

Eckersley O'Callaghan

Panther House, Camden Flood Risk Assessment & Drainage Strategy

Project Number: Report Issue Date: Report Status: Prepared by: Checked by: 17241 05 August 2019 Planning M. Jones M. Simmonds

Planning Issue 05 August 2019

Contents

1. INTRODUCTION	3
2. PLANNING POLICIES	3
3. DISCUSSION	3
4. FLOOD RISK	4
5. DRAINAGE STRATEGY	6
6. FLOOD RISK MANAGEMENT MEASURES	6
7. OFF SITE IMPACTS	6
6. RESIDUAL RISKS	6
APPENDIX 1 – PROPOSED DRAINAGE SCHEME	7
APPENDIX 2 – EXISTING RUN-OFF CALCULATION	8
APPENDIX 3 – PROPOSED RUN-OFF CALCULATIONS WEST CATCHMENT	9
APPENDIX 4 – LONDON BOROUGH OF CAMDEN SUDS PROFORMA	15

2 of 16

1 Introduction

- Eckersley O'Callaghan are appointed by Panther House Developments Ltd. to provide flood risk and below ground 1.1 drainage consultancy in relation to the development of Panther House, Grays Inn Road, London, WC1X 0AN.
- 1.2 The site is approximately 0.2 hectares in area and contains a number of office buildings of varying height. Planning permission is sought for the provision of additional floors onto the existing buildings and some infill development.
- Although the site is located Flood Zone 1 and is not within 20m of a Main River, a Flood Risk Assessment (FRA) is 1.3 required as it is within Critical Drainage Area Group3_003 as defined in London Borough of Camden's Surface Water Management Plan. Furthermore the Camden Local Plan demands that a Flood Risk Assessment and Drainage Statement is submitted as the development is considered to be "Major". This includes 'developments of 10 or more homes or a floorspace of 1,000sqm or more, including student housing and non-residential development.
- The assessment has been carried out in accordance with the guidelines set out in the National Planning 1.4 Policy Framework (NPPF), London Borough of Camden (LBC) planning policy and LBC's requirements acting as the Lead Local Flood Authority (LLFA).
- This report should be read in conjunction with architectural reports and drawings and other relevant documents 1.5 supporting the planning application.

2 Planning Policies

2.1 The following policies relevant to flood risk mitigation are taken from The London Plan and incorporate the Further Alterations to the London Plan, which were implemented in March 2015. Policv 5.12

Flood risk management

Strategic

A. The Mayor will work with all relevant agencies including the Environment Agency to address current and future flood issues and minimise risks in a sustainable and cost effective way. Planning decisions

B. Development proposals must comply with the flood risk assessment and management requirements set out in the NPPF and the associated Technical Guidance on flood risk over the lifetime of the development and have regard to measures proposed in Thames Estuary 2100 (TE2100 – see paragraph 5.55) and Catchment Flood Management Plans.

C. Developments which are required to pass the Exceptions Test set out in the NPPF and the Technical guidance will need to address flood resilient design and emergency planning by demonstrating that:

a) the development will remain safe and operational under flood conditions

b) a strategy of either safe evacuation and/ or safely remaining in the building is followed under flood conditions

c) key services including electricity, water etc will continue to be provided under flood conditions d) buildings are designed for quick recovery following a flood.

D. Development adjacent to flood defences will be required to protect the integrity of existing flood defences and wherever possible should aim to be set back from the banks of watercourses and those defences to allow their management, maintenance and upgrading to be undertaken in a sustainable and cost effective way. Policv 5.13

Sustainable drainage

Planning decisions

A. Developments should utilise sustainable urban drainage systems (SUDS) unless there are practical reasons for not doing so, and should aim to achieve greenfield runoff rates and ensure that surface water runoff is managed as close to its source as possible in line with the following drainage hierarchy:

- 1) Store rainwater for later use
- 2) Use infiltration techniques, such as porous surfaces in non-clay areas
- 3) Attenuate rainwater in ponds or open water features for gradual release
- 4) Attenuate rainwater by storing in tanks or sealed water features for gradual release
- 5) Discharge rainwater direct to a watercourse
- 6) Discharge rainwater to a surface water sewer/drain
- 7) Discharge rainwater to the combined sewer.

Drainage should be designed and implemented in ways that deliver other policy objectives of this Plan, including water use efficiency and quality, biodiversity, amenity and recreation.

- 2.2 In addition to the London Plan policies, Section 3.4 'Flooding' within the Sustainable Design and Construction Supplementary Planning Guidance supporting The Mayor's London Plan requires the post-development peak runoff rate to be no greater than 50% of the pre-development runoff rate.
- 2.3 The policies detailed below have been extracted from LBC's Core Strategy and Development Policies: CS13 – Tackling climate change through promoting higher environmental standards Water and surface water flooding

We will make Camden a water efficient Borough and minimise the potential for surface water flooding by: ... i) requiring development to avoid harm to the water environment, water quality or drainage systems and prevents or mitigates local surface water and downstream flooding, ...

DP22 – Promoting sustainable design and construction The Council will require development to incorporate sustainable design and construction measures. Schemes must:...

b) incorporate green or brown roofs and green walls wherever suitable.... The Council will require development to be resilient to climate change by ensuring schemes include appropriate climate change adaptation measures, such as: ... a) limiting run-off:

h) reducing water consumption;...

