consulting Structural Engineers Consulting Civil Engineers

12 Park Village West

Construction Method Statement

• London 1-5 Offord Street London N1 1DH Telephone 020 7700 6666

Norwich

6 Upper King Street Norwich NR3 1HA Telephone 01603 628 074

Cambridge

16 Signet Court Swann Road Cambridge CB5 8LA Telephone 01223 656 058

design@conisbee.co.uk www.conisbee.co.uk

Directors

Tim Attwood BSc CEng MIStructE Bob Stagg BSc (Hons) CEng FIStructE MICE Tom Beaven BEng (Hons) CEng MIStructE Allan Dunsmore BEng (Hons) CEng MIStructE MICE Richard Dobson MEng CEng MIStructE Paul Hartfree IEng MICE MCIHT FGS Ben Heath BEng CEng MIStructE

Associates

David Richards BEng (Hons) ACGI CEng MIStructE Gary Johns Terry Girdler BSc (Hons) Eng MSc CEng FICE MIStructE Conservation accredited engineer (CARE) Tom Lefever BEng (Hons) CEng C.WEM MICE MCIWEM Nigel Nicholls IEng AMIStructE Denis Kealy BEng (Hons) CEng MIEI MIStructE Kevin Clark BSc (Hons) PhD DIC CEng MICE Paul Cosford CEng MICE MCIHT

Consultant

Alan Conisbee BA BAI CEng MIStructE Conservation accredited engineer (CARE) Chris Boydell BSc CEng MIStructE MICE

Conisbee is a trading name of Alan Conisbee and Associates Limited Registered in England No. 3958459

Ref: 140627/M Tulloch BEng MEng Approved by: C Boydell BSc CEng MIStructE MICE Date: 30 September 2019 Rev No: 2

1.0 INTRODUCTION & BRIEF

- 1.1 The purpose of this report is to consider the construction and condition of the existing buildings on the site of 12 Park Village West and consider how the proposed basement structure can be constructed safely without compromising the structural integrity of the existing buildings or those adjacent to the site.
- 1.2 The report is based on planning drawings produced by Watson, Bertram & Fell Ltd and a visual inspection of the building.
- 1.3 This report has been prepared to outline the proposed construction method with outline calculations and the related structural drawings and sections.

2.0 SITE INFORMATION

- 2.1 12 Park Village West, Camden is an early Victorian detached 'villa' style property, designed by office of John Nash and comprises a three storey house in an Italian style with a octagonal tower toward the road built in 1834-37. The house is Grade II Listed. The construction, typical for buildings of this era, has load bearing masonry walls and timber floors. The proposed development is structurally isolated from the main property.
- 2.2 The house lies within the generally gentle sloped setting toward Regents Canal. Although the areas to either side of no 12 are relatively flat, the site is divided into two levels: the front house and garage levelled with Park Village West road, and a lower ground level toward the garden facing Regents Canal area, with an approximately 3m difference in level.
- 2.3 The three surrounding properties: No. 11, 13-14 and 204 Albany Street are a reasonable distance from the proposed works; therefore the adjacent properties' foundations are outside the 45 degree line of influence taken from the bottom of the excavation.
- 2.4 The proposed basement development will be situation under the existing coach house. The construction consists of load bearing masonry walls, timber floor and a timber roof. A visual inspection of the site has indicated movement to the rear flank wall. A reinforced concrete box, with walls cast under the existing structure will allow the existing structure to be stabilised while creating useable living space.
- 2.5 A Basement Impact Assessment Screening and Scoping Report has been completed for the site and concludes that there are no negative impacts anticipated in this basement proposal on the hydro-geological and hydrological conditions of the local environment that cannot be suitably addressed in the detailed design of this proposal.

3.0 PROPOSED WORKS

- 3.1 In outline the main proposed structural works consist of:
 - Supporting the existing structure in the temporary state to allow for excavations;
 - Reducing the existing ground level under the coach house by approximately 4.0m in order to provide a new basement structure;
 - The construction of new reinforced concrete "box" to form the basement.
- 3.2 A reinforced concrete retaining wall, which will be designed to act as simply supported, will provide the retaining structure. The basement slab will be designed for potential overburden pressures, resisted by self weight and the frictional resistance of the concrete "box" in the ground. The ground floor will consist of a reinforced concrete slab, supported on the retaining walls and acting as a prop to the top of the retaining wall.
- Outline sketch proposals for the basement construction are shown in drawings S100, S101, S200 in Appendix A.
- 3.4 Outline structural calculations are included in Appendix B.

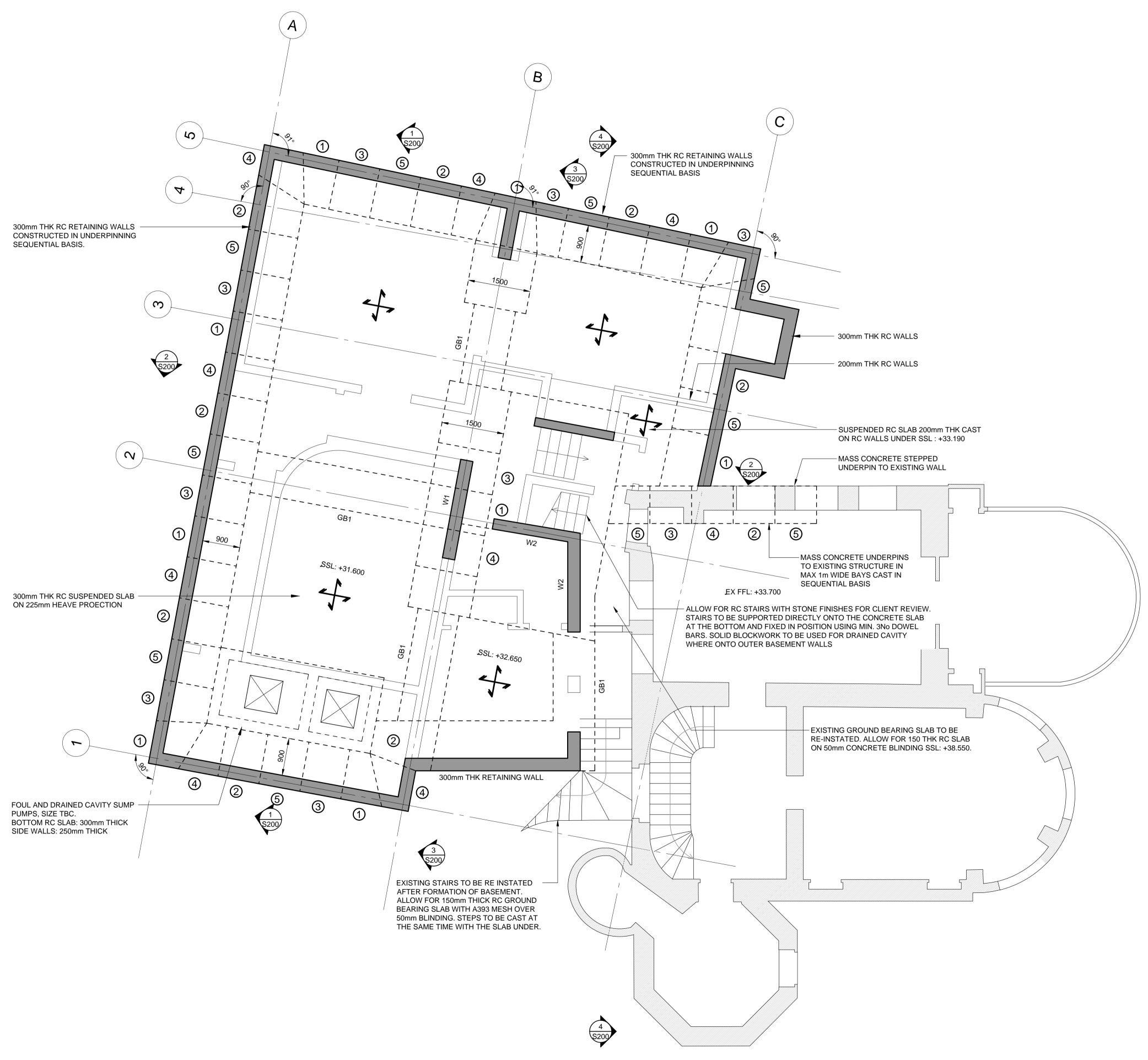
4.0 DESIGN & OUTLINE CONSTRUCTION METHOD STATEMENT

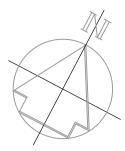
- 4.1 SSK001, in Appendix C, shows the stages of construction on a typical cross-section through the site as detailed in the method statement below. S099 shows the proposed temporary works required to support the existing structure during construction.
- 4.2 The retaining wall will be constructed in an underpinning type sequence to ensure the stability of the existing building is not compromised. The underpinning works should be carried out by a competent contractor, experienced with these types of operations and, preferably accredited with the Association of Specialist Underpinning Contractors (ASUC).
- 4.3 Phase 1 Locally break out existing slab and install Pynford beams under loading bearing walls. Install temporary piles to support Pynford beams. Demolition of the existing ground bearing slab once all temporary works are installed.
- 4.4 Phase 2 The first stage of underpinning is to be carried out in traditional 1.0m wide sections to minimise the risk of damage to the existing walls. The depth of the underpinning sections will be over 1.5m so temporary shoring should be used to ensure the stability of the excavations are maintained during the formation of the pins particularly where increased depths of made ground are encountered.

