Energy Statement

PHASE 2 AGAR GROVE

October 2018 Report Ref: ES/AGP2/201810 - BC

NRG Consulting Unit 219, The Pill Box 115 Coventry Road, London E2 6GG <u>www.nrgconsulting.org</u> 020 3735 8169

TABLE OF CONTENTS

1. Executive Summary3
2. Baseline CO ₂ Emissions5
3. Be Lean
4. Passivhaus Standards9
5. Be Green
6. Cooling and Overheating15
7. Conclusion
Appendix 1 - CO ₂ Emissions Table
Appendix 2 - Sample SAP Input Data Sheet, TER & DER Worksheets - 'Be Lean'
Appendix 3 - Sample SAP Input Data Sheet, TER & DER Worksheets - 'Be Green'
Appendix 4 - PV Manufacturer Datasheet

DOCUMENT CONTROL SHEET:

Rev.	Issue Purpose	Author	Signature	Checked	Signature	Date
-	For Initial Comment	Bianca Chitic	ÞE	Ryan Thrower	Rh	28/08/2018
Α	Minor Amendments	Bianca Chitic	PC.	Ryan Thrower	Rh-	12/10/2018

Disclaimer

The performances of renewable systems, especially wind and solar, are difficult to predict with any certainty. This is due to the variability of environmental conditions from location to location and from year to year. As such all budget/cost/sizings, which are based upon the best available information, are to be taken as estimation only and should not be considered as a guarantee. NRG Consulting disclaims any responsibility to the Client and others in respect of any matters outside the scope of this report. This report is confidential to the Client and NRG Consulting accepts no responsibility of whatsoever nature to third parties to whom this report or any part thereof is made known. Any such party relies upon the report at their own risk.

1. EXECUTIVE SUMMARY

- 1.1 NRG Consulting have been appointed by London Borough of Camden to undertake an Energy Statement for the proposed redevelopment of Agar Grove Estate in Camden, NW1.
- 1.2 The proposal is for the demolition of all existing buildings and structures except Lulworth House and Agar Children's Centre (249 existing Class C3 residential units and 2 retail units), and erection of new buildings ranging between 4 and 18 storeys in heights along with the refurbishment and extension of Lulworth House (extending from 18 to 20 storeys in total) to provide a total of 493 Class C3 residential units, comprising 240 market, 37 intermediate and 216 social rent units; a community facility (Class D1); 2 flexible retail shop (Class A1) or restaurant and café (Class A3) units; business space (Class B1(a)); 2 flexible retail shops (Class A1), business (Class B1), or non-residential institution (Class D1) units; refuse and recycling facilities; car and cycle parking facilities; landscaping/amenity space; and associated works.

This report has been prepared specifically for Phase 2 of the development, comprising 57 residential units distributed between Blocks F, G and H as follows:

- Block F 4-storey mansion block containing 14 stacked Duplexes;
- Block G 5-storey mansion block containing 17 Triplexes and 5 Maisonettes;
- Block H a pair of 4-storey high separated mansion blocks containing a total of 20 Duplex and Triplex units.
- 1.3 This document has been produced to address the energy requirements of Planning Condition 43 of the associated Application Ref: 2013/8088/P, which states:

Planning Condition 43 – Energy Efficiency

"The development shall be carried out in complete accordance with the submitted Planning Energy & Sustainability Report by Max Fordham, dated 11/12/2013 to achieve a minimum of 32% reduction in carbon emissions from the development, and evidence of passivhaus certification shall be submitted to and approved in writing by the local planning authority prior to the first occupation of any residential unit within the relevant phase of the development (a) phase 1; b) phase 2; c) phase 3; d) phase 4; e) phase 5; f) phase 6), unless an alternative strategy is submitted to and approved in writing by the local planning authority. The Plan shall contain mechanisms for monitoring, review and further approval by the local planning authority. The development shall at all times proceed in accordance with such Plan as will have been approved."

The Planning Condition requires a CO_2 emissions reduction of 32%. Due to the Planning Energy and Sustainability Report by Max Fordham referenced above being based on Part L 2010 and the guidance at that time, the original 32% target is being updated to 27% over Part L 2013, following the adoption of the 2013 Building Regulations Approved Document L1A.

- 1.4 The proposed energy strategy details how the development's CO2 emissions are reduced by 27% over Part L 2013 through measures prioritised in accordance with the Energy Hierarchy:
 - Be Lean (21.88% CO₂ reduction over Part L)
 - o Low U-values
 - Low Air Permeability
 - Mechanical Ventilation with Heat Recovery
 - o Triple Glazed Windows

- High Efficiency Communal Gas Boiler with Low Temperature Distribution System and Modern Controls
- Heat Interface Units for Hot Water
- 100% Low Energy Lighting
- Be Green (27.00% CO₂ reduction over Part L)
 - 11.2 kWp of Photovoltaic Panels comprising 35no. modules

Calculations of the CO_2 emissions at each stage of the Energy Hierarchy are detailed in a table in Appendix 1.

- 1.5 All units of Phase 2 of the development will have Passivhaus Certification and Code for Sustainable Homes Level 4. The completed buildings will be verified by the Passivhaus Institute in Damstratt Germany. The 'fabric first approach' adopted to achieve these standards is detailed in Section 4.
- 1.6 This report responds to the energy requirements of the following:
 - The National Planning Policy Framework (2012);
 - Chapter 5 of the London Plan (March 2016):
 - Policy 5.1: Climate Change Mitigation
 - Policy 5.2: Minimising Carbon Dioxide Emissions
 - Policy 5.3: Sustainable Design and Construction
 - Policy 5.6: Decentralised Energy in Development Proposals
 - Policy 5.7: Renewable Energy
 - Policy 5.9: Overheating and Cooling
 - The Mayor's Sustainable Design and Construction SPG (2014);
 - The GLA Guidance on preparing energy assessment (2016);
 - The Local Development Scheme of London Borough of Camden.

2. BASELINE CO₂ EMISSIONS

- 2.1 In order to estimate the predicted energy demand and regulated CO₂ emissions for the site, SAP Calculations have been carried out on all plots by a licensed and OCDEA accredited SAP Assessors using the NHER Plan Assessors Version 6.3.4.
- 2.2 The baseline CO₂ emissions covered by Part L 2013 of the Building Regulations will be expressed as the Target Emissions Rate (TER), obtained from the SAP calculations.
- 2.3 Regulated CO₂ emissions result from the energy use for:
 - Space heating Lighting
 - Hot Water
- Pumps and Fans

2.4 Typical CO₂ emissions for residential development are broken down as follows:

- 2.5 Unregulated energy use is not counted within SAP or for the purpose of Part L. For residential development, it typically includes energy uses in areas not directly covered by Building Regulations, infrastructure and external areas such as:
 - Small power (appliances)
- Lighting to the communal corridors and stairwells

Cooking

- External Lighting (roads, courtyard, bin and cycle store)
- 2.6 Unregulated CO₂ emissions have been calculated using the BREDEM-12 methodology via a spreadsheet issued by NHER which is based on the occupancy rate of the dwellings. Due to the nature of these emissions, it is impossible to predict by how much they can be reduced as this relies outside

the control of the authors and developers. Therefore, these emissions as noted will remain the same throughout the energy hierarchy.

2.7 According to the SAP calculations, the baseline CO₂ emissions of the development are as follows:

	CO ₂ Emissions (Tonnes per Annum)	
	Regulated	Unregulated
Baseline: Part L 2013 of the Building Regulations Compliant Development (TER)	93.3	93.9

3. BE LEAN

3.1 Passive Design – Building Fabric

The design of the development prioritises passive measures in order minimise heat loss cost effectively and achieve Passivhaus standards. The external envelope of the buildings will be highly insulated, airtight and free of thermal bridging conditions, with parameters selected to exceed the minimum requirements of the Building Regulations, as follows:

Element	Part L1A Limiting Fabric Parameters	Proposed Parameters	
Ground Floors U-value	0.25 W/m²K	0.09 - 0.11 W/m²K	
Exposed Upper Floors U-value	0.25 W/m²K	0.2 W/m²K	
Main External Walls U-value	0.3 W/m²K	0.15 W/m²K	
Dormers/Mansard Walls U-value	0.3 W/m²K	0.11 W/m²K	
Sheltered Walls U-value	0.3 W/m²K	0.13 W/m²K	
Party Walls U-value	0.2 W/m²K	0.0 W/m²K	
Main Roofs U-value	0.2 W/m²K	0.13 W/m²K	
Terraced Roofs U-value	0.2 W/m²K	0.2 W/m²K	
Windows U-value	2 W/m²K	0.93 W/m²K Triple Glazing with Metal Frame and Low g-value	
Doors U-value	2 W/m²K	0.93 W/m²K	
Air Permeability	10 m³/(hm²) @50Pa	3 m³/(hm²) @50Pa	
	Manual y-value calculation		
Thermal Bridging	A mixture of SAP Default and bespoke calculations used for applicable thermal junctions.		
	(Link to ACD details)		

3.2 Active Design – Building Services

The development will incorporate efficient building services to limit carbon emissions, including low-NOx heating system with energy efficient equipment, MVHR and low energy lighting. Real time smart energy monitors will be provided to all dwellings to enable occupiers to understand and adapt their energy use. The proposed building services are in compliance with the Domestic Building Services Compliance Guide (2013) and are detailed in the table below:

Building Services	Specifications
Ventilation	System 4 – MVHR Zehnder ComfoAir
Space Heating	Mains Gas Community Boilers Seasonal Efficiency of 97.1%
Emitters	Radiators
Heating Controls	Charging system linked to use, Programmer and at least 2 Room Thermostats
Hot Water	Heat Interface Units
Cooling	No Cooling
Lighting	100% Low Energy Bulbs Minimum luminous efficacy of 45 lm/c/W

- 3.3 A SAP Input Data Sheet for a representative plot can be found in the appendices to verify the above inputs.
- 3.4 By adopting enhanced building fabric and energy efficient services, the CO₂ emissions of the development are reduced by 21.88% over Part L 2013 as follows:

	CO ₂ Emissions (Tonnes per Annum)	
	Regulated	Unregulated
Baseline: Part L 2013 of the Building Regulations Compliant Development (TER)	93.3	03.0
Be Lean: Energy Demand Reduction	72.9	33.9
Regulated CO₂ Savings at <i>'Be Lean'</i> over Part L 2013	21.88%	

4. PASSIVHAUS STANDARDS

- 4.1 All units will be Passivhaus certified and the completed buildings will be verified by the Passivhaus Institute in Damstratt Germany to ensure they meet the strict energy performance requirements. The standard will be achieved by implementing 'passive' energy efficiency measures to deliver high energy performance and low consumption. The Passivhaus minimum criteria for the building fabric and services are:
 - The external envelope will be highly insulated, airtight and free of thermal bridging conditions to reduce heat loss. This is being achieved via the following:
 - Low U-values achieved via high levels of insulation to the floors, walls and roofs;
 - Triple Glazed Windows with Metal Frame which will act as acoustic barriers when closed. The location and height of the windows will maximise access to daylight, sunlight and passive solar gains.
 - Air Permeability rates of maximum 3 m³/hm² at 50 Pascals of pressure will help avoid cold draughts and improve comfort, while also reducing heat loss.
 - Heat loss through the building envelope will be minimised by targeting low U-values for doors as well.
 - Manual y-value calculations have been undertaken to minimise cold bridging and prevent the dwellings of cold spots which can lead to mould.
 - The building services will supply energy efficiently and will have low energy equipment. The proposed specifications are:
 - Mechanical Ventilation with Heat Recovery units will be installed to each dwelling to continually supply fresh air and re-use up to 95% of the heat the would otherwise be lost.
 - $\circ~$ Mains Gas Communal Boilers will supply energy with a seasonal efficiency of 97.1% and deliver substantial CO_2 savings.
 - Heat will be delivered via low temperature distribution system from the plantrooms to radiators in each dwelling. The pipes will be pre-insulated to minimise heat loss and prevent the risk of overheating. The heat distribution infrastructure will be designed to minimise pipe length to limit internal heat generation. In line with the CIBSE Heat Networks: Code of Practice, the maximum network flor and return temperatures will be of 70 C° and 40 C° respectively.
 - Energy saving heating controls will be installed, consisting of charging system linked to use, programmer and minimum 2 room thermostats per dwelling.
 - Hot Water will be supplied via individual Heat Interface Units to each dwelling.
 - Low energy lighting system with a minimum luminous efficacy of 45 lm/W will be installed throughout the buildings to minimise internal heat gains and energy use. There will be dedicated light controls and low energy fittings in the communal areas.
 - A or A+ rated electrical equipment.
- 4.2 Following this 'fabric first' model, the development achieves a reduction in regulated carbon emissions of **21.88**% over the Part L 2013 baseline. Further CO₂ savings are achieved at the 'Be Green' stage via a PV array of 11.2 kWp, comprising 35no. modules, as detailed in the following section.
- 4.3 The development will be Passivhaus certified by WARM via a compliant PHPP Model being undertaken by the Passivhaus Assessors (Architype). These details have been included in our calculations.

5. BE GREEN

- 5.1 The feasibility of all applicable renewable energy technologies is investigated below, taking into consideration the following factors:
 - CO₂ savings achieved;
 - Site constraints and opportunities;
 - Potential conflicts with alternative solutions;
 - Level of maintenance;
 - Cost.

Solar Photovoltaic		
Advantages	<u>Disadvantages</u>	
 It can provide significant CO₂ savings by producing electricity which is carbon intensive; It is relatively easy to install and manage compared to other renewable technologies; It requires no fuel; It has a zero-carbon footprint, with no GHG emitted from its operation; Feed-in Tariffs are available for excess energy produced, which can be sent to the grid; 	 Its efficiency depends on the roof location and orientation and therefore these parameters will be carefully considered; It has low efficiencies at nights and under clouds; It requires un-obstructed and un-shaded space of the roof; 	

<u>Feasibility</u>

Solar PV would successfully contribute to achieving the CO₂ reduction target of 27%, while also meeting the on-site electrical demand. The buildings provide sufficient, un-obstructed roof spaces for the installation of PV panels. Therefore, this technology is deemed feasible for the development.

Solar Thermal Collectors		
<u>Advantages</u>	<u>Disadvantages</u>	
 It is relatively easy to install and manage; It has low capital cost and near-zero maintenance costs; No fuel is required; There are no associated noise issues or GHG emissions; 	 additional plumbing and space for hot water storage is required, which may reduce the liveable space of the dwellings; there are no direct CO₂ savings if there is no significant hot water demand; the system can be designed to meet up to 60% of the hot water demand and therefore CO₂ savings are limited; long piperun from the collectors to the cylinders is required, resulting in distribution losses; 	
<u>Feasibility</u>		
This technology is considered less advantageous than PV due to:		

- the additional space required for Hot Water Cylinder which may reduce the area of the dwellings, especially with the Heat Interface Units proposed;
- the additional requirement for plumbing;
- the potential risk of overheating due to distribution losses from the collectors to the cylinders;
- lower CO2 savings.

As solar thermal collectors compete with PV for suitable roof space, they are being discounted in favour of PV, which is more cost-effective per tonne of CO2 saved and more convenient for the above reasons.

Biomass		
<u>Advantages</u>	<u>Disadvantages</u>	
 It has no requirement for additional gas or electrical supplies; It has the potential to reduce a substantial amount of CO₂. It would replace a conventional gas heating system, meaning the cost may be offset through money saved on a traditional boiler; 	 The burning of wood pellets releases substantially more NOx emissions than a gas boiler, which could reduce the air quality of the site. Regular fuel transportation and waste disposal required would add to air quality and traffic issues; There is low availability of fuel supply contractors; A plant room, fuel and ash storage is required, which may take additional land from the development; Requires taller flues than gas boilers; 	
Feasibility		

Biomass is not a preferred system due to potentially high NOx and particulate emissions which may have negative impacts upon the local air quality. Furthermore, fuel storage and delivery and waste disposal would be difficult due to space constraints on-site and lack of local biomass suppliers.

Air Source Heat Pumps (ASHP)	
<u>Advantages</u>	<u>Disadvantages</u>
 The system has high performance coefficients (COP), producing 2-3 units of heat energy for every unit of input energy; As ASHPs would replace a standard heating system, part of the cost would be offset through money saved on a traditional boiler; It reaches optimum efficiencies with low temperature systems, such as underfloor heating; It is easier and cheaper to install than a GSHP due to no requirement for buried pipes; 	 Heat pumps have higher associated CO₂ emissions than a gas boiler, primarily due to the electric immersion top-up for hot water and the electricity required to run the pump; Compared to a GSHP, it has lower COP due to varying levels of air temperatures compared to a more stable ground temperature; The outdoor condensing unit can have negative visual and noise impacts, with noise levels of 50-60dB; It is most effective for sites not connected to gas networks;

Feasibility

As this is a residential development, issues of noise may be of concern especially at night. The units would require providing heat in the winter when the difference between the internal and external air temperatures would be large, making the system less efficient. With gas available on site, there are no benefits of implementing electric heat pumps as the associated carbon emissions would be higher when compared to a gas heating system. Therefore, ASHP is discounted in favour of gas boilers and PV, which offer simpler installation and greater CO₂ savings.

Ground Source Heat Pumps (GSHP)	
<u>Advantages</u>	<u>Disadvantages</u>
 It has higher performance coefficients than ASHPs; It has low maintenance and it is easy to manage; As GSHPs would replace a standard heating system, part of the cost would be offset through money saved on a traditional boiler; 	 A geological study would be required to see if the soil can provide adequate thermal transfer; It is best suited for developments that have both a heating and cooling demand; It has higher running costs than a conventional gas system; The installation of ground loops would significantly increase the construction time and complexity; The cost of installing boreholes is very high; Boreholes require a significant amount of space on site;
	<u>Feasibility</u>

A GSHP system would not deliver substantial carbon savings given the installation complexity and high capital cost which would outweigh the benefits, in comparison to other renewable technologies such as PV. The large infrastructure required would reduce the amenity space and the energy output would not be maximised with the lack of underfloor heating. Therefore, this technology is being discounted in favour of gas boilers and PV.

5.2 Following the above feasibility, PV panels are considered the most suitable renewable energy technology to maximise CO₂ savings on-site. The proposed system details are:

PV System Details	
CO ₂ Reduction required for 27% Target	4.78 tonnes CO ₂ /year
CO₂ Offset via 1kWp	0.427 tonnes CO ₂ /year
PV Proposed for 27% Target	11.2 kWp
Module Output	320 Watts
Location	Roof of Block G

Tilt of Collectors	15 to 37.5 degrees
Orientation	South-West
Over-shading Factor	<20%
Number of Modules	35no.

5.3 The CO₂ savings achieved through the PV system amounts to an additional 6.56% reduction in regulated emissions over the 'Be Lean' stage. Overall, the proposed scheme achieved a regulated CO₂ emissions reduction of 27.00% over the Part L 2013 baseline, which meets the requirement of Planning Condition 43, as shown below:

	CO ₂ Emissions (Tonnes per Annum)					
	Regulated	Unregulated				
Baseline: Part L 2013 of the Building Regulations Compliant Development (TER)	93.3					
Be Lean: Energy Demand Reduction	72.9	93.9				
Be Green: Renewable Energy	68.1					
Regulated CO ₂ Savings at ' <i>Be Green'</i> over Part L 2013	27.00%					

5.4 The PV Array will be installed on the roof of Block G only and will be facing SW for optimised output. An indicative layout of the system, taking into consideration there is no significant over-shadowing and sufficient access for installation and maintenance is provided, is illustrated on the following page:

Agar Grove Phase 1B Energy Statement |14

6. COOLING AND OVERHEATING

6.1 Adequate measures shall be proposed in the areas where overheating is likely to be an issue. In line with London Plan Policy 5.9, the overheating prevention and cooling strategy shall be development in accordance with the following hierarchy:

Cooling Hierarchy	Measures Undertaken
Minimising internal heat generation through energy efficient design	 The development is designed to good practice insulation levels; Energy efficient lighting which lowers the internal gains from lighting; Heat distribution infrastructure within buildings should be designed to minimise pipe lengths, particularly lateral pipework in corridors; Adopting pipe configurations which minimise heat loss e.g. twin pipes
Reducing the amount of heat entering the building in summer	 Carefully designed shading measures have been considered, including: Specification of Internal blinds Trees and vegetation Orientation Balconies
Use of thermal mass and high ceilings to manage the heat within the building	 Level of exposed thermal mass has been maximised to help to absorb excess heat within the building.
Passive Ventilation	 Openable windows will allow natural ventilation; Some units will be dual aspect where cross-ventilation will be possible; Heating in communal areas is not generally required;
Mechanical ventilation	• MVHR will be installed. Mechanical Ventilation will make use of 'free cooling' (when the outside air temperature is below that in the building during summer months). This will be achieved via a by-pass mode on the heat recovery system for summer mode operation.
Active Cooling	No Active Cooling will be required.

- 6.2 All dwelling assessed under Plan Assessor pass criterion 3 of the Building Regulations, set out in Appendix P of SAP 2012, which relates to limiting the effects of heat gains in summer.
- 6.3 CIBSE Guide A Environmental Design (2015) is the reference standard for overheating in the GLA SPG on Sustainability and the current industry standard amongst other CIBSE guides such as CIBSE TM52 "The Limits of Thermal Comfort: Avoiding Overheating in European Buildings" (2013). These set out guidelines on the number of hours a dwelling should not exceed a certain temperature.
- 6.4 In conclusion, the risk of overheating can be largely mitigated through the following:
 - enhanced fabric performance through high levels of insulation;
 - provision of MVHR;
 - insulated, low temperature heat distribution infrastructure.