DP23 – Water

The Council will require developments to reduce their water consumption, the pressure on the combined sewer network and the risk of flooding by:

a) incorporating water efficient features and equipment and capturing, retaining and re-using surface water and grey water on-site; b) limiting the amount and rate of run-off and waste water entering the combined storm water and sewer network through the methods outlined in part a) and other sustainable urban drainage methods to reduce the risk of flooding; c) reducing the pressure placed on the combined storm water and sewer network from foul water and surface water run-off and ensuring developments in the areas identified by the North London Strategic Flood Risk Assessment and shown on Map 2 as being at risk of surface water flooding are designed to cope with the potential flooding; d) ensuring that developments are assessed for upstream and downstream groundwater flood risks in areas where historic underground streams are known to have been present; and

d) encouraging the provision of attractive and efficient water features.

From April 2019, London's 33 Lead Local Flood Authorities (LLFAs) have introduced the London Sustainable 2.3 Drainage Proforma, which is required to accompany Sustainable Drainage strategies submitted with planning applications and will form part of planning application validation requirements. The completed Proforma is included in Appendix 4.

3 Discussion

- 3.1 The London Plan and the Camden Core Strategy address new development and development on so called 'brownfield' land. Neither discuss refurbishment projects where there is no change to the building footprint and where existing drainage connections would be re-used. From the writer's experience it would not be the norm for extensive sustainable drainage improvements to be imposed on a refurbishment project. Only those elements of a development that add floor area or increase the amount of external impermeable surfacing would normally generate a SuDS requirement.
- 3.2 The layout of Panther House presents particular challenges in terms of meeting the various sustainable drainage targets listed. Whereas the western catchment is being completely rebuilt and has scope for stormwater attenuation storage below the small covered courtyard area, the eastern catchment (the slightly larger of the two) is essentially a refurbishment project. Furthermore in the eastern catchment there is no available surface at ground level to locate any attenuation storage as there is an existing basement under the entire footprint. Attenuation storage could be positioned below the basement floor level (as proposed by previous planning application for this site) but the depth of the outgoing sewer severely limits the depth available for storage. This means that a very large proportion of the basement floor would need to be removed in order to fit in shallow attenuation storage. Also, by routing roofwater down to basement level, the flood risk to the building would arguably be increased as it relies on fully functioning flow controls and non-return valves, without the comfort of an overland flow route as a failsafe mechanism. With a practicable upper limit to the size of

attenuation it is inevitable that at some point the basement would flood, which is undoubtedly contrary to the aims of the London Plan, particularly as in this case there is electrical infrastructure located at basement level.

- The solution we consider appropriate is as follows:
 - leave the eastern catchment to drain as existing
 - over-attenuate the western catchment to partially compensate for the limited opportunities on the • eastern catchment
- The following assessment and drainage proposals provide more detail on this overall strategy and demonstrate 3.4 how the drainage proposals are in compliance with the various planning policies listed.

Flood Risk 4

3.3

Vulnerability Classification - With reference to Table 2 of the Technical Guidance to the NPPF, the vulnerability 4.1 classification of the existing site is "Less Vulnerable" due to the office uses. There is no proposed change of use therefore the vulnerability classification of the proposed development will remain as "Less Vulnerable", which is acceptable within Flood Zone 1.

4.2 Sources of Flooding:

- 4.2.1 Fluvial flooding - An extract from the on-line Environment Agency Flood Maps is shown in Figure 1 below. This confirms that the site is in Flood Zone 1 with the nearest fluvial flood risk zone located over a kilometer away to the south associated with the River Thames. Fluvial flood risk is therefore considered to be low.
- 4.2.2 Pluvial flooding - Localised flooding problems arising from drainage and/or sewer systems with limited capacity will inevitably occur. Sewer systems are generally designed (in accordance with current Government guidance) to cater for 1 in 30 year storms. Some historic London sewers have a higher capacity due to their method of construction and/or the design methodology applied at the time. Storms in excess of the sewer capacity would result in localised flooding and the generation of overland flow driven by the local topography. However, no incidents of surface water or sewer flooding in the vicinity of the Site have been recorded in the Camden SFRA or the Camden Surface Water Management Plan, which confirms that the Critical Drainage Area Group3_003 designation is for administrative purposes rather than to address particular drainage issues at the site itself. The EA's Lidar based Risk of Flooding from Surface Water map (See Figure 2) suggests that there are some areas of the site which would be at low to medium risk of flooding during a pluvial flood event. The pluvial flood maps are based on Lidar topographical data and are therefore a relatively crude but useful assessment of where surface water may accumulate during extreme storm events. The degree of flood risk is based on the parameters in Figure 4 extracted from the Environment Agency's explanatory document for the flood maps. In order to ensure the residual risk of such flooding does not increase post-development, the new drainage system will be designed to store rainfall generated by events up to a 100year return period including allowance for climate change. Thus the proposed attenuation storage will absorb the medium and high risk pluvial flood volume. With these provisions in place, pluvial flood risk is considered to be low.