- 4.5 Each section of underpinning is to be tied to the adjacent section using either pre-fixed or postfixed dowels and surfaces prepared to provide a shear key between each section. Hydrophilic water stops are to be applied to each joint before pouring of new sections to ensure water tightness is achieved.
- 4.6 Horizontal propping is to be installed before the ground level is fully reduced to the level required to undertake the second stage of underpinning.
- 4.7 Phase 3 The second stage of underpinning should be carried out in 1.0m bays similar to the first stage. Vertical bars from the first stage of underpinning should lap with reinforcement in the second stage pins in order to provide full continuity. As with the vertical joints hydrophilic are to be installed to the horizontal surface to prevent water ingress through the joints.
- 4.8 Horizontal propping is to be installed to the second stage pins in order to allow excavation to the base slab formation level.
- 4.9 Phase 4 Construction of basement slab. Reinforcement from the lower underpinning sections is to be fully continuous with that present in the base slab which can be achieved using mechanical couplers.
- 4.10 Phase 5 Construction of ground floor slab. Temporary propping can be removed once ground floor slab is fully cast and cured. Temporary piles to be broken down.

5.0 SUMMARY

The proposed development of 12 Park Village West is to construct a single storey basement under the existing coach house. The development allows for the stabilisation of the existing building, which is suffering from significant movement, while creating a useable living space.


The construction sequence indicated within this document allows for the basement to be constructed in a manner that is safe and economic considering the scale of the building.


The works to 12 Park Village West, although complicated, should not be unfamiliar to a competent and experienced groundwork contractor and are relatively modest.

Appendix A – Structural Drawings and Sections

_

_

GENERAL NOTES

- 1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS, ENGINEERS AND SPECIALIST DRAWINGS AND SPECIFICATIONS
- 2. DO NOT SCALE FROM THIS DRAWING IN EITHER PAPER OR DIGITAL FORM. USE WRITTEN DIMENSIONS ONLY.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR THE DESIGN AND INSTALLATION OF ALL TEMPORARY WORKS AND SHALL SEQUENCE THE WORKS SUCH THAT THE BUILDING REMAINS STABLE AT ALL TIMES.
- 4. TREES NOT SHOWN FOR CLARITY. REFER TO TREES CONSTRAINTS PLAN BY LANDMARK TREES FOR TREES LOCATIONS AND SPECIES.

REINFORCED CONCRETE NOTES

- 1. CONCRETE TO BE GRADE RC 32 / 40
- 2. REINFORCING TO BE GRADE 500 B HIGH YIELD TO BS 4445 / BS EN 10080.
- 3. CONCRETE BELOW GROUND TO CONFORM TO ACEC CLASS AC-2 AND DESIGN SULPHATE CLASS DS-3.
- 4. ALLOW FOR WATERPROOFING RENDER TO CONCRETE FORMING RETAINING WALLS AND BASEMENT SLABS TO SPECIALIST DETAILS.

STEELWORK NOTES

- 1. ALL STEEL TO BE GRADE S355 TO BS EN 10025.
- 2. THE FABRICATOR IS TO DESIGN AND DETAIL ALL CONNECTIONS NOT SHOWN ON CONISBEE DRAWINGS.

WALL CONSTRUCTION LEGEND

SYMBOL	DESCRIPTION
INDICATES NEW RC WALL	
INDICATES EXISTING STRUCTURE RETAINED	
	INDICATES NEW BRICKWORK
	INDICATES NEW BLOCKWORK

WALL CONSTRUCTION LEGEND			
DESCRIPTION			
INDICATES SPAN OF 300mm THICK RC SUSPENDED SLAB ON 225mm HEAVE PROTECTION			
INDICATES SPAN OF RC SUSPENDED SLAB. REFER TO PLANS FOR DEPTHS.			
INDICATES ASSUMED SPAN OF EXISTING FLOOR			
INDICATES SPAN OF TIMBER FLOOR JOISTS. REFER TO PLAN FOR SIZES AND SPACING.			

GROUND BEAM SCHEDULE

MARK	DESCRIPTION
GB1	1000x525 DP RC GROUND BEAM

WALL SCHEDULE

MARK	DESCRIPTION
W1	300 THICK RC WALL
W2	200 THICK RC WALL

UNDERPINNING NOTES

- 1. UNDERPINS TO EXISTING STRUCTURE IN MAX. 1m WIDE BAYS CAST IN SEQUENTIAL BASIS. REFER TO PLAN FOR
- SUGGESTED LOCATION AND NUMBERING OF PINS. 2. PINS TO BE 525 mm DEEP UNLESS NOTED OTHERWISE.

NOT FOR CONSTRUCTION

Rev	Date	Description	Drawn	Check
P1	14.08.15	ISSUED FOR INFORMATION	MT	СВ
P2	27.05.16	ISSUED FOR INFORMATION	MT	СВ
P3	20.09.19	ISSUED FOR PLANNING	RG	GA

CONSULTING Structural Engineers

London • Cambridge • Norwich 1-5 Offord St London N1 1DH Telephone 020 7700 6666

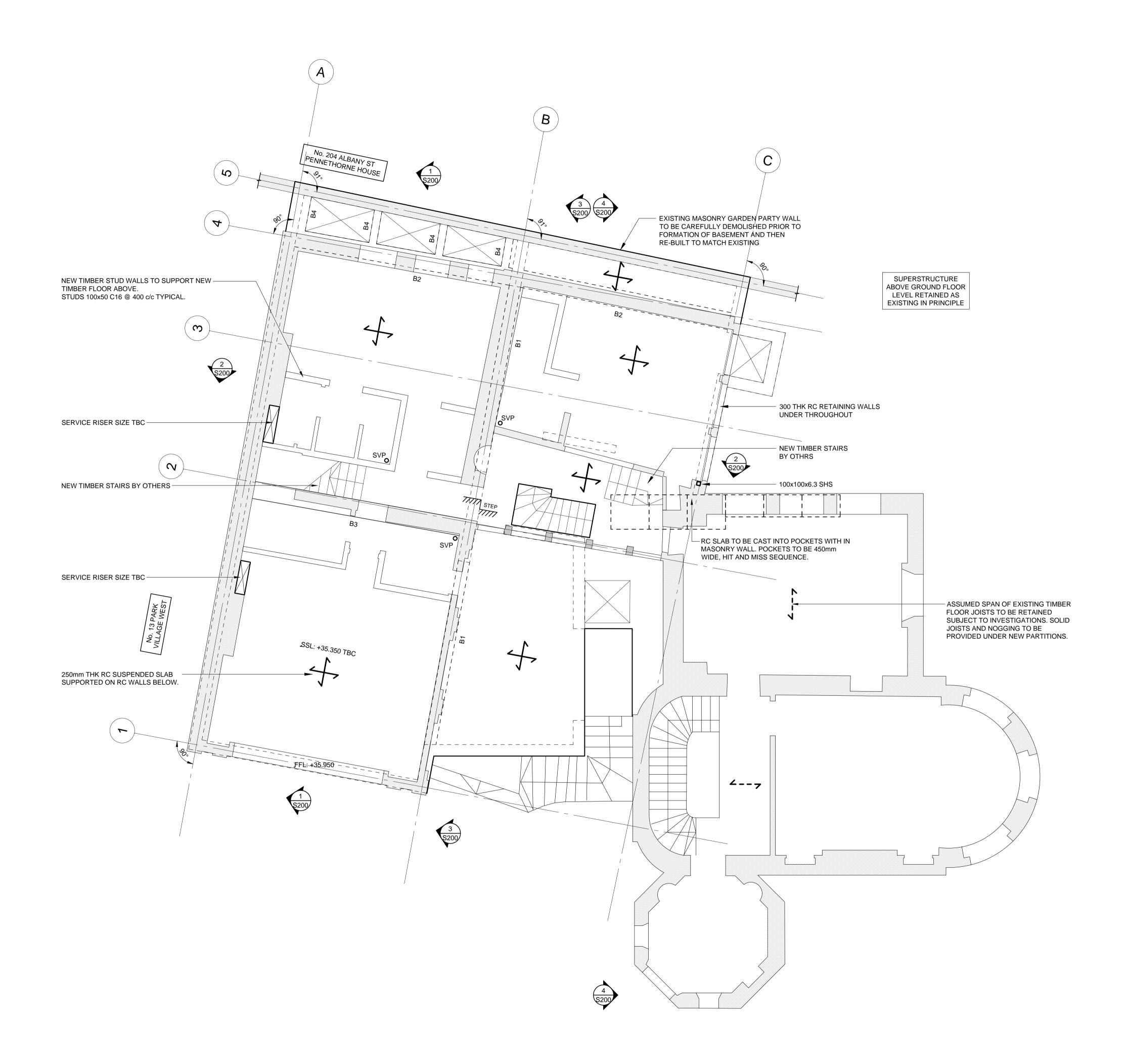
www.conisbee.co.uk

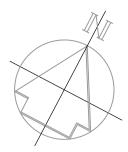
Drawing Status PLANNING

Project **12 PARK VILLAGE WEST**

BASEMENT PLAN

LONDON


Date 2018 Scale 1:50 @A1 Drawn JD Engineer GA Project No


140627

Revision **P3**

Drawing No S100

Title

GENERAL NOTES

- 1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS, ENGINEERS AND SPECIALIST DRAWINGS AND SPECIFICATIONS
- 2. DO NOT SCALE FROM THIS DRAWING IN EITHER PAPER OR DIGITAL FORM. USE WRITTEN DIMENSIONS ONLY.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR THE DESIGN AND INSTALLATION OF ALL TEMPORARY WORKS AND SHALL SEQUENCE THE WORKS SUCH THAT THE BUILDING REMAINS STABLE AT ALL TIMES.
- 4. TREES NOT SHOWN FOR CLARITY. REFER TO TREES CONSTRAINTS PLAN BY LANDMARK TREES FOR TREES LOCATIONS AND SPECIES.

