

Consulting Engineers

Third Floor GW Business Centre Great West House Great West Road Brentford TW8 9DF England

Tel: +44 (0)203 393 1174 Fax: +44 (0)203 004 1234

Drainage Report

For

Fitzroy Park Development

27th February 2019

Irish Office: GFSC Moneenageisha Road

Galway Ireland

Tel: +353 (0)91 752000 Fax: +353 (0)91 753000

website: www.coylekennedy.com email: wail@ coylekennedy.com

Coyle Kennedy Limited Registered in Ireland 346183

Directors: Brian Coyle BE CEng MIEI MIStructE Tadhg Kennedy BE MEngSc CEng MIEI MIStructE

REV A 20TH SEPTEMBER 2019

CONTENTS	i
Introduction	
Surface Water Disposal	1
Foul Water Network	3
Appendix A	
Surface & Foul Water Layout with Sections and Calculations	A

INTRODUCTION

It is the intention of the applicant to redevelop this property through the removal of the existing large house and replacement of this by five new smaller homes in accordance with documents lodged. It is proposed that this development will be connected to the existing services that exist on Fitzroy Park & Millfield Lane adjacent to the site.

This report, in conjunction with calculations and relevant drawings included in the appendices demonstrates the proposed surface water network and foul water network for the development. The drawings also incorporate the attenuation requirement as identified in the report by LBH Wembley.

SURFACE WATER DISPOSAL

At present the area around the existing house and driveway drains into the combined sewer that runs beneath Fitzroy Park, and the remainder of the site drains across Millfield Lane to the Heath.

The proposed redevelopment will largely follow the existing drainage principals with some improvements.

For surface water drainage purposes the surface water networks have been divided up as follows:

- (i) taking the runoff from the paved carparking & road areas & discharging to the combined sewer running beneath Fitzroy Park via attenuation and a hydrocarbon interceptor. Refer to Figure 1.
- o (ii) taking runoff from proposed blue/green roofs, paved areas & footpaths discharging through the attenuation/swale via percolation within the existing made ground to the Heath. An overflow from the attenuation/swale is proposed to eliminate the current discharge across as agreed with Mr. Bob Warnock on site on the 10 May 2018. Refer to Figure 2.

Attenuation of the surface water is proposed at both discharge locations.

Attenuation will be provided by means of storage tanks, green roofs and a swale.

Refer to Coyle Kennedy drawings in Appendix A for details of proposed storm water networks and relevant calculations.

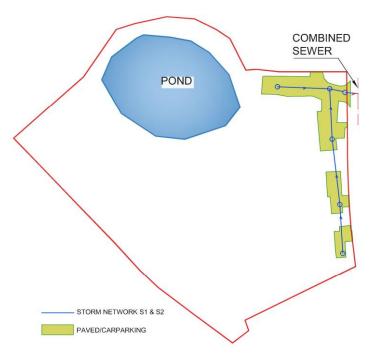


Figure 1.

Paved Carparking & Road areas discharging to the combined sewer running beneath Fitzroy Park.

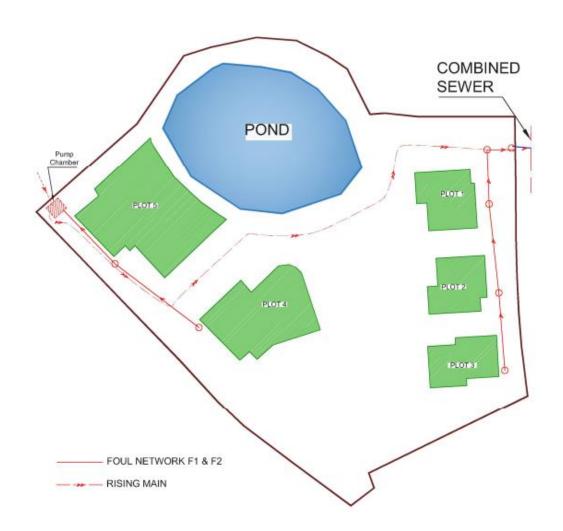
Figure 2.