Figure 2 – Surface Water (Pluvial) Flood Risk from gov.uk website (EA data)

Figure 1 – EA Flood Map Extract

High	Flooding occurring as a result of rainfall with a greater than 1 in 30 chance in any given year (annual probability of flooding 3.3%)
Medium	Flooding occurring as a result of rainfall of between 1 in 100 (1%) and 1 in 30 (3.3%) chance in any given year
Low	Flooding occurring as a result of rainfall of between 1 in 1000 (0.1%) and 1 in 100 (1%) chance in any given year
Very Low	Flooding occurring as a result of rainfall with less than 1 in 1000 (0.1%) chance in any given year

Figure 3 – EA Surface Water Flood Map – Zone Definitions

- 4.2.3 Sewer Flooding The Camden SFRA contains a summary of the Thames Water DG5 records of internal and external sewer flooding. No flooding has been recorded at the application site. New drainage systems will be designed to prevent backflows from sewers and critical drainage manholes will be fitted with sealed hatchboxes where required to prevent surcharging within the building footprint. With these facilities in place and site levels designed to direct overland flows away from critical thresholds, flood risk from this source is considered to be low.
- 4.2.4 Groundwater flooding The Camden SFRA includes data obtained from the British Geological Society showing areas of 'Increased Susceptibility to Elevated Groundwater'. Although there are patches of land north of the application site where groundwater vulnerability is considered to be a factor, the site itself is not affected. Furthermore the site does not have basements that are set wholly below adjacent land without an escape route for groundwater seepages. Walls that are retaining and floors built off natural ground will be fully waterproofed and formally drained internally so as to prevent any damage to the building fabric. Flood risk from this source is therefore considered to be low.
- Flooding from Reservoirs, Canals and artificial water bodies Neither the EA website or the Camden SFRA show 4.2.5 any risk of flooding from this source therefore the flood risk is considered to be low.

5 Drainage Strategy

- 5.1 In developing a strategy for the drainage changes necessary to accommodate the proposed building works the following overarching principles have been considered:
 - New foul and storm systems will be designed as separate drainage networks, which will combine at the final manhole(s) prior to connecting to the public sewer network.
 - Existing systems will be retained where they are in a suitable condition and will continue to discharge at the existing connection points. Some relining and localised replacement may be required subject to detailed CCTV survey work.
 - As most of the site is occupied by buildings, infiltration systems are not feasible, therefore attenuation storage will be used to limit off-site flows and thus reduce downstream flood risk.
 - In terms of the attenuation design, the western and eastern catchments will be treated individually as explained in Section 3.

Storm Drainage

- 5.2 A proposed layout of the storm drainage system is included on the drawing in Appendix 1.
- 5.3 The criteria for determining the stormwater strategy comes primarily from the local planning strategies listed previously and will also need to comply with any restrictions applied by Thames Water where the discharge is to their sewer network. Thames Water's criteria should be coincident with the Camden policies but this will be verified and if necessary formalised through a Section 106 drainage connection application in due course. A Section 106 application should not be required for the eastern catchment as this will utilise the same building footprint and drainage connection as existing.

- 5.4 The following hierarchy of stormwater disposal methods has been considered in line with current best practice for Sustainable Drainage Systems (SUDS): 1st - Recycle
 - 2nd Infiltration/Soakaways;
 - 3rd Discharge to a Watercourse;
 - 4th Discharge to a Sewer.

Roofwater recycling has been discounted on the basis that the roof area is small compared to the number of potential users and the disproportionate investment required to distribute a small water resource over a large number of occupants. Irrigation demand from any soft landscaping is minimal, which further weighs against the cost and ongoing management implications of a roofwater recycling system.

Infiltration systems are not viable for the site given the extent of building foundations and basement areas as well as the proximity to roads and adjacent buildings.

There is no watercourses in reasonable proximity to the site for a direct connection therefore the most sustainable drainage option that can be achieved in the hierarchy is a discharge to the local sewer network at an attenuated rate. Due to the intensity of development already on the site it is considered that achieving a 50% run-off reduction in line with the minimum London Plan and Camden SFRA requirements whilst mitigating climate change impacts would be a practicable response to the site constraints. To establish the required attenuation volume for the western catchment a Microdrainage calculation has been carried out based on a split in the total run-off to the existing sewer branches in the north east and south west corners of the site. The resulting calculations are shown in Appendices 2-3.

- 5.5 The discharge rates used in the attenuation design are based on not exceeding the existing 1yr return period flow, which keeps the orifice size up to avoid blockages in compliance with the London Plan Supplementary Planning Guidance (SPG) Para. 3.4.9. This rate has been used because the target of greenfield rates would require controls so small as to encourage drainage blockages and possibly *increase* the flood risk. Thus although there will be no attenuation of peak flows in 1yr storm events to provide protection against climate change, this is not the critical event likely to generate downstream flooding. The more critical 30 year and 100 year flows are reduced by about 75% and 81% respectively in the western site catchment compared to the total predevelopment flows, thus exceeding by a good margin the minimum 50% reduction required by the London Plan SPG Para. 3.4.8. This equates to a reduction for the whole site of 34% and 37% respectively for the 30 and 100 year events - See Appendix 2.
- 5.6 As the attenuation connects to a combined sewer system the risk of backflows from the sewers weighs against the use of cellular crates as the clean up after a flood event would be problematic (despite manufacturers' claims to the contrary). The tank construction will therefore be a combination of in situ and precast concrete with access points to facilitate inspection, jetting and de-silting.
- 5.7 Consideration has been given to the implications of system failure. This could be a rainfall event in excess of the design, on site drainage blockages or failure/surcharge of the local public drainage system. The site levels in the western catchment will be arranged such that surface water always has a route out of the site towards the existing highway infrastructure. This will ensure the depth of water flowing during exceedance events is controlled such that is does not reach door thresholds or overflow into basement areas.
- 5.8 The eastern catchment has restricted capacity for overland flow routes during exceedance events as the buildings will fully occupy the site. The existing central courtyard area will have a canopy fitted over it so whereas this area can currently flow directly out onto the surface of Mount Pleasant, in future this will be achieved by a system of canopy drains at high level directing the run-off into the existing roofwater outlets with overflow weirs at the site perimeter to allow exceedance flows to overspill onto the adjacent streets, thus reflecting the pre-development conditions.
- Roof drainage outlet positions on the existing buildings and their outlet branches to the local drainage systems in the 5.9 eastern catchment will be re-used where practical. Some re-routing at high level in the basement will be needed to suit the revised occupancy and use categories in the basement area. Basement drainage systems below the basement floor carrying any surface water will be fitted with hatchbox chambers to limit the potential for drainage surcharging at basement level.

