soiltechnics

environmental and geotechnical consultants

DESCRIPTION Light grey unreinforced CONCRETE with aggregates of flint up tp nominal 10mm. <1% air pores up to re (MADE GROUND) Loose to medium dense orange brown sandy GRAVEL. Gravel consists of fine to coarse angular to rond (MADE GROUND) TRIAL PIT TERMINATED AT 0	ded flint.	DEPTH (m) - 0.09	REDUCED LVL (m OD)	LEGEND	WATER	TYPE / DEPTH (m)	RESULT	FROM (m) 0.36	TO (m)	TYPE
Loose to medium dense orange brown sandy GRAVEL. Gravel consists of fine to coarse angular to rond (MADE GROUND)	ded flint.	-						0.36		D
Loose to medium dense orange brown sandy GRAVEL. Gravel consists of fine to coarse angular to rond (MADE GROUND)		-						0.36		D
(MADE GROUND)		- 0.45 						0.36		D
	0.45m	- 0.45 						0.36		D
TRIAL PIT TERMINATED AT C	0.45m	- 0.45 						0.36		
TRIAL PIT TERMINATED AT (0.45m									
		- - - - - -								
		- - - - - -								
		- - - - -								
		- - - -								ļ
		-								1
		-				1				1
		-								ĺ
		_								1
		L								ĺ
										1
		-								ĺ
		_								ĺ
		L								ĺ
		Γ								
		-								ĺ
		F								
		-								
										ĺ
										ĺ
										ĺ
		†								ĺ
		F								ĺ
		-								
		-								
										Щ.
Key Notes		Title			Dimensio	ns (w x I)				
D Small Disturbed Sample Further concrete was encountered at >1 6m with drill probes					m x m	(4.1)				
B Bulk Disturbed Sample ES Environmental Sample	le state de la cristate de la crista									
Water Sample C Core sample		Method			Logged by	У		e(s)		
UT Undisturbed Sample					RT		09/	11/2018		
S Standard Penetration Test Groundwater observations		Level (m OE	D)		Compiled	l by	She	et numb	er	
C Standard Penetration Test (solid cone)		-	- RT			She	et 1 of 1			
PP Pocket Penetrometer test SV Shear Vane test		Co-ordinate	es		Checked b	by		TP03		
PID Photo Ionisation Detector test		-								

soiltechnics environmental and geotechnical consultants

SIKAIA				WATER	111 3110	TESTING		SAMPLING	,	
DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
Light grey reinforced CONCRET (MADE GROUND)	with aggregates of flint up to nominal 6mm.~1% air pores up to nominal 6mm. 12mm plain rebar at 130mm depth and 6mm plain rebar at 130mm depth.									
		0.19								
	AVEL. Gravel consists of whole brick and pottery.	0.19								
(MADE GROUND)		0.37								
	TRIAL PIT TERMINATED AT 0.37m	- 0.57						0.42		D
		_								
		-								
		-								
		_								
		L								
		-								
		_								
		-								
		_								
		_								
		L								
		Γ								
		<u> </u>								
		1	1		'			1		-
Key D. Small Disturbed Sample		itle			Dimension	ıs (w x l)				
B Bulk Disturbed Sample	Further concrete was encountered at >2.25m with drill probes	rial pit reco	rd		m x m					
ES Environmental Sample W Water Sample		Vethod			Logged by			e(s)		
C Core sample UT Undisturbed Sample					RT		09/	11/2018		
S Standard Penetration Test	Groundwater observations L	evel (m OD)		Compiled	by		et numb	er	
C Standard Penetration Test (solid cone)					RT		She	et 1 of 1		
PP Pocket Penetrometer test SV Shear Vane test PID Photo Ionisation Detector test		Co-ordinate	s		Checked b	у		TI	P04	
Report ref: STP3953A-G01									Revis	ion:
31. 3333/1 001										

soiltechnics

environmental and geotechnical consultants

Maria Para		STRATA				WATER	IN SITU	TESTING		SAMPLING	
Duting year processed CODICICATION with aggregates of filling up to mornical dama. Taken 4 star porces up to normical d	DESCRIPTION				LEGEND			RESULT			TYPE
Light development of the control agreement o		TE with aggregates of flint up to nominal 12mm. <1% air pores up to nominal 4mm.		, ,			, ,		.,	, ,	
Light gave varietinessed CONCRET with suggregates of first and brokk us to nonsimilal above. At \$6 ard soviet us and \$6 ard soviet us	Light grey reinforced CONCRETI	with aggregates of flint up to nominal 10mm. <1% air pores up to nominal 4mm. 10mm diameter reinforcement at 95mm depth.	/-								
Modes Mode	Light grey unreinforced CONCR	ETE with aggregates of flint and brick up to nominal 20mm. <1% air pores up to nominal 2mm.	0.26								
Notes		IVEL. Gravel consists of fine to coarse mortar and concrete.	ſĹ						0.50		_
Note			0.51		XXXXXX				0.50		D
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S		INIAL PIT TERMINATED AT 0.53111									
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S											
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S											
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S			F								
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S											
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S			 								ļ
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S			-								
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S			-								
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S			-								
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S			-								
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S			-								ļ
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S			-								
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S			L								
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S			L								
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S											
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S											
D Small Disturbed Sample B Bulk Disturbed Sample C Core sample U Undisturbed Sample S Standard Penetration Test C Standard Penetration Test C Standard Penetration Test C Standard Penetration Test S Standard Penetration Test C Standard Penetration Test C Standard Penetration Test C Standard Penetration Test S Sy Shear Vane test SP) Divide to Insistion Detector test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S											
D Small Disturbed Sample B Bulk Disturbed Sample C Core sample U Undisturbed Sample S Standard Penetration Test C Standard Penetration Test C Standard Penetration Test C Standard Penetration Test S Standard Penetration Test C Standard Penetration Test C Standard Penetration Test C Standard Penetration Test S Sy Shear Vane test SP) Divide to Insistion Detector test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S											
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S											
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S			Γ								
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S											
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S			F								
D Small Disturbed Sample B Bulk Disturbed Sample C Core sample U Undisturbed Sample S Standard Penetration Test C Standard Penetration Test C Standard Penetration Test C Standard Penetration Test S Standard Penetration Test C Standard Penetration Test C Standard Penetration Test C Standard Penetration Test S Sy Shear Vane test SP) Divide to Insistion Detector test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S			F								
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S			-								
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S											
D Small Disturbed Sample B Bulk Disturbed Sample C Furrhormorental Sample W Mater Sample U Undisturbed Sample C Core sample C Core sample C Standard Penetration Test S Sy Shear Vane test S Sy Shear Vane test S Sy Shear Vane test S S S Shear Vane test S S S Shear Vane test S S S S S S S S S S S S S S S S S S S			1	1		1			1		
B Bulk Disturbed Sample E Servironment Sample W Water Sample UT Undisturbed Sample W Water Sample UT Undisturbed Sample W FT S Standard Penetration Test C Standard Penet							ns (w x I)				
We Water Sample C Core sample UT Undisturbed Sample S Standard Penetration Test C Standard Penetration Test C Standard Penetration Test C Standard Penetration Test S Sy Shear Vane test S	B Bulk Disturbed Sample			ord							
S Standard Penetration Test C Standard Penetration Test S Y Shear Vane test PID Photo Ionisation Detector test	W Water Sample		Method				,				
- RT Sheet 1 of 1 PP Pocket Penetrometer test SV Shear Yane test PID Photo Ionisation Detector test - RT Sheet 1 of 1 Co-ordinates - Checked by TP05	UT Undisturbed Sample				-						
PP Pocket Penetrometer test SV Shear Vane test PID Photo Ionisation Detector test		Groundwater observations L	evel (m OD))			by			er	
Report ref: STP3953A-G01 Revision: 0	SV Shear Vane test		Co-ordinate	es .			ру	3.10		P05	
	Report ref: STP3953A-G01									Revisi	on: 0

Proposed redevelopment

60-70 Shorts Gardens and 14-16 Betterton Street, London

	STRATA					IN SITU	TESTING		SAMPLING	
DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	LEGEND	WATER STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
Light grey unreinforced concret (MADE GROUND)	е	0.10								
	rown sandy gravel. Gravel consists of brick and concrete.									
(MADE GROUND)		-								
	TRIAL PIT TERMINATED AT 0.40m	0.40								
								0.50 0.50		ES W
		-								
		-								
		<u> </u>								
		L								
		-								
		-								
		-								
		<u> </u>								
		-								
		-								
		-								
		-								
		-								
Key	Notes 1	itle			Dimensio	ns (w x l)				
D Small Disturbed Sample B Bulk Disturbed Sample ES Environmental Sample		rial pit reco	ord		m x m					
ES Environmental Sample W Water Sample C Core sample UT Undisturbed Sample	Method Me				Logged by	1	Dat 09/	e(s) 11/2018		
S Standard Penetration Test		evel (m OE	D)		Compiled	by	She	et numb	er	
C Standard Penetration Test (solid cone)	Groundwater encountered from 0.1m. Discolouration and hydrocarbon odour detected.				ID		She	et 1 of 1		
PP Pocket Penetrometer test SV Shear Vane test PID Photo Ionisation Detector test		Co-ordinate	es		Checked b	ру		TI	P 06	
Report ref: STP3953A-G01							•		Revis	ion: 0

soiltechnics

environmental and geotechnical consultants

	STRATA				WATER	IN SITU	TESTING		SAMPLING	G
ESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYP
ght grey unreinforced CONCI IADE GROUND)	ETE with aggregates of flint up to nominal 15mm. ~1% air pores up to nominal 5mm.	_								
	dy GRAVEL. Gravel consists of fine cobble sized flint.	0.16								
MADE GROUND)	and the state consists of the coosts steed limits									
	TRIAL PIT TERMINATED AT 0.36m	0.36			1			0.35		1
		L								
		L								
		L								
		Γ								
		Γ								
		_								
		-								
		-								
		-								
		-								
		-								
		-								
		-								
		-								
		-								
		_								
		_								
		-								
		_								
		_								
										L.
у	Notes	itle			Dimensio	ns (w x I)				
Small Disturbed Sample Bulk Disturbed Sample	Further concrete was encountered at >3.31m with drill probes	rial pit reco	ord		m x m					
Environmental Sample Water Sample		Method			Logged by		Da	te(s)		
Core sample Undisturbed Sample					RT		09,	/11/2018		
standard Penetration Test	Groundwater observations L	evel (m OD)		Compiled	by	Sh	eet numb	er	
standard Penetration Test (solid cone)					RT		Sh	eet 1 of 1		
Pocket Penetrometer test Shear Vane test D Photo Ionisation Detector test		Co-ordinate	es .		Checked b	у		TI	207	

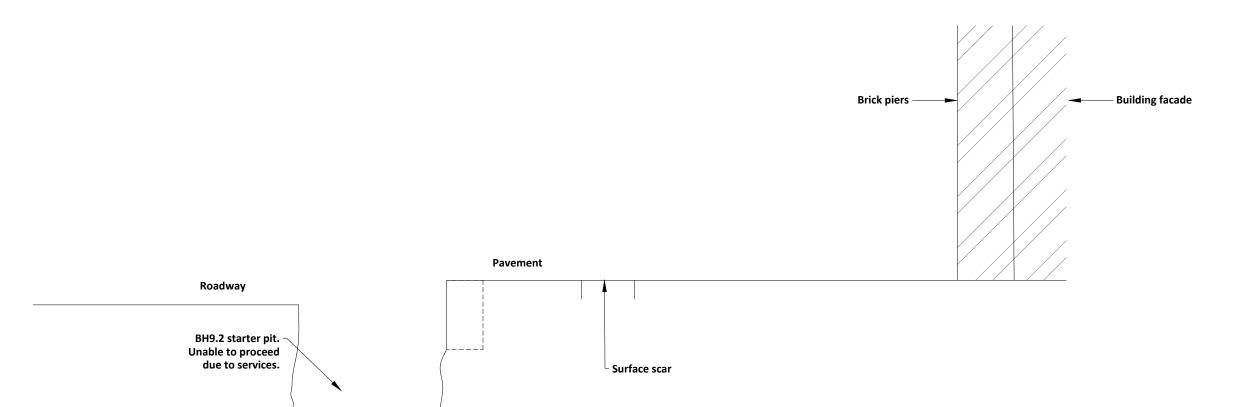
soiltechnics environmental and geotechnical consultants

STRATA			WATER	IN SITU	IN SITU TESTING SAMPLING			G
DESCRIPTION	DEPTH (m)	REDUCED LVL (m OD)	STRIKES ND	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
Light grey unreinforced CONCRETE with aggregates of flint up to nominal 35mm. <1% air pores up to nominal 3mm. (MADE GROUND)	- 0.13							T
Medium dense sandy GRAVEL. Gravels consist of fine to coarse angular occasionally rounded flint and concrete. (MADE GROUND)	0.13							
TRIAL PIT TERMINATED AT 0.37m	0.37					0.37		D
	Ę.							
	-							
	-							
	-							
	-							
	-							
	-							
	-							
	L							
	_							
	-							
	-							
	-							
	-							
								Ш
Key Notes	Title			ons (w x I)				
D. Small Disturbed Sample B. Bulk Disturbed Sample E. Burkomental Sample S. Environmental Sample	Trial pit rec	ord	m x m					
W Water Sample C Core sample UT Undisturbed Sample	Method		RT Logged b	У		e(s) 11/2018		
S Standard Penetration Test Groundwater observations	Level (m O	D)	Compiled	d by	She	et numb		
C Standard Penetration Test (solid cone)	-		RT		She	et 1 of 1		
PP Pocket Penetrometer test SV Shear Vane test PID Photo Ionisation Detector test	Co-ordinate	es	Checked	by		TI	P08	
Report ref: STP3953A-G01			1				Revi	ision:

soiltechnics

environmental and geotechnical consultants

WATER


IN SITU TESTING

SAMPLING

					1					_
ESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	T
ght grey unreinforced concrete.		0.10								
MADE GROUND)	1	0.10			1					
Iedium dense dark brown sandy gravel. Gravel consists of flint, brick and concrete. MADE GROUND)	<u> </u>									
INDE GLOONLY	-				1			0.30		
	-									
		0.47		22222						
	<u> </u>									
	-									
	_									
		_								
	<u> </u>									
	-									
	_									
	-									
	-									
	_									
		.								
	Γ									
	-									
	-									
	_									
	=									
	-									
	_									
										L
ey Notes	Title				Dimensio	ns (w x I)				
Small Disturbed Sample Drill probing was undertaken from 0.47m below ground level to a depth of 2.25m below ground level.	Trial pit record			m x m						
Environmental Sample Water Sample	Meth	hod			Logged by	,	Dat	te(s)		
waters sample Core sample Undisturbed Sample		-			RT			11/2018		
Groundwater observations	Level (m OD) Compiled by			et numb						
Standard Penetration Test (solid cone)	-				RT	•	I .	et 1 of 1		
Pocket Penetrometer test Shear Vane test Photo lonisation Detector test	Co-or	Co-ordinates Checked by			T	P 09	TP09			

STRATA

Metal duct

Haunched concrete

Cable

Water main

Method of excavation
Hand tools
Dimensions

Title
Trial pit record
Date of works
07.11.2018
Scale

Location reference BH9.2 Location plan on drawing number

07.11.2018 02 Scale Apper 1:20 at A3 D1

Location plan on drawii
02
Appendix
D1

Groundwater observations

No groundwater encountered

As shown

Depth (m)	Description
0.0 – 0.23	Light grey unreinforced CONCRETE with aggregates of flint up to nominal 10mm. <1% air pores up to nominal 3mm.
0.23 – 0.231	1mm thick dark grey metal plate.
0.231-1.931	Light grey unreinforced CONCRETE with aggregates of flint up to nominal 40mm. <1% air pores up to nominal 2mm.
1.931-2.211	Light grey unreinforced CONCRETE with aggregates of flint up to nominal 40mm. <1% air pores up to nominal 1mm.
2.211-2.431	Extracted as flint and concrete gravels. Gravels consist of fine to coarse angular to sub-rounded.
	CORE TERMINATED AT 2.431m DEPTH

Notes:

1. Drill probing at base of the core encountered further concrete until 2.8m depth and clay until 2.9m depth.

Method of excavation Diamond tipped core barrel	Title Core record	Location plan on drawing number 02
Diameter 100mm	Co-ordinates N/A	Ground level N/A
Total core thickness 2.431m	Date of excavation 11 11.2018	Core reference CH1

Depth (m)	Description
0.0 – 2.4	Light grey unreinforced CONCRETE comprised of aggregates of flint up to nominal 30mm. <1% air pores up to nominal 6mm diameter.
2.4-2.5	Blue grey silty CLAY (LONDON CLAY).
	CORE TERMINATED AT 2.5m DEPTH

Method of excavation Diamond tipped core barrel Diameter 100mm Total core thickness -2.4m Title Core record Co-ordinates N/A Location plan on drawing number

02

Ground level N/A

Date of excavation 14.11.2018

Core reference CH2

Depth (m)	Description
0.0 – 1.42m	Light grey unreinforced CONCRETE comprised of aggregates of flint up to nominal 40mm. <1% air pores up to nominal 5mm diameter.
1.42-1.52	Blue grey silty CLAY (LONDON CLAY).
	CORE TERMINATED AT 1.52m DEPTH

Method of excavation Diamond tipped core barrel Diameter 100mm Total core thickness 1.42m Title
Core record

Location plan on drawing number 02

Co-ordinates N/A

Ground level N/A

Date of excavation 14.11.2018

Core reference CH3

Depth (m)	Description
0.0 – 2.19	Light grey unreinforced CONCRETE comprised of aggregates of flint up to nominal 60mm. <1% air pores up to nominal 5mm diameter.
2.19-2.7	Stiff blue grey silty CLAY (LONDON CLAY).
	CORE TERMINATED AT 2.7m DEPTH

Diamond tipped core barre
Diameter 100mm
Total core thickness

Title Location plan on drawing number
Core record 02
Co-ordinates Ground level
N/A N/A
Date of excavation Core reference

Depth (m)	Description
0.0 – 0.36	Light grey unreinforced CONCRETE comprised of aggregates of flint up to nominal 15mm. $^{\sim}1\%$ air pores up to nominal 5mm diameter.
0.36-3.25	Light grey unreinforced CONCRETE comprised of aggregates of flint up to nominal 90mm. <1% air pores up to nominal 5mm diameter.
3.25-3.65	Light grey unreinforced CONCRETE comprised of aggregates of flint up to nominal 50mm. <1% air pores up to nominal 3mm diameter. Medium to coarse gravels also extracted.
3.65-3.8	Firm to stiff blue grey silty CLAY (LONDON CLAY).
	CORE TERMINATED AT 3.8m DEPTH

Method of excavation Diamond tipped core barrel	Title Core record	Location plan on drawing number 02
Diameter 100mm	Co-ordinates N/A	Ground level N/A
Total core thickness 3.65m	Date of excavation 16.11.2018	Core reference CH5

Bottom

Depth (m)	Description
0.0 – 0.39	Light grey unreinforced CONCRETE comprised of aggregates of flint up to nominal 30mm. $^{\sim}1\%$ air pores up to nominal 4mm diameter.
0.39-0.64	Concrete extracted as gravels of medium to coarse angular to subrounded flint.
0.64-1.04	Light grey unreinforced CONCRETE comprised of aggregates of flint up to nominal 40mm. ~1% air pores up to nominal 3mm diameter.
	CORE TERMINATED AT 1.04m DEPTH

Method of excavation Diamond tipped core barrel Diameter 100mm Total core thickness 1.04m Title Core record Location plan on drawing number

02

Co-ordinates

Ground level N/A

N/A

Core reference

14.12.2018

Date of excavation

CH7

Depth (m)	Description
0.0 – 0.03	Light grey unreinforced CONCRETE comprised of aggregates of flint up to nominal 1mm. $^{\sim}1\%$ air pores up to nominal 1mm diameter.
0.03-1.65	Light grey unreinforced CONCRETE comprised of aggregates of flint up to nominal 4mm. ~1% air pores up to nominal 3mm diameter.
1.65-1.86	Light grey unreinforced CONCRETE comprised of aggregates of brick up to nominal 60mm. ~1% air pores up to nominal 2mm diameter.
1.86-1.88	Concrete extracted as gravels of angular to rounded flint and concrete up to nominal 5mm.
1.88-2.71	Light grey unreinforced CONCRETE comprised of aggregates of flint up to nominal 40mm. ~1% air pores up to nominal 4mm diameter.
2.71-2.81	Firm to stiff blue grey silty CLAY (LONDON CLAY).
	CORE TERMINATED AT 2 81m DEPTH

Diamond tipped core barre
Diameter 100mm
Total core thickness

Title Core record	Location plan on drawing numbe 02
Co-ordinates N/A	Ground level N/A
Date of excavation 14.12.2018	Core reference CH8

Depth (m)	Description
0.0 – 0.18	Light grey unreinforced CONCRETE comprised of aggregates of flint up to nominal 40mm. <1% air pores up to nominal 2mm diameter.
0.18-0.185	Gravels extracted as fine to coarse angular to rounded flint and concrete.
0.185-0.3	Light grey reinforced CONCRETE comprised of aggregates of flint and wood up to nominal 30mm. <1% air pores up to nominal 2mm diameter. 4mm plain reinforcement bar located at 260mm depth.
0.3-0.52	Light grey unreinforced CONCRETE comprised of aggregates of flint up to nominal 20mm. <1% air pores up to nominal 3mm diameter.
0.52-0.59	Light grey unreinforced CONCRETE comprised of aggregates of flint and yellow brick up to nominal 70mm. <1% air pores up to nominal 5mm diameter.
0.59-0.69	Soft blue grey silty CLAY (LONDON CLAY).
	CORE TERMINATED AT 0.69m DEPTH

Method of excavation Diamond tipped core barrel	Title Core record	Location plan on drawing number 02
Diameter 100mm	Co-ordinates N/A	Ground level N/A
Total core thickness 0.59	Date of excavation 14.12.2018	Core reference CH9

Depth (m)	Description
0.0 – 0.03	Light grey unreinforced CONCRETE comprised of aggregates of flint up to nominal 3mm. ~1% air pores up to nominal 3mm diameter.
0.03-2.47	Light grey unreinforced CONCRETE comprised of aggregates of flint up to nominal 30mm. <1% air pores up to nominal 3mm diameter.
	CORE TERMINATED AT 2.47m DEPTH

Method of excavation Diamond tipped core barrel Diameter 100mm Total core thickness 2.47 Title Core record Location plan on drawing number 02

Co-ordinates N/A

Ground level N/A

Date of excavation 14.12.2018

Core reference CH10

Bottom Top

Depth (m)	Description
0.0 – 0.08	Light grey unreinforced CONCRETE comprised of aggregates of flint up to nominal 2mm. <1% air pores up to nominal 2mm diameter.
0.08-0.11	Light grey unreinforced CONCRETE comprised of aggregates of flint up to nominal 1mm. 1% air pores up to nominal 2mm diameter.
0.11-2.96	Light grey unreinforced CONCRETE comprised of aggregates of flint up to nominal 50mm. ~1% air pores up to nominal 4mm diameter.
	CORE TERMINATED AT 2.96m DEPTH

Method of excavation Diamond tipped core barrel Diameter 100mm Total core thickness 2.96m

Title Core record Co-ordinates

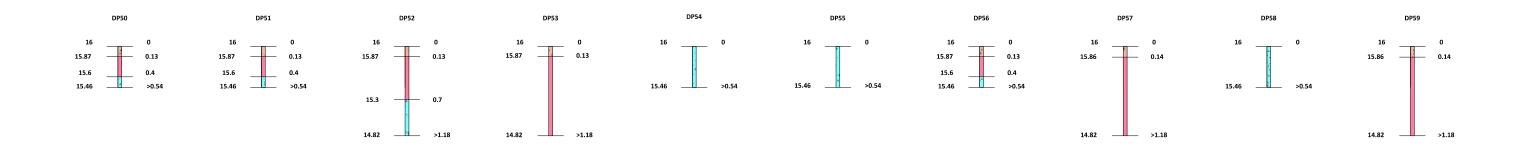
17.12.2018

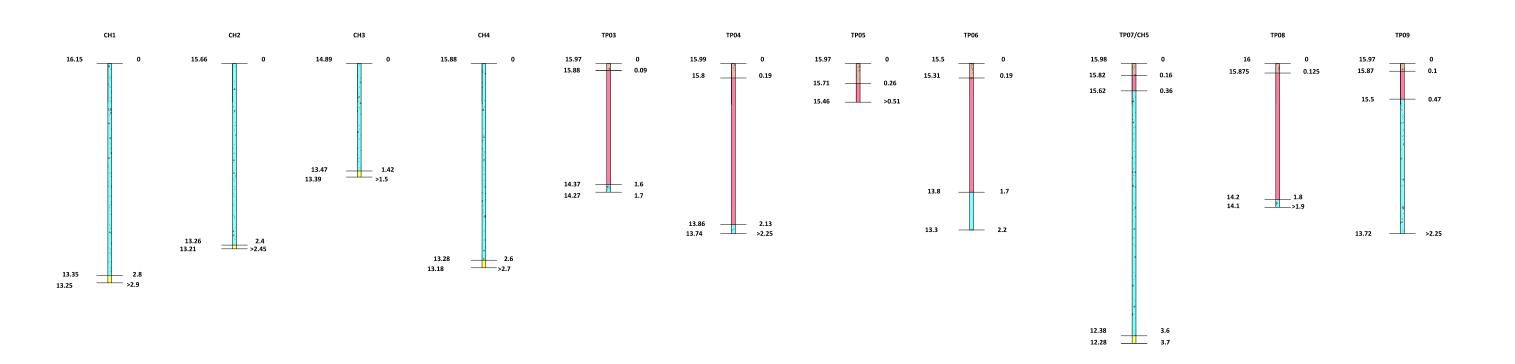
N/A

Location plan on drawing number 02

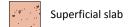
Ground level N/A

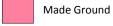
Date of excavation Core reference CH11


Depth (m)	Description
0 - 0.04	Light grey unreinforced CONCRETE with aggregates of flint up to nominal 5mm. $^{\sim}1\%$ air pores up to nominal 2mm.
0.04 - 0.09	Dark grey unreinforced CONCRETE with aggregates of flint up to nominal 5mm. $^{\sim}1\%$ air pores up to nominal 2mm.
0.09 - 0.26	Dark grey unreinforced CONCRETE with aggregates of flint up to nominal 34mm. <1% air pores up to nominal 6mm.
	CORE TERMINATED AT 0.26m DEPTH


Diamond tipped core barrel
Diameter 300mm
Total core thickness

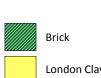
Title Location plan on drawing number
Core record 02
Co-ordinates Ground level
N/A N/A
Date of excavation
11 11.2018 Core reference
CH1





Drill probe interpretations

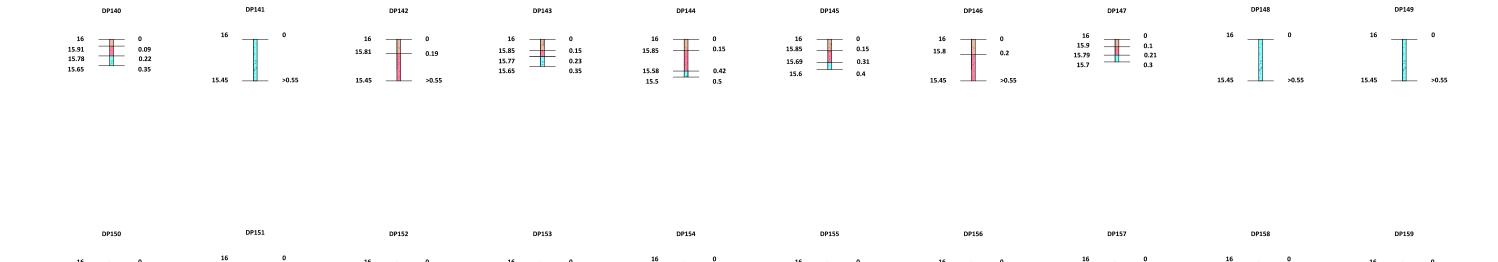
z


Superficial slab

Made Ground

Foundation profile

Proposed redevelopment at 62-70 Shorts Gardens


Brick


London Clay



13.04 >2.96

Key to legends

Composite materials, soils and lithology Topsoil Made Ground **Boulders** Chalk Clay Coal Cobbles Cobbles & Boulders Concrete Gravel Limestone Mudstone Sand and Gravel Peat Sand Sandstone Silt Silt / Clay Siltstone Note: Composite soil types are signified by combined symbols.