7. CONCLUSION

- 7.1 This document has been written to satisfy the energy requirements of the following:
 - The GLA Guide to Energy Statements (2016)
 - The Mayor's Sustainable Design and Construction SPG (2014)
 - Chapter Five of The London Plan (2016)
 - The Local Plan of the London Borough of Camden.
- 7.2 The development has CO₂ baseline emissions that are Part L compliant via passive Energy Efficiency Measures alone as highlighted in Section 4.
- 7.3 The baseline CO₂ emissions drop from 93.3 tonnes CO₂/year to 72.9 tonnes CO₂/year, that equates to a 21.88% decrease at the '*Be Lean*' stage, when taking into account the following:
 - High levels of insulation to achieve low U-Values;
 - Triple Glazed Windows;
 - High efficiency Communal Gas Boilers with low temperature distribution infrastructure and modern controls;
 - Heat Interface Units to each dwelling;
 - Low Air Tightness requirements;
 - Mechanical Ventilation with Heat Recovery;
 - 100% low energy lighting with a minimum luminous efficacy of 45lm/W.
- 7.4 11.2 kWp of PV comprising 35no. panels are being proposed to maximise the CO₂ savings on-site and achieve the 27% CO2 reduction target of Planning Condition 43.
- 7.5 For clarity, the CO₂ emissions associated with each stage of the energy hierarchy are broken down below:

Appendix 1

Agar Grove REDUCTION OF CARBON EMISSIONS BY 27%

PLOT	AREA	TER Baseline Emissions	Total TER	DER 'Be Lean'	Total DER 'Be Lean'	Unregulated Emissions	Total Unregulated
	m²	kg CO₂/m²/yr	kg CO₂/yr	kg CO₂/m²/yr	kg CO₂/yr	kg CO₂/m²/yr	kg CO₂/yr
F01	131.88	15.07	1 987	11 13	1 /68	15.01	1 980
F02	131.88	13.86	1,828	11.72	1,546	15.01	1,980
F02	131.88	13.86	1.828	10.11	1.333	15.01	1.980
F04	131.88	13.86	1.828	10.11	1.333	15.01	1,980
F05	131.88	13.86	1,828	10.11	1,333	15.01	1,980
F06	131.88	13.86	1,828	10.11	1,333	15.01	1,980
F07	131.88	15.05	1,985	11.09	1,463	15.01	1,980
F08	97	17.11	1,660	13.11	1,272	17.39	1,687
F09	97	16.24	1,575	12.79	1,241	17.39	1,687
F10	97	16.24	1,575	12.39	1,202	17.39	1,687
F11	97	16.24	1,575	12.34	1,197	17.39	1,687
F12	97	16.24	1,575	12.74	1,236	17.39	1,687
F13	97	16.24	1,575	12.39	1,202	17.39	1,687
F14	97	17.11	1,660	13.34	1,294	17.39	1,687
H01	117.02	16.18	1,893	11.56	1,353	15.95	1,866
H02	108.62	17.38	1,888	14.17	1,539	16.54	1,797
H03	117.02	16.07	1,881	12.02	1,407	15.95	1,866
H04	117.02	16.07	1,881	12.02	1,407	15.95	1,866
H05	117.02	16.07	1,881	12.02	1,407	15.95	1,866
HU6	117.02	16.18	1,893	11.56	1,353	15.95	1,866
H07	117.02	10.18	1,893	11.50	1,353	15.95	1,800
	117.02	16.07	1,888	12.02	1,335	15.05	1,757
H10	117.02	16.07	1,001	11.63	1,407	15.55	1,866
H11	124 7	16.45	2 051	12.8	1 596	15.45	1,927
H12	120.29	16.95	2,039	14.32	1,723	15.74	1,893
H13	124.7	16.43	2.049	13.51	1.685	15.45	1,927
H14	124.7	16.48	2,055	13.48	1,681	15.45	1,927
H15	124.7	16.43	2,049	13.55	1,690	15.45	1,927
H16	124.7	16.31	2,034	12.71	1,585	15.45	1,927
H17	124.7	16.45	2,051	12.8	1,596	15.45	1,927
H18	120.29	16.95	2,039	14.32	1,723	15.74	1,893
H19	124.7	16.43	2,049	13.51 1,685		15.45	1,927
H20	124.7	16.31	2,034	12.71	1,585	15.45	1,927
G01	59.3	22.71	1,347	17.88	1,060	20.13	1,194
G02	59.3	24.37	1,445	20.53	1,217	20.13	1,194
G03	59.3	24.03	1,425	20.22	1,199	20.13	1,194
G04	59.3	22.36	1,326	17.55	1,041	20.13	1,194
G05	66.25	22.89	1,516	17.75	1,176	19.62	1,300
G06	84.09	16.44	1,382	12.7	1,068	18.34	1,542
607	63.76	10.03	1,000	12.47	1 0 2 0	19.0	1,202
608	63.76	19.20	1,229	16.26	1,020	19.8	1,202
G10	63 76	17.2	1,193	12.91	873	19.8	1,262
G11	84 09	16.07	1,351	12.29	1.033	18.34	1,542
G12	84.93	17.45	1,482	13.3	1,130	18.28	1,553
G13	66.04	16.84	1,112	12.83	847	19.64	1,297
G14	66.04	19.1	1,261	16.15	1,067	19.64	1,297
G15	66.04	18.55	1,225	16.11	1,064	19.64	1,297
G16	66.04	17.37	1,147	13.22	873	19.64	1,297
G17	84.93	16.24	1,379	12.09	1,027	18.28	1,553
G18	84.93	18.37	1,560	14.71	1,249	18.28	1,553
G19	61.57	17.75	1,093	14.07	866	19.95	1,228
G20	61.57	19.89	1,225	17.33	1,067	19.95	1,228
G21	61.57	19.47	1,199	16.79	1,034	19.95	1,228
G22	61.57	18.18	1,119	14.54	895	19.95	1,228
G23	84.93	17.84	1,515	14.12	1,199	18.28	1,553
Total Area	5,571	Total TER	93,329	Total DER 'Be Lean'	72,911	Total Unregulated	93,909

CO2 Savings at 'Be Lean' (%)	21.88%
CO2 Offset Required for 27% Reduction (kg CO ₂ /yr)	4,781
CO ₂ Offset per 1kWP PV (kg CO ₂ /yr)	427.00
PV Required for 27% Target (kWp)	11.20
PV Proposed (kWp)	11.20
CO ₂ Reduction via PV (kg CO ₂ /yr)	4,782
CO ₂ Emissions at 'Be Green' (kg CO ₂ /yr)	68,129
CO ₂ Reduction over Part L 2013 at 'Be Green' (%)	27.00%

Appendix 2

Data Input Report As Built - Draft

This as built submission has been carried out using Approved SAP software. The assessor has confirmed any changes from the design submission with the builder.

Assessor name	Mr Neil Rothon	Assessor number	4282
Client		Last modified	25/06/2018
Address	G01 Agar Grove, London, NW1		

Dwelling										
Development:		N/A			House type:					
Property type:		Flat								
Flat type:		Ground floo	or		Year built:			2016		
Tariff:		Standard			Assess summer	overheati	ing:	Yes		
Thermal mass:		Medium			Thermal mass p	parameter	:	250.00		
Separated heated conserv	vatory:	No			Degree day reg	ion:		Thames		
Sheltered sides:		2			Terrain:			Dense Url	ban	
Storeys:										
Name		Area (m²)			Height (m)					
Lowest occupied		59.30			4.08					
Floors										
Ref - Name		Туре		Construction		Storey Lo	ocation	Living Area (m²)	Area (m²)	U-value (W/m²K)
Floor 1 - Floor 1		Ground		Solid		Lowest o	ccupied	36.38	59.30	0.09
Living area that has no he	at loss:	0.00								
Walls										
Ref - Name		Туре		Construction					Gross Area (m²)	U-value (W/m²K)
Wall 1 - ext MAIN		External		Cavity					40.56	0.15
Wall 2 - party		Party		Solid					42.30	0.00
Wall 3 - party to retail		Party		Solid					42.30	0.00
Roofs										
Ref - Name				Construction					Gross Area (m²)	U-value (W/m²K)
Roof 1 - LOWER				Flat					6.24	0.20
Openings										
Opening Ref: 1 Window,	Triple glazed	l (low-E), ' N,	/A', maste	r: Yes, linked to	: 0					
Location:	Wall 1		Source:		From Manufact	urer	Orientatio	n:	West	
Overshading:	Average / Ur	nknown	Width (n	ו):	1.00		Height (m)):	3.15	
Frame:	Metal		Transmit	tance factor:	0.52		U-value (V	V/m²K):	0.93	
Opening Ref: 2 Window,	Triple glazed	l (low-E), ' N	/A', maste	r: No, linked to:	1					
Location:	Wall 1		Source:		From Manufact	urer	Orientatio	n:	North W	est
Overshading:	Average / Ur	nknown	Width (n	ı):	0.85		Height (m)):	2.70	
Frame:	Metal		Transmit	tance factor:	0.52		U-value (V	V/m²K):	0.93	
Opening Ref: 3 Window,	Triple glazed	l (low-E), ' N,	/A', maste	r: No, linked to:	1					
Location:	Wall 1		Source:		From Manufact	turer	Orientatio	n:	West	
Overshading:	Average / Ur	nknown	Width (n	ו):	1.02		Height (m)):	2.70	
Frame:	Metal		Transmit	tance factor:	0.52		U-value (V	V/m²K):	0.93	

Opening Ref: 4 Window, Triple glazed (low-E), ' N/A', master: No, linked to: 1

Location: Wall 1 So		Source:	From N	/lanufacturer	Orientation:	East		
Over	rshading:	Average / Unknown	Width (m):	1.58		Height (m):	2.78	
Fram	ne:	Metal	Transmittance fa	ctor: 0.52		U-value (W/m ² K):	0.93	
Ope	ning Ref: 6 Half glaze	ed door, Triple glazed (lo	ow-E), ' N/A', maste	r: No, linked to:	0			
Loca	tion:	Wall 1	Source:	From N	/Janufacturer	Orientation:	N/A	
Over	rshading:	N/A	Width (m):	1.13		Height (m):	3.00	
Fram	ne:	Metal	Transmittance fa	ctor: 0.57		U-value (W/m ² K):	0.93	
The	ermal Bridging							
Ref	Description			Length (m)	Source	ψ (W/m·K)	Result	
E1	Steel lintel with perf	forated steel	Г	0	Default Value	N/A	0	
F2	Other lintels (includi	ing other stee		5 58	 User Defined	0 113	0 6305	
F3	Sill			4 45	User Defined	0.113	0 5029	
EJ	lamb			28.66		0.018	0.5159	
	Ground floor (norm:			10.4		0.117	1 2169	
E3	Ground floor (norma	al)		10.4		0.117	1.2108	
E19	Ground noor (invert	ed)		N/A		N/A	0	
E20	Exposed floor (norm	ial)		N/A	Default Value	N/A	0	
E21	Exposed floor (inver	ted)		2	Default Value	0.32	0.64	
E22	Basement floor			N/A] Default Value	N/A	0	
E6	Intermediate floor w	vithin a dwellin		N/A	Default Value	N/A	0	
E6	Intermediate floor w	vithin a dwellin		N/A	Default Value	N/A	0	
E6	Intermediate floor w	vithin a dwellin		N/A	Default Value	N/A	0	
E7	Party floor between	dwellings (in b		3.1	User Defined	0.049	0.1519	
E7	Party floor between	dwellings (in b		N/A	Default Value	N/A	0	
E7	Party floor between	dwellings (in b		N/A	Default Value	N/A	0	
E8	Balcony within a dw	elling, wall ins		N/A	Default Value	N/A	0	
E9	Balcony between dw	vellings, wall ins		N/A	Default Value	N/A	0	
E23	Balcony within or be	etween dwellings		N/A	Default Value	N/A	0	
E10	Eaves (insulation at	ceiling level)		N/A	Default Value	N/A	0	
E24	Eaves (insulation at	ceiling level		N/A	User Defined	N/A	0	
E24	Eaves (insulation at	ceiling level	Г	N/A	Default Value	N/A	0	
E11	Eaves (insulation at	rafter level)	Ē	N/A	Default Value	N/A	0	
E12	Gable (insulation at	ceiling level)	Ē	N/A	 Default Value	N/A	0	
E13	Gable (insulation at	rafter level)	Ī	N/A	 Default Value	N/A	0	
E14	Flat roof		Ē	, N/A	Default Value	, N/A	0	
F14	Flat roof			5.2	User Defined	0.127	0.6604	
F15	Flat roof with paran	et		N/A	Default Value	N/Δ	0	
E16	Corner (normal)			4.8		0 105	0 504	
E16	Corner (normal)					N/A	0	
L10	Corner (normal)		L L	N/A		N/A	0	
E10	Corner (normal)			N/A		N/A	0	
E17	Corner (Inverted - In	iternal area gr		N/A		N/A	0	
E18	Party wall between	dwellings	Ļ	10.8	User Defined	0.059	0.6372	
E25	Staggered party wal	l between dwelli		4.8	Default Value	0.12	0.576	
P1	Ground floor			22	_ Default Value	0.16	3.52	
P6	Ground floor (invert	ed)		N/A	Default Value	N/A	0	
P2	Intermediate floor w	vithin a dwellin		N/A	Default Value	N/A	0	
Р3	Intermediate floor b	etween dwelling		19.6	Default Value	0	0	
Р7	Exposed floor (norm	nal)		N/A	Default Value	N/A	0	
P8	Exposed floor (inver	ted)		N/A	Default Value	N/A	0	

P4 Boof (insulation at ceiling level)			Ν/Δ	Default Value		N/A	0
P5 Roof (insulation at rafter level)			N/A			N/A	0
P1 Head			0			N/A	0
			0				0
RZ SIII			0			N/A	0
R3 Jamb			0	Default Value		N/A	0
R4 Ridge (vaulted ceiling)			N/A	Default Value		N/A	0
R5 Ridge (inverted)			N/A	Default Value		N/A	0
R6 Flat ceiling			N/A	Default Value		N/A	0
R7 Flat ceiling (inverted)			N/A	Default Value		N/A	0
R8 Roof wall (rafter)			N/A	Default Value		N/A	0
R9 Roof wall (flat ceiling)			N/A	Default Value		N/A	0
Equivalent y value:	0.090						
Ventilation							
Air permeability entered:	Yes		Seek exe	mption (<3 dw	ellings):	No	
Design air permeability rate:	3.00						
Measured air permeability rate:	3.00		Measure	d in this dwelli	ng:	Yes	
As-built air permeability rate:	3.00		As-built a	air permeability	reference:		
Number of	Open fireplaces	Open flues	Flueless	gas fires	Extract fans	Pas	ssive vents
	0	0	()	0		0
System Information:							
Mechanical ventilation:	Balanced (with h	leat recovery)	Values fr	om:		Product d	latabase
Product name:	Zehnder ComfoA	Air 200	Approved installer:			Yes	
Number of wet rooms:	Kitchen + 1 addi	tional wet room	SFP:			0.91	
Heat exchange efficiency:	93.00						
Duct information:							
Duct type:	Rigid ductwork		Values fr	om:		Default	
Product name:	N/A		Duct insu	llation		Insulated	ductwork
Space heating							
Main heating category:	Community sche	eme					
Secondary heating:	No		Open flu	e or chimney:		N/A	
Unconnected gas point:	N/A		Smoke co	ontrol area:		N/A	
Heat source: Mains gas - Boilers							
Fraction of heat:	1.00		Efficiency	/ (%):		97.10	
Community system:							
User entered distribution loss factor	: No						
Heat distribution system:	Pre-insulated low	w temp variable flo	ow (1991 or la	ter)			
Controls:	Charging system	linked to use, pro	grammer and	TRVs			
Emitter:	Radiators		0				
	From main		Cylinder	in dwelling:		No	
nype.			cynnuel				
Renewables							
No renewables present							
Other							
Internal lighting							
Standard fittings: 0	Lov	v energy fittings:	1		Total fitting	s:	1
Summer overheating							
Summer overheating Thermal mass parameter (TMP):	250.00						

User defined air change rate:	No	Air change rate (ach):	N/A
Cross ventilation on most floors:	Yes	Window ventilation:	Fully open half the time
Source of user defined values:	N/A		
Curtains closed in daylight hours:	No	Fraction curtains closed:	N/A
Blind/curtain type:	N/A		

Special features (Appendix Q)

No Appendix Q special features present

Cooling details

No space cooling present

TER Worksheet As Built - Draft

This as built submission has been carried out using Approved SAP software. The assessor has confirmed any changes from the design submission with the builder.

Assessor name	N	/Ir Neil R	othon							As	sessor nun	nber	428	32	
Client										La	st modified	ł	25/	06/2018	
Address	G	i01 Agar	Grove, Loi	ndon, NW:	1										
1. Overall dwelling d	limensior	าร													
						Aı	rea (m²)			Aver he	age storey eight (m)	,		Volume (m³)	
Lowest occupied							59.30	(1a)	x		4.08] (2a) =		241.94	(3a)
Total floor area		(1a)	+ (1b) + (1e	c) + (1d)((1n) = [59.30	(4)							
Dwelling volume										(3a)	+ (3b) + (3	sc) + (3d)(3n) = 🗌	241.94	(5)
2. Ventilation rate															
														m ³ per hour	
Number of chimneys											0	x 40 =	- [0	(6a)
Number of open flues	5										0	 x 20 =	- [0	(6b)
Number of intermitte	nt fans										2	x 10 =	- [20	(7a)
Number of passive ve	nts										0	x 10 =	= [0	(7b)
Number of flueless ga	is fires										0	x 40 =	-	0	(7c)
													Α	ir changes pe hour	er
Infiltration due to chir	mneys, flu	ues, fans	s, PSVs			(6a)	+ (6b) + (7	7a) + (7b) + (7c) =	20	÷ (5) :	-	0.08	(8)
If a pressurisation tes	t has beei	n carried	l out or is ii	ntended, p	oroceed	to (1	7), otherv	vise con	tinue f	from (9) t	o (16)				
Air permeability value	e, q50, exp	pressed	in cubic me	etres per h	iour pei	[.] squ	are metre	e of enve	lope a	rea				5.00	(17)
If based on air permea	ability val	ue, then	n (18) = [(17	7) ÷ 20] + (8), othe	erwis	e (18) = (1	16)						0.33	(18)
Number of sides on w	hich the o	dwelling	is sheltere	d										2	(19)
Shelter factor											1	- [0.075 x (1	.9)] = [0.85	(20)
Infiltration rate incorp	porating s	helter fa	actor									(18) x (20) =	0.28	(21)
Infiltration rate modif	ied for m	onthly w	vind speed	:											
it	an	Feb	Mar	Apr	Ma	y	Jun	Jul		Aug	Sep	Oct	Nov	Dec	
Monthly average wind	d speed fr	om Tab	le U2					_					T		_
5.	.10	5.00	4.90	4.40	4.3	0	3.80	3.8	0	3.70	4.00	4.30	4.50	4.70	(22)
Wind factor (22)m ÷ 4	• • • • •				1								I .		-
	.28	1.25	1.23	1.10	1.0	8	0.95	0.9	5	0.93	1.00	1.08	1.13	1.18	(22a)
Adjusted Inflitration r			sneiter and	wind fact	or) (21)	x (2	2a)m		-	0.26	0.00	0.20	0.00	0.22	_ (22b)
Calculate effective air	change r	0.35 ate for t	0.35	0.31	0.3	0	0.27	0.2	/	0.26	0.28	0.30	0.32	0.33	_ (220)
If mechanical vent	ilation: ai	r change	e rate throu	igh system	n								Г	Ν/Δ	(23a)
If balanced with be	eat recove	erv: effic	riency in %	allowing f	or in-us	e fac	tor from [•]	Table 4h						N/A	(23c)
d) natural ventilati	ion or wh	ole hous	se positive	input vent	ilation	from	loft						L		
0.	.56	0.56	0.56	0.55	0.5	5	0.54	0.5	4	0.53	0.54	0.55	0.55	0.56	(24d)
Effective air change ra	ate - ente	r (24a) c	or (24b) or	(24c) or (2	4d) in (2	25)			I						
0.	.56	0.56	0.56	0.55	0.5	5	0.54	0.54	4	0.53	0.54	0.55	0.55	0.56	(25)
	- I			•	•		•	•					•		*

3. Heat losses	and heat lo	ss paramet	er.										
Element			а	Gross rea, m²	Openings m ²	Net A,	area m²	U-value W/m²K	A x U W	//К к-v kJ	/alue, /m².K	Ахк, kJ/K	
Window						11	43 x	1.33	= 15.15	;			(27)
Door						3	.39 x	1.20	= 4.07				(26)
Ground floor						59).30 x	0.13	= 7.71				(28
External wall						25	.73 x	0.18	= 4.63				(29)
Party wall						84	.60 x	0.00	= 0.00				(32
Roof						6	.24 x	0.13	= 0.81				(30
Total area of ex	ternal elem	ents ∑A, m²	2			10	6.09						(31
Fabric heat loss	, W/K = Σ(A	× U)							(20	5)(30) + (32) =	32.37	(33
Heat capacity C	m = ∑(А x к)							(28)	.(30) + (32) -	+ (32a)(3	2e) =	N/A	_] (34
Thermal mass p	arameter (T	·MP) in kJ/r	m²K									250.00] (35
Thermal bridges	s: Σ(L x Ψ) ca	alculated us	sing Appen	dix K								8.00] (36
Total fabric hea	t loss		0 11							(33) + (36) =	40.37] (37
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	_ ·
Ventilation heat	t loss calcula	ated month	ıly 0.33 x (2	25)m x (5)	•			U	•				
	45.11	44,91	44.71	43.78	43.61	42.80	42.80	42.65	43.11	43.61	43.96	44.33] (38
Heat transfer co	pefficient. W	//K (37)m +	+ (38)m			.2.00	1.1.00	1	.0.111	10101		1.100	
	85.48	85.28	85.08	84 16	83.98	83 17	83 17	83.02	83.49	83.98	84 33	84 70	٦
	00.10	00.20	05.00	01120		00.17	00.17	00.02	Average = ⁵	5(39)1 12	/12 =	84 15	∟ (זס
Heat loss naram	neter (HIP)	W/m ² K (30	(4)						Average - 2	<u>(</u> 33)112,	12 -	04.15	_ (55
			1 / 2	1 / 2	1 / 2	1.40	1.40	1.40	1 / 1	1 / 2	1 / 2	1 / 3	٦
	1.44	1.44	1.45	1.42	1.42	1.40	1.40	1.40		(1.42)	/12 -	1 / 2	_ _ (10
Number of days	in month (Table 1a)							Average - 2	2(40)112,	12 -	1.42	_ (40
Number of days			21.00	20.00	21.00	20.00	21.00	21.00	20.00	21.00	20.00	21.00	
	51.00	28.00	51.00	30.00	51.00	50.00	51.00	51.00	50.00	51.00	50.00	51.00	_ (40
4. Water heati	ing energy r	equiremen	t										
Assumed occup	ancy, N											1.96	(42
Annual average	hot water u	isage in litre	es per day	Vd,average	e = (25 x N) +	36						80.79	_ (43
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	_
Hot water usage	e in litres pe	r day for ea	ach month	Vd,m = fact	tor from Tab	le 1c x (43	3)						
	88.87	85.64	82.41	79.18	75.94	72.71	72.71	75.94	79.18	82.41	85.64	88.87	7
	<u> </u>										.12 =	969.51	 (44
Energy content	of hot wate	r used = 4.1	18 x Vd,m x	nm x Tm/3	3600 kWh/m	onth (see	Tables 1b	, 1c 1d)		2.			_ `
	131.79	115.27	118.95	103.70	99.50	85.86	79.56	91.30	92.39	107.67	117.53	127.64	٦
										Σ(45)1	.12 =	1271.18	_] (45
Distribution los	s 0.15 x (45)m								2(10)21			
	19 77	17 29	17 84	15 55	14 93	12 88	11 93	13 70	13.86	16 15	17.63	19 15	7 (46
Storage volume	(litres) inclu	Iding any s	olar or WW	/HRS storage	e within san		11.55	10.70	10.00	10.15		1 00] (10] (47
Water storage	055.	ang any 5										1.00] (47
a) If manufactur	ror's doclare	d loss facto	or is known	(k)M/b/day))							0.21	
Tomporature	o factor from	n Tabla 2b		(KWII/Udy))							0.21	_ (40 _ (40
Enormylast	rom water -		(b/day) (4)	$P = (A \cap A)$								0.34	_ (49 _ (50
	ioni water s	storage (KM	(48) (48	oj X (49)								0.12	_ (50 _ (50
Enter (50) or (54	4) III (55)	d for c	month /r	-) v (41)								0.12	_ (55
water storage l		eu for each		5) X (41)m		2.10	0.5-	0.5-	2.45	a		0.55	۔ مر ا
	3.57	3.23	3.57	3.46	3.57	3.46	3.57	3.57	3.46	3.57	3.46	3.57	_ (56
If the vessel cor	ntains dedica	ated solar s	torage or d	ledicated W	VWHRS (56)r	n x [(47) -	Vs] ÷ (47)	, else (56)					