REINFORCED CONCRETE NOTES

- 1. CONCRETE TO BE GRADE RC 32 / 40
- 2. REINFORCING TO BE GRADE 500 B HIGH YIELD TO BS 4445 / BS EN 10080.
- 3. CONCRETE BELOW GROUND TO CONFORM TO ACEC CLASS AC-2 AND DESIGN SULPHATE CLASS DS-3.
- 4. ALLOW FOR WATERPROOFING RENDER TO CONCRETE FORMING RETAINING WALLS AND BASEMENT SLABS TO SPECIALIST DETAILS.

STEELWORK NOTES

- 1. ALL STEEL TO BE GRADE S355 TO BS EN 10025.
- 2. THE FABRICATOR IS TO DESIGN AND DETAIL ALL CONNECTIONS NOT SHOWN ON CONISBEE DRAWINGS.

WALL CONSTRUCTION LEGEND		
SYMBOL DESCRIPTION		
	INDICATES NEW RC WALL	
INDICATES EXISTING STRUCTURE RETAINED		
	INDICATES NEW BRICKWORK	
INDICATES NEW BLOCKWORK		

WALL CONSTRUCTION LEGEND				
SYMBOL	DESCRIPTION			
	INDICATES SPAN OF 300mm THICK RC SUSPENDED SLAB ON 225mm HEAVE PROTECTION			
\leftarrow	INDICATES SPAN OF RC SUSPENDED SLAB. REFER TO PLANS FOR DEPTHS.			
INDICATES ASSUMED SPAN OF EXISTIN				
<u> </u>	INDICATES SPAN OF TIMBER FLOOR JOISTS. REFER TO PLAN FOR SIZES AND SPACING.			

BEAM SCHEDULE		
MARK	DESCRIPTION	
B1	300x525 DEEP RC PYNFORD BEAM TO PROP WALL DURING CONSTRUCTION AND FORM PERMANENT SUPPORT	
B2	450x525 DEEP RC PYNFORD BEAM TO PROP WALL DURING CONSTRUCTION AND FORM PERMANENT SUPPORT	
В3	450x450 DEEP RC PYNFORD BEAM TO PROP WALL DURING CONSTRUCTION AND FORM PERMANENT SUPPORT	
B4	200x250 DEEP RC BEAMS TO SUPPORT GLAZING/GRILL AND PROP RC RETAINING WALL	

NOT FOR CONSTRUCTION

P1	20.09.19	ISSUED FOR PLANNING	RG	GA
P2	27.05.16	ISSUED FOR INFORMATION	MT	СВ
P1	14.08.15	ISSUED FOR INFORMATION	MT	СВ
Rev	Date	Description	Drawn	Check

CONSULTING Structural Engineers Consulting Civil Engineers

London • Cambridge • Norwich 1-5 Offord St London N1 1DH Telephone 020 7700 6666 www.conisbee.co.uk

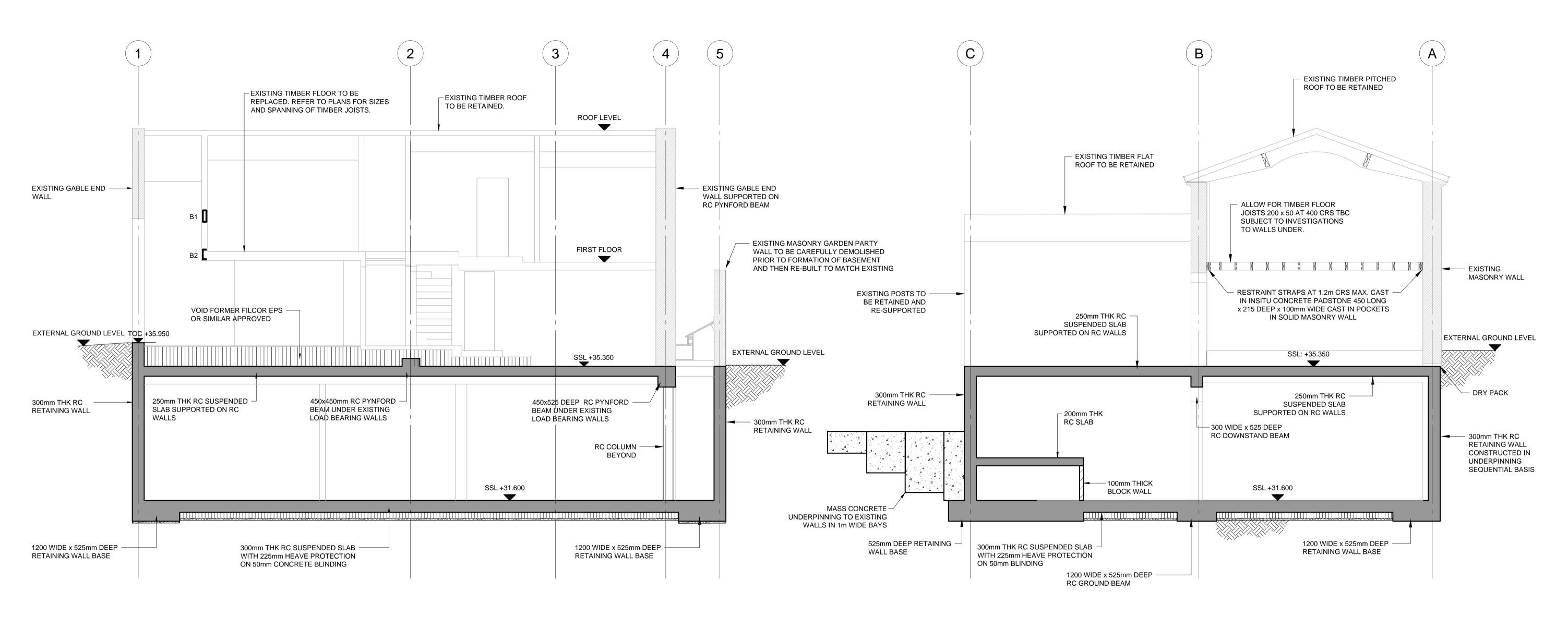
Drawing Status PLANNING

Project 12 PARK VILLAGE WEST

LONDON

Title GROUND FLOOR PLAN

Date


Drawing No S101

Drawn	JD
Engineer	GA
Project No 140627	

Scale 1:50 @A1

2018

Revision **P3**

SECTION 1-1 SCALE 1:50

SECTION 2-2 SCALE 1:50

GENERAL NOTES

- 1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS, ENGINEERS AND SPECIALIST DRAWINGS AND SPECIFICATIONS
- 2. DO NOT SCALE FROM THIS DRAWING IN EITHER PAPER OR DIGITAL FORM. USE WRITTEN DIMENSIONS ONLY.