Key to 'test results' and 'sampling' columns

	Test result		9	Sampling
Depth	Records depth that the test was carried out (i.e.: at 2.10m or between 2.10m and 2.55m)	From (m) To (m)	Records	s depth of sampling
	PP – Pocket penetrometer result reported as an equivalent undrained		D	Disturbed sample
	shear strength (kN/m²)		В	Bulk disturbed sample
	SV – Hand held shear vane result reported as an undrained shear		ES	Environmental sample
Result	strength (kN/m²) PP result converted to an equivalent undrained shear strength by applying a factor of 50. Where at least 3 results obtained at same depth then an average value may be reported.	Type	W	Water sample
	SPT – Standard Penetration Test result (N value) (uncorrected) ^{1,2,3} SPT(c) – Standard Penetration Test result (solid cone) (N value) (uncorrected) ^{1,2,3}		UT	Undisturbed thin walled sample 100mm diameter sampler
	UT – Undisturbed sample 100mm diameter sampler with number of blows of driving equipment required to obtain sample			

Note 1: Seating blows recorded in brackets.

Note ²: Casing depth records depth of casing when SPT or SPT(c) was carried out.

Note ³: Water depth records depth of water when SPT or SPT(c) was carried out.

Water observations

Described at foot of log and shown in the 'water strike' column.

•	= water level observed after specified delay in drilling
abla	= water strike

Standpipe details

soiltechnics environmental and geotechnical consultants

	STRATA					SPT TESTING				OTHER IN SI	SAMPLING			
WELL	DESCRIPTION	DEPTH (m)	REDUCED LVL (m OD)	LEGEND	WATER STRIKES	TYPE / DEPTH (m)	RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	Light grey unreinforced CONCRETE (screed). (MADE GROUND)	0.15	20.01											
	Light grey unreinforced CONCRETE with aggregates of flint up to nominal 25mm. <1% air pores up to nominal 5mm. (MADE GROUND)	0.50	19.66									0.50	0.60	В
	Medium dense dark brown sandy GRAVEL. Gravel consists of brick, concrete and fine to coarse angular to rounded flint. (MADE GROUND)	0.80	19.36									0.50 0.50	0.60 0.60	ES ES
	Medium dense dark brown sandy GRAVEL. Gravel consists of fine to coarse angular to rounded flint. (LYNCH HILL GRAVEL MEMBER)	_										0.90	1.20	В
		_				C 1.60-2.05	(6) 27	1.60	1.40			1.60 1.60	1.80 1.80	B D
		_										1.00	1.00	
						C 2.25-2.70	(6) 20	2.25	1.80			2.25	2.80	В
		_												
	hydrocarbon odour detected at the lower horizon of gravel strata. Stiff orange brown and blue grey slightly silty CLAY.	2.80	17.36									2.90	0.00	D
	(LONDON CLAY FORMATION) Stiff blue grey slightly silty CLAY.	3.20	16.96									2.90		D
	(LONDON CLAY FORMATION)	_		<u> </u>						PP 3.30 PP 3.30	PP=142	3.30		D
		_									UT=45	3.80		UT
		_												
		=								PP 4.25	PP=150	4.25		D
		F												
		_										5.00		D
		E												
		_									UT=45	5.50		UT
	CONTINUED ON NEXT SHEET													
Kov	Notes Chicalling		Tiel											

Key	Notes	Chise	elling details	Title				
D Small Disturbed Sample B Bulk Disturbed Sample	Inspection pit excavated from 0.0m to 1.2m depth. Water added to assist drilling.	Depth (m)	Duration (hh:mm)	Borehole red	cord			
ES Environmental Sample W Water Sample				Casin	g details	Method	Logged by	Date(s)
C Core sample UT Undisturbed Sample				Diameter (mm)	Base depth (m)		RT	17/12/2018
S Standard Penetration Test	Groundwater observations	Water	added details	150	3.50	Level (m OD)	Compiled by	Sheet number
C Standard Penetration Test (solid cone)	Minor water seepage encountered at 8.5m depth. Water added to assist drilling.	Depth (m)	Water Added (I)			20.16	RT	Sheet 1 of 6
PP Pocket Penetrometer test SV Shear Vane test PID Photo Ionisation Detector test		1.20 - 2.60	200	-		Co-ordinates	Checked by	ВН02
Report ref: STP3953A-G01								Revision: 0

environmental	and	geotech	nnical	consultants	ò
					٦

	STRATA SPT TESTING WATER				WATER		TU TESTING	TESTING SA		i				
WELL	DESCRIPTION	DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (m)	RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	Stiff blue grey slightly silty CLAY. (LONDON CLAY FORMATION)									PP 5.95	PP=150	5.95 5.95	0.00	D D
		- - -								PP 6.50	PP=175	6.50		D
		- - - -									UT=50	7.00		UT
		- - - -										7.45		D
		- - - -										8.00		D
		= - - -									UT=55	8.50		UT
		- - -								PP 8.95	PP=175	8.95 8.95	0.00	D D
		-		 								9.50		D
											UT=65	10.00		UT
				 						PP 10.45	PP=200	10.45		D
												11.00		D
	CONTINUED ON NEXT SHEET	_									UT=65	11.50		UT
	CONTINUED ON MEXI SHEET				1					l l				

Notes	Chise	Chiselling details Tit		Title							Title				
Inspection pit excavated from 0.0m to 1.2m depth. Water added to assist drilling.	Depth (m)	Duration (hh:mm)	Borehole rec	ord											
			Casing details		Method	Logged by	Date(s)								
			Diameter (mm)	Base depth (m)		RT	17/12/2018								
Groundwater observations	Water	added details			Level (m OD)	Compiled by	Sheet number								
Minor water seepage encountered at 8.5m depth. Water added to assist drilling.	Depth (m)	Water Added (I)			20.16	RT	Sheet 2 of 6								
					Co-ordinates	Checked by	ВН02								
	Inspection pit excavated from 0.0m to 1.2m depth. Water added to assist drilling. Groundwater observations	Inspection pit excavated from 0.0m to 1.2m depth. Water added to assist drilling. Depth (m) Groundwater observations Water	Inspection pit excavated from 0.0m to 1.2m depth. Water added to assist drilling. Depth (m) Duration (hh:mm)	Inspection pit excavated from 0.0m to 1.2m depth. Water added to assist drilling. Depth (m) Duration (hh:mm) Casing Diameter (mm) Groundwater observations Water added details	Inspection pit excavated from 0.0m to 1.2m depth. Water added to assist drilling. Depth (m) Duration (hh:mm) Casing details Diameter (mm) Base depth (m) Groundwater observations Water added details	Inspection pit excavated from 0.0m to 1.2m depth. Water added to assist drilling. Depth (m) Duration (hh:mm)	Inspection pit excavated from 0.0m to 1.2m depth. Water added to assist drilling. Depth (m) Duration (hh:mm) Borehole recovery Casing details Diameter (mm) Base depth (m) Casing details Diameter (mm) Base depth (m) RT								

Report ref: STP3953A-G01 Revision: 0

soiltechnics environmental and geotechnical consultants

	STRATA				WATER		SPT TE	STING		OTHER IN SI	TU TESTING	:	SAMPLING	
WELL	DESCRIPTION	DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (m)	RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	Stiff blue grey slightly silty CLAY. (LONDON CLAY FORMATION)	- - - - - -										11.95		D
		- - - - -								PP 12.50	PP=225	12.50		D
			6.71								UT=70	13.00 13.45		UT D
	Stiff to very stiff blue grey slightly silty CLAY. (LONDON CLAY FORMATION)											14.00		D
		- - - - -									UT=70	14.50		UT
		- - - - -								PP 14.95	PP=225	14.95 14.95	0.00	D D
				 								15.50		D
											UT=70	16.00 16.45		UT D
		- - - - -		 								17.00		D
	CONTINUED ON NEXT SHEET	-												

Key	Notes	Chise	elling details	Title				
D Small Disturbed Sample B Bulk Disturbed Sample	Inspection pit excavated from 0.0m to 1.2m depth. Water added to assist drilling.	Depth (m)	Duration (hh:mm)	Borehole red	cord			
ES Environmental Sample W Water Sample				Casin	g details	Method	Logged by	Date(s)
C Core sample UT Undisturbed Sample				Diameter (mm)	Base depth (m)		RT	17/12/2018
S Standard Penetration Test	Groundwater observations	Water	added details			Level (m OD)	Compiled by	Sheet number
C Standard Penetration Test (solid cone)	Minor water seepage encountered at 8.5m depth. Water added to assist drilling.	Depth (m)	Water Added (I)			20.16	RT	Sheet 3 of 6
PP Pocket Penetrometer test SV Shear Vane test PID Photo Ionisation Detector test						Co-ordinates	Checked by	BH02
Report ref: STP3953A-G01								Revision: 0

MELL	STRATA				WATER					OTHER IN SI	TU TESTING		SAMPLING		
WELL	DESCRIPTION	DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (m)	RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE	
	Stiff to very stiff blue grey slightly silty CLAY. (LONDON CLAY FORMATION)	_									UT=75	17.50		UT	
		_ _ _			-							17.95		D	
	Weak grey CLAYSTONE. (LONDON CLAY FORMATION) Stiff to very stiff blue grey slightly silty CLAY.	18.40	1.76 1.56							PP 18.50	PP=225	18.50		D	
	(LONDON CLAY FORMATION)	<u>-</u>			-						UT=80	19.00		UT	
												19.45		D	
					-							20.00		D	
		- - - -		 	_						UT=80	20.50		UT D	
		- - - -		 											
		-		 	-					PP 21.50	PP=225	21.50		D	
		- - -			-						UT=80	22.00		UT D	
		- - - -													
												23.00		D	
	CONTINUED ON NEXT SHEET			<u> </u>				<u> </u>							

Key	Notes	Chise	Chiselling details		Title							Title					
D Small Disturbed Sample B Bulk Disturbed Sample	Inspection pit excavated from 0.0m to 1.2m depth. Water added to assist drilling.	Depth (m)	Duration (hh:mm)	Borehole rec	cord												
ES Environmental Sample W Water Sample				Casing	Casing details Method		Logged by	Date(s)									
C Core sample UT Undisturbed Sample				Diameter (mm)	Base depth (m)		RT	17/12/2018									
S Standard Penetration Test	Groundwater observations	Water	added details			Level (m OD)	Compiled by	Sheet number									
C Standard Penetration Test (solid cone)	Minor water seepage encountered at 8.5m depth. Water added to assist drilling.	Depth (m)	Water Added (I)			20.16	RT	Sheet 4 of 6									
PP Pocket Penetrometer test SV Shear Vane test PID Photo Ionisation Detector test						Co-ordinates	Checked by	ВН02									

Report ref: STP3953A-G01 Revision: 0

soiltechnics environmental and geotechnical consultants

	STRATA				WATER		SPT TE	ESTING		OTHER IN S	TU TESTING		SAMPLING	
WELL	DESCRIPTION	DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (m)	RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	Stiff to very stiff blue grey slightly silty CLAY. (LONDON CLAY FORMATION)	- - - -									UT=85	23.50		UT
		- - - -										23.95		D
		- - - -		 						PP 24.50	PP=225	24.50		D
		- - - -		 							UT=85	25.00		UT
		- - - -		 								25.45		D
		- - - -										26.00		D
		- - - -		 							UT=90	26.50		UT
		- - -										26.95		D
		- - - -										27.50		D
		- - - -								PP 28.00	PP=225 UT=100	28.00		UT
		- - - -										28.45		D
	CONTINUED ON NEXT SHEET	_ 												

Key	Notes	Chise	elling details	Title				
D Small Disturbed Sample B Bulk Disturbed Sample	Inspection pit excavated from 0.0m to 1.2m depth. Water added to assist drilling.	Depth (m)	Duration (hh:mm)	Borehole rec	cord			
ES Environmental Sample W Water Sample				Casing	g details	Method	Date(s)	
C Core sample UT Undisturbed Sample				Diameter (mm)	Base depth (m)		RT	17/12/2018
S Standard Penetration Test	Groundwater observations	Water	added details			Level (m OD)	Compiled by	Sheet number
C Standard Penetration Test (solid cone)	Minor water seepage encountered at 8.5m depth. Water added to assist drilling.	Depth (m)	Water Added (I)			20.16	RT	Sheet 5 of 6
PP Pocket Penetrometer test SV Shear Vane test PID Photo Ionisation Detector test				-		Co-ordinates	Checked by	ВН02
Barrant and CTROOFOA COA								Bautatan 0

 Report ref:
 STP3953A-G01

 Revision:
 0

Report ref: STP3953A-G01

STRATA

OTHER IN SITU TESTING

SPT TESTING

SAMPLING

Revision: 0

WELL	WATER				OTTEN IN SITO TESTING		JAWII I		'						
DESCRIPTION				REDUCEI LVL (m OI		STRIKES	TYPE / DEPTH (m)	RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
DESCRIPTION	Eblue grey slightly silty CLAY. FORMATION) BOREHOLE TERMINATED AT 30.00m					STRIKES		, RESULT				UT=100			D UT D
Key D. Small Disturbed Sample	Notes Inspection pit excavated from 0.0m to 1.2m depth. Water added to assist drilling.	Chise Depth (m)	elling details		tle prehole rec	cord									
B Bulk Disturbed Sample ES Environmental Sample W Water Sample		Deptii (iii)	Daration (IIII.IIIII	",		g details	N	lethod		Logged by	y	Date			
C Core sample UT Undisturbed Sample				Dia	meter (mm)	Base depth				RT			/12/2018		
S Standard Penetration Test C Standard Penetration Test (solid co	Groundwater observations Miner water seeperge encountered at 9 Fm death. Water added to assist drilling		added details	_				evel (m OD)		Compiled	by	I	Sheet number Sheet 6 of 6		
PP Pocket Penetrometer test SV Shear Vane test PID Photo Ionisation Detector test	Minor water seepage encountered at 8.5m depth. Water added to assist drilling.	Depth (m) Water Added (I)		1)				0.16 o-ordinates		Checked I	by	She		H02	
	L		1							L					

soiltechnics environmental and geotechnical consultants

	STRATA				WATER		SPT TI	ESTING		OTHER IN SI	TU TESTING		SAMPLING	
WELL	DESCRIPTION	DEPTH (m)	REDUCED		STRIKES	TYPE / DEPTH (m)	RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	Light grey unreinforced CONCRETE with aggregates of flint up to nominal 2mm. <1% air pores up to nominal 2mm. (MADE GROUND)	- 0.02 - 0.10	18.42 18.34	******										
	Dark grey unreinforced CONCRETE with aggregates of flint up to nominal 4mm. <1% air pores up to nominal 4mm. (MADE GROUND)	0.34	18.10									0.40 0.40	0.60 0.60	B B
	Light grey unreinforced CONCRETE with aggregates of flint up to nominal 30mm. <1% air pores up to nominal 5mm. (LYNCH HILL GRAVEL MEMBER)	0.60	17.84 17.64									0.45 0.68	0.00	D W
	Medium dense orange brown SAND and GRAVEL. Gravel consists of fine to coarse angular to rounded flint. (LYNCH HILL GRAVEL MEMBER)			<u> </u>								0.80 1.00	0.00	W
	Soft to firm orange brown sandy gravelly CLAY. Gravel consists of fine to coarse angular to rounded flint. (LYNCH HILL GRAVEL MEMBER)	<u></u>			-							1.00		D D
	between 0.6m and 0.8m depth, minor inflow of fines associated with water seepage. Firm orange brown slightly silty slightly sandy CLAY.	J		E-E-	1						UT=40	1.40 1.60	1.05	D U
	(LONDON CLAY FORMATION)			<u></u>								1.60		UT
	Stiff assumed high strength (subject to testing) blue grey silty CLAY. (LONDON CLAY FORMATION)	2.05	16.39									2.05 2.05	0.00	D D
		E		E-E-							UT=50	2.50	2.95	U
		E			-							2.50		UT
		F		EE	1							2.95		D
		E												.
		E		E-E-	-						UT=55	3.60 3.60	4.05	U UT
		Ē			-							4.05		D D
		_		<u> </u>	-							4.03		
				===							UT=60	4.50 4.50	4.95	U
		Ė		<u> </u>										
				E-E-	-							4.95		D
		E		<u> </u>	-						UT=60	5.50	5.95	U
		Ė			1						01-00	5.50	3.33	UT
	CONTINUED ON NEXT SHEET													

Key	Notes	Chise	elling details	Title				
D Small Disturbed Sample B Bulk Disturbed Sample	Minor inflow of fines associated with water seepage, but borehole sides generally	Depth (m)	Duration (hh:mm)	Borehole red	cord			
ES Environmental Sample W Water Sample	remained upright and stable			Casing	g details	Date(s)		
C Core sample UT Undisturbed Sample				Diameter (mm)	Base depth (m)		RT	07/11/2018
S Standard Penetration Test	Groundwater observations	Water	added details			Level (m OD)	Compiled by	Sheet number
C Standard Penetration Test (solid cone)	Minor water seepage from 0.65m. Water level at 0.75m after 30m and 0.71m after 2hours. Drillers recorded water at 0.3m at drilling commencement but assumed to include water ingress	Depth (m)	Water Added (I)			18.44	RT	Sheet 1 of 2
PP Pocket Penetrometer test SV Shear Vane test PID Photo Ionisation Detector test	from surface site operations. Water mesured at ~0.68m on return visit. Water sealed out at 1.5m. No water inflows within London Clay Formation.					Co-ordinates	Checked by	BH9.1
Panart rafe STR20F3A CO1								Pavision: 0

teport ref: STP3953A-G01 Revision: 0

		STRATA					WATER		SPT 1	ESTING	OTHER IN SITU TESTING		SAMPLING		3	
WELL	DESCRIPTION			DEPTH (m)	REDUCED		STRIKES	TYPE /		CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	Stiff assumed high strer (LONDON CLAY FORMA	ngth (subject to testing) blue grey silty CLAY.		6.00	12.44						()			5.95	0.00	В
	(LONDON CLAY FORIVIA	BOREHOLE TERMINATED AT 6.00m			12.44									5.95		D
				F												
				F I												
				- 1												
				-												
				F												
				F						1						
				<u> </u>												
				⊨ I						1						
				<u> </u>												
				- 1												
				F												
				-												
				-												
				_												
				_												
				F												
				_												
				_												
				<u> </u>												
				F												
				F												
Key		Notes	Chica	elling details	Tit	le							$\overline{}$			
D Small D	Disturbed Sample	Minor inflow of fines associated with water seepage, but borehole sides generally			− .	rehole red	cord									
ES Enviror	sturbed Sample nmental Sample	remained upright and stable	Depth (m)	Duration (hh:mi	,		g details	Τ.	Method		Logged by	,	Dat	e(s)		
W Water: C Core sa UT Undisti					Diam	neter (mm)					RT	,		11/2018		
	d Penetration Test	Groundwater observations	Water	added details	5.311		Date deptil		Level (m OD)		Compiled	by	She	et numb	er	
C Standar	rd Penetration Test (solid cone)	Minor water seepage from 0.65m. Water level at 0.75m after 30m and 0.71m after 2hours. Drillers recorded water at 0.3m at drilling commencement but assumed to include water ingress	Depth (m)	Water Added (I)				18.44		RT		She	et 2 of 2		
SV Shear V	Penetrometer test /ane test Ionisation Detector test	of the precorded water at 0.3m at unling commencement out assumed to include water ingless from surface site operations. Water mesured at "0.68m on return visit. Water sealed out at 1.5m. No water inflows within London Clay Formation.							Co-ordinates		Checked b	ру		ВН	19.1	
Ronor	t ref: STP3953A-G01		1	1			1				1				Revis	ion: 0

TEST CERTIFICATE

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Soiltechnics Limited Client:

Client Address: Cedar Barn, White Lodge,

Walgrave, Northampton,

NN6 9PY

Contact: Lauren Wenham Site Name: 60-70 Shorts Gardens

Site Address: Not Given Client Reference: STP3953A Job Number: 19-23534

Date Sampled: 17/12/2018 Date Received: 21/12/2018

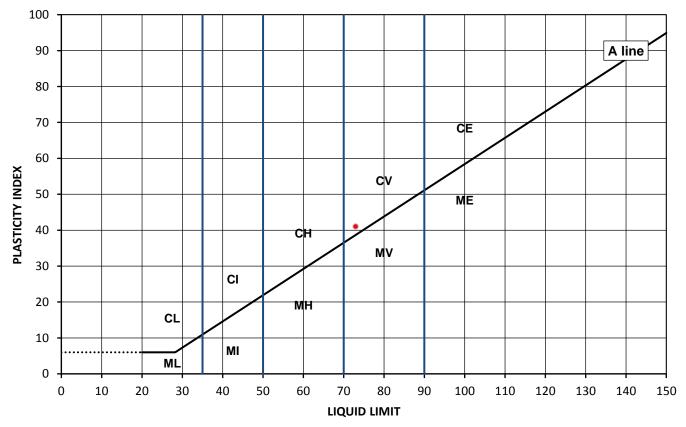
Date Tested: 08/01/2019 Sampled By: Not Given

Depth Top [m]: 2.90

Sample Type: D

Depth Base [m]: Not Given

Test Results


Laboratory Reference: 1123040 BH02 Hole No.:

BH022.903-001 Sample Reference:

Soil Description: Brown slightly gravelly CLAY

Sample Preparation: Tested after >425um removed by hand

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [%]	[%]	[%]	[%]	BS Test Sieve
44	73	32	41	98

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 М ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Remarks:

Dariusz Piotrowski Approved:

PL Geotechnical Laboratory Manager

Date Reported: 15/01/2019

Signed: M. buln Maria Chandler

Geotechnical Site Manager Northampton

GF 232.3

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.*

Page 1 of 1

for and on behalf of i2 Analytical Ltd

TEST CERTIFICATE

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Soiltechnics Limited

Client Address: Cedar Barn, White Lodge,

Walgrave, Northampton,

NN6 9PY

Contact: Lauren Wenham Site Name: 60-70 Shorts Gardens

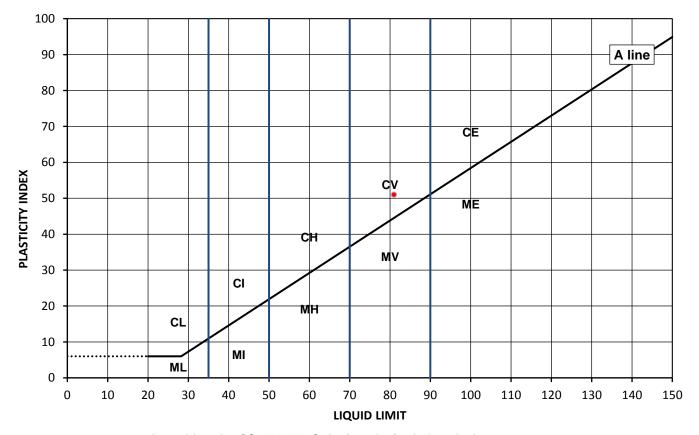
Site Address: Not Given Client Reference: STP3953A Job Number: 19-23534

> Date Sampled: 17/12/2018 Date Received: 21/12/2018 Date Tested: 08/01/2019

Sampled By: Not Given

Test Results

Laboratory Reference: 1123041 BH02 Hole No.:


BH025.953-005 Sample Reference: Soil Description: Greyish brown CLAY

Sample Preparation: Tested in natural condition

Depth Top	[m]:	5.95
Depth Base	[m]:	Not Given

Sample Type: D

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
30	81	30	51	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 М 1 Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Remarks:

Dariusz Piotrowski Approved:

PL Geotechnical Laboratory Manager

Date Reported: 15/01/2019

Signed: M. buln Maria Chandler

Geotechnical Site Manager Northampton

GF 232.3

for and on behalf of i2 Analytical Ltd

TEST CERTIFICATE

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Soiltechnics Limited Client:

Client Address: Cedar Barn, White Lodge,

Walgrave, Northampton,

NN6 9PY

Contact: Lauren Wenham Site Name: 60-70 Shorts Gardens

Site Address: Not Given Client Reference: STP3953A Job Number: 19-23534

Date Sampled: 17/12/2018 Date Received: 21/12/2018 Date Tested: 08/01/2019

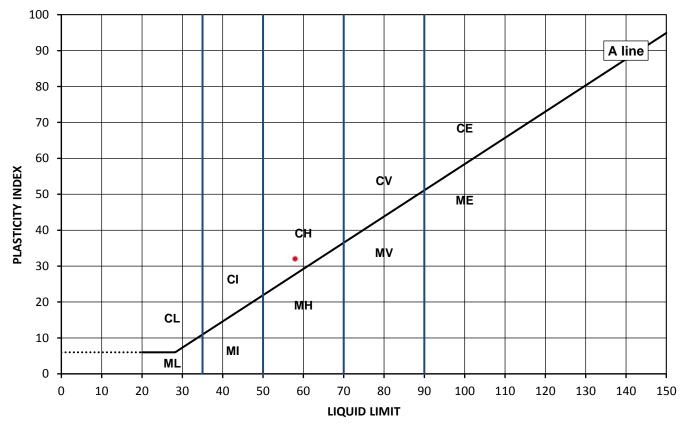
Sampled By: Not Given

Depth Top [m]: 8.95

Sample Type: D

Depth Base [m]: Not Given

Test Results


Laboratory Reference: 1123042 BH02 Hole No.:

BH028.953-009 Sample Reference:

Soil Description: Greyish brown slightly sandy CLAY

Tested in natural condition Sample Preparation:

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [%]	[%]	[%]	[%]	BS Test Sieve
24	58	26	32	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 М ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Remarks:

Dariusz Piotrowski Approved:

PL Geotechnical Laboratory Manager

Date Reported: 15/01/2019

Signed: M. buln Maria Chandler

Geotechnical Site Manager Northampton

GF 232.3

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Soiltechnics Limited

Client Address: Cedar Barn, White Lodge,

Walgrave, Northampton,

NN6 9PY

Contact: Lauren Wenham Site Name: 60-70 Shorts Gardens

Site Address: Not Given Client Reference: STP3953A Job Number: 19-23534

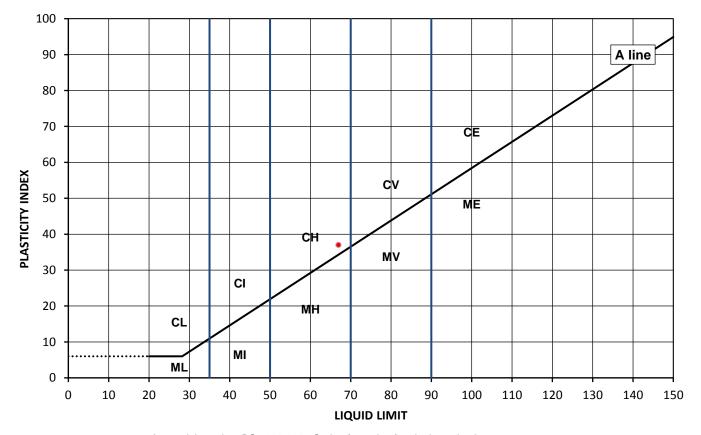
> Date Sampled: 17/12/2018 Date Received: 21/12/2018

Date Tested: 08/01/2019

Sampled By: Not Given

Test Results

Laboratory Reference: 1123043 BH02 Hole No.:


BH0214.953-039 Sample Reference: Soil Description: Greyish brown CLAY

Sample Preparation: Tested in natural condition

Depth Top [m]:	14.95
Depth Base [m]:	Not Given

Sample Type: D

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	%] [%]		
26	67	30	37	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 М 1 Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Remarks:

Dariusz Piotrowski Approved:

PL Geotechnical Laboratory Manager

Date Reported: 15/01/2019

Signed: M. buln Maria Chandler

Geotechnical Site Manager Northampton

GF 232.3

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

Summary of Classification Test Results

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client:

Contact:

Client Address:

Soiltechnics Limited

Cedar Barn, White Lodge,

Walgrave, Northampton,

NN6 9PY

Lauren Wenham

60-70 Shorts Gardens Site Name:

Site Address: Not Given Tested in Accordance with:

MC by BS 1377-2: 1990: Clause 3.2; Atterberg by BS 1377-2: 1990: Clause 4.3, Clause 4.4 and 5; PD by BS 1377-2: 1990: Clause 8.2

Client Reference: STP3953A Job Number: 19-23534 Date Sampled: 17/12/2018 Date Received: 21/12/2018 Date Tested: 08/01/2019

Sampled By: Not Given

Test results

		Sample								Atter	berg#		Dei	nsity	,		
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	n Remarks %		Passing L 425um		PL %	PI %	bulk Mg/m3	PD Mg/m3	Total % Porosity		
1123040	BH02	BH022.903-001	2.90	Not Given	D	Brown slightly gravelly CLAY	Atterberg 1 Point	44	98	73	32	41	- Gr	G,			
1123041	BH02	BH025.953-005	5.95	Not Given	D	Greyish brown CLAY	Atterberg 1 Point	30	100	81	30	51					
1123042	BH02	BH028.953-009	8.95	Not Given	D	Greyish brown slightly sandy CLAY	Atterberg 1 Point	24	100	58	26	32					
1123043	BH02	BH0214.953- 039	14.95	Not Given	D	Greyish brown CLAY	Atterberg 1 Point	26	100	67	30	37					

Note: # UKAS accredited; NP - Non plastic

Comments:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 15/01/2019 Signed:

Maria Chandler

Geotechnical Site Manager Northampton

GF 234.5

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client: Soiltechnics Limited

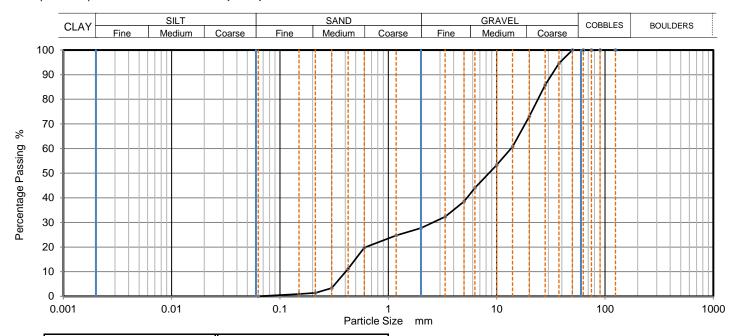
Client Address: Cedar Barn, White Lodge,

Walgrave, Northampton,

NN6 9PY

Contact: Lauren Wenham Site Name: 60-70 Shorts Gardens

Site Address: Not Given Client Reference: STP3953A Job Number: 19-23534 Date Sampled: 17/12/2018 Date Received: 21/12/2018 Date Tested: 08/01/2019 Sampled By: Not Given


Test Results:

Laboratory Reference: 1123039 Hole No.: BH021.603-014 Sample Reference:

Yellowish brown very sandy GRAVEL Sample Description:

Depth Top [m]: 1.60 Depth Base [m]: 1.80

Sample Type: D

Siev	ring	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100			
90	100			
75	100			
63	100			
50	100			
37.5	95			
28	86			
20	73			
14	61			
10	53			
6.3	44			
5	39			
3.35	32			
2	28			
1.18	25			
0.6	20			
0.425	11			
0.3	3			
0.212	1			
0.15	1			
0.063	1			

Dry Mass of sample [g]:	6573

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	72.30
Sand	27.10
Fines <0.063mm	0.70

Grading Analysis		
D100	mm	50
D60	mm	13.5
D30	mm	2.59
D10	mm	0.402
Uniformity Coefficient		34
Curvature Coefficient		1.2

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 15/01/2019

Signed:

Maria Chandler

Geotechnical Site Manager Northampton

GF 100.10

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Soiltechnics Limited

Client Address: Cedar Barn

White Lodge

Walgrave, Northampton, NN6 9PY

Contact: Alexa Band

Site Name: 60-70 Shorts Gardens

Site Address: Not Given Client Reference: STP3953A Job Number: 18-19140

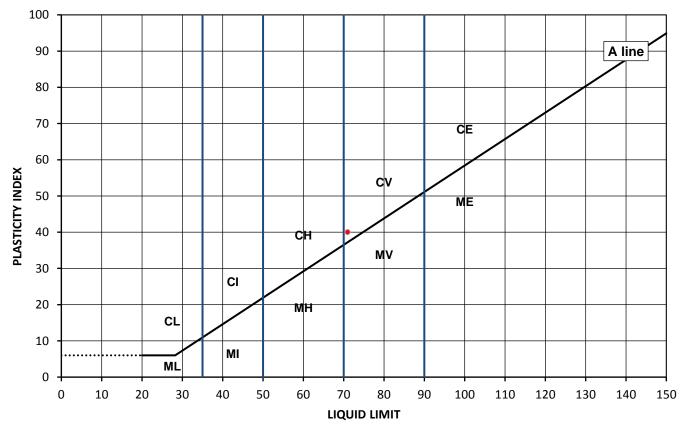
Date Sampled: 07/11/2018 Date Received: 20/11/2018

Date Tested: 26/11/2018

Sampled By: Not Given

Test Results

Laboratory Reference: 1095259 BH9.1 Hole No.: BH11.002-015 Sample Reference:


Soil Description: Yellowish brown CLAY

Depth Top [m]: 1.00 Depth Base [m]: Not Given

Sample Type: D

Sample Preparation: Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
30	71	31	40	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 М ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Remarks:

Dariusz Piotrowski Approved:

PL Geotechnical Laboratory Manager

Date Reported: 06/12/2018

Signed:

Darren Berrill

Geotechnical General Manager

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Soiltechnics Limited

Client Address: Cedar Barn

White Lodge

Walgrave, Northampton, NN6 9PY

Contact: Alexa Band

Site Name: 60-70 Shorts Gardens

Site Address: Not Given Client Reference: STP3953A Job Number: 18-19140 Date Sampled: 07/11/2018

Date Received: 20/11/2018 Date Tested: 26/11/2018

Sampled By: Not Given

Depth Top [m]: 2.05

Test Results

Laboratory Reference: 1095260 BH9.1 Hole No.:

BH9.12.052-017 Sample Reference: Soil Description: Brown CLAY

Sample Preparation: Tested in natural condition

Depth Base [m]: No	ot Given
Sample Type: D	

As Received Moisture Content [%]	Liquid Limit [%]	Plastic Limit [%]	% Passing 425μm BS Test Sieve	
29	81	32	49	100
100				

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 М ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Remarks:

Dariusz Piotrowski Approved:

PL Geotechnical Laboratory Manager

Date Reported: 06/12/2018

Signed:

Darren Berrill

Geotechnical General Manager

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Soiltechnics Limited

Client Address: Cedar Barn

White Lodge

Walgrave, Northampton, NN6 9PY

Contact: Alexa Band

Site Name: 60-70 Shorts Gardens

Site Address: Not Given Client Reference: STP3953A Job Number: 18-19140 Date Sampled: 07/11/2018

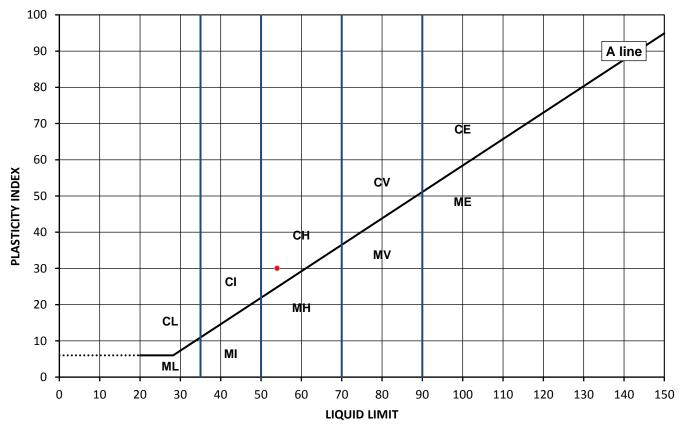
Date Received: 20/11/2018 Date Tested: 26/11/2018

Sampled By: Not Given

Test Results

Laboratory Reference: 1095261 BH9.1 Hole No.:

BH9.15.953-021 Sample Reference:


Soil Description: Grey slightly sandy CLAY

Sample Preparation: Tested in natural condition

Depth Top [m]:	5.95
Depth Base [m]:	Not Given

Sample Type: B

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [%]	[%]	[%]	[%]	BS Test Sieve
24	54	24	30	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 М ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Remarks:

Dariusz Piotrowski Approved:

PL Geotechnical Laboratory Manager

Date Reported: 06/12/2018

Signed:

Darren Berrill

Geotechnical General Manager

Summary of Classification Test Results

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client:

Soiltechnics Limited

Client Address:

Cedar Barn

White Lodge

Walgrave, Northampton, NN6 9PY

Contact:

Alexa Band

Site Name:

60-70 Shorts Gardens

Site Address: Not Given Tested in Accordance with:

MC by BS 1377-2: 1990: Clause 3.2; Atterberg by BS 1377-2: 1990: Clause

4.3, Clause 4.4 and 5; PD by BS 1377-2: 1990: Clause 8.2

Client Reference: STP3953A

Job Number: 18-19140

Date Sampled: 07/11/2018 Date Received: 20/11/2018

Date Tested: 26/11/2018

Sampled By: Not Given

Test results

			Sample	e						Atter	berg#		De	nsity	,			
Laboratory Reference	Hole No.	Reference	Тор	Depth Base	Туре	Description	Remarks	MC#	% Passing 425um	ш	PL	PI	bulk	PD	Total Porosity			
			m	m				%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3		<u> </u>	<u> </u>
1095259	BH9.1	BH11.002-015	1.00	Not Given	D	Yellowish brown CLAY	Atterberg 1 Point	30	100	71	31	40						
1095260	BH9.1	BH9.12.052-017	2.05	Not Given	D	Brown CLAY	Atterberg 1 Point	29	100	81	32	49						
1095261	BH9.1	BH9.15.953-021	5.95	Not Given	В	Grey slightly sandy CLAY	Atterberg 1 Point	24	100	54	24	30						

Note: # UKAS accredited; NP - Non plastic

Comments:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

06/12/2018 Date Reported:

Signed:

Darren Berrill

Geotechnical General Manager

GF 234.4

Page 1 of 1

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Soiltechnics Limited Client: Client Address: Cedar Barn

White Lodge

Walgrave, Northampton, NN6 9PY

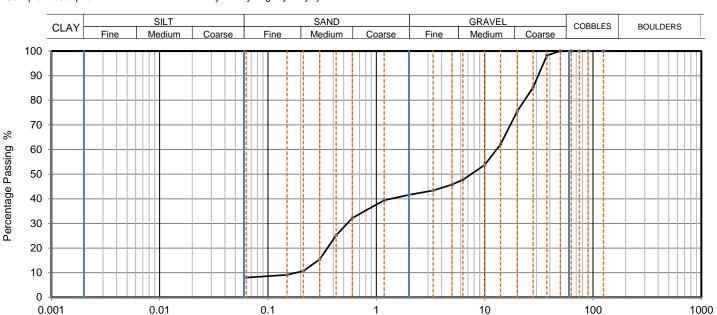
Contact: Alexa Band

Site Name: 60-70 Shorts Gardens

Site Address: Not Given Client Reference: STP3953A Job Number: 18-19140 Date Sampled: 16/11/2018 Date Received: 20/11/2018 Date Tested: 26/11/2018 Sampled By: Not Given

Depth Top [m]: 0.40

Depth Base [m]: 0.60


Sample Type: B

Test Results:

%

Laboratory Reference: 1095258 BH9.1 Hole No.: BH9.10.402-005 Sample Reference:

Sample Description: Yellowish brown very sandy slightly clayey GRAVEL

Particle Size

mm

Siev	ring	Sedimentation					
Particle Size mm	% Passing	Particle Size mm	% Passing				
125	100						
90	100						
75	100						
63	100						
50	100						
37.5	98						
28	85						
20	76						
14	62						
10	54						
6.3	48						
5	46						
3.35	43						
2	42						
1.18	39						
0.6	32						
0.425	25						
0.3	15						
0.212	11]					
0.15	9]					
0.063	9						

Dry Mass of sample [g]:	4231

Sample Proportions	% dry mass				
Very coarse	0.00				
Gravel	58.40				
Sand	33.10				
Fines <0.063mm	8.50				

Grading Analysis		
D100	mm	50
D60	mm	12.9
D30	mm	0.538
D10	mm	0.183
Uniformity Coefficient		70
Curvature Coefficient		0.12

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks: The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 06/12/2018

Darren Berrill

Geotechnical General Manager

GF 100.10

2718

Soiltechnics Ltd Cedar Barn White Lodge Walgrave Northamptonshire NN6 9PY

Version No. 1

For the attention of Angus Wilson Page No. 1 of 9

Date of Issue 14/12/2018

TEST REPORT

PROJECT/SITE	Shorts Gardens	Samples received	21/11/2018
GEL REPORT NUMBER	34832	Schedule received	21/11/2018
Your ref/PO:	POR004256	Testing commenced	22/11/2018
Test report refers to	Schedule 1	Status	Final

SUMMARY OF RESULTS ATTACHED

EST METHOD & DESCRIPTION	QUANTITY	ACCREDITED
		TEST
3S EN ISO 17892-5: 2017, Oedometer	2	YES
3S1377: Part 7: 1990:8&9, Undrained Triaxial Compression	3	YES
3S1377: Part 8: 1990: Effective Stress Testing	1	YES

Remarks

This report may not be partially reproduced without written permission from this laboratory.

Approved Signatories:

W Jones (Laboratory Manager) E Crimp (Senior Engineer)

J Hanson (Director) N Parry (Director)

Doc TR01 Rev No. 20 Revision date 09/10/17 DC:JH

Geotechnical Engineering Ltd

Centurion House Olympus Park, Quedgeley Gloucester GL2 4NF

Registered number: 00700739 **VAT Number:** 682 5857 89

www.geoeng.co.uk

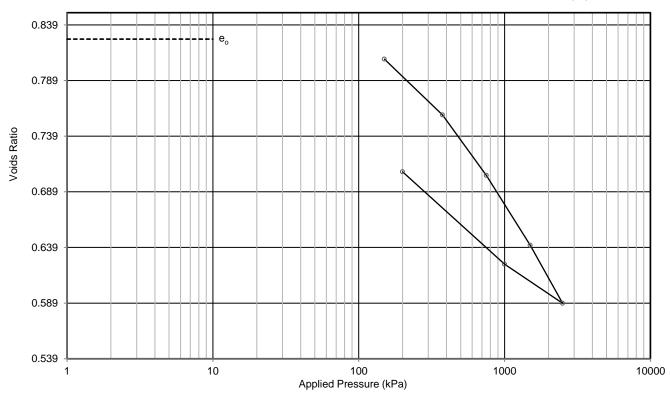
geotech@geoeng.co.uk TEL: 01452 527743 Fax: 01452 729314

Payments: Geotechnical Engineering Limited Sort code: 16-22-11 Bank account: 11125135

Geotechnical Engineering Limited

DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES BS EN ISO 17892 - 5 : 2017 : 6

CLIENT SOILTECHNICS LTD BH/TP No. BH9.1


SITE SHORTS GARDENS SAMPLE No./TYPE U2U

DESCRIPTION Brown silty CLAY SAMPLE DEPTH (m) 2.50

SPECIMEN DEPTH (m) 2.65

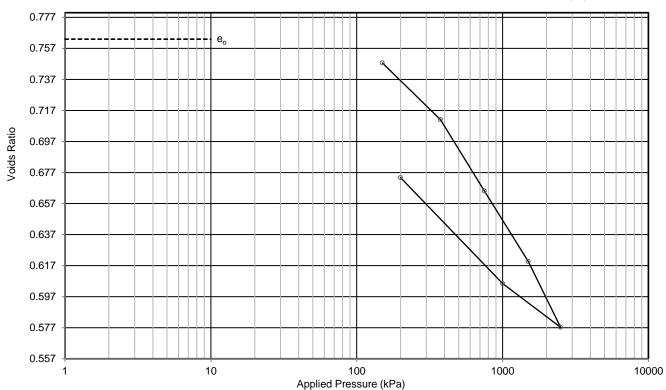
34832

WJ

test and sample details			test results			
			pressure	voids	laboratory c	oefficients of
specimen diameter	mm	63.58	stage	ratio	compressibility	consolidation
specimen height	mm	17.77	(I-D-)		mv	Cv
initial moisture content	%	31.3	(kPa)		(m2/MN)	(m2/yr)
final moisture content	%	28.0				
initial bulk density	Mg/m3	1.94	150	0.808		
initial dry density	Mg/m3	1.48	375	0.758	0.12	0.28
initial voids ratio		0.826	750	0.704	0.082	0.25
initial degree of saturation	%	102	1500	0.641	0.049	0.3
particle density	Mg/m3	#2.70	2500	0.589	0.032	0.26
swelling pressure	kPa	N/A	1000	0.624	0.015	
			200	0.707	0.064	
P'o to P'o +100 kPa		-				
laboratory temperature	оС	20 ± 2				
method of time fitting		root time				
remarks # denotes particle de	nsity has been ass	igned an assume	d value		CONTRACT	CHECKE
Swelled on 150kPa, continued w	rith scheduled sequ	ience as requeste	ed.			