	3.57	3.23	3.57	3.46	3.57	3.46	3.57	3.57	3.46	3.57	3.46	3.57	(57)
Primary circuit l	oss for each	month fro	m Table 3										_
	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26	(59)
Combi loss for e	ach month	from Table	3a, 3b or 3	c									
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(61)
Total heat requi	red for wate	er heating c	alculated f	or each mo	onth 0.85 x	(45)m + (4	6)m + (57)ı	m + (59)m +	- (61)m				
	158.63	139.50	145.78	129.67	126.34	111.83	106.40	118.14	118.36	134.51	143.50	154.47	(62)
Solar DHW inpu	t calculated	using Appe	endix G or A	Appendix H									
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(63)
Output from wa	iter heater f	or each mo	nth (kWh/r	month) (62	2)m + (63)m	ı							
	158.63	139.50	145.78	129.67	126.34	111.83	106.40	118.14	118.36	134.51	143.50	154.47	
										∑(64)1	12 = 1	.587.12	(64)
Heat gains from	water heat	ing (kWh/m	10nth) 0.2ទ	5 × [0.85 ×	(45)m + (61	.)m] + 0.8 ×	: [(46)m + (57)m + (59)	m]				
	65.29	57.72	61.02	55.25	54.55	49.32	47.92	51.82	51.50	57.27	59.85	63.91	(65)
5. Internal gair	15	Fab	D.den	A va v	Mari	I	1.4	A	<u>Car</u>	Ort	Neu	Dee	
Motobolic going	Jan (Tabla C)	Feb	iviar	Apr	iviay	JUN	Jui	Aug	Sep	Uct	NOV	Dec	
Metabolic gains			00.00	00.00	00.00	00.00	08.00	08.00	00.00	00.00	00.00	00.00	
Lighting going (g	98.09	98.09	98.09	98.09	98.09	98.09	98.09	98.09	98.09	98.09	98.09	98.09] (66)
Lighting gains (C							F 70	7.49	10.04	10.75	14.00	15.00	
Appliance gains	15.43	in Appondi	11.15	8.44		5.33	5.76	7.48	10.04	12.75	14.88	15.80] (67)
Appliance gains							128.00	126.20	120.70	140.20	152.22	162.62	
Cooking going (g	1/1.18	172.95	168.48	158.95	2) also soo	135.01 Table 5	128.06	126.29	130.76	140.29	152.32	163.63] (68)
COOKINg gains (C							22.01	22.01	22.01	22.01	22.01	22.01	
Dump and fap g	32.81	32.81	32.81	32.81	32.81	32.81	32.81	32.81	32.81	32.81	32.81	32.81] (69)
Pullip and failing			2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	
	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00] (70)
Lusses e.g. evap			79.47	70.47	79.47	70 47	70 47	70 47	70 47	70 47	70 47	70 47	7 (71)
Water beating a	-78.47	-78.47 5)	-78.47	-78.47	-78.47	-78.47	-78.47	-78.47	-78.47	-78.47	-78.47	-78.47](/1)
water neating g													
	87.75	0 0 0 0	02.01	76 74	72.22	C0 F1	CA 41	<u> </u>	71 50	76.07	02.12	05.00	(72)
Total internal as	inc (FE)m	85.89	82.01	76.74	73.32	68.51	64.41	69.66	71.52	76.97	83.13	85.89	(72)
Total internal ga	ains (66)m +	85.89 ⊦ (67)m + (6	82.01 8)m + (69)	76.74 m + (70)m ·	73.32 + (71)m + (7	68.51 72)m	64.41	69.66	71.52	76.97	83.13	85.89] (72)
Total internal ga	ains (66)m + 329.79	85.89 ⊦ (67)m + (6 327.98	82.01 58)m + (69) 317.06	76.74 m + (70)m 299.56	73.32 + (71)m + (7 281.98	68.51 72)m 264.87	64.41 253.66	69.66 258.85	71.52	76.97 285.44	83.13 305.76	85.89] (72)] (73)
Total internal ga	ains (66)m 1 329.79	85.89 ⊦ (67)m + (6 327.98	82.01 58)m + (69) 317.06	76.74 m + (70)m · 299.56	73.32 + (71)m + (7 281.98	68.51 72)m 264.87	64.41 253.66	69.66	71.52	76.97 285.44	83.13 305.76	85.89 320.81] (72)] (73)
Total internal ga	ains (66)m + 329.79	85.89 + (67)m + (6 327.98	82.01 58)m + (69) 317.06 Access f	76.74 m + (70)m · 299.56	73.32 + (71)m + (7 281.98 Area	68.51 72)m 264.87 Sol	64.41 253.66 ar flux	69.66 258.85	71.52 267.75 g	76.97 285.44 FF	83.13 305.76	85.89 320.81 Gains] (72)] (73)
Total internal ga	ains (66)m + 329.79	85.89 + (67)m + (6 327.98	82.01 38)m + (69) 317.06 Access f Table	76.74 m + (70)m · 299.56 factor 6d	73.32 + (71)m + (7 281.98 Area m ²	68.51 72)m 264.87 Sol V	64.41 253.66 ar flux V/m ²	69.66 258.85 spec	71.52 267.75 g ific data able 6b	76.97 285.44 FF specific c or Table	83.13 305.76	85.89 320.81 Gains W] (72)] (73)
Total internal ga	ains (66)m + 329.79	85.89 + (67)m + (6 327.98	82.01 i8)m + (69)i 317.06 Access f Table	76.74 m + (70)m · 299.56 factor 6d	73.32 + (71)m + (7 281.98 Area m ²	68.51 72)m 264.87 Sol V	64.41 253.66 ar flux V/m ²	69.66 258.85 spec or T	71.52 267.75 g ific data able 6b	76.97 285.44 FF specific c or Table	83.13 305.76 lata 6c	85.89 320.81 Gains W] (72)] (73)
Total internal ga 6. Solar gains West	ains (66)m + 329.79	85.89 + (67)m + (€ 327.98	82.01 38)m + (69)n 317.06 Access f Table 0.77	76.74 m + (70)m · 299.56 factor 6d	73.32 + (71)m + (7 281.98 Area m ² 5.36	68.51 72)m 264.87 Sol V	64.41 253.66 ar flux V/m ² 9.64 x	69.66 258.85 spec or T 0.9 x (0	71.52 267.75 g ific data able 6b 0.63 x	76.97 285.44 FF specific c or Table 0.70	83.13 305.76	85.89 320.81 Gains W 32.17] (72)] (73)] (80)
Total internal ga 6. Solar gains West NorthWest	ains (66)m + 329.79	85.89 + (67)m + (€ 327.98	82.01 58)m + (69). 317.06 Access f Table 0.7 0.7	76.74 m + (70)m · 299.56 factor 6 d 7 x [7 x [7 x [73.32 + (71)m + (7 281.98 Area m ² 5.36 2.08	68.51 72)m 264.87 Sol V 3 x 1 x 1 x 1	64.41 253.66 ar flux V/m ² 9.64 x 1.28 x	69.66 258.85 spec or T 0.9 x (0 0.9 x (0)	71.52 267.75 g ific data able 6b 0.63 x 0.63 x	76.97 285.44 FF specific c or Table 0.70 0.70	83.13 305.76	85.89 320.81 Gains W 32.17 7.17] (72)] (73)] (80)] (81)] (76)
6. Solar gains West NorthWest East	ains (66)m + 329.79	(82)m	82.01 58)m + (69) 317.06 Access f Table 0.7 0.7 0.7	76.74 m + (70)m 299.56 factor 6d 7 x 7 x 7 x 7 x 7 x	73.32 + (71)m + (7 281.98 Area m ² 5.36 2.08 3.99	68.51 72)m 264.87 Sol W 3 x 1 x 1 x 1 x 1	64.41 253.66 ar flux V/m ² 9.64 x 9.64 x	69.66 258.85 spec or T 0.9 x (0 0.9 x (0 0.9 x (0	71.52 267.75 g ific data able 6b 0.63 x 0.63 x 0.63 x	76.97 285.44 FF specific c or Table 0.70 0.70 0.70	83.13 305.76 lata 6c = [= [=] = [85.89 320.81 Gains W 32.17 7.17 23.95] (72)] (73)] (80)] (81)] (76)
6. Solar gains West NorthWest East Solar gains in wa	ains (66)m + 329.79 atts Σ(74)m	85.89 + (67)m + (6 327.98	82.01 58)m + (69) 317.06 Access f Table 0.7 0.7 0.7 0.7	76.74 m + (70)m · 299.56 factor 6d 7 x 7 x 7 x 7 x 7 x	73.32 + (71)m + (7 281.98 Area m ² 5.36 2.08 3.99	68.51 72)m 264.87 Sol V 3 x 1 x 1 x 1 x 1	64.41 253.66 ar flux V/m ² 9.64 x 9.64 x	69.66 258.85 spec or T 0.9 x (0.9 x (0.9 x (71.52 267.75 g ific data able 6b 0.63 x 0.63 x 0.63 x	76.97 285.44 FF specific c or Table 0.70 0.70 0.70	83.13 305.76 lata 6c = [= [= [-] = [85.89 320.81 Gains W 32.17 7.17 23.95] (72)] (73)] (80)] (81)] (76)
Total internal ga 6. Solar gains West NorthWest East Solar gains in wa Total gains - interval	ains (66)m + 329.79 329.79 atts Σ(74)m 63.29 ernal and so	85.89 + (67)m + (6 327.98 327.98 124.39 lar (73)m +	82.01 58)m + (69) 317.06 Access f Table 0.77 0.77 0.77 207.11 (83)m	76.74 m + (70)m 299.56 factor 6d 7 x 7 x 7 x 7 x 306.89	73.32 + (71)m + (7 281.98 Area m ² 5.36 2.08 3.99 381.23	68.51 72)m 264.87 Sol v 392.72	64.41 253.66 ar flux V/m ² 9.64 x 1.28 x 9.64 x 372.86	69.66 258.85 spec or T 0.9 x (0.9 x (71.52 267.75 g ific data able 6b 0.63 x 0.63 x 0.63 x 242.33	76.97 285.44 FF specific c or Table 0.70 0.70 0.70 148.11	83.13 305.76 ata 6c = = _ = _ 79.00	85.89 320.81 Gains W 32.17 7.17 23.95 52.01] (72)] (73)] (80)] (81)] (76)] (83)
Total internal ga 6. Solar gains West NorthWest East Solar gains in wa Total gains - internal	ains (66)m + 329.79 329.79 atts Σ(74)m 63.29 ernal and so	85.89 + (67)m + (¢ 327.98 327.98 124.39 lar (73)m +	82.01 58)m + (69) 317.06 Access f Table 0.7 0.7 0.7 207.11 (83)m 524.17	76.74 m + (70)m 299.56 factor 6d 7 x 7 x 7 x 306.89 605.44	73.32 + (71)m + (7 281.98 Area m ² 5.36 2.08 3.99 381.23	68.51 72)m 264.87 Sol W X 1 X 1 X 1 392.72	64.41 253.66 ar flux V/m ² 9.64 x 9.64 x 9.64 x 372.86 626.51	69.66 258.85 spec or T 0.9 x (0.9 x (71.52 267.75 g ific data able 6b 0.63 x 0.63 x 0.63 x 242.33	76.97 285.44 FF specific c or Table 0.70 0.70 0.70 148.11	83.13 305.76 lata 6c = [] = [79.00 384.76	85.89 320.81 Gains W 32.17 7.17 23.95 52.01] (72)] (73)] (80)] (81)] (76)] (83)] (84)
Total internal ga 6. Solar gains West NorthWest East Solar gains in wa Total gains - inte	ains (66)m + 329.79 329.79 63.29 ernal and so 393.09	85.89 + (67)m + (¢ 327.98 , (82)m 124.39 lar (73)m + 452.36	82.01 58)m + (69) 317.06 Access f Table 0.77 0.77 0.77 207.11 (83)m 524.17	76.74 m + (70)m · 299.56 Factor 6d 7 x 7 x 7 x 306.89 606.44	73.32 + (71)m + (7 281.98 Area m ² 5.36 2.08 3.99 381.23 663.20	68.51 72)m 264.87 Sol v 392.72 657.59	64.41 253.66 ar flux V/m ² 9.64 x 9.64 x 9.64 x 372.86 626.51	69.66 258.85 spec or T 0.9 x (0.9 x (0.9 x (316.70 575.55	71.52 267.75 g ific data able 6b 0.63 x 0.63 x 0.63 x 0.63 x 242.33	76.97 285.44 FF specific c or Table 0.70 0.70 148.11 433.55	83.13 305.76 lata 6c = [] = [79.00 384.76	85.89 320.81 Gains W 32.17 7.17 23.95 52.01 52.01] (72)] (73)] (80)] (81)] (76)] (83)] (84)
6. Solar gains West NorthWest East Solar gains in wa Total gains - inter 7. Mean interr	ains (66)m + 329.79 329.79 atts ∑(74)m 63.29 ernal and so 393.09 nal tempera	85.89 + (67)m + (¢ 327.98 (82)m 124.39 lar (73)m + 452.36 ture (heatin	82.01 88)m + (69) 317.06 Access f Table 0.7 0.7 0.7 0.7 207.11 (83)m 524.17 ng season)	76.74 m + (70)m 299.56 factor 6d 7 x 7 x 7 x 306.89 606.44	73.32 + (71)m + (7 281.98 Area m ² 5.36 2.08 3.99 381.23 663.20	68.51 72)m 264.87 Sol W X 1 X 1 X 1 392.72 657.59	64.41 253.66 ar flux V/m ² 9.64 x 9.64 x 9.64 x 372.86 626.51	69.66 258.85 spec or T 0.9 x (0 0.9 x (0 0.9 x (0 316.70 575.55	71.52 267.75 sific data able 6b 0.63 x 0.63 x 0.63 x 242.33 510.08	76.97 285.44 FF specific c or Table 0.70 0.70 0.70 148.11	83.13 305.76 data 6c = [] = [] = [79.00 384.76	85.89 320.81 Gains W 32.17 7.17 23.95 52.01 372.82] (72)] (73)] (80)] (81)] (76)] (83)] (84)
Total internal ga 6. Solar gains West NorthWest East Solar gains in wa Total gains - international gains - internation gains - internation gains - international gains - internation ga	ains (66)m + 329.79 329.79 329.79 63.29 ernal and so 393.09 hal tempera uring heating	85.89 + (67)m + (6 327.98 327.98 124.39 Jar (73)m + 452.36 ture (heating periods in	82.01 58)m + (69) 317.06 Access f Table 0.7 0.7 0.7 0.7 207.11 (83)m 524.17 ng season) the living a	76.74 m + (70)m · 299.56 Factor 6d 7 x 7 x 7 x 306.89 606.44 area from T	73.32 + (71)m + (7 281.98 Area m ² 5.36 2.08 3.99 381.23 663.20	68.51 72)m 264.87 Sol V 30 X 1 X 1 392.72 657.59	64.41 253.66 ar flux V/m ² 9.64 x 9.64 x 9.64 x 372.86 626.51	69.66 258.85 spec or T 0.9 x (0.9 x (0.9 x (316.70 575.55	71.52 267.75 g ific data able 6b 0.63 x 0.63 x 242.33 510.08	76.97 285.44 FF specific c or Table 0.70 0.70 0.70 148.11	83.13 305.76 lata 6c = [] = [79.00 384.76	85.89 320.81 Gains W 32.17 7.17 23.95 52.01 372.82 372.82 21.00] (72)] (73)] (80)] (81)] (76)] (83)] (84)] (85)
Total internal ga 6. Solar gains West NorthWest East Solar gains in wa Total gains - international gains - internation gains - internation gains - international gains - internation ga	ains (66)m + 329.79 329.79 329.79 63.29 63.29 ernal and so 393.09 hal tempera uring heating Jan	85.89 + (67)m + (6 327.98 327.98 124.39 Jar (73)m + 452.36 ture (heating periods in Feb	82.01 88)m + (69) 317.06 Access f Table 0.7 0.7 0.7 0.7 207.11 (83)m 524.17 1g season) the living a Mar	76.74 m + (70)m 299.56 factor 6d 7 x 7 x 7 x 7 x 306.89 606.44 area from T Apr	73.32 + (71)m + (7 281.98 Area m ² 5.36 2.08 3.99 381.23 663.20 G663.20	68.51 72)m 264.87 Sol W 3 x 1 x 1 392.72 657.59	64.41 253.66 ar flux V/m ² 9.64 x 1.28 x 9.64 x 372.86 626.51 Jul	69.66 258.85 spec or T 0.9 x (0 0.9 x (0 0.9 x (0 316.70 575.55	71.52 267.75 g ific data able 6b 0.63 x 0.63 x 0.63 x 0.63 x 242.33 510.08	76.97 285.44 FF specific c or Table 0.70 0.70 0.70 148.11 433.55	83.13 305.76 data 6c = [] = [] = [] 79.00 384.76	85.89 320.81 320.81 32.17 32.17 7.17 23.95 52.01 372.82 372.82 21.00 Dec] (72)] (73)] (80)] (81)] (76)] (83)] (83)] (84)

Utilisation facto	r for gains f	or living are	a n1,m (see	e Table 9a)									
	1.00	0.99	0.98	0.95	0.87	0.72	0.56	0.62	0.86	0.97	0.99	1.00	(86)
Mean internal to	emp of livin	g area T1 (s	teps 3 to 7	in Table 9c	.)								
	19.44	19.61	19.92	20.33	20.69	20.91	20.98	20.96	20.79	20.32	19.81	19.42	(87)
Temperature du	iring heating	g periods in	the rest of	dwelling fr	om Table 9), Th2(°C)							-
	19.73	19.73	19.74	19.75	19.75	19.76	19.76	19.76	19.76	19.75	19.75	19.74	(88)
Utilisation facto	r for gains for	or rest of d	welling n2,r	n									
	1.00	0.99	0.98	0.93	0.82	0.61	0.41	0.47	0.78	0.96	0.99	1.00	(89)
Mean internal to	emperature	in the rest	of dwelling	T2 (follow	steps 3 to	7 in Table 9	e)	-] (/
	17.69	17 93	18 38	18 98	19.46	19 70	19 75	19 75	19 59	18 97	18.23	17.66	(90)
Living area fract	ion	17.55	10.50	10.50	13.40	15.70	15.75	15.75	15.55	ving area ÷	(4) =	0.61] (91)
Mean internal to	emnerature	for the wh	ole dwelling	σfIΔ x T1 +	-(1 - fl Δ) x T	r ว				ing area .	(+) =	0.01] (31)
		19.06	10.22	10.01		20.44	20 50	20.40	20.22	10.90	10.20	10.74	(02)
Apply adjustma	10.70	10.90	19.55	19.01	20.21	20.44	20.50	20.49	20.55	19.60	19.20	10.74] (92)
								20.40	20.22	10.00	10.20	10.74	
	18.76	18.96	19.33	19.81	20.21	20.44	20.50	20.49	20.33	19.80	19.20	18.74] (93)
8. Space heating	ng requirem	ent											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation facto	r for gains. I	าฑ		•				Ű					
	0.99	0.99	0.98	0.93	0.84	0.67	0.50	0.56	0.82	0.96	0 99	1 00	(94)
Liseful gains nm	Gm W (94)m x (84)m	0.50	0.55	0.04	0.07	0.50	0.50	0.02	0.50	0.55	1.00] (34)
		//// (O I)///	E11 62			442.60	215 10	224 52	417.40	116 50	200.06	271 10	
Monthly avorage	o ovtornal t	447.75	from Table	500.85	550.08	442.09	515.10	524.52	417.49	410.58	380.90	571.10] (33)
				01	11 70	14.00	10.00	16.40	14.10	10.00	7 10	4.20	
llest less wets fo	4.30	4.90	0.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20] (96)
Heat loss rate to	or mean inte	ernal tempe	rature, Lm,	w [(39)m	x [(93)m -	(96)m]							1
	1236.44	1199.28	1091.28	918.29	/15.01	485.91	324.65	339.85	519.80	//2.4/	1020.37	1231.15] (97)
Space heating re	equirement,	kwn/mon	th 0.024 x	[(97)m - (95	5)m] x (41)r	m							7
	629.06	505.04	431.27	253.04	117.80	0.00	0.00	0.00	0.00	264.78	460.37	639.82]
									∑(98	3)15, 10	12 = 3	301.18] (98) T
Space heating re	equirement	kWh/m²/ye	ear							(98)	÷ (4)	55.67	(99)
9a. Energy reg	uirements -	individual	heating sys	tems inclu	ding micro	-CHP							
Snace heating													
Eraction of space	o hoot from	socondary	/supplement	tary system	m (table 11	۱						0.00	(201)
Fraction of space	e heat from	main custo	supplement	italy system)				1 /20)1) – [1.00] (201)] (202)
Fraction of space	e neat from	main syste	m(s)							1 - (20)1) = [1.00] (202)] (202)
	e neat from	main syste	111 Z						(20	2) [4. (20		0.00] (202)] (204)
Fraction of total	space neat	trom main	system 1						(20)2) X [1- (20	3)] =	1.00] (204)] (205)
Fraction of total	space heat	from main	system 2							(202) x (20)3) =	0.00] (205)] (205)
Efficiency of ma	in system 1	(%)						_				93.50] (206)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating fu	uel (main sy	stem 1), kW	/h/month										-
	672.79	540.15	461.25	270.63	125.99	0.00	0.00	0.00	0.00	283.18	492.38	684.30]
									∑(21:	1)15, 10	12 = 3	530.67	(211)
Water heating													
Efficiency of wat	ter heater												
	88.12	87.95	87.53	86.57	84.63	79.80	79.80	79.80	79.80	86.59	87.71	88.20	(217)
Water heating f	uel, kWh/m	onth											
	180.01	158.62	166.54	149.79	149.28	140.14	133.33	148.04	148.32	155.34	163.62	175.13]

