is possible, due to the removal of motorised shutters, and the advent of CIBSE TM59 methodology
- Amendments to the facade to minimise thermal bridges and envelope thermal losses
- Amendments to staircase facade design to achieve fire protection

Furthermore, it has been decided to consolidate and simplify the energy strategy. The previous application proposed a connection to the Somers Town Energy District Heating Network to provide domestic hot water, with heating provided by gas air source heat pumps, and PV integrated in the southfacing façade of the glazed staircase.

The updated, optimised and simplified energy strategy proposes to increase the connection to the Somers Town Energy District Heating Network. Discussions have been undertaken with Vital Energy who operate the network on behalf of Camden Council, and it has been confirmed the energy network has capacity to provide all heating and hot water at Brill Place.

Detailed information regarding the capacity and efficiency of the energy centre has also been provided, and the updated energy strategy is based on this information. (Appendix C).

The total carbon emission reductions based on the measures set out above are expected to be 57.3% above the part L baseline, exceeding the savings proposed in the previous energy strategy.

The previous proposal of PV panels integrated into the south-facing facade of the staircase has been reviewed, and it is no longer considered viable for the following reasons:

- It would not be appropriate to install a PV system on a fire-fighting stair particularly given the tall (over 45m) single stair design of the building. Specialist fire engineering consultants have reviewed the proposal, and they anticipate that proposing the system on / as part of the fire-fighting shaft would receive significant opposition from LFB during the approval process.
- The temperatures that would be expected inside the staircase circulation areas have been tested using dynamic modelling. Initial results show that high temperatures would be expected in this zone for most of the year. Therefore, it is proposed to mitigate these high temperatures by use of horizontal solar shading to most of the south facade- this would remove the benefit of PVs in this area.

It has also been reviewed whether PV panels could be incorporated at the rooftop of the building. This review concluded that there is no viable access route for maintenance to such panels, and therefore it is not proposed to include PV panels here.

The updated results confirm the proposed development is expected to achieve 53.7% carbon emission reductions over the Part L 2013 'gas boiler baseline'. This represents a 13.7% improvement in total carbon emission reductions compared to the consented scheme.

This document provides a supplement to the approved energy strategies and sets out amendments for approval under this Section 73 application. As such, this document indicates the changes to the detailed calculations which have come as a result of developing this revised energy strategy.

1.3 Approach to the strategy

The revised Energy Strategy has been developed using a 'fabric first' approach through the 'be Lean', 'be Clean', 'be Green' energy hierarchy.

1.4 Definitions and limitations

Definitions:

The following definitions should be understood throughout this statement:

- **Energy demand:** the 'room-side' amount of energy which must be input to a space to achieve comfortable conditions. In the context of space heating, this is the amount of heat which is emitted by a radiator, or other heat delivery mechanism.
- **Energy requirement:** the 'system-side' requirement for energy (fuel). In the context of a space heating system using a gas boiler, this is the amount of energy combusted (e.g. gas) to generate useful heat (i.e. the energy demand).
- Regulated CO₂ emissions: the CO₂ emissions emitted as a result of the combustion of fuel, or 'consumption' of electricity from the grid, associated with regulated sources (those controlled by Part L of the Building Regulations).

Limitations:

The appraisals within this statement are based on Part L calculation methodology and should not be understood as a predictive assessment of likely future energy requirements or otherwise. Occupants may operate their systems differently, and / or the weather may be different from the assumptions made by Part L approved calculation methods, leading to differing energy requirements.

Assessment Methodologies

A sample of the proposed development has been assessed using approved Part L1A SAP methodology. Nonresidential spaces have been benchmarked using recent, similar developments. This has provided the basis for the analysis of the designed building and the consideration of all applicable passive design, energy efficiency and Low or Zero Carbon (LZC) technologies.

The assessment makes use of the Mayor of London's Energy Hierarchy Be Lean - Be Clean - Be Green, and the cooling hierarchy from the London Plan (2016).

In line with current GLA guidance at the time of the extant planning approval, carbon emission reductions have been calculated using the carbon factors set out in Building regulations 2013 guidance (i.e. SAP 2012).

As the non-residential areas of the Proposed Development total less than 500m² GIA, it is not proposed to undertake a BREEAM Assessment for this development. This is in line with the consented Energy Strategy and the Camden Local Plan requirements.

Carbon factors

This assessment has been carried out using Part L 2013 carbon factors. This is justified on the basis of the connection to the Somers Town Energy District Heating Network which incorporates CHP, which is in line with the extant planning permission, and with GLA guidance.

BRILL PLACE BRILL PLACE LIMITED **SUSTAINABILITY** REVISED ENERGY STRATEGY – REV. 04

Figure 2: The proposed development. Source: Stiff + Trevillion Architects

2. Be lean.

Passive design and energy efficiency measures form the basis for the reduction in overall energy demand and carbon emissions for the proposed development. This revised energy strategy aims to reduce the energy demand initially by optimising the envelope and building services within the development.

2.1 Passive design and energy efficiency features

Since the original planning application was made, there have been several changes to building design guidance and policy, most notably fire regulations (following on from the Grenfell fire), and the GLA guidance to preparing energy strategies (including the introduction of CIBSE TM59 – *Design methodology for the assessment of overheating risk in homes*), as well as new policies published by LB Camden. This has warranted a number of changes to the design of the development, including changes to the design of the façade, especially the following:

The composite U-values as included in the original energy strategy have been assessed by façade consultants from Maffeis. It has been found that some of these values are no longer achievable. It is likely that the previous strategy would have used phenolic foam insulation and this type of insulation is no longer proposed for tall buildings following the Grenfell Tower fire.

Updated U-values have been included into the Part L calculations. The impact of this change has been significant, and it has been necessary to implement changes to the consented elevational treatments (for example solid to glass ratios) to achieve compliance with Building Regulation L and the associated fabric efficiency standards. Figure 3 (overleaf) shows the proposed façade design which has resulted from these changes.

In the time since the previous planning application submission, there have also been changes to the SAP calculation methodology, which means that thermal bridges are now accounted for in greater detail than previously. As a result, it has been necessary to rationalise the façade to minimise thermal bridges and envelope thermal losses.

Furthermore, the previously consented energy strategy was based on the use of medium-to-high thermal mass, which would have provided benefits to the results in terms of improved carbon emission reductions. However, this input is not realistically achievable for a high-rise building such as Brill Place, as this would require heavyweight structures such as blockwork walls and concrete ceilings exposed to the interior of apartments. Therefore, an input of low thermal mass has been used, representative of residential tower developments such as this with a curtain walling façade and plasterboard interior walls.

The updated performance values developed and agreed in collaboration with architect Stiff + Trevillion and façade consultant Maffeis are summarised in Table 8.

Table 8: Building Fabric Performance Characteristics

	Previous application values	Updated application values
Exposed Floor U-value (W/m ² K)	0.13	N/A Eliminated with rationalised design
External Wall U-value (W/m²K)	0.15 (opaque areas) (assumed this did not include thermal bridging)	0.13-0.15 (opaque areas)
Roof U-value (W/m²K)	0.13	0.13
Glazing U-value and g-value (W/m²K)	1.0 (assumed this did not include thermal bridging) g value: 0.36	Curtain walling: 1.15-1.59 g value: 0.4
Air Permeability (m ³ /h.m ² @ 50Pa)	3.0	3.0
Thermal bridging ψ-value (W/mK)	'Approved' thermal bridging' This input provides very little detail on how reductions will actually be achieved. While carbon reductions can potentially achieved in theory from use of this input, in reality, approved construction details are usually not applicable to highrise developments, and therefore detailed calculations would have had to be carried out by a specialist façade consultant during detailed design.	Balcony connections: 0.04 (assuming a thermally broken detail) 'Normal' vertical corners: 0.18 (default value) 'Inverted' vertical corners: 0 (default value) Flat Roof connection: 0.08 (default value) All other thermal bridges for the façade included in U-value calculations for walls/windows given above, as confirmed and calculated by Maffeis façade consultants
Thermal mass parameter (kJ/m²K)	Medium to high: Unrealistic value for buildings such as this. This input would have provided the previous applicant with a carbon reduction benefit which would be unlikely to be achieved in the detailed design or post construction stages. See appendix F for a description of typical thermal mass for illustrative constructions.	'low' (~100) See appendix G for a description of typical thermal mass for illustrative constructions.

Figure 3: Proposed scheme elevations - from top left to bottom right: North, East, South, West.

2.2 Be lean results

Following the 'Be Lean' strategy of the Approved Development, the design development described above has resulted in associated CO_2 emissions set out in Table 9 and Table 10 below.

Domestic carbon performance

Table 9: Domestic carbon performance.

Dwellings, area	Dwelling emission rate (DER)	Target emission rate (TER)	Percentage variance
weighted average	kg.CO ₂ /year	kg.CO ₂ /year	
Dwellings	17.01	17.07	0.4%

Non-domestic carbon performance

Table 10: Non-domestic carbon performance (from Benchmark).

Space Reference	Building emission rate (DER) kg.CO ₂ /year	Target emission rate (TER) kg.CO ₂ /year	Percentage variance		
Retail area	80.5	87.8	8.3%		
Residential amenity	16.9	17.5	3.4%		

Site-wide performance

Table 11: 'Be lean' sitewide regulated carbon performance.

Development emission rate:	82.6 tonnes.CO ₂ /year
Target emission rate:	83.4 tonnes.CO ₂ /year
Percentage variance:	0.9%

Figure 4: Be lean results summary.

The team will continue to endeavour to improve on the Be Lean target by further optimising the façade and system efficiencies to target a 7.9% improvement, in line with the consented scheme target.

3. Be clean.

This stage of the energy hierarchy refers to the use of heat networks or on-site Combined Heat and Power (CHP) in order to provide energy and reduce consumption from the national electricity grid and gas networks. through the generation of electricity, heating and cooling on-site.

Figure 5: Thermal and electrical demand chart.

3.2 Be clean: network and technologies

It has been decided to consolidate and simplify the energy strategy. The previous application proposed a connection to the Somers Town Energy District Heating Network to provide domestic hot water only (with heating provided by gas air source heat pumps, and PV integrated in the southfacing facade of the glazed staircase - both discussed in the Be Green section of this report).

The updated, optimised and simplified energy strategy proposes to increase the connection to the Somers Town Energy District Heating Network. Discussions have been undertaken with Vital Energy who operate the network on behalf of Camden Council, and it has been confirmed the energy network has capacity to supply all required heating and hot water to Brill Place.

Correspondence with Vital Energy, who operate the network on behalf of Camden, confirms that there is capacity to provide the required energy from this low carbon energy source.

Detailed information regarding the installed capacity and efficiency of equipment and the energy centre has been provided, and the updated energy strategy is based on this information. (Appendix C)

As a result of this discussion, it is proposed to increase reliance upon the district energy connection as per current policy. This strategy is simpler and will be easier to maintain and operate compared to the previous strategy, which incorporated Gas Air Source Heat Pumps for the Space Heating.

The updated energy strategy thus follows the energy hierarchy Be Lean – Be Clean – Be Green, i.e. focusing on passive design and energy efficiency and district energy connection first of all, before the consideration of renewable energy allocation. It is expected that this strategy will result in carbon emission reductions for the development which improve upon the previous energy strategy results.

Please refer to Table 12 below for the efficiencies of the CHP which have been advised by the network operator. Appendix C contains correspondence with the district network operator, and Appendix D contains the proposed basement plan showing the connection to the district energy network.

Table 12: Somers Town Energy District Heating Network - Data received and used in energy strategy

CHP proportion of heat	75%
CHP thermal efficiency	44%
CHP electrical efficiency	42%
CHP heat-to-power ratio	1.06
Boiler efficiency	89%

Decentralised Energy Network with CHP

The anticipated load profile of the Brill Place Tower development and the approved planning application ensure that the connection to the local Somers Town Energy District Heating Network remains a viable and effective solution for the development.

The Proposed Development benefits from significant CO_2 reduction from the connection to the decentralised energy network due to the high efficiency and low heat to power ratio of the CHP plant which powers the energy network.

3.3 Be clean summary

It is anticipated that the Proposed Development will achieve up to a 53.7% reduction in annual regulated CO₂ emissions beyond the requirements of the Building Regulations Part L 2013 via the connection to the district heat network with CHP.

