

METHOD STATEMENT FOR CONSTRUCTION OF RETAINING WALL

<u>PARSIFAL HOUSE</u> 521 FINCHLEY ROAD <u>LONDON</u>

<u>Ref:-19313</u>

Suite 1, 100 North Road, Brighton. 01273 609742. www.mitchinsonmacken.co.uk

1.0 NOTES ON RETAINING WALLS

New retaining walls to basement to be designed using BS8110 Please refer to TW plans 19313 101 and 102

1. The sequence of retaining wall construction is to be agreed with engineer.

2. Not more than 25% of one wall shall be undercut at any one time. Underpinning shall be in short lengths not exceeding 1000mm.

3. Reinforced concrete for underpinning shall be Design Sulphate class DS-1 and ACEc class AC-1 grade C35, maximum aggregate size of 20mm, and a w/c of 0.45

4. Dowel bars shall be 20mm plain round bars 600mm long with 300mm embedment in each section.

5. Prior to concreting, the underside of existing foundations shall be carefully cleaned of all soil from the sides of the trench, and the formation shall not be left exposed over night. The formation shall be protected from heavy rain and frost.

6. Concrete shall be placed with care to avoid loose soil or rubbish falling into the excavation. The concrete shall be carefully compacted by means of a pocket vibrator.

7. No two adjoining sections shall be worked concurrently. A minimum period of 48 hours should be given between placing dry pack mortar and commencing excavation of any adjacent section.

8. Dry pack is to be a mixture of portland cement and sharp sand mixed as dry as possible passing through a No 16 seize with just enough water to hydrate the cement and is to be placed into position using a back shutter against which it should be rammed with a blunt timber rammer and mallet.

9. A continuous trench for working space shall not be permitted.

- Anut Million

Signed..... Date 16/07/19 Mr A J Mitchinson BEng, CEng, MIStructE

MITCHINSON	Project		Job no.			
	PARSIFAL	19313				
Mitchinson Macken Ltd	Calcs for		Start page no./Revision			
Unit 1		Retaining	1			
100 North Road BN1 1YE	Calcs by SM	Calcs date 16/07/2019	Checked by MM	Checked date	Approved by	Approved date

Wall details

Retaining wall type Height of retaining wall stem Thickness of wall stem Length of toe Length of heel Overall length of base Thickness of base Depth of downstand Position of downstand Thickness of downstand Height of retaining wall Depth of cover in front of wall Depth of unplanned excavation Height of ground water behind wall Height of saturated fill above base Density of wall construction Density of base construction Angle of rear face of wall Angle of soil surface behind wall Effective height at virtual back of wall

Retained material details

Mobilisation factor Moist density of retained material

Cantilever propped at base h_{stem} = 3250 mm t_{wall} = 350 mm

I_{toe} = **2500** mm I_{heel} = **200** mm $I_{\text{base}} = I_{\text{toe}} + I_{\text{heel}} + t_{\text{wall}} = 3050 \text{ mm}$ t_{base} = **350** mm $d_{ds} = 0 \text{ mm}$ lds = **1500** mm t_{ds} = **350** mm $h_{wall} = h_{stem} + t_{base} + d_{ds} = 3600 \text{ mm}$ $d_{cover} = 0 mm$ $d_{exc} = 0 mm$ h_{water} = **3000** mm $h_{sat} = max(h_{water} - t_{base} - d_{ds}, 0 mm) = 2650 mm$ $\gamma_{wall} = 23.6 \text{ kN/m}^3$ γ_{base} = 23.6 kN/m³ $\alpha = 90.0 \text{ deg}$ $\beta = 0.0 \text{ deg}$ $h_{eff} = h_{wall} + I_{heel} \times tan(\beta) = 3600 \text{ mm}$