				Σ(219a)112 =	1868.17	(219)
Annual totals				2.		
Space heating fuel - main system 1					3530.67	7
Water heating fuel					1868.17]
Electricity for pumps, fans and electric keep-hot (Table 4f)						
central heating pump or water pump within warm air heating	unit		30.00			(230c)
boiler flue fan			45.00			(230e)
Total electricity for the above, kWh/year				1	75.00	(231)
Electricity for lighting (Appendix L)					272.57	(232)
Total delivered energy for all uses			(211)(221) + (231) +	(232)(237b) =	5746.41	(238)
102 Eucl costs - individual heating systems including micro-CH	ID					_
Toal Fuel costs - individual heating systems including inicio-ch	Eucl		Eucl price		Fuel	
	kWh/year		i dei price		cost £/year	
Space heating - main system 1	3530.67	x	3.48	x 0.01 =	122.87	(240)
Water heating	1868.17	x	3.48	x 0.01 =	65.01	(247)
Pumps and fans	75.00	x	13.19	x 0.01 =	9.89	(249)
Electricity for lighting	272.57	x	13.19	x 0.01 =	35.95	(250)
Additional standing charges					120.00	(251)
Total energy cost			(240)(242)	+ (245)(254) =	353.72	(255)
11a. SAP rating - individual heating systems including micro-Ch	HP					
Energy cost deflator (Table 12)					0.42	(256)
Energy cost factor (ECF)					1.42	(257)
SAP value					80.13]
SAP rating (section 13)					80	(258)
SAP band					С]
						-
12a. CO ₂ emissions - individual heating systems including micro	о-СНР 				_ · · ·	
	Energy kWh/year		Emission factor kg CO₂/kWh		Emissions kg CO ₂ /year	
Space heating - main system 1	3530.67	x	0.216	=	762.62	(261)
Water heating	1868.17	x	0.216	=	403.53	(264)
Space and water heating			(261) + (262) +	- (263) + (264) =	1166.15	(265)
Pumps and fans	75.00	x	0.519] =	38.93	(267)
Electricity for lighting	272.57	х	0.519	=	141.46	(268)
Total CO ₂ , kg/year				(265)(271) =	1346.54	(272)
Dwelling CO ₂ emission rate				(272) ÷ (4) =	22.71	(273)
El value					82.70	
El rating (section 14)					83	(274)
El band					В	
13a. Primary energy - individual heating systems including mic	ro-CHP					
	Energy		Primary factor		Primary Energy	/
	kvvn/year				кууп/year	

	kWh/year		r filliar y factor		kWh/year	
Space heating - main system 1	3530.67] x	1.22] =	4307.42	(261)
Water heating	1868.17] x	1.22] =	2279.17	(264)
Space and water heating			(261) + (262) +	- (263) + (264) =	6586.59	(265)
Pumps and fans	75.00) x	3.07] =	230.25	(267)
Electricity for lighting	272.57	x	3.07] =	836.78	(268)

Primary energy kWh/year

Dwelling primary energy rate kWh/m2/year

7653.62	(272)
129.07	(273)

DER Worksheet As Built - Draft

This as built submission has been carried out using Approved SAP software. The assessor has confirmed any changes from the design submission with the builder.

Assessor name	Mr Neil F	Ir Neil Rothon						Assessor nur	4282			
Client								Last modifie	d	25/06	/2018	
Address	G01 Aga	r Grove, Lo	ndon, NW	'1								
1. Overall dwelling dimen	nsions											
					Area (m²)		۵	verage store height (m)	Y	Va	lume (m³)	
Lowest occupied					59.30	(1a) x		4.08	(2a) =		241.94	(3a)
Total floor area	(1a)	+ (1b) + (1	c) + (1d)	.(1n) = 🗌	59.30	(4)						
Dwelling volume								(3a) + (3b) + (3	3c) + (3d)(3	n) =	241.94	(5)
2. Ventilation rate												
										m	³ per hour	
Number of chimneys							Ε	0	x 40 =		0	(6a)
Number of open flues								0	x 20 =		0	(6b)
Number of intermittent fa	ns							0	x 10 =		0	(7a)
Number of passive vents								0	x 10 =		0	(7b)
Number of flueless gas fire	es							0	x 40 =		0	(7c)
										Air	hanges pe: hour	r
Infiltration due to chimney	vs, flues, fan	s, PSVs			(6a) + (6b) + ((7a) + (7b) +	(7c) =	0	÷ (5) =		0.00	(8)
If a pressurisation test has	been carrie	d out or is i	ntended,	proceed	to (17), other	rwise continu	ue from (′9) to (16)				
Air permeability value, q50), expressed	in cubic m	etres per l	hour per	square metr	e of envelop	oe area				3.00	(17)
If based on air permeabilit	y value, the	n (18) = [(1	7) ÷ 20] +	(8), othe	rwise (18) = ((16)					0.15	(18)
Number of sides on which	the dwelling	g is sheltere	ed								2	(19)
Shelter factor								1	- [0.075 x (19	9)] =	0.85	(20)
Infiltration rate incorporat	ing shelter f	actor							(18) x (2	0) =	0.13	(21)
Infiltration rate modified f	or monthly v	wind speed	:									
Jan	Feb	Mar	Apr	Ma	y Jun	Jul	Aug	s Sep	Oct	Nov	Dec	
Monthly average wind spe	ed from Tak	ole U2	_				-1		- I			_
5.10	5.00	4.90	4.40	4.3	3.80	3.80	3.70	4.00	4.30	4.50	4.70	(22)
Wind factor (22)m ÷ 4							1					
1.28	1.25	1.23	1.10	1.0	8 0.95	0.95	0.93	3 1.00	1.08	1.13	1.18	(22a)
Adjusted infiltration rate (a	allowing for	shelter and	d wind fac	tor) (21)	x (22a)m	0.10	0.42	0.42				
Calculate effective air char	0.16	0.16	0.14	0.14	4 0.12	0.12	0.12	0.13	0.14	0.14	0.15	_ (22b)
If mechanical ventilatio	n: air chang	e rate thro	ugh syster	m							0.50	(222)
If halanced with heat re			allowing	for in-us	e factor from	Table 1h					79.05	(23c)
a) If balanced mechanic	cal ventilatio	on with hea	t recover	/ (MVHR) (22b)m + (2	3b) x [1 - (23	3c) ÷ 100	1		L	, 5.05	
	0.26	0.26	0.25		4 0.22			, U 23	0.24	0.25	0.25	(242)
Effective air change rate -	enter (24a) (or (24b) or	(24c) or (2	24d) in (2	. <u>0.23</u>	0.25	0.22	0.25	0.24	5.25	0.25	_ (∠+a)
	0.26	0.26	0.25	0.2	4 0.22	0.23	0.22	0.23	0.24	0.25	0.25	(25)
0.27	0.20	0.20	0.25	0.2	0.20	0.20	5.22	0.25	0.27	5.25		

3. Heat losses a	and heat los	ss paramete	er										
Element			а	Gross rea, m²	Openings m ²	Net A,	area m²	U-value W/m²K	A x U W	/К к-\ kJ,	value, /m².K	Ахк, kJ/K	
Window						12	.59 x	0.90	= 11.29				(27)
Door						3.	.39 x	0.93	= 3.15				(26)
Ground floor						59	.30 x	0.09	= 5.34				(28a)
External wall						24	.58 x	0.15	= 3.69				(29a)
Party wall						84	.60 x	0.00	= 0.00				(32)
Roof						6.	.24 x	0.20	= 1.25				(30)
Total area of ext	ernal eleme	ents ∑A, m²				10	6.10						(31)
Fabric heat loss,	W/K = ∑(A	× U)							(26	5)(30) + (3	32) =	24.71	(33)
Heat capacity Cr	n = ∑(А x к)							(28)	.(30) + (32) +	- (32a)(3	2e) =	N/A	(34)
Thermal mass pa	arameter (T	MP) in kJ/m	1²K									250.00	(35)
Thermal bridges	: Σ(L x Ψ) ca	lculated us	ing Appen	dix K								9.56	(36)
Total fabric heat	loss									(33) + (3	36) =	34.27	(37)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Ventilation heat	loss calcula	ted month	ly 0.33 x (2	25)m x (5)									
	21.34	21.09	20.83	19.56	19.31	18.03	18.03	17.78	18.54	19.31	19.82	20.32	(38)
Heat transfer co	efficient, W	/K (37)m +	(38)m										_
	55.61	55.36	55.10	53.83	53.58	52.30	52.30	52.05	52.81	53.58	54.08	54.59	
									Average = ∑	(39)112/	/12 =	53.77	(39)
Heat loss param	eter (HLP), '	W/m²K (39)m ÷ (4)					_			1		-
	0.94	0.93	0.93	0.91	0.90	0.88	0.88	0.88	0.89	0.90	0.91	0.92	
Number of days	·								Average = ∑	(40)112/	/12 =	0.91	_ (40)
Number of days	in month (I	able 1a)	24.00	20.00	24.00	20.00	21.00	24.00		24.00	22.00	24.00	
	31.00	28.00	31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00	30.00	31.00	(40)
4. Water heating	ng energy r	equirement	t										
Assumed occupa	ancy, N											1.96	(42)
Annual average	hot water u	sage in litre	es per day '	Vd,average	e = (25 x N) +	36						80.79	(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Hot water usage	in litres pe	r day for ea	ch month	Vd,m = fac	tor from Tab	le 1c x (43	3)						
	88.87	85.64	82.41	79.18	75.94	72.71	72.71	75.94	79.18	82.41	85.64	88.87	
										∑(44)1	.12 =	969.51	(44)
Energy content of	of hot wate	r used = 4.1	.8 x Vd,m x	nm x Tm/	3600 kWh/m	onth (see	Tables 1b	, 1c 1d)					_
	131.79	115.27	118.95	103.70	99.50	85.86	79.56	91.30	92.39	107.67	117.53	127.64	
										∑(45)1	.12 =	1271.18	(45)
Distribution loss	0.15 x (45)	m					Ť.					-	-
	19.77	17.29	17.84	15.55	14.93	12.88	11.93	13.70	13.86	16.15	17.63	19.15	(46)
Storage volume	(litres) inclu	iding any so	olar or WW	HRS stora	ge within san	ne vessel						1.00	(47)
Water storage ic	DSS:	1											
b) Manufacturer	r's declared	loss factor		vn	,								
Hot water sto	orage loss ta	actor from	i able 2 (kv	vh/litre/da	iy)							0.02	(51)
volume facto		e Za										4.93	(52)
Enormylast	ractor from		b/day) /1-	7) 、 / 「 1 ` /	E3) y (E3)							1.00	_ (53)
Energy lost fr) in (55)	torage (KW	n/uay) (47	, x (эт) x (JZJ X (JJ)							0.12	(54) (55)
Water storage lo	n in (55) Ss calculate	d for each	month (5ª	5) x (41)m								0.12	_ (33)
water storage it				~, ^ (¬+/)11									

	3.66	3.31	3.66	3.55	3.66	3.55	3.66	3.66	3.55	3.66	3.55	3.66	(56)
If the vessel con	ntains dedic	ated solar st	orage or d	ledicated W	VWHRS (56)	m x [(47) -	Vs] ÷ (47),	else (56)					
	3.66	3.31	3.66	3.55	3.66	3.55	3.66	3.66	3.55	3.66	3.55	3.66	(57)
Primary circuit l	oss for each	n month from	n Table 3										
	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26	(59)
Combi loss for e	each month	from Table	3a, 3b or 3	c									
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(61)
Total heat requi	ired for wat	er heating c	alculated f	or each mo	onth 0.85 x	(45)m + (4	6)m + (57)	m + (59)m +	(61)m				
	158.72	139.59	145.87	129.76	126.43	111.92	106.49	118.23	118.45	134.60	143.59	154.56	(62)
Solar DHW inpu	t calculated	l using Appe	ndix G or A	Appendix H	I								
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(63)
Output from wa	ater heater	for each mo	nth (kWh/	month) (62	2)m + (63)m	1							
	158.72	139.59	145.87	129.76	126.43	111.92	106.49	118.23	118.45	134.60	143.59	154.56	
										∑(64)1	.12 = 1	588.22	(64)
Heat gains from	water heat	ting (kWh/m	ionth) 0.2	5 × [0.85 ×	(45)m + (61)m] + 0.8 ×	[(46)m + (57)m + (59)	m]				_
	65.36	57.78	61.09	55.33	54.63	49.40	48.00	51.90	51.57	57.34	59.93	63.98	(65)
5. Internal gair	ns												
	Jan	Feb	Mar	Apr	Mav	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Metabolic gains	(Table 5)				,				сор			200	
	98.09	98.09	98.09	98.09	98.09	98.09	98.09	98.09	98.09	98.09	98.09	98.09	66)
Lighting gains (c	calculated in	Appendix L	, equation	L9 or L9a),	, also see Ta	ble 5	50.00			50.05	50.05	50.05] (00)
	15.29	13.58	11.05	8.36	6.25	5.28	5.70	7.41	9.95	12.63	14.74	15.72	(67)
Appliance gains	(calculated	in Appendix	k L, equatio	on L13 or L	13a), also se	e Table 5						_	
	171.18	172.95	168.48	158.95	146.92	135.61	128.06	126.29	130.76	140.29	152.32	163.63	(68)
Cooking gains (c	calculated ir	n Appendix L	, equation	L15 or L15	ia), also see	Table 5							
	32.81	32.81	32.81	32.81	32.81	32.81	32.81	32.81	32.81	32.81	32.81	32.81	(69)
Pump and fan g	ains (Table	5a)						•				•	_
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(70)
Losses e.g. evap	oration (Ta	ble 5)											-
	-78.47	-78.47	-78.47	-78.47	-78.47	-78.47	-78.47	-78.47	-78.47	-78.47	-78.47	-78.47	(71)
Water heating g	gains (Table	5)											
	87.85	85.99	82.11	76.84	73.42	68.61	64.51	69.76	71.62	77.07	83.23	85.99	(72)
Total internal ga	ains (66)m	+ (67)m + (6	8)m + (69)	m + (70)m	+ (71)m + (7	72)m							
	326.75	324.95	314.06	296.58	279.02	261.92	250.70	255.88	264.76	282.42	302.72	317.76	(73)
	_												
6. Solar gains				-									
			Accord	factor	Area	50	or flux		~	66		Coinc	
			Access f Table	factor 6d	Area m²	Sol W	ar flux //m²	speci	g ific data	FF specific c	lata	Gains W	
			Access f Table	factor 6d	Area m²	Sol M	ar flux //m²	speci or Ta	g ific data able 6b	FF specific o or Table	lata 6c	Gains W	
West			Access f Table	factor 6d 7 x	Area m ² 5.90	Sol W 	ar flux //m² 9.64 x	speci or Ta	g ific data able 6b).52 x	FF specific o or Table	lata : 6c =	Gains W 33.41] (80)
West NorthWest			Access f Table	factor 6d 7 x [7 x [Area m ² 5.90 2.30	Sol W x 1 x 1	ar flux //m² 9.64 x 1.28 x	speci or Ta 0.9 x 0 0.9 x 0	g ific data able 6b 0.52 x 0.52 x	FF specific o or Table 0.80	lata : 6c = =	Gains W 33.41 7.48] (80)] (81)
West NorthWest East			Access f Table 0.7 0.7	factor 6d 7 x 7 x 7 x	Area m ² 5.90 2.30 4.39	Sol x 1 x 1 x 1 x 1	ar flux //m ² 9.64 x 1.28 x 9.64 x	speci or Ta 0.9 x 0 0.9 x 0 0.9 x 0 0.9 x 0	g ific data able 6b 0.52 x 0.52 x 0.52 x	FF specific c or Table 0.80 0.80	lata : 6c = =	Gains W 33.41 7.48 24.86] (80)] (81)] (76)
West NorthWest East Solar gains in wa	atts ∑(74)m	n(82)m	Access 6 Table 0.7 0.7 0.7	factor 6d 7 x [7 x [7 x [Area m ² 5.90 2.30 4.39	Sol W X 1 X 1 X 1 X 1	ar flux //m ² 9.64 x 1.28 x 9.64 x	speci or Ta 0.9 x 0 0.9 x 0 0.9 x 0 0.9 x 0	g ific data able 6b 0.52 x 0.52 x 0.52 x	FF specific c or Table 0.80 0.80	lata : 6c = = =	Gains W 33.41 7.48 24.86] (80)] (81)] (76)
West NorthWest East Solar gains in wa	atts ∑(74)m 65.74	n(82)m 129.20	Access 1 Table 0.7 0.7 215.14	factor 6d 7 x [7 x [7 x] 318.81	Area m ² 5.90 2.30 4.39 396.06	Sol W X 1 X 1 X 1 408.00	ar flux //m ² 9.64 x 9.64 x 387.37	speci or Ta 0.9 x 0 0.9 x 0 0.9 x 0 0.9 x 0 329.01	g ific data able 6b 0.52 x 0.52 x 0.52 x 251.73 x	FF specific c or Table 0.80 0.80 0.80	data : 6c = = = 82.06	Gains W 33.41 7.48 24.86 54.02] (80)] (81)] (76)] (83)
West NorthWest East Solar gains in wa Total gains - inte	atts ∑(74)m 65.74 ernal and so	n(82)m 129.20 blar (73)m +	Access f Table 0.7 0.7 215.14 (83)m	factor 6d 7 x [7 x [7 x [318.81	Area m ² 5.90 2.30 4.39 396.06	Sol W X 1 X 1 X 1 X 1 408.00	ar flux //m ² 9.64 x 1.28 x 9.64 x 387.37	speci or Ta 0.9 x 0 0.9 x 0 0.9 x 0 329.01	g ific data able 6b 0.52 x 0.52 x 0.52 x 0.52 x 251.73	FF specific c or Table 0.80 0.80 0.80	data 6c = [] = [] = [] 82.06	Gains W 33.41 7.48 24.86 54.02] (80)] (81)] (76)] (83)
West NorthWest East Solar gains in wa Total gains - inte	atts ∑(74)m 65.74 ernal and so 392.49	n(82)m 129.20 blar (73)m + 454.15	Access 1 Table 0.7 0.7 215.14 (83)m 529.20	factor 6d 7 x [7 x [7 x] 7 x [318.81 615.39	Area m ² 5.90 2.30 4.39 396.06 675.08	Sol W X 1 X 1 X 1 408.00	ar flux //m ² 9.64 x 9.64 x 9.64 x 387.37 638.07	speci or Ta 0.9 x 0 0.9 x 0 0.9 x 0 329.01	g ific data able 6b 0.52 x 0.52 x 0.52 x 0.52 x 251.73 516.49	FF specific c or Table 0.80 0.80 153.85 436.27	data • 6c = [= [= [82.06 384.78	Gains W 33.41 7.48 24.86 54.02 371.79] (80)] (81)] (76)] (83)] (84)