Figure 6: Be clean results summary.

4. Be green.

The final step of the energy hierarchy explores the feasibility of Low and Zero Carbon (LZC) technologies to allow for the production of renewable energy onsite in order to offer a further reduction in carbon emissions.

4.1 Low and zero carbon (LZC) technology assessment

An LZC technology assessment was undertaken as part of the Approved Application, please refer to application 2015/2704/P for further details.

For the Be Green stage, the previous application proposed heating by gas air source heat pumps, and PV cells integrated in the southfacing façade of the glazed staircase.

The updated, optimised and simplified energy strategy proposes instead to increase the connection to the Somers Town Energy District Heating Network, as set out in section 3 above.

This connection is expected to result in carbon emission reductions exceeding those of the previous energy strategy.

The previous proposal of PV panels integrated into the south-facing façade of the staircase has been reviewed. This is no longer considered a viable design solution for the following reasons:

- It would not be appropriate to install a PV system on / as part of the fire-fighting stair particularly given the tall (over 45m) single stair design of the building. Specialist fire engineering consultants have reviewed the proposal, and they anticipate that proposing the system on / as part of the fire-fighting shaft would receive significant opposition from LFB during the approval process
- The temperatures that would be expected inside the staircase circulation areas have been tested using dynamic modelling. Initial results show that high temperatures would be expected in this zone for most of the year. Therefore, it is proposed to mitigate these high temperatures by use of horizontal solar shading to most of the south façade this would remove the benefit of PVs in this area.

It has been assessed whether a photovoltaic array could be installed on the top-most roof of the residential tower, as this would be expected to be unshaded for much of the year (see Figure 7). This assessment was made notwithstanding that PV was not proposed on this surface in the consented scheme proposal.

An assessment by an access specialist has confirmed that, although it may be possible to access the area in question for cleaning via a long tool from the BMU track, it would not be feasible to gain access for maintenance to this area with hand tools. Therefore, should the panels malfunction, it is not expected that it would be possible to access the area for repairs.

PVs are therefore not proposed in this area.

4.2 Be green summary

Following the 'Be green' strategy of the Approved Development, the design development has resulted in associated estimated CO_2 emissions as set out in Figure 8.

Figure 8: Be green results summary.

5. Cooling and overheating.

5.1 Cooling hierarchy

The proposed development has been designed to minimise its use of active cooling systems through passive and efficiency measures.

Figure 9: Cooling hierarchy.

5.2 Mitigation strategy

Due to updates to the fire regulations, it has been necessary to remove motorised blinds from the façade design. Specialist fire consultants have reviewed the previous proposal, and provided the following comment:

The Building (Amendment) Regulations 2018 impose combustibility requirements on all items which constitute the external wall or 'specified attachments', which specifically include solar shading and balconies. All materials forming the solar shading itself, or any control gear which is located in the wall build up, must be of Class A1 or A2-s1,d0 and hence motorised blinds will not be acceptable.

This, in line with other updates required for reasons set out in section 2 above, have resulted in several amendments made to the façade design.

In summary, the Proposed Development follows the steps of the cooling hierarchy to minimise risks of overheating in summer. The Proposed Development seeks to minimise internal heat generation through energy efficient building services, facades, and external shading elements. It also provides opportunities for passive ventilation through openable windows in all apartments within the development. There will also be MVHR units providing background mechanical ventilation to further reduce the risk of overheating in summer.

Comfort cooling is also still proposed in the design of the domestic elements of the approved development. Furthermore, as the commercial space will be constructed as 'shell and core', it is expected that comfort cooling can also be incorporated into that space by the future tenants as part of their fit-out.

5.3 Residential overheating risk assessment – original application

A residential overheating risk assessment was conducted for the Approved Application at the time of the original planning application. This was prepared prior to the advent of the CIBSE TM59 methodology, and therefore results are not directly comparable to updated results. Main differences would be to inputs for internal gains and profiles (previously there was no set methodology for these specific inputs), and also the weather files tested differed. However, the previous test did comprise a dynamic modelling exercise, setting targets against CIBSE TM52. Results were reported as shown in the image below:

			1976			1989				2003				
Typical Floor Flats	Room	Orientation	1	2	3	Result	1	2	3	Result	1	2	3	Result
1 Bed Flat	Lounge/Kitchen	SW	FAIL	FAIL	FAIL	FAIL	PASS	FAIL	PASS	PASS	PASS	FAIL	FAIL	FAIL
	Bedroom 1	NW	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
2 Bed Flat (SW)	Lounge/Kitchen	SW	PASS	FAIL	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
	Bedroom 1	NW	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
	Bedroom 2	NW	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
2 Bed Flat (NE)	Lounge/Kitchen	NE	PASS	FAIL	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
	Bedroom 1	NE	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
	Bedroom 2	NE	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
Penthouses														
Level 15 Penthouse	Lounge/Kitchen	SW	PASS	FAIL	PAS5	PASS	PASS	PASS	PASS	PASS	PASS	FAIL	FAIL	FAIL
	Bedroom 1	NE	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
	Bedroom 2	NE	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
	Bedroom 3	NW	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
Level 18 Penthouse	Lounge/Kitchen	NE	FAIL	FAIL	FAIL	FAIL	PASS	FAIL	PASS	PASS	PASS	FAIL	FAIL	FAIL
	Lounge	NE	PASS	FAIL	PASS	PASS	PASS	FAIL	PASS	PASS	PASS	PASS	PASS	PASS
	Bedroom 1	SW	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
	Bedroom 2	SW	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
	Bedroom 3	SW	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
Level 20 Penthouse	Lounge/Kitchen	SW	FAIL	FAIL	FAIL	FAIL	PASS	PASS	PASS	PASS	PASS	FAIL	FAIL	FAIL
	Lounge	SW	FAIL	FAIL	FAIL	FAIL	PASS	PASS	PASS	PASS	PASS	FAIL	FAIL	FAIL
	Bedroom 1	SW	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
	Bedroom 2	ŚW	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
	Bedroom 3	NE	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS

Figure 10: Previous application overheating risk assessment results including the use of motorised shading system

As can be seen, a number of tested rooms previously failed the criteria in each of the weather files tested.

5.3.1 Assessment methodology – revised application

As part of this supplementary energy strategy, an updated overheating risk assessment in line with CIBSE TM59 *Design Methodology for the assessment of overheating risk in homes* has been undertaken in line with current policy guidance on mitigation of residential overheating risk.

The sample of dwellings assessed are outlined in Figure 11 and Figure 12 below. A total of 8 dwellings have been selected for the risk assessment as they have been identified to present a representative sample with higher levels of overheating risks based on their height above ground (two typical floors are modelled towards the top of the building where overshading will be minimal).

BRILL PLACE BRILL PLACE LIMITED

SUSTAINABILITY REVISED ENERGY STRATEGY -REV. 04

Figure 12: Sample apartments from Level 15

The assessment was also based on the most appropriate weather file for this site, which is London Weather Centre, and has accounted for future projected climate scenarios. All modelling inputs used in the TM59 overheating risk assessment are summarised in Table 13 below.

Furthermore, the GLAs Overheating Checklist has been completed – please refer to appendix E.

Table 13: TM59 inputs used

Software	IESve 2018 Window Covering (SF = Shading Factor)		None
Weather Data	Design Summer Year (DSY1) London Weather Centre 2020 High Emissions Scenario 50 th Percentile	Window opening type	 The master side hung bedroom windows in the 2 bed apartments onto the Juliet balconies open 90° (full height). The side hung bedroom windows generally can open to 20°. Side hung living room (behind shade) open 90°.
Assessment Criteria	CIBSE TM59	Occupancy	Bedrooms: 24/7 Living room/ Kitchens: 09:00- 22:00
Façade U-values	See Table 8 in Section 2	Max. Occupancy Density	1 Bed – 2 People 2 Bed – 4 People 3 Bed – 6 People
Background Ventilation Rate	2.5 ACH	Occupancy Heat Gains	75 W/ person (Sensible) 55W / person (Latent)
Infiltration	0.15 ACH	Lighting Gains	2 W/m ² (All areas)
Communal Corridor Ventilation Rate	2 ACH		

5.3.2 Predominantly naturally ventilated scenario

The results in the following table summarise the overheating risks of the sample dwellings in a predominantly naturally ventilated scenario. A dwelling is deemed to meet CIBSE TM59 requirements where the following criteria have been met:

- Criterion 1) whereby all living rooms, kitchens, and bedrooms must not exceed the maximum adaptive context threshold for more than 3% of total occupied hours from May to September,
- Criterion 2) whereby all bedrooms must not exceed the maximum operative temperature threshold of 26°C for more than 1% of annual occupied hours during the night (22:00-07:00)

5.3.3 Results summary Table 14: TM59 results summary

Weather file	London_LWC_E h50)SY1_2020Hig	London_LWC_D h50	SY2_2020Hig	London_LWC_DSY3_2020Hig h50			
	Criterion 1 (Living rooms, kitchens, bedrooms)	Criterion 2 (Bedrooms only)	Criterion 1 (Living rooms, kitchens, bedrooms)	Criterion 2 (Bedrooms only)	Criterion 1 (Living rooms, kitchens, bedrooms)	Criterion 2 (Bedrooms only)		
Results (Pass Rate)	100%	100%	35%	0%	40%	33%		

BRILL PLACE BRILL PLACE LIMITED SUSTAINABILITY REVISED ENERGY STRATEGY -REV. 04

The results from the overheating risk analysis against London Design Summer Year 1 (DSY1) demonstrate that all inhabitable rooms (i.e. bedrooms, living rooms and kitchens) pass Criterion 1, and all bedrooms tested pass Criterion 2 (adaptive scenario). This demonstrates a significant improvement against the previous TM52 assessment undertaken on the consented scheme. By expanding the sample size from 6 dwellings to 8, the current assessment captures a broader range of apartments, hence a is more representative of the development as a whole.

Results for DSY2 and DSY3 are presented in line with GLA requirements.

6. Conclusion.

This supplementary energy report provides a revised energy strategy for the Brill Place Tower with an update to the carbon savings achieved by the Approved Development following minor design and systems changes.

6.1 The energy strategy

Since the original planning application was made, there have been several changes to building design guidance and policy, most notably fire regulations (following on from the Grenfell fire), and the GLA guidance to preparing energy strategies (including the introduction of CIBSE TM59 – *Design methodology for the assessment of overheating risk in homes*), as well as new policies published by LB Camden. This has warranted a number of changes to the design of the development, including changes to the design of the façade.

Results of these design changes are incorporated into the results reported here.

It has also been decided to consolidate and simplify the energy strategy. The previous application proposed a connection to the nearby district energy network to provide domestic hot water, with heating provided by Gas air source heat pumps, and PV integrated in the southfacing façade of the glazed staircase.

The updated, optimised and simplified energy strategy proposes to increase the connection to the Somers Town Energy District Heating Network. Discussions have been undertaken with Vital Energy who operate the network on behalf of Camden Council who, and it has been confirmed the energy network has capacity to provide all heating and hot water at Brill Place.

Detailed information regarding the installed capacity and efficiency of equipment and the energy centre has been provided, and the updated energy strategy is based on this information.

The total carbon emission reductions based on the measures set out above are anticipated to be 53.7%, exceeding the savings proposed in the previous energy strategy by 13.7%.

Table 15: Energy strategy summary.

Be lean	0.9% sitewide betterment achieved against Part L baseline. High energy efficient building fabric and building services have been utilised to reduce carbon emissions and energy demand through good practice passive measures.
Be clean	A further 52.8% sitewide betterment achieved through connection to a district heat network with CHP. The revised energy strategy takes the opportunity to increase the previously proposed connection to the Somers Town Energy District Heating Network which has been installed as part of the wider masterplan for the development site. This heat network will be served by CHP and gas fired boilers. The previous approved strategy proposed to use this connection or domestic hot water only. This revised energy strategy proposed to increase this connection to also provide space heating to the development.
Be green	No further savings achieved through LZC technologies. The previous energy strategy proposed Gas Air Source Heat Pumps to provide space heating, and PV panels integrated into the glazed façade of the south-facing staircase. The updated strategy proposed, in line with the energy hierarchy, to provide all pace heating form the district energy network. The proposal for PV integrated in the façade has been assessed and found no longer to be viable for reasons of fire strategy updates and design changes necessary due to the expected high temperatures that would be experienced in the staircase. Further, as an alternative it has been assessed whether PV could be allocated on the roof, however this has been discounted due to lack of viable maintenance access.