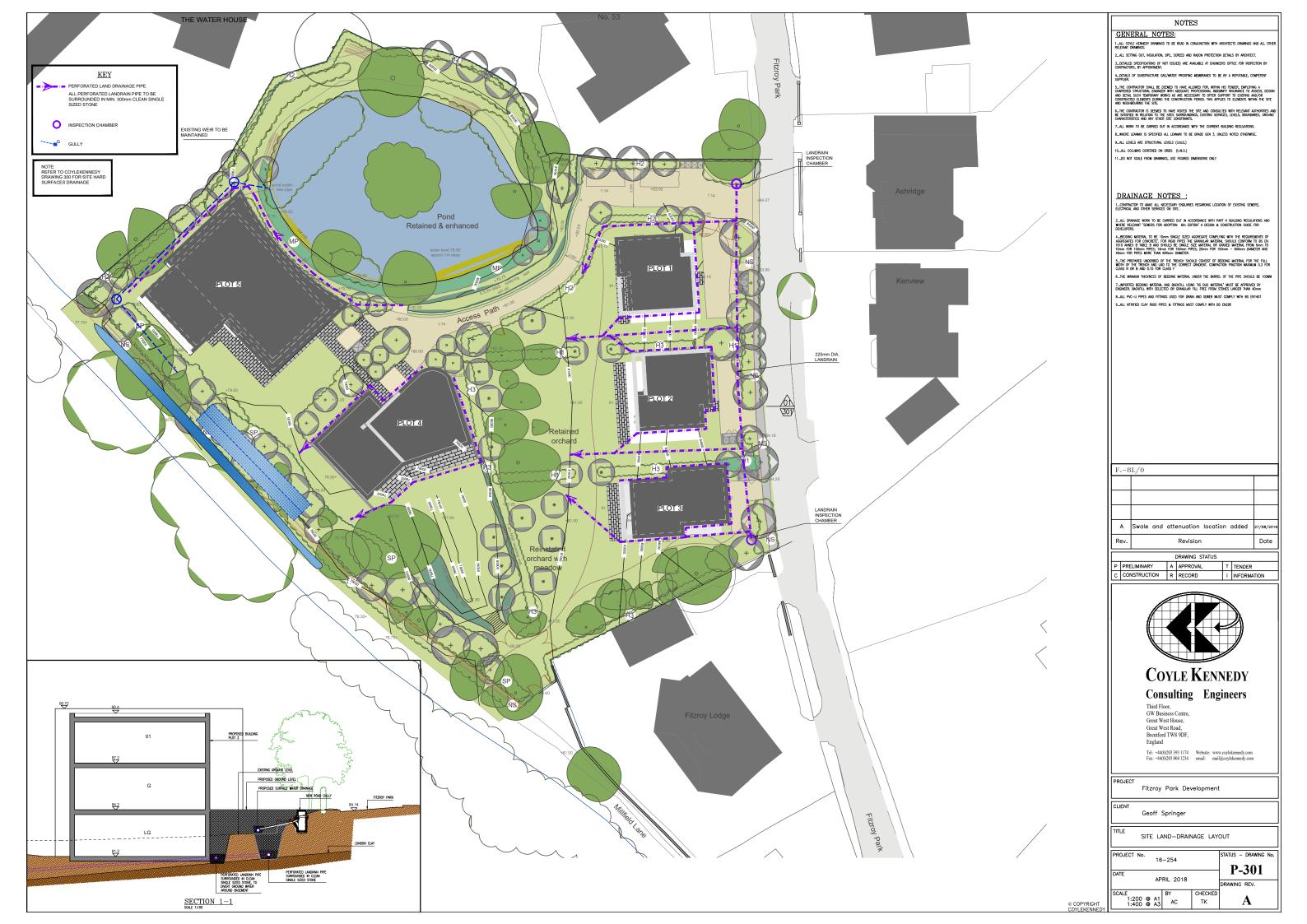
Plan indicating Blue/Green Roofs, Access Path Attenuation and Swale location.