7. Mean internal temperature (heating season)

Temperature du	iring heating	g periods in	the living a	area from T	able 9, Th	1(°C)						21.00	(85)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation facto	r for gains f	or living are	ea n1,m (se	e Table 9a)									
	1.00	0.99	0.97	0.88	0.70	0.50	0.36	0.41	0.68	0.94	0.99	1.00	(86)
Mean internal to	emp of livin	g area T1 (s	teps 3 to 7	in Table 9c	:)								
	20.11	20.27	20.53	20.82	20.96	21.00	21.00	21.00	20.98	20.76	20.39	20.10	(87)
Temperature du	iring heating	g periods in	the rest of	f dwelling fi	rom Table	9, Th2(°C)		1				-]
·	20.14	20.14	20.14	20.16	20.16	20.18	20.18	20.19	20.18	20.16	20.16	20.15	(88)
Utilisation facto	r for gains f	or rest of du	welling n2	m		20120	20.20	1 20120		20.20	20120] (00)
			0.06	0.95	0.65	0.42	0.20	0.24	0.61	0.02	0.00	1.00	
	1.00	0.99		U.85	0.05	0.45	0.29	0.54	0.01	0.92	0.99	1.00] (09)
Mean Internal to	emperature	In the rest	or aweiling		steps 3 to			1	1				7 (2.2)
	18.95	19.19	19.55	19.96	20.13	20.18	20.18	20.19	20.16	19.89	19.37	18.94] (90) 7
Living area fract	ion								Liv	ving area ÷	(4) =	0.61	(91)
Mean internal to	emperature	for the wh	ole dwellin	g fLA x T1 +	-(1 - fLA) x	Т2							
	19.67	19.85	20.15	20.49	20.64	20.68	20.68	20.68	20.66	20.42	19.99	19.65	(92)
Apply adjustme	nt to the me	ean internal	temperatu	ure from Ta	ble 4e wh	ere appropr	iate						
	19.67	19.85	20.15	20.49	20.64	20.68	20.68	20.68	20.66	20.42	19.99	19.65	(93)
	-				•							•	-
8. Space heating	ng requirem	ient											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation facto	r for gains, ı	ηm											
	0.99	0.99	0.96	0.86	0.68	0.47	0.33	0.38	0.65	0.93	0.99	1.00	(94)
Useful gains, ηπ	nGm, W (94	l)m x (84)m									•	-	-
	390.39	448.33	508.26	532.28	460.38	316.46	213.45	222.70	336.34	404.18	380.06	370.29	(95)
Monthly averag	e external to	emperature	from Tabl	e U1				1	1			1 01 01 00] ()
montiny averag		4.00	6 50	8 00	11 70	14.60	16.60	16.40	14.10	10.60	7 10	4 20	
	4.50	4.90	0.50	0.90	11.70	(06)ml	10.00	10.40	14.10	10.00	7.10	4.20] (90)
Heat loss rate to	or mean inte	ernal tempe	rature, Lm	, w [(39)m	x [(93)m -	· (96)m]		1	1				7
	854.51	827.73	752.25	623.84	479.01	318.06	213.60	223.02	346.52	526.28	697.31	843.44] (97)
Space heating re	equirement,	, kWh/mon	th 0.024 x	[(97)m - (9	5)m] x (41))m			1				-
	345.30	254.96	181.53	65.93	13.86	0.00	0.00	0.00	0.00	90.84	228.42	352.02	
									∑(98	3)15, 10	.12 =	1532.86	(98)
Space heating re	equirement	kWh/m²/ye	ear							(98)	÷ (4)	25.85	(99)
			1										
96. Energy req	ulrements -	communit	y neating s	cneme									<u>ר</u>
Fraction of spac	e heat from	secondary,	/supplemei	ntary syste	m (table 1	1)				'0' if	none	0.00] (301)
Fraction of spac	e heat from	community	y system							1 - (3	01) =	1.00	(302)
Fraction of com	munity heat	from boile	rs									1.00	(303a)
Fraction of total	space heat	from comn	nunity boile	ers						(302) x (30	3a) =	1.00	(304a)
Factor for contr	ol and charg	ging method	d (Table 4c((3)) for com	nmunity sp	ace heating						1.00	(305)
Factor for charg	ing method	(Table 4c(3)) for comr	nunity wat	er heating							1.00	(305a)
Distribution loss	factor (Tab	le 12c) for (community	heating sy	stem							1.05	(306)
	,	,	,	0,							L		1, ,
Space beating													
Annual ana an h									522.00	1			(00)
Annual space ne	ating requi	rement							1552.80				(98)
space neat from	Dollers							(98	s) x (304a) x	k (305) x (3	06) = [1009.50] (307a)
Water heating										-			
Annual water he	eating requi	rement						1	1588.22	J			(64)

Water heat from boilers			(64) x (303a) x (305a) x (306) =	1667.63	(310a)
Electricity used for heat distribution		0.01 × [(3	307a)(307e) + (3	10a)(310e)] =	32.77	(313)
Electricity for pumps, fans and electric keep-hot (Table 4f)						
mechanical ventilation fans - balanced, extract or positive inpu	t from outside		335.76			(330a)
Total electricity for the above, kWh/year					335.76	(331)
Electricity for lighting (Appendix L)					270.05	(332)
Total delivered energy for all uses	(307) + (309) +	(310) + (312)	+ (315) + (331) +	(332)(337b) =	3882.94	(338)
10b. Fuel costs - community heating scheme						
	Fuel kWh/year		Fuel price		Fuel cost £/year	
Space heating from boilers	1609.50	x	4.24	x 0.01 =	68.24	(340a)
Water heating from boilers	1667.63	x	4.24	x 0.01 =	70.71	(342a)
Pumps and fans	335.76	x	13.19	x 0.01 =	44.29	(349)
Electricity for lighting	270.05	×	13.19	x 0.01 =	35.62	(350)
Additional standing charges					120.00	(351)
Total energy cost			(340a)(342e) +	- (345)(354) =	338.86	(355)
11b. SAP rating - community heating scheme						
Energy cost deflator (Table 12)					0.42	(356)
Energy cost factor (ECF)					1.36	(357)
SAP value					80.96	
SAP rating (section 13)					81	(358)
SAP band					В	
12b. CO ₂ emissions - community heating scheme						
12b. CO ₂ emissions - community heating scheme	Energy kWh/year		Emission factor		Emissions (kg/year)	_
12b. CO ₂ emissions - community heating scheme Emissions from other sources (space heating)	Energy kWh/year		Emission factor		Emissions (kg/year)	_
12b. CO ₂ emissions - community heating scheme Emissions from other sources (space heating) Efficiency of boilers	Energy kWh/year 97.10		Emission factor		Emissions (kg/year)	(367a)
12b. CO2 emissions - community heating schemeEmissions from other sources (space heating)Efficiency of boilersCO2 emissions from boilers[(307a)+(310a)] x 100 ÷ (367a) =	Energy kWh/year 97.10 3375.01	x	Emission factor	_	Emissions (kg/year) 729.00	(367a) (367)
12b. CO2 emissions - community heating schemeEmissions from other sources (space heating)Efficiency of boilersCO2 emissions from boilers[(307a)+(310a)] x 100 ÷ (367a) =Electrical energy for community heat distribution	Energy kWh/year 97.10 3375.01 32.77	x x	Emission factor 0.216 0.519	=	Emissions (kg/year) 729.00 17.01	(367a)] (367)] (372)
12b. CO2 emissions - community heating scheme Emissions from other sources (space heating) Efficiency of boilers CO2 emissions from boilers [(307a)+(310a)] x 100 ÷ (367a) = Electrical energy for community heat distribution Total CO2 associated with community systems	Energy kWh/year 97.10 3375.01 32.77	x x	Emission factor 0.216 0.519	= =	Emissions (kg/year) 729.00 17.01 746.01	(367a)] (367)] (372)] (373)
12b. CO2 emissions - community heating scheme Emissions from other sources (space heating) Efficiency of boilers CO2 emissions from boilers [(307a)+(310a)] x 100 ÷ (367a) = Electrical energy for community heat distribution Total CO2 associated with community systems Total CO2 associated with space and water heating	Energy kWh/year 97.10 3375.01 32.77	x x	Emission factor 0.216 0.519	=	Emissions (kg/year) 729.00 17.01 746.01 746.01	(367a)] (367)] (372)] (373)] (376)
12b. CO2 emissions - community heating scheme Emissions from other sources (space heating) Efficiency of boilers CO2 emissions from boilers [(307a)+(310a)] x 100 ÷ (367a) = Electrical energy for community heat distribution Total CO2 associated with community systems Total CO2 associated with space and water heating Pumps and fans	Energy kWh/year 97.10 3375.01 32.77 335.76	x x x	Emission factor 0.216 0.519 0.519	= = =	Emissions (kg/year) 729.00 17.01 746.01 746.01 174.26	(367a)] (367)] (372)] (373)] (376)] (378)
12b. CO2 emissions - community heating scheme Emissions from other sources (space heating) Efficiency of boilers CO2 emissions from boilers [(307a)+(310a)] x 100 ÷ (367a) = Electrical energy for community heat distribution Total CO2 associated with community systems Total CO2 associated with space and water heating Pumps and fans Electricity for lighting	Energy kWh/year 97.10 3375.01 32.77 335.76 270.05	x x x x	Emission factor 0.216 0.519 0.519 0.519	= = =	Emissions (kg/year) 729.00 17.01 746.01 746.01 174.26 140.16	(367a)] (367)] (372)] (373)] (376)] (378)] (379)
12b. CO2 emissions - community heating scheme Emissions from other sources (space heating) Efficiency of boilers CO2 emissions from boilers [(307a)+(310a)] x 100 ÷ (367a) = Electrical energy for community heat distribution Total CO2 associated with community systems Total CO2 associated with space and water heating Pumps and fans Electricity for lighting Total CO2, kg/year	Energy kWh/year 97.10 3375.01 32.77 335.76 270.05	x x x x	Emission factor 0.216 0.519 0.519 0.519	= = = (376)(382) =	Emissions (kg/year) 729.00 17.01 746.01 746.01 174.26 140.16 1060.43	(367a)] (367)] (372)] (373)] (376)] (378)] (379)] (383)
12b. CO2 emissions - community heating scheme Emissions from other sources (space heating) Efficiency of boilers CO2 emissions from boilers [307a)+(310a)] x 100 ÷ (367a) = Electrical energy for community heat distribution Total CO2 associated with community systems Total CO2 associated with space and water heating Pumps and fans Electricity for lighting Total CO2, kg/year Dwelling CO2 emission rate	Energy kWh/year 97.10 3375.01 32.77 335.76 270.05	x x x x	Emission factor 0.216 0.519 0.519 0.519	= = = (376)(382) = (383) ÷ (4) =	Emissions (kg/year) 729.00 17.01 746.01 746.01 174.26 140.16 1060.43 17.88	(367a) (367) (372) (373) (376) (378) (378) (379) (383) (384)
12b. CO2 emissions - community heating scheme Emissions from other sources (space heating) Efficiency of boilers CO2 emissions from boilers [(307a)+(310a)] x 100 ÷ (367a) = Electrical energy for community heat distribution Total CO2 associated with community systems Total CO2 associated with space and water heating Pumps and fans Electricity for lighting Total CO2, kg/year Dwelling CO2 emission rate El value	Energy kWh/year 97.10 3375.01 32.77 335.76 270.05	x x x x	Emission factor 0.216 0.519 0.519 0.519	= = = (376)(382) = (383) ÷ (4) =	Emissions (kg/year) 729.00 17.01 746.01 746.01 174.26 140.16 1060.43 17.88 86.38	(367a) (367) (372) (373) (376) (378) (379) (383) (384)
12b. CO2 emissions - community heating scheme Emissions from other sources (space heating) Efficiency of boilers CO2 emissions from boilers [(307a)+(310a)] x 100 ÷ (367a) = Electrical energy for community heat distribution Total CO2 associated with community systems Total CO2 associated with space and water heating Pumps and fans Electricity for lighting Total CO2, kg/year Dwelling CO2 emission rate El value El rating (section 14)	Energy kWh/year 97.10 3375.01 32.77 335.76 270.05	x x x x	Emission factor 0.216 0.519 0.519 0.519	= = = (376)(382) = (383) ÷ (4) =	Emissions (kg/year) 729.00 17.01 746.01 746.01 174.26 140.16 1060.43 17.88 86.38 86.38	(367a) (367) (372) (373) (376) (378) (378) (379) (383) (384) (385)
12b. CO2 emissions - community heating scheme Emissions from other sources (space heating) Efficiency of boilers CO2 emissions from boilers [307a)+(310a)] x 100 ÷ (367a) = Electrical energy for community heat distribution Total CO2 associated with community systems Total CO2 associated with space and water heating Pumps and fans Electricity for lighting Total CO2, kg/year Dwelling CO2 emission rate El value El rating (section 14) El band	Energy kWh/year 97.10 3375.01 32.77 335.76 270.05	x x x x	Emission factor 0.216 0.519 0.519 0.519	= = = (376)(382) = (383) ÷ (4) =	Emissions (kg/year) 729.00 17.01 746.01 746.01 174.26 140.16 1060.43 17.88 86.38 86.38 86 B	(367a) (367) (372) (373) (376) (378) (378) (383) (384) (385)
12b. CO2 emissions - community heating scheme Emissions from other sources (space heating) Efficiency of boilers CO2 emissions from boilers [307a]+(310a)] x 100 ÷ (367a) = Electrical energy for community heat distribution Total CO2 associated with community systems Total CO2 associated with space and water heating Pumps and fans Electricity for lighting Total CO2, kg/year Dwelling CO2 emission rate El value El rating (section 14) El band 13b. Primary energy - community heating scheme	Energy kWh/year 97.10 3375.01 32.77 335.76 270.05	x x x x	Emission factor 0.216 0.519 0.519 0.519	= = = (376)(382) = (383) ÷ (4) =	Emissions (kg/year) 729.00 17.01 746.01 746.01 174.26 140.16 1060.43 17.88 86.38 86.38 86 86 B	(367a) (367) (372) (373) (376) (378) (378) (383) (384) (385)
12b. CO2 emissions - community heating scheme Emissions from other sources (space heating) Efficiency of boilers CO2 emissions from boilers [(307a)+(310a)] x 100 ÷ (367a) = Electrical energy for community heat distribution Total CO2 associated with community systems Total CO2 associated with space and water heating Pumps and fans Electricity for lighting Total CO2, kg/year Dwelling CO2 emission rate El value El rating (section 14) El band 12b. Primary energy - community heating scheme	Energy kWh/year 97.10 3375.01 32.77 335.76 270.05 Energy kWh/year	х х х	Emission factor 0.216 0.519 0.519 0.519 0.519 Primary factor	= = = (376)(382) = (383) ÷ (4) =	Emissions (kg/year) 729.00 17.01 746.01 174.26 140.16 1060.43 17.88 86.38 86.38 86 B Primary energy (kWh/year)	(367a) (367) (372) (373) (376) (378) (378) (383) (384) (384) (385)
12b. CO2 emissions - community heating scheme Emissions from other sources (space heating) Efficiency of boilers CO2 emissions from boilers [(307a)+(310a)] × 100 ÷ (367a) = Electrical energy for community heat distribution Total CO2 associated with community systems Total CO2 associated with space and water heating Pumps and fans Electricity for lighting Total CO2, kg/year Dwelling CO2 emission rate El value El rating (section 14) El band 13b. Primary energy - community heating scheme Primary energy from other sources (space heating)	Energy kWh/year 97.10 3375.01 32.77 335.76 270.05 Energy kWh/year	x x x x	Emission factor 0.216 0.519 0.519 0.519 0.519 Primary factor	= = = (376)(382) = (383) ÷ (4) =	Emissions (kg/year) 729.00 17.01 746.01 746.01 174.26 140.16 1060.43 17.88 86.38 86.38 86 8 8 8 8 8 8 8 8 9 8 9 7 7 17.88	(367a) (367) (372) (373) (376) (378) (378) (383) (384) (384) (385)
12b. CO2 emissions - community heating scheme Emissions from other sources (space heating) Efficiency of boilers CO2 emissions from boilers [307a)+(310a)] x 100 ÷ (367a) = Electrical energy for community heat distribution Total CO2 associated with community systems Total CO2 associated with space and water heating Pumps and fans Electricity for lighting Total CO2, kg/year Dwelling CO2 emission rate El value El rating (section 14) El band 13b. Primary energy from other sources (space heating) Efficiency of boilers	Energy kWh/year 97.10 3375.01 32.77 335.76 270.05 270.05 Energy kWh/year 97.10	x x x x	Emission factor 0.216 0.519 0.519 0.519 0.519 Primary factor	= = = (376)(382) = (383) ÷ (4) =	Emissions (kg/year) 729.00 17.01 746.01 174.26 140.16 1060.43 17.88 86.38 86.38 86 B Primary energy (kWh/year)	(367a) (367) (372) (373) (376) (378) (378) (383) (384) (384) (385)
12b. CO2 emissions - community heating scheme Emissions from other sources (space heating) Efficiency of boilers CO2 emissions from boilers [307a)+(310a)] x 100 ÷ (367a) = Electrical energy for community heat distribution Total CO2 associated with community systems Total CO2 associated with space and water heating Pumps and fans Electricity for lighting Total CO2, kg/year Dwelling CO2 emission rate El value El rating (section 14) El band 13b. Primary energy from other sources (space heating) Efficiency of boilers Primary energy from other sources (space heating) Efficiency of boilers Primary energy from boilers Primary energy from boilers	Energy kWh/year 97.10 3375.01 32.77 335.76 270.05 270.05 Energy kWh/year 97.10 3375.01	x x x	Emission factor 0.216 0.519 0.519 0.519 Primary factor 1.22	= = = (376)(382) = (383) ÷ (4) =	Emissions (kg/year) 729.00 17.01 746.01 174.26 140.16 1060.43 17.88 86.38 86.38 86 8 B Primary energy (kWh/year)	(367a) (367) (372) (373) (376) (378) (378) (383) (384) (384) (385) (385) (385) (385) (367a)

NHER Plan Assessor version 6.3.4

Total primary energy associated with community systems

Total primary energy associated with space and water heating

Pumps and fans

Electricity for lighting

Primary energy kWh/year

Dwelling primary energy rate kWh/m2/year

х	3.07
x	3.07

335.76

270.05

4218.12	(373)
4218.12	(376)
1030.78	(378)
829.06	(379)
6077.95	(383)
102.50	(384)

Appendix 3

Data Input Report As Built - Draft

This as built submission has been carried out using Approved SAP software. The assessor has confirmed any changes from the design submission with the builder.

Assessor name	Mr Neil Rothon	Assessor number	4282
Client		Last modified	28/08/2018
Address	G01 Agar Grove, London, NW1		

Dwelling										
Development:		N/A			House type:					
Property type:		Flat								
Flat type:		Ground floo	or		Year built:			2016		
Tariff:		Standard			Assess summer	overheati	ing:	Yes		
Thermal mass:		Medium			Thermal mass p	parameter	:	250.00		
Separated heated conserv	vatory:	No			Degree day reg	ion:		Thames		
Sheltered sides:		2			Terrain:			Dense Url	ban	
Storeys:										
Name		Area (m²)			Height (m)					
Lowest occupied		59.30			4.08					
Floors										
Ref - Name		Туре		Construction		Storey Lo	ocation	Living Area (m²)	Area (m²)	U-value (W/m²K)
Floor 1 - Floor 1		Ground		Solid		Lowest o	ccupied	36.38	59.30	0.09
Living area that has no he	at loss:	0.00								
Walls										
Ref - Name		Туре		Construction					Gross Area (m²)	U-value (W/m²K)
Wall 1 - ext MAIN		External		Cavity					40.56	0.15
Wall 2 - party		Party		Solid					42.30	0.00
Wall 3 - party to retail		Party		Solid					42.30	0.00
Roofs										
Ref - Name				Construction					Gross Area (m²)	U-value (W/m²K)
Roof 1 - LOWER				Flat					6.24	0.20
Openings										
Opening Ref: 1 Window,	Triple glazed	l (low-E), ' N,	/A', maste	r: Yes, linked to	: 0					
Location:	Wall 1		Source:		From Manufact	urer	Orientatio	n:	West	
Overshading:	Average / Ur	nknown	Width (n	ו):	1.00		Height (m)):	3.15	
Frame:	Metal		Transmit	tance factor:	0.52		U-value (V	V/m²K):	0.93	
Opening Ref: 2 Window,	Triple glazed	l (low-E), ' N	/A', maste	r: No, linked to:	1					
Location:	Wall 1		Source:		From Manufact	urer	Orientatio	n:	North W	est
Overshading:	Average / Ur	nknown	Width (n	ı):	0.85		Height (m)):	2.70	
Frame:	Metal		Transmit	tance factor:	0.52		U-value (V	V/m²K):	0.93	
Opening Ref: 3 Window,	Triple glazed	l (low-E), ' N,	/A', maste	r: No, linked to:	1					
Location:	Wall 1		Source:		From Manufact	turer	Orientatio	n:	West	
Overshading:	Average / Ur	nknown	Width (n	ו):	1.02		Height (m)):	2.70	
Frame:	Metal		Transmit	tance factor:	0.52		U-value (V	V/m²K):	0.93	

Opening Ref: 4 Window, Triple glazed (low-E), ' N/A', master: No, linked to: 1

Location: Wall 1 Source:		Source:	From N	/lanufacturer	Orientation:	East	
Over	Overshading: Average / Unknown Width (m):		Width (m):	1.58		Height (m):	2.78
Fram	ne:	Metal	Transmittance fa	ctor: 0.52		U-value (W/m ² K):	0.93
Ope	ning Ref: 6 Half glaze	ed door, Triple glazed (lo	ow-E), ' N/A', maste	r: No, linked to:	0		
Loca	tion:	Wall 1	Source:	From N	/Janufacturer	Orientation:	N/A
Over	rshading:	N/A	Width (m):	1.13		Height (m):	3.00
Fram	ne:	Metal	Transmittance fa	ctor: 0.57		U-value (W/m ² K):	0.93
The	ermal Bridging						
Ref	Description			Length (m)	Source	ψ (W/m·K)	Result
E1	Steel lintel with perf	forated steel	Г	0	Default Value	N/A	0
F2	Other lintels (includi	ing other stee		5 58	 User Defined	0 113	0 6305
F3	Sill			4 45	User Defined	0.113	0 5029
EJ	lamb			28.66		0.018	0.5159
	Ground floor (norm:			10.4		0.117	1 2169
E3	Ground floor (norma	al)		10.4		0.117	1.2108
E19	Ground noor (invert	ed)		N/A		N/A	0
E20	Exposed floor (norm	ial)		N/A	Default Value	N/A	0
E21	Exposed floor (inver	ted)		2	Default Value	0.32	0.64
E22	Basement floor			N/A] Default Value	N/A	0
E6	Intermediate floor w	vithin a dwellin		N/A	Default Value	N/A	0
E6	Intermediate floor w	vithin a dwellin		N/A	Default Value	N/A	0
E6	Intermediate floor w	vithin a dwellin		N/A	Default Value	N/A	0
E7	Party floor between	dwellings (in b		3.1	User Defined	0.049	0.1519
E7	Party floor between	dwellings (in b		N/A	Default Value	N/A	0
E7	Party floor between	dwellings (in b		N/A	Default Value	N/A	0
E8	Balcony within a dw	elling, wall ins		N/A	Default Value	N/A	0
E9	Balcony between dw	vellings, wall ins		N/A	Default Value	N/A	0
E23	Balcony within or be	etween dwellings		N/A	Default Value	N/A	0
E10	Eaves (insulation at	ceiling level)		N/A	Default Value	N/A	0
E24	Eaves (insulation at	ceiling level		N/A	User Defined	N/A	0
E24	Eaves (insulation at	ceiling level	Г	N/A	Default Value	N/A	0
E11	Eaves (insulation at	rafter level)	Ē	N/A	Default Value	N/A	0
E12	Gable (insulation at	ceiling level)	Ē	N/A	 Default Value	N/A	0
E13	Gable (insulation at	rafter level)	Ī	N/A	 Default Value	N/A	0
E14	Flat roof		Ē	, N/A	Default Value	, N/A	0
F14	Flat roof			5.2	User Defined	0.127	0.6604
F15	Flat roof with paran	et		N/A	Default Value	ν/Δ	0
E16	Corner (normal)			4.8		0 105	0 504
E16	Corner (normal)					N/A	0
L10	Corner (normal)		L L	N/A		N/A	0
E10	Corner (normal)			N/A		N/A	0
E17	Corner (Inverted - In	iternal area gr		N/A		N/A	0
E18	Party wall between	dwellings	Ļ	10.8	User Defined	0.059	0.6372
E25	Staggered party wal	l between dwelli		4.8	_ Default Value	0.12	0.576
P1	Ground floor			22	_ Default Value	0.16	3.52
P6	Ground floor (invert	ed)		N/A	Default Value	N/A	0
P2	Intermediate floor w	vithin a dwellin		N/A	Default Value	N/A	0
Р3	Intermediate floor b	etween dwelling		19.6	Default Value	0	0
Р7	Exposed floor (norm	nal)		N/A	Default Value	N/A	0
P8	Exposed floor (inver	ted)		N/A	Default Value	N/A	0