5.10 Construction of surface finishes and wall bases will utilise water resilient materials where they could potentially be affected by shallow flooding or overland flow routes. Electrical distribution and other critical services will be routed at high level in the basements to limit potential impacts of drainage exceedance.

Foul Drainage

- 5.11 Flows from sanitary fittings at or above ground level will be picked up in a network of sanitary floats discharging to the main soil stacks running adjacent to structural columns and/or positioned in dedicated service risers. The foul drainage scheme at ground floor and basement level is shown in Appendix 1. Essentially the site is split into two catchments, one discharging eastwards via the existing sewer branch to the Grays Inn Road TW sewer, the other discharging via the existing basement drainage connection into the Mount Pleasant TW sewer network.
- 5.12 Existing sewer connections will be utilised to avoid disturbance of existing services in the surrounding streets and to avoid the traffic disruption caused by new branches.

Groundwater/Waterproofing - Drainage Issues

- 5.13 The basement area will be refurbished to minimise dampness & groundwater ingress. Where a Type C internal environment to BS8102 is required this will involve cavity drainage and sumps with pumps to remove interstitial water. which will be drained to the foul system due to the potential risk of pollution.
- 5.14 Cavity drainage water would be classified as groundwater by Thames Water, which is normally not permitted to be discharged into the sewer network. Discussions will be needed with TW to establish their position on this issue given the very low flow anticipated. From experience TW will charge a license fee for agreed groundwater discharges.

Below Ground Drainage Specification Generally

- 5.15 New storm and foul drainage will be provided in accordance with BSEN 752 and Building Regulations. Pipe materials for external gravity systems above the groundwater level may be plastic or clay. Internal to the buildings materials will be plastic or ductile iron. External manholes and inspection chambers will typically be plastic non-man-entry type compliant with latest Sewers for Adoption standards and positioned to provide full maintenance access for future inspection/rodding/jetting, augmented with suitably sized access points at gullies, downpipes etc. all as required by current Building Regulations. Larger manholes for silt traps and the like will be constructed using pre-cast concrete sections and large access covers to enable silt removal as part of the ongoing maintenance regime. Any drainage at risk of being affected by elevated groundwater levels will be constructed in a fully welded HDPE system including preformed HDPE inspection chambers welded to the drain runs and capable of resisting external hydrostatic pressure.
- 5.16 During construction and on completion of the drainage works the entire storm and foul drainage pipe network will be tested, cleaned and inspected with CCTV equipment. Any faults discovered will be corrected and re-tested/resurveyed until the entire system is suitable for commissioning.

Climate Change 6

5.1 Climate change is a factor to be assessed for both predicted flood levels and for allowances to be added to rainfall events in order to mitigate the potential impacts of increased site run-off.

The design life of the project will be approximately 50 years in line with current structural Eurocodes. The wording on life spans in the NPPF is as follows (our emphasis) - Residential development should be considered for a minimum of 100 years, unless there is specific justification for considering a shorter period. For example; the time in which flood risk or coastal change is anticipated to impact on it, where a development is controlled by a time-limited planning condition.

The lifetime of a non-residential development depends on the characteristics of that development. Planners should use their experience within their locality to assess how long they anticipate the development being present for. Developers would be expected to justify why they have adopted a given lifetime for the development, for example, when they are preparing a sitespecific flood risk assessment.

6.2 As far as the influence of climate change on site run-off is concerned, the EA have reasonably recently revised their climate change predictions upwards and therefore the proposed attenuation storage will be designed to contain an additional 40% climate change induced rainfall. This complies with the EA requirement and will ensure that the effect of potential higher rainfall rates is reasonably mitigated to below pre-development conditions for the anticipated lifespan of the building.

7 Flood Risk Management Measures

- 7.1 To avoid any increase in flood risk due to the development's own drainage network the proposed site drainage systems will be designed so that they are easy to inspect and simple to clean with plenty of access points and provision for the use of conventional jetting equipment. The developer will employ experienced facility managers to operate, inspect and maintain the drainage system as part of the overall building maintenance schedule.
- 7.2 Potential issues that will need to be addressed in order to sustain the low level of flood risk on the site will be: • Regular checking of the attenuation tank(s) and the associated outlet controls to ensure the system is functioning properly, together with clearing of any contributing drainage gullies and silt traps. · Periodical inspection and jetting of drain runs.
 - Clearing of drainage channels and gutters to prevent carry-over of debris to the attenuation tank (where necessary leaf guards will be fitted to gutters and downpipe outlets to prevent the ingress of leaves and moss from roofs as the development becomes more mature).

Where regular checks are required these would be carried out at no more than 6 monthly intervals for the drainage system initially and the need for checking would be reviewed on an ongoing basis depending on how the various elements are performing.

8 Off Site Impacts

Potential off site impacts are addressed through the use of a sustainable drainage strategy as described herein. With 8.1 the proposed sustainable drainage measures in place together with the drainage management procedures described, it is considered that there will be negligible increase in flood risk to off-site receptors, including for the effects of climate change.