Results Table 16: Carbon reduction and savings breakdown.

	Approved	l Strategy	Revised	Strategy				
	Tonnes CO ₂ /year	Percentage	Tonnes CO ₂ /year	Percentage				
Savings from Be lean.	5.6	7.9%	1	0.9%				
Savings from Be clean.	10.6	14.9%	44	52.8%				
Savings from Be green.	12.34 (6.4 GAHP + 5.94 from PV)	17.2% (8.9% from GAHP + 8.3% from PV)	0	0%				
Total reduction:	28.6	40%	45	53.7%				
Target reduction:	71.4	35%	30	35%				
Annual shortfall	none	none	none	none				
Carbon offset payment Rate (£/tCO ₂)		-		300				
Offset payment	-		N/A					

Figure 13: Estimated sitewide regulated carbon emissions for each stage of the energy hierarchy against the 'gas boiler baseline'.

6.2 Overheating risk assessment

A CIBSE TM52 overheating study was conducted for the original Approved Application. As part of this supplementary energy strategy, an overheating risk assessment in line with CIBSE TM59 has been undertaken in line with current policy guidance on mitigation of residential overheating risk.

The results from the overheating risk analysis against London Design Summer Year 1 (DSY1) demonstrate that 100% of all habitable rooms (i.e. bedrooms, living rooms and kitchens) pass Criterion 1, and all bedrooms tested pass Criterion 2 (adaptive scenario). This demonstrates a significant improvement against the previous TM52 assessment undertaken on the consented scheme.

Appendix A: SAP data sheets.

Be lean data sheets **DER Worksheet E NHER** Design - Draft This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed. Assessor name Miss Holly Clifton Assessor number 22160 Client Last modified 15/11/2019 Address 31E1, London, NW11HG 1. Overall dwe Area (m²) Volume (m³) Average storey height (m) 55.00 (1a) x 2.60 (2a) = 143.00 (3a) Lowest occupied (1a) + (1b) + (1c) + (1d)...(1n) = 55.00 (4) Total floor area Dwelling volume (3a) + (3b) + (3c) + (3d)...(3n) = 143.00 (5) 2. Ventilati m³ per hour Number of chimneys x 40 = 0 Number of open flues x 20 = 0 (6b) x 10 = 0 Number of intermittent fans (7a) 0 Number of passive vents 0 x 10 = 0 (7b) 0 Number of flueless gas fires 0 x 40 = (7c) Air changes per hour (6a) + (6b) + (7a) + (7b) + (7c) = 0 0.00 (8) Infiltration due to chimneys, flues, fans, PSVs ÷ (5) = If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area 3.00 (17) If based on air permeability value, then (18) = [(17) ÷ 20] + (8), otherwise (18) = (16) 0.15 (18) Number of sides on which the dwelling is sheltered 2 (19) Shelter factor 1 - [0.075 x (19)] = 0.85 (20) Infiltration rate incorporating shelter factor (18) x (20) = 0.13 (21) Infiltration rate modified for monthly wind speed: Jan Feb Mar Jul Oct Nov Dec Ap Mav Jun Sen Monthly average wind speed from Table U2 5.10 5.00 4.90 4.40 4.30 3.80 3.80 3.70 4.00 4.30 4.50 4.70 (22) Wind factor (22)m ÷ 4 1.28 1.25 1.23 1.10 1.08 0.95 0.93 1.00 1.08 1.13 1.18 (22a) Adjusted infiltration rate (allowing for shelter and wind factor) (21) x (22a)m 0.16 0.16 0.16 0.14 0.14 0.12 0.12 0.12 0.13 0.14 0.14 0.15 (22b) Calculate effective air change rate for the applicable case If mechanical ventilation: air change rate through system 0.50 (23a) 77.35 (23c) If balanced with heat recovery: efficiency in % allowing for in-use factor from Table 4h a) If balanced mechanical ventilation with heat recovery (MVHR) (22b)m + (23b) x [1 - (23c) ÷ 100] 0.28 0.27 0.27 0.25 0.25 0.23 0.23 0.23 0.24 0.25 0.26 (24a) Effective air change rate - enter (24a) or (24b) or (24c) or (24d) in (25) 0.28 0.27 0.27 0.25 0.25 0.23 0.23 0.23 0.24 0.25 0.26 0.26 (25) URN: 1-E-03 version 11 NHER Plan Assessor version 6.3.4 Page 1 SAP version 9.92

3. Heat losses and heat los	s paramete	r			
Element			Gross area, m ²	Opening m ²	s Ne A
Door					1
Window					7
Window					9
Window					2
Window					1
External wall					1
External wall					3
Party wall					1
External wall					(
External wall					(
External wall					2
Total area of external eleme	nts ∑A, m²				8
Fabric heat loss, W/K = ∑(A ×	(U)				
Heat capacity Cm = ∑(А x к)					
Thermal mass parameter (TM	MP) in kJ/m	²K			
Thermal bridges: Σ(L x Ψ) cal	lculated usi	ng Appe	ndix K		
Total fabric heat loss					
Jan	Feb	Mar	Apr	May	Jun
Ventilation heat loss calculat	ted monthly	/ 0.33 x	(25)m x (5)		
13.02	12.87	12.71	11.96	11.81	11.06
Heat transfer coefficient, W/	/K (37)m+	(38)m		1	
51.76	51.61	51.46	50.71	50.56	49.81
Heat loss parameter (HLP), V	V/m²K (39)	m ÷ (4)			
0.94	0.94	0.94	0.92	0.92	0.91
Number of days in month (Ta	able 1a)				
31.00	28.00	31.00	30.00	31.00	30.00
4. Water heating energy re	quirement				
Assumed occupancy, N					
Annual average hot water us	age in litre	s per day	/ Vd,average	e = (25 x N) -	+ 36
Jan	Feb	Mar	Apr	May	Jun
Hot water usage in litres per	day for eac	h month	n Vd,m = fac	tor from Tal	ble 1c x (4
85.62	82.51	79.39	76.28	73.17	70.05
Energy content of hot water	used = 4.18	3 x Vd,m	x nm x Tm/	/3600 kWh/r	nonth (se
126.97	111.05	114.60	99.91	95.86	82.72
Distribution loss 0.15 x (45)	m			_	
19.05	16.66	17.19	14.99	14.38	12.41
Storage volume (litres) inclu	ding any so	ar or W	WHRS stora	ge within sa	me vessel
Water storage loss:					
a) If manufacturer's declared	l loss factor	is know	n (kWh/day	r)	
Temperature factor from	Table 2b				
					Page 2

Energy lost from water storage (kWh/day) (48) x (49) 0.20 (50)
Water storage loss calculated for each month (55) x (41)m
6.20 5.60 6.20 6.00 6.20 6.00 6.20 6.20 6.20 6
If the vessel contains dedicated solar storage or dedicated WWHRS (56)m x [(47) - Vs] ÷ (47), else (56)
6.20 5.60 6.20 6.00 6.20 6.20 6.00 6.20 6.00 6.20 (57)
Primary circuit loss for each month from Table 3
23.26 21.01 23.26 22.51 23.26 22.51 23.26 23.26 23.26 22.51 23.26 22.51 23.26 (59)
Combi loss for each month from Table 3a, 3b or 3c
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (61)
Total heat required for water heating calculated for each month 0.85 x (45)m + (46)m + (57)m + (59)m + (61)m
156.44 137.66 144.06 128.42 125.33 111.23 106.12 117.42 117.53 133.20 141.75 152.43 (62)
Solar DHW input calculated using Appendix G or Appendix H
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (63)
Output from water heater for each month (kWh/month) (62)m + (63)m
156.44 137.66 144.06 128.42 125.33 111.23 106.12 117.42 117.53 133.20 141.75 152.43
Σ(64)112 = 1571.58 (64)
Heat gains from water heating (kWh/month) 0.25 × [0.85 × (45)m + (61)m] + 0.8 × [(46)m + (57)m + (59)m]
65.79 58.21 61.67 56.03 55.44 50.31 49.06 52.82 52.41 58.06 60.46 64.46 (65)
5. Internal gains
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Metabolic gains (Table 5)
91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 (66)
Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5
14.28 12.68 10.32 7.81 5.84 4.93 5.33 6.92 9.29 11.80 13.77 14.68 (67)
Appliance gains (calculated in Appendix L, equation L13 or L13a), also see Table 5
160.19 161.85 157.66 148.74 137.49 126.91 119.84 118.18 122.36 131.28 142.54 153.12 (68)
Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5
32.19 32.19 <th< td=""></th<>
Pump and fan gains (Table 5a)
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (70)
Losses e.g. evaporation (Table 5)
-73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 -73.49 (71)
Water heating gains (Table 5)
88.43 86.63 82.89 77.82 74.52 69.88 65.94 70.99 72.79 78.04 83.97 86.64 (72)
88.43 86.63 82.89 77.82 74.52 69.88 65.94 70.99 72.79 78.04 83.97 86.64 (72) Total internal gains (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m (72)m 78.04 83.97 86.64 (72)
88.43 86.63 82.89 77.82 74.52 69.88 65.94 70.99 72.79 78.04 83.97 86.64 (72) Total internal gains (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m 313.45 311.72 301.43 284.93 268.41 252.28 241.66 246.65 255.00 271.68 290.84 304.99 (73)
88.43 86.63 82.89 77.82 74.52 69.88 65.94 70.99 72.79 78.04 83.97 86.64 (72) Total internal gains (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m 313.45 311.72 301.43 284.93 268.41 252.28 241.66 246.65 255.00 271.68 290.84 304.99 (73)
88.43 86.63 82.89 77.82 74.52 69.88 65.94 70.99 72.79 78.04 83.97 86.64 (72) Total internal gains (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m 313.45 311.72 301.43 284.93 268.41 252.28 241.66 246.65 255.00 271.68 290.84 304.99 (73) 6. Solar gains
88.43 86.63 82.89 77.82 74.52 69.88 65.94 70.99 72.79 78.04 83.97 86.64 (72) Total internal gains (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m 313.45 311.72 301.43 284.93 268.41 252.28 241.66 246.65 255.00 271.68 290.84 304.99 (73) 6. Solar gains
88.43 86.63 82.89 77.82 74.52 69.88 65.94 70.99 72.79 78.04 83.97 86.64 (72) Total internal gains (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m 313.45 311.72 301.43 284.93 268.41 252.28 241.66 246.65 255.00 271.68 290.84 304.99 (73) 6. Solar gains Access factor Table 6d Area m ² Solar flux W/m ² g FF Gains Specific data or Table 6b Gains W
88.43 86.63 82.89 77.82 74.52 69.88 65.94 70.99 72.79 78.04 83.97 86.64 (72) Total internal gains (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m 313.45 311.72 301.43 284.93 268.41 252.28 241.66 246.65 255.00 271.68 290.84 304.99 (73) 6. Solar gains Access factor Table 6d Area m ² Solar flux y/m ² g FF Gains w/m NorthEast 0.30 x 2.86 x 11.28 x 0.9x 0.40 x 0.90 = 3.14 (75)
88.43 86.63 82.89 77.82 74.52 69.88 65.94 70.99 72.79 78.04 83.97 86.64 (72) Total internal gains (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m 313.45 311.72 301.43 284.93 268.41 252.28 241.66 246.65 255.00 271.68 290.84 304.99 (73) 6. Solar gains Access factor Table 6d Area m ² Solar flux W/m ² g specific data or Table 6b FF Gains W NorthEast 0.30 x 2.86 x 11.28 x 0.9 x 0.40 x 0.90 = 3.14 (75) NorthEast 0.77 x 13.60 x 11.28 x 0.9 x 0.40 x 0.90 = 38.28 (75)
88.43 86.63 82.89 77.82 74.52 69.88 65.94 70.99 72.79 78.04 83.97 86.64 (72) Total internal gains (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m 313.45 311.72 301.43 284.93 268.41 252.28 241.66 246.65 255.00 271.68 290.84 304.99 (73) 6. Solar gains Access factor Table 6d Area m ² Solar flux W/m ² g specific data or Table 6b W W W NorthEast 0.30 x 2.86 x 11.28 x 0.9 x 0.40 x 0.90 = 3.14 (75) NorthEast 0.77 x 13.60 x 11.28 x 0.9 x 0.40 x 0.90 = 38.28 (75) NorthWest 0.77 x 2.76 x 11.28 x 0.9 x 0.40 x 0.90 = 7.77 (81)
88.43 86.63 82.89 77.82 74.52 69.88 65.94 70.99 72.79 78.04 83.97 86.64 (72) Total internal gains (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m 313.45 311.72 301.43 284.93 268.41 252.28 241.66 246.65 255.00 271.68 290.84 304.99 (73) 6. Solar gains Access factor Table 6d Area m ² Solar flux W/m ² g specific data or Table 6b FF specific data or Table 6c W NorthEast 0.30 x 2.86 x 11.28 x 0.9 x 0.40 x 0.90 = 3.14 (75) NorthEast 0.77 x 13.60 x 11.28 x 0.9 x 0.40 x 0.90 = 3.8.28 (75) NorthWest 0.77 x 2.76 x 11.28 x 0.9 x 0.40 x 0.90 = 7.77 (81) SouthEast 0.77 x 1.14 x 36.79 x 0.9 x 0.40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $

l	374.27	431.65	508.92	614.76	704.24	714.16	674.81	596.25	504.15	415.93	366.66	355.11	(84
7. Mean interna	al tempera	ture (heati	ng season)										
emperature dur	ring heatin	g periods in	the living	area from T	able 9, Thi	L(°C)						21.00	(8!
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	-
Utilisation factor	for gains f	or living are	a n1,m (se	e Table 9a)									
	0.95	0.93	0.87	0.75	0.59	0.42	0.32	0.37	0.60	0.83	0.93	0.96	(80
/lean internal te	mp of livin	g area T1 (s	teps 3 to 7	in Table 9c)								-
	19.22	19.49	19.94	20.46	20.80	20.94	20.98	20.97	20.84	20.36	19.71	19.17	(8)
emperature dur	ring heatin	g periods in	the rest o	f dwelling fr	om Table	9, Th2(°C)				-			
	20.13	20.13	20.14	20.15	20.15	20.16	20.16	20.17	20.16	20.15	20.15	20.14) (8
Itilisation factor	for gains f	or rest of d	welling n2,	m									-
	0.94	0.92	0.85	0.72	0.55	0.37	0.26	0.31	0.54	0.80	0.92	0.95) (8
/lean internal te	mperature	in the rest	of dwellin	g T2 (follow	steps 3 to	7 in Table	9c)						_
	17.74	18.13	18.76	19.49	19.93	20.11	20.15	20.15	20.00	19.38	18.46	17.68] (9
ving area fraction	on								Li	ving area ÷	(4) =	0.69] (9
lean internal te	mperature	for the wh	ole dwellir	ng fLA x T1 +	(1 - fLA) x	T2					·		
1	18.75	19.06	19.57	20.16	20.52	20.68	20.72	20.71	20.58	20.06	19.31	18.70] (9
، pply adjustmen	t to the me	ean interna	temperat	ure from Ta	ble 4e whe	ere approp	riate		1				
	18.75	19.06	19.57	20.16	20.52	20.68	20.72	20.71	20.58	20.06	19.31	18.70] (9
l	10.75	15.00	20.07	20.20	LOIDE	20.00	20172	1 20072	1 20.50	20.00	10:01	20.70	712
8. Space heating	g requiren	nent											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tilisation factor	for gains,	ηm											
[0.93	0.90	0.84	0.72	0.56	0.41	0.30	0.35	0.57	0.80	0.90	0.94] (9
Jseful gains, ηm	Gm, W (94	4)m x (84)m											
[348.69	389.53	428.38	443.90	396.95	289.72	201.42	208.01	288.01	332.95	331.55	333.54] <mark>(9</mark>
Nonthly average	external t	emperature	from Tab	le U1									
[4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20] (9
leat loss rate for	r mean inte	ernal tempe	rature, Lm	, W [(39)m	x [(93)m -	(96)m]							
[748.20	730.86	672.42	570.85	446.10	302.95	205.26	214.14	324.65	478.05	621.21	742.01) (9
pace heating re	quirement	, kWh/mon	th 0.024 x	[(97)m - (99	5)m] x (41)	m							
	297.24	229.37	181.57	91.40	36.57	0.00	0.00	0.00	0.00	107.95	208.56	303.90]
		10							Σ(9	8)15, 10	12 = 1	456.56	-] (9
pace heating re	quirement	kWh/m²/y	ear							(98)	÷ (4)	26.48	۹) [
		1000				2							_
8c. Space coolir	ng requirer	nent	G.,										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
leat loss rate Lm	ו 	100											_
[0.00	0.00	0.00	0.00	0.00	468.18	368.57	377.38	0.00	0.00	0.00	0.00	(1
Itilisation factor	for loss ηr	n											_
[0.00	0.00	0.00	0.00	0.00	0.93	0.96	0.94	0.00	0.00	0.00	0.00	(1
lseful loss ηmLm	n (watts) (100)m x (10	1)m										
[0.00	0.00	0.00	0.00	0.00	435.91	352.15	354.11	0.00	0.00	0.00	0.00	(1
iains													
	0.00	0.00	0.00	0.00	0.00	909.56	861.61	767.97	0.00	0.00	0.00	0.00) <mark>(1</mark>
[whole dwe	lling, cont	inuous (kWł	n) 0.024 x	(103)m - (1	L02)m] x (4	1)m					
pace cooling red	quirement,							-					٦
pace cooling red	quirement,	0.00	0.00	0.00	0.00	341.03	379.04	307.91	0.00	0.00	0.00	0.00	1
pace cooling red	quirement, 0.00	0.00	0.00	0.00	0.00	341.03	379.04	307.91	0.00	0.00	0.00	0.00]

		∑(104)6	.8 = 1027.98 (104)				
Cooled fraction		cooled area ÷ (4) = 0.82 (105)				
Intermittency factor (Table 10)							
0.00 0.00 0.00 0.00	0.00 0.25 0.2	25 0.25 0.00 0.00	0.00 0.00				
		Σ(106)6	.8 = 0.75 (106)				
Space cooling requirement (104)m x (105) x (106)m							
0.00 0.00 0.00 0.00	0.00 69.76 77.	53 62.98 0.00 0.00	0.00 0.00				
L		Σ(107)6	.8 = 210.27 (107)				
Space cooling requirement kWh/m ² /year		(107) ÷ (4) = 3.82 (108)				
9b. Energy requirements - community heating scheme							
Fraction of space heat from secondary/supplementary system (table 11)	'0' if n	one 0.00 (301)				
Fraction of space heat from community system		1 - (30	1) = 1.00 (302)				
Fraction of community heat from boilers			1.00 (303a)				
Fraction of total space heat from community boilers		(302) x (303	a) = 1.00 (304a)				
Factor for control and charging method (Table 4c(3)) for commu	inity space heating		1.00 (305)				
Factor for charging method (Table 4c(3)) for community water h	eating		1.00 (305a)				
Distribution loss factor (Table 12c) for community heating system	m		1.05 (306)				
Space heating							
Annual space heating requirement		1456.56	(98)				
Space heat from boilers		(98) x (304a) x (305) x (30	6) = 1529.39 (307a)				
			,,				
Water heating							
Annual water heating requirement		1571.58	(64)				
Water heat from boilers		(64) x (303a) x (305a) x (30	6) = 1650.16 (310a)				
Electricity used for heat distribution		0.01 × [(307a)(307e) + (310a)(310e)] = 31.80 (313)					
Cooling System Energy Efficiency Ratio			4.05 (314)				
Space cooling (if there is a fixed cooling system, if not enter 0)		(107) ÷ (3	(315) 51.92				
Electricity for pumps, fans and electric keep-hot (Table 4f)							
mechanical ventilation fans - balanced, extract or positive in	out from outside	114.79	(330a)				
Total electricity for the above, kWh/year			114.79 (331)				
Electricity for lighting (Appendix L)			252.20 (332)				
Total delivered energy for all uses	(307) + (309) + (310	0) + (312) + (315) + (331) + (332)(337)	b) = 3598.46 (338)				
10b. Fuel costs - community heating scheme							
	Fuel kWh/year	Fuel price	Fuel cost £/year				
Space heating from boilers	1529.29	x 4.24 v.0.01 -	64.85 (240-)				
Water heating from bollers	1650.16	A 4.24 X0.01	(3408) 69.97 (343-)				
water reading non-pollers	51.02	A 4.24 X 0.01 =	6.95 (3423)				
Space cooling	114.70	x 13.19 x 0.01 =	0.85 (348)				
rumps and tans	114./9	x 13.19 x 0.01 =	15.14 (349)				
Electricity for lighting	252.20	x 13.19 x 0.01 =	33.2/ (350)				
Additional standing charges			120.00 (351)				
Total energy cost		(340a)(342e) + (345)(35	4) = 310.07 (355)				
11b. SAP rating - community heating scheme							
Energy cost deflator (Table 12)			0.42 (356)				
			(*****				
			LIPN-1 E 02 version 11				
		NHE	R Plan Assessor version 6.3.4				
	Page 5		SAP version 9.92				

Energy cost factor (ECF) SAP value SAP rating (section 13) SAP band 12b. CO2 emissions - community heating scheme Energy kWh/year Emissions from other sources (space heating) Efficiency of boilers 89.50 CO2 emissions from boilers [(307a)+(310a)] x 100 ÷ (367a) = 3552.57 Electrical energy for community heat distribution 31.80 Total CO2 associated with community systems Total CO2 associated with space and water heating Space cooling 51.92 Pumps and fans 114.79 252.20 Electricity for lighting Total CO₂, kg/year Dwelling CO₂ emission rate El value El rating (section 14) EI band 13b. Primary energy - community heating scheme Energy kWh/year Primary energy from other sources (space heating) Efficiency of boilers 89.50 Primary energy from boilers [(307a)+(310a)] x 100 ÷ (367a) = 3552.57 Electrical energy for community heat distribution 31.80 Total primary energy associated with community systems Total primary energy associated with space and water heating Space cooling 51.92 114.79 Pumps and fans Electricity for lighting 252.20 Primary energy kWh/year Dwelling primary energy rate kWh/m2/year Page 6