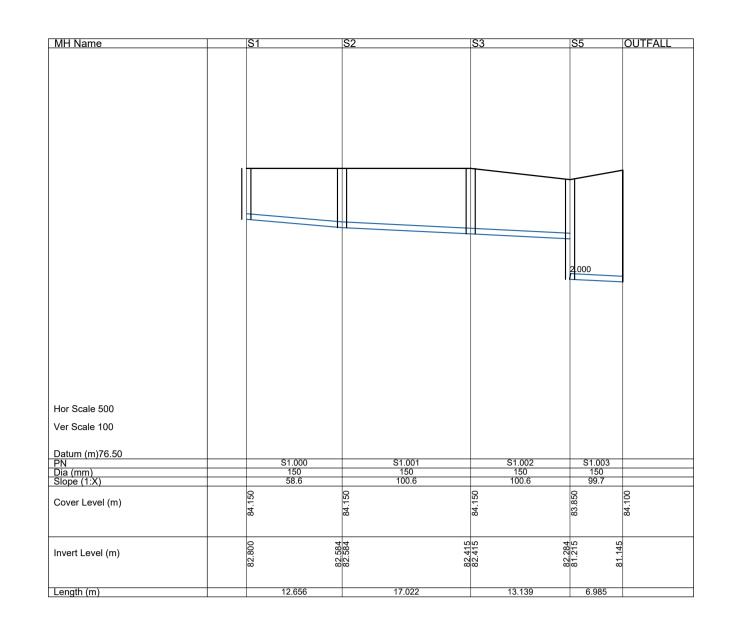
FOUL WATER NETWORK

It is intended that sanitary effluent will be collected on site via traditional gravity pipe networks. There will be two foul sewer networks. Effluent from plots 1,2 & 3 will be collected in a traditional gravity sewer & discharge to the combined sewer that runs beneath Fitzroy Park. See Figure 3 below. Effluent from plots 4 & 5 on the lower side of the site will be collected in a pumping chamber and pumped through a rising main to the existing combined sewer that runs beneath Fitzroy Park, along the Eastern boundary of the site. See Figure 3 below

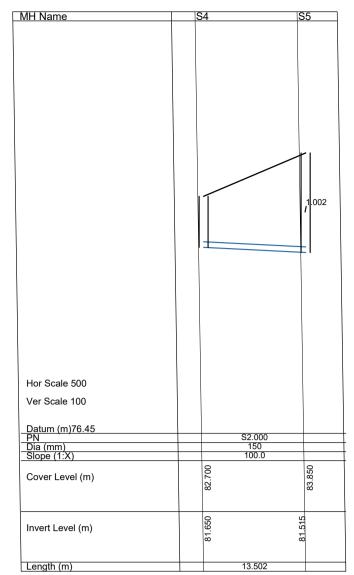
Refer to Coyle Kennedy drawings in Appendix A for details of proposed foul network and relevant calculations.

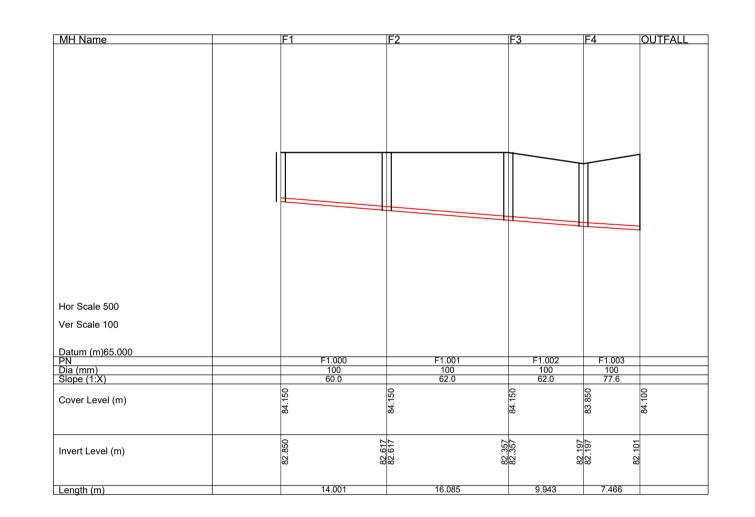



Figure 3. Plan indicating foul water network.