NOT FOR CONSTRUCTION

Rev	Date	Description	Drawn	Check
P1	14.08.15	ISSUED FOR INFORMATION	MT	СВ
P2	27.05.16	ISSUED FOR INFORMATION	MT	СВ
P3	20.09.19	ISSUED FOR PLANNING	RG	GA

CONSURATE Consulting Structural Engineers

London • Cambridge • Norwich 1-5 Offord St London N1 1DH Telephone 020 7700 6666

www.conisbee.co.uk

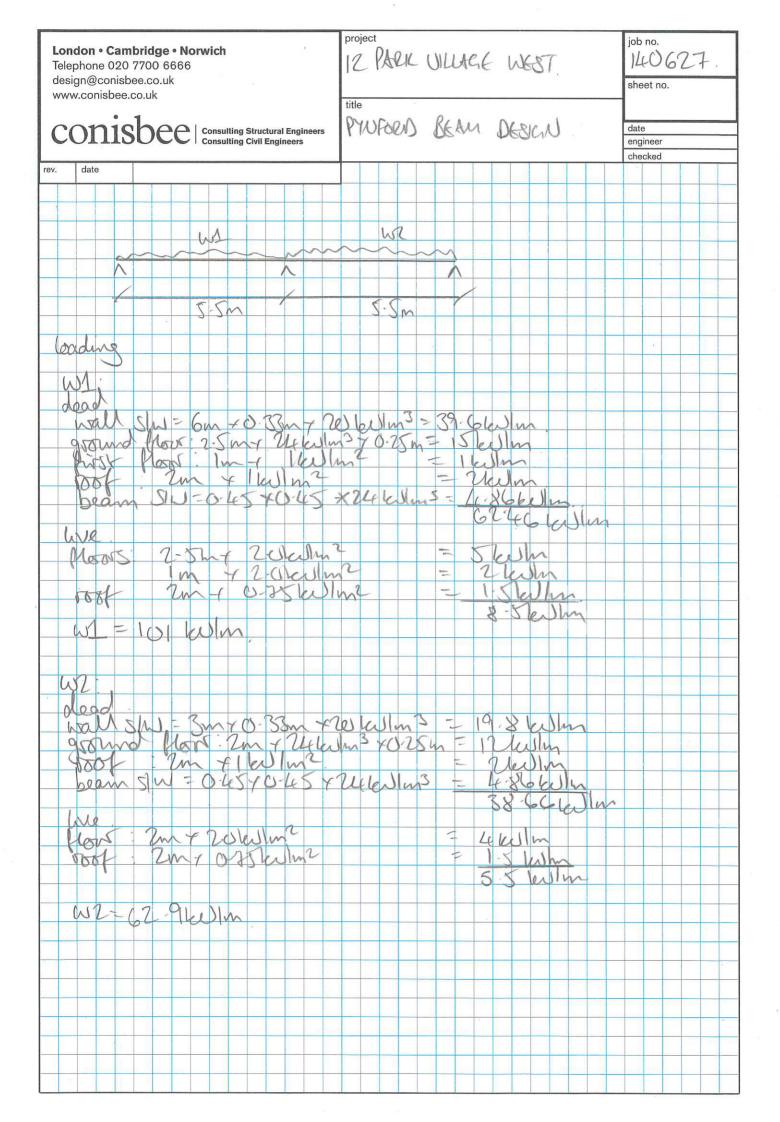
Drawing Status PLANNING

Project 12 PARK VILLAGE WEST LONDON

Title SECTIONS

SHEET 1 OF 2

Drawing No S200


Date		2018
Scale	1:50	@A1
Drawn		JD
Engine	er	GA
Project 1406		

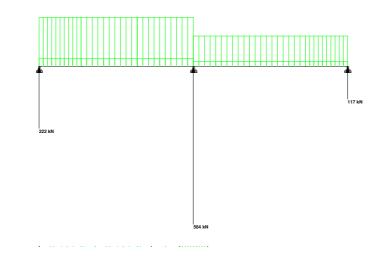
Revision **P3**

Appendix B – Outline Structural Calculations

_

_

	Job No Sh 140627	neet No Rev
Software licensed to	Part PYNFORD BEAM	
Job Title 12 PARK VILLAGE WEST	Ref	
	By Da	ate 12-08-15 Chd
Client	File pynford beam.psa	Date/Time 13-Aug-2015 16:04

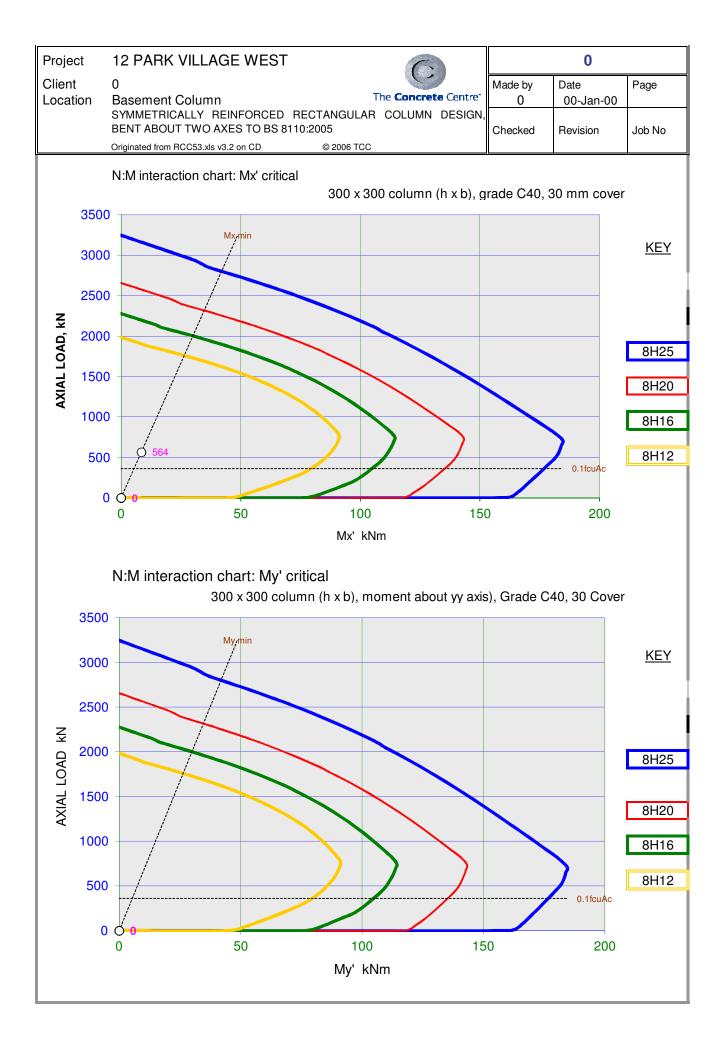

FACTORED BENDING MOMENT

	Job No 140627	Sheet No		Rev
Software licensed to	Part PYNFORD BE	AM		
Job Title 12 PARK VILLAGE WEST	Ref			
	Ву	Date 12-08	-15 Chd	
Client	File pynford beam.p	osa	Date/Time 13-Aug-	2015 16:04

FACTORED SHEAR FORCE

	Job No 140627	Sheet No		Rev
Software licensed to	Part PYNFORD B	EAM		
Job Title 12 PARK VILLAGE WEST	Ref			
	Ву	Date 12-08	B-15 CH	nd
Client	File pynford beam	.psa	Date/Time 13	-Aug-2015 17:12