Be clean data sheets

DER Worksheet Design - Draft										0	NH	ER
This design submission has t property as constructed.	been carried o	ut using A	pproved	SAP softwa	ire. It has l	been prepa	red from p	plans and spe	ecifications	and may n	ot reflect t	he
Assessor name	Miss Holly Cl	ifton					A	ssessor num	ber	22160		
Client							ι	ast modified		15/11/	2019	
Addross	31E1 Lond	on NW/1	186									
Address	5121,2010	01, 14441	1110									
1. Overall dwelling dimens	ions											
				Ar	ea (m²)		Ave	erage storey leight (m)		Vol	ume (m³)	
Lowest occupied					55.00	<mark>(1a)</mark> x		2.60	(2a) =		143.00	(3a)
Total floor area	(1a) + (1	Lb) + (1c) -	+ (1d)(1	1n) =	55.00	(4)						
Dwelling volume							(3;	a) + (3b) + (3	c) + (3d)(3	n) = 🔡	143.00	(5)
2. Ventilation rate												
										m³	per hour	_
Number of chimneys								0] x 40 =		0	(6a)
Number of open flues								0] x 20 =		0	(6b)
Number of intermittent fans	5							0] x 10 =		0] (7a)] (7a)
Number of passive vents								0] x 10 =		0] (76)] (7-)
Number of flueless gas fires								0	J x 40 =	Aird	U bangos po	
										Airc	hour	ſ
Infiltration due to chimneys,	flues, fans, PS	SVs		(6a)	+ (6b) + (7	a) + (7b) +	(7c) =	0] ÷ (5) =		0.00	(8)
If a pressurisation test has b	een carried ou	t or is inte	ended, pr	oceed to (1	7), otherw	vise continu	e from (9)	to (16)				
Air permeability value, q50,	expressed in c	ubic metr	es per ho	our per squ	are metre	of envelop	e area				3.00	(17)
If based on air permeability	value, then (18	8) = [(17) -	÷ 20] + (8), otherwis	e (18) = (1	6)					0.15	(18)
Number of sides on which th	ne dwelling is s	heltered									2	(19)
Shelter factor								1 -	[0.075 x (19	9)] = 📃	0.85	(20)
Infiltration rate incorporatin	g shelter facto	r							(18) x (2	0) =	0.13	(21)
Infiltration rate modified for	monthly wind	speed:										
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Monthly average wind spee	d from Table U	12			2.00		1	1 4 9 9			4.70	1 (22)
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	(22)
1 28	1.25	1 22	1 10	1.02	0.05	0.95	0.02	1.00	1.02	1 12	1 10	1 (22-)
Adjusted infiltration rate (all	lowing for she	ter and w	ind facto	r) (21) x (2)	2a)m	0.95	0.95	1.00	1.08	1.15	1.10	(228)
0.16	0.16	0.16	0.14	0.14	0.12	0.12	0.12	0.13	0.14	0.14	0.15	(22b)
Calculate effective air chang	e rate for the	applicable	e case:] ()
If mechanical ventilation	air change ra	te through	h system								0.50	(23a)
If balanced with heat rec	overy: efficien	cy in % all	, lowing fo	or in-use fac	tor from 1	able 4h					77.35	(23c)
a) If balanced mechanica	l ventilation w	ith heat r	ecovery	(MVHR) (22	b)m + (23	b) x [1 - (23	c) ÷ 100]					
0.28	0.27	0.27	0.25	0.25	0.23	0.23	0.23	0.24	0.25	0.26	0.26	(24a)
Effective air change rate - er	nter (24a) or (2	24b) or (24	4c) or (24	ld) in (25)								
0.28	0.27	0.27	0.25	0.25	0.23	0.23	0.23	0.24	0.25	0.26	0.26	(25)
					Page 1				NH	UR! ER Plan As:	N: 1-E-03 v sessor vers SAP ver	ersion 13 iion 6.3.4 sion 9.92

		G	iross	Opening	s Net a	rea	U-value	A x U W/	К к-valu	е, Ахк	,
		an	ea, m²	m²	A, m	1 ²	W/m²K		kJ/m²	.K kJ/K	
Door					1.8) x	1.40	= 2.65			
Window					7.1	5 x	1.01	= 7.20			
Window					9.3	L x	1.10	= 10.24			
Window					2.7	δ X	1.12	= 3.08			
Window					1.1	t x	1.32	= 1.50			
External wall					15.4	2 X	0.14	= 2.16			
External wall					39.9	6 x	0.13	= 5.19			
Party wall					11.9	0 ×	0.00	= 0.00	1		
External wall					0.2	¥ ×	1.17	= 0.28			
External wall					0.8	×	1.15	= 1.02	1		
External wall					2.1	5 ×	1.39	= 2.99			
Total area of external ele	ements ∑A, m²				80.9	1					
Fabric heat loss, W/K = ∑	(A × U)							(26)	(30) + (32)	= 36.32	
Heat capacity Cm = ∑(A x	: к)						(28)	.(30) + (32) +	(32a)(32e) :	= <u>N/A</u>	╡
Thermal mass parameter	r (TMP) in kJ/n	n²K								100.00	╡
Thermal bridges: $\Sigma(L \times \Psi)$) calculated us	ing Append	ix K							2.43	
Total fabric heat loss									(33) + (36) :	= 38.75	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov Dec	
Ventilation heat loss calc	ulated month	ly 0.33 x (25	5)m x (5)								_
13.02	12.87	12.71	11.96	11.81	11.06	11.06	10.91	11.36	11.81 1	2.11 12.4	1
Heat transfer coefficient,	, W/K (37)m +	(38)m									
51.76	51.61	51.46	50.71	50.56	49.81	49.81	49.66	50.11	50.56 5	0.86 51.16	5
								Average = ∑(39)112/12 :	= 50.67	
Heat loss parameter (HLF	P), W/m²K (39	9)m ÷ (4)					1				_
0.94	0.94	0.94	0.92	0.92	0.91	0.91	0.90	0.91	0.92	0.92 0.93	4
Number of dour in month	- /T-bl- 1-)							Average = 2(40)112/12 :	=0.92	
Number of days in month	n (Table Ia)		20.00	21.00	20.00	21.00	21.00	20.00	21.00	0.00 21.0	
	20.00	34 00 1	30.00 1	31.00	30.00	31.00	31.00	30.00	31.00 3	31.00	
31.00	28.00	31.00		0.000/*****		2					
4. Water heating energy	y requirement	31.00 t				?					
4. Water heating energy Assumed occupancy, N) 28.00 y requirement	31.00				P				1.84	
4. Water heating energy Assumed occupancy, N Annual average hot wate	y requirement y requirement er usage in litre	31.00 t t es per day V	d,average	= (25 x N) +	36	2				1.84	
4. Water heating energy Assumed occupancy, N Annual average hot wate Jan	28.00 y requirement er usage in litre Feb	t es per day V Mar	d,average Apr	= (25 x N) + May	- 36 Jun	Jul	Aug	Sep	Oct	1.84 77.84 Nov Dec	
31.00 4. Water heating energy Assumed occupancy, N Annual average hot wate Jan Hot water usage in litres	y requirement er usage in litre Feb per day for ea	t es per day V Mar ich month V	d,average Apr d,m = facto	= (25 x N) + May or from Tal	• 36 Jun ble 1c x (43)	Jul	Aug	Sep	Oct	1.84 77.84 Nov Dec	
31.00 4. Water heating energ Assumed occupancy, N Annual average hot wate Jan Hot water usage in litres 85.62	y requirement er usage in litre Feb per day for ea	31.00 t es per day V Mar ich month V 79.39	d,average Apr d,m = facto 76.28	= (25 x N) + May or from Tal 73.17	- 36 Jun ble 1c x (43) 70.05	Jul 70.05	Aug 73.17	Sep 76.28	Oct 79.39 8	1.84 77.84 Nov Dec	2
31.00 4. Water heating energy Assumed occupancy, N Annual average hot wate Jan Hot water usage in litres 85.62	y requirement er usage in litre Feb per day for ea 2 82.51	31.00 t es per day V Mar ach month V 79.39	d,average Apr d,m = facto 76.28	= (25 x N) + May or from Tal 73.17	- 36 Jun ble 1c x (43) 70.05	Jul 70.05	Aug 73.17	Sep 76.28	Oct 79.39 8 Σ(44)112	1.84 77.84 Nov Dec 32.51 85.67 = 934.05	2
31.00 4. Water heating energy Assumed occupancy, N Annual average hot wate Jan Hot water usage in litres 85.62 Energy content of hot water	y requirement er usage in litre Feb per day for ea 2. 82.51 ater used = 4.1	31.00 t es per day V Mar uch month V 79.39	d,average Apr d,m = facto 76.28	= (25 x N) + May or from Tal 73.17 600 kWh/r	36 Jun ble 1c x (43) 70.05	Jul 70.05 ables 1b	Aug 73.17	Sep 76.28	Oct 79.39 8 Σ(44)112 -	1.84 77.84 Nov Dec 32.51 85.62 = 934.05	2
31.00 4. Water heating energy Assumed occupancy, N Annual average hot water Jan Hot water usage in litres 85.62 Energy content of hot war 126.97	 28.00 y requirement er usage in litre Feb per day for ea 82.51 ater used = 4.1 7 111.05 	31.00 t es per day V Mar tech month V 79.39 8 x Vd,m x 1 114.60	d,average Apr d,m = facto 76.28 1m x Tm/3 99.91	= (25 x N) + May or from Tal 73.17 600 kWh/n 95.86	- 36 Jun ble 1c x (43) 70.05 nonth (see T 82.72	Jul 70.05 ables 1b 76.65	Aug 73.17 , 1c 1d) 87.96	Sep 76.28	Oct 79.39 8 Σ(44)112 103.74 1	1.84 77.84 Nov Dec 32.51 85.62 = 934.05 13.24 122.9	2
31.00 4. Water heating energy Assumed occupancy, N Annual average hot water Jan Hot water usage in litres 85.62 Energy content of hot water 126.97	 28.00 y requirement er usage in litre Feb per day for ea 82.51 ater used = 4.1 7 111.05 	31.00 t es per day V Mar hch month V 79.39 8 x Vd,m x t 114.60	d,average Apr d,m = factu 76.28 1m x Tm/3 99.91	= (25 x N) + May or from Tal 73.17 600 kWh/n 95.86	36 Jun ble 1c x (43) 70.05 nonth (see T 82.72	Jul 70.05 ables 1b 76.65	Aug 73.17 , 1c 1d) 87.96	Sep 76.28 89.01	Oct 79.39 8 Σ(44)112 103.74 1 Σ(45)112	1.84 77.84 Nov Dec 82.51 85.67 = 934.05 13.24 122.9 = 1224.68	2
31.00 4. Water heating energ Assumed occupancy, N Annual average hot wate Jan Hot water usage in litres 85.62 Energy content of hot wa 126.97 Distribution loss 0.15 x (d)	28.00 y requirement er usage in litre Feb per day for ea 282.51 ater used = 4.1 7 111.05	31.00 t es per day V Mar ich month V 79.39 8 x Vd,m x i 114.60	d,average Apr d,m = factu 76.28 nm x Tm/3 99.91	= (25 x N) + May or from Tal 73.17 600 kWh/n 95.86	- 36 Jun ble 1c x (43) 70.05 nonth (see T 82.72	Jul 70.05 ables 1b 76.65	Aug 73.17 7, 1c 1d) 87.96	Sep 76.28 89.01	Oct 79.39 ε Σ(44)112 1 103.74 1 Σ(45)112 1	1.84 77.84 Nov Dec 22.51 85.62 = 934.05 13.24 122.9 = 1224.68	2
31.00 4. Water heating energ Assumed occupancy, N Annual average hot wate Jan Hot water usage in litres 85.62 Energy content of hot wa 126.97 Distribution loss 0.15 x (19.05	28.00 y requirement er usage in litre Feb per day for ea 82.51 ater used = 4.1 7 111.05 45)m 5 16.66	31.00 t es per day V Mar ich month V 79.39 8 x Vd,m x i 114.60	d,average Apr d,m = facto 76.28 1m x Tm/3 99.91 14.99	= (25 x N) + May or from Tal 73.17 600 kWh/r 95.86 14.38	- 36 Jun ble 1c x (43) 70.05 nonth (see T 82.72 12.41	Jul 70.05 ables 1b 76.65 11.50	Aug 73.17 , 1c 1d) 87.96	Sep 76.28 89.01	Oct 79.39 8 Σ(44)112 1 103.74 1 Σ(45)112 1 15.56 1	1.84 77.84 Nov Dec 22.51 85.62 934.05 13.24 122.9 = 1224.68 66.99 18.43	
31.00 4. Water heating energ Assumed occupancy, N Annual average hot wate Jan Hot water usage in litres 85.62 Energy content of hot wa 126.97 Distribution loss 0.15 x (0 19.05 Storage volume (litres) in	28.00 y requirement er usage in litre Feb per day for ea 282.51 ater used = 4.1 7 111.05 45)m 5 16.66 ncluding any so	31.00 t es per day V Mar uch month V 79.39 8 x Vd,m x 1 114.60 17.19 blar or WWH	d,average Apr d,m = facto 76.28 mm x Tm/3 99.91 14.99 IRS storage	= (25 x N) + May or from Tal 73.17 600 kWh/m 95.86 14.38 e within sal	- 36 Jun ole 1c x (43) 70.05 nonth (see T 82.72 12.41 me vessel	Jul 70.05 ables 1b 76.65 11.50	Aug 73.17 , 1c 1d) 87.96 13.19	Sep 76.28 89.01 13.35	Oct 79.39 8 Σ(44)112 1 103.74 1 Σ(45)112 1 Σ(556 1	1.84 77.84 Nov Dec 32.51 85.62 934.05 13.24 122.9 = 1224.68 16.99 18.43 1.00	
31.00 4. Water heating energ Assumed occupancy, N Annual average hot wate Jan Hot water usage in litres 85.62 Energy content of hot wa 126.97 Distribution loss 0.15 x (19.05 Storage volume (litres) in Water storage loss:	28.00 y requirement er usage in litre Feb per day for ea 282.51 ater used = 4.1 7 111.05 45)m 5 16.66 including any so	31.00 t es per day V Mar uch month V 79.39 8 x Vd,m x t 114.60 17.19 blar or WWH	d,average Apr d,m = factu 76.28 Inm x Tm/3 99.91 14.99 IRS storage	= (25 x N) + May br from Tal 73.17 600 kWh/r 95.86 14.38 e within sat	- 36 Jun ole 1c x (43) 70.05 nonth (see T 82.72 12.41 me vessel	Jul 70.05 ables 1b 76.65 11.50	Aug 73.17 , 1c 1d) 87.96 13.19	Sep 76.28 89.01 13.35	Oct 79.39 8 Σ(44)112 1 103.74 1 Σ(45)112 1 15.56 1	1.84 77.84 Nov Dec i2.51 85.62 = 934.05 13.24 122.9 = 1224.68 i6.99 18.45 1.00	2 7 7
31.00 4. Water heating energ Assumed occupancy, N Annual average hot wate Jan Hot water usage in litres 85.62 Energy content of hot wa 126.97 Distribution loss 0.15 x (19.05 Storage volume (litres) in Water storage loss: a) If manufacturer's decla	28.00 y requirement er usage in litre Feb per day for ea 2 82.51 ater used = 4.1 7 111.05 45)m 5 16.66 ared loss facto	31.00 t es per day V Mar uch month V 79.39 8 x Vd,m x t 114.60 17.19 olar or WWF	d,average Apr d,m = fact 76.28 mm x Tm/3 99.91 14.99 IRS storage kWh/day)	= (25 x N) + May pr from Tal 73.17 600 kWh/r 95.86 14.38 e within sat	- 36 Jun ble 1c x (43) 70.05 nonth (see T 82.72 12.41 me vessel	Jul 70.05 ables 1b 76.65 11.50	Aug 73.17 , 1c 1d) 87.96 13.19	Sep 76.28 89.01	Oct 79.39 8 Σ(44)112 103.74 1 Σ(45)112 15.56 1	1.84 77.84 Nov Dec 32.51 85.62 934.05 13.24 1224.68 16.99 18.43 1.00 0.20	
31.00 4. Water heating energy Assumed occupancy, N Annual average hot wate Jan Hot water usage in litres 85.62 Energy content of hot wa 126.97 Distribution loss 0.15 x (19.05 Storage volume (litres) in Water storage loss: a) If manufacturer's decla Temperature factor fr	28.00 y requirement er usage in litre Feb per day for ea 282.51 ater used = 4.1 7 111.05 45)m i 16.66 ared loss factor rom Table 2b	31.00 t es per day V Mar hch month V 79.39 8 x Vd,m x 1 114.60 17.19 olar or WWH or is known (d,average Apr d,m = fact 76.28 inm x Tm/3 99.91 14.99 IRS storage kWh/day)	= (25 x N) + May pr from Tal 73.17 600 kWh/m 95.86 14.38 e within sai	36 Jun ble 1c x (43) 70.05 nonth (see T 82.72 12.41 me vessel	Jul 70.05 ables 1b 76.65	Aug 73.17 , 1c 1d) 87.96 13.19	Sep 76.28 89.01 13.35	Oct 79.39 8 Σ(44)112 1 103.74 1 Σ(45)112 1 15.56 1	1.84 77.84 Nov Dec 82.51 85.67 934.05 13.24 1224.68 1224.68 66.99 18.44 1.00 0.20 1.00 1.00	
31.00 4. Water heating energ Assumed occupancy, N Annual average hot wate Jan Hot water usage in litres 85.62 Energy content of hot wa 126.97 Distribution loss 0.15 x (19.05 Storage volume (litres) in Water storage loss: a) If manufacturer's declar Temperature factor fr	28.00 y requirement er usage in litre Feb per day for ea 282.51 ater used = 4.1 7 111.05 45)m 5 16.66 ared loss factor rom Table 2b	31.00 t es per day V Mar uch month V 79.39 88 x Vd,m x 1 114.60 177.19 0lar or WWH or is known (d,average Apr d,m = fact 76.28 nm x Tm/3 99.91 14.99 IRS storage kWh/day)	= (25 x N) + May or from Tal 73.17 600 kWh/r 95.86 14.38 e within sai	36 Jun ble 1c x (43) 70.05 nonth (see T 82.72 12.41 me vessel	Jul 70.05 ables 1b 76.65	Aug 73.17 , 1c 1d) 87.96 13.19	Sep 76.28 89.01 13.35	Oct 8 79.39 8 Σ(44)112 1 103.74 1 Σ(45)112 1 15.56 1	1.84 77.84 Nov Dec 82.51 85.67 = 934.05 13.24 122.9 = 1224.68 (6.99) 18.43 1.00 0.20 1.00 1.00	
31.00 4. Water heating energ Assumed occupancy, N Annual average hot wate Jan Hot water usage in litres 85.62 Energy content of hot wa 126.97 Distribution loss 0.15 x (19.05 Storage volume (litres) in Water storage loss: a) If manufacturer's declar Temperature factor fr	28.00 y requirement er usage in litre Feb per day for ea 2 82.51 ater used = 4.1 7 111.05 45)m 6 16.66 ared loss factor rom Table 2b	31.00 t es per day V Mar uch month V 79.39 8 x Vd,m x i 114.60 17.19 olar or WWF	d,average Apr d,m = facto 76.28 Inm x Tm/3 99.91 14.99 IRS storago kWh/day)	= (25 x N) + May or from Tal 73.17 600 kWh/n 95.86 14.38 e within sal	36 Jun ble 1c x (43) 70.05 nonth (see T 82.72 12.41 me vessel	Jul 70.05 ables 1b 76.65	Aug 73.17 , 1c 1d) 87.96 13.19	Sep 76.28 89.01 13.35	Oct 79.39 8 Σ(44)112 1 103.74 1 Σ(45)112 1 15.56 1	1.84 77.84 Nov Dec 22.51 85.62 = 934.05 13.24 122.9 = 1224.68 (6.99) 18.49 1.00 0.20 1.00 1.00	