9 Residual Risks

- 9.1 The residual flood risks to the application site following development taking account of climate change effects are considered to be as follows:
 - Less than 1% annual probability of fluvial flooding.
 - Less than 1% annual probability of pluvial flooding.
 - 1% annual risk of exceedance flows due to surcharged drain systems within the site but negligible risk of flood damage from this source bearing in mind the site levels, which are designed to marshal exceedance flows safely towards adjacent lower land.
 - Risk of downstream flooding due to run-off from the development significantly reduced through sustainable drainage measures, with 40% capacity allowance for climate change. Overall residual flood risk post-development is therefore considered to be low.

Planning Issue 05 August 2019 17241

Appendix 2 – Existing v Proposed Run-off

To determine the amount of attenuation required we have assessed the existing run-off from the site using a Wallingford calculation as follows:

Wallingford Method: Calculation of Pre development run-off rates

The Rational Formula: Qp=CiA (formula 7.18 Wallingford Procedure Vol. 1)

Where Qp = discharge rateC = Coefficient where C = Cv x Cr (Cv=volumetric run-off coefficient & Cr=routing coefficient) (formula 7.19) i = mean rainfall intensity mm/hr A = Area (ha).

For Qp in litres per second the formula becomes Qp=CiA÷0.36

Determination of C:

From Wallingford Procedure Vol.1 Cv = 0.9 for full urbanised catchment and Cr = 1.3. \therefore C= 1.17

The storm duration will be taken as 30 minutes as standard practice

Determination of i from FEH for OS Grid Reference E531014 N182085 1 year 30 min. rainfall depth = 7.61mm mean rainfall for design = 15.22mm/hr 30 year 30 min. rainfall depth = 30.17mm mean rainfall for design = 60.34mm/hr 100 year 30 min. rainfall depth = 40.4mm mean rainfall for design = 80.8mm/hr

Using these values the following existing flow rates have been generated for comparison with the Microdrainage calculations for proposed run-off shown in Appendix 3:

EXISTING FLOW RATES							PROPOS	SED RATE	ES I/s
Catchment	Area m2	% imp. area	lmp. area m2	1 yr 30min. Rate I/s	30 yr 30min. Rate l/s	100 yr 30min. Rate I/s	1 yr	30 yr	100 yr
West	966	100	966	4.78	18.94	25.37	4.78	4.78	4.78
East	1154	100	1154	5.71	22.63	30.30	5.71	22.63	30.30
Whole Site	2120	100	2120	10.49	41.57	55.67	10.49	27.41	35.08

By comparing the proposed and existing flows it can be seen that the post development peak flow reduction is as follows:

Catchment	1yr Reduction	30yr reduction	100yr reduction	
West	0%	74.8%	81.1%	
East	0%	0%	0%	
Whole Site	0%	34%	37%	