M = **1.2** γ_m = **18.0** kN/m³

	Project PARSIFAL	. HOUSE - 521 F	Job no. 19313			
Mitchinson Macken Ltd	Calcs for				Start page no./I	Revision
Unit 1		Retaining	g Wall A-A			2
BN1 1YE	Calcs by SM	Calcs date 16/07/2019	Checked by MM	Checked date	Approved by	Approved date
Saturated density of retained m	aterial	γ _s = 21.0 kl	N/m ³			
Design shear strength		φ' = 24.2 de	eg			
Angle of wall friction		$\delta = 0.0 \deg$	1			
Base material details Stiff clay						
Moist density		γ _{mb} = 18.0	kN/m³			
Design shear strength		φ' _b = 24.2 c	leg			
Design base friction		$\delta_{\text{b}}=\textbf{18.6}~\text{d}$	eg			
Allowable bearing pressure		P _{bearing} = 17	75 kN/m²			
Using Coulomb theory Active pressure coefficient for re	etained material	l				
$K_a = sin(\alpha)$	+ $\phi')^2 / (\sin(\alpha)^2 >$	× sin(α - δ) × [1 +	- √(sin(φ' + δ) >	< sin(φ' - β) / (sin	$(\alpha - \delta) \times \sin(\alpha +$	$(\beta)))]^{2}) = 0.419$
Passive pressure coefficient for	base material					
	$K_p = sin(S)$	90 -) - δ_b) × [1 - \sqrt{s}	$\sin(\phi_{b} + \delta_{b}) imes \sin(\phi_{b} + \delta_{b})$	(¢'b) / (sin(90 +	$\delta_b)))]^2) = 4.187$
At-rest pressure						
At-rest pressure for retained ma	aterial	$K_0 = 1 - sir$	n(φ') = 0.590			
Loading details						
Surcharge load on plan		Surcharge	= 2.5 kN/m ²			
Applied vertical dead load on w	all	$W_{dead} = 20$. 0 kN/m			
Applied vertical live load on wal		W live = 20.0) kN/m			
Applied horizontal dead load on	n wall	$F_{dead} = 35.0$) kN/m			
Applied horizontal live load on v	vall	F _{live} = 0.0 k	N/m			
Height of applied horizontal load	d on wall	h _{load} = 1000) mm			
			40 I [[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	∏ns		
			▼ [[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]			
			-		A	
					<u> </u>	
			→ ³⁵			
Prop						
25.0			12.0	1.0 4.5 14.0	29.4	
			11111111111			
				l codo cho	wn in kN/m proses	res shown in kN/m2
				LUADS Sho	wii iii kiv/iii, pressu	ies Shown in Kin/m²

	1						
I 🧖 🥒 MITCHINSON	Project			Job no.			
	PARSIFA	L HOUSE - 521 F	19313				
Mitchinson Macken Ltd	Calcs for		Start page no./Revision				
Unit 1		Retaining		3			
100 North Road	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date	
BN1 1YE	SM	16/07/2019	MM				
Vertical forces on wall							
Wall stem		$w_{wall} = h_{stem}$	$ imes$ t _{wall} $ imes$ γ_{wall} =	26.8 kN/m			
Wall base		$w_{\text{base}} = I_{\text{base}}$	$\times t_{\text{base}} \times \gamma_{\text{base}}$	= 25.2 kN/m			
Surcharge		$w_{sur} = Surc$	$harge \times I_{heel} = 0$	0.5 kN/m			
Moist backfill to top of wall		$w_{\text{m}_w} = I_{\text{heel}}$	× (h _{stem} - h _{sat}) >	$< \gamma_{m} = 2.2 \text{ kN/m}$			
Saturated backfill		$w_{\text{s}} = I_{\text{heel}} \times I$	$n_{sat} \times \gamma_s = 11.1$	kN/m			
Applied vertical load		$W_v = W_{dead}$	+ W _{live} = 40 k	N/m			
Total vertical load		$W_{total} = W_{wa}$	II + Wbase + Wsur	$+ W_{m_w} + W_s + W_s$	v = 105.8 kN/m	ı	
Horizontal forces on wall							
Surcharge		$F_{sur} = K_a \times F_{sur}$	Surcharge × h	eff = 3.8 kN/m			
Moist backfill above water table		F _{m_a} = 0.5 >	$ imes K_{a} imes \gamma_{m} imes (h_{eff})$	- h _{water}) ² = 1.4 kN	l/m		
Moist backfill below water table		$F_{m_b} = K_a \times$	$\gamma_{m} imes$ (h _{eff} - h _{wat}	$_{er}) \times h_{water} = 13.6$	kN/m		
Saturated backfill		$F_s = 0.5 \times P_s$	Ka × (γs- γ _{water}) >	< h _{water} ² = 21.1 kN	l/m		