Geotechnical Engineering Limited

DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES BS EN ISO 17892 - 5 : 2017 : 6



CLIENT SOILTECHNICS LTD BH/TP No. BH9.1

SITE SHORTS GARDENS SAMPLE No./TYPE U4U

DESCRIPTION Brown silty CLAY SAMPLE DEPTH (m) 4.50

SPECIMEN DEPTH (m) 4.62

test and sample details			test results			
			pressure	voids	laboratory c	oefficients of
specimen diameter	mm	63.54	stage	ratio	compressibility	consolidation
specimen height	mm	18.93	(I-D-)		mv	Cv
initial moisture content	%	28.4	(kPa)		(m2/MN)	(m2/yr)
final moisture content	%	26.2				
nitial bulk density	Mg/m3	1.97	150	0.748		
nitial dry density	Mg/m3	1.53	375	0.711	0.093	0.69
nitial voids ratio		0.763	750	0.665	0.072	0.37
nitial degree of saturation	%	101	1500	0.620	0.036	0.25
particle density	Mg/m3	#2.70	2500	0.577	0.026	0.24
swelling pressure	kPa	N/A	1000	0.605	0.012	
			200	0.674	0.053	
P'o to P'o +100 kPa		-				
aboratory temperature	оС	20 ± 2				
method of time fitting		root time				
emarks # denotes particle de	ensity has been ass	igned an assume	d value		CONTRACT	CHECKE
Swelled on 150kPa, continued w	vith scheduled sequ	ience as requeste	ed.		_	
•		•			34832	WJ

Geotechnical Engineering Limited

UNDRAINED TRIAXIAL COMPRESSION

BS.1377 : PART 7 : 1990 : 9

CLIENT SOILTECHNICS LTD

SITE SHORTS GARDENS

borehole	sar	nple	specimen	code	moisture	content	dimensions		dimensions		nensions density							
/trial pit	no./type	depth	depth		initial	final	la marth	diameter	bulk	alm.	pressure	strain	stress	strain	mode	strength*	description and r	emarks
no.		(m)	(m)		initiai	final	length	diameter	bulk	dry	(kPa)	(%/min)	(kPa)	(%)		(kPa)		
					(%)	(%)	(mm)	(mm)	(Mg/m3)	(Mg/m3)								
BH9.1	U1U	1.60	1.72	UUM100	25.3	28.1	159	104	1.96	1.56	110 220 440	3.2	196 256 268	3.1 7.5 8.8	S	98 128 134	Brown silty CLAY	
BH9.1	U2U	2.50	2.63	UUM100	28.8	28.9	206	104	1.95	1.51	120 240 480	4.1	220 247 269	2.9 4.4 5.8	S	110 123 134	Brown silty CLAY	
BH9.1	U4U	4.50	4.65	UUM100	26.5	26.1	200	104	1.97	1.55	140 280 560	4.0	206 278 299	2.5 5.5 7.0	S	103 139 150	Brown silty CLAY	
general remarks: code:						failure mode		·		e type/thickne		·			CONTRACT	CHECKED		
* shear strength taken as half deviator stress at failure for each stage membrane correction applied sample taken vertically (unless otherwise specified) strain rate 2%/min (unless otherwise specified)			stage	UU - unconso M - multi stage S - set of three R - remoulded	е		B - barrel (plas S - shear (britt I - intermediate O - other (see	tle failure) e		latex mem 38 - 0.2mn 70 - 0.4mn 100 - 0.4m	n n	nless otherwise	specified)			34832	WJ	

BS1377: Part 8: 1990 and "Manual of Soil Laboratory Testing", Volume 3, K.H. Head

CLIENT SOILTECHNICS LTD BH/TP No. BH9.1
SITE SHORTS GARDENS SAMPLE No./TYPE U5

SAMPLE DEPTH (m) 5.50-5.95

DESCRIPTION Dark brown slightly sandy silty CLAY SPECIMEN DEPTH (m) 5.54-5.72

TYPE OF SPECIMEN Undisturbed / Vertical

TYPE OF TEST Single Specimen Single Stage

SIDE DRAINS FITTED Yes

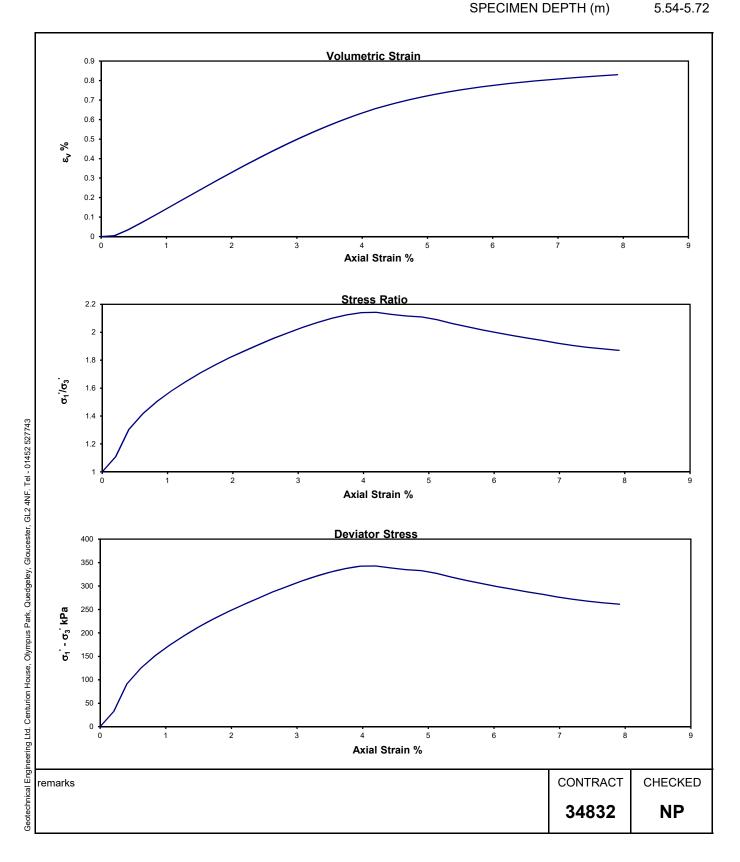
DRAINAGE CONDITIONS One end and radial boundary

DRAINAGE CONDITIONS	One end and radial bo	One end and radial boundary					
		SPECIMEN	1				
INITIAL CONDITIONS	Length	mm	175.1				
	Diameter	mm	103.42				
	Moisture Content	%	24				
	Bulk Density	Mg/m ³	2.00				
	Dry Density	Mg/m ³	1.61				
FINAL CONDITIONS	Moisture Content	%	24				
	Bulk Density	Mg/m ³	2.04				
	Dry Density	Mg/m ³	1.65				
SATURATION	Initial PWP	kPa	-2				
(by cell pressure and back pressure	Saturated PWP	kPa	279				
increments)	Final Cell Pressure	kPa	300				
	B Value		0.96				
CONSOLIDATION	Cell Pressure	kPa	600				
	Back Pressure	kPa	300				
	Initial PWP	kPa	569				
	Final PWP	kPa	306				
COMPRESSION	Cell Pressure	kPa	600				
	Back Pressure	kPa	300				
	σ_3	kPa	300				
	Rate of Strain	%/hr	0.341				
FAILURE CONDITIONS	Axial Strain (ε)	%	4.2				
(based on maximum	Volumetric Strain ($\epsilon_{\rm v}$)	%	0.66				
deviator stress)	$\sigma_3'_f$	kPa	300				
	$\sigma_{1f} - \sigma_{3f}$	kPa	343				

Membrane correction of 0.1kPa/% strain applied to deviator stress.

Side drain correction of 3.5kPa applied to deviator stress (100mm diameter)

		EFFECTIVE STRESS	c _d kPa :	φ _d deg :
FAILURE MODE (see photo)	SHEAR	PARAMETERS		
remarks	-		CONTRACT	CHECKED
			34832	NP


BS1377: Part 8: 1990 and "Manual of Soil Laboratory Testing", Volume 3, K.H. Head

CLIENT SOILTECHNICS LTD SITE SHORTS GARDENS

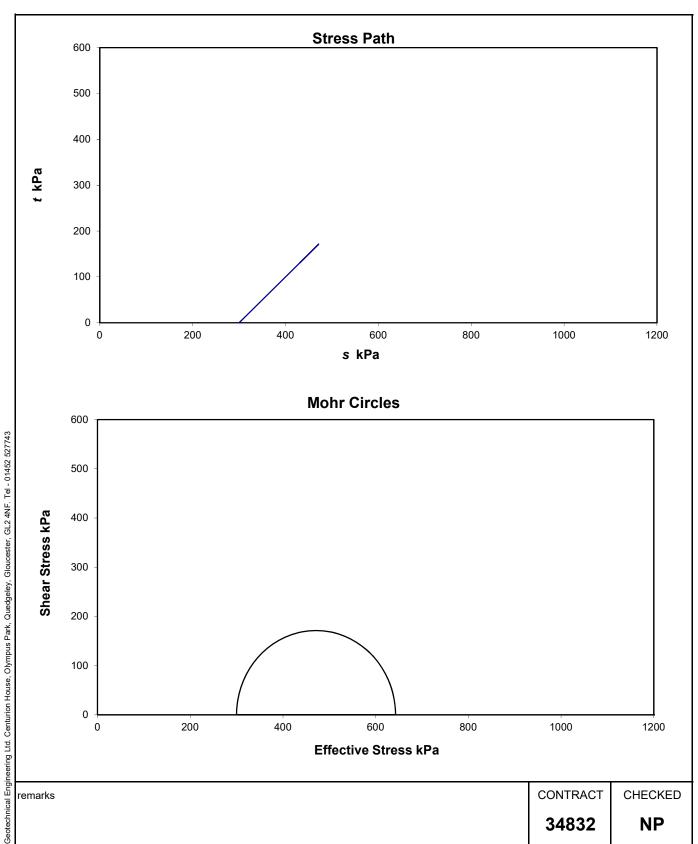
BH/TP No. BH9.1

SAMPLE No./TYPE U5

SAMPLE DEPTH (m) 5.50-5.95

14/12/2018 - 09:01

BS1377: Part 8: 1990 and "Manual of Soil Laboratory Testing", Volume 3, K.H. Head


CLIENT SOILTECHNICS LTD
SITE SHORTS GARDENS

BH/TP No. BH9.1

SAMPLE No./TYPE U5

SAMPLE DEPTH (m) 5.50-5.95

SPECIMEN DEPTH (m) 5.54-5.72

BS1377: Part 8: 1990 and "Manual of Soil Laboratory Testing", Volume 3, K.H. Head

CLIENT SOILTECHNICS LTD BH/TP No. BH9.1
SITE SHORTS GARDENS SAMPLE No./TYPE U5

SAMPLE DEPTH (m) 5.50-5.95

SPECIMEN DEPTH (m) 5.54-5.72

Failure Mode

SHEAR

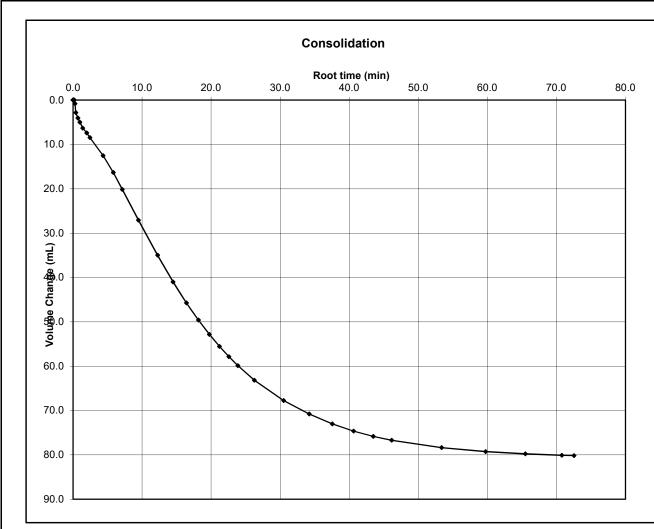
remarks

Please note the photos are intended to show the mode of failure only.

CONTRACT

CHECKED

34832


NP

BS1377: Part 8: 1990 and "Manual of Soil Laboratory Testing", Volume 3, K.H. Head

CLIENT SOILTECHNICS LTD SITE SHORTS GARDENS

BH/TP No. BH9.1 SAMPLE No./TYPE U5 SAMPLE DEPTH (m) 5.50-5.95 SPECIMEN DEPTH (m) 5.54-5.72

Stage 1

Cell pressure kPa
Back pressure kPa
Effective pressure kPa
Initial PWP kPa
Final PWP kPa
PWP Dissipation %
Volume Change mL
t100

600
300
300
569
306
97.77
80.2
781.57

remarks	CONTRACT	CHECKED
Please note the photos are intended to show the mode of failure only.	34832	NP

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.com

Final Report

Report No.: 19-00005-1

Initial Date of Issue: 08-Jan-2019

Client Soiltechnics Limited

Client Address: Cedar Barn

White Lodge Walgrave Northampton Northamptonshire

NN6 9PY

Contact(s): Alexa Band

Lauren Wenham

Project STP3953A 60-70 Shorts Gardens & 14-

16B

Quotation No.: Date Received: 24-Dec-2018

Order No.: POR004459 Date Instructed: 28-Dec-2018

No. of Samples: 3

Turnaround (Wkdays): 5 Results Due: 04-Jan-2019

Date Approved: 08-Jan-2019

Approved By:

Details: Glynn Harvey, Laboratory Manager

Client: Soiltechnics Limited		Che	mtest Jo	ob No.:	19-00005	19-00005	19-00005
Quotation No.:	(Chemte	st Sam	ple ID.:	748573	748574	748575
Order No.: POR004459		Clie	nt Samp	le Ref.:	3-101	3-102	3-004
		Cli	ent Sam	nla ID ·	BH020.503-	BH020.503-	BH025.003-
		Cili	eni Sam	pie ib	101	102	004
		Sa	ample Lo	ocation:	BH02	BH02	BH02
				е Туре:	SOIL	SOIL	SOIL
			Top Dep		0.50	0.50	5.00
		Bot	tom Dep	oth (m):	0.60	0.60	
			Date Sa	ampled:	20-Dec-2018	20-Dec-2018	17-Dec-2018
Determinand	Accred.	SOP	Units	LOD			
Moisture	N	2030	%	0.020	32	6.4	21
Soil Colour	N	2040		N/A	Brown		Brown
Other Material	N	2040		N/A	Stones		NONE
Soil Texture	N	2040		N/A	Sand		Clay
рН	М	2010		N/A	8.0	8.1	8.4
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40		1.2	
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	0.80	1.1	0.33
Total Sulphur	M	2175	%	0.010	0.12		0.25
Nitrate (Water Soluble)	N	2220	g/l	0.010		< 0.010	
Cyanide (Complex)	M	2300	mg/kg	0.50		< 0.50	
Cyanide (Free)	M	2300	mg/kg	0.50		< 0.50	
Cyanide (Total)	M	2300	mg/kg	0.50		< 0.50	
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50		34	
Sulphate (Acid Soluble)	M	2430	%	0.010	0.32		0.14
Arsenic	М	2450	mg/kg	1.0		10	
Beryllium	U	2450	mg/kg	1.0		< 1.0	
Cadmium	M	2450	mg/kg	0.10		0.12	
Chromium	М	2450	mg/kg	1.0		15	
Copper	М	2450	mg/kg	0.50		90	
Mercury	М	2450	mg/kg	0.10		1.5	
Nickel	М	2450	mg/kg	0.50		55	
Lead	М	2450	mg/kg	0.50		260	
Selenium	М	2450	mg/kg	0.20		0.27	
Vanadium	U	2450	mg/kg	5.0		20	
Zinc	M	2450	mg/kg			47	
Chromium (Hexavalent)	N	2490	mg/kg	0.50		< 0.50	
Organic Matter	M	2625	%	0.40		1.2	
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0		[C] < 1.0	
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0		[C] < 1.0	
Aliphatic TPH >C8-C10	M	2680	mg/kg	1.0		[C] < 1.0	
Aliphatic TPH >C10-C12	M	2680	mg/kg	1.0		[C] < 1.0	
Aliphatic TPH >C12-C16	M	2680	mg/kg	1.0		[C] < 1.0	
Aliphatic TPH >C16-C21	M	2680	mg/kg	1.0		[C] < 1.0	
Aliphatic TPH >C21-C35	M	2680	mg/kg	1.0		[C] < 1.0	
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0		[C] < 1.0	
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0		[C] < 5.0	

Client: Soiltechnics Limited		Che	mtest Jo	b No.:	19-00005	19-00005	19-00005
Quotation No.:		Chemte	est Sam	ole ID.:	748573	748574	748575
Order No.: POR004459		Clie	nt Samp	le Ref.:	3-101	3-102	3-004
		Cli	ent Sam	nlo ID :	BH020.503-	BH020.503-	BH025.003-
		Cili	eni Sam	pie ib	101	102	004
		Sa	ample Lo	cation:	BH02	BH02	BH02
				е Туре:	SOIL	SOIL	SOIL
			Top Dep		0.50	0.50	5.00
		Bot	ttom Dep	oth (m):	0.60	0.60	
			Date Sa	mpled:	20-Dec-2018	20-Dec-2018	17-Dec-2018
Determinand	Accred.	SOP	Units	LOD			
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0		[C] < 1.0	
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0		[C] < 1.0	
Aromatic TPH >C8-C10	M	2680	mg/kg	1.0		[C] < 1.0	
Aromatic TPH >C10-C12	M	2680	mg/kg	1.0		[C] < 1.0	
Aromatic TPH >C12-C16	M	2680	mg/kg	1.0		[C] < 1.0	
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0		[C] < 1.0	
Aromatic TPH >C21-C35	M	2680	mg/kg	1.0		[C] < 1.0	
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0		[C] < 1.0	
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0		[C] < 5.0	
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0		[C] < 10	
Dichlorodifluoromethane	U	2760	μg/kg	1.0		[C] < 1.0	
Chloromethane	M	2760	μg/kg	1.0		[C] < 1.0	
Vinyl Chloride	M	2760	μg/kg	1.0		[C] < 1.0	
Bromomethane	M	2760	μg/kg	20		[C] < 20	
Chloroethane	U	2760	μg/kg	2.0		[C] < 2.0	
Trichlorofluoromethane	M	2760	μg/kg	1.0		[C] < 1.0	
1,1-Dichloroethene	M	2760	μg/kg	1.0		[C] < 1.0	
Trans 1,2-Dichloroethene	M	2760	μg/kg	1.0		[C] < 1.0	
1,1-Dichloroethane	M	2760	μg/kg	1.0		[C] < 1.0	
cis 1,2-Dichloroethene	M	2760	μg/kg	1.0		[C] < 1.0	
Bromochloromethane	U	2760	μg/kg	5.0		[C] < 5.0	
Trichloromethane	M	2760	μg/kg	1.0		[C] < 1.0	
1,1,1-Trichloroethane	M	2760	μg/kg	1.0		[C] < 1.0	
Tetrachloromethane	M	2760	μg/kg	1.0		[C] < 1.0	
1,1-Dichloropropene	U	2760	μg/kg	1.0		[C] < 1.0	
Benzene	M	2760	μg/kg	1.0		[C] < 1.0	
1,2-Dichloroethane	М	2760	μg/kg	2.0		[C] < 2.0	
Trichloroethene	N	2760	μg/kg	1.0		[C] < 1.0	
1,2-Dichloropropane	М	2760	μg/kg	1.0		[C] < 1.0	
Dibromomethane	M	2760	μg/kg	1.0		[C] < 1.0	
Bromodichloromethane	М	2760	μg/kg	5.0		[C] < 5.0	
cis-1,3-Dichloropropene	N	2760	μg/kg	10		[C] < 10	
Toluene	М	2760	μg/kg	1.0		[C] < 1.0	
Trans-1,3-Dichloropropene	N	2760	μg/kg	10		[C] < 10	
1,1,2-Trichloroethane	М	2760	μg/kg	10		[C] < 10	
Tetrachloroethene	М	2760	μg/kg	1.0		[C] < 1.0	

Client: Soiltechnics Limited		Che	mtest Jo	ob No.:	19-00005	19-00005	19-00005
Quotation No.:		Chemte	st Sam	ple ID.:	748573	748574	748575
Order No.: POR004459		Clie	nt Samp	le Ref.:	3-101	3-102	3-004
		CII	ent Sam	י חו יום	BH020.503-	BH020.503-	BH025.003-
		Cili	eni Sam	pie ib	101	102	004
		Sa	ample Lo	ocation:	BH02	BH02	BH02
			Sampl	е Туре:	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.50	0.50	5.00
		Bot	tom Dep	oth (m):	0.60	0.60	
			Date Sa	ampled:	20-Dec-2018	20-Dec-2018	17-Dec-2018
Determinand	Accred.	SOP	Units	LOD			
1,3-Dichloropropane	U	2760	μg/kg	2.0		[C] < 2.0	
Dibromochloromethane	U	2760	μg/kg	10		[C] < 10	
1,2-Dibromoethane	M	2760	μg/kg	5.0		[C] < 5.0	
Chlorobenzene	M	2760	μg/kg	1.0		[C] < 1.0	
1,1,1,2-Tetrachloroethane	М	2760	μg/kg	2.0		[C] < 2.0	
Ethylbenzene	M	2760	μg/kg	1.0		[C] < 1.0	
m & p-Xylene	M	2760	μg/kg	1.0		[C] < 1.0	
o-Xylene	М	2760	μg/kg	1.0		[C] < 1.0	
Styrene	М	2760	μg/kg	1.0		[C] < 1.0	
Tribromomethane	U	2760	μg/kg	1.0		[C] < 1.0	
Isopropylbenzene	М	2760	μg/kg	1.0		[C] < 1.0	
Bromobenzene	М	2760	μg/kg	1.0		[C] < 1.0	
1,2,3-Trichloropropane	N	2760	μg/kg	50		[C] < 50	
N-Propylbenzene	U	2760	μg/kg	1.0		[C] < 1.0	
2-Chlorotoluene	М	2760	μg/kg	1.0		[C] < 1.0	
1,3,5-Trimethylbenzene	М	2760	μg/kg	1.0		[C] < 1.0	
4-Chlorotoluene	U	2760	μg/kg	1.0		[C] < 1.0	
Tert-Butylbenzene	U	2760	μg/kg	1.0		[C] < 1.0	
1,2,4-Trimethylbenzene	М	2760	μg/kg	1.0		[C] < 1.0	
Sec-Butylbenzene	U	2760	μg/kg	1.0		[C] < 1.0	
1,3-Dichlorobenzene	М	2760	μg/kg	1.0		[C] < 1.0	
4-Isopropyltoluene	U	2760	μg/kg	1.0		[C] < 1.0	
1,4-Dichlorobenzene	М	2760	μg/kg	1.0		[C] < 1.0	
N-Butylbenzene	U	2760	μg/kg	1.0		[C] < 1.0	
1,2-Dichlorobenzene	М	2760	μg/kg	1.0		[C] < 1.0	
1,2-Dibromo-3-Chloropropane	U	2760	μg/kg	50		[C] < 50	
1,2,4-Trichlorobenzene	M	2760	μg/kg	1.0		[C] < 1.0	
Hexachlorobutadiene	U	2760	μg/kg	1.0		[C] < 1.0	
1,2,3-Trichlorobenzene	U	2760	μg/kg	2.0		[C] < 2.0	
Carbon Disulphide	N	2760	μg/kg	50		[C] < 50	
Methyl Tert-Butyl Ether	M	2760	μg/kg	1.0		[C] < 1.0	
N-Nitrosodimethylamine	N	2790	mg/kg			[C] < 0.050	
Phenol	N	2790	mg/kg			[C] < 0.050	
2-Chlorophenol	N	2790	mg/kg			[C] < 0.050	
Bis-(2-Chloroethyl)Ether	N	2790	mg/kg			[C] < 0.050	
1.3-Dichlorobenzene	N	2790	mg/kg			[C] < 0.050	

Client: Soiltechnics Limited		Che	mtest Jo	ob No.:	19-00005	19-00005	19-00005
Quotation No.:		Chemte	st Sam	ple ID.:	748573	748574	748575
Order No.: POR004459		Clie	nt Samp	le Ref.:	3-101	3-102	3-004
		CII	ent Sam	nle ID ·	BH020.503-	BH020.503-	BH025.003-
		CII	eni Sam	pie ib	101	102	004
		Sa	ample Lo	cation:	BH02	BH02	BH02
			Sampl	е Туре:	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.50	0.50	5.00
		Bot	tom Dep	oth (m):	0.60	0.60	
			Date Sa	ampled:	20-Dec-2018	20-Dec-2018	17-Dec-2018
Determinand	Accred.	SOP	Units	LOD			
1,4-Dichlorobenzene	N	2790	mg/kg	0.050		[C] < 0.050	
1,2-Dichlorobenzene	N	2790	mg/kg	0.050		[C] < 0.050	
2-Methylphenol	N	2790	mg/kg	0.050		[C] < 0.050	
Bis(2-Chloroisopropyl)Ether	N	2790	mg/kg			[C] < 0.050	
Hexachloroethane	N	2790	mg/kg			[C] < 0.050	
N-Nitrosodi-n-propylamine	N	2790	mg/kg			[C] < 0.050	
4-Methylphenol	N	2790	mg/kg			[C] < 0.050	
Nitrobenzene	N	2790	mg/kg			[C] < 0.050	
Isophorone	N	2790	mg/kg			[C] < 0.050	
2-Nitrophenol	N	2790	mg/kg			[C] < 0.050	
2,4-Dimethylphenol	N	2790	mg/kg			[C] < 0.050	
Bis(2-Chloroethoxy)Methane	N	2790	mg/kg			[C] < 0.050	
2,4-Dichlorophenol	N	2790	mg/kg			[C] < 0.050	
1,2,4-Trichlorobenzene	N	2790	mg/kg			[C] < 0.050	
Naphthalene	N	2790	mg/kg			[C] < 0.050	
4-Chloroaniline	N	2790	mg/kg			[C] < 0.050	
Hexachlorobutadiene	N	2790	mg/kg			[C] < 0.050	
4-Chloro-3-Methylphenol	N	2790	mg/kg			[C] < 0.050	
2-Methylnaphthalene	N	2790	mg/kg			[C] < 0.050	
Hexachlorocyclopentadiene	N	2790	mg/kg			[C] < 0.050	
2,4,6-Trichlorophenol	N	2790	mg/kg			[C] < 0.050	
2,4,5-Trichlorophenol	N	2790	mg/kg			[C] < 0.050	
2-Chloronaphthalene	N	2790	mg/kg			[C] < 0.050	
2-Nitroaniline	N	2790	mg/kg			[C] < 0.050	
Acenaphthylene	N	2790	mg/kg			[C] 0.053	
Dimethylphthalate	N	2790	mg/kg			[C] < 0.050	
2.6-Dinitrotoluene	N	2790	mg/kg			[C] < 0.050	
Acenaphthene	N	2790	mg/kg			[C] 0.053	
3-Nitroaniline	N	2790	mg/kg			[C] < 0.050	
Dibenzofuran	N	2790	mg/kg			[C] < 0.050	
4-Chlorophenylphenylether	N	2790	mg/kg			[C] < 0.050	
2,4-Dinitrotoluene	N	2790	mg/kg			[C] < 0.050	
Fluorene	N	2790	mg/kg			[C] < 0.050	
Diethyl Phthalate	N	2790	mg/kg			[C] < 0.050	
4-Nitroaniline	N	2790	mg/kg			[C] < 0.050	
2-Methyl-4,6-Dinitrophenol	N	2790	mg/kg			[C] < 0.050	