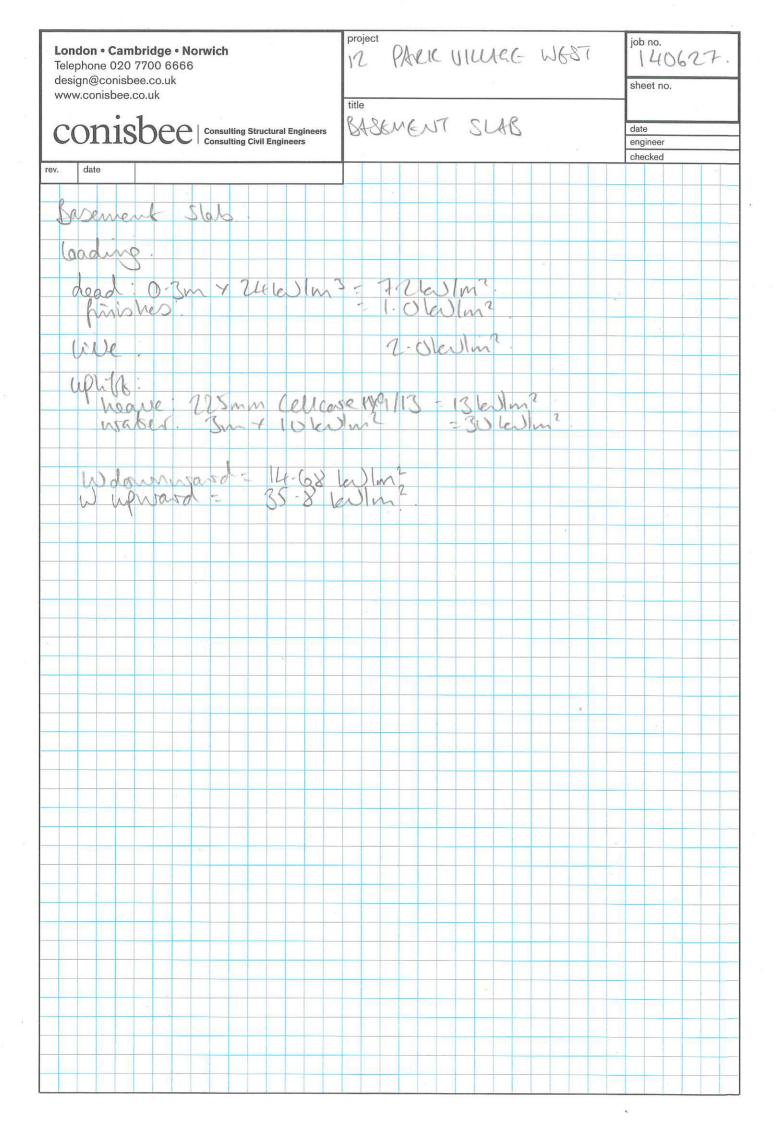
Print Time/Date: 08/04/2016 16:04


BEAM REACTIONS

	ial	• •							truct vil E				ers P	age	No.							Re	visi	on						
con	150	K	e			leph		00	Lond 20-71 20-71	700 ·	999	ô	E	ngin	eer		МТ					Da	te							
									neelo Joolu				С	hecl	ked							Da	te	. .						
Job No.	140)627	7											lob ⁻	Title		12	2 Pa	urk \	/illa	ge	We	st		<u>.</u>					·
Subject	Pyr	for	d B	ear	n																									
				<u> </u>																										
Reinfor	ced C	Con	cre	te	Bea	im	Des	sign											-											
Beam R					_																									
Dealtin	leiere	110	e					— ——				-			RC	De	eann]			
Forces									<u> </u>									Bo	am	Dir	nor		ne		_					
Maximu	m Mc	me	nt			_		<u> </u>			r	/ =	31	0	kN	m		De		ווש	IIEI	1510	115				450		mn	
Maximu				rce								v =	33		kN			Wi				—					450 450		mn	
			10									v –		- -				· · · ·	ns.	rein	ftr						35		mn	
Materia		per	ties			\vdash	-							7					mp.				_			-	35		mn	
Char. St					reir	nft						l f _y =	50	0	N/r	nm	! 2	Spa		10			<u>.</u>				30 5.5		m	
Char. St		_										.'' yv =	50		N/r														_	
Concret													4		N/r		-													
					-									-													\square			<u> </u>
Compre	ssio	n a	nd '	Tei	nsic	n F	Reir	nfor	ı. 'cer	nen	t			-																<u> </u>
Effective									<u> </u>			d =	392	2.5	mn	า														
Effective	····							inft			(]' =	57		mn															
												: k =	0.1			-													_	
Lever ar	m											 z =	33		mn	— า									<u> </u>	1				
												x =	126		mn															
Reduced	d cha	r st	ren	gth									Not re				2	Fo	r co	mp	res	sion	ı rei	nfo	rcei	mer	nt or	nlv		
Tensior	n Rein	nfoi	rce	me	nt		·								1															
Tension						uire	d				A	ν _s =	19	46	mŋ	n²														
Tension	reinf	orce	eme	ent	pro	vide	ed			A	s pro	.v =	24	54	mn	n^2		Pro	ovic	le	ł	5	н	2	5	S				
																		Tel	nsie	on i	rein	nfor	cer	nen	t o	k				
Compre	ssio	n re	einf	oro	cem	ent																								
Compre	ssion	rei	nfoi	rce	mer	nt re	equi	ired				s' =	C		mn	n²														
Compre	ssion	rei	nfoi	rce	mer	nt pi	rovi	ded	l	A	s pro	, =	24	54	mn	n²		Pro	ovic	le	1	5	н	2	5	s				
																		Co	mp	res	sio	n re	əint	t ol	k					
Shear r	einfo	rce	me	nt																	_									
Design a												v =	1.8		N/r															
Concret												/ _c =	0.8		N/r	nm	2													
Shear re				t								sv =	25		mn			Pro	ovic	le	4	2	Н	1	0	lin	ks			
Area of	shear	· lin	ks							A	v pro	-v =	31	4	mn	n²				at	2!	50	ce	ntre	s					
																		Sh	ear	lin	ks i	ok							_	
Deflecti	I																													
Basic sp					pth	rati	o						2																	
Design s												f _s =	26	4	N/r	nm	2													
Modifica													0.8																	
Modifica				•					nft)				1.:																	
Modified								0					23																	
Actual s	pan/e	effec	ctive	e d	epth	n ra	tio		<u> </u>				14	.0	<u> </u>			Sp	an/	effe	ecti	ve (dep	th	rati	0 0	ĸ			
														_	_								-							
																														
																							<u> </u>							

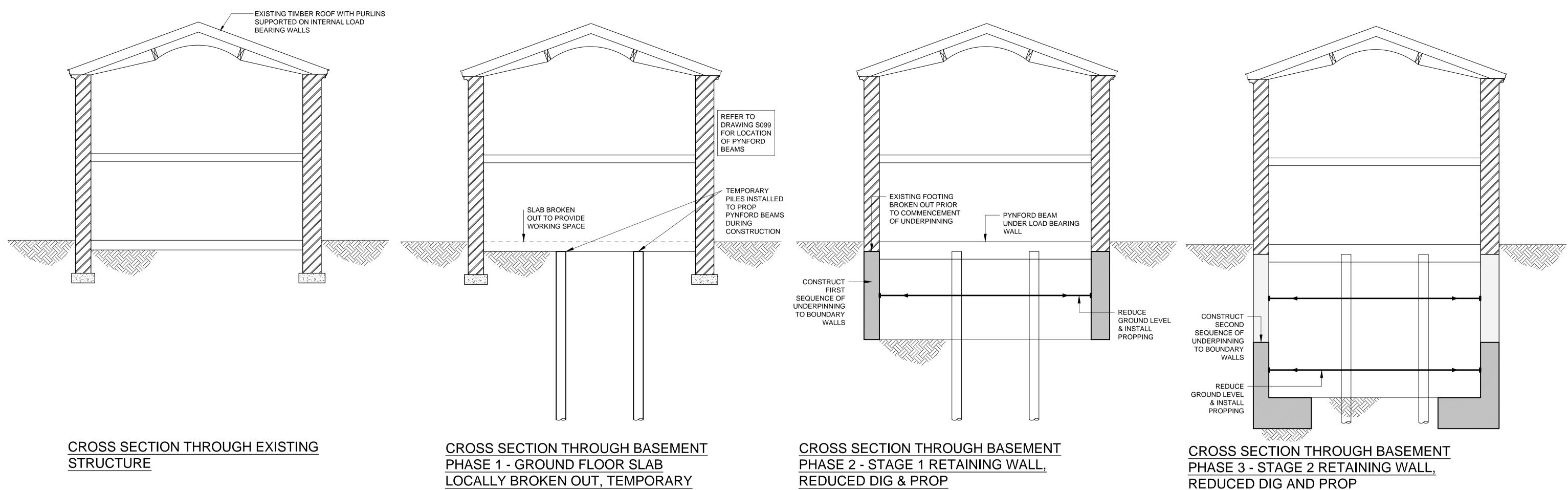
	project	job no.
London • Cambridge • Norwich Telephone 020 7700 6666 design@conisbee.co.uk	12 PARK VILLAGE WEST	140627 . sheet no.
www.conisbee.co.uk	title	
consulting Structural Engineers Consulting Civil Engineers	GROWND PLOOR SLAB.	date
COLLISUCE Consulting Civil Engineers		engineer checked
rev. date		
span S-Sm		
loading		
dead		
Shu 2/elevins-Fim FORS	m = Gleim	
Shu 24eleul ms-FIM FORS finibles: 14eul m2 FIM hve : 2 charl m2 FIM	- levin	
w= 13 kerlin.		
wall @ midspan.		
dead: 0.1mz 2mz 2lleul	$m_{\ell} = 4 \omega$	
Morat 2-Xunte 4. 1mg2	+1m - 7.241)	
live 28m + 2 kulm	24 m = .5- 6 las	
P= 18-5 (p).		
r-iss wi		
Moment: 11- Ul 18 + P	-14 = 4eg. 16+25:44 = 74e.C	olen.
Shear : U= W12 + P12	= 35-75 + 9-25 = 465	est.

	~	project 12 Park Village West	job no. 14062
conisbe	C	London	sheet no.
Offord Street London N1 1DH ohone 020 7700 6666		tille Ground Floor Slab	date
an@conisbee.co.uk Consulting	Structural Engineers Civil Engineers		engineer
conisbee.co.uk Consulting			checked
date			
<u>Material Properties</u>			
Concrete Self Weight =	24 kN/m ³		
Concrete Grade, f _{cu} =	40 N/mm ²		
Reinforcement Strength, fy =	500 N/mm ²		
Slab Properties			
Span =	5.5 m		
Overall Depth, h =	250 mm		
Bar Diameter =	16 mm		
Link diameter =	0 mm		
Cover =	30 mm		
Effective depth, d =	212 mm		
Design Moment, M ≍	75 kNm		
Ultimate Moment, M _u =	280 kNm		
	M < Mu therefore secti	on adequate	
Reinforcement			
k =	0.0415 < 0.156 No c	ompression steel required	
z =	0.9500 d ≤ 0.95d		
A _{s reqd} =	852 mm²/m		
A _{s min} =	325		
Therefore provide	16 s @ 200	mm spacing	
A _{s prov} =	1005 mm²/m > As	reqd, reinforcement is adequate	
Steel content =	0.40% > 0.13 and <	4 %	
$A_{s' prov} =$	393 mm²/m		
Deflectio			
basic l/d =	20 (Simply supp	orted)	
M / bd ² =	1.660 264.93 N/mm ²		
Design Service Stress, f _s =			
Modification factor (t) = Modification factor (c) =	1.24 ≤2 1.06 ≤1.5		
Allowable I / d =	26.25		
Actual I/d =	25.94 OK		
Shear Ch	eck		
V =	45 kN		
Design Shear Stress, v =		/mm2 therefore beam size adequate	
$100A_s / b_v d =$	0.474		
Design Concrete Shear Stress,	0.576 N/mm ²		
	v < vc therefore shear	links are not required	