D4 Reaf (inculation at calling lovel)				Dofault Value		NI / A	0
PE Deef (insulation at refter level)							0
P3 Root (Insulation at faiter level)							0
R1 Head			0	Default Value		N/A	0
R2 Sill			0	Default Value		N/A	0
R3 Jamb			0	Default Value		N/A	0
R4 Ridge (vaulted ceiling)			N/A	Default Value		N/A	0
R5 Ridge (inverted)			N/A	Default Value		N/A	0
R6 Flat ceiling			N/A	Default Value		N/A	0
R7 Flat ceiling (inverted)			N/A	Default Value		N/A	0
R8 Roof wall (rafter)			N/A	Default Value		N/A	0
R9 Roof wall (flat ceiling)			N/A	Default Value		N/A	0
Equivalent y value:	0.090						
Ventilation							
Air permeability entered:	Yes		Seek exer	nption (<3 dv	vellings):	No	
Design air permeability rate:	3.00						
Measured air permeability rate:	3.00		Measured	l in this dwell	ing:	Yes	
As-built air permeability rate:	3.00		As-built a	ir permeabilit	y reference:		
Number of	Open fireplaces	Open flues	Flueless g	gas fires	Extract fans	Passi	ive vents
	0	0	0		0		0
System Information:							
Mechanical ventilation:	Balanced (with h	eat recovery)	Values fro	om:		Product dat	tabase
Product name:	Zehnder ComfoA	ir 200	Approved	installer:		Yes	
Number of wet rooms:	Kitchen + 1 addi	tional wet room	SFP:			0.91	
Heat exchange efficiency:	93.00						
Duct information							
Duct type:	Rigid ductwork		Values fro	m.		Default	
Broduct name:			Duct insul	lation		Insulated d	uctwork
	N/A		Duct mou	ation		insulated u	
Space heating		_					
Main heating category:	Community sche	me	-				
Secondary heating:	No	inte	Open flue	or chimney:		N/A	
Unconnected gas point:	N/A		Smoke co	ntrol area:		N/A	
Heat source: Mains gas - Boilers	1.00		Fff : e: e e e e	(0/).		07.10	
Fraction of neat:	1.00		Efficiency	(%):		97.10	
Community system:							
User entered distribution loss factor	: No						
Heat distribution system:	Pre-insulated low	v temp variable flow	w (1991 or lat	er)			
Controls:	Charging system	linked to use, prog	rammer and T	FRVs			
Emitter:	Radiators						
Water heating							
Туре:	From main		Cylinder i	n dwelling:		No	
Renewables							
Photovoltaic panels system 1			_			_ ·	
Installed power peak (kWp):	0.42		Collector	orientation:		South West	
Collector tilt:	30°		Overshad	ing:		None or Ve	ry Little < 20%
Connected to:	Connected to lan	dlord supply					
Other							
Internal lighting							

Standard fittings:	0		Low energy fittings:	1	Total fittings:	1
Summer overheating						
Thermal mass paramete	er (TMP):	250.00				
User defined air change	rate:	No		Air change rate (ach):		N/A
Cross ventilation on mos	st floors:	Yes		Window ventilation:		Fully open half the time
Source of user defined v	alues:	N/A				
Curtains closed in daylig	ht hours:	No		Fraction curtains closed:		N/A
Blind/curtain type:		N/A				

Special features (Appendix Q)

No Appendix Q special features present

Cooling details

No space cooling present

TER Worksheet As Built - Draft

This as built submission has been carried out using Approved SAP software. The assessor has confirmed any changes from the design submission with the builder.

Assessor name	Mr Neil I	Mr Neil Rothon					А	ssessor nur	nber	4282	4282		
Client								La	ast modified	ł	28/08	28/08/2018	
Address	G01 Aga	r Grove, Lo	ndon, NW	'1									
1. Overall dwelling dimen	nsions												
					Area (m²)		Ave h	rage storey eight (m)	,	Vo	lume (m³)	
Lowest occupied					59.30	(1a) x		4.08	(2a) =		241.94	(3a)
Total floor area	(1a)	+ (1b) + (1	c) + (1d)	.(1n) = [59.30	(4)							
Dwelling volume								(3a) + (3b) + (3	3c) + (3d)(3i	n) = 🗌	241.94	(5)
2. Ventilation rate										_			
											m	³ per hour	
Number of chimneys									0	x 40 =		0	(6a)
Number of open flues									0	x 20 =		0	(6b)
Number of intermittent far	ns								2	x 10 =		20	(7a)
Number of passive vents									0	x 10 =		0	(7b)
Number of flueless gas fire	2S								0	x 40 =		0	(7c)
											Air o	hanges pe hour	r
Infiltration due to chimney	vs, flues, fan	s, PSVs			(6a) + (6b) ·	+ (7a) + (7b) + (7	'c) =	20	÷ (5) =		0.08	(8)
If a pressurisation test has	been carrie	d out or is i	ntended,	proceed	to (17), oth	erwise co	ontinue	from (9)	to (16)				
Air permeability value, q50), expressed	in cubic m	etres per l	hour per	[.] square me	tre of en	velope	area				5.00	(17)
If based on air permeabilit	y value, the	n (18) = [(1	7) ÷ 20] +	(8), othe	erwise (18) :	= (16)						0.33	(18)
Number of sides on which	the dwelling	g is sheltere	ed									2	(19)
Shelter factor									1	- [0.075 x (19)] =	0.85	(20)
Infiltration rate incorporat	ing shelter f	actor								(18) x (20	O) =	0.28	(21)
Infiltration rate modified for	or monthly	wind speed	:										
Jan	Feb	Mar	Apr	Ma	y Jur	n .	Jul	Aug	Sep	Oct	Nov	Dec	
Monthly average wind spe	ed from Tak	ole U2	_	_					1				-
5.10	5.00	4.90	4.40	4.3	0 3.8	0 3	.80	3.70	4.00	4.30	4.50	4.70	(22)
Wind factor (22)m ÷ 4			<u> </u>							1 1		1 -	٦
1.28	1.25	1.23	1.10	1.0	8 0.9	5 0	.95	0.93	1.00	1.08	1.13	1.18	(22a)
Adjusted infiltration rate (a	allowing for	shelter and	d wind fac	tor) (21)	x (22a)m								
Calculate effective air char	0.35	0.35	0.31	0.3	0 0.2	/ 0	.27	0.26	0.28	0.30	0.32	0.33	(22b)
If mechanical ventilatio	n: air chang	e rate thro	ugh syster	m								Ν/Λ	(232)
If halanced with heat re				for in-us	e factor fro	m Tahle	4h						(23c)
d) natural ventilation of	r whole hou	se positive	input ven	tilation	from loft	ruble					L	11/17	
	0.56	0.56	0 55	0 5	5 05	4 0	54	0 52	0.54	0.55	0 55	0.56	(24d)
Effective air change rate -	enter (24a)	or (24b) or	(24c) or (2	0.5 24d) in (2	25)	0		0.00	0.54	0.55	0.00	0.50	_ (270)
	0.56	0.56	0 55	05	, 5 05	4 0	54	0 53	0 54	0.55	0 55	0.56	(25)
0.50	0.00	0.00	0.55	0.5	- 0.5			5.55	0.54	5.55	0.00	0.50	

3. Heat losses	and heat lo	ss paramet	er.										
Element			а	Gross rea, m²	Openings m ²	Net A,	area m²	U-value W/m²K	A x U W	//К к-v kJ	/alue, /m².K	Ахк, kJ/K	
Window						11	43 x	1.33	= 15.15	;			(27)
Door						3	.39 x	1.20	= 4.07				(26)
Ground floor						59).30 x	0.13	= 7.71				(28
External wall						25	.73 x	0.18	= 4.63				(29)
Party wall						84	.60 x	0.00	= 0.00				(32
Roof						6	.24 x	0.13	= 0.81				(30
Total area of ex	ternal elem	ents ∑A, m²	2			10	6.09						(31
Fabric heat loss	, W/K = Σ(A	× U)							(20	5)(30) + (32) =	32.37	(33
Heat capacity C	m = ∑(А x к)							(28)	.(30) + (32) -	+ (32a)(3	2e) =	N/A	_] (34
Thermal mass p	arameter (T	·MP) in kJ/r	m²K									250.00] (35
Thermal bridges	s: Σ(L x Ψ) ca	alculated us	sing Appen	dix K								8.00] (36
Total fabric hea	t loss		0 11							(33) + (36) =	40.37] (37
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	_ ·
Ventilation heat	t loss calcula	ated month	ıly 0.33 x (2	25)m x (5)	•			U	•				
	45.11	44,91	44.71	43.78	43.61	42.80	42.80	42.65	43.11	43.61	43.96	44.33] (38
Heat transfer co	pefficient. W	//K (37)m +	+ (38)m			12.00	1.1.00	1	.0.11	10101		1.100	
	85.48	85.28	85.08	84 16	83.98	83 17	83 17	83.02	83.49	83.98	84 33	84 70	٦
	00110	00.20	05.00	01120		00.17	00.17	00.02	Average = ⁵	5(39)1 12	/12 =	84 15	∟ (זס
Heat loss naram	neter (HIP)	W/m ² K (30	(4)						Average - 2	<u>(</u> 33)112,	12 -	04.15	_ (55
			1 / 2	1 / 2	1 / 2	1.40	1.40	1.40	1 / 1	1 / 2	1 / 2	1 / 3	٦
	1.44	1.44	1.45	1.42	1.42	1.40	1.40	1.40		(1.42)	/12 -	1 / 2	_ _ (10
Number of days	in month (Table 1a)							Average - 2	2(40)112,	12 -	1.42	_ (40
Number of days			21.00	20.00	21.00	20.00	21.00	21.00	20.00	21.00	20.00	21.00	
	51.00	28.00	51.00	30.00	51.00	50.00	51.00	51.00	50.00	51.00	50.00	51.00	_ (40
4. Water heati	ing energy r	equiremen	t										
Assumed occup	ancy, N											1.96	(42
Annual average	hot water u	isage in litre	es per day	Vd,average	e = (25 x N) +	36						80.79	_ (43
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	_
Hot water usage	e in litres pe	r day for ea	ach month	Vd,m = fact	tor from Tab	le 1c x (43	3)						
	88.87	85.64	82.41	79.18	75.94	72.71	72.71	75.94	79.18	82.41	85.64	88.87	7
	<u> </u>										.12 =	969.51	 (44
Energy content	of hot wate	r used = 4.1	18 x Vd,m x	nm x Tm/3	3600 kWh/m	onth (see	Tables 1b	, 1c 1d)		2.			_ `
	131.79	115.27	118.95	103.70	99.50	85.86	79.56	91.30	92.39	107.67	117.53	127.64	٦
										Σ(45)1	.12 =	1271.18	_] (45
Distribution los	s 0.15 x (45)m								2(10)21			
	19 77	17 29	17 84	15 55	14 93	12 88	11 93	13 70	13.86	16 15	17.63	19 15	7 (46
Storage volume	(litres) inclu	Iding any s	olar or WW	/HRS storage	e within san		11.55	10.70	10.00	10.15		1 00] (10] (47
Water storage	055.	ang any 5										1.00] (47
a) If manufactur	ror's doclare	d loss facto	or is known	(k)M/b/day))							0.21	
Tomporature	o factor from	n Tabla 2b		(KWII/Udy))							0.21	_ (40 _ (40
Enormylast	rom water -		(b/day) (4)	$P = (A \cap A)$								0.34	_ (49 _ (50
	ioni water s	storage (KM	(48) (48	oj X (49)								0.12	_ (50 _ (50
Enter (50) or (54	4) III (55)	d for c	month /r	-) v (41)								0.12	_ (55
water storage l		eu for each		5) X (41)m		2.10	0.5-	0.5-	2.45	a		0.55	- م ا
	3.57	3.23	3.57	3.46	3.57	3.46	3.57	3.57	3.46	3.57	3.46	3.57	_ (56
If the vessel cor	ntains dedica	ated solar s	torage or d	ledicated V	VWHRS (56)r	n x [(47) -	Vs] ÷ (47)	, else (56)					

	3.57	3.23	3.57	3.46	3.57	3.46	3.57	3.57	3.46	3.57	3.46	3.57	(57)
Primary circuit l	oss for each	month fro	m Table 3										_
	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26	(59)
Combi loss for e	ach month	from Table	3a, 3b or 3	c									
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(61)
Total heat requi	red for wate	er heating c	alculated f	or each mo	onth 0.85 x	(45)m + (4	6)m + (57)ı	m + (59)m +	- (61)m				
	158.63	139.50	145.78	129.67	126.34	111.83	106.40	118.14	118.36	134.51	143.50	154.47	(62)
Solar DHW inpu	t calculated	using Appe	endix G or A	Appendix H									
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(63)
Output from wa	iter heater f	or each mo	nth (kWh/r	month) (62	2)m + (63)m	ı							
	158.63	139.50	145.78	129.67	126.34	111.83	106.40	118.14	118.36	134.51	143.50	154.47	
										∑(64)1	12 = 1	.587.12	(64)
Heat gains from	water heat	ing (kWh/m	10nth) 0.2ទ	5 × [0.85 ×	(45)m + (61	.)m] + 0.8 ×	: [(46)m + (57)m + (59)	m]				
	65.29	57.72	61.02	55.25	54.55	49.32	47.92	51.82	51.50	57.27	59.85	63.91	(65)
5. Internal gair	15	Fab	D.den	A va v	Maria	I	1.4	A	<u>Car</u>	Ort	Neu	Dee	
Motobolic going	Jan (Tabla C)	Feb	iviar	Apr	iviay	JUN	Jui	Aug	Sep	Uct	NOV	Dec	
Metabolic gains			00.00	00.00	00.00	00.00	08.00	08.00	00.00	00.00	00.00	00.00	
Lighting going (g	98.09	98.09	98.09	98.09	98.09	98.09	98.09	98.09	98.09	98.09	98.09	98.09] (66)
Lighting gains (C							F 70	7.49	10.04	10.75	14.00	15.00	
Appliance gains	15.43	in Appondi	11.15	8.44	0.31	5.33	5.76	7.48	10.04	12.75	14.88	15.80] (67)
Appliance gains							128.00	126.20	120.70	140.20	152.22	162.62	
Cooking going (g	1/1.18	172.95	168.48	158.95	2) also soo	135.01 Table 5	128.06	126.29	130.76	140.29	152.32	163.63] (68)
COOKINg gains (C							22.01	22.01	22.01	22.01	22.01	22.01	
Dump and fap g	32.81	32.81	32.81	32.81	32.81	32.81	32.81	32.81	32.81	32.81	32.81	32.81] (69)
Pullip and failing			2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	
	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00] (70)
Lusses e.g. evap			79.47	70.47	79.47	70 47	70 47	70 47	70 47	70 47	70 47	70 47	7 (71)
Water beating a	-78.47	-78.47 5)	-78.47	-78.47	-78.47	-78.47	-78.47	-78.47	-78.47	-78.47	-/8.4/	-78.47](/1)
water neating g													
	87.75	0 0 0 0	02.01	76 74	72.22	C0 F1	CA 41	<u> </u>	71 50	76.07	02.12	05.00	(72)
Total internal as	inc (FE)m	85.89	82.01	76.74	73.32	68.51	64.41	69.66	71.52	76.97	83.13	85.89	(72)
Total internal ga	ains (66)m +	85.89 ⊦ (67)m + (6	82.01 8)m + (69)	76.74 m + (70)m ·	73.32 + (71)m + (7	68.51 72)m	64.41	69.66	71.52	76.97	83.13	85.89] (72)
Total internal ga	ains (66)m + 329.79	85.89 ⊦ (67)m + (6 327.98	82.01 58)m + (69) 317.06	76.74 m + (70)m 299.56	73.32 + (71)m + (7 281.98	68.51 72)m 264.87	64.41 253.66	69.66 258.85	71.52	76.97 285.44	83.13 305.76	85.89] (72)] (73)
Total internal ga	ains (66)m 1 329.79	85.89 ⊦ (67)m + (6 327.98	82.01 58)m + (69) 317.06	76.74 m + (70)m · 299.56	73.32 + (71)m + (7 281.98	68.51 72)m 264.87	64.41 253.66	69.66	71.52	76.97 285.44	83.13 305.76	85.89 320.81] (72)] (73)
Total internal ga	ains (66)m + 329.79	85.89 + (67)m + (6 327.98	82.01 58)m + (69) 317.06 Access f	76.74 m + (70)m · 299.56	73.32 + (71)m + (7 281.98 Area	68.51 72)m 264.87 Sol	64.41 253.66 ar flux	69.66	71.52 267.75 g	76.97 285.44 FF	83.13 305.76	85.89 320.81 Gains] (72)] (73)
Total internal ga	ains (66)m + 329.79	85.89 + (67)m + (6 327.98	82.01 38)m + (69) 317.06 Access f Table	76.74 m + (70)m · 299.56 factor 6d	73.32 + (71)m + (7 281.98 Area m ²	68.51 72)m 264.87 Sol V	64.41 253.66 ar flux V/m ²	69.66 258.85 spec	71.52 267.75 g ific data able 6b	76.97 285.44 FF specific c or Table	83.13 305.76	85.89 320.81 Gains W] (72)] (73)
Total internal ga	ains (66)m + 329.79	85.89 + (67)m + (6 327.98	82.01 i8)m + (69)i 317.06 Access f Table	76.74 m + (70)m · 299.56 factor 6d	73.32 + (71)m + (7 281.98 Area m ²	68.51 72)m 264.87 Sol V	64.41 253.66 ar flux V/m ²	69.66 258.85 spec or T	71.52 267.75 g ific data able 6b	76.97 285.44 FF specific c or Table	83.13 305.76 lata 6c	85.89 320.81 Gains W] (72)] (73)
Total internal ga 6. Solar gains West	ains (66)m + 329.79	85.89 + (67)m + (€ 327.98	82.01 38)m + (69)n 317.06 Access f Table 0.77	76.74 m + (70)m · 299.56 factor 6d	73.32 + (71)m + (7 281.98 Area m ² 5.36	68.51 72)m 264.87 Sol V	64.41 253.66 ar flux V/m ² 9.64 x	69.66 258.85 spec or T 0.9 x (0	71.52 267.75 g ific data able 6b 0.63 x	76.97 285.44 FF specific c or Table 0.70	83.13 305.76	85.89 320.81 Gains W 32.17] (72)] (73)] (80)
Total internal ga 6. Solar gains West NorthWest	ains (66)m + 329.79	85.89 + (67)m + (€ 327.98	82.01 58)m + (69). 317.06 Access f Table 0.7 0.7	76.74 m + (70)m · 299.56	73.32 + (71)m + (7 281.98 Area m ² 5.36 2.08	68.51 72)m 264.87 Sol V 3 x 1 x 1 x 1	64.41 253.66 ar flux V/m ² 9.64 x 1.28 x	69.66 258.85 spec or T 0.9 x (0 0.9 x (0)	71.52 267.75 g ific data able 6b 0.63 x 0.63 x	76.97 285.44 FF specific c or Table 0.70 0.70	83.13 305.76	85.89 320.81 Gains W 32.17 7.17] (72)] (73)] (80)] (81)] (76)
6. Solar gains West NorthWest East	ains (66)m + 329.79	(82)m	82.01 58)m + (69) 317.06 Access f Table 0.7 0.7 0.7	76.74 m + (70)m 299.56 factor 6d 7 x 7 x 7 x 7 x 7 x	73.32 + (71)m + (7 281.98 Area m ² 5.36 2.08 3.99	68.51 72)m 264.87 Sol W 3 x 1 x 1 x 1 x 1	64.41 253.66 ar flux V/m ² 9.64 x 9.64 x	69.66 258.85 spec or T 0.9 x (0 0.9 x (0 0.9 x (0	71.52 267.75 g ific data able 6b 0.63 x 0.63 x 0.63 x	76.97 285.44 FF specific c or Table 0.70 0.70 0.70	83.13 305.76 lata 6c = [= [=] = [85.89 320.81 Gains W 32.17 7.17 23.95] (72)] (73)] (80)] (81)] (76)
6. Solar gains West NorthWest East Solar gains in wa	ains (66)m + 329.79 atts Σ(74)m	85.89 + (67)m + (6 327.98	82.01 58)m + (69) 317.06 Access f Table 0.7 0.7 0.7 0.7	76.74 m + (70)m · 299.56 factor 6d 7 x 7 x 7 x 7 x 7 x	73.32 + (71)m + (7 281.98 Area m ² 5.36 2.08 3.99	68.51 72)m 264.87 Sol V 3 x 1 x 1 x 1 x 1	64.41 253.66 ar flux V/m ² 9.64 x 9.64 x 9.64 x	69.66 258.85 spec or T 0.9 x (0.9 x (0.9 x (71.52 267.75 g ific data able 6b 0.63 x 0.63 x 0.63 x	76.97 285.44 FF specific c or Table 0.70 0.70 0.70	83.13 305.76 lata 6c = [= [= [-] = [85.89 320.81 Gains W 32.17 7.17 23.95] (72)] (73)] (80)] (81)] (76)
Total internal ga 6. Solar gains West NorthWest East Solar gains in wa Total gains - interval	ains (66)m + 329.79 329.79 atts Σ(74)m 63.29 ernal and so	85.89 + (67)m + (6 327.98 327.98 124.39 lar (73)m +	82.01 58)m + (69) 317.06 Access f Table 0.77 0.77 0.77 207.11 (83)m	76.74 m + (70)m 299.56 factor 6d 7 x 7 x 7 x 7 x 306.89	73.32 + (71)m + (7 281.98 Area m ² 5.36 2.08 3.99 381.23	68.51 72)m 264.87 Sol v 392.72	64.41 253.66 ar flux V/m ² 9.64 x 1.28 x 9.64 x 372.86	69.66 258.85 spec or T 0.9 x (0.9 x (71.52 267.75 g ific data able 6b 0.63 x 0.63 x 0.63 x 242.33	76.97 285.44 FF specific c or Table 0.70 0.70 0.70 148.11	83.13 305.76 ata 6c = = _ = _ 79.00	85.89 320.81 Gains W 32.17 7.17 23.95 52.01] (72)] (73)] (80)] (81)] (76)] (83)
Total internal ga 6. Solar gains West NorthWest East Solar gains in wa Total gains - internal	ains (66)m + 329.79 329.79 atts Σ(74)m 63.29 ernal and so	85.89 + (67)m + (¢ 327.98 327.98 124.39 lar (73)m +	82.01 58)m + (69) 317.06 Access f Table 0.7 0.7 0.7 207.11 (83)m 524.17	76.74 m + (70)m 299.56 factor 6d 7 x 7 x 7 x 306.89 605.44	73.32 + (71)m + (7 281.98 Area m ² 5.36 2.08 3.99 381.23	68.51 72)m 264.87 Sol W X 1 X 1 X 1 392.72	64.41 253.66 ar flux V/m ² 9.64 x 9.64 x 9.64 x 372.86 626.51	69.66 258.85 spec or T 0.9 x (0.9 x (71.52 267.75 g ific data able 6b 0.63 x 0.63 x 0.63 x 242.33	76.97 285.44 FF specific c or Table 0.70 0.70 0.70 148.11	83.13 305.76 ata 6c = [= [79.00 384.76	85.89 320.81 Gains W 32.17 7.17 23.95 52.01] (72)] (73)] (80)] (81)] (76)] (83)] (84)
Total internal ga 6. Solar gains West NorthWest East Solar gains in wa Total gains - inte	ains (66)m + 329.79 329.79 63.29 ernal and so 393.09	85.89 + (67)m + (¢ 327.98 (82)m 124.39 lar (73)m + 452.36	82.01 58)m + (69) 317.06 Access f Table 0.77 0.77 0.77 207.11 (83)m 524.17	76.74 m + (70)m · 299.56 Factor 6d 7 x 7 x 7 x 306.89 606.44	73.32 + (71)m + (7 281.98 Area m ² 5.36 2.08 3.99 381.23 663.20	68.51 72)m 264.87 Sol v 392.72 657.59	64.41 253.66 ar flux V/m ² 9.64 x 9.64 x 9.64 x 372.86 626.51	69.66 258.85 spec or T 0.9 x (0.9 x (0.9 x (316.70 575.55	71.52 267.75 g ific data able 6b 0.63 x 0.63 x 0.63 x 0.63 x 242.33	76.97 285.44 FF specific c or Table 0.70 0.70 148.11 433.55	83.13 305.76 lata 6c = [] = [79.00 384.76	85.89 320.81 Gains W 32.17 7.17 23.95 52.01 52.01] (72)] (73)] (80)] (81)] (76)] (83)] (84)
6. Solar gains West NorthWest East Solar gains in wa Total gains - inter 7. Mean interr	ains (66)m + 329.79 329.79 atts ∑(74)m 63.29 ernal and so 393.09 nal tempera	85.89 + (67)m + (¢ 327.98 (82)m 124.39 lar (73)m + 452.36 ture (heatin	82.01 88)m + (69) 317.06 Access f Table 0.7 0.7 0.7 0.7 207.11 (83)m 524.17 ng season)	76.74 m + (70)m 299.56 factor 6d 7 x 7 x 7 x 306.89 606.44	73.32 + (71)m + (7 281.98 Area m ² 5.36 2.08 3.99 381.23 663.20	68.51 72)m 264.87 Sol W X 1 X 1 X 1 392.72 657.59	64.41 253.66 ar flux V/m ² 9.64 x 9.64 x 9.64 x 372.86 626.51	69.66 258.85 spec or T 0.9 x (0 0.9 x (0 0.9 x (0 316.70 575.55	71.52 267.75 sific data able 6b 0.63 x 0.63 x 0.63 x 242.33 510.08	76.97 285.44 FF specific c or Table 0.70 0.70 0.70 148.11	83.13 305.76 data 6c = [] = [79.00 384.76	85.89 320.81 Gains W 32.17 7.17 23.95 52.01 372.82] (72)] (73)] (80)] (81)] (76)] (83)] (84)
Total internal ga 6. Solar gains West NorthWest East Solar gains in wa Total gains - international gains - internation gains - internation gains - international gains - internation ga	ains (66)m + 329.79 329.79 329.79 63.29 393.09 mal tempera uring heating	85.89 + (67)m + (6 327.98 327.98 124.39 Jar (73)m + 452.36 ture (heating periods in	82.01 58)m + (69) 317.06 Access f Table 0.7 0.7 0.7 0.7 207.11 (83)m 524.17 ng season) the living a	76.74 m + (70)m · 299.56 Factor 6d 7 x 7 x 7 x 306.89 606.44 area from T	73.32 + (71)m + (7 281.98 Area m ² 5.36 2.08 3.99 381.23 663.20	68.51 72)m 264.87 Sol V 30 X 1 X 1 392.72 657.59	64.41 253.66 ar flux V/m ² 9.64 x 9.64 x 9.64 x 372.86 626.51	69.66 258.85 spec or T 0.9 x (0.9 x (0.9 x (316.70 575.55	71.52 267.75 g ific data able 6b 0.63 x 0.63 x 242.33 510.08	76.97 285.44 FF specific c or Table 0.70 0.70 0.70 148.11	83.13 305.76 lata 6c = [] = [79.00 384.76	85.89 320.81 Gains W 32.17 7.17 23.95 52.01 372.82 372.82 21.00] (72)] (73)] (80)] (81)] (76)] (83)] (84)] (85)
Total internal ga 6. Solar gains West NorthWest East Solar gains in wa Total gains - international gains - internation gains - internation gains - international gains - internation ga	ains (66)m + 329.79 329.79 329.79 63.29 63.29 ernal and so 393.09 hal tempera uring heating Jan	85.89 + (67)m + (6 327.98 327.98 124.39 lar (73)m + 452.36 ture (heating periods in Feb	82.01 88)m + (69) 317.06 Access f Table 0.7 0.7 0.7 0.7 207.11 (83)m 524.17 1g season) the living a Mar	76.74 m + (70)m 299.56 factor 6d 7 x 7 x 7 x 7 x 306.89 606.44 area from T Apr	73.32 + (71)m + (7 281.98 Area m ² 5.36 2.08 3.99 381.23 663.20 G663.20	68.51 72)m 264.87 Sol W 3 x 1 x 1 392.72 657.59	64.41 253.66 ar flux V/m ² 9.64 x 1.28 x 9.64 x 372.86 626.51 Jul	69.66 258.85 spec or T 0.9 x (0 0.9 x (0 0.9 x (0 316.70 575.55	71.52 267.75 g ific data able 6b 0.63 x 0.63 x 0.63 x 0.63 x 242.33 510.08	76.97 285.44 FF specific c or Table 0.70 0.70 0.70 148.11 433.55	83.13 305.76 data 6c = [] = [] = [] 79.00 384.76	85.89 320.81 320.81 32.17 32.17 7.17 23.95 52.01 372.82 372.82 21.00 Dec] (72)] (73)] (80)] (81)] (76)] (83)] (83)] (84)