Water Applied horizontal load Total horizontal load

Calculate propping force

Passive resistance of soil in front of wall Propping force

Overturning moments

Surcharge Moist backfill above water table Moist backfill below water table Saturated backfill Water Applied horizontal load Total overturning moment

Restoring moments

Wall stem Wall base Moist backfill Saturated backfill Design vertical dead load Total restoring moment

Check bearing pressure

Surcharge Design vertical live load Total moment for bearing Total vertical reaction Distance to reaction Eccentricity of reaction

Bearing pressure at toe

$$\begin{split} F_{p} &= 0.5 \times K_{p} \times cos(\delta_{b}) \times (d_{cover} + t_{base} + d_{ds} - d_{exc})^{2} \times \gamma_{mb} = \textbf{4.4 kN/m} \\ F_{prop} &= max(F_{total} - F_{p} - (W_{total} - w_{sur} - W_{live}) \times tan(\delta_{b}), \ 0 \ kN/m) \\ F_{prop} &= \textbf{85.8 kN/m} \end{split}$$

$$\begin{split} M_{sur} &= F_{sur} \times (h_{eff} - 2 \times d_{ds}) \ / \ 2 = \textbf{6.8} \ kNm/m \\ M_{m_a} &= F_{m_a} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{ds}) \ / \ 3 = \textbf{4.3} \ kNm/m \\ M_{m_b} &= F_{m_b} \times (h_{water} - 2 \times d_{ds}) \ / \ 2 = \textbf{20.3} \ kNm/m \\ M_s &= F_s \times (h_{water} - 3 \times d_{ds}) \ / \ 3 = \textbf{21.1} \ kNm/m \\ M_{water} &= F_{water} \times (h_{water} - 3 \times d_{ds}) \ / \ 3 = \textbf{44.1} \ kNm/m \\ M_{hor} &= F_h \times h_{load} = \textbf{35} \ kNm/m \\ M_{ot} &= M_{sur} + M_{m_a} + M_{m_b} + M_s + M_{water} + M_{hor} = \textbf{131.7} \ kNm/m \end{split}$$

 $F_{total} = F_{sur} + F_{m_a} + F_{m_b} + F_s + F_{water} + F_h = 118.9 \text{ kN/m}$

 $F_{water} = 0.5 \times h_{water}^2 \times \gamma_{water} = \textbf{44.1} \ kN/m$

 $F_h = F_{dead} + F_{live} = 35 \text{ kN/m}$

$$\begin{split} M_{wall} &= w_{wall} \times (I_{toe} + t_{wall} / 2) = \textbf{71.8 kNm/m} \\ M_{base} &= w_{base} \times I_{base} / 2 = \textbf{38.4 kNm/m} \\ M_{m_r} &= (w_{m_w} \times (I_{base} - I_{heel} / 2) + w_{m_s} \times (I_{base} - I_{heel} / 3)) = \textbf{6.4 kNm/m} \\ M_{s_r} &= w_s \times (I_{base} - I_{heel} / 2) = \textbf{32.8 kNm/m} \\ M_{dead} &= W_{dead} \times I_{load} = \textbf{53.5 kNm/m} \\ M_{rest} &= M_{wall} + M_{base} + M_{m_r} + M_{s_r} + M_{dead} = \textbf{202.9 kNm/m} \end{split}$$

$$\begin{split} M_{sur_r} &= w_{sur} \times (I_{base} - I_{heel} / 2) = \textbf{1.5 kNm/m} \\ M_{live} &= W_{live} \times I_{load} = \textbf{53.5 kNm/m} \\ M_{total} &= M_{rest} - M_{ot} + M_{sur_r} + M_{live} = \textbf{126.2 kNm/m} \\ R &= W_{total} = \textbf{105.8 kN/m} \\ x_{bar} &= M_{total} / R = \textbf{1193 mm} \\ e &= abs((I_{base} / 2) - x_{bar}) = \textbf{332 mm} \\ \hline \textbf{Reaction acts within middle third of base} \\ p_{toe} &= (R / I_{base}) + (6 \times R \times e / I_{base}^2) = \textbf{57.4 kN/m}^2 \end{split}$$