Energy lost from water storage (kWh/day) (48) x (49) 0.20	(50)
Enter (50) or (54) in (55) 0.20	(55)
Water storage loss calculated for each month (55) x (41)m	
6.20 5.60 6.20 6.00 6.20 6.00 6.20 6.20 6.20 6	0 (56)
If the vessel contains dedicated solar storage or dedicated WWHRS (56)m x [(47) - Vs] ÷ (47), else (56)	
6.20 5.60 6.20 6.00 6.20 6.00 6.20 6.00 6.20 6.00 6.20 6.00 6.2	0 (57)
Primary circuit loss for each month from Table 3	
23.26 21.01 23.26 22.51 23.26 22.51 23.26 2	26 (59)
Combi loss for each month from Table 3a. 3b or 3c	
	0 (61)
Total heat required for water heating calculated for each month $0.85 \times (45)m + (46)m + (57)m + (59)m + (61)m$	(01/
	43 (62)
Solar DHW input calculated using Appendix G or Appendix H	
	(63)
Output from water beater for each month (kWb/month) (62)m + (63)m	0 (03)
156 44 127 55 144 05 128 42 125 22 111 22 106 12 117 42 117 52 122 20 141 75 152	42
	+3 (6A)
$\frac{2(04)112}{107/1.00} = \frac{107/1.00}{100}$	(04)
65.79 58.21 61.67 56.03 55.44 50.31 49.06 52.82 52.41 58.06 60.46 64.4	10 (65)
5. Internal gains	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov De	c
Metabolic gains (Table 5)	
91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87 91.87	37 (66)
Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5	
14.28 12.68 10.32 7.81 5.84 4.93 5.33 6.92 9.29 11.80 13.77 14.0	58 (67)
Appliance gains (calculated in Appendix L, equation L13 or L13a), also see Table 5	
160.19 161.85 157.66 148.74 137.49 126.91 119.84 118.18 122.36 131.28 142.54 153.	12 (68)
Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5	(,
32.19 3	(69)
Pump and fan gains (Table 5a)	
	0 (70)
Losses e.g. evaporation (Table 5)	(,
-73 49 -73 49 -73 49 -73 49 -73 49 -73 49 -73 49 -73 49 -73 49 -73 49 -73 49 -73 49 -73 49 -73 49 -73 49 -73	49 (71)
Water heating gains (Table 5)	
	(72)
Total internal gains $(56)m + (57)m + (58)m + (59)m + (70)m + (71)m + (72)m$	
313 45 311 72 301 43 284 93 268 41 252 28 241 66 246 65 255 00 271 68 290 84 304	00 (73)
515,45 511/2 501,45 204,55 200,41 252,20 241,00 240,05 255,00 271,06 250,04 504,	55 (75)
6. Solar gains	
Access factor Area Solar flux g FF Gain	5
Table 6d m ² W/m ² specific data specific data W	
NorthEast 0.30 x 2.86 x 11.28 x 0.9 x 0.40 x 0.90 = 3.14	(75)
NorthEast 0.77 x 13.60 x 11.28 x 0.9 x 0.40 x 0.90 = 38.28	3 (75)
NorthWest 0.77 x 2.76 x 11.28 x 0.9 x 0.40 x 0.90 = 7.77	(81)
SouthEast 0.77 x 1.14 x 36.79 x 0.9 x 0.40 x 1.00 = 11.63	. (77)
Solar gains in watts ∑(74)m(82)m	
00.01 113.33 207.43 323.03 433.03 401.00 433.13 343.00 243.13 144.23 73.02 30.	12 (83)
00.01 115.53 207.45 323.03 433.03 401.88 433.13 345.00 245.13 144.23 73.82 30.	12 (83)
URN: 1-E-C	12 (83))3 version 1
URN: 1-E- NHER Plan Assessor	12 (83))3 version 1 version 6.3.