Client: Soiltechnics Limited		Che	mtest Jo	b No.:	19-00005	19-00005	19-00005
Quotation No.:		Chemte	st Sam	ole ID.:	748573	748574	748575
Order No.: POR004459		Clie	nt Samp	le Ref.:	3-101	3-102	3-004
		Cli	ent Sam	nla ID :	BH020.503-	BH020.503-	BH025.003-
		CII	eni Sam	pie ib	101	102	004
		Sa	ample Lo	cation:	BH02	BH02	BH02
			Sample	е Туре:	SOIL	SOIL	SOIL
			Top Dep		0.50	0.50	5.00
		Bot	tom Dep	oth (m):	0.60	0.60	
			Date Sa	mpled:	20-Dec-2018	20-Dec-2018	17-Dec-2018
Determinand	Accred.	SOP	Units				
Azobenzene	N	2790	mg/kg	0.050		[C] < 0.050	
4-Bromophenylphenyl Ether	N	2790	mg/kg			[C] < 0.050	
Hexachlorobenzene	N	2790	mg/kg			[C] < 0.050	
Pentachlorophenol	N	2790	mg/kg	0.050		[C] < 0.050	
Phenanthrene	N	2790	mg/kg	0.050		[C] 0.56	
Anthracene	N	2790	mg/kg	0.050		[C] 0.15	
Carbazole	N	2790	mg/kg	0.050		[C] 0.053	
Di-N-Butyl Phthalate	N	N 2790 mg/kg 0.050			[C] < 0.050		
Fluoranthene	N	2790	mg/kg	0.050		[C] 0.79	
Pyrene	N	2790	mg/kg	0.050		[C] 0.73	
Butylbenzyl Phthalate	N	2790	mg/kg	0.050		[C] < 0.050	
Benzo[a]anthracene	N	2790	mg/kg	0.050		[C] 0.45	
Chrysene	N	2790	mg/kg	0.050		[C] 0.43	
Bis(2-Ethylhexyl)Phthalate	N	2790	mg/kg	0.050		[C] 0.16	
Di-N-Octyl Phthalate	N	2790	mg/kg			[C] < 0.050	
Benzo[b]fluoranthene	N	2790	mg/kg	0.050		[C] 0.42	
Benzo[k]fluoranthene	N	2790	mg/kg	0.050		[C] 0.18	
Benzo[a]pyrene	N	2790	mg/kg	0.050		[C] 0.34	
Indeno(1,2,3-c,d)Pyrene	N	2790	mg/kg			[C] 0.21	
Dibenz(a,h)Anthracene	N	2790	mg/kg	0.050		[C] 0.12	
Benzo[g,h,i]perylene	N	2790	mg/kg	0.050		[C] 0.27	
4-Nitrophenol	N	2790	mg/kg	0.050		[C] < 0.050	
Total Phenols	M	2920	mg/kg	0.30		< 0.30	
VOC TIC	N	2760	μg/kg	N/A		None Detected	

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
748574	3-102	BH020.503-102	BH02	20-Dec-2018	С	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2790	Semi-Volatile Organic Compounds (SVOCs) in Soils by GC-MS	Semi-volatile organic compounds(cf. USEPA Method 8270)	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.com

Final Report

Report No.: 18-36493-1

Initial Date of Issue: 28-Nov-2018

Client Soiltechnics Limited

Client Address: Cedar Barn

White Lodge Walgrave Northampton Northamptonshire

NN6 9PY

Contact(s): Alexa Band

Lauren Wenham

Project STP3953A 60-70 Shorts Gardens & 14-

16B

Quotation No.: Date Received: 21-Nov-2018

Order No.: POR004252 Date Instructed: 21-Nov-2018

No. of Samples: 7

Turnaround (Wkdays): 5 Results Due: 27-Nov-2018

Date Approved: 28-Nov-2018

Approved By:

Details: Robert Monk, Technical Manager

Client: Soiltechnics Limited		Che	mtest J	ob No.:	18-36493	18-36493	18-36493	18-36493	18-36493	18-36493
Quotation No.:	(st Sam		728423	728424	728425	728426	728428	728429
Order No.: POR004252		Clie	nt Samp	le Ref.:	2-002	2-018	2-006	2-010	2-014	2-001
		Cli	ent Sam	، 10 مام	BH9.10.452-	BH9.12.952-	TP020.582-	TP060.502-	TP090.302-	WAC010.002
		Cili	eni Sam	ipie ib	002	018	006	010	014	001
		Sa	ample Lo	ocation:	BH9.1	BH9.1	TP02	TP06	TP09	WAC01
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	oth (m):	0.45	2.95	0.58	0.50	0.30	0.00
			Date Sa	ampled:	16-Nov-2018	07-Nov-2018	16-Nov-2018	16-Nov-2018	16-Nov-2018	16-Nov-2018
	Asbestos Lab:			COVENTRY		COVENTRY	COVENTRY	COVENTRY	COVENTRY	
Determinand	Accred.	SOP	Units	LOD						
ACM Type	U	2192		N/A	-		-	-	-	-
A 1	1	0400	0.4	0.004	No Asbestos		No Asbestos	No Asbestos	No Asbestos	No Asbestos
Asbestos Identification	U	2192	%	0.001	Detected		Detected	Detected	Detected	Detected
Moisture	N	2030	%	0.020	6.2	21	7.0	22	5.0	6.1
Soil Colour	N	2040		N/A	Brown	Brown		Brown		Brown
Other Material	N	2040		N/A	Stones	NONE		Stones		Stones,
Soil Texture	N	2040		N/A	Sand	Clay		Sand		Sand
pH	М	2010		N/A	8.8	8.6	9.4	11.3	11.5	10.7
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	0.41		1.3	0.79	0.78	
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010		0.15	0.39	0.64	0.57	0.32
Total Sulphur	М	2175	%	0.010		0.18		1.2		0.062
Nitrate (Water Soluble)	N	2220	g/l	0.010			< 0.010	< 0.010	< 0.010	
Cyanide (Complex)	М	2300	mg/kg	0.50	< 0.50		< 0.50	< 0.50	< 0.50	
Cyanide (Free)	М	2300	mg/kg	0.50	< 0.50		< 0.50	< 0.50	< 0.50	
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50		< 0.50	< 0.50	< 0.50	
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50			< 0.50	2.3	1.2	
Sulphate (Acid Soluble)	М	2430	%	0.010		0.051		0.51		0.19
Arsenic	М	2450	mg/kg	1.0	7.7		13	19	14	
Beryllium	U	2450	mg/kg	1.0	< 1.0		< 1.0	< 1.0	< 1.0	
Cadmium	М	2450	mg/kg	0.10	< 0.10		< 0.10	0.27	< 0.10	
Chromium	M	2450	mg/kg	1.0	14		18	23	16	
Copper	M	2450	mg/kg	0.50	8.1		40	140	370	
Mercury	M	2450	mg/kg	0.10	< 0.10		1.1	0.35	0.15	
Nickel	M	2450	mg/kg	0.50	16		75	27	21	
Lead	M	2450	mg/kg	0.50	8.0		45	240	430	
Selenium	M	2450	mg/kg	0.20	< 0.20		< 0.20	< 0.20	< 0.20	
Vanadium	U	2450	mg/kg	5.0	16		29	21	23	
Zinc	M	2450	mg/kg	0.50	33		52	420	98	
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50		< 0.50	< 0.50	< 0.50	
Organic Matter	M	2625	%	0.40	< 0.40		1.7	7.9	0.66	
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	, 0.70		[C] < 1.0	< 1.0	[C] < 1.0	
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Aliphatic TPH >C8-C10	M	2680	mg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Aliphatic TPH >C10-C12	M	2680	mg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Aliphatic TPH >C10-C12 Aliphatic TPH >C12-C16	M	2680	mg/kg	1.0			[C] < 1.0	19	[C] 39	
AIDHAID II II /O 12*0 10	IVI	2000	mg/kg	1.0			[0] 41	19	[0] 38	

Client: Soiltechnics Limited		Che	mtest Jo	ob No.:	18-36493	18-36493	18-36493	18-36493	18-36493	18-36493
Quotation No.:	(Chemte	st Sam	ple ID.:	728423	728424	728425	728426	728428	728429
Order No.: POR004252		Clie	nt Samp	le Ref.:	2-002	2-018	2-006	2-010	2-014	2-001
		Cli	ent Sam	nla ID :	BH9.10.452-	BH9.12.952-	TP020.582-	TP060.502-	TP090.302-	WAC010.002-
		CII	eni Sam	pie ib	002	018	006	010	014	001
		Sa	ample Lo	ocation:	BH9.1	BH9.1	TP02	TP06	TP09	WAC01
			Sample	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dep		0.45	2.95	0.58	0.50	0.30	0.00
			Date Sa	ampled:	16-Nov-2018	07-Nov-2018	16-Nov-2018	16-Nov-2018	16-Nov-2018	16-Nov-2018
			Asbest	os Lab:	COVENTRY		COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD						
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0			[C] 1500	6800	[C] 870	
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0			[C] < 1.0	130	[C] 39	
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0			[C] 2000	7900	[C] 1200	
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Aromatic TPH >C10-C12	M	2680	mg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Aromatic TPH >C12-C16	М	2680	mg/kg	1.0			[C] 69	16	[C] 4.0	
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0			[C] 180	160	[C] 6.0	
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0			[C] 1200	2500	[C] 140	
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0			[C] < 1.0	430	[C] < 1.0	
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0			[C] 1500	3100	[C] 150	
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0			[C] 3400	11000	[C] 1300	
Dichlorodifluoromethane	N	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Chloromethane	М	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Vinyl Chloride	M	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Bromomethane	M	2760	μg/kg	20			[C] < 20	< 20	[C] < 20	
Chloroethane	N	2760	μg/kg	2.0			[C] < 2.0	< 2.0	[C] < 2.0	
Trichlorofluoromethane	M	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
1,1-Dichloroethene	M	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Trans 1,2-Dichloroethene	M	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
1,1-Dichloroethane	M	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
cis 1,2-Dichloroethene	M	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Bromochloromethane	N	2760	μg/kg	5.0			[C] < 5.0	< 5.0	[C] < 5.0	
Trichloromethane	M	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
1,1,1-Trichloroethane	M	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Tetrachloromethane	M	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
1,1-Dichloropropene	N	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Benzene	М	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
1,2-Dichloroethane	М	2760	μg/kg	2.0			[C] < 2.0	< 2.0	[C] < 2.0	
Trichloroethene	N	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
1,2-Dichloropropane	М	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Dibromomethane	M	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Bromodichloromethane	M	2760	μg/kg	5.0			[C] < 5.0	< 5.0	[C] < 5.0	
cis-1,3-Dichloropropene	N	2760	μg/kg	10			[C] < 10	< 10	[C] < 10	
Toluene	M	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	

Client: Soiltechnics Limited			mtest Jo		18-36493	18-36493	18-36493	18-36493	18-36493	18-36493
Quotation No.:	(Chemte	st Sam	ple ID.:	728423	728424	728425	728426	728428	728429
Order No.: POR004252		Clie	nt Samp	le Ref.:	2-002	2-018	2-006	2-010	2-014	2-001
		Cli	ent Sam	nla ID :	BH9.10.452-	BH9.12.952-	TP020.582-	TP060.502-	TP090.302-	WAC010.002
		Cili	ent Gan	pie ib	002	018	006	010	014	001
		Sa	ample Lo	ocation:	BH9.1	BH9.1	TP02	TP06	TP09	WAC01
				e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dep		0.45	2.95	0.58	0.50	0.30	0.00
			Date Sa	ampled:	16-Nov-2018	07-Nov-2018	16-Nov-2018	16-Nov-2018	16-Nov-2018	16-Nov-2018
			Asbest	os Lab:	COVENTRY		COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD						
Trans-1,3-Dichloropropene	N	2760	μg/kg	10			[C] < 10	< 10	[C] < 10	
1,1,2-Trichloroethane	М	2760	μg/kg	10			[C] < 10	< 10	[C] < 10	
Tetrachloroethene	М	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
1,3-Dichloropropane	N	2760	μg/kg	2.0			[C] < 2.0	< 2.0	[C] < 2.0	
Dibromochloromethane	N	2760	μg/kg	10			[C] < 10	< 10	[C] < 10	
1,2-Dibromoethane	М	2760	μg/kg	5.0			[C] < 5.0	< 5.0	[C] < 5.0	
Chlorobenzene	М	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
1,1,1,2-Tetrachloroethane	М	2760	μg/kg	2.0			[C] < 2.0	< 2.0	[C] < 2.0	
Ethylbenzene	М	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
m & p-Xylene	М	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
o-Xylene	М	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Styrene	М	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Tribromomethane	N	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Isopropylbenzene	М	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Bromobenzene	М	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
1,2,3-Trichloropropane	N	2760	µg/kg	50			[C] < 50	< 50	[C] < 50	
N-Propylbenzene	N	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
2-Chlorotoluene	М	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
1,3,5-Trimethylbenzene	М	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
4-Chlorotoluene	N	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Tert-Butylbenzene	N	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
1,2,4-Trimethylbenzene	M	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Sec-Butylbenzene	N	2760	µg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
1,3-Dichlorobenzene	M	2760	µg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
4-Isopropyltoluene	N	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
1,4-Dichlorobenzene	M	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
N-Butylbenzene	N	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
1,2-Dichlorobenzene	M	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
1,2-Dibromo-3-Chloropropane	N	2760	μg/kg	50			[C] < 50	< 50	[C] < 50	
1,2,4-Trichlorobenzene	M	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Hexachlorobutadiene	N	2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
1,2,3-Trichlorobenzene	N	2760	μg/kg	2.0			[C] < 2.0	< 2.0	[C] < 2.0	
Carbon Disulphide	N	2760	μg/kg	50			[C] < 50	< 50	[C] < 50	
		2760	μg/kg	1.0			[C] < 1.0	< 1.0	[C] < 1.0	
Methyl Tert-Butyl Ether	[(//									
Methyl Tert-Butyl Ether N-Nitrosodimethylamine	M N	2790	mg/kg				[C] < 0.050	< 0.050	[C] < 0.050	

Client: Soiltechnics Limited		Che	mtest J	ob No.:	18-36493	18-36493	18-36493	18-36493	18-36493	18-36493
Quotation No.:		Chemte	st Sam	ple ID.:	728423	728424	728425	728426	728428	728429
Order No.: POR004252		Clie	nt Samp	le Ref.:	2-002	2-018	2-006	2-010	2-014	2-001
		Client Sample ID.: Sample Location:				BH9.12.952-	TP020.582-	TP060.502-	TP090.302-	WAC010.002-
						018	006	010	014	001
						BH9.1	TP02	TP06	TP09	WAC01
		Sample Type: Top Depth (m):			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
					0.45	2.95	0.58	0.50	0.30	0.00
		Date Sampled:				07-Nov-2018	16-Nov-2018	16-Nov-2018	16-Nov-2018	16-Nov-2018
		Asbestos Lab:		COVENTRY		COVENTRY	COVENTRY	COVENTRY	COVENTRY	
Determinand	Accred.	SOP	Units	LOD						
2-Chlorophenol	N	2790	mg/kg				[C] < 0.050	< 0.050	[C] < 0.050	
Bis-(2-Chloroethyl)Ether	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
1,3-Dichlorobenzene	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
1,4-Dichlorobenzene	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
1,2-Dichlorobenzene	N	2790	mg/kg				[C] < 0.050	< 0.050	[C] < 0.050	
2-Methylphenol	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
Bis(2-Chloroisopropyl)Ether	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
Hexachloroethane	N	2790	mg/kg				[C] < 0.050	< 0.050	[C] < 0.050	
N-Nitrosodi-n-propylamine	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
4-Methylphenol	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
Nitrobenzene	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
Isophorone	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
2-Nitrophenol	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
2,4-Dimethylphenol	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
Bis(2-Chloroethoxy)Methane	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
2,4-Dichlorophenol	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
1,2,4-Trichlorobenzene	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
Naphthalene	N	2790	mg/kg	0.050			[C] 0.36	< 0.050	[C] < 0.050	
4-Chloroaniline	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
Hexachlorobutadiene	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
4-Chloro-3-Methylphenol	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
2-Methylnaphthalene	N	2790	mg/kg	0.050			[C] 0.25	< 0.050	[C] < 0.050	
Hexachlorocyclopentadiene	N	2790	mg/kg				[C] < 0.050	< 0.050	[C] < 0.050	
2,4,6-Trichlorophenol	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
2,4,5-Trichlorophenol	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
2-Chloronaphthalene	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
2-Nitroaniline	N	2790	mg/kg				[C] < 0.050	< 0.050	[C] < 0.050	
Acenaphthylene	N	2790	mg/kg				[C] 4.4	0.22	[C] 0.084	
Dimethylphthalate	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
2,6-Dinitrotoluene	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
Acenaphthene	N	2790	mg/kg	0.050			[C] 0.48	0.064	[C] < 0.050	
3-Nitroaniline	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
Dibenzofuran	N	2790	mg/kg				[C] 0.33	< 0.050	[C] < 0.050	
4-Chlorophenylphenylether	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
2,4-Dinitrotoluene	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
Fluorene	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	

Client: Soiltechnics Limited		Che	mtest J	ob No.:	18-36493	18-36493	18-36493	18-36493	18-36493	18-36493
Quotation No.:	(Chemte	st Sam	ple ID.:	728423	728424	728425	728426	728428	728429
Order No.: POR004252		Clie	nt Samp	le Ref.:	2-002	2-018	2-006	2-010	2-014	2-001
		Client Sample ID.: Sample Location:				BH9.12.952-	TP020.582-	TP060.502-	TP090.302-	WAC010.002-
						018	006	010	014	001
						BH9.1	TP02	TP06	TP09	WAC01
		Sample Type: Top Depth (m): Date Sampled:			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
					0.45	2.95	0.58	0.50	0.30	0.00
					16-Nov-2018	07-Nov-2018	16-Nov-2018	16-Nov-2018	16-Nov-2018	16-Nov-2018
			Asbest	os Lab:	COVENTRY		COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	_						
Diethyl Phthalate	N	2790	mg/kg				[C] < 0.050	< 0.050	[C] < 0.050	
4-Nitroaniline	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
2-Methyl-4,6-Dinitrophenol	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
Azobenzene	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
4-Bromophenylphenyl Ether	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
Hexachlorobenzene	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
Pentachlorophenol	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
Phenanthrene	N	2790	mg/kg	0.050			[C] 5.7	1.5	[C] 0.51	
Anthracene	N	2790	mg/kg	0.050			[C] 3.9	0.30	[C] 0.084	
Carbazole	N	2790	mg/kg	0.050			[C] < 0.050	0.22	[C] < 0.050	
Di-N-Butyl Phthalate	N	2790	mg/kg				[C] < 0.050	< 0.050	[C] < 0.050	
Fluoranthene	N	2790	mg/kg				[C] 4.9	2.6	[C] 0.42	
Pyrene	N	2790	mg/kg	0.050			[C] 5.5	2.4	[C] 0.48	
Butylbenzyl Phthalate	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
Benzo[a]anthracene	N	2790	mg/kg	0.050			[C] 3.4	1.4	[C] 0.25	
Chrysene	N	2790	mg/kg				[C] 3.5	1.4	[C] 0.32	
Bis(2-Ethylhexyl)Phthalate	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
Di-N-Octyl Phthalate	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
Benzo[b]fluoranthene	N	2790	mg/kg				[C] 3.9	1.4	[C] < 0.050	
Benzo[k]fluoranthene	N	2790	mg/kg	0.050			[C] 1.3	0.40	[C] < 0.050	
Benzo[a]pyrene	N	2790	mg/kg	0.050			[C] 3.0	0.94	[C] < 0.050	
Indeno(1,2,3-c,d)Pyrene	N	2790	mg/kg	0.050			[C] 2.4	< 0.050	[C] < 0.050	
Dibenz(a,h)Anthracene	N	2790	mg/kg	0.050			[C] 2.2	< 0.050	[C] < 0.050	
Benzo[g,h,i]perylene	N	2790	mg/kg	0.050			[C] 5.2	< 0.050	[C] < 0.050	
4-Nitrophenol	N	2790	mg/kg	0.050			[C] < 0.050	< 0.050	[C] < 0.050	
Naphthalene	М	2800	mg/kg	0.10	< 0.10					
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10					
Acenaphthene	М	2800	mg/kg	0.10	< 0.10					
Fluorene	М	2800	mg/kg	0.10	< 0.10					
Phenanthrene	М	2800	mg/kg	0.10	< 0.10					
Anthracene	М	2800	mg/kg	0.10	< 0.10					
Fluoranthene	М	2800	mg/kg	0.10	< 0.10					
Pyrene	М	2800	mg/kg	0.10	< 0.10					
Benzo[a]anthracene	M	2800	mg/kg	0.10	< 0.10					
Chrysene	М	2800	mg/kg	0.10	< 0.10					
Benzo[b]fluoranthene	М	2800	mg/kg	0.10	< 0.10					

Results - Soil

Client: Soiltechnics Limited		Che	ntest Jo	ob No.:	18-36493	18-36493	18-36493	18-36493	18-36493	18-36493
Quotation No.:		Chemte	st Sam	ple ID.:	728423	728424	728425	728426	728428	728429
Order No.: POR004252		Client Sample Ref.:				2-018	2-006	2-010	2-014	2-001
		Client Sample ID.:				BH9.12.952-	TP020.582-	TP060.502-	TP090.302-	WAC010.002-
						018	006	010	014	001
		Sa	ample Lo	ocation:	BH9.1	BH9.1	TP02	TP06	TP09	WAC01
		Sample Type:			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.45	2.95	0.58	0.50	0.30	0.00
			Date Sa	ampled:	16-Nov-2018	07-Nov-2018	16-Nov-2018	16-Nov-2018	16-Nov-2018	8 16-Nov-2018
			Asbest	os Lab:	COVENTRY		COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD						
Benzo[k]fluoranthene	М	2800	mg/kg	0.10	< 0.10					
Benzo[a]pyrene	М	2800	mg/kg	0.10	< 0.10					
Indeno(1,2,3-c,d)Pyrene	М	2800	mg/kg	0.10	< 0.10					
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10					
Benzo[g,h,i]perylene	M	2800	mg/kg	0.10	< 0.10					
Total Of 16 PAH's	N	2800	mg/kg	2.0	< 2.0					
PCB 81	N	2815	mg/kg	0.010				< 0.010		
PCB 77	N	2815	mg/kg	0.010				< 0.010		
PCB 105	N	2815	mg/kg	0.010				< 0.010		
PCB 114	N	2815	mg/kg	0.010				< 0.010		
PCB 118	N	2815	mg/kg	0.010				< 0.010		
PCB 123	N	2815	mg/kg	0.010				< 0.010		
PCB 126	N	2815	mg/kg	0.010				< 0.010		
PCB 156	N	2815	mg/kg	0.010				< 0.010		
PCB 157	N	2815	mg/kg	0.010				< 0.010		
PCB 167	N	2815	mg/kg	0.010				< 0.010		
PCB 169	N		mg/kg					< 0.010		
PCB 189	N	2815	mg/kg	0.010				< 0.010		
Total PCBs (12 Congeners)	N	2815	mg/kg	0.12				< 0.12		
Total Phenols	М	2920	mg/kg	0.30	< 0.30		< 0.30	< 0.30	< 0.30	
VOC TIC	N	2760	ug/kg	N/A			None	None	None	
VOC TIC	IN	2/00	μg/kg	IN/A			Detected	Detected	Detected	