Appendix A


Surface & Foul Water Layout Drawings With Sections and Calculations



SECTION THROUGH STORM NETWORK 2

SECTION THROUGH STORM NETWORK 3

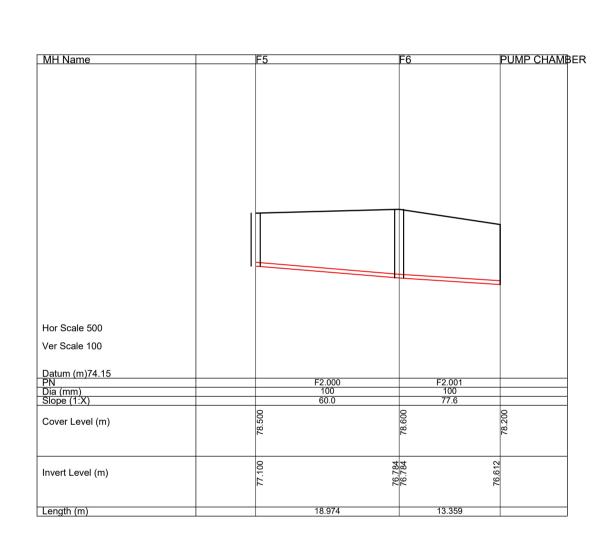
SECTION THROUGH FOUL NETWORK 1

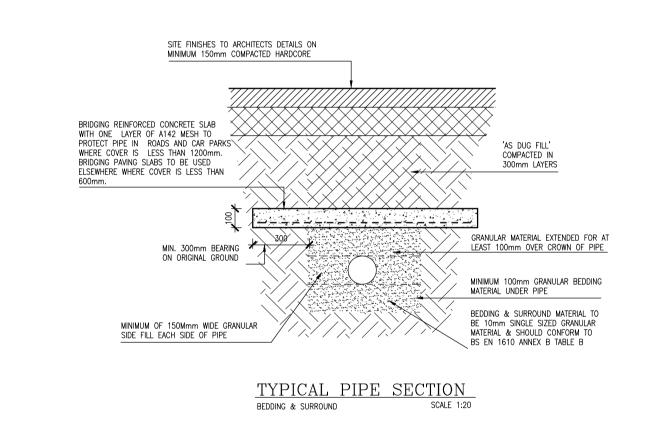
PRECAST CONCRETE CHAMBER SECTIONS & COVER SLAB TO BE BEDDED IN MORTAR, PROPRIETARY BITUMEN OR MASTIC SEALANT

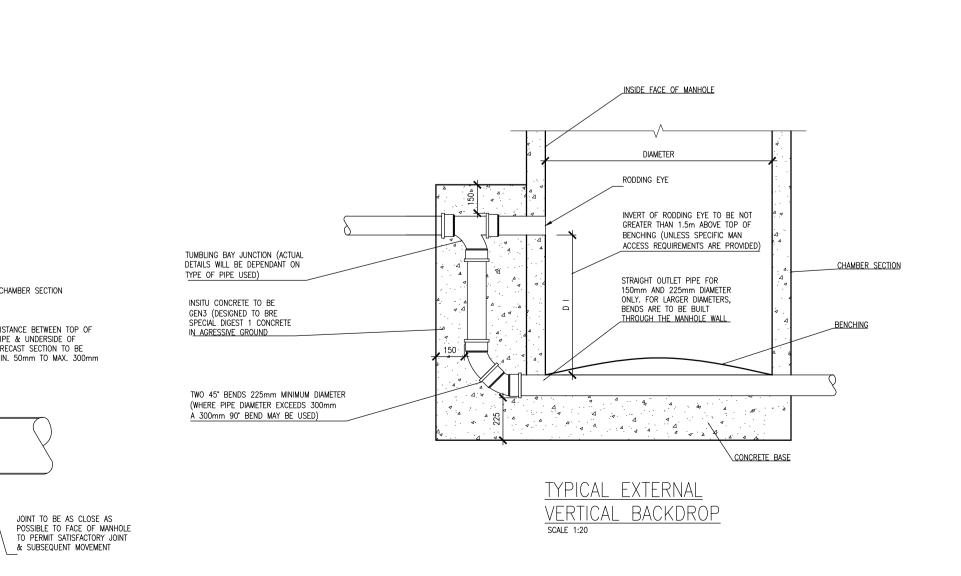
150mm THICK INSITU CONCRETE TO BE GEN3 (DESIGNED TO BRE SPECIAL DIGEST 1 CONCRETE IN AGGRESSIVE GROUND)

HIGH-STRENGTH CONCRETE
TOPPING TO BE BROUGHT UP
TO A DENSE, SMOOTH FACE,
NEATLY SHAPED & FINISHED
TO ALL BRANCH CONNECTIONS
(MINIMUM THICKNESS 20mm)

THE BOTTOM PRECAST MANHOLE RING TO BE BUILT INTO BASE CONCRETE 75mm MIN.