	374.27	431.65	508.92	614.76	704.24	714.16	674.81	596.25	504.15	415.93	366.66	355.11 (
7 Manu intern	al tompore	ture (heati		\								
7. Wean Intern	iai tempera	ture (neati	ng season) 	able o The	1/10)						24.00
remperature du	Iring neatin	g periods in	the living	area from 1	able 9, 1 h.	L(C)	1.1		6	0.1	L	21.00
	Jan	FeD	Mar	Apr	way	Jun	Jui	Aug	Sep	Oct	NOV	Dec
Utilisation facto	r for gains f	or living are	2a n1,m (s	ee Table 9a)		-						
	0.95	0.93	0.87	0.75	0.59	0.42	0.32	0.37	0.60	0.83	0.93	0.96 (
Vean internal to	emp of livin	g area T1 (s	steps 3 to 3	7 in Table 9c)		_	_			_	
	19.22	19.49	19.94	20.46	20.80	20.94	20.98	20.97	20.84	20.36	19.71	19.17 (
lemperature du	uring heatin	g periods in	the rest o	of dwelling fr	om Table	9, Th2(°C)						
	20.13	20.13	20.14	20.15	20.15	20.16	20.16	20.17	20.16	20.15	20.15	20.14 (
Jtilisation facto	r for gains f	or rest of d	welling n2	,m								
	0.94	0.92	0.85	0.72	0.55	0.37	0.26	0.31	0.54	0.80	0.92	0.95 (
Mean internal to	emperature	in the rest	of dwellin	g T2 (follow	steps 3 to	7 in Table	9c)		1			
	17.74	18.13	18.76	19.49	19.93	20.11	20.15	20.15	20.00	19.38	18.46	17.68
iving area fract	ion	10.15	10.70	13.45	10.00	10.11	1 20.15	1 20:20	11	ving area ±	(4) =	0.69 /
Aean internal to	emperature	for the wh	ole dwelli	ng fl A v T1 +	(1 - fl A) v	т2				ving area .	(4) -	0.05
nearr internar o			to cz		1-104/ X	12	20.72	0.71	20.50	20.00	10.01	10.70
and the state	18.75	19.06	19.57	20.16	20.52	20.68	20.72	20.71	20.58	20.06	19.31	18.70 (
pply adjustme	nt to the me	ean interna	i temperat	ture from Ta	bie 4e whi	ere approp	riate		<i>p</i>			
	18.75	19.06	19.57	20.16	20.52	20.68	20.72	20.71	20.58	20.06	19.31	18.70 (
8 Space heatin	og requirem	ent				din.						
o. space neuril	lan	Eab	Max	Anz	May	lun	lul -	Aug	For	Oct	New	Dec
hillion him for the	Jan	reb	Iviar	Apr	iviay	Jun	301	Aug	Seb	000	NOV	Dec
Jtilisation facto	r for gains,	лт т						1				
	0.93	0.90	0.84	0.72	0.56	0.41	0.30	0.35	0.57	0.80	0.90	0.94 (
Jseful gains, ηπ	nGm, W (94	4)m x (84)m		_							_	
	348.69	389.53	428.38	443.90	396.95	289.72	201.42	208.01	288.01	332.95	331.55	333.54 (
Monthly averag	e external t	emperature	e from Tab	le U1								
	4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20 (
leat loss rate fo	or mean inte	ernal tempe	erature, Ln	n, W [(39)m	x [(93)m -	(96)m]						
	748.20	730.86	672.42	570.85	446.10	302.95	205.26	214.14	324.65	478.05	621.21	742.01 (
pace heating re	equirement	, kWh/mon	th 0.024>	c [(97)m - (9	5)m] x (41)	m	7					
	297.24	229.37	181.57	91.40	36.57	0.00	0.00	0.00	0.00	107.95	208.56	303.90
									5(9)	8)1 5 10	12 = 1	456.56 (
nace heating re	auirament	kWb/m²/w	93r						210	(08)	÷ (4)	26.48
pace nearing re	equirement		car							(50)	. (-)	20.40
8c. Space cooli	ng requirer	nent										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	m				1							
leat loss rate Lr											0.00	0.00 /
leat loss rate Lr	0.00	0.00	0.00	0.00	0.00	468.18	368.57	377.38	0.00	0.00	1 1.00	1 0.00 **
leat loss rate Lr	0.00	0.00	0.00	0.00	0.00	468.18	368.57	377.38	0.00	0.00	0.00	0.00
leat loss rate Lr Jtilisation facto	0.00 r for loss ηr	0.00 n	0.00	0.00	0.00	468.18	368.57	377.38	0.00	0.00	0.00	
leat loss rate Lr Jtilisation facto	0.00 r for loss ηr 0.00	0.00 n 0.00	0.00	0.00	0.00	468.18 0.93	368.57 0.96	377.38 0.94	0.00	0.00	0.00	0.00 (
leat loss rate Lr Jtilisation facto Jseful loss ηmLi	0.00 r for loss ŋr 0.00 m (watts) (0.00 n 0.00 100)m x (10	0.00 0.00 01)m	0.00	0.00	468.18 0.93	368.57 0.96	377.38 0.94	0.00	0.00	0.00	0.00 (
leat loss rate Lr Jtilisation facto Jseful loss ηmLi	0.00 r for loss nr 0.00 m (watts) (0.00	0.00 n 0.00 100)m x (10 0.00	0.00 0.00 01)m 0.00	0.00	0.00	468.18 0.93 435.91	368.57 0.96 352.15	377.38 0.94 354.11	0.00	0.00	0.00	0.00 (
leat loss rate Lr Jtilisation facto Jseful loss ηmLi Sains	0.00 r for loss ŋr 0.00 m (watts) (0.00	0.00 n 0.00 100)m x (10 0.00	0.00 0.00 01)m 0.00	0.00	0.00	468.18 0.93 435.91	368.57 0.96 352.15	0.94 354.11	0.00	0.00	0.00	0.00 (
leat loss rate Lr Jtilisation facto Jseful loss ηmLi Sains	0.00 r for loss nr 0.00 m (watts) (0.00	0.00 n 0.00 100)m x (10 0.00	0.00 0.00 01)m 0.00	0.00	0.00	468.18 0.93 435.91 909.56	368.57 0.96 352.15 861.61	0.94 354.11 767.97	0.00	0.00	0.00	0.00 (0.00 (0.00 (
leat loss rate Lr Jtilisation facto Jseful loss ηmLi Gains space cooling re	0.00 r for loss ŋr 0.00 m (watts) (0.00 0.00 equirement,	0.00 n 0.00 100)m x (10 0.00 0.00 . whole dwe	0.00 0.00 01)m 0.00 0.00	0.00 0.00 0.00 inuous (kW	0.00 0.00 0.00 0.00 h) 0.024 x	468.18 0.93 435.91 909.56 ((103)m - (1	368.57 0.96 352.15 861.61 102)m] x (4	377.38 0.94 354.11 767.97 1)m	0.00	0.00	0.00	0.00 (
Heat loss rate Lr Jtilisation facto Jseful loss ŋmLi Sains Space cooling re	0.00 r for loss ŋr 0.00 m (watts) (0.00 equirement, 0.00	0.00 n 0.00 100)m x (10 0.00 0.00 . whole dwe 0.00	0.00 0.00 01)m 0.00 0.00 elling, cont	0.00 0.00 0.00 0.00 tinuous (kWi 0.00	0.00 0.00 0.00 0.00 h) 0.024 x 0.00	468.18 0.93 435.91 909.56 ((103)m - (1 341.03	368.57 0.96 352.15 861.61 102)m] x (4 379.04	377.38 0.94 354.11 767.97 1)m 307.91	0.00	0.00	0.00	0.00 (0.00 (0.00 (0.00 (0.00)
łeat loss rate Lr Jtilisation facto Jseful loss ηmLi Gains Gains	0.00 r for loss nr 0.00 m (watts) (0.00 cquirement, 0.00	0.00 n 0.00 100)m x (10 0.00 0.00 whole dwe 0.00	0.00 0.00 01)m 0.00 0.00 elling, cont	0.00 0.00 0.00 inuous (kW) 0.00	0.00 0.00 0.00 h) 0.024 x 0.00	468.18 0.93 435.91 909.56 ((103)m - (1 341.03	368.57 0.96 352.15 861.61 102)m] x (4 379.04	377.38 0.94 354.11 767.97 1)m 307.91	0.00	0.00	0.00	0.00 (
leat loss rate Lr Itilisation facto Iseful loss ηmLi Gains pace cooling re	0.00 r for loss nr 0.00 m (watts) (0.00 0.00 equirement, 0.00	0.00 n 0.00 100)m x (10 0.00 0.00 . whole dwe 0.00	0.00 0.00 01)m 0.00 0.00 elling, cont	0.00 0.00 0.00 0.00 tinuous (kW) 0.00	0.00 0.00 0.00 0.00 h) 0.024 x 0.00	468.18 0.93 435.91 909.56 ((103)m - (1 341.03	368.57 0.96 352.15 861.61 102)m] x (4 379.04	377.38 0.94 354.11 767.97 1)m 307.91	0.00	0.00	0.00 0.00 0.00 0.00	0.00 (0.00 (0.00 (0.00 (0.00 (

	Σ(104)68 = 1027.98 (104)
Cooled fraction	cooled area \div (4) = 0.82 (105)
Intermittency factor (Table 10)	
0.00 0.00 0.00	
	$\sum (106)68 = 0.75$ (106)
Space cooling requirement (104)m x (105) x (106)m	
0.00 0.00 0.00 0.00	0.00 69.76 77.53 62.98 0.00 0.00 0.00 0.00
	$\Sigma(107)68 = 210.27$ (107)
Space cooling requirement kWh/m ² /year	(107) ÷ (4) = 3.82 (108)
	Als.
9b. Energy requirements - community heating scheme	
Fraction of space heat from secondary/supplementary system (t	(table 11) '0' if none 0.00 (301)
Fraction of space heat from community system	1 - (301) = 1.00 (302)
Fraction of community heat from boilers	0.25 (303a)
Fraction of community heat from CHP	0.75 (303b)
Fraction of total space heat from community CHP	$(302) \times (303a) = 0.75$ (304a)
Fraction of total space heat from community boilers	$(302) \times (303b) = 0.25$ (304b)
Factor for control and sharping method (Table 4a(2)) for commu	$(302) \times (3030) = 0.23$ (3040)
Factor for control and charging method (Table 4c(3)) for commu	1.00 (305)
Factor for charging method (Table 4c(3)) for community water h	heating 1.00 (305a)
Distribution loss factor (Table 12c) for community heating system	em <u>1.05</u> (306)
Space heating	
Annual space heating requirement	1456.56 (98)
Space heat from CHP	(98) x (304a) x (305) x (306) = 1147.04 (307a)
Space heat from boilers	(98) x (304b) x (305) x (306) = 382.35 (307b)
Water heating	
Annual water heating requirement	1571 58 (64)
Water heat from CHP	(64) × (202a) × (205a) × (206) = 1227.62 (210a)
Water heat from CHP	$(64) \times (303a) \times (305a) \times (305a) = 1237.62 $ (310a)
water heat from bollers	$(64) \times (303b) \times (305a) \times (306) = 412.54$ (310b)
Electricity used for heat distribution	0.01 × [(307a)(307e) + (310a)(310e)] = 31.80 (313)
Cooling System Energy Efficiency Ratio	4.05 (314)
Space cooling (if there is a fixed cooling system, if not enter 0)	(107) ÷ (314) 51.92 (315)
Electricity for pumps, fans and electric keep-hot (Table 4f)	
mechanical ventilation fans - balanced, extract or positive in	nput from outside 114.79 (330a)
Total electricity for the above, kWh/year	114.79 (331)
Electricity for lighting (Appendix L)	252.20 (332)
Total delivered energy for all uses	(307) + (309) + (310) + (312) + (315) + (331) + (332) (337b) = 3598 46 (338)
10b. Fuel costs - community heating scheme	
	Fuel Fuel price Fuel
· · · · · · · · · · · · · · · · · · ·	kwii/year cost ±/year
Space heating from CHP	<u>1147.04</u> x <u>2.97</u> x 0.01 = <u>34.07</u> (340a)
Space heating from boilers	382.35 x 4.24 x 0.01 = 16.21 (340b)
Water heating from CHP	1237.62 x 2.97 x 0.01 = 36.76 (342a)
Water heating from boilers	412.54 x 4.24 x 0.01 = 17.49 (342b)
Space cooling	51.92 x 13.19 x 0.01 = 6.85 (348)
Pumps and fans	114.79 x 13.19 x 0.01 = 15.14 (349)
	URN: 1-E-03 version 13
	NHER Plan Assessor version 6.3.4
	Page 5 SAP version 9.92

252.20 Electricity for lighting Additional standing charges Total energy cost 11b. SAP rating - community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating (section 13) SAP band 12b. CO₂ emissions - community heating scheme Energy kWh/year Emissions from community CHP (space and water heating) Power efficiency of CHP unit 41.75 44.25 Heat efficiency of CHP unit Space heating from CHP (307a) × 100 ÷ (362) = 2592.0476 less credit emissions for electricity -1082.1170 Water heated by CHP 2796.7256 less credit emissions for electricity -1167.5651 Emissions from other sources (space heating) Efficiency of boilers 89.50 CO2 emissions from boilers [(307b)+(310b)] x 100 ÷ (367b) = 888.14 31.80 Electrical energy for community heat distribution Total CO2 associated with community systems Total CO2 associated with space and water heating 51.92 Space cooling 114.79 Pumps and fans Electricity for lighting 252.20 Total CO₂, kg/year Dwelling CO₂ emission rate El value El rating (section 14) El band 13b. Primary energy - com munity heating scheme Energy kWh/year Primary Energy from community CHP (space and water heating) 41.75 Power efficiency of CHP unit Heat efficiency of CHP unit 44.25 Space heating from CHP (307a) × 100 ÷ (362) = 2592.05 -1082.12 less credit energy for electricity Water heated by CHP 2796.73 less credit energy for electricity -1167.57 Primary energy from other sources (space heating) Efficiency of boilers 89.50 Primary energy from boilers [(307b)+(310b)] x 100 ÷ (367b) = 888.14 Page 6

v	13.19	x 0.01 =	33.27	(350)
Ŷ	13.15	x 0.01 -	120.00	(351)
	(340a)(342e) +	(345)(354) =	279.78	(355)
			••••••	
				lines
			0.42	(356)
			1.18	(357)
			85.61	(250)
			84	(358)
			В	1
	Emission factor		Emissions	
			(Kg/year)	
				(201)
				(361)
1.0	0.2160		FE0 8833	(362)
×	0.2160	=	559.8823	(303)
	0.3190	= 92	-561.6187	(304)
<u>.</u>	0.2100	-	604.0927	(303)
*	0.5190	=	-005.9005	(500)
				(367b)
x	0.216	=	191.84	(368)
x	0.519	=	16.50	(372)
			204.73	(373)
			204.73	(376)
×	0.519	=	26.95	(377)
×	0.519	=	59.58	(378)
×	0.519	=	130.89	(379)
	·	(376)(382) =	422.15	(383)
		(383) ÷ (4) =	7.68	(384)
			94.34	ĺ
			94	(385)
			A	
	Drimony factor		Drimony on or my	
	Primary factor		(kWh/year)	
				(361)
				(362)
х	1.22	=	3162.30	(363)
х	3.07	=	-3322.10	(364)
x	1.22	=	3412.01	(365)
х	3.07	=	-3584.42	(366)
				(367b)
х	1.22	=	1083.53	(368)
			URN: 1-E-03 ve	rsion 13
		NHER F	lan Assessor versi	ion 6.3.4
			SAF Vers	