Client: Soiltechnics Limited		Cher	ntest Jo	18-36493 728427				
Quotation No.:		Chemtest Sample ID.:						
Order No.: POR004252		Client Sample Ref.:						
		Client Sample ID.:						
		011						
		Sample Location:						
				e Type:	WATER			
			Top Dep		0.50			
		Date Sampled:			16-Nov-2018			
Determinand	Accred.	SOP	Units	LOD				
рН	U	1010		N/A	8.6			
Nitrate	U	1220	mg/l	0.50	< 0.50			
Sulphate	U	1220	mg/l	1.0	94			
Cyanide (Total)	U	1300	mg/l	0.050	< 0.050			
Cyanide (Free)	U	1300	mg/l	0.050	< 0.050			
Cyanide (Complex)	U	1300	mg/l	0.050	< 0.050			
Sulphide	U	1325	mg/l	0.050	[B] < 0.050			
Arsenic (Dissolved)	U	1450	μg/l	1.0	4.8			
Boron (Dissolved)	U	1450	μg/l	20	95			
Beryllium (Dissolved)	U	1450	μg/l	1.0	< 1.0			
Cadmium (Dissolved)	U	1450	μg/l	0.080	< 0.080			
Chromium (Dissolved)	U	1450	μg/l	1.0	2.1			
Copper (Dissolved)	U	1450	μg/l	1.0	19			
Mercury (Dissolved)	U	1450	μg/l	0.50	< 0.50			
Nickel (Dissolved)	U	1450	μg/l	1.0	2.7			
Lead (Dissolved)	U	1450	μg/l	1.0	25			
Selenium (Dissolved)	U	1450	μg/l	1.0	< 1.0			
Vanadium (Dissolved)	U	1450	μg/l	1.0	3.4			
Zinc (Dissolved)	U	1450	μg/l	1.0	51			
Chromium (Hexavalent)	U	1490	μg/l	20	< 20			
Aliphatic TPH >C5-C6	N	1675	μg/l	0.10	< 0.10			
Aliphatic TPH >C6-C8	N	1675	μg/l	0.10	< 0.10			
Aliphatic TPH >C8-C10	N	1675	μg/l	0.10	< 0.10			
Aliphatic TPH >C10-C12	N	1675	μg/l	0.10	< 0.10			
Aliphatic TPH >C12-C16	N	1675	μg/l	0.10	< 0.10			
Aliphatic TPH >C16-C21	N	1675	μg/l	0.10	< 0.10			
Aliphatic TPH >C21-C35	N	1675	μg/l	0.10	< 0.10			
Aliphatic TPH >C35-C44	N	1675	μg/l	0.10	< 0.10			
Total Aliphatic Hydrocarbons	N	1675	μg/l	5.0	< 5.0			
Aromatic TPH >C5-C7	N	1675	μg/l	0.10	< 0.10			
Aromatic TPH >C7-C8	N	1675	μg/l	0.10	< 0.10			
Aromatic TPH >C8-C10	N	1675	μg/l	0.10	< 0.10			
Aromatic TPH >C10-C12	N	1675	μg/l	0.10	< 0.10			
Aromatic TPH >C12-C16	N	1675	μg/l	0.10	< 0.10			
Aromatic TPH >C16-C21	N	1675	μg/l	0.10	< 0.10			
Aromatic TPH >C21-C35	N	1675	μg/l	0.10	< 0.10			
Aromatic TPH >C35-C44	N	1675	μg/l	0.10	< 0.10			

Client: Soiltechnics Limited	ntest Jo	ob No.:	18-36493					
Quotation No.:		Chemtest Sample ID.:						
Order No.: POR004252		Client Sample Ref.:						
		Client Sample ID.:						
		011						
		Sample Location:						
				e Type:	WATER			
			Top Dep		0.50			
			Date Sa	ampled:	16-Nov-2018			
Determinand	Accred.	SOP	Units	LOD				
Total Aromatic Hydrocarbons	N	1675	μg/l	5.0	< 5.0			
Total Petroleum Hydrocarbons	N	1675	μg/l	10	< 10			
Dichlorodifluoromethane	U	1760	μg/l	1.0	< 1.0			
Chloromethane	U	1760	μg/l	1.0	< 1.0			
Vinyl Chloride	N	1760	μg/l	1.0	< 1.0			
Bromomethane	U	1760	μg/l	5.0	< 5.0			
Chloroethane	U	1760	μg/l	2.0	< 2.0			
Trichlorofluoromethane	U	1760	μg/l	1.0	< 1.0			
1,1-Dichloroethene	U	1760	μg/l	1.0	< 1.0			
Trans 1,2-Dichloroethene	U	1760	μg/l	1.0	< 1.0			
1,1-Dichloroethane	U	1760	μg/l	1.0	< 1.0			
cis 1,2-Dichloroethene	U	1760	μg/l	1.0	< 1.0			
Bromochloromethane	U	1760	μg/l	5.0	< 5.0			
Trichloromethane	U	1760	μg/l	1.0	< 1.0			
1,1,1-Trichloroethane	U	1760	μg/l	1.0	< 1.0			
Tetrachloromethane	U	1760	μg/l	1.0	< 1.0			
1,1-Dichloropropene	U	1760	μg/l	1.0	< 1.0			
Benzene	U	1760	μg/l	1.0	< 1.0			
1,2-Dichloroethane	U	1760	μg/l	2.0	< 2.0			
Trichloroethene	N	1760	μg/l	1.0	< 1.0			
1,2-Dichloropropane	U	1760	μg/l	1.0	< 1.0			
Dibromomethane	U	1760	μg/l	10	< 10			
Bromodichloromethane	U	1760	μg/l	5.0	< 5.0			
cis-1,3-Dichloropropene	N	1760	μg/l	10	< 10			
Toluene	U	1760	μg/l	1.0	< 1.0			
Trans-1,3-Dichloropropene	N	1760	μg/l	10	< 10			
1,1,2-Trichloroethane	U	1760	μg/l	10	< 10			
Tetrachloroethene	U	1760	μg/l	1.0	< 1.0			
1,3-Dichloropropane	U	1760	μg/l	2.0	< 2.0			
Dibromochloromethane	U	1760	μg/l	10	< 10			
1,2-Dibromoethane	U	1760	μg/l	5.0	< 5.0			
Chlorobenzene	N	1760	μg/l	1.0	< 1.0			
1,1,1,2-Tetrachloroethane	U	1760	μg/l	2.0	< 2.0			
Ethylbenzene	U	1760	μg/l	1.0	< 1.0			
m & p-Xylene	U	1760	μg/l	1.0	< 1.0			
o-Xylene	U	1760	μg/l	1.0	< 1.0			
Styrene	U	1760	μg/l	1.0	< 1.0			

Client: Soiltechnics Limited		Chemtest Job No.:						
Quotation No.:		728427						
Order No.: POR004252		Client Sample Ref.:						
		Client Sample ID.:						
	+	011 TD00						
		38	ample Lo		TP06 WATER			
	+	Sample Type:						
	+	Top Depth (m):						
Determinand	Accred.	Date Sampled: Accred. SOP Units LOD						
Tribromomethane	U Accrea.	1760		1.0	< 1.0			
Isopropylbenzene	U	1760	μg/l μg/l	1.0	< 1.0			
Bromobenzene	U	1760	μg/l	1.0	< 1.0			
1,2,3-Trichloropropane	N	1760	μg/l	50	< 50			
N-Propylbenzene	U	1760		1.0	< 1.0			
	U		μg/l	1.0	< 1.0			
2-Chlorotoluene	U	1760	μg/l	1.0				
1,3,5-Trimethylbenzene 4-Chlorotoluene	U	1760 1760	μg/l	1.0	< 1.0 < 1.0			
Tert-Butylbenzene	U		μg/l					
	U	1760	μg/l	1.0	< 1.0			
1,2,4-Trimethylbenzene		1760	μg/l	1.0	< 1.0			
Sec-Butylbenzene	U	1760	μg/l	1.0	< 1.0			
1,3-Dichlorobenzene	N U	1760	μg/l	1.0	< 1.0			
4-Isopropyltoluene	U	1760	μg/l	1.0	< 1.0			
1,4-Dichlorobenzene		1760	μg/l	1.0	< 1.0			
N-Butylbenzene	U	1760	μg/l	1.0	< 1.0			
1,2-Dichlorobenzene	U	1760	μg/l	1.0	< 1.0			
1,2-Dibromo-3-Chloropropane	U	1760	μg/l	50	< 50			
1,2,4-Trichlorobenzene		1760	μg/l	1.0	< 1.0			
Hexachlorobutadiene	U	1760	μg/l	1.0	< 1.0			
1,2,3-Trichlorobenzene	U	1760	μg/l	2.0	< 2.0			
Methyl Tert-Butyl Ether	N	1760	μg/l	1.0	< 1.0			
1,1,2-Trichloro 1,2,2 Trifluoroethane	N	1760	μg/l	2.0	< 2.0			
Bromoform	N	1760	μg/l	10	< 10			
Carbon Tetrachloride	N	1760	μg/l	10	< 10			
Chloroform	N	1760	μg/l	10	< 10			
2,2-Dichloropropane	N	1760	μg/l	10	< 10			
N-Nitrosodimethylamine	N	1790	μg/l	0.50	< 0.50			
Phenol	N	1790	μg/l	0.50	< 0.50			
2-Chlorophenol	N	1790	μg/l	0.50	< 0.50			
Bis-(2-Chloroethyl)Ether	N	1790	μg/l	0.50	< 0.50			
1,3-Dichlorobenzene	N	1790	μg/l	0.50	< 0.50			
1,4-Dichlorobenzene	N	1790	μg/l	0.50	< 0.50			
1,2-Dichlorobenzene	N	1790	μg/l	0.50	< 0.50			
2-Methylphenol (o-Cresol)	N	1790	μg/l	0.50	< 0.50			
Bis(2-Chloroisopropyl)Ether	N	1790	μg/l	0.50	< 0.50			
Hexachloroethane	N	1790	μg/l	0.50	< 0.50			
N-Nitrosodi-n-propylamine	N	1790	μg/l	0.50	< 0.50			

Quotation No.: Order No.: POR004252			st Samp		728427 2-011		
Order No.: POR004252		Clier	nt Samp	ا Rوf	2 044		
			Client Sample Ref.:				
		Clia	ent Sam	nla ID ·	TP060.502-		
		Cite	ant Sam	pie ib	011		
		Sa	ample Lo	cation:	TP06		
			Sample	e Type:	WATER		
			Top Dep	oth (m):	0.50		
			Date Sa	ımpled:	16-Nov-2018		
Determinand	Accred.	SOP	Units	LOD			
4-Methylphenol	N	1790	μg/l	0.50	< 0.50		
Nitrobenzene	N	1790	μg/l	0.50	< 0.50		
sophorone	N	1790	μg/l	0.50	< 0.50		
2-Nitrophenol	N	1790	μg/l	0.50	< 0.50		
2,4-Dimethylphenol	N	1790	μg/l	0.50	< 0.50		
Bis(2-Chloroethoxy)Methane	N	1790	μg/l	0.50	< 0.50		
2,4-Dichlorophenol	N	1790	μg/l	0.50	< 0.50		
1,2,4-Trichlorobenzene	N	1790	μg/l	0.50	< 0.50		
Naphthalene	N	1790	μg/l	0.50	< 0.50		
4-Chloroaniline	N	1790	μg/l	0.50	< 0.50		
Hexachlorobutadiene	N	1790	μg/l	0.50	< 0.50		
4-Chloro-3-Methylphenol	N	1790	μg/l	0.50	< 0.50		
2-Methylnaphthalene	N	1790	μg/l	0.50	< 0.50		
Hexachlorocyclopentadiene	N	1790	μg/l	0.50	< 0.50		
2,4,6-Trichlorophenol	N	1790	μg/l	0.50	< 0.50		
2,4,5-Trichlorophenol	N	1790	μg/l	0.50	< 0.50		
2-Chloronaphthalene	N	1790	μg/l	0.50	< 0.50		
2-Nitroaniline	N	1790	μg/l	0.50	< 0.50		
Acenaphthylene	N	1790	μg/l	0.50	< 0.50		
Dimethylphthalate	N	1790	μg/l	0.50	< 0.50		
2,6-Dinitrotoluene	N	1790	μg/l	0.50	< 0.50		
Acenaphthene	N	1790	μg/l	0.50	< 0.50		
3-Nitroaniline	N	1790	μg/l	0.50	< 0.50		
Dibenzofuran	N	1790	μg/l	0.50	< 0.50		
4-Chlorophenylphenylether	N	1790	μg/l	0.50	< 0.50		
2,4-Dinitrotoluene	N	1790	μg/l	0.50	< 0.50		
Fluorene	N	1790	μg/l	0.50	< 0.50		
Diethyl Phthalate	N	1790	μg/l	0.50	< 0.50		
4-Nitroaniline	N	1790	μg/l	0.50	< 0.50		
2-Methyl-4,6-Dinitrophenol	N	1790	μg/l	0.50	< 0.50		
Azobenzene	N	1790	μg/l	0.50	< 0.50		
4-Bromophenylphenyl Ether	N	1790	μg/l	0.50	< 0.50		
Hexachlorobenzene	N	1790	μg/l	0.50	< 0.50		
Pentachlorophenol	N	1790	μg/l	0.50	< 0.50		
Phenanthrene	N	1790	μg/l	0.50	3.3		
Honariumono		1790	μg/l	0.50	1.7		
Anthracene	N						

Client: Soiltechnics Limited		Chemtest Job No.: 18				
Quotation No.:		Chemtest Sample ID.:				
Order No.: POR004252		Client Sample Ref.:			2-011	
		Clie	ent Sam	ple ID.:	TP060.502- 011	
		Sa	ample Lo	cation:	TP06	
				e Type:	WATER	
			Top Dep	oth (m):	0.50	
			Date Sa	mpled:	16-Nov-2018	
Determinand	Accred.	SOP	Units	LOD		
Di-N-Butyl Phthalate	N	1790	μg/l	0.50	< 0.50	
Fluoranthene	N	1790	μg/l	0.50	2.0	
Pyrene	N	1790	μg/l	0.50	1.6	
Butylbenzyl Phthalate	N	1790	μg/l	0.50	< 0.50	
Benzo[a]anthracene	N	1790	μg/l	0.50	< 0.50	
Chrysene	N	1790	μg/l	0.50	< 0.50	
Bis(2-Ethylhexyl)Phthalate	N	1790	μg/l	0.50	< 0.50	
Di-N-Octyl Phthalate	N	1790	μg/l	0.50	< 0.50	
Benzo[b]fluoranthene	N	1790	μg/l	0.50	< 0.50	
Benzo[k]fluoranthene	N	1790	μg/l	0.50	< 0.50	
Benzo[a]pyrene	N	1790	μg/l	0.50	< 0.50	
Indeno(1,2,3-c,d)Pyrene	N	1790	μg/l	0.50	< 0.50	
Dibenz(a,h)Anthracene	N	1790	μg/l	0.50	< 0.50	
Benzo[g,h,i]perylene	N	1790	μg/l	0.50	< 0.50	
4-Nitrophenol	N	1790	μg/l	0.50	< 0.50	
PCB 81	N	1815	μg/l	0.010	< 0.010	
PCB 77	N	1815	μg/l	0.010	< 0.010	
PCB 105	N	1815	μg/l	0.010	< 0.010	
PCB 114	N	1815	μg/l	0.010	< 0.010	
PCB 118	N	1815	μg/l	0.010	< 0.010	
PCB 123	N	1815	μg/l	0.010	< 0.010	
PCB 126	N	1815	μg/l	0.010	< 0.010	
PCB 156	N	1815	μg/l	0.010	< 0.010	
PCB 157	N	1815	μg/l	0.010	< 0.010	
PCB 167	N	1815	μg/l	0.010	< 0.010	
PCB 169	N	1815	μg/l	0.010	< 0.010	
PCB 189	N	1815	μg/l	0.010	< 0.010	
Total PCBs (12 Congeners)	N	1815	μg/l	0.010	< 0.010	
Total Phenols	U	1920	mg/l	0.030	< 0.030	

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
728425	2-006	TP020.582-006	TP02	16-Nov-2018	С	Plastic Tub 500g
728427	2-011	TP060.502-011	TP06	16-Nov-2018	В	Coloured Winchester 1000ml
728427	2-011	TP060.502-011	TP06	16-Nov-2018	В	EPA Vial 40ml
728428	2-014	TP090.302-014	TP09	16-Nov-2018	С	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1325	Sulphide in Waters	Sulphides	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using N,N–dimethyl-pphenylenediamine.
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1490	Hexavalent Chromium in Waters	Chromium [VI]	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5–C6, >C6–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35, >C35–C44	Pentane extraction / GCxGC FID detection
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.
1790	Semi-Volatile Organic Compounds (SVOCs) in Waters by GC-MS	Semi-volatile organic compounds	Solvent extraction / GCMS detection
1815	Polychlorinated Biphenyls (PCB) ICES7 Congeners in Waters by GC-MS	ICES7 PCB congeners	Solvent extraction / GCMS detection
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of

Test Methods

SOP	Title	Parameters included	Method summary
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2790	Semi-Volatile Organic Compounds (SVOCs) in Soils by GC-MS	Semi-volatile organic compounds(cf. USEPA Method 8270)	Acetone/Hexane extraction / GC-MS
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2810	Polychlorinated Biphenyls (PCB) as Aroclors in Soils by GC-ECD	Polychlorinated Biphenyls expressed as an Aroclor (normally reported as *Aroclor 1242)	Extraction of a soil sample, as received, into hexane/acetone (50:50) followed by gas chromatography (GC) using mass spectrometric (MS) detection for identification of polychlorinated biphenyls and electron capture detection (ECD) for quanitation if present.
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.com

Final Report

Report No.: 18-36929-1

Initial Date of Issue: 03-Dec-2018

Client Soiltechnics Limited

Client Address: Cedar Barn

White Lodge Walgrave Northampton Northamptonshire

NN6 9PY

Contact(s): Alexa Band

Lauren Wenham

Project STP3953A 60-70 Shorts Gardens &

14016 B

Quotation No.: Date Received: 23-Nov-2018

Order No.: POR004267 Date Instructed: 23-Nov-2018

No. of Samples: 1

Turnaround (Wkdays): 5 Results Due: 29-Nov-2018

Date Approved: 03-Dec-2018

Approved By:

Details: Robert Monk, Technical Manager

Client: Soiltechnics Limited		18-36929			
Quotation No.:		Chemte	st Sam	ple ID.:	730082
Order No.: POR004267		Client Sample Ref.:			
		Clia	ent Sam	י חו פוני	BH9.10.682-
		Cile	oni Gam	pie ib	022
		Sa	ample Lo	ocation:	BH9.1
			Sample	е Туре:	WATER
			Top Dep	oth (m):	0.68
			Date Sa	ampled:	21-Nov-2018
Determinand	Accred.	SOP	Units	LOD	
рН	U	1010		N/A	8.2
Nitrate	U	1220	mg/l	0.50	96
Sulphate	U	1220	mg/l	1.0	210
Cyanide (Total)	U	1300	mg/l	0.050	< 0.050
Cyanide (Free)	U	1300	mg/l	0.050	< 0.050
Cyanide (Complex)	U	1300	mg/l	0.050	< 0.050
Sulphide	U	1325	mg/l	0.050	< 0.050
Arsenic (Dissolved)	U	1450	μg/l	1.0	1.8
Boron (Dissolved)	U	1450	μg/l	20	110
Beryllium (Dissolved)	U	1450	μg/l	1.0	< 1.0
Cadmium (Dissolved)	U	1450	μg/l	0.080	< 0.080
Chromium (Dissolved)	U	1450	μg/l	1.0	7.5
Copper (Dissolved)	U	1450	μg/l	1.0	4.6
Mercury (Dissolved)	U	1450	μg/l	0.50	< 0.50
Nickel (Dissolved)	U	1450	μg/l	1.0	5.0
Lead (Dissolved)	U	1450	μg/l	1.0	< 1.0
Selenium (Dissolved)	U	1450	μg/l	1.0	4.3
Vanadium (Dissolved)	U	1450	μg/l	1.0	< 1.0
Zinc (Dissolved)	U	1450	μg/l	1.0	6.8
Chromium (Hexavalent)	Ü	1490	μg/l	20	< 20
Aliphatic TPH >C5-C6	N	1675	μg/l	0.10	< 0.10
Aliphatic TPH >C6-C8	N	1675	μg/l	0.10	< 0.10
Aliphatic TPH >C8-C10	N	1675	μg/l	0.10	< 0.10
Aliphatic TPH >C10-C12	N	1675	μg/l	0.10	< 0.10
Aliphatic TPH >C12-C16	N	1675	μg/l	0.10	< 0.10
Aliphatic TPH >C16-C21	N	1675	μg/l	0.10	< 0.10
Aliphatic TPH >C21-C35	N	1675	μg/l	0.10	< 0.10
Aliphatic TPH >C35-C44	N	1675	μg/l	0.10	< 0.10
Total Aliphatic Hydrocarbons	N	1675	μg/l	5.0	< 5.0
Aromatic TPH >C5-C7	N N	1675	μg/l	0.10	< 0.10
Aromatic TPH >C7-C8	N	1675	μg/l	0.10	< 0.10
Aromatic TPH >C8-C10	N	1675	μg/l	0.10	< 0.10
Aromatic TPH >C10-C12	N	1675	μg/l	0.10	< 0.10
	1 11	_			
	NI	1675	וומ/ו	0 10	- 0 10
Aromatic TPH >C12-C16	N N	1675 1675	μg/l	0.10	< 0.10
	N N N	1675 1675 1675	μg/l μg/l μg/l	0.10 0.10 0.10	< 0.10 < 0.10 < 0.10

Client: Soiltechnics Limited		18-36929			
Quotation No.:		Chemte	st Sam	ple ID.:	730082
Order No.: POR004267		Clier	nt Samp	le Ref.:	2-022
		Cliv	ent Sam	nlo ID :	BH9.10.682-
		Cité	eni Sam	pie ib	022
		Sa	mple Lo		BH9.1
			Sample	е Туре:	WATER
			Top Dep		0.68
			Date Sa	ampled:	21-Nov-2018
Determinand	Accred.	SOP	Units	LOD	
Total Aromatic Hydrocarbons	N	1675	μg/l	5.0	< 5.0
Total Petroleum Hydrocarbons	N	1675	μg/l	10	< 10
Dichlorodifluoromethane	U	1760	μg/l	1.0	[C] < 1.0
Chloromethane	U	1760	μg/l	1.0	[C] < 1.0
Vinyl Chloride	N	1760	μg/l	1.0	[C] < 1.0
Bromomethane	U	1760	μg/l	5.0	[C] < 5.0
Chloroethane	U	1760	μg/l	2.0	[C] < 2.0
Trichlorofluoromethane	U	1760	μg/l	1.0	[C] < 1.0
1,1-Dichloroethene	U	1760	μg/l	1.0	[C] < 1.0
Trans 1,2-Dichloroethene	U	1760	μg/l	1.0	[C] < 1.0
1,1-Dichloroethane	U	1760	μg/l	1.0	[C] < 1.0
cis 1,2-Dichloroethene	U	1760	μg/l	1.0	[C] < 1.0
Bromochloromethane	U	1760	μg/l	5.0	[C] < 5.0
Trichloromethane	U	1760	μg/l	1.0	[C] < 1.0
1,1,1-Trichloroethane	U	1760	μg/l	1.0	[C] < 1.0
Tetrachloromethane	U	1760	μg/l	1.0	[C] < 1.0
1,1-Dichloropropene	U	1760	μg/l	1.0	[C] < 1.0
Benzene	U	1760	μg/l	1.0	[C] < 1.0
1,2-Dichloroethane	U	1760	μg/l	2.0	[C] < 2.0
Trichloroethene	N	1760	μg/l	1.0	[C] < 1.0
1,2-Dichloropropane	U	1760	μg/l	1.0	[C] < 1.0
Dibromomethane	U	1760	μg/l	10	[C] < 10
Bromodichloromethane	U	1760	μg/l	5.0	[C] < 5.0
cis-1,3-Dichloropropene	N	1760	μg/l	10	[C] < 10
Toluene	U	1760	μg/l	1.0	[C] < 1.0
Trans-1,3-Dichloropropene	N	1760	μg/l	10	[C] < 10
1,1,2-Trichloroethane	U	1760	μg/l	10	[C] < 10
Tetrachloroethene	U	1760	μg/l	1.0	[C] < 1.0
1,3-Dichloropropane	Ü	1760	μg/l	2.0	[C] < 2.0
Dibromochloromethane	Ü	1760	μg/l	10	[C] < 10
1,2-Dibromoethane	Ü	1760	μg/l	5.0	[C] < 5.0
Chlorobenzene	N	1760	μg/l	1.0	[C] < 1.0
1,1,1,2-Tetrachloroethane	U	1760	μg/l	2.0	[C] < 2.0
Ethylbenzene	Ü	1760	μg/l	1.0	[C] < 1.0
m & p-Xylene	Ü	1760	μg/l	1.0	[C] < 1.0
o-Xylene	Ü	1760	μg/l	1.0	[C] < 1.0
Styrene	Ü	1760	μg/l	1.0	[C] < 1.0