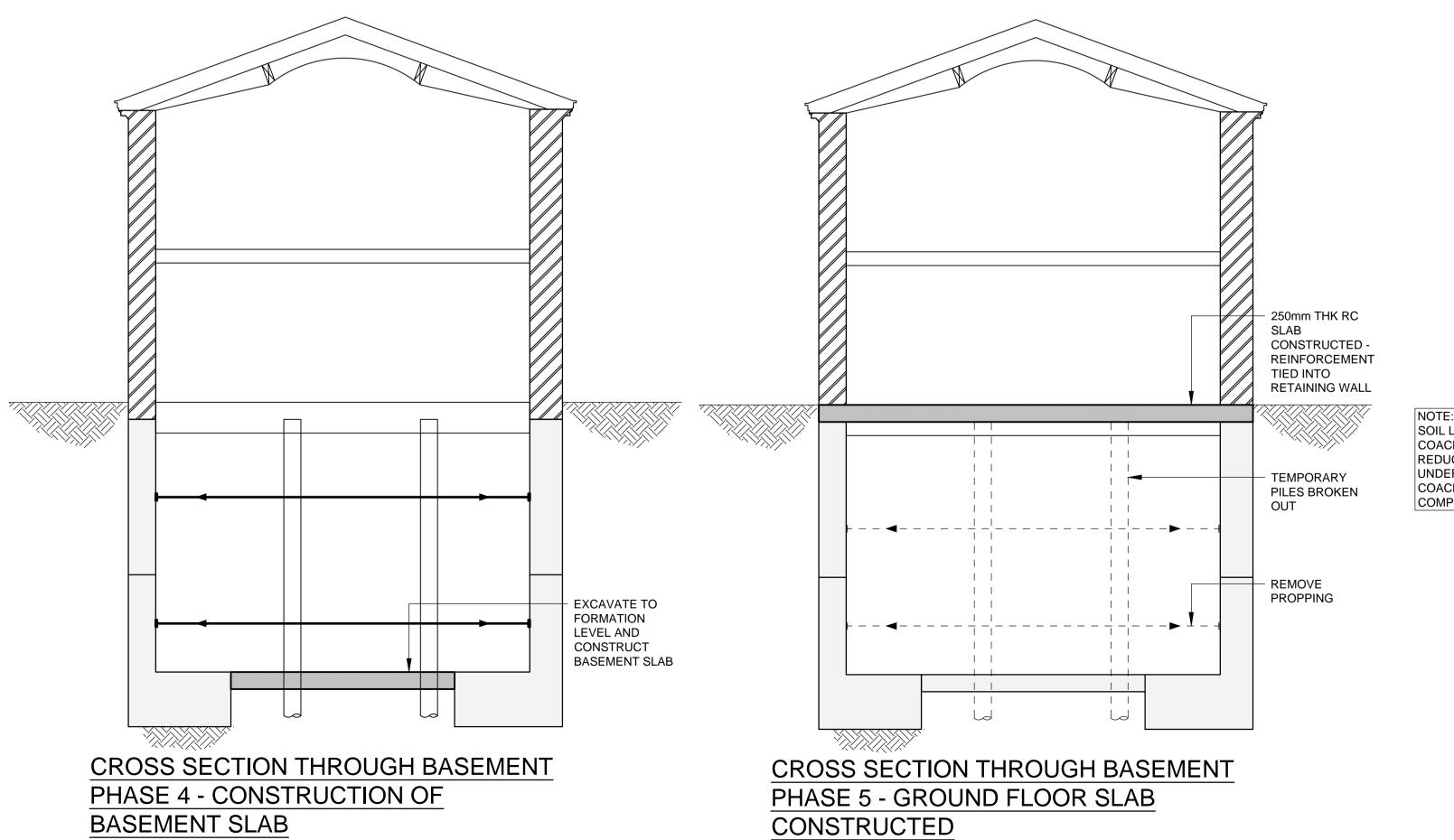

Project	12 PARK	VILLAGE	EWEST			2			
Client					C	-	Made by	Date	Page
Location	Basement	Column			The Cond	crete Centre"			
				TANGULAR	COLUMN DE	SIGN, BENT			
		DAXES TO B					Checked	Revision	Job No
	Originated	from RCC53.xls	v3.2 on CD	© 200	06 TCC				
MATERIALS fcu		N1/ma.ma2	New staal	1 15	C	over to link	20	100 100	
fy		N/mm² N/mm²	γm, steel γm, conc	<u>1.15</u> 1.5		h agg	<u>30</u> 20	mm mm	
steel class		IN/11111 ⁻	nii, conc	1.5		nagg	20		
SECTION	<u>~</u>								
h	300	mm							
b		mm			•	• •			
with		bars per 300	face		<u>X</u>		X		
and	<u>3</u>	bars per 300	face			•			
						• •			
	-0		.	т					
RESTRAINT		Top Condition	Btm Condition	Braced ?	0	lo(mm)	Class	larnaac	Status
X-AXIS	Lo (mm) 3800			Y	<u>В</u> 1	Le (mm) 3800	Lex/h =	lerness	Status Column is
Y-AXIS	3800	3	<u>3</u> 3	Υ Υ	1	3800	Ley/b =	-	SHORT
		<u> </u>		<u> </u>		0000	209/10		
LOADCASE	S	AXIAL		TOP MOME	ENTS (kNm)		BTM MOM	ENTS (kNm)	1
		N (kN)		M ix	M iy		M ix	M iy	
<u>B1</u>	L	<u>564</u>		<u>0.0</u>	<u>0.0</u>		<u>0.0</u>	<u>0.0</u>	
							<u>0.0</u>	<u>0.0</u>	
							<u>0.0</u>	<u>0.0</u>	
							<u>0.0</u>	<u>0.0</u> <u>0.0</u>	
							<u>0.0</u> 0.0	<u>0.0</u> 0.0	
			J			J	0.0	0.0	1
BAR ARRAN	GEMENTS	6		BAR CENT	RES (mm)				
Bar	Ø	Asc %	Link Ø		300 Face	Nuz (kN)		Checks	
н	40	11.17	10	90	90	0		> 6 % (3.12	.6.2)
	32	7.15	8	96	96	0	Asc	> 6 % (3.12	.6.2)
	25	4.36	8	100	100	3245		ok	
	20	2.79	6	104	104	2656		ok	
	16	1.79	6	106	106	2279		ok	
H H	12	1.01	6	108	108	1985		ok	
DESIGN MO		ХА	XIS	V۸	XIS	COM	BINED	T	
		M add	Mx	M add	My	Axis	M'	REBAR	max V *
B1		0.0	8.5	0.0	0.0	X	8.5	8 H12	48.4
0									#DIV/0!
0									#DIV/0!
0									#DIV/0!
0									#DIV/0! #DIV/0!
0	L	I	I		<u> </u>	<u> </u>	I	I	
		SE	E CHAR	TS ON NE	EXT SHE	ET			

project iob no. nishee **12 Park Village West** 140627 London sheet no. title 1-5 Offord Street London N1 1DH Telephone 020 7700 6666 design@conisbee.co.uk www.conisbee.co.uk **Retaining wall** date Consulting Structural Engineers Consulting Civil Engineers propped top and bottom engineer checked date rev **Material Properties** 24 kN/m³ Concrete Self Weight = 40 N/mm² Concrete Grade, f_{cu} = 500 N/mm² Reinforcement Strength, $f_v =$ **Slab Properties** Span = 4 m Overall Depth, h = 300 mm Bar Diameter = 16 mm Link diameter = 0 mm Cover = 30 mm Effective depth, d = 262 mm Design Moment, M = 87 kNm Ultimate Moment, M_u = 428 kNm M < Mu therefore section adequate Reinforcement 0.0316 < 0.156 No compression steel required k = 0.9500 d ≤ 0.95d z = 801 mm²/m A_{s read} = 390 A_{s min} = Therefore provide 16 s @ 200 mm spacing A_{s prov} = 1005 mm^2/m > As regd, reinforcement is adequate Steel content = 0.34% > 0.13 and < 4 % 1005 mm²/m A_{s' prov} = **Deflection Check** basic I/d = 20 (Simply supported) $M/bd^2 =$ 1.263 249.07 N/mm² Design Service Stress, f_s = Modification factor (t) = 1.43 ≤ 2 1.11 ≤ 1.5 Modification factor (c) = Allowable I / d = 31.80 Actual I/d = 15.27 OK Shear Check 109 kN V =0.416 N/mm² < 5N/mm2 therefore beam size adequate Design Shear Stress, v = $100A_{s} / b_{v}d =$ 0.384 Design Concrete Shear Stress, 0.537 N/mm² v < vc therefore shear links are not required

