


Load duration factor	k _t = 0.4		
Effective area of concrete in tension	$A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$		
	A _{c.eff} = 90958 mm ² /m		
Mean value of concrete tensile strength	$f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$		
Reinforcement ratio	$\rho_{p,eff} = A_{bb,prov} \ / \ A_{c,eff} = 0.015$		
Modular ratio	$\alpha_{e} = E_{s} / E_{cm} = 6.091$		
Bond property coefficient	k ₁ = 0.8		
Strain distribution coefficient	k ₂ = 0.5		
	k ₃ = 3.4		
	k ₄ = 0.425		
Maximum crack spacing - exp.7.11	$s_{r.max} = k_3 \times c_{bb} + k_1 \times k_2 \times k_4 \times \phi_{bb} / \rho_{p.eff} = \textbf{440} mm$		
Maximum crack width - exp.7.8	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s}) / E_{s}$		
	w _k = 0.217 mm		
	W _k / W _{max} = 0.722		
	PASS - Maximum crack width is less than limiting crack width		
Rectangular section in shear - Section 6.2			
Design shear force	V = 46.5 kN/m		
	$C_{\text{Rd,c}} = 0.18 / \gamma_{\text{C}} = 0.120$		
	$k = min(1 + \sqrt{200 \text{ mm / d}}), 2) = 1.960$		
Longitudinal reinforcement ratio	$\rho_{I} = min(A_{bb,prov} / d, 0.02) = 0.006$		
	$v_{min} = 0.035 \; N^{1/2} / mm \times k^{3/2} \times f_{ck}^{0.5} = \textbf{0.526} \; N / mm^2$		
Design shear resistance - exp.6.2a & 6.2b	$V_{\text{Rd.c}} = max(C_{\text{Rd.c}} \times k \times (100 \text{N}^2/\text{mm}^4 \times \rho_\text{I} \times f_{\text{ck}})^{1/3}, v_{\text{min}}) \times d$		
	V _{Rd.c} = 135.1 kN/m		
	V / V _{Rd.c} = 0.344		
	PASS - Design shear resistance exceeds design shear force		
Secondary transverse reinforcement to base - S	Section 9.3		
Minimum area of reinforcement – cl.9.3.1.1(2)	$A_{bx,req} = 0.2 \times A_{bb,prov} = 268 \text{ mm}^2/\text{m}$		
Maximum spacing of reinforcement – cl.9.3.1.1(3)			
Transverse reinforcement provided	10 dia.bars @ 200 c/c		
Area of transverse reinforcement provided $A_{bx,prov} = \pi \times \phi_{bx}^2 / (4 \times s_{bx}) = 393 \text{ mm}^2/\text{m}$			
PASS - Area of re	einforcement provided is greater than area of reinforcement required		

Basement 3D analysis

Deformation < 10mm

Base Slab

300 thick slab. Strength OK as max stresses due to retained loads. Approximate long term heave potential: = 0.5 x depth of excavation x density of soil = 0.5*2.2x18 = 19.8kN/m²

Weight of basement RC slabs + screeds = (.3+.2+.15)*25 = 16.5kN/m² Weight of basement walls = 20*25*2.5*0.25/5/10 = 6.25kN/m² Weight of superstructure = 1.5kN/m²

Total new structure = 24.25kN/m² > 19.8kN/m²

∴OK

∴OK

Ground Slab

200 thick two-way spanning slab, spanning 5.5m. From Concrete Centre Economic Concrete Elements guide [extract below] the overall depth required ~140mm < 200mm

Data for two-way solid slabs: single span				
SINGLE span, m	4.0	5.0	6.0	
Overall depth, mm				
$IL = 2.5 \text{ kN/m}^2$	125	129	153	
$IL = 5.0 \text{ kN/m}^2$	125	144	170	
$IL = 7.5 \text{ kN/m}^2$	128	156	183	
$IL = 10.0 \text{ kN/m}^2$	138	168	197	

Table 3.6a