8 of 16

Appendix 3 – Proposed Run-off Calculation- West Catchment 1yr

-	e Design	i Studio						Page 1
31 Dyer Stree	Pant	her Ho	use					
Cirencester			West	Catch	ment			4
Glos GL7	2PP							Misso
Date 21/05/20	19 17:29)	Desi	aned b	V E. P	artrio	dae	
File 1461-TAN	Chec	ked by	M. Jo	nes	5	Draina		
Causeway	Sour	ce Con	trol 2	017.1	2			
ouuseway			5041	00 001	10101 2	017.1	• 2	
	Summarv	of Result	s for	lvear	Return	Peri	od (+40%)	
-	o anniar y	or nesure	5 101 .	ycur	necuin	ICII	ou (1400)	
		Storm	Max	Max	Max	Max	Status	
		Event	Level	Depth C	ontrol V	Volume		
			(m)	(m)	(l/s)	(m³)		
	15	min Summor	17 964	0 114	16	13	OK	
	30	min Summer	17.964	0.114	4.6	4.3	0 K	
	60	min Summer	17.950	0.100	4.6	3.8	ОК	
	120	min Summer	17.909	0.059	4.6	2.2	ОК	
	180	min Summer	17.877	0.027	4.6	1.0	O K	
	240	min Summer	17.857	0.007	4.6	0.3	O K	
	360	min Summer	17.850	0.000	3.9	0.0	O K	
	480	min Summer	17 850	0.000	3.2	0.0	OK	
	720	min Summer	17.850	0.000	2.3	0.0	O K	
	960	min Summer	17.850	0.000	1.9	0.0	ОК	
	1440	min Summer	17.850	0.000	1.4	0.0	O K	
	2160	min Summer	17.850	0.000	1.0	0.0	O K	
	2880	min Summer	17.850	0.000	0.8	0.0	ОК	
	4320	min Summer	17.850	0.000	0.6	0.0	OK	
	7200	min Summer	17.850	0.000	0.4	0.0	O K	
	8640	min Summer	17.850	0.000	0.4	0.0	ОК	
	10080	min Summer	17.850	0.000	0.3	0.0	ОК	
	15	min Winter	17.984	0.134	4.6	5.0	O K	
		min Winter			// /~		0 K	
	30		17.900	0.138	4.0	5.2	0 A	
	30	Storm	Rain	Flooded	4.0 d Discha	arge Ti	me-Peak	
	30	Storm Event	Rain (mm/hr)	Flooded	4.0 d Discha a Volum	rge Ti me	me-Peak (mins)	
	30 5 1	Storm Event	Rain (mm/hr)	Flooded Volume (m ³)	d Discha Volum (m ³)	nge Ti me	me-Peak (mins)	
	30 15	Storm Event min Summer	Rain (mm/hr)	Flooded Volume (m ³)	4.0 d Discha y Volum (m ³)	nrge Ti me 8.4	me-Peak (mins)	
	30 15 30	Storm Event min Summer min Summer	Rain (mm/hr) 46.523 29.955	Flooded Volume (m ³) 0.0	4.0 d Discha Volum (m ³)	8.4 0.8	me-Peak (mins) 17 26	
	30 15 30 60	Storm Event min Summer min Summer min Summer	Rain (mm/hr) 46.523 29.955 18.628	Flooded Volume (m ³) 0.(0.(0.0)	4.0 d Discha volum (m ³)	s.2 me Ti 8.4 0.8 3.4	me-Peak (mins) 17 26 42	
	15 30 60 120	Storm Event min Summer min Summer min Summer nin Summer	Rain (mm/hr) 46.523 29.955 18.628 11.334	Flooded Volume (m ³) 0.(0.(0.(0.(4.0 d Discha Volum (m ³) 0 1 0 1 0 1	8.4 0.8 3.4 6.3	me-Peak (mins) 17 26 42 74	
	15 30 60 120 180 240	Storm Event min Summer min Summer min Summer min Summer min Summer	Rain (mm/hr) 46.523 29.955 18.628 11.334 8.429	Flooded Volume (m ³) 0.(0.(0.(0.(0.(4.0 d Discha volum (m ³) 0 1 0 1 0 1 0 1	8.4 0.8 3.4 6.3 8.1 9.6	me-Peak (mins) 17 26 42 74 102 120	
	15 30 60 120 180 240 360	Storm Event min Summer min Summer min Summer min Summer min Summer min Summer	Rain (mm/hr) 46.523 29.955 18.628 11.334 8.429 6.823 5.037	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	4.0 d Discha Volum (m ³) 0 1 0 1 0 1 0 1 0 1 0 1 0 2	8.4 0.8 3.4 6.3 8.1 9.6 1.8	me-Peak (mins) 17 26 42 74 102 130 0	
	15 30 60 120 180 240 360 480	Storm Event min Summer min Summer min Summer min Summer min Summer min Summer min Summer	Rain (mm/hr) 46.523 29.955 18.628 11.334 8.429 6.823 5.037 4.049	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4.6 4.6 Volum (m ³) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 2	8.4 0.8 3.4 6.3 8.1 9.6 1.8 3.3	me-Peak (mins) 17 26 42 74 102 130 0 0	
	15 30 60 120 180 240 360 480 600	Storm Event min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer	Rain (mm/hr) 46.523 29.955 18.628 11.334 8.429 6.823 5.037 4.049 3.417	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4.6 d Discha Volum (m ³) 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 2	8.4 0.8 3.4 6.3 8.1 9.6 1.8 3.3 4.6	me-Peak (mins) 17 26 42 74 102 130 0 0 0	
	15 30 60 120 180 240 360 480 600 720	Storm Event min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer	Rain (mm/hr) 46.523 29.955 18.628 11.334 8.429 6.823 5.037 4.049 3.417 2.975	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4.6 d Discha Volum (m ³) 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 2 0 2	8.4 0.8 3.4 6.3 8.1 9.6 1.8 3.3 4.6 5.7	me-Peak (mins) 17 26 42 74 102 130 0 0 0 0 0	
	15 30 60 120 180 240 360 480 600 720 960	Storm Event min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer	Rain (mm/hr) 46.523 29.955 18.628 11.334 8.429 6.823 5.037 4.049 3.417 2.975 2.391	Flooded Volume (m ³) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.(4.6 4.0 4.0 Volum (m ³) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2	8.4 0.8 3.4 6.3 8.1 9.6 1.8 3.3 4.6 5.7 7.5	me-Peak (mins) 17 26 42 74 102 130 0 0 0 0 0 0	
	15 30 60 120 180 240 360 480 600 720 960 1440	Storm Event min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer	Rain (mm/hr) 46.523 29.955 18.628 11.334 8.429 6.823 5.037 4.049 3.417 2.975 2.391 1.757	Flooded Volume (m ³) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.(4.0 4.0 Volum (m ³) 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	8.4 0.8 3.4 6.3 8.1 9.6 1.8 3.3 4.6 5.7 7.5 0.4 2.5	me-Peak (mins) 17 26 42 74 102 130 0 0 0 0 0 0 0 0 0	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880	Storm Event Event min Summer min Summer	Rain (mm/hr) 46.523 29.955 18.628 11.334 8.429 6.823 5.037 4.049 3.417 2.975 2.391 1.757 1.292 1.039	Flooded Volume (m ³) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.(4.0 4.0 Volum (m ³) 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 3 0 3 0 3 0 3 0 3	8.4 0.8 3.4 6.3 8.1 9.6 1.8 3.3 4.6 5.7 7.5 0.4 3.5 5.9	me-Peak (mins) 17 26 42 74 102 130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	Storm Event Event min Summer min Summer	Rain (mm/hr) 46.523 29.955 18.628 11.334 8.429 6.823 5.037 4.049 3.417 2.975 2.391 1.757 1.292 1.039 0.763	Flooded Volume (m ³) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.(4.0 d Discha Volum (m ³) 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 3 0 3 0 3 0 3 0 3 0 3	8.4 0.8 3.4 6.3 8.1 9.6 1.8 3.3 4.6 5.7 7.5 0.4 3.5 5.9 9.5	me-Peak (mins) 17 26 42 74 102 130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	Storm Event Event min Summer min Summer	Rain (mm/hr) 46.523 29.955 18.628 11.334 8.429 6.823 5.037 4.049 3.417 2.975 2.391 1.757 1.292 1.039 0.763 0.613	Flooded Volume (m ³) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.(4.0 d Discha Volum (m ³) 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 3 0 3 0 3 0 3 0 4	8.4 0.8 3.4 6.3 8.1 9.6 1.8 3.3 4.6 5.7 7.5 0.4 3.5 5.9 9.5 2.4	me-Peak (mins) 17 26 42 74 102 130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	Storm Event Event min Summer min Summer	Rain (mm/hr) 46.523 29.955 18.628 11.334 8.429 6.823 5.037 4.049 3.417 2.975 2.391 1.757 1.292 1.039 0.763 0.613 0.517	Flooded Volume (m ³) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.(4.0 d Discha Volum (m ³) 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 3 0 3 0 3 0 3 0 4 0 4 0 4	8.4 0.8 3.4 6.3 8.1 9.6 1.8 3.3 4.6 5.7 7.5 0.4 3.5 5.9 9.5 5.9 9.5 2.4 4.7	me-Peak (mins) 17 26 42 74 102 130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	Storm Event Event min Summer min Summer	Rain (mm/hr) 46.523 29.955 18.628 11.334 8.429 6.823 5.037 4.049 3.417 2.975 2.391 1.757 1.292 1.039 0.763 0.613 0.517 0.450	Flooded Volume (m ³) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.(4.0 d Discha Volur (m ³) 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	8.4 0.8 3.4 6.3 8.1 9.6 1.8 3.3 4.6 5.7 7.5 0.4 3.5 5.9 9.5 2.4 4.7 6.7 6.7	me-Peak (mins) 17 26 42 74 102 130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	Storm Event Event min Summer min Summer	Rain (mm/hr) 46.523 29.955 18.628 11.334 8.429 6.823 5.037 4.049 3.417 2.975 2.391 1.757 1.292 1.039 0.763 0.613 0.517 0.450 0.401	Flooded Volume (m ³) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.(4.0 d Discha Volur (m ³) 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	8.4 0.8 3.4 0.8 3.4 6.3 8.1 9.6 1.8 3.4 6.3 8.1 9.6 1.8 3.4 6.3 8.1 9.6 1.8 3.4 6.5 7.5 1.8 3.5 5.9 9.5 2.4 4.7 6.7 8.2 9.5 2.4 4.7 6.7 8.2 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	me-Peak (mins) 17 26 42 74 102 130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15 30	Storm Event min Summer min Summer	Rain (mm/hr) 46.523 29.955 18.628 11.334 8.429 6.823 5.037 4.049 3.417 2.975 2.391 1.757 1.292 1.039 0.763 0.613 0.517 0.450 0.401 46.523 29.955	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4.6 4.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	8.4 0.8 3.4 0.8 3.4 6.3 8.1 9.6 1.8 3.3 4.6 5.7 7.5 0.4 3.5 5.9 9.5 2.2 4.7 6.7 1.8 5.9 9.5 2.2 4.7 6.7 1.8 5.9 9.5 2.2 4.6 5.7 7.5 1.8 5.9 9.5 2.2 4.6 5.7 7.5 1.8 5.9 9.5 2.2 4.6 5.7 7.5 1.8 5.9 9.5 2.2 4.6 5.7 7.5 1.8 5.9 9.5 2.2 4.6 5.7 7.5 1.8 5.9 9.5 2.2 4.6 5.7 7.5 1.8 5.9 9.5 2.2 4.6 5.7 7.5 1.8 5.9 9.5 2.2 4.6 5.7 7.5 1.8 5.9 9.5 2.2 4.6 5.7 7.5 1.8 5.9 9.5 2.2 4.6 5.7 7.5 9.5 2.2 4.6 5.7 7.5 9.5 2.2 4.6 5.7 7.5 9.5 2.2 4.6 5.7 7.5 9.5 2.2 4.6 5.7 7.5 9.5 2.2 4.7 6.7 9.3 2.2 4.6 5.7 7.5 9.5 9.5 2.2 4.7 7.5 9.3 2.2 1.8 7.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9	me-Peak (mins) 17 26 42 74 102 130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