... 4


TYPICAL SHALLOW MANHOLE


COVER FRAME SEATING RINGS

CHAMBER SECTION

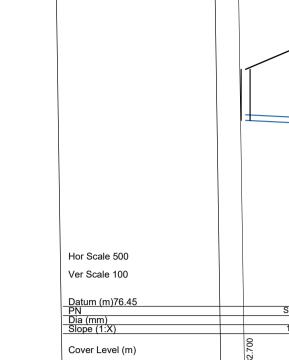
CONSTRUCTION JOINT

REFER TO DRAWING 300 FOR

		PLAN LA	YO	UT OF SEWEI	RS		
Fa	_	8/1					
R	ev.			Revision			Date
		•		DRAWING STATUS			
Р	PRE	ELIMINARY	Α	APPROVAL	T TENDER		
$\overline{}$	CO1	NSTRUCTION	Ь	DECORD	T.	INICODMA	TION

Consulting Engineers

Moneenageisha Rd,


+353 (0)91 752000 +353 (0)91 753000 www.coylekennedy.com

mail@coylekennedy.com

PROJECT Fitzroy Park Development Geoff Springer

DRAINAGE NETWORK SECTIONS

STATUS - DRAWING No. PROJECT No. 16-254 P-302 FEBRUARY 2019 DRAWING REV. BY CHECKED

SECTION THROUGH FOUL NETWORK 3

COVER FRAME SEATING RINGS

STEP IRON

CHAMBER SECTION

DISTANCE BETWEEN TOP OF PIPE & UNDERSIDE OF PRECAST SECTION TO BE MIN. 50mm TO MAX. 300mm

© COPYRIGHT COYLEKENNEDY 1:500,1:100:,1:20 @ A1 1:1000,1:200,1:40 @ A3

Coyle Kennedy	Page 1	
Consulting Civil & Structura	Fitzroy Park Development	
email: mail@coyleken		
Website: www.coylekenned		Micco
Date 27/02/2019 18:59	Designed by AC	Drainage
File 16-254-P-300A.MDX	Checked by	Dialilade
Innovyze	Network 2017.1.2	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall	Model	- England and Wales	
Return Period (years)	5	PIMP (%)	100
M5-60 (mm)	21.000	Add Flow / Climate Change (%)	0
Ratio R	0.436	Minimum Backdrop Height (m)	0.200
Maximum Rainfall (mm/hr)	58	Maximum Backdrop Height (m)	1.500
Maximum Time of Concentration (mins)	30	Min Design Depth for Optimisation (m)	1.200
Foul Sewage (l/s/ha)	0.000	Min Vel for Auto Design only (m/s)	1.00
Volumetric Runoff Coeff.	1.000	Min Slope for Optimisation (1:X)	500

Designed with Level Soffits

Network Design Table for Storm

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section Type
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)	(mm)	SECT	(mm)	
g1 000	10 (5)	0 016	F0 6	0 000	15 00	0.0	0 600		150	Di / G
	12.656		58.6	0.003	15.00		0.600	0		Pipe/Conduit
S1.001	17.022	0.169	100.6	0.004	0.00	0.0	0.600	0	150	Pipe/Conduit
S1.002	13.139	0.131	100.6	0.007	0.00	0.0	0.600	0	150	Pipe/Conduit
										-1
S2.000	13.502	0.135	100.0	0.012	15.00	0.0	0.600	0	150	Pipe/Conduit
S1.003	6.985	0.070	99.7	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit
S3.000	13.422	0.229	58.6	0.006	15.00	0.0	0.600	0	150	Pipe/Conduit
S3.001	16.329	0.165	99.1	0.006	0.00	0.0	0.600	0	150	Pipe/Conduit
S3.002	12.410	0.125	99.1	0.006	0.00	0.0	0.600	0	150	Pipe/Conduit
S3.003	15.760	1.212	13.0	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit
S3.004	9.948	0.765	13.0	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(l/s)	(l/s)	(m/s)	(1/s)	(1/s)	
S1.000	55.32	15.16	82.800	0.003	0.0	0.0	0.0	1.32	23.3	0.6	
S1.001	54.69	15.44	82.584	0.007	0.0	0.0	0.0	1.00	17.7	1.5	
S1.002	54.22	15.66	82.415	0.014	0.0	0.0	0.0	1.00	17.7	2.8	
S2.000	55.18	15.22	81.650	0.012	0.0	0.0	0.0	1.00	17.8	2.3	
S1.003	53.97	15.78	81.515	0.026	0.0	0.0	0.0	1.01	17.8	5.1	
S3.000	55.30	15.17	82.800	0.006	0.0	0.0	0.0	1.32	23.3	1.1	
S3.001	54.70	15.44	82.571	0.012	0.0	0.0	0.0	1.01	17.8	2.3	
S3.002	54.25	15.64	82.406	0.017	0.0	0.0	0.0	1.01	17.8	3.4	
S3.003	54.05	15.74	82.281	0.017	0.0	0.0	0.0	2.81	49.6	3.4	
S3.004	53.93	15.80	81.069	0.017	0.0	0.0	0.0	2.81	49.6	3.4	
			(C)	1982-201	7 XP Solu	tions					