project job no. onishee 12 Park Village West 140627 London sheet no. title 1-5 Offord Street London N1 1DH Telephone 020 7700 6666 design@conisbee.co.uk www.conisbee.co.uk **Retaining Wall** date Consulting Structural Engineers Consulting Civil Engineers **Propped Cantilever** engineer checked date rev **Material Properties** 24 kN/m³ Concrete Self Weight = 40 N/mm² Concrete Grade, f_{cu} = 500 N/mm² Reinforcement Strength, f_v = **Slab Properties** Span = 4 m Overall Depth, h = 300 mm Bar Diameter = 16 mm Link diameter = 0 mm Cover = 35 mm Effective depth, d = 257 mm Design Moment, M = 90 kNm Ultimate Moment, Mu = 412 kNm M < Mu therefore section adequate Reinforcement k = 0.0340 < 0.156 No compression steel required z = 0.9500 d ≤ 0.95d A_{s reqd} = 847 mm²/m $A_{s min} =$ 390 Therefore provide 16 s @ 100 mm spacing 2010 mm²/m > As reqd, reinforcement is adequate A_{s prov} = 0.67% > 0.13 and < 4 % Steel content = 1005 mm²/m A_{s' prov} = **Deflection Check** basic I/d = 20 (Simply supported) $M/bd^2 =$ 1.361 Design Service Stress, fs = 131.69 N/mm² Modification factor (t) = 1.82 ≤ 2 Modification factor (c) = 1.12 ≤ 1.5 Allowable I / d = Actual I/d = 40.66 15.56 OK Shear Check V = 132 kN 0.514 N/mm² < 5N/mm2 therefore beam size adequate Design Shear Stress, v = $100A_{s} / b_{v}d =$ 0.782 Design Concrete Shear Stress, 0.681 N/mm² v < vc therefore shear links are not required


2-WA	ement Slab Y SPANNING INSITI tted from RCC94.xls v3.1		F to G: 1 to 2				
DIMENSIONS short span, lx m	ited from RCC94.xls v3.1		to BS 8110:2005 (Tab	le 3.14)	Checked	Revision	Job No
short span, lx m		© 2006 TCC	;			VALID DESIG	201
	4.10			1.50		VALID DESIG	
I Iono span. Iv m	<u>4.10</u>	fCU N/mi		$= \frac{1.50}{1.15}$	E ATTUUUUU		<u><u>G</u></u>
	<u>4.70</u>	fy N/mi		= <u>1.15</u>			
h mn		steel cla		Diam	1	εÎ	
Top cover mm Btm cover mm		Density kN/r (Normal weig		Plan	4 /		2
LOADING characte			GE CONDITIONS			<u> </u>	Edge
Self weight kN/r		Edge		Continuous	Edge	ב '	Ď
Extra dead kN/r		Edge		Discontinuo		Ly = 4.7 m	
Total Dead, gk kN/r		= <u>1.40</u> Edge			*		
Imposed, gk kN/r		= <u>1.60</u> Edge			2	Ļ	
Design load, n kN/r		See Figure 3.8 and			-	Edge 3	I
		-			I	Ŭ	1
	SHORT	LONG	EDGE 1	EDGE 2	EDGE 3	EDGE 4	BS81
MAIN STEEL	SPAN x	SPAN y	Continuous	Continuous		Free	Referen
ßs M kNm	0.044 /m 10.9	0.034 8.4	0.059 14.6	0.045 11.2	0.000 0.0	0.000 0.0	Table 3.
d mn		8.4 242.0	264.0	252.0	0.0 264.0	0.0 252.0	1
k'	0.156	0.156	0.156	252.0	264.0 0.156	0.156	1
k	0.005	0.004	0.006	0.005	0.000	0.000	1
Z mn		229.9	250.8	239.4	250.8	239.4	3.4.4
As req mm ²		84	134	107	0	0	1
As min mm ²	/m 390	390	390	390	390	390	Table 3.
As deflection mm ²	′m 104	84	~	~	~	~	
Ø mn	1 <u>12</u>	<u>12</u>	<u>12</u>	<u>12</u>	<u>12</u>	<u>12</u>	
Layer	<u>B 1</u>	B 2	<u>T 1</u>	T 2	T 1	Т 2	
@ mn	n 275	275	275	275	275	275	
As prov mm ²	′m 411	411	411	411	411	411	
= %	0.162	0.170	0.156	0.163	0.156	0.163	
S max mn		738	762	762	762	762	Clau
Subclause	(a)	(a)	(a)	(a)	(a)	(a)	3.12.11.2
DEFLECTION	05		100	07			
fs Mod factor	85 2.000	68	108	87	0	0	Eqr
Perm L/d	52.00	Actual L	/d 1614	Aav onbon	ced 0.0% for defle	ation control	Eqr
Perin L/u	52.00	Actual L	_/d 16.14	Asx ennan			Table 3.
TORSION STEEL		BOTH EDGES DI			E DISCONTINUOUS	7	
~		1					
As r	nm <u>10</u> Ə q mm²/m	X 390	Y	Х	Y 390		0.5.0
As prov		411	411	411	411	1	3.5.3
Additional As T r		0	0	0	0		
As prov	B mm²/m	411	411	411	411		
		Botton	n steel not curtailed in	edge strips at f	ree edges		
SUPPORT REACT	IONS (KN/m abo	rupo) (600	Eiguro 2 10)		C	βvx = 0.758	Table 3.
OUL ON REACT	EDGE 1	EDGE 2	e Figure 3.10)		1	BVX = 0.758 BVY = 0.660	Table 3.
			EDGE 3	EDGE 4	Sum	טמס.ט = אינו	
<u>^</u>	1, F-G	G, 2-1	2, F-G	F, 2-1		0.75 L	equatio
ßv Daad uur	0.455	0.396	0.303	0.264			19 &
Dead kN/r		13.31	10.19	8.88			
Imposed kN/r		3.25 23.8	2.48 18.2	2.16 15.9		L	
Vs KN/r OUTPUT/SUMMAF		20.0	10.2	10.9			
	SHORT	LONG	EDGE 1	EDGE 2	EDGE 3	EDGE 4	
PROVIDE	SPAN	SPAN	1, F-G	G, 2-1	2, F-G	F, 2-1	
MAIN STEEL	H12 @ 275 B1	H12 @ 275 B2	H12 @ 275 T1	H12 @ 275	T2 H12@27	5 T1 H12 @ 27	5 T2
	CORNER 1	CORNER 2	CORNER 3	CORNER 4			
TORSION STEEL	. F1	G1	G2	F2			
X direction					placed in edge strips		
Y direction	L				1		
CHECKS	BAR Ø	SINGLY	MIN	MAX		GL	OBAL
Lx > Ly OK	< COVER OK	REINFORCED	SPACING OK	SPACING OK	DEFLECTION OK	I ST	ATUS DESIGN