	Project Job no. PARSIFAL HOUSE - 521 FINCHLEY ROAD LONDON 1								
Mitchinson Macken Ltd	Calcs for			Start page no./F	levision				
Unit 1 100 North Boad		Retaining	g Wall A-A			4			
BN1 1YE	Calcs by SM	Calcs date 16/07/2019	Checked by MM	Checked date	Approved by	Approved date			
Bearing pressure at heel	Calcs by SM PA:	Calcs date 16/07/2019 pheel = (R / SS - Maximum b	Checked by MM base) - (6 × R × rearing press	Checked date	Approved by J/m ² allowable bea	Approved date			

	Project PARSIE	AL HOUSE - 521 F	Job no. 19313									
	Calcs for				Start page no /Be	vision						
Unit 1		Retaining	g Wall A-A		otart pago no./rt	5						
100 North Road BN1 1YE	Calcs by SM	Calcs date 16/07/2019	Checked by MM	Checked date	Approved by	Approved date						
RETAINING WALL DESIGN (B	S 8002:1994)	2			TEDDS coloulation	version 1.2.01.06						
Illtimate limit state load factor	re					Version 1.2.01.00						
Dead load factor	5	γ _{f.d} = 1.4										
Live load factor		γ _{f I} = 1.6										
Earth and water pressure factor		γ _{f_e} = 1.4										
Factored vertical forces on wa	all											
Wall stem		$W_{wall f} = \gamma_{f d}$	\times h _{stem} \times t _{wall} \times $^{-1}$	wall = 37.6 kN/m								
Wall base		Wbase $f = \gamma f$	$_{ m d} imes {\sf I}_{ m base} imes {\sf t}_{ m base} imes$	γ _{base} = 35.3 kN/r	n							
Surcharge		$W_{sur_f} = \gamma_{f_i}$	< Surcharge × I	neel = 0.8 kN/m								
Moist backfill to top of wall		$W_{m_w_f} = \gamma_{f_c}$	$1 \times I_{\text{heel}} \times (h_{\text{stem}} -$	h_{sat}) $\times \gamma_m = 3$ kN	l/m							
Saturated backfill		$w_{s_f} = \gamma_{f_d} \times$	$I_{\text{heel}} \times h_{\text{sat}} \times \gamma_{\text{s}}$	= 15.6 kN/m								
Applied vertical load		$W_{v_f} = \gamma_{f_d}$	$\langle W_{dead} + \gamma_{f_l} \times V_{dead}$	V _{live} = 60 kN/m								
Total vertical load		$W_{total_f} = w_{wall_f} + w_{base_f} + w_{sur_f} + w_{m_w_f} + w_{s_f} + W_{v_f} = \textbf{152.3 kN/m}$										
Factored horizontal at-rest for	ces on wall	all										
Surcharge		$F_{sur_f} = \gamma_{fl} \times K_0 \times Surcharge \times h_{eff} = \textbf{8.5 kN/m}$										
Moist backfill above water table		$F_{m_a_f} = \gamma_{f_e} \times 0.5 \times K_0 \times \gamma_m \times (h_{eff} - h_{water})^2 = \textbf{2.7 kN}/m$										
Moist backfill below water table		$F_{m_b_f} = \gamma_{f_e}$	$\times K_0 \times \gamma_m \times (h_{\text{eff}}$	$_{\rm f}$ - h _{water}) $ imes$ h _{water} =	= 26.8 kN/m							