Infrastructure Design Studio						Page 2
31 Dyer Street	Pant	ther Ho	use			
Cirencester	West	t Catch	ment			4
Glos GL7 2PP						- Com
Date $21/05/2019$ 17.29	Dog	anod b		ontri	dao	MICLO
Date 21/05/2019 17:29	Des.		у в. Р	artri	age	Drainarre
FILE 1461-TANK WEST.SRCX	Cheo	скеа ру	M. JO	nes		Brainage
Causeway	Soui	rce Con	trol 2	017.1	.2	
Summary of Results	for	1 year	Return	Peri	.od (+40%)	
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth C	ontrol	Volume		
	(m)	(m)	(1/s)	(m³)		
60 min Winter	17.957	0.107	4.6	4.0	ОК	
120 min Winter	17.892	0.042	4.6	1.6	O K	
180 min Winter	17.852	0.002	4.5	0.1	O K	
240 min Winter	17.850	0.000	3.8	0.0	O K	
360 min Winter	17.850	0.000	2.8	0.0	O K	
480 min Winter	17.850	0.000	2.3	0.0	O K	
600 min Winter	17.850	0.000	1.9	0.0	O K	
720 min Winter	17.850	0.000	1.7	0.0	O K	
960 min Winter	17.850	0.000	1.4	0.0	O K	
1440 min Winter	17.850	0.000	1.0	0.0	OK	
2160 min Winter	17.850	0.000	0.7	0.0	OK	
4320 min Winter	17 050	0.000	0.0	0.0	OK	
5760 min Winter	17.850	0.000	0.4	0.0	O K	
7200 min Winter	17.850	0.000	0.3	0.0	O K	
8640 min Winter	17.850	0.000	0.3	0.0	O K	
10080 min Winter	17.850	0.000	0.2	0.0	ОК	
Storm	Rain	Flooded	l Discha Volu	irge Ti	ime-Peak (mins)	
20010	((m ³)	(m ³))	(
		()				
60 min Winter	18.628	0.0) 1	5.1	44	
120 min Winter	11.334	0.0) 1	.8.3	76	
180 min Winter	8.429	0.0) 2	20.4	100	
240 min Winter 260 min Winter	6.823	0.0) 2	22.0	0	
490 min Winter	3.037	0.0) 2) 2	4.4 6 1	0	
600 min Winter	3 417	0.0) 2	27.6	0	
720 min Winter	2.975	0.0) 2	28.8	õ	
960 min Winter	2.391	0.0) 3	80.8	0	
1440 min Winter	1.757	0.0) 3	34.0	0	
2160 min Winter	1.292	0.0) 3	7.5	0	
2880 min Winter	1.039	0.0) 4	0.2	0	
4320 min Winter	0.763	0.0) 4	4.3	0	
5760 min Winter	0.613	0.0) 4	17.4	0	
7200 min Winter	0.517	0.0) 5	50.1	0	
8640 min Winter	0.450	0.0) 5 \ -	2.3	0	
10080 min Winter	0.401	0.0	, 5	4.3	U	
©1983	2 - 2017	XP So	lution	s		