Client				Concrete Centre"	Made by	Date	Page
	ement Slab Heave) I CONCRETE SLABS	F to G: 1 to 2 to BS 8110:2005 (Tab	ble 3.14)	Checked	Revision	Job No
-	ted from RCC94.xls v3.1	© 2006 TCC	;				
DIMENSIONS		MATERIALS				VALID DESIG	
short span, lx m	<u>4.10</u>	fcu N/mi	·	$= \frac{1.50}{1.50}$	<u>F</u>		<u><u>G</u></u>
long span, ly m h mn	<u>4.70</u> 1 300	steel cla		= <u>1.15</u>	1		<u>1111112</u>
h mn Top cover mn		Density kN/r		Plan	1	ε	
Btm cover mn		(Normal weig		i iaii	4	4.1	N
LOADING characte	ristic	ÈEDĞ	E CONDITIONS		Edge	/ 1	Edge
Self weight kN/r		Edge		Continuous		Ľ	Ŭ
Extra dead kN/r Total Dead, gk kN/r		Edge <u>1.40</u> Edge		Discontinuo	JS 🔶 🔶	Ly = 4.7 m	\longrightarrow
Imposed, gk kN/r	•	= <u>1.40</u> Edge = <u>1.60</u> Edge			2	Ļ	
Design load, n kN/r		See Figure 3.8 and			<u></u>	Edge 3	
200.g. 1040, 11 14.		-			i	C C	i
MAIN STEEL	SHORT SPAN x	LONG SPAN y	EDGE 1 Continuous	EDGE 2 Continuous	EDGE 3 Free	EDGE 4 Free	BS81 Referen
BS	0.044	0.034	0.059	0.045	0.000	0.000	Table 3.
M kNm	/m 50.2	38.5	67.0	51.3	0.0	0.0	
d mn		242.0	264.0	252.0	264.0	252.0	
k'	0.156	0.156	0.156	0.156	0.156	0.156	
k Z mn	0.022 241.3	0.019 229.9	0.027 250.8	0.023 239.4	0.000 250.8	0.000 239.4	3.4.4
As req mm ²		385	614	493	230.8	239.4	5.4.4
As min mm ²		390	390	390	390	390	Table 3.
As deflection mm ²	′m 479	385	~	~	~	~	
Ø mn		<u>12</u>	<u>12</u>	<u>12</u>	<u>12</u>	<u>12</u>	
Layer	<u>B 1</u>	B 2	<u>T 1</u>	T 2	T 1	T 2	
@ mn		275	175	225	275	275	
As prov mm ²		411	646	503	411	411	
= % S max mn	0.198 762	0.170 738	0.245 762	0.199 762	0.156 762	0.163 762	Clau
Subclause	(a)	(a)	(a)	(a)	(a)	(a)	3.12.11.2
DEFLECTION	(4)	(4)		(4)	(4)	(4)	0.12.11.1
fs	317	312	317	327	0	0	Eq
Mod factor	1.342						Equ
Perm L/d	34.89	Actual L	_/d 16.14	Asx enhan	ced 0.0% for defled	ction control	Table 3.
TORSION STEEL		BOTH EDGES DI	SCONTINUOUS		DISCONTINUOUS	1	
ä	ım <u>10</u>		Y	X	Y		
As r		39			390	-	3.5.3
As prov		411	411	411	411		
Additional As T r As prov		0 503	0 411	0 503	0 411		
	B mm²/m		n steel not curtailed in			J	
					-	0	
SUPPORT REACT	EDGE 1	uno) (See EDGE 2	<i>Figure 3.10)</i>	EDGE 4	1	βvx = 0.758 βvy = 0.660	Table 3.
	1, F-G	EDGE 2 G, 2-1	EDGE 3 2, F-G	EDGE 4 F, 2-1	Sum	300 = 0.000	equatio
ßv	0.455	0.396	0.303	0.264		0. 75 L	19 &
Dead kN/r		11.69	8.95	7.79			
Imposed kN/r		58.12	44.48	38.75	\uparrow	L	\uparrow
Vs kN/r		109.4	83.7	72.9	U		
OUTPUT/SUMMAF	Y SHORT	LONG	EDGE 1	EDGE 2	EDGE 3	EDGE 4	
PROVIDE	SPAN	SPAN	1, F-G	EDGE 2 G, 2-1	2, F-G	EDGE 4 F, 2-1	
MAIN STEEL	H12 @ 225 B1	H12 @ 275 B2	H12 @ 175 T1	H12 @ 225			5 T2
ADDITIONAL	CORNER 1	CORNER 2	CORNER 3	CORNER 4	1		
TORSION STEEL		G1	G2	F2			
X direction		-	-		placed in edge string		
Y direction					placed in edge strips		
CHECKS	BAR Ø	SINGLY	MIN	МАХ		GL	OBAL
	·		SPACING	SPACING	DEFLECTION		ATUS
Lx > Ly	< COVER	REINFORCED					


Appendix C – Construction Method Statement

_

_

PILES INSTALLED & PYNFORD BEAMS CAST

SOIL LEVELS OUTSIDE THE COACH HOUSE ONLY TO REDUCE ONCE UNDERPINNING OF THE COACH HOUSE IS COMPLETE

THE PRINCIPLE OF THIS
SEQUENCE APPLIES THROUGHOUT PROPOSED
THROUGHOUT PROPOSED
BASEMENT

NOT FOR CONSTRUCTION

Р3	20.09.19	ISSUED FOR PLANNING	RG	GA
P2	27.05.16	ISSUED FOR INFORMATION	MT	СВ
P1	14.08.15	ISSUED FOR INFORMATION	MT	СВ
Rev	Date	Description	Drawn	Check

1-5 Offord St London N1 1DH

Date

020 7700 6666

design@conisbee.co.uk

Scale 1:50@A1

Drawn MT

Engineer MT

140627

SSK001

Project No

Drawing No

Revision

P3

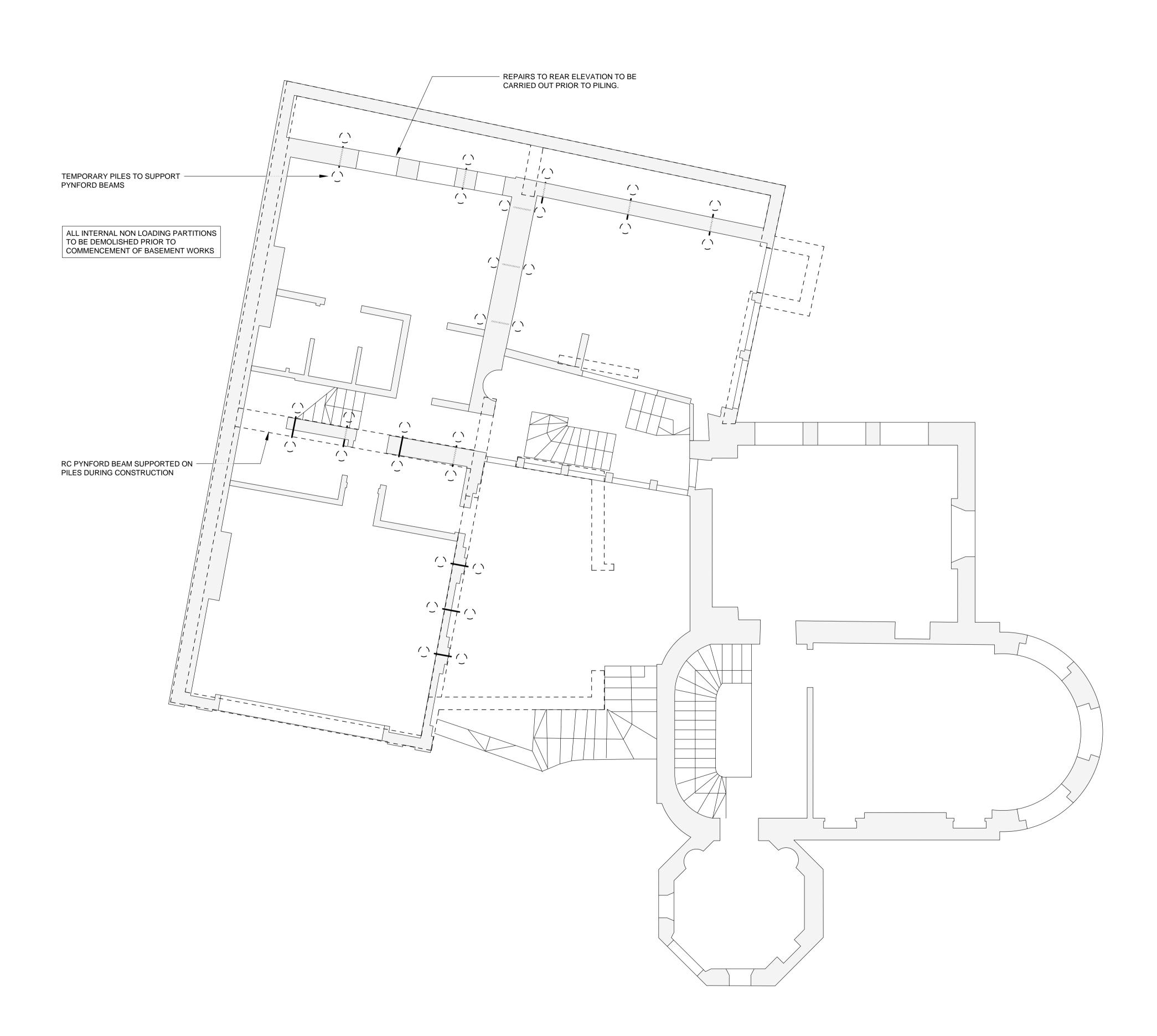
AUG 15

Fax 020 7700 6686

www.conisbee.co.uk

Consulting Civil Engineers

Drawing Status


PLANNING

Project

12 PARK VILLAGE WEST LONDON

Title

SUGGESTED CONSTRUCTION SEQUENCE - BASEMENT

NOTES

GENERAL NOTES:

- 1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS, ENGINEERS, DRAINAGE AND SPECIALIST DRAWINGS AND SPECIFICATIONS.
- 2. THE CONTRACTOR IS TO ASCERTAIN THE LOCATION OF EXISTING SERVICES PRIOR TO COMMENCING WORKS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR THE DESIGN AND INSTALLATION OF ALL TEMPORARY WORKS AND SHALL SEQUENCE THE WORKS SUCH THAT THE BUILDING REMAINS STABLE AT ALL TIMES.

NOT FOR CONSTRUCTION

	0.09.19 ISSUED FOR F 4.08.15 ISSUED FOR II		P2
	4.08.15 ISSUED FOR I		
Drawn Char		14.08.1	P1
Diawii Ciec	ate Description	Date	Rev
	ODDIS Iting Structural Engineers	sulting St	Cons
Date AUG 1	ig Status	ving Stat	Drav
Scale 1:50@A	NNING		PL/
Drawn MT	t	əct	Proje
EST Engineer MT	ARK VILLAGE W	PARK	12
Project No	DON	NDON	LO
Project No 140627	DON	NDON	LO
Drawn MT	t	ect PARK	Proje

PROPOSED TEMPORARY WORKS **S099** GROUND FLOOR PLAN Revision **P2**