Saturated backfill		$F_{s_f} = \gamma_{f_e} \times 0.5 \times K_0 \times (\gamma_{s-} \gamma_{water}) \times h_{water}^2 = \textbf{41.6 kN/m}$										
Water		$F_{water_f} = \gamma_{f_e} \times 0.5 \times h_{water}^2 \times \gamma_{water} = 61.8 \text{ kN/m}$										
Applied horizontal load		$F_{h_{f}} = \gamma_{i_{e}} \times F_{dead} + \gamma_{i_{l}} \times F_{live} = 49 \text{ kN/m}$										
Total horizontal load		$F_{total_f} = F_{sur_f} + F_{m_a_f} + F_{m_b_f} + F_{s_f} + F_{water_f} + F_{h_f} = 190.3 \text{ kN/m}$										
Calculate propping force												
Passive resistance of soil in fror	nt of wall	$\textbf{F}_{p_f} = \gamma_{f_e} \times 0.5 \times K_p \times \text{COS}(\delta_b) \times (\textbf{d}_{cover} + \textbf{t}_{base} + \textbf{d}_{ds} - \textbf{d}_{exc})^2 \times \gamma_{mb} = \textbf{6.1}$										
RN/m Propping force		$F_{prop_{f}} = max(F_{total_{f}} - F_{p_{f}} - (W_{total_{f}} - w_{sur_{f}} - \gamma_{f_{l}} \times W_{live}) \times tan(\delta_{b}), 0 \text{ kN/m})$ $F_{prop_{f}} = \mathbf{144.0 kN/m}$										
Factored overturning moment	e	hh ⁻ .										
Surcharge		$M_{sur f} = F_{sur}$	$_{\rm f} \times (h_{\rm eff} - 2 \times d)$	_{ds}) / 2 = 15.3 kNn	n/m							
Moist backfill above water table		$M_{m_a_f} = F_{m_a}$	 _a_f × (h _{eff} + 2 ×	h_{water} - 3 × d _{ds}) / 3	8 = 8.6 kNm/m							
Moist backfill below water table		$M_{m_b_f} = F_{m_b}$	$_{b_f} \times (h_{water} - 2)$	× d _{ds}) / 2 = 40.1 k	:Nm/m							
Saturated backfill		$M_{s_f} = F_{s_f} >$	$<$ (h _{water} - 3 \times d _{ds}) / 3 = 41.6 kNm/	′m							
Water		$M_{water_f} = F_v$	$_{\rm vater_f} imes$ (h _{water} - 3	8 × d _{ds}) / 3 = 61.8	kNm/m							
Applied horizontal load		$M_{hor_f} = F_{h_f}$	\times h _{load} = 49 kN	m/m								
Total overturning moment		$M_{ot_f} = M_{sur_f}$	_f + Mm_a_f + Mm	_b_f + Ms_f + Mwater	_f + Mhor_f = 216	6.4 kNm/m						
Restoring moments												
Wall stem		$M_{wall_f} = w_{wall_f} \times (I_{toe} + t_{wall} / 2) = 100.5 \text{ kNm/m}$										
Wall base		$M_{base_f} = W_b$										
Surcharge		$M_{sur_f} = W_s$	ו									
Moist backfill		$M_{m_r_f} = (w_{m_w_f} \times (I_{base} - I_{heel} / 2) + w_{m_s_f} \times (I_{base} - I_{heel} / 3)) = 8.9 \text{ kN}$										
Saturated backfill		$M_{s_r_f} = w_{s_f} \times (I_{base} - I_{heel} / 2) = \textbf{46} \text{ kNm/m}$										
Design vertical load		$M_{v_f} = W_{v_f} \times I_{load} = 160.5 \text{ kNm/m}$										
I otal restoring moment		$M_{rest_f} = M_{wall_f} + M_{base_f} + M_{sur_f} + M_{m_r_f} + M_{s_r_f} + M_{v_f} = 372.1 \text{ kNm/s}$										