Coyle Kennedy		Page 2
Consulting Civil & Structura	Fitzroy Park Development	
email: mail@coyleken		4
Website: www.coylekenned		Micco
Date 27/02/2019 18:59	Designed by AC	Drainage
File 16-254-P-300A.MDX	Checked by	Diamade
Innovyze	Network 2017.1.2	

Network Design Table for Storm

PN	Length	Fall	Slope	I.Area	T.E.	Base		Base		k	HYD	DIA	Section Type
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)			
S3.005	14.104	1.085	13.0	0.005	0.00		0.0	0.600	0	150	Pipe/Conduit		
S3.006	11.140	0.800	13.9	0.004	0.00		0.0	0.600	0	150	Pipe/Conduit		
S3.007	7.658	0.766	10.0	0.000	0.00		0.0	0.600	0	150	Pipe/Conduit		
S3.008	14.554	0.291	50.0	0.030	0.00		0.0	0.600	0	150	Pipe/Conduit		

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow $(1/s)$	(l/s)	(l/s)	(m/s)	(1/s)	(1/s)
S3.005	53.75	15.88	80.304	0.022	0.0	0.0	0.0	2.81	49.6	4.3
S3.006	53.60	15.95	79.219	0.026	0.0	0.0	0.0	2.71	48.0	5.1
S3.007	53.52	15.99	78.419	0.026	0.0	0.0	0.0	3.21	56.6	5.1
S3.008	53.17	16.16	77.653	0.056	0.0	0.0	0.0	1.43	25.2	10.7

©1982-2017 XP Solutions

Coyle Kennedy	Page 1	
Consulting Civil & Structura	Fitzroy Park Development	
email: mail@coyleken		
Website: www.coylekenned		Micco
Date 27/02/2019 19:00	Designed by AC	Drainage
File 16-254-P-300A.MDX	Checked by	Diamage
Innovyze	Network 2017.1.2	

FOUL SEWERAGE DESIGN

Design Criteria for Foul - Main

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (l/s/ha)	0.00	Add Flow / Climate Change (%)	0
Industrial Peak Flow Factor	0.00	Minimum Backdrop Height (m)	0.200
Flow Per Person (1/per/day)	250.00	Maximum Backdrop Height (m)	1.500
Persons per House	4.00	Min Design Depth for Optimisation (m)	1.200
Domestic (1/s/ha)	0.00	Min Vel for Auto Design only (m/s)	0.75
Domestic Peak Flow Factor	6.00	Min Slope for Optimisation (1:X)	180

Designed with Level Soffits

Network Design Table for Foul - Main

PN	Length	Fall	Slope	Area	Houses	Base	k	HYD	DIA	Section Type
	(m)	(m)	(1:X)	(ha)		Flow (1/	s) (mm) SECT	(mm)	
F1.000	14.001	0.233	60.0	0.000	1	0	.0 1.5	00 0	100	Pipe/Conduit
F1.001	16.085	0.259	62.0	0.000	1	0	.0 1.5	00 0	100	Pipe/Conduit
F1.002	9.943	0.160	62.0	0.000	1	0	.0 1.5	00 0	100	Pipe/Conduit
F1.003	7.466	0.096	77.6	0.000	5	0	.0 1.5	00 0	100	Pipe/Conduit
										_
F2.000	18.974	0.316	60.0	0.000	1	0	.0 1.5	00 0	100	Pipe/Conduit
F2 001	13.359	0 172	77 7	0.000	1	0	.0 1.5	00 0	100	Pipe/Conduit
12.001	13.337	0.1/2	, , . ,	0.000	_	0		0	±00	r ipc, conduit