Client: Soiltechnics Limited		Chemtest Job No.:			
Quotation No.:	Chemtest Sample ID.:				730082
Order No.: POR004267		2-022			
		Clia	ent Sam	nle ID ·	BH9.10.682
		Cile	ent Gam	pie ib	022
		Sa	ample Lo	ocation:	BH9.1
				e Type:	WATER
			Top Dep		0.68
			Date Sa	ampled:	21-Nov-201
Determinand	Accred.	SOP		LOD	
Tribromomethane	U	1760	μg/l	1.0	[C] < 1.0
Isopropylbenzene	U	1760	μg/l	1.0	[C] < 1.0
Bromobenzene	U	1760	μg/l	1.0	[C] < 1.0
1,2,3-Trichloropropane	N	1760	μg/l	50	[C] < 50
N-Propylbenzene	U	1760	μg/l	1.0	[C] < 1.0
2-Chlorotoluene	U	1760	μg/l	1.0	[C] < 1.0
1,3,5-Trimethylbenzene	U	1760	μg/l	1.0	[C] < 1.0
4-Chlorotoluene	U	1760	μg/l	1.0	[C] < 1.0
Tert-Butylbenzene	U	1760	μg/l	1.0	[C] < 1.0
1,2,4-Trimethylbenzene	U	1760	μg/l	1.0	[C] < 1.0
Sec-Butylbenzene	U	1760	μg/l	1.0	[C] < 1.0
1,3-Dichlorobenzene	N	1760	μg/l	1.0	[C] < 1.0
4-Isopropyltoluene	U	1760	μg/l	1.0	[C] < 1.0
1,4-Dichlorobenzene	U	1760	μg/l	1.0	[C] < 1.0
N-Butylbenzene	U	1760	μg/l	1.0	[C] < 1.0
1,2-Dichlorobenzene	U	1760	μg/l	1.0	[C] < 1.0
1,2-Dibromo-3-Chloropropane	U	1760	μg/l	50	[C] < 50
1,2,4-Trichlorobenzene	U	1760	μg/l	1.0	[C] < 1.0
Hexachlorobutadiene	U	1760	μg/l	1.0	[C] < 1.0
1,2,3-Trichlorobenzene	U	1760	μg/l	2.0	[C] < 2.0
Methyl Tert-Butyl Ether	N	1760	μg/l	1.0	[C] < 1.0
1,1,2-Trichloro 1,2,2 Trifluoroethane	N	1760	μg/l	2.0	< 2.0
Bromoform	N	1760	μg/l	10	< 10
Carbon Tetrachloride	N	1760	μg/l	10	< 10
Chloroform	N	1760	μg/l	10	< 10
2,2-Dichloropropane	N	1760	μg/l	10	< 10
N-Nitrosodimethylamine	N	1790	μg/l	0.50	< 0.50
Phenol	N	1790	μg/l	0.50	< 0.50
2-Chlorophenol	N	1790	μg/l	0.50	< 0.50
Bis-(2-Chloroethyl)Ether	N	1790	μg/l	0.50	< 0.50
1,3-Dichlorobenzene	N	1790	μg/l	0.50	< 0.50
1,4-Dichlorobenzene	N	1790	μg/l	0.50	< 0.50
1,2-Dichlorobenzene	N	1790	μg/l	0.50	< 0.50
2-Methylphenol (o-Cresol)	l N	1790	μg/l	0.50	< 0.50
Bis(2-Chloroisopropyl)Ether	N	1790	μg/l	0.50	< 0.50
Hexachloroethane	N	1790	μg/l	0.50	< 0.50

Client: Soiltechnics Limited Chemtest Job No.:					18-36929
Quotation No.:			st Sam		730082
Order No.: POR004267		Client Sample Ref.:			
		Clia	ent Sam	nle ID ·	BH9.10.682-
				•	022
		Sa	ample Lo	cation:	BH9.1
				e Type:	WATER
			Top Dep		0.68
			Date Sa	mpled:	21-Nov-2018
Determinand	Accred.	SOP		LOD	
4-Methylphenol	N	1790	μg/l	0.50	< 0.50
Nitrobenzene	N	1790	μg/l	0.50	< 0.50
Isophorone	N	1790	μg/l	0.50	< 0.50
2-Nitrophenol	N	1790	μg/l	0.50	< 0.50
2,4-Dimethylphenol	N	1790	μg/l	0.50	< 0.50
Bis(2-Chloroethoxy)Methane	N	1790	μg/l	0.50	< 0.50
2,4-Dichlorophenol	N	1790	μg/l	0.50	< 0.50
1,2,4-Trichlorobenzene	N	1790	μg/l	0.50	< 0.50
Naphthalene	N	1790	μg/l	0.50	< 0.50
4-Chloroaniline	N	1790	μg/l	0.50	< 0.50
Hexachlorobutadiene	N	1790	μg/l	0.50	< 0.50
4-Chloro-3-Methylphenol	N	1790	μg/l	0.50	< 0.50
2-Methylnaphthalene	N	1790	μg/l	0.50	< 0.50
Hexachlorocyclopentadiene	N	1790	μg/l	0.50	< 0.50
2,4,6-Trichlorophenol	N	1790	μg/l	0.50	< 0.50
2,4,5-Trichlorophenol	N	1790	μg/l	0.50	< 0.50
2-Chloronaphthalene	N	1790	μg/l	0.50	< 0.50
2-Nitroaniline	N	1790	μg/l	0.50	< 0.50
Acenaphthylene	N	1790	μg/l	0.50	< 0.50
Dimethylphthalate	N	1790	μg/l	0.50	< 0.50
2,6-Dinitrotoluene	N	1790	μg/l	0.50	< 0.50
Acenaphthene	N	1790	μg/l	0.50	< 0.50
3-Nitroaniline	N	1790	μg/l	0.50	< 0.50
Dibenzofuran	N	1790	μg/l	0.50	< 0.50
4-Chlorophenylphenylether	N	1790	μg/l	0.50	< 0.50
2,4-Dinitrotoluene	N	1790	μg/l	0.50	< 0.50
Fluorene	N	1790	μg/l	0.50	< 0.50
Diethyl Phthalate	N	1790	μg/l	0.50	< 0.50
4-Nitroaniline	N	1790	μg/l	0.50	< 0.50
2-Methyl-4,6-Dinitrophenol	N	1790	μg/l	0.50	< 0.50
Azobenzene	N	1790	μg/l	0.50	< 0.50
4-Bromophenylphenyl Ether	N	1790	μg/l	0.50	< 0.50
Hexachlorobenzene	N	1790	μg/l	0.50	< 0.50
Pentachlorophenol	N N	1790	μg/l	0.50	< 0.50
Phenanthrene	N N	1790	μg/l	0.50	< 0.50
Anthracene	N N	1790	μg/l	0.50	< 0.50
Carbazole	N N	1790		0.50	< 0.50
Calbazule	IN	1790	μg/l	0.50	< 0.50

Client: Soiltechnics Limited	Chemtest Job No.: 18-3692					
Quotation No.:		Chemtest Sample ID.:				
Order No.: POR004267		Client Sample Ref.:				
		Clia	ent Sam	nle ID ·	BH9.10.682-	
				.	022	
		Sa	ample Lo		BH9.1	
				e Type:	WATER	
			Top Dep		0.68	
			Date Sa	_	21-Nov-2018	
Determinand	Accred.	SOP	Units	LOD		
Di-N-Butyl Phthalate	N	1790	μg/l	0.50	< 0.50	
Fluoranthene	N	1790	μg/l	0.50	< 0.50	
Pyrene	N	1790	μg/l	0.50	< 0.50	
Butylbenzyl Phthalate	N	1790	μg/l	0.50	< 0.50	
Benzo[a]anthracene	N	1790	μg/l	0.50	< 0.50	
Chrysene	N	1790	μg/l	0.50	< 0.50	
Bis(2-Ethylhexyl)Phthalate	N	1790	μg/l	0.50	< 0.50	
Di-N-Octyl Phthalate	N	1790	μg/l	0.50	< 0.50	
Benzo[b]fluoranthene	N	1790	μg/l	0.50	< 0.50	
Benzo[k]fluoranthene	N	1790	μg/l	0.50	< 0.50	
Benzo[a]pyrene	N	1790	μg/l	0.50	< 0.50	
Indeno(1,2,3-c,d)Pyrene	N	1790	μg/l	0.50	< 0.50	
Dibenz(a,h)Anthracene	N	1790	μg/l	0.50	< 0.50	
Benzo[g,h,i]perylene	N	1790	μg/l	0.50	< 0.50	
4-Nitrophenol	N	1790	μg/l	0.50	< 0.50	
PCB 81	N	1815	μg/l	0.010	< 0.010	
PCB 77	N	1815	μg/l	0.010	< 0.010	
PCB 105	N	1815	μg/l	0.010	< 0.010	
PCB 114	N	1815	μg/l	0.010	< 0.010	
PCB 118	N	1815	μg/l	0.010	< 0.010	
PCB 123	N	1815	μg/l	0.010	< 0.010	
PCB 126	N	1815	μg/l	0.010	< 0.010	
PCB 156	N	1815	μg/l	0.010	< 0.010	
PCB 157	N	1815	μg/l	0.010	< 0.010	
PCB 167	N	1815	μg/l	0.010	< 0.010	
PCB 169	N	1815	μg/l	0.010	< 0.010	
PCB 189	N	1815	μg/l	0.010	< 0.010	
Total PCBs (12 Congeners)	N	1815	μg/l	0.010	< 0.010	
Total Phenols	U	1920	mg/l	0.030	< 0.030	

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
730082	2-022	BH9.10.682-022	BH9.1	21-Nov-2018	С	Coloured Winchester 1000ml

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1325	Sulphide in Waters	Sulphides	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using N,N–dimethyl-pphenylenediamine.
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1490	Hexavalent Chromium in Waters	Chromium [VI]	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5–C6, >C6–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35, >C35–C44	Pentane extraction / GCxGC FID detection
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.
1790	Semi-Volatile Organic Compounds (SVOCs) in Waters by GC-MS	Semi-volatile organic compounds	Solvent extraction / GCMS detection
1815	Polychlorinated Biphenyls (PCB) ICES7 Congeners in Waters by GC-MS	ICES7 PCB congeners	Solvent extraction / GCMS detection
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 18-36486-1

Initial Date of Issue: 29-Nov-2018

Client Soiltechnics Limited

Client Address: Cedar Barn

White Lodge Walgrave Northampton Northamptonshire

NN6 9PY

Contact(s): Alexa Band

Lauren Wenham

Project STP3953A 60-70 Shorts Gardens 14-

16 B

Quotation No.: Date Received: 21-Nov-2018

Order No.: POR004242 Date Instructed: 21-Nov-2018

No. of Samples: 1

Turnaround (Wkdays): 7 Results Due: 29-Nov-2018

Date Approved: 29-Nov-2018

Approved By:

Details: Robert Monk, Technical Manager

Results - 2 Stage WAC

Project: STP3953A 60-70 Shorts Gardens 14-16 B

Chemtest Job No:	18-36486						Landfill V	Vaste Acceptano	e Criteria
Chemtest Sample ID:	728388							Limits	
Sample Ref:	2-001							Stable, Non-	
Sample ID:	WAC010.002-00	01						reactive	
Sample Location:	WAC01							hazardous	Hazardous
Top Depth(m):	0.00						Inert Waste	waste in non-	Waste
Bottom Depth(m):							Landfill	hazardous	Landfill
Sampling Date:	16-Nov-2018							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	U	%			0.72	3	5	6
Loss On Ignition	2610	U	%			2.6			10
Total BTEX	2760	U	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	U	mg/kg			< 0.10	1		
TPH Total WAC (Mineral Oil)	2670	U	mg/kg			1600	500		
Total (Of 17) PAH's	2700	N	mg/kg			2.8	100		
pH	2010	U				11.2		>6	
Acid Neutralisation Capacity	2015	N	mol/kg			0.091		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1450	U	0.0018	0.0013	< 0.050	< 0.050	0.5	2	25
Barium	1450	U	0.016	0.011	< 0.50	< 0.50	20	100	300
Cadmium	1450	U	< 0.00010	< 0.00010	< 0.010	< 0.010	0.04	1	5
Chromium	1450	U	0.014	0.0010	< 0.050	< 0.050	0.5	10	70
Copper	1450	U	0.0090	0.0030	< 0.050	< 0.050	2	50	100
Mercury	1450	U	< 0.00050	< 0.00050	< 0.0010	< 0.0050	0.01	0.2	2
Molybdenum	1450	U	0.0046	< 0.0010	< 0.050	< 0.050	0.5	10	30
Nickel	1450	U	0.0010	< 0.0010	< 0.050	< 0.050	0.4	10	40
Lead	1450	U	< 0.0010	< 0.0010	< 0.010	< 0.010	0.5	10	50
Antimony	1450	U	< 0.0010	< 0.0010	< 0.010	< 0.010	0.06	0.7	5
Selenium	1450	U	0.0011	< 0.0010	< 0.010	< 0.010	0.1	0.5	7
Zinc	1450	U	< 0.0010	< 0.0010	< 0.50	< 0.50	4	50	200
Chloride	1220	U	22	3.6	44	65	800	15000	25000
Fluoride	1220	U	0.21	0.17	< 1.0	1.8	10	150	500
Sulphate	1220	U	74	14	150	230	1000	20000	50000
Total Dissolved Solids	1020	N	330	160	660	1900	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	26	14	52	160	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.175						
Moisture (%)	5.7						

Leachate Test Information							
Leachant volume 1st extract/l	0.339						
Leachant volume 2nd extract/l	1.400						
Eluant recovered from 1st extract/l	0.276						

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Test Methods

SOP	Title	Parameters included	Method summary		
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter		
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.		
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma		
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation		
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.		
2010	pH Value of Soils	рН	pH Meter		
2015	Acid Neutralisation Capacity	Acid Reserve	Titration		
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.		
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.		
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.		
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID		
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID		
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.		
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS		
640	Characterisation of Waste (Leaching)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge		

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Analysis of test data in relation to concentrations of inorganic chemical contaminants

Adopted Model: Industrial/Commercial

Receptor: Current & proposed site users; construction operatives

Test procedure	Test procedure Summary of test data				Initial comparison	Outlier tes	st				Normality t	est		UCL				
Contaminant	Guideline source	Guideline value	No. of tests	Min.	Max.	Mean	of tests re eline value	Initial screening	outlier	iber of ers	tion of er	ę.	Concentration	Shapiro-Wilk Normality test	Probability plot test	Data normally distributed?	95% UCL of mean	Contaminant
	Guid	mg/kg		mg/kg	mg/kg	mg/kg	No. of t above guidelir		Pass (test?	Numbe	Location	Depth	mg/kg				mg/kg	
Arsenic	S4UL	640	5	7.7	19.0	12.7	0	Mean value below guideline	у					normal	normal	у	16.8	Arsenic
Beryllium	S4UL	12	5	1.0	1.0	1.0	0	Mean value below guideline	У					not normal	not normal	n	1.0	Beryllium
Boron	S4UL	240000	5	0.4	1.3	0.9	0	Mean value below guideline	У					normal	not normal	n	1.6	Boron
Cadmium	S4UL	190	5	0.1	0.3	0.1	0	Mean value below guideline	n					not normal	not normal	n	0.3	Cadmium
Chromium (III)	S4UL	8600	5	14.0	23.0	17.2	0	Mean value below guideline	У					normal	normal	У	20.6	Chromium (III)
Copper	S4UL	68000	5	8.1	370.0	129.6	0	Mean value below guideline	n					normal	normal	У	266.3	Copper
Cyanide (total)	ATK	34	5	0.5	0.5	0.5	0	Mean value below guideline	У					not normal	not normal	n	0.5	Cyanide (total)
Lead	C4SL (I)	1100	5	8.0	430.0	196.6	0	Mean value below guideline	У					normal	normal	У	361.0	Lead
Mercury#	S4UL	58	5	0.1	1.5	0.6	0	Mean value below guideline	У					normal	normal	У	1.2	Mercury#
Nickel	S4UL	980	5	16.0	75.0	38.8	0	Mean value below guideline	У					normal	normal	У	62.9	Nickel
Selenium	S4UL	12000	5	0.2	0.3	0.2	0	Mean value below guideline	n					not normal	not normal	n	0.3	Selenium
Vanadium	S4UL	9000	5	16.0	29.0	21.8	0	Mean value below guideline	У					normal	normal	У	26.3	Vanadium
Zinc	S4UL	730000	5	33.0	420.0	130.0	0	Mean value below guideline	n					not normal	not normal	n	449.7	Zinc

S4UL Suitable for Use Level as published by LQM/CIEH

C4SL Category 4 Screening Level

C4SL (lower) (upper) Category 4 Screening Level for Lead at lower or upper bound of range

Assumed to be elemental mercury as initial screening value

ATK Soil Screening Value derived by Atkins

BPG5 Guideline from BPG Note 5 as published by Forest Research

Analysis of test data in relation to concentrations of inorganic chemical contaminants.

Table number

Report ref: STP3953-G01

Revision O

January 2019 Appendix I

Analysis of test data in relation to concentrations of organic chemical contaminants

Adopted model: Industrial/Commercial

Receptor: Current & proposed site user; construction operatives

Test procedure			Sumn	nary of	test dat	а		Initial Screening	Outlier	test				Normality t	test		UCL	
Contaminant	Guideline source	Guideline value*	No. of tests	Min.	Max.	Mean	No. of tests above guideline	Initial screening	outlier ?	nber of iers	cation of	£	Concentration	Shapiro-Wilk Normality test		ot Data normally distributed?	95% UCL of mean	Contaminant
	Guic	mg/kg		mg/kg	mg/kg	mg/kg	No. abo		Pass test?	Number	Locatio	Depth	mg/kg				mg/kg	
Acenaphthene	S4UL	84000	5	0.1	0.5	0.1	0	Mean value below guideline	n					not normal	not normal	n	0.5	Acenaphthene
Acenaphthylene	S4UL	83000	5	0.1	4.4	1.0	0	Mean value below guideline	n					not normal	not normal	n	4.7	Acenaphthylene
Anthracene	S4UL	520000	5	0.1	3.9	0.9	0	Mean value below guideline	n					not normal	not normal	n	4.2	Anthracene
Benzo(a)anthracene	S4UL	170	5	0.1	3.4	1.1	0	Mean value below guideline	у					normal	not normal	n	3.8	Benzo(a)anthracene
Benzo(a)pyrene	S4UL	35	5	0.1	3.0	0.9	0	Mean value below guideline	n					normal	not normal	n	3.3	Benzo(a)pyrene
Benzo(b)fluoranthene	S4UL	44	5	0.1	3.9	1.2	0	Mean value below guideline	n					normal	not normal	n	4.3	Benzo(b)fluoranthene
Benzo(g,h,i)perylene	S4UL	3900	5	0.1	5.2	1.1	0	Mean value below guideline	n					not normal	not normal	n	5.6	Benzo(g,h,i)perylene
Benzo(k)fluoranthene	S4UL	1200	5	0.1	1.3	0.4	0	Mean value below guideline	n					normal	not normal	n	1.4	Benzo(k)fluoranthene
Chrysene	S4UL	350	5	0.1	3.5	1.2	0	Mean value below guideline	n					normal	not normal	n	3.9	Chrysene
Dibenzo(a,h)anthracene	S4UL	3.5	5	0.1	2.2	0.5	0	Mean value below guideline	n					not normal	not normal	n	2.4	Dibenzo(a,h)anthracene
Fluoranthene	S4UL	23000	5	0.1	4.9	1.8	0	Mean value below guideline	у					normal	not normal	n	5.7	Fluoranthene
Fluorene	S4UL	63000	5	0.1	0.1	0.1	0	Mean value below guideline	n					not normal	not normal	n	0.1	Fluorene
Indeno(1,2,3-cd)pyrene	S4UL	500	5	0.1	2.4	0.6	0	Mean value below guideline	n					not normal	not normal	n	2.6	Indeno(1,2,3-cd)pyrene
Naphthalene	S4UL	190	5	0.1	0.4	0.1	0	Mean value below guideline	n					not normal	not normal	n	0.4	Naphthalene
Phenanthrene	S4UL	22000	5	0.1	5.7	1.7	0	Mean value below guideline	n					not normal	not normal	n	6.2	Phenanthrene
Phenols	S4UL	760	5	0.3	0.3	0.3	0	Mean value below guideline	у					not normal	not normal	n	0.3	Phenols
Pyrene	S4UL	54000	5	0.1	5.5	1.8	0	Mean value below guideline	у					normal	not normal	n	6.2	Pyrene

<u>Notes</u>

S4UL Suitable for Use Level as published by LQM/CIEH

C4SL Category 4 Screening Level

SGV Soil Guideline Value as published by the Environment Agency 2009

SSV Soil Screening Value as derived by Soiltechnics

ATK Soil Screening Value derived by Atkins

* Assuming a SOM of 1%

Title Analysis of test data in relation to concentrations of	Table number	
organic chemical contaminants.	2	

Summary of petroleum hydrocarbon test results

Model: Industrial/Commercial

BTEX (Red highlights indicate exceedance of guideline value)

Indicator	unit	S4UL	Concentra	Concentration				
		(mg/kg)	BH02	TP02	TP06	TP09		
			0.50	0.58	0.50	0.30		
Benzene	mg/kg	27	< 0.001	< 0.001	< 0.001	< 0.001		
Toluene	mg/kg	56000	< 0.001	< 0.001	< 0.001	< 0.001		
Ethylbenzene	mg/kg	5700	< 0.001	< 0.001	< 0.001	< 0.001		
o-Xylene	mg/kg	6600	< 0.001	< 0.001	< 0.001	< 0.001		
n,p-Xylene	mg/kg	5900	< 0.001	< 0.001	< 0.001	< 0.001		

Hydrocarbon banding (Red highlights indicate exceedance of guideline value)

Fraction	unit	S4UL	Concentration					
		(mg/kg)	BH02	TP02	TP06	TP09		
			0.50	0.58	0.50	0.30		
Aliphatic								
EC 5 - 6	mg/kg	3200	< 1.0	< 1.0	< 1.0	< 1.0		
EC >6 - 8	mg/kg	7800	< 1.0	< 1.0	< 1.0	< 1.0		
EC >8 - 10	mg/kg	2000	< 1.0	< 1.0	< 1.0	< 1.0		
EC >10 - 12	mg/kg	9700	< 1.0	< 1.0	< 1.0	< 1.0		
EC >12 - 16	mg/kg	59000	< 1.0	21	19	39		
EC >16 - 35	mg/kg	1600000	< 1.0	1920	7780	1100		
EC >35 - 44	mg/kg	1600000	< 1.0	< 1.0	130	39		
Aromatic								
EC 5 - 7 (benzene)	mg/kg	26000	< 1.0	< 1.0	< 1.0	< 1.0		
EC >7 - 8 (toluene)	mg/kg	56000	< 1.0	< 1.0	< 1.0	< 1.0		
EC >8 - 10	mg/kg	3500	< 1.0	< 1.0	< 1.0	< 1.0		
EC >10 - 12	mg/kg	16000	< 1.0	< 1.0	< 1.0	< 1.0		
EC >12 - 16	mg/kg	36000	< 1.0	69	16	4		
EC >16 - 21	mg/kg	28000	< 1.0	180	160	6		
EC >21 - 35	mg/kg	28000	< 1.0	1200	2500	140		
EC >35 - 44	mg/kg	28000	< 1.0	< 1.0	430	< 1.0		

Title Comparison of measured concentrations of petroleum hydrocarbons with guideline values.