					Start page no /Bevision					
Mitchinson Macken Ltd	Calos lor	Retaining	wall A-A	Start page no./Re	6					
100 North Road	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date				
BN1 1YE	SM	16/07/2019	MM							
Factored bearing pressure										
Total moment for bearing		M _{total_f} = M _{re}	est_f - M _{ot_f} = 155.	7 kNm/m						
Total vertical reaction		$R_f = W_{total_f}$	= 152.3 kN/m							
Distance to reaction		$x_{bar_f} = M_{tota}$	_f / R _f = 1022 mi	n						
Eccentricity of reaction		$e_f = abs((I_{ba}$	_{ase} / 2) - x _{bar_f}) = \$	5 03 mm						
				Reaction acts v	vithin middle	third of base				
Bearing pressure at toe		$p_{toe_f} = (R_f / $	I_{base}) + (6 × R _f ×	$e_f / I_{base^2} = 99.3$	kN/m ²					
Bearing pressure at heel		$p_{\text{heel}_f} = (R_f)$	/ I _{base}) - (6 $ imes$ R _f $ imes$	$e_f / I_{base}^2) = 0.6 I$	κN/m²					
Rate of change of base reaction	1	$rate = (p_{toe})$	$f - p_{heel_f}) / I_{base} =$	32.37 kN/m ² /m						
Bearing pressure at stem / toe		$p_{stem_toe_f} = 1$	max(p _{toe_f} - (rate	imes I _{toe}), 0 kN/m ²)	= 18.4 kN/m ²					
Bearing pressure at mid stem		$p_{stem_mid_f} =$	max(p _{toe_f} - (rate	\times (I _{toe} + t _{wall} / 2))	, 0 kN/m²) = 1	2.7 kN/m²				
Bearing pressure at stem / heel		$p_{stem_heel_f} =$	max(p _{toe_f} - (rate	$e \times (I_{toe} + t_{wall})), 0$	$kN/m^{2}) = 7 kN$	l/m²				
Design of reinforced concrete	retaining wall	toe (BS 8002:1	994 <u>)</u>							
Material properties										
Characteristic strength of concre	ete	f _{cu} = 35 N/n	nm²							
Characteristic strength of reinfo	rcement	f _y = 500 N/r	nm²							
Base details										
Minimum area of reinforcement		k = 0.13 %								
Cover to reinforcement in toe		c _{toe} = 45 mm								
Calculate shear for toe desigr	1									
Shear from bearing pressure		$V_{toe_bear} = (p$	Dtoe_f + pstem_toe_f)	\times I _{toe} / 2 = 147.1	kN/m					
Shear from weight of base		V _{toe_wt_base} =	$\gamma_{f_d} imes \gamma_{base} imes I_{toe}$	× t _{base} = 28.9 kN	/m					
Total shear for toe design		$V_{toe} = V_{toe_b}$	$_{ear}$ - V _{toe_wt_base} =	118.1 kN/m						
Calculate moment for toe des	ign									
Moment from bearing pressure		$M_{toe_bear} = (2)$	$2 \times p_{toe_f} + p_{stem_r}$	$_{ m mid}_{ m f}) imes (I_{ m toe}$ + $t_{ m wall}$)	/ 2) ² / 6 = 252	kNm/m				
Moment from weight of base		M _{toe_wt_base} =	= ($\gamma_{f_d} imes \gamma_{base} imes t_{base}$	$a_{se} imes (I_{toe} + t_{wall} / 2)$	2) ² / 2) = 41.4	«Nm/m				
Total moment for toe design		$M_{toe} = M_{toe}$	bear - Mtoe_wt_base =	= 210.6 kNm/m						
350	•	• •	•	●						
	◄ —175—1	M								
Check toe in bending		1 1000								
Width of toe		b = 1000 m	m/m	000 F						
		$a_{toe} = t_{base} - $	$-c_{\text{toe}} - (\phi_{\text{toe}}/2) =$	292.5 mm						
Constant		$n_{toe} = NI_{toe} /$	$(U \times U_{toe}^{-} \times I_{cu}) =$		forocment !-	not reactive d				
Lever arm		z _{toe} = min(0 z _{toe} = 268 m	.5 + √(0.25 - (mi ım	in(K _{toe} , 0.225) / 0	0.9)),0.95) × dtd	not required				