Appendix B: Correspondence with Central Somers Town District Energy Operator (Vital Energy / Camden Council)

Wed 13/11/2019 14:29
DJ Davies, James <james.davies@camden.gov.uk></james.davies@camden.gov.uk>
RE: Central Somers Town energy centre
CC 🛛 Lena Kotina; 🖸 Zygi Kadziulis; 🔍 Michelle Wang Retention Rolling R D. Foult Inhor (Linear, Emerthe) Everyona 12 (05 (2001)
A Vou forwarded this message on 14/11/2019 13:24
D1. JMS412 (103-80) - 170919.pdf 143 KB
[External email]
Hi Louise,
All the information is still correct. The heat to power ration is 1.06 but data sheet for the engine is attached. This also contains the efficiency data I shared previously.
Cheers,
James
James Davies Sustainability Projects Manager
Telephone: 020 7974 6892
f in E S
From: Louise Wille
Sent: 12 November 2019 18:10
To: 'james.Davies@camden.gov.uk' < <u>james.Davies@camden.gov.uk</u> >
Cc: Lena Kotina < <u>LenaKotina@hoarelea.com</u> >; Zygi Kadziulis < <u>ZygiKadziulis@hoarelea.com</u> >; Michelle Wang < <u>MichelleWang@hoarelea.com</u> > Subject: Central Somers Town energy centre
Importance: High
Dear James,
Zygi forwarded me your details. Tony at Vital Energy tells me you're the man to contact regarding the Central Somers Town energy centre?
I am working with Zygi and Lena on the Brill Place tower, and as you will be aware, the plan is to connect the building to the energy centre for the entire heating and hot water demand. I have previously received some information regarding the installation which I was hoping to double check with you:
Could you please provide us with a confirmation of the heat to power ratio of the CHP? I expect this will be around 1.05, based on the percentage efficiency of heating and electricity given before (in the attached), I just wanted to double-check as these inputs impact our results greatly.
If there are any other figures given in the attached that would need updating we would be grateful for this also.
We are expecting to submit the application imminently, therefore a swift response would be much appreciated. Apologies for the short notice, it has taken me a few days and some running around in circles to get to your contact details!
Best regards,
Louise
Louise Wille
Principal Sustainability Consultant
DDI +44 20 3668 7290 Tel +44 20 3668 7100
Mob +44 7854 104 390

Appendix C: Proposed basement plan sketch, showing connection to incoming DEN Network

Appendix D: GLA Overheating Checklist

Section 1 – Site Features	affecting vulnerability to overheating	Please respond Yes or No	
Site Location	Urban – within central London or high density conurbation	No	
	Peri-urban – on the suburban fringes of London	Yes	
Air Quality and (or Naico	Busy roads / A roads	Yes	
sensitivity – are any of	Railways / Overground / DLR	Yes	
the following in the	Airport / Flight Path	ТВС	
	Industrial uses / waste facility	ТВС	
	Will any buildings be occupied by vulnerable people (e.g. elderly, disabled, young children)?	YES	
Proposed building use	Are residents likely to be at home during the day (e.g. students)?	ТВС	
Dwelling aspect	Are there any single aspect units?	Yes	
Clazing ratio	Is the glazing ratio (glazing : internal floor area) greater than 25%?	ТВС	
	If yes, is this to allow acceptable levels of daylighting?	ТВС	
Security – Are there any	Single storey ground floor units	Residential Lobby & Commercial Unit Only	
security issues that could limit opening of windows for ventilation?	Vulnerable areas identified by the Police Architectural Liaison Officer	No	
	Other	N/A	

Table 17: GLA Overheating Checklist – Section 1

Section 2 – Design Featu	Please Respond	
	Will deciduous trees be provided for summer shading (to windows and pedestrian routes)?	Yes
Landscaping	Will green roofs be provided?	No
201100000000	Will other green or blue infrastructure be provided around buildings for evaporative cooling?	Yes (Building located within Purchese St Open Space (Park))
Materials	Have high albedo (light colour) materials been specified?	Natural anodised aluminium to flag elevation
Dwelling Aspect	% of total units that are single aspect	0%
Dweining Aspect	% of single aspect with N/NE/NW orientation	0%

Section 2 – Design Featu	res Implemented to Mitigate Overheating Risk	Please Respond	
	% single aspect with E orientation	0%	
	% single aspect with S/SE/SW orientation	0%	
	% single aspect with W orientation	0%	
	N/NE/NW	Please refer to the Design and	
the glazing ratio – What is	E	Access Statement submitted in	
internal floor area) on	S/SE/SW	for detailed information regarding	
each façade?	W	floor areas and elevations.	
Daylighting	What is the average daylight factor range	ТВС	
	Are windows openable?	Yes	
Window Opening	What is the average percentage of openable area for the windows?	100% (side hung 90 degree internally opening)	
Window Opening –	Fully openable	Yes (part)	
what is the extent of the opening?	Limited (e.g. for security, safety, wind loading reasons)	Yes (part)	
Security	Where there are security issues (e.g. ground floor flats) has an alternative night time natural ventilation method been provided (e.g. ventilation grates)?	N/A no ground floor apartments proposed	
Chardina.	Is there any external shading?	Yes	
Snading	Is there any internal shading?	Blinds / curtains	
Glazing Specification	Is there any solar control glazing?	Yes – g-value of 0.4 throughout	
Ventilation – what is the ventilation strategy?	Natural - background	No	
	Natural – purge	Yes	
	Mechanical – background (e.g. MVHR)	Yes	
	Mechanical – purge	No	
	What is the average design air change rate?	In line with part F requirements	
Heating System	Is communal heating present?	Yes	
	What is the flow/return temperature?	85/65	
	Have horizontal pipe runs been minimized?	Yes	
	Do the specifications include insulation levels in line with the London Heat Network Manual?	Yes	
Cable 18. CLA Overheating Cha	chlist - Section 2		

Table 18: GLA Overheating Checklist – Section 2

Appendix E: CHP data sheet (select pages)

(GE)
(0.01 Technical Data (at module)
F	perov input
0	Bas volume
n N	Mechanical output
E	Electrical output
ini F	Becoverable thermal output
	Intercooler 1st stage
	- Lube oil
	- Jacket water
	- Exhaust das cooled to 123 C
T	Entail recoverable thermal output
18 7	Total output generated
1	Heat to be dissipated
15	letereseler 2nd stans
2	- Intercooler 2nd stage
1	Cude on
ì	· Surrace field
	The fuel consumption of ancies startic
2	spec, ruer consumption of engine electric
10	spec. ruer consumption of engine
L	ube oil consumption
E	Electrical efficiency
I	Thermal efficiency
I	lotal efficiency
L.	Hot water circuit:
E F	count temperature
r P	atum temperature
ili L	Lot water flow rate
ľ	TOL WATER HOW FALE
F	Fuel gas LHV
) approximate value for pipework dimensioning
Ĺ] Explanations: see 0.10 - Technical parameters
А с (і г	Will heat data is based on standard conditions according to attachm hange of values within the heat balance, and must be taken into intercooler; emergency cooling;). In the specifications in addition eserve of +5 % is recommended for the dimensioning of the cooling the cooling of the cooling of the dimensioning of the cooling o
	19.09.2017/GE (F478) JMS412 (103-

		100%	75%	50%
[2]	kW	2.169	1.671	1.173
*)	Nm3/h	228	176	123
[1]	kW	928	696	464
[4]	kW el.	901	675	448
[9]	kW	186	91	26
	kW	126	112	94
	kW	247	224	188
	kW	398	330	250
[5]	kW	957	758	558
	kW total	1.858	1.433	1.006
	kW	97	77	53
	kW	~	~	~
ca. [7]	kW	79	~	~
[2]	kWh/kWel.h	2,41	2,47	2,62
[2]	kWh/kWh	2,34	2,40	2,53
ca. [3]	kg/h	0,19	~	~
		41,5%	40,4%	38,2%
		44,1%	45,3%	47,6%
[6]		85,7%	85,8%	85,8%
	C	103,0	98,2	93,4
	C	80,0	80,0	80,0
	m³/h	35,7	35,7	35,7
	kWh/Nm ³	9.5		

at 0.10. Deviations from the standard conditions can result in a sideration in the layout of the cooling circuit/equipment o the general tolerance of ± 8 % on the thermal output a further requirements.

Appendix F: Typical thermal mass for illustrative constructions (source: SAP conventions)

Table 2: Thermal mass parameter for whole dwelling

The following provides the thermal mass for some illustrative constructions.

Thermal mass of elements					Indicative
Ground floor	External walls	Party wall	Internal partitions	Illustrative construction	Thermal Mass
Low	Low	Low	Low	Suspended timber floor, carpeted	Low
				Timber frame external wall	
				Timber frame party wall	
				Partitions: plasterboard on timber frame	
Medium	Low	Low	Low	Suspended concrete floor, carpeted	Low
				Timber frame external wall	
				Timber frame party wall	
				Partitions: plasterboard on timber frame	
Medium	Medium	Low	Low	Suspended concrete floor, carpeted	Low
				Masonry cavity wall - AAC block, filled cavity	
				Timber frame party wall	
				Partitions: plasterboard on timber frame	
Medium	Medium	Medium	Low	Suspended concrete floor, carpeted	Medium
				Masonry cavity wall - AAC block, filled cavity	
				AAC party wall	
				Partitions: plasterboard on timber frame.	
Medium	Medium	Medium	Medium	Suspended concrete floor, carpeted	Medium
				Masonry cavity wall – AAC block, filled cavity	
				AAC party wall	
				Partitions: medium block, plasterboard on dabs	

Thermal mass of elements					Indicative
Ground floor	External walls	Party wall	Internal partitions	Illustrative construction	Thermal Mass
High	Medium	Medium	Medium	Slab on ground, carpeted	Medium
				Masonry cavity wall – AAC block, filled cavity	
				AAC party wall	
				Partitions: dense block, plasterboard on dabs	
High	High	Medium	Medium	Slab on ground, carpeted	Medium
				Masonry cavity wall - dense block, filled cavity	
				AAC party wall	
				Partitions: medium block, plasterboard on dabs	
High	High	High	Medium	Slab on ground, carpeted	High
				Masonry cavity wall - dense block, filled cavity	
				Dense block party wall	
				Partitions: medium block, plasterboard on dabs	
High	High	High	High	Slab on ground, carpeted	High
				Masonry cavity wall - dense block, filled cavity	
				Dense block party wall	
				Partitions: dense block, dense plaster	

LOUISE WILLE PRINCIPAL SUSTAINABILITY CONSULTANT

+44 20 3668 7290 louisewille@hoarelea.com

HOARELEA.COM

Western Transit Shed 12-13 Stable Street London N1C 4AB England