Utilisation facto	r for gains f	or living are	a n1,m (see	e Table 9a)									
	1.00	0.99	0.98	0.95	0.87	0.72	0.56	0.62	0.86	0.97	0.99	1.00	(86)
Mean internal to	emp of livin	g area T1 (s	teps 3 to 7	in Table 9c	.)								
	19.44	19.61	19.92	20.33	20.69	20.91	20.98	20.96	20.79	20.32	19.81	19.42	(87)
Temperature du	iring heating	g periods in	the rest of	dwelling fr	om Table 9), Th2(°C)							-
	19.73	19.73	19.74	19.75	19.75	19.76	19.76	19.76	19.76	19.75	19.75	19.74	(88)
Utilisation facto	r for gains for	or rest of d	welling n2,r	n									
	1.00	0.99	0.98	0.93	0.82	0.61	0.41	0.47	0.78	0.96	0.99	1.00	(89)
Mean internal to	emperature	in the rest	of dwelling	T2 (follow	steps 3 to	7 in Table 9	e)	-] (/
	17.69	17 93	18 38	18 98	19.46	19 70	19.75	19 75	19 59	18 97	18.23	17.66	(90)
Living area fract	ion	17.55	10.50	10.50	13.40	15.70	15.75	15.75	15.55	ving area ÷	(4) =	0.61] (91)
Mean internal to	emnerature	for the wh	ole dwelling	σfIΔ x T1 +	-(1 - fl Δ) x T	r ว				ing area .	(+) =	0.01] (31)
		19.06	10.22	10.01		20.44	20 50	20.40	20.22	10.90	10.20	10.74	(02)
Apply adjustma	10.70	10.90	19.55	19.01	20.21	20.44	20.50	20.49	20.55	19.60	19.20	10.74] (92)
								20.40	20.22	10.00	10.20	10.74	
	18.76	18.96	19.33	19.81	20.21	20.44	20.50	20.49	20.33	19.80	19.20	18.74] (93)
8. Space heating	ng requirem	ent											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation facto	r for gains. I	าฑ		•				Ű					
	0.99	0.99	0.98	0.93	0.84	0.67	0.50	0.56	0.82	0.96	0 99	1 00	(94)
Liseful gains nm	Gm W (94)m x (84)m	0.50	0.55	0.04	0.07	0.50	0.50	0.02	0.50	0.55	1.00] (34)
		//// (O I)///	E11 62			442.60	215 10	224 52	417.40	116 50	200.06	271 10	
Monthly avorage	o ovtornal t	447.75	from Table	500.85	550.08	442.09	515.10	524.52	417.49	410.58	380.90	571.10] (33)
				01	11 70	14.00	10.00	16.40	14.10	10.00	7 10	4.20	
	4.30	4.90	0.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20] (96)
Heat loss rate to	or mean inte	ernal tempe	rature, Lm,	w [(39)m	x [(93)m -	(96)m]							1
	1236.44	1199.28	1091.28	918.29	/15.01	485.91	324.65	339.85	519.80	//2.4/	1020.37	1231.15] (97)
Space heating re	equirement,	kwn/mon	th 0.024 x	[(97)m - (95	5)m] x (41)r	m							7
	629.06	505.04	431.27	253.04	117.80	0.00	0.00	0.00	0.00	264.78	460.37	639.82]
									∑(98	3)15, 10	12 = 3	301.18] (98) T
Space heating re	equirement	kWh/m²/ye	ear							(98)	÷ (4)	55.67	(99)
9a. Energy reg	uirements -	individual	heating sys	tems inclu	ding micro	-CHP							
Snace heating													
Eraction of space	o hoot from	socondary	/supplement	tary system	m (table 11	۱						0.00	(201)
Fraction of space	e heat from	main custo	supplement	italy system)				1 /20)1) – [1.00] (201)] (202)
Fraction of space	e neat from	main syste	m(s)							1 - (20)1) = [1.00] (202)] (202)
	e neat from	main syste	111 Z						(20	2) [4. (20		0.00] (202)] (204)
Fraction of total	space neat	trom main	system 1						(20)2) X [1- (20	3)] =	1.00] (204)] (205)
Fraction of total	space heat	from main	system 2							(202) x (20)3) =	0.00] (205)] (205)
Efficiency of ma	in system 1	(%)						_				93.50] (206)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating fu	uel (main sy	stem 1), kW	/h/month										-
	672.79	540.15	461.25	270.63	125.99	0.00	0.00	0.00	0.00	283.18	492.38	684.30]
									∑(21:	1)15, 10	12 = 3	530.67	(211)
Water heating													
Efficiency of wat	ter heater												
	88.12	87.95	87.53	86.57	84.63	79.80	79.80	79.80	79.80	86.59	87.71	88.20	(217)
Water heating f	uel, kWh/m	onth											
	180.01	158.62	166.54	149.79	149.28	140.14	133.33	148.04	148.32	155.34	163.62	175.13]

				Σ(219a)112 =	1868.17	(219)
Annual totals				2.		
Space heating fuel - main system 1					3530.67	7
Water heating fuel					1868.17]
Electricity for pumps, fans and electric keep-hot (Table 4f)						
central heating pump or water pump within warm air heating	unit		30.00			(230c)
boiler flue fan			45.00			(230e)
Total electricity for the above, kWh/year				1	75.00	(231)
Electricity for lighting (Appendix L)					272.57	(232)
Total delivered energy for all uses			(211)(221) + (231) +	(232)(237b) =	5746.41	(238)
102 Eucl costs - individual heating systems including micro-CH	ID					_
Toal Fuel costs - individual heating systems including inicio-ch	Eucl		Eucl price		Fuel	
	kWh/year		i dei price		cost £/year	
Space heating - main system 1	3530.67	x	3.48	x 0.01 =	122.87	(240)
Water heating	1868.17	x	3.48	x 0.01 =	65.01	(247)
Pumps and fans	75.00	x	13.19	x 0.01 =	9.89	(249)
Electricity for lighting	272.57	x	13.19	x 0.01 =	35.95	(250)
Additional standing charges					120.00	(251)
Total energy cost			(240)(242)	+ (245)(254) =	353.72	(255)
11a. SAP rating - individual heating systems including micro-Ch	HP					
Energy cost deflator (Table 12)					0.42	(256)
Energy cost factor (ECF)					1.42	(257)
SAP value					80.13]
SAP rating (section 13)					80	(258)
SAP band					C]
						-
12a. CO ₂ emissions - individual heating systems including micro	о-СНР 				_ · · ·	
	Energy kWh/year		Emission factor kg CO₂/kWh		Emissions kg CO ₂ /year	
Space heating - main system 1	3530.67	x	0.216	=	762.62	(261)
Water heating	1868.17	x	0.216	=	403.53	(264)
Space and water heating			(261) + (262) +	- (263) + (264) =	1166.15	(265)
Pumps and fans	75.00	x	0.519] =	38.93	(267)
Electricity for lighting	272.57	х	0.519	=	141.46	(268)
Total CO ₂ , kg/year				(265)(271) =	1346.54	(272)
Dwelling CO ₂ emission rate				(272) ÷ (4) =	22.71	(273)
El value					82.70	
El rating (section 14)					83	(274)
El band					В	
13a. Primary energy - individual heating systems including mic	ro-CHP					
	Energy		Primary factor		Primary Energy	/
	kvvn/year				кууп/year	

	kWh/year		r filliar y factor		kWh/year	
Space heating - main system 1	3530.67] x	1.22] =	4307.42	(261)
Water heating	1868.17] x	1.22] =	2279.17	(264)
Space and water heating			(261) + (262) +	- (263) + (264) =	6586.59	(265)
Pumps and fans	75.00) x	3.07] =	230.25	(267)
Electricity for lighting	272.57	x	3.07] =	836.78	(268)

Primary energy kWh/year

Dwelling primary energy rate kWh/m2/year

7653.62	(272)
129.07	(273)

DER Worksheet As Built - Draft

This as built submission has been carried out using Approved SAP software. The assessor has confirmed any changes from the design submission with the builder.

Assessor name	Mr Neil I	Rothon						Assessor nur	4282	4282		
Client								Last modifie	d	28/08	/2018	
Address	G01 Aga	r Grove, Lo	ndon, NW	'1								
1. Overall dwelling dime	nsions											
					Area (m²)		А	verage store height (m)	y	Va	lume (m³)	
Lowest occupied					59.30	(1a) x		4.08	(2a) =		241.94	(3a)
Total floor area	(1a)	+ (1b) + (1	c) + (1d)	.(1n) = 🗌	59.30	(4)						
Dwelling volume							(3a) + (3b) + (3	3c) + (3d)(3	n) =	241.94	(5)
2. Ventilation rate												
										m	³ per hour	
Number of chimneys							E	0	x 40 =		0	(6a)
Number of open flues								0	x 20 =		0	(6b)
Number of intermittent fa	ns							0	x 10 =		0	(7a)
Number of passive vents								0	x 10 =		0	(7b)
Number of flueless gas fire	es							0	x 40 =		0	(7c)
										Air o	hanges pe hour	r
Infiltration due to chimney	/s, flues, fan	s, PSVs		((6a) + (6b) + (7a) + (7b) +	(7c) =	0	÷ (5) =		0.00	(8)
If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)												
Air permeability value, q50	D, expressed	in cubic m	etres per l	hour per	square metr	e of envelop	e area				3.00	(17)
If based on air permeabilit	y value, the	n (18) = [(1	7) ÷ 20] +	(8) <i>,</i> othe	rwise (18) = (16)					0.15	(18)
Number of sides on which	the dwelling	g is sheltere	ed								2	(19)
Shelter factor								1	- [0.075 x (19)] =	0.85	(20)
Infiltration rate incorporat	ing shelter f	actor							(18) x (2	0) =	0.13	(21)
Infiltration rate modified f	or monthly	wind speed	:									
Jan	Feb	Mar	Apr	Ma	y Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Monthly average wind spe	ed from Tak	ole U2							- 1 1		-	-
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	(22)
Wind factor (22)m ÷ 4	_		1								1	٦
1.28	1.25	1.23	1.10	1.08	8 0.95	0.95	0.93	1.00	1.08	1.13	1.18	(22a)
Adjusted infiltration rate (allowing for	shelter and	d wind fac	tor) (21)	x (22a)m	0.12	0.12	0.12			0.45	
Calculate offective air char	0.16	0.16	0.14	0.14	4 0.12	0.12	0.12	0.13	0.14	0.14	0.15	(22b)
If machanical vontilatio	nge rate ror	ine applica	ugh cyctor	~							0.50	(222)
If halanced with heat re	ecovery: effi		allowing	n for in-us	e factor from	Table //b					79.05	(23c)
a) If balanced mechanic	cal ventilatio	on with hea	t recovery	/ (MVHR	(22b)m + (2)	3b) x [1 - /23	3c) ÷ 100	1				
	0.26	0.26	0.25		4 0.22	0.22	0.22	0.23	0.24	0.25	0.25	(242)
Effective air change rate -	enter (24a)	or (24b) or	(24c) or (2	24d) in (2	. <u>0.23</u>	0.25	0.22	0.25	0.24	0.20	0.25	_ (∠+a)
	0.26	0.26	0.25	0.2	4 0.22	0.23	0.22	0.23	0.24	0.25	0.25	(25)
0.27	0.20	0.20	0.25	0.2	5.25	0.25	0.22	0.25	0.27	5.25	0.20	

3. Heat losses a	and heat los	ss paramete	er										
Element			а	Gross rea, m²	Openings m ²	Net A,	area m²	U-value W/m²K	A x U W	/К к-\ kJ,	value, /m².K	Ахк, kJ/K	
Window						12	.59 x	0.90	= 11.29				(27)
Door						3.	.39 x	0.93	= 3.15				(26)
Ground floor						59	.30 x	0.09	= 5.34				(28a)
External wall						24	.58 x	0.15	= 3.69				(29a)
Party wall						84	.60 x	0.00	= 0.00				(32)
Roof						6.	.24 x	0.20	= 1.25				(30)
Total area of ext	ernal eleme	ents ∑A, m²				10	6.10						(31)
Fabric heat loss,	W/K = ∑(A	× U)							(26	5)(30) + (3	32) =	24.71	(33)
Heat capacity Cr	n = ∑(А x к)							(28)	.(30) + (32) +	- (32a)(3	2e) =	N/A	(34)
Thermal mass pa	arameter (T	MP) in kJ/m	1²K									250.00	(35)
Thermal bridges	: Σ(L x Ψ) ca	lculated us	ing Appen	dix K								9.56	(36)
Total fabric heat	loss									(33) + (3	36) =	34.27	(37)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Ventilation heat	loss calcula	ted month	ly 0.33 x (2	25)m x (5)									
	21.34	21.09	20.83	19.56	19.31	18.03	18.03	17.78	18.54	19.31	19.82	20.32	(38)
Heat transfer co	efficient, W	/K (37)m +	(38)m										_
	55.61	55.36	55.10	53.83	53.58	52.30	52.30	52.05	52.81	53.58	54.08	54.59	
									Average = ∑	(39)112/	/12 =	53.77	(39)
Heat loss param	eter (HLP), '	W/m²K (39)m ÷ (4)					_			1		-
	0.94	0.93	0.93	0.91	0.90	0.88	0.88	0.88	0.89	0.90	0.91	0.92	
Number of days	·								Average = ∑	(40)112/	/12 =	0.91	_ (40)
Number of days	in month (I	able 1a)	24.00	20.00	24.00	20.00	21.00	24.00		24.00	22.00	24.00	
	31.00	28.00	31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00	30.00	31.00	(40)
4. Water heating	ng energy r	equirement	t										
Assumed occupa	ancy, N											1.96	(42)
Annual average	hot water u	sage in litre	es per day '	Vd,average	e = (25 x N) +	36						80.79	(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Hot water usage	in litres pe	r day for ea	ch month	Vd,m = fac	tor from Tab	le 1c x (43	3)						
	88.87	85.64	82.41	79.18	75.94	72.71	72.71	75.94	79.18	82.41	85.64	88.87	
										∑(44)1	.12 =	969.51	(44)
Energy content of	of hot wate	r used = 4.1	.8 x Vd,m x	nm x Tm/	3600 kWh/m	onth (see	Tables 1b	, 1c 1d)					_
	131.79	115.27	118.95	103.70	99.50	85.86	79.56	91.30	92.39	107.67	117.53	127.64	
										∑(45)1	.12 =	1271.18	(45)
Distribution loss	0.15 x (45)	m					Ť.					-	-
	19.77	17.29	17.84	15.55	14.93	12.88	11.93	13.70	13.86	16.15	17.63	19.15	(46)
Storage volume	(litres) inclu	iding any so	olar or WW	HRS stora	ge within san	ne vessel						1.00	(47)
Water storage ic	DSS:	1											
b) Manufacturer	r's declared	loss factor		vn	,								
Hot water sto	orage loss ta	actor from	i able 2 (kv	vh/litre/da	iy)							0.02	(51)
volume facto		e Za										4.93	(52)
Enormylast	ractor from		b/day) /1-	7) 、 / 「 1 ` /	E3) y (E3)							1.00	_ (53)
Energy lost fr) in (55)	torage (KW	n/uay) (47	, x (эт) x (JZJ X (JJ)							0.12	(54) (55)
Water storage lo	n in (55) Ss calculate	d for each	month (5ª	5) x (41)m								0.12	_ (33)
water storage it				~, ^ (¬+/)11									