	1									
	Project PARSIF	AL HOUSE - 521 F	INCHLEY RO	AD LONDON	Job no. 1	9313				
Mitchinson Macken Ltd	Calcs for	Potoinin			Start page no./	Revision				
Unit 1 100 North Boad						7				
BN1 1YE	Calcs by SM	Calcs date 16/07/2019	Checked by MM	Checked date	Approved by	Approved date				
Area of tension reinforcement r	equired	$A_{s \text{ top des}} = M_{\text{top}} / (0.87 \times f_v \times z_{\text{top}}) = 1810 \text{ mm}^2/\text{m}$								
Minimum area of tension reinfo	rcement	$A_{s_toe_min} = 1$	$k \times b \times t_{base} = 4$	155 mm²/m						
Area of tension reinforcement r	equired	$A_{s_toe_req} = I$	Max(As_toe_des, A	$A_{s_toe_min}$) = 1810	mm²/m					
Reinforcement provided		25 mm dia	.bars @ 175 r	nm centres						
Area of reinforcement provided		$A_{s_toe_prov} =$	2805 mm²/m							
		PASS - Rein	forcement pr	ovided at the rea	taining wall to	pe is adequate				
Check shear resistance at toe	9									
Design shear stress		$v_{toe} = V_{toe} /$	$(b \times d_{toe}) = 0.4$	04 N/mm ²						
Allowable shear stress		$v_{adm} = min($	$0.8 imes \sqrt{(f_{cu} / 1)}$	N/mm²), 5) × 1 N/	mm² = 4.733 l	N/mm²				
		PASS -	Design shea	r stress is less t	han maximur	n shear stress				
From BS8110:Part 1:1997 – T	able 3.8									
Design concrete shear stress		Vc_toe = 0.7 5	54 N/mm ²							
			Vto	oe < Vc_toe - No sh	ear reinforce	ment required				
Design of reinforced concrete	e retaining wa	all heel (BS 8002:	1994 <u>)</u>							
Material properties										
Characteristic strength of concr	ete	f _{cu} = 35 N/mm ²								
Characteristic strength of reinfo	rcement	f _y = 500 N/mm ²								
Base details										
Minimum area of reinforcement		k = 0.13 %								
Cover to reinforcement in heel		c _{heel} = 40 mm								
Calculate shear for heel desig	ŋn									
Shear from bearing pressure		$V_{heel_bear} = ($	pheel_f + pstem_h	$_{eel_f}) \times I_{heel} / 2 = 0$.8 kN/m					
Shear from weight of base		$V_{\text{heel}_wt_base} = \gamma_{f_d} \times \gamma_{\text{base}} \times I_{\text{heel}} \times t_{\text{base}} = 2.3 \text{ kN/m}$								
Shear from weight of moist bac	kfill	V _{heel_wt_m} =	w _{m_w_f} = 3 kN/r	n						
Shear from weight of saturated	backfill	$V_{heel_wt_s} = V_{heel_wt_s}$	<i>w</i> s_f = 15.6 kN/	m						
Shear from surcharge		$V_{heel_sur} = W$	/ _{sur_f} = 0.8 kN/n	n						
Total shear for heel design		$V_{heel} = -V_{heel}$	eel_bear + Vheel_w	$t_{base} + V_{heel_wt_m} -$	+ Vheel_wt_s + Vr	eel_sur = 21				
kN/m										
Calculate moment for heel de	sign									
Moment from bearing pressure		$M_{heel_bear} =$	$(2 \times p_{\text{heel}_f} + p_s)$	tem_mid_f) $ imes$ (Iheel + 1	$t_{wall} / 2)^2 / 6 = 0$).3 kNm/m				
Moment from weight of base		$M_{heel_wt_base}$	= ($\gamma_{f_d} \times \gamma_{base} \times$	$t_{base} imes (I_{heel} + t_{wall})$	/ 2) ² / 2) = 0.8	kNm/m				
Moment from weight of moist ba	ackfill	$M_{heel_wt_m} = w_{m_w_f} \times (I_{heel} + t_{wall}) / 2 = 0.8 \text{ kNm/m}$								
Moment from weight of saturate	ed backfill	$M_{heel_wt_s} = 1$	$w_{s_f} \times (I_{heel} + t_w)$	all) / 2 = 4.3 kNm/	'n					
Moment from surcharge		$M_{heel_sur} = W_{heel_sur}$	$I_{\rm sur_f} imes (I_{ m heel} + t_{ m w})$	_{vall}) / 2 = 0.2 kNm	/m					
Total moment for heel design		M _{heel} = - M	heel_bear + Mheel_	_wt_base + Mheel_wt_m	+ Mheel_wt_s + I	Mheel_sur = 5.8				
kNm/m										