Network Results Table

PN	US/IL	Σ Area	Σ Base	Σ Hse	Add Flow	P.Dep	P.Vel	Vel	Cap	Flow
	(m)	(ha)	Flow (1/s)		(1/s)	(mm)	(m/s)	(m/s)	(l/s)	(l/s)
F1.000	82.850	0.000	0.0	1	0.0	7	0.26	0.86	6.8	0.1
F1.001	82.617	0.000	0.0	2	0.0	10	0.32	0.85	6.6	0.1
F1.002	82.357	0.000	0.0	3	0.0	12	0.37	0.85	6.6	0.2
F1.003	82.197	0.000	0.0	8	0.0	21	0.47	0.76	5.9	0.6
F2.000	77.100	0.000	0.0	1	0.0	7	0.26	0.86	6.8	0.1
F2.001	76.784	0.000	0.0	2	0.0	11	0.30	0.76	5.9	0.1
12.001	, 0 . , 0 1	0.000	0.0		0.0		0.50	0.70	5.7	0.1

©1982-2017 XP Solutions

Surface water storage requirements for sites

www.uksuds.com | Storage estimation tool

Calculated by: Alan Clancy

Site name: Fitzroy Park Development

Site location: Fitzroy Park N6 6JA

Parking area

This is an estimation of the storage volume requirements that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the SuDS Manual, C753 (Ciria, 2015). It is not to be used for detailed design of drainage systems. It is recommended that hydraulic modelling software is used to calculate volume requirements and design details before finalising the drainage scheme.

Site coordinates

Latitude: 51.56695° N

Longitude: 0.15783° W

Reference: 6530830

Date: 2019-02-27T11:03:07

Methodology IH124

Site characteristics

Total site area (ha)	0.1275	
Significant public open space (ha)	0.08	
Area positively drained (ha)	0.0475	
Pervious area contribution (%)	30	
Impermeable area (ha)	0.026	
Percentage of drained area that is impermeable (%)	55	
Impervious area drained via infiltration (ha)	0	
Return period for infiltration system design (year)	10	
Impervious area drained to rainwater harvesting systems (ha)	0	
Return period for rainwater harvesting system design (year)	10	
Compliance factor for rainwater harvesting system design (%)	66	
Net site area for storage volume design (ha)	0.05	
Net impermeable area for storage volume design (ha)	0.03	

^{*} Where rainwater harvesting or infiltration has been used for managing surface water runoff such that the effective impermeable area is less than 50 % of the 'area positively drained', the 'net site area' and the estimates of Qbar and other flow rates will have been reduced accordingly.

Design criteria

SPR

Volume control approach	controlled discharge			
		Default	Edited	
Climate change allowance fa	1.4	1.4		
Urban creep allowance factor	1.1	1.1		
Interception rainfall depth (m	5	5		
Minimum flow rate (I/s)	Minimum flow rate (I/s)			
Qbar estimation method	om SPR and SAAR			
SPR estimation method	Calculate fro	late from SOIL type		
		Default	Edited	
Qbar total site area (I/s)	otal site area (l/s)			
SOIL type	4	4		
HOST class	N/A	N/A		

Hydrology	Default	Edited
SAAR (mm)	659	659
M5-60 Rainfall Depth (mm)	20	20
'r' Ratio M5-60/M5-2 day	0.4	0.4
Rainfall 100 yrs 6 hrs	63	
Rainfall 100 yrs 12 hrs	98.56	
FEH/FSR conversion factor	1.28	1.28
Hydrological region	6	
Growth curve factor: 1 year	0.85	0.85
Growth curve factor: 10 year	1.62	1.62
Growth curve factor: 30 year	2.3	2.3
Growth curve factor: 100 year	3.19	3.19

0.47

0.47

Site discharge rates	Default	Edited
Qbar total site area (I/s)	0.57	0.57
Qbar net site area (I/s)	0.21	0.21
1 in 1 year (I/s)	5	5
1 in 30 years (l/s)	5	5
1 in 100 years (I/s)	5	5

Estimated storage volumes	Default Edited		
Interception storage (m³)	1	1	
Attenuation storage (m³)	2	2	
Long term storage (m³)	0	0	
Treatment storage (m³)	3	3	
Total storage (excluding treatment) (m ³)	3	3	