Table number

3

Summary of groundwater test results

Receptor	Groundwater		
Water type	Freshwater		
Fish type	Salmonid		
Water hardness	>250	mg/l	(recorded at a conce

centration of 275mg/I on the Thames Water website)

Contaminant	Guideline value		Location	TP06	BH9.1
	(μg/l)	source	Depth (m)	0.5	0.68
Inorganics (μg/l)					
Arsenic	50	EQS (f)		5	2
Boron	2000	EQS (f)	┥	95	110
Cadmium	5	EQS (f)	⊣	< 0.080	< 0.080
Chromium	50	EQS (f)	⊣	2	8
Copper	28	EQS (f)	⊣	19	5
Lead	20	EQS (f)	- I	25	< 1.0
Mercury	1	EQS (f)	⊣ /	< 0.50	< 0.50
Nickel	200	EQS (f)	⊣	3	5
Selenium ¹	10	UKDWS	┥	< 1.0	4
Vanadium ²	60	EQS (f)	⊣	3	< 1.0
Zinc	125	EQS (f)	-	51	7
			-	< 0.050	< 0.050
Free Cyanide ¹	50	UKDWS			
Nitrate as N	50000	UKDWS	-	<500	96000
Sulphate as SO4	400000	EQS(f)		94000	210000
PAH (μg/l)					
Benzo(a)pyrene ^{1,4}	0.01	UKDWS		< 0.50	< 0.50
Naphthalene ²	10	EQS (f)	∃	< 0.50	< 0.50
Sum of 4 PAH ¹	0.1	UKDWS	⊣	<0.10*	<0.10*
	0.1	0110110			**
TPH (μg/l)					
Hydrocarbons ¹	10	UKDWS		<10*	<10*
Benzene	30	EQS (f)	7	< 1.0	< 1.0
Toluene ²	50	EQS (f)	7	< 1.0	< 1.0
Ethyl benzene ³	300	WHO	-	< 1.0	< 1.0
Xylene ²	30	EQS (f)	┥	< 1.0	< 1.0
Ayichic	30	LQ3 (I)		- 1.0	

Notes

- 1 EQS values not available
- 2 UKDWS not available
- 3 Lower detectable limit above UKDWS. Concentrations below detectable limits are not considered further.
- * Taken as lower detection limit
- # Taken as lower detection limit of a single compound

UKDWS UK Drinking Water Standard Guideline taken from "The Water Supply (Water Quality) Regulations 2000"

EQS (f) Environmental Quality Standard for freshwater published by the Environment Agency

EQS (s) Environmental Quality Standard for saltwater published by the Environment Agency

Title	Table number
Comparison of measured concentrations with	
guideline values for water receptors.	04

soiltechnics environmental and geotechnical consultants

Initial Conceptual Model

Current site usecommercial/industrialProposed site usecommercial/industrial

Source	Pathway				Receptor		Risk assessment to CIRIA C552								
	Humans	Humans Vegetation Water										Consequence of risk occurring F			
	Ingestion of air-	Ingestion of soil	Ingestion of	Inhalation of air-	Inhalation of	Dermal contact	Root uptake,	Percolation of	Near-surface	Saturation of			via most likely pathway		
	borne dusts		vegetables and	borne dusts	vapours	with soil and dust	deposition to	water through	water run-off	contaminated					
			soil attached to				shoots and	contaminated	through	soils by flood					
			vegetables				foliage contact	soils	contaminated	waters					
<u>ioils</u>															
Made Ground	Unlikely	Unlikely	Unlikely	Unlikely	Likely	Unlikely	-	-	-	-	Current and proposed site users	Adult	Mild	Low/moderate	
	Likely	Likely	Unlikely	Likely	Likely	Likely	-	-	-	-	Construction operatives	Adult	Minor	Low	
	-	-	-	-	-	-	Unlikely	-	-	-	Vegetation (current & proposed)	-	Minor	Very low	
	-	-	-	-	-	-	-	Unlikely	Unlikely	Unlikely	Water (current and proposed)	-	Minor	Very low	
ubstation	Likely	Unlikely	Unlikely	Likely	Likely	Likely	-	-	-	-	Current and proposed site users	Adult	Medium	Moderate	
	Likely	Likely	Unlikely	Likely	Likely	Likely	-	-	-	-	Construction operatives	Adult	Minor	Moderate	
	-	-	-	-	-	-	Unlikely	-	-	-	Vegetation (current & proposed)	-	Minor	Very low	
	-	-	-	-	-	-	-	Unlikely	Unlikely	Unlikely	Water (current and proposed)	-	Medium	Very low	

Table comparing cumulative compound concentrations with hazardous waste threshold values

Category of	danger	Irritant	Harmful	То	xic	Carci	nogenic	Corr	osive	Toxic for re	production	Muta	agenic		Ecotoxic	
														∑N : R50-53/0.25	∑N : 50-53	∑N : 50-53
														+∑N : R51-53/2.5	+∑N : R50	+∑N : 51-53
						Carc Cat 1				Repr Cat 1 or				+∑N : R52-53/25		+∑N : 52-53
Risk Phra	ase	Xi	Xn	T+	T	or 2	Carc Cat 3	C R34	C R35	2	Repr Cat 3	Muta Cat 2	Muta Cat 3			+∑N : R53
Contaminant	Highest	H4	H5	Н6	Н6	H7	H7	Н8	Н8	H10	H10	H11	H11	H14	H14	H14
	concentration	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)			
Metals																
Arsenic	10.00			0.0013	0.0015	0.0015								0.3841	0.0015	0.0015
Beryllium	0.00	0.0000		0.0000	0.0000	0.0000										0.0000
Copper	90.00	0.0225	0.0225												0.0225	0.0225
Cadmium	0.12		0.0000		0.0000	0.0000										
Chromium	15.00					0.0024									0.0024	0.0024
Lead	260.00		0.0280							0.0280	0.0280				0.0280	0.0280
Mercury	1.50			0.0002											0.0002	0.0002
Nickel	55.00		0.0070				0.0070				0.0070				0.0070	0.0070
Selenium	0.27				0.0000										0.0000	0.0000
Zinc	47.00	0.0341	0.0341			0.0130		0.0098					0.0221		0.0341	0.0341
Vanadium	20.00	0.0029			0.0029						0.0029		0.0029			0.0029
PAH																
Naphthalene	0.00		0.0000												0.0000	0.0000
Benzo(a)anthracene	0.45				0.0000	0.0000									0.0000	0.0000
Chrysene	0.43				0.0000	0.0000							0.0000		0.0000	0.0000
Benzo(b)fluoranthene	0.42				0.0000	0.0000									0.0000	0.0000
Benzo(k)fluoranthene	0.18				0.0000	0.0000									0.0000	0.0000
Benzo(a)pyrene	0.34					0.0000				0.0000		0.0000			0.0000	0.0000
Dibenzo(a,h)anthracene	0.12				0.0000	0.0000									0.0000	0.0000
Total (or greatest)		0.0595	0.0916	0.0015	0.0047	(0.0000)	(0.007)	0.0098	0.0000	(0.0000)	(0.028)	(0.0000)	(0.0221)	0.3841	0.0959	0.0989
Threshold		1%	1%	0.10%	3%	0.10%	1%	5%	1%	0.50%	3%	0.10%	1%	1	25%	25%
Exceeded Y/N		N	N	N	N	N	N	N	N	N	N	N	N	N	N	N

Title	Table number
Hazard assessment spreadsheet	1 of 2

Table comparing cumulative compound concentrations with hazardous waste threshold values

Category of	danger	Irritant	Harmful	То	xic	Carci	nogenic	Corr	osive	Toxic for re	production	Muta	ngenic		Ecotoxic	
														∑N : R50-53/0.25	∑N : 50-53	∑N : 50-53
														+∑N : R51-53/2.5	+∑N : R50	+∑N : 51-53
						Carc Cat 1				Repr Cat 1 or				+∑N : R52-53/25		+∑N : 52-53
Risk Phr	ase	Xi	Xn	T+	T	or 2	Carc Cat 3	C R34	C R35	2	Repr Cat 3	Muta Cat 2	Muta Cat 3			+∑N : R53
Contaminant	Highest	H4	H5	Н6	Н6	H7	H7	Н8	Н8	H10	H10	H11	H11	H14	H14	H14
	concentration	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)			
Metals																
Arsenic	19.00			0.0025	0.0029	0.0029								2.2857	0.0029	0.0029
Beryllium	0.00	0.0000		0.0000	0.0000	0.0000										0.0000
Copper	370.00	0.0925	0.0925												0.0925	0.0925
Cadmium	0.27		0.0000		0.0000	0.0000										
Chromium	23.00					0.0037									0.0037	0.0037
Lead	430.00		0.0464							0.0464	0.0464				0.0464	0.0464
Mercury	1.10			0.0001											0.0001	0.0001
Nickel	75.00		0.0095				0.0095				0.0095				0.0095	0.0095
Selenium	0.00				0.0000										0.0000	0.0000
Zinc	420.00	0.3045	0.3045			0.1163		0.0876					0.1974		0.3045	0.3045
Vanadium	29.00	0.0043			0.0043						0.0043		0.0043			0.0043
PAH																
Naphthalene	0.36		0.0000												0.0000	0.0000
Benzo(a)anthracene	3.40				0.0003	0.0003									0.0003	0.0003
Chrysene	3.50				0.0004	0.0004							0.0004		0.0004	0.0004
Benzo(b)fluoranthene	3.90				0.0004	0.0004									0.0004	0.0004
Benzo(k)fluoranthene	1.30				0.0001	0.0001									0.0001	0.0001
Benzo(a)pyrene	3.00					0.0003				0.0003		0.0003			0.0003	0.0003
Dibenzo(a,h)anthracene	2.20				0.0002	0.0002									0.0002	0.0002
ТРН																
Benzene	0.00				0.0000	0.0000										
1,2,4-trimethylbenzene	0.00	0.0000	0.0000													0.0000
Hydrocarbon (C6 to C35)	11000.00		1.1000			1.1000					0.0000	1.1000				1.1000
Total (or greatest)		0.4013	1.5530	0.0026	0.0086	(1.1)	(0.0095)	0.0876	0.0000	(0.0464)	(0.0464)	(1.1)	(0.1974)	2.2857	0.4614	1.5657
Threshold		1%	1%	0.10%	3%	0.10%	1%	5%	1%	0.50%	3%	0.10%	1%	1	25%	25%
Exceeded Y/N		N	Υ	N	N	Υ	N	N	N	N	N	Υ	N	Υ	N	N

Title	Table number
Hazard assessment spreadsheet	1 of 1

soiltechnics

environmental and geotechnical consultants

Landfill Waste Acceptance	e Criteria			Laboratory test data
Parameter	Inert waste landfill	Stable non-reactive hazardous waste in non-hazardous landfill	Hazardous waste landfill	WAC01
Parameters determined on the wa	ste			
Total organic carbon (w/w %)	3%	5%	6%*	0.72
Loss on ignition			10%*	2.6
BTEX (mg kg ⁻¹)	6			< 0.010
PCBs (7 congeners) (mg kg ⁻¹)	1			< 0.10
Mineral oil C ₁₀ - C ₄₀ (mg kg ⁻¹)	500			1600
PAH (17 congeners)	100			2.8
рН		>6		11.2
Acid neutralisation capacity pH 6 (mol kg ⁻¹)		To be evaluated	To be evaluated	
Acid neutralisation capacity pH 4 (mol kg ⁻¹)		To be evaluated	To be evaluated	
Limit values (mg kg ⁻¹) for complian	ce test using B	N 12457-3 at L/S 10 l k	g ⁻¹	-
As (arsenic)	0.5	2	25	< 0.050
Ba (barium)	20	100	300	< 0.50
Cd (cadmium)	0.04	1	5	< 0.010
Cr (chromium (total))	0.5	10	70	< 0.050
Cu (Copper)	2	50	100	< 0.050
Hg (mercury)	0.01	0.2	2	< 0.0050
Mo (molybdenum)	0.5	10	30	< 0.050
Ni (nickel)	0.4	10	40	< 0.050
Pb (lead)	0.5	10	50	< 0.010
Sb (antimony)	0.06	0.7	5	< 0.010
Se (selenium)	0.1	0.5	7	< 0.010
Zn (zinc)	4	50	200	< 0.50
Cl (chloride)	800	15,000	25,000	65
F (fluoride)	10	150	500	1.8
SO ₄ (sulphate)	1000#	20,000	50,000	230
Total Dissolved Solids (TDS) [†]	4,000	60,000	100,000	1900
Phenol index	1			< 0.50
Dissolved organic carbon at own pH or pH 7.5-8.0 [@]	500	800	1000	160

Notes

- * Either TOC or LOI must be used for hazardous waste
- # If an inert waste does not meet the SO4 L/S10 limit, alternative limit values of 1500 mg l-1 SO4 at Co (initial eluate from the percolation test (prCEN/TS 14405:2003)) AND 6000 mg kg-1 SO4 at L/S10 (either from the percolation test or batch test BS EN 12457-3), can be used to demonstrate compliance with the acceptable criteria for inert wastes.
- + The value for TDS can be used instead of the values for Cl and SO4 @ DOC at pH 7.5-8.0 abd L/S10 can be determined or eluate derived from a modified version of the pH dependence Test, prEN 14429, if the limit value at own pH (BS EN 12457 eluate) is not met.

PRIMARY CLASSIFICATION	HAZARDOUS
SECONDARY CLASSIFICATION	STABLE NON-REACTIVE HAZARDOUS WASTE IN NON- HAZARDOUS LANDFILL

Title

Comparison of test data to landfill waste acceptance criteria (table 5.1) (Secondary classification)

Table number

1 of 1

Basic categorisation schedule for Made Ground – type 1 soils

Produced following the requirements of The Landfill (England and Wales) (Amendment)

Regulations 2004 Part 2 (5)

	Negulation	13 2004 Fait 2 (3)
(a)	Source and origin of waste	
	Proposed development at 60-70 Shorts Garde	ns and 14-16 Betterton Street, London
(b)	Process producing the waste	
	Foundation and basement excavation	
(c)	Statement on waste treatment	
	Refer to pre-treatment confirmation form	
(d)	Composition of the waste	
	Dark brown gravel of brick, concrete and flint.	
(e)	Appearance of the waste	
	As above	
(f)	European waste catalogue code	
	17-05-04 (for non-hazardous waste)	
(g)	Hazardous waste properties	
	None	
(h)	Is the waste prohibited under regulation 9?	
	No	
(i)	Landfill class	
	Non-hazardous (can potentially be reduced to	inert should further testing be undertaken)
(j)	Additional precautions required at landfill	
	None	
(k)	Can waste be recycled or recovered?	
	Yes	
(1)	Name of waste producer	
	To be confirmed	
(m)	Name and address of consultant	to Lodge Welgreye Northernster NNC ODV
		te Lodge, Walgrave, Northampton. NN6 9PY.
	Tel: (01604) 781877 Fax: (01604) 781007	E-mail: mail@soiltechnics.net Website: www.soiltechnics.net
Sched	ule Date:	signed
	ry 2019	
	<u>. </u>	A (1)
Soilte	chnics reference:	V
STP39	53A-G01	Ian Dunkley
		Geo-environmental Engineer, Soiltechnics Limited

Basic categorisation schedule for Made Ground – type 2 soils

Produced following the requirements of The Landfill (England and Wales) (Amendment)

Regulations 2004 Part 2 (5)

	Regulation	is 2004 Part 2 (5)					
(a)	Source and origin of waste						
	Proposed development at 60-70 Shorts Garden	ns and 14-16 Betterton Street, London					
(b)	Process producing the waste						
	Foundation and basement excavation						
(c)	Statement on waste treatment						
	Refer to pre-treatment confirmation form						
(d)	Composition of the waste						
	Loose to medium dense sandy gravel, with gra	vels comprising brick and concrete					
(e)	Appearance of the waste						
	As above						
(f)	European waste catalogue code						
	17-05-03* (for hazardous waste)						
(g)	Hazardous waste properties						
	Combined metals and total petroleum hydrocarbons						
(h)	Is the waste prohibited under regulation 9?						
	No						
(i)	Landfill class						
	Stable non-reactive hazardous waste in non-ha	azardous landfill					
(j)	Additional precautions required at landfill						
	None						
(k)	Can waste be recycled or recovered?						
	Yes						
(1)	Name of waste producer						
	To be confirmed						
(m)	Name and address of consultant	NAC ORV					
		te Lodge, Walgrave, Northampton. NN6 9PY.					
	Tel: (01604) 781877 Fax: (01604) 781007	E-mail: mail@soiltechnics.net Website: www.soiltechnics.net					
Sched	ule Date:	signed					
Januai	ry 2019						
Soilte	chnics reference:						
STP39	53A-G01	lan Dunkley					
		Geo-environmental Engineer, Soiltechnics Limited					

Basic categorisation schedule for Lynch Hill Gravels

Produced following the requirements of The Landfill (England and Wales) (Amendment) Regulations 2004 Part 2 (5) Source and origin of waste (a) Proposed development at 60-70 Shorts Gardens and 14-16 Betterton Street, London (b) Process producing the waste Foundation and basement excavation Statement on waste treatment Refer to pre-treatment confirmation form (d) Composition of the waste (e) Appearance of the waste As above European waste catalogue code 17-05-04 Hazardous waste properties Is the waste prohibited under regulation 9? No Landfill class Inert by virtue of being natural in origin and unaffected by anthropogenic contamination Additional precautions required at landfill None Can waste be recycled or recovered?

) Name of waste producer

To be confirmed

(m) Name and address of consultant

Soiltechnics Limited, Cedar Barn, White Lodge, Walgrave, Northampton. NN6 9PY.

signed

Tel: (01604) 781877 E-mail: mail@soiltechnics.net Fax: (01604) 781007 Website: www.soiltechnics.net

Schedule Date:
January 2019

Soiltechnics reference:

STP3953A-G01 Ian Dunkley
Geo-environmental Engineer, Soiltechnics Limited

Basic categorisation schedule for London Clay Formation

Produced following the requirements of The Landfill (England and Wales) (Amendment)

Regulations 2004 Part 2 (5)

	iveg diation	113 2004 Fait 2 (5)
(a)	Source and origin of waste	
	Proposed development at 60-70 Shorts Garde	ns and 14-16 Betterton Street, London
(b)	Process producing the waste	
	Foundation and basement excavation	
(c)	Statement on waste treatment	
	Refer to pre-treatment confirmation form	
(d)	Composition of the waste	
(e)	Appearance of the waste	
	As above	
(f)	European waste catalogue code	
	17-05-04	
(g)	Hazardous waste properties	
	None	
(h)	Is the waste prohibited under regulation 9?	
	No	
(i)	Landfill class	
	Inert by virtue of being natural in origin and u	naffected by anthropogenic contamination
(j)	Additional precautions required at landfill	
	None	
(k)	Can waste be recycled or recovered?	
	Yes	
(1)	Name of waste producer	
	To be confirmed	
(m)	Name and address of consultant	ita Ladga Walgraya Northamatan NNS CRV
		ite Lodge, Walgrave, Northampton. NN6 9PY.
	Tel: (01604) 781877 Fax: (01604) 781007	E-mail: mail@soiltechnics.net Website: www.soiltechnics.net
Sched	ule Date:	signed
Januai	ry 2019	
Soilte	chnics reference:	
STP39	53A-G01	lan Dunkley Geo-environmental Engineer, Soiltechnics Limited
		OCO CHANDINICHTAL FURNICET POLITICATURE STATE

Miss Emma Jeffries

Soiltechnics

Cedar Barn White Lodge Walgrave Northamptonshire

NN6 9PY

Date: 10/03/2017

Our Reference: 10044200 Your Reference: STP3953A

Dear Miss Emma Jeffries,

Zayo Plant Protection Centre

c/o JSM Group Ltd

Plant Protection Department

Sterling House

Mutton Lane

Potters Bar

Herts, EN6 3AR

ZAYO GROUP UK LTD NOT AFFECTED C2 PRELIMINARY PLANT ENQUIRY

We acknowledge with thanks your request dated 10/03/2017 03:23:46 PM for information on the location of our services.

Having examined our records, we can confirm that **ZAYO GROUP UK LTD** has no owned apparatus within the search area of your enquiry detailed in the reference/location provided.

Please do not hesitate to contact us for further assistance.

Regards,

Zayo Group UK Ltd c/o JSM Group Ltd JSM Plant Protection Department T: 01992 655 919 zayoplantenquiries@jsmgroup.com

Ms. Emma Jeffries Soil Technics Ivy Mill Bussiness Park Crown Street Manchester NN6 9PY

> Our Ref: 2017/2249439 Your Ref: Shorts Gardens

> > 17/03/2017

Dear Sir/Madam

Shorts Gardens

Thank you for your letter of 10/03/2017 in which you asked if there are any electric lines and/or electrical plant belonging to UK Power Networks (LPN) plc ("UK Power Networks") within the land identified by your enquiry.

I enclose a copy of UK Power Networks record of its electric lines and/or electrical plant at the site identified by your enquiry. If the records provided do not relate to the land to which you had intended to refer please resubmit your enquiry.

Should your excavation affect any of our Extra High Voltage equipment (6.6 KV, 22 KV, 33 KV or 132 KV), please contact us to obtain a copy of the primary route drawings and associated cross sections.

This information is made available to you on the terms set out below.

- 1. UK Power Networks does not warrant that the information provided to you is correct. You rely upon it at your own risk.
- 2. UK Power Networks does not exclude or limit its liability if it causes the death of any person or causes personal injury to a person where such death or personal injury is caused by its negligence.
- 3. Subject to paragraph 2 UK Power Networks has no liability to you in contract, in tort (including negligence), for breach of statutory duty or otherwise how for any loss, damage, costs, claims, demands, or expenses that you or any third party may suffer or incur as a result of using the information provided whether for physical damage to property or for any economic loss (including without limitation loss of profit, loss of opportunity, loss of savings, loss of goodwill, loss of business, loss of use) or any special or consequential loss or damage whatsoever.
- 4. The information about UK Power Networks electrical plant and/or electric lines provided to you belongs to and remains the property of UK Power Networks. You must not alter it in any respect.
- 5. The information provided to you about the electrical plant and/or electric lines depicted on the plans may NOT be a complete record of such apparatus belonging to UK Power Networks. The information provided relates to electric lines and/or electrical plant belonging to UK Power Networks that it believes to be present but the plans are NOT definitive: other electric lines and/or electrical plant may be present and that may or may not belong to UK Power Networks.

- 6. Other apparatus not belonging to UK Power Networks is not shown on the plan. It is your responsibility to make your own enquiries elsewhere to discover whether apparatus belonging to others is present. It would be prudent to assume that other apparatus is present.
- 7. You are responsible for ensuring that the information made available to you is passed to those acting on your behalf and that all such persons are made aware of the contents of this letter.
- 8. Because the information provided to you may <u>NOT</u> be accurate, you are recommended to ascertain the presence of UK Power Networks electric lines and/or electrical plant by the digging of trial holes. <u>Trial holes should be dug by hand only</u>.

Excavations must be carried out in line with the Health and Safety Executive guidance document HSG 47. We will not undertake this work. A copy of HSG 47 can be obtained from the Health an Safety Executives website.

All electric lines discovered must be considered LIVE and DANGEROUS at all times and must not be cut, resited, suspended, bent or interfered with unless specially authorised by UK Power Networks.

The electric line and electrical plant belonging to UK Power Networks remains so even when made dead and abandoned and any such electric line and/or electrical plant exposed shall be reported to UK Power Networks.

Where your works are likely to affect our electric lines and/or electrical plant an estimate of the price of any protective /diversionary works can be prepared by UK Power Networks Branch at Metropolitan House, Darkes Lane, Potters Bar, Herts., EN6 1AG, telephone no. 0845 2340040

9 Any work near to any overhead electric lines must be carried out by you in accordance with the Health and Safety Executive guidance document GS6 and the Electricity at Work Regulations.

The GS6 Recommendations may be purchased from HSE Books or downloaded from the Energy Networks Association's website.

If given a reasonable period of prior notice UK Power Networks will attend on site without charge to advise how and where "goal posts" should be erected. If you wish to avail yourself of this service, in the first instance please telephone: 0845 6014516 between 08:30 and 17:00 Monday to Friday, Public and bank holidays excepted.

- 10. You are responsible for the security of the information provided to you. It must not be given, sold or made available upon payment of a fee to a third party.
- 11. If in carrying out work on land in, on, under or over which is installed an electric line and/or electrical plant that belongs to UK Power Networks you and/or anyone working on your behalf damages (however slightly) that apparatus you must inform immediately UK Power Networks by telephone at the number below providing:
 - your name, address and telephone number; and
 - the date, time and place at which such damage was caused; and
 - a description of the electric line and/or electrical plant to which damage was caused; and
 - the name of the person whom it appears to you is responsible for that damage; and
 - · the nature of the damage

In the East of England or London 0800 780078 (24 Hours).

12. The expression "UK Power Networks" includes UK Power Networks (EPN) plc, UK Power Networks (LPN) plc, UK Power Networks (SEPN) plc, UK Power Networks and any of their successors and predecessors in title.

IF YOU DO **NOT** ACCEPT AND/OR **DO NOT** UNDERSTAND THE TERMS OF USE SET OUT IN PARAGRAPHS 1 TO 12 INCLUSIVE ABOVE YOU MUST NOT USE THE PLANS AND RETURN THEM TO ME.

I would remind you that work adjacent to electric lines and/or electrical plant represents a serious risk to health and safety and as such should feature amongst the items you have assessed in your workplace risk assessment and method statement.

I shall be pleased to supply you with further assistance if you require it.

Yours sincerely T Gilbert

Tracy Gilbert - Telephone: 0800 0565 866

Plan Provision

UK Power Networks, Plan Provision, Fore Hamlet, Ipswich, IP3 8AA. Tel: 0800 0565866. Fax: 0870 1963782.

UK Power Networks Registered in England and Wales Registered No 7290590. Registered office: Newington House, 237 Southwark Bridge Road London, SE1 6NP.