MACKEN) \Project PARSIF	AL HOUSE - 521	FINCHLEY RC	DAD LONDON	Job no. 1	9313
Mitchinson Macken Ltd	Calcs for	Betainin	g Wall A-A		Start page no./	Revision 10
100 North Road BN1 1YE	Calcs by SM	Calcs date 16/07/2019	Checked by MM	Checked date	Approved by	Approved
Design service stress		$f_s = 2 \times f_y >$	< A _{s stem req} / (3	$\times A_{s \text{ stem prov}}$ = 10)2.0 N/mm ²	
Modification factor	factor _{tens} = m	in(0.55 + (477 N/n	nm ² - f _s)/(120 >	< (0.9 N/mm ² + (M	$l_{stem}/(b \times d_{stem}^2)$)))),2) = 1.
Maximum span/effective dep	th ratio	ratio _{max} = r	$\operatorname{atio}_{\operatorname{bas}} imes \operatorname{factor}$	tens = 11.46		
Actual span/effective depth r	atio	ratio _{act} = h	_{stem} / d _{stem} = 11	.25		
				PASS - Span	to depth ratio	is accep

<u>STAGE 5</u> <u>strike shutter</u>

<u>STAGE 1</u> LOCALISED LEVEL REDUCTION

CEMENT BOARD TO BE INSTALLED BEHIND PROPOSED PIN, CEMENT BOARD TO BE SACRIFICIAL 100x100 TIMBER STRUTS TO BRACE REDUCED DIG AND TO SUPPORT PLY SHEETS TO SIDES, FRONT AND CEWENTITIOUS BOARD TO REAR OF PROPOSED PIN

<u>STAGE 4</u> ERECT SHUTTER CONCRETE STEAM OR UNDERPIN

<u>STAGE 7</u> COMMENCE EXCAVATION

<u>STAGE 3</u> CONCRETE BASE OF UNDERPIN

<u>STAGE 6</u> COMMENCE EXCAVATION

<u>STAGE 8</u> <u>cast slab</u>

 NOTES	
OORIGINAL ISSUEXXXMJBREVDESCRIPTIONDATEBY	
MITCHINSON	
Unit 1, 100 North Road, Brighton, East Sussex, BN1 1YE T: 01273 609742 M: 07968 188928	
W: www.mitchinsonmacken.co.uk E: info@mitchinsonmacken.co.uk	
PROJECT PARSIFAL HOUSE	
521 FINCHLEY ROAD LONDON	
WORKS	
DRAWING No. REV CHECKED	
 SCALE DATE DRAWN APPROVED As Shown July 19 MJB APPROVED	

0	1	2	3
Scale i	n Metres (1:50 at	A1)	

5m

REV DATE DRAWN AMENDMENT		AENDMENT		Studios 18-19, 16 Porteus Place,	Project	Garages at Parsifal					Drawing No. 1850/P/100/2			
			Granit		Clapham, London SW4 UAS	For	Gary Sugarman	1		÷.		Drawing	Basement Floor Plan	Revision
			•	Architecture + Interiors	Image: Structure structur		Project Parsifal House, 521 Finchley Road, Address London NW3 7BT					*		
						Scale	1:100 @ A3	Date	04/07/2019	Drawn	JW & MG	Purpose	FOR INFORMATION	
				© GRANIT CHARTERED ARCHITECTS LTD	THIS DRAWING HAS BEEN PRODUCED FOR THE NAMED CLIENT AND NAMED PROJECT AND IS NOT INTENDED FOR USE BY ANY OTHER PERSON OR FOR ANY OTHER PURPOSE.	Notes	IF THIS DRAWING HAS E CHECKED ON-SITE, PLE DISCREPANCIES TO BE	EEN ISSUED 'FO ASE CONTACT A RAISED WITH CO	R CONSTRUCTION' DO NO RCHITECT IF YOU REQUIRE NTRACT ADMINISTRATOR.	T SCALE DIRECTLY CONFIRMATION C	FROM IT. ALL DIMENSIONS TO BE F ANY DIMENSIONS. ANY	File	1850_Parsifal_House_CURRENT_201906	i03.pln