	3.66	3.31	3.66	3.55	3.66	3.55	3.66	3.66	3.55	3.66	3.55	3.66	(56)
If the vessel con	ntains dedic	ated solar st	orage or d	ledicated W	VWHRS (56)	m x [(47) -	Vs] ÷ (47),	else (56)					
	3.66	3.31	3.66	3.55	3.66	3.55	3.66	3.66	3.55	3.66	3.55	3.66	(57)
Primary circuit l	oss for each	n month from	n Table 3										
	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26	(59)
Combi loss for e	each month	from Table	3a, 3b or 3	c									
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(61)
Total heat requi	ired for wat	er heating c	alculated f	or each mo	onth 0.85 x	(45)m + (4	6)m + (57)	m + (59)m +	(61)m				
	158.72	139.59	145.87	129.76	126.43	111.92	106.49	118.23	118.45	134.60	143.59	154.56	(62)
Solar DHW inpu	t calculated	l using Appe	ndix G or A	Appendix H	I								
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(63)
Output from wa	ater heater	for each mo	nth (kWh/	month) (62	2)m + (63)m	1							
	158.72	139.59	145.87	129.76	126.43	111.92	106.49	118.23	118.45	134.60	143.59	154.56	
										∑(64)1	.12 = 1	588.22	(64)
Heat gains from	water heat	ting (kWh/m	ionth) 0.2	5 × [0.85 ×	(45)m + (61)m] + 0.8 ×	[(46)m + (57)m + (59)	m]				_
	65.36	57.78	61.09	55.33	54.63	49.40	48.00	51.90	51.57	57.34	59.93	63.98	(65)
5. Internal gair	ns												
	Jan	Feb	Mar	Apr	Mav	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Metabolic gains	(Table 5)				,				сор			200	
	98.09	98.09	98.09	98.09	98.09	98.09	98.09	98.09	98.09	98.09	98.09	98.09	66)
Lighting gains (c	calculated in	Appendix L	, equation	L9 or L9a),	, also see Ta	ble 5	50.00			50.05	50.05	50.05] (00)
	15.29	13.58	11.05	8.36	6.25	5.28	5.70	7.41	9.95	12.63	14.74	15.72	(67)
Appliance gains	(calculated	in Appendix	k L, equatio	on L13 or L	13a), also se	e Table 5						_	
	171.18	172.95	168.48	158.95	146.92	135.61	128.06	126.29	130.76	140.29	152.32	163.63	(68)
Cooking gains (c	calculated ir	n Appendix L	, equation	L15 or L15	ia), also see	Table 5							
	32.81	32.81	32.81	32.81	32.81	32.81	32.81	32.81	32.81	32.81	32.81	32.81	(69)
Pump and fan g	ains (Table	5a)						•				•	_
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(70)
Losses e.g. evap	oration (Ta	ble 5)											-
	-78.47	-78.47	-78.47	-78.47	-78.47	-78.47	-78.47	-78.47	-78.47	-78.47	-78.47	-78.47	(71)
Water heating g	gains (Table	5)											
	87.85	85.99	82.11	76.84	73.42	68.61	64.51	69.76	71.62	77.07	83.23	85.99	(72)
Total internal ga	ains (66)m	+ (67)m + (6	8)m + (69)	m + (70)m	+ (71)m + (7	72)m							
	326.75	324.95	314.06	296.58	279.02	261.92	250.70	255.88	264.76	282.42	302.72	317.76	(73)
	_												
6. Solar gains				-									
			Accord	factor	Area	50	or flux		~	66		Coinc	
			Access f Table	factor 6d	Area m²	Sol W	ar flux //m²	speci	g ific data	FF specific c	lata	Gains W	
			Access f Table	factor 6d	Area m²	Sol M	ar flux //m²	speci or Ta	g ific data able 6b	FF specific o or Table	lata 6c	Gains W	
West			Access f Table	factor 6d 7 x	Area m ² 5.90	Sol W 	ar flux //m² 9.64 x	speci or Ta	g ific data able 6b).52 x	FF specific o or Table	lata : 6c =	Gains W 33.41] (80)
West NorthWest			Access f Table	factor 6d 7 x [7 x [Area m ² 5.90 2.30	Sol W x 1 x 1	ar flux //m² 9.64 x 1.28 x	speci or Ta 0.9 x 0 0.9 x 0	g ific data able 6b 0.52 x 0.52 x	FF specific o or Table 0.80	lata : 6c = =	Gains W 33.41 7.48] (80)] (81)
West NorthWest East			Access f Table 0.7 0.7	factor 6d 7 x 7 x 7 x	Area m ² 5.90 2.30 4.39	Sol x 1 x 1 x 1	ar flux //m ² 9.64 x 1.28 x 9.64 x	speci or Ta 0.9 x 0 0.9 x 0 0.9 x 0 0.9 x 0	g ific data able 6b 0.52 x 0.52 x 0.52 x	FF specific c or Table 0.80 0.80	lata : 6c = =	Gains W 33.41 7.48 24.86] (80)] (81)] (76)
West NorthWest East Solar gains in wa	atts ∑(74)m	n(82)m	Access 6 Table 0.7 0.7 0.7	factor 6d 7 x [7 x [7 x [Area m ² 5.90 2.30 4.39	Sol W X 1 X 1 X 1 X 1	ar flux //m ² 9.64 x 1.28 x 9.64 x	speci or Ta 0.9 x 0 0.9 x 0 0.9 x 0 0.9 x 0	g ific data able 6b 0.52 x 0.52 x 0.52 x	FF specific c or Table 0.80 0.80	lata : 6c = = =	Gains W 33.41 7.48 24.86] (80)] (81)] (76)
West NorthWest East Solar gains in wa	atts ∑(74)m 65.74	n(82)m 129.20	Access 1 Table 0.7 0.7 215.14	factor 6d 7 x [7 x [7 x [318.81	Area m ² 5.90 2.30 4.39 396.06	Sol W X 1 X 1 X 1 408.00	ar flux //m ² 9.64 x 9.64 x 387.37	speci or Ta 0.9 x 0 0.9 x 0 0.9 x 0 0.9 x 0 329.01	g ific data able 6b 0.52 x 0.52 x 0.52 x 251.73 x	FF specific c or Table 0.80 0.80 0.80	data : 6c = = = 82.06	Gains W 33.41 7.48 24.86 54.02] (80)] (81)] (76)] (83)
West NorthWest East Solar gains in wa Total gains - inte	atts ∑(74)m 65.74 ernal and so	n(82)m 129.20 blar (73)m +	Access f Table 0.7 0.7 215.14 (83)m	factor 6d 7 x [7 x [7 x [318.81	Area m ² 5.90 2.30 4.39 396.06	Sol W X 1 X 1 X 1 X 1 408.00	ar flux //m ² 9.64 x 1.28 x 9.64 x 387.37	speci or Ta 0.9 x 0 0.9 x 0 0.9 x 0 329.01	g ific data able 6b 0.52 x 0.52 x 0.52 x 0.52 x 251.73	FF specific c or Table 0.80 0.80 0.80	data 6c = [] = [] = [] 82.06	Gains W 33.41 7.48 24.86 54.02] (80)] (81)] (76)] (83)
West NorthWest East Solar gains in wa Total gains - inte	atts ∑(74)m 65.74 ernal and so 392.49	n(82)m 129.20 blar (73)m + 454.15	Access 1 Table 0.7 0.7 215.14 (83)m 529.20	factor 6d 7 x [7 x [7 x] 7 x [318.81 615.39	Area m ² 5.90 2.30 4.39 396.06 675.08	Sol W X 1 X 1 X 1 408.00	ar flux //m ² 9.64 x 9.64 x 9.64 x 387.37	speci or Ta 0.9 x 0 0.9 x 0 0.9 x 0 329.01	g ific data able 6b 0.52 x 0.52 x 0.52 x 251.73 516.49	FF specific c or Table 0.80 0.80 153.85 436.27	data • 6c = [= [= [82.06 384.78	Gains W 33.41 7.48 24.86 54.02 371.79] (80)] (81)] (76)] (83)] (84)

7. Mean internal temperature (heating season)

Temperature du	iring heating	g periods in	the living a	area from T	able 9, Th	1(°C)						21.00	(85)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation facto	r for gains f	or living are	ea n1,m (se	e Table 9a)									
	1.00	0.99	0.97	0.88	0.70	0.50	0.36	0.41	0.68	0.94	0.99	1.00	(86)
Mean internal to	emp of livin	g area T1 (s	teps 3 to 7	in Table 9c	:)								
	20.11	20.27	20.53	20.82	20.96	21.00	21.00	21.00	20.98	20.76	20.39	20.10	(87)
Temperature du	iring heating	g periods in	the rest of	f dwelling fi	rom Table	9, Th2(°C)		1				-]
·	20.14	20.14	20.14	20.16	20.16	20.18	20.18	20.19	20.18	20.16	20.16	20.15	(88)
Utilisation facto	r for gains f	or rest of du	welling n2	m		20120	20.20	1 20120		20.20	20120] (00)
	1 00	0.00	0.06	0.95	0.65	0.42	0.20	0.24	0.61	0.02	0.00	1.00	
	1.00	0.99		U.85	0.05	0.45	0.29	0.54	0.01	0.92	0.99	1.00] (09)
Mean Internal to	emperature	In the rest	or aweiling		steps 3 to			1	1				7 (2.2)
	18.95	19.19	19.55	19.96	20.13	20.18	20.18	20.19	20.16	19.89	19.37	18.94] (90) 7
Living area fract	ion								Liv	ving area ÷	(4) =	0.61	(91)
Mean internal to	emperature	for the wh	ole dwellin	g fLA x T1 +	-(1 - fLA) x	Т2							
	19.67	19.85	20.15	20.49	20.64	20.68	20.68	20.68	20.66	20.42	19.99	19.65	(92)
Apply adjustme	nt to the me	ean internal	temperatu	ure from Ta	ble 4e wh	ere appropr	iate						
	19.67	19.85	20.15	20.49	20.64	20.68	20.68	20.68	20.66	20.42	19.99	19.65	(93)
	-				•							•	-
8. Space heating	ng requirem	ient											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation facto	r for gains, ı	ηm											
	0.99	0.99	0.96	0.86	0.68	0.47	0.33	0.38	0.65	0.93	0.99	1.00	(94)
Useful gains, ηπ	nGm, W (94	l)m x (84)m									•	-	-
	390.39	448.33	508.26	532.28	460.38	316.46	213.45	222.70	336.34	404.18	380.06	370.29	(95)
Monthly averag	e external to	emperature	from Tabl	e U1				1	1			1 01 01 00] ()
montiny averag		4.00	6 50	8 00	11 70	14.60	16.60	16.40	14.10	10.60	7 10	4 20	
	4.50	4.90	0.50	0.90	11.70	(06)ml	10.00	10.40	14.10	10.00	7.10	4.20] (90)
Heat loss rate to	or mean inte	ernal tempe	rature, Lm	, w [(39)m	x [(93)m -	· (96)m]		1	1				7
	854.51	827.73	752.25	623.84	479.01	318.06	213.60	223.02	346.52	526.28	697.31	843.44] (97)
Space heating re	equirement,	, kWh/mon	th 0.024 x	[(97)m - (9	5)m] x (41))m			1				-
	345.30	254.96	181.53	65.93	13.86	0.00	0.00	0.00	0.00	90.84	228.42	352.02	
									∑(98	3)15, 10	.12 =	1532.86	(98)
Space heating re	equirement	kWh/m²/ye	ear							(98)	÷ (4)	25.85	(99)
			1										
96. Energy req	ulrements -	communit	y neating s	cneme		_							<u>ר</u>
Fraction of spac	e heat from	secondary,	/supplemei	ntary syste	m (table 1	1)				'0' if	none	0.00] (301)
Fraction of spac	e heat from	community	y system							1 - (3	01) =	1.00	(302)
Fraction of com	munity heat	from boile	rs									1.00	(303a)
Fraction of total	space heat	from comn	nunity boile	ers						(302) x (30	3a) =	1.00	(304a)
Factor for contr	ol and charg	ging method	d (Table 4c((3)) for com	nmunity sp	ace heating						1.00	(305)
Factor for charg	ing method	(Table 4c(3)) for comr	nunity wat	er heating							1.00	(305a)
Distribution loss	factor (Tab	le 12c) for (community	heating sy	stem							1.05	(306)
	,	,	,	0,							L		1, ,
Space beating													
Approximation of the second se									522.00	1			(00)
Annual space ne	ating requi	rement							1552.80				(98)
space neat from	Dollers							(98	s) x (304a) x	k (305) x (3	06) = [1009.50] (307a)
Water heating										-			
Annual water he	eating requi	rement						1	1588.22	J			(64)

Water heat from boilers			(64) x (303a) x (305a) x (306) =	1667.63	(310a)
Electricity used for heat distribution		0.01 × [(3	307a)(307e) + (3	10a)(310e)] =	32.77	(313)
Electricity for pumps, fans and electric keep-hot (Table 4f)						
mechanical ventilation fans - balanced, extract or positive inpu	t from outside		335.76			(330a)
Total electricity for the above, kWh/year					335.76	(331)
Electricity for lighting (Appendix L)					270.05	(332)
Energy saving/generation technologies						
electricity generated by PV (Appendix M)					-346.63	(333)
Total delivered energy for all uses	(307) + (309) -	+ (310) + (312)	+ (315) + (331) + (332)(337b) =	3536.31	(338)
10b. Fuel costs - community heating scheme						
	Fuel		Fuel price		Fuel	
	kWh/year				cost £/year	
Space heating from boilers	1609.50	x	4.24	x 0.01 =	68.24	(340a)
Water heating from boilers	1667.63	x	4.24	x 0.01 =	70.71	(342a)
Pumps and fans	335.76	x	13.19	x 0.01 =	44.29	(349)
Electricity for lighting	270.05	x	13.19	x 0.01 =	35.62	(350)
Additional standing charges					120.00	(351)
Energy saving/generation technologies						
pv savings	-346.63	x	13.19	x 0.01 =	0.00	(352)
Total energy cost			(340a)(342e) +	(345)(354) =	338.86	(355)
11b. SAP rating - community heating scheme						
Energy cost deflator (Table 12)					0.42	(356)
Energy cost factor (ECF)					1.36	(357)
SAP value					80.96	
SAP rating (section 13)					81	(358)
SAP band					В	
12b. CO ₂ emissions - community heating scheme						
	Energy	V	Emission factor		Emissions	
	kWh/year				(kg/year)	
Emissions from other sources (space heating)						
Efficiency of boilers	97.10					(367a)
CO2 emissions from boilers [(307a)+(310a)] x 100 ÷ (367a) =	3375.01	x	0.216	=	729.00	(367)
Electrical energy for community heat distribution	32.77	х	0.519	=	17.01	(372)
Total CO2 associated with community systems					746.01	(373)
Total CO2 associated with space and water heating					746.01	(376)
Pumps and fans	335.76	х	0.519	=	174.26	(378)
Electricity for lighting	270.05	х	0.519	=	140.16	(379)
Energy saving/generation technologies						
pv savings	-346.63	x	0.519	=	-179.90	(380)
Total CO ₂ , kg/year				(376)(382) =	880.52	(383)
Dwelling CO ₂ emission rate				(383) ÷ (4) =	14.85	(384)
El value				()·(') ⁻	88.69	
El rating (section 14)					89	(385)
Fl hand					R	

13b. Primary energy - community heating scheme

	Energy kWh/year		Primary factor		Primary energy (kWh/year)	/
Primary energy from other sources (space heating)						
Efficiency of boilers	97.10					(367a)
Primary energy from boilers [(307a)+(310a)] x 100 ÷ (367a)	= 3375.01	x	1.22	=	4117.51	(367)
Electrical energy for community heat distribution	32.77	x	3.07	=	100.61	(372)
Total primary energy associated with community systems					4218.12	(373)
Total primary energy associated with space and water heating					4218.12	(376)
Pumps and fans	335.76	x	3.07	=	1030.78	(378)
Electricity for lighting	270.05	x	3.07	=	829.06	(379)
Energy saving/generation technologies						
Electricity generated - PVs	-346.63	x	3.07	=	-1064.15	(380)
Primary energy kWh/year					5013.80	(383)
Dwelling primary energy rate kWh/m2/year					84.55	(384)

Appendix 4

Innovation for a Better Life

LG320N1K-A5

60 cell

LG's new module, LG NeON[®] 2, ado pts Cello technology. Cello technology replaces 3 busbars with 12 thin wires to enhance power output and reliability. LG NeON[®] 2 demonstrates LG's efforts to increase customer's values beyond efficiency. It features enhanced warranty, durability, performance under real environment, and aesthetic design suitable for roofs.

Enhanced Performance Warranty

LG NeON® 2 *Black* has an enhanced performance warranty. The annual degradation has fallen from -0.6%/yr to -0.55%/yr. Even after 25 years, the cell guarantees 1.2%p more output than the previous LG NeON® 2 *Black* modules.

Aesthetic Roof

LG NeON[®] 2 *Black* has been designed with aesthetics in mind; thinner wires that appear all black at a distance. The product may help increase the value of a property with its modern design.

Better Performance on a Sunny Day

LG NeON[®] 2 *Black* now performs better on sunny days thanks to its improved temperature coefficiency.

High Power Output

Compared with previous models, the LG NeON® 2 *Black* has been designed to significantly enhance its output efficiency, thereby making it efficient even in limited space.

Outstanding Durability

With its newly reinforced frame design, LG has extended the warranty of the LG NeON® 2 *Black* for an additional 2 years. Additionally, LG NeON® 2 *Black* can endure a front load up to 6000 Pa, and a rear load up to 5400 Pa.

Double-Sided Cell Structure

The rear of the cell used in LG NeON® 2 *Black* will contribute to generation, just like the front; the light beam reflected from the rear of the module is reabsorbed to generate a great amount of additional power.

About LG Electronics

LG Electronics is a global player who has been committed to expanding its capacity, based on solar energy business as its future growth engine. We embarked on a solar energy source research program in 1985, supported by LG Group's rich experience in semi-conductor, LCD, chemistry, and materials industry. We successfully released the first Mono X[®] series to the market in 2010, which were exported to 32 countries in the following 2 years, thereafter. In 2013, LG NeON[®] (previously known as Mono X[®] NeON) won "Intersolar Award", which proved LG is the leader of innovation in the industry.

$LG N_{e}ON^{\circ} 2Black$

Mechanical Properties

Cells	6 x 10
Cell Vendor	LG
Cell Type	Monocrystalline / N-type
Cell Dimensions	161.7 x 161.7 mm / 6 inches
# of Busbar	12 (Multi Wire Busbar)
Dimensions (L x W x H)	1686 x 1016 x 40 mm
	66.38 x 40 x 1.57 inch
Front Load	6000Pa
Rear Load	5400Pa
Weight	18 kg
Connector Type	MC4
Junction Box	IP68 with 3 Bypass Diodes
Cables	1000 mm x 2 ea
Glass	High Transmission Tempered Glass
Frame	Anodized Aluminium

Certifications and Warranty

Certifications	IEC 61215, IEC 61730-1/-2				
	UL 1703				
	IEC 61701 (Salt mist corrosion test)				
	IEC 62716 (Ammonia corrosion test)				
	ISO 9001				
Module Fire Performance (USA)	Type 2				
Fire Rating (CANADA)	Class C				
Product Warranty	12 years				
Output Warranty of Pmax	Linear warranty**				

** 1) 1st year : 98%, 2) After 1st year : 0.55% annual degradation, 3) 25 years : 84.8%

Temperature Characteristics

NOCT	45 ± 3 ℃	
Pmpp	-0.37%/°C	
Voc	-0.27%/°C	
lsc	0.03 %/°C	

Characteristic Curves

www.lgsolarusa.com

Electrical Properties (STC *)

Module	LG320N1K-A5	
Maximum Power (Pmax)	320	
MPP Voltage (Vmpp)	33.3	
MPP Current (Impp)	9.62	
Open Circuit Voltage (Voc)	40.8	
Short Circuit Current (Isc)	10.19	
Module Efficiency	18.7	
Operating Temperature	-40 ~ +90	
Maximum System Voltage	1,000	
Maximum Series Fuse Rating	20	
Power Tolerance (%)	0 ~ +3	

 \ast STC (Standard Test Condition): Irradiance 1,000 W/m², Ambient Temperature 25 °C, AM 1.5

* The nameplate power output is measured and determined by LG Electronics at its sole and absolute discretion.
* The typical change in module efficiency at 200 W/m² in relation to 1000 W/m² is -2.0%.

Electrical Properties (NOCT*)

Module	LG320N1K-A5
Maximum Power (Pmax)	236
MPP Voltage (Vmpp)	30.8
MPP Current (Impp)	7.67
Open Circuit Voltage (Voc)	38.0
Short Circuit Current (Isc)	8.20

* NOCT (Nominal Operating Cell Temperature): Irradiance 800W/m², ambient temperature 20 °C, wind speed 1m/s

Dimensions (mm/in)

Product specifications are subject to change without notice.

Copyright © 2017 LG Electronics. All rights reserved. 01/01/2017

Innovation for a Better Life