tructure Design	n Studio						Page 2
r Street		Pant	cher Ho	use			
ester		West	. Catch	ment			4
GL7 2PP			outon				Micco
1/05/2019 17:29	9	Desi	igned b	y E. P	artri	dqe	
461-TANK WEST	SRCX	Chec	cked by	_ М. Jo	nes	2	Urainage
		Sour	con Con	+rol 2	017 1	2	
ay		Sour	ce con	LIOI Z	.01/.1	• 2	
Summary	of Result	s for	1 year	Returr	n Peri	od (+40%)	
	Storm	Max	Max	Max	Max	Status	
	Event	Tevel (m)	Jepth C	ONE TOL	(m3)		
		(111)	()	(1/5)	()		
60	min Winter	17.957	0.107	4.6	4.0	ОК	
120	min Winter	17.892	0.042	4.6	1.6	ОК	
180	min Winter	17.852	0.002	4.5	0.1	O K	
240	min Winter	17.850	0.000	3.8	0.0	ОК	
360	min Winter	17.850	0.000	2.8	0.0	ОК	
480	min Winter	17.850	0.000	2.3	0.0	ОК	
600	min Winter	17.850	0.000	1.9	0.0	O K	
720	min Winter	17.850	0.000	1.7	0.0	O K	
960	min Winter	17 850	0 000	1 4	0.0	O K	
1440	min Winter	17.850	0.000	1.0	0.0	O K	
2160	min Winter	17.850	0.000	0.7	0.0	O K	
2880	min Winter	17.850	0.000	0.6	0.0	O K	
4320	min Winter	17.850	0.000	0.4	0.0	O K	
5760	min Winter	17.850	0.000	0.3	0.0	ОК	
7200	min Winter	17.850	0.000	0.3	0.0	O K	
8640	min Winter	17.850	0.000	0.3	0.0	O K	
10080	min Winter	17.850	0.000	0.2	0.0	O K	
	Storm Event	Rain (mm/hr)	Flooded Volume	l Discha Volu	arge Ti me	.me-Peak (mins)	
			(m³)	(m ³)		
60	min Winter	18.628	0.0) 1	15.1	44	
120	min Winter	11.334	0.0) 1	18.3	76	
180	min Winter	8.429	0.0) 2	20.4	100	
240	min Winter	6.823	0.0) 1	22.0	0	
360	min Winter	5.037	0.0		24.4	0	
480	min Winter	2 417	0.0		26.1	0	
720	min Winter	2 975	0.0		28.8	0	
960	min Winter	2.373	0.0)	30 8	0	
1440	min Winter	1.757	0.0) -	34.0	0	
2160	min Winter	1,292	0.0)	37.5	ő	
2880	min Winter	1.039	0.0)	40.2	0	
4320	min Winter	0.763	0.0)	44.3	0	
5760	min Winter	0.613	0.0) 4	47.4	0	
7200	min Winter	0.517	0.0) 5	50.1	0	
8640	min Winter	0.450	0.0) 5	52.3	0	
10080	min Winter	0.401	0.0) !	54.3	0	
		0 0015	VD C	1			
	©198	2-2017	XP So.	Lution	s		

Appendix 3 – Proposed Run-off Calculation- West Catchment 1yr

Infrastructure Design Studio		Page 3
31 Dyer Street	Panther House	
Cirencester	West Catchment	Ly
Glos GL7 2PP		Micco
Date 21/05/2019 17:29	Designed by E. Partridge	
File 1461-TANK WEST.SRCX	Checked by M. Jones	Diamada
Causeway	Source Control 2017.1.2	
<u>Ra</u>	infall Details	
Rainfall Model	FSR Winter Storms Ye	es
Return Period (years)	1 Cv (Summer) 0.75	50
Region Engl. M5-60 (mm)	and and Wales Cv (Winter) 0.84 20 700 Shortest Storm (mins)	10
Ratio R	0.443 Longest Storm (mins) 1008	30
Summer Storms	Yes Climate Change % +4	10
<u></u>	ne Area Diagram	
Tot.	al Area (ha) 0.096	
Time (mins) From: To:	Area Time (mins) Area (ha) From: To: (ha)	
0	1 0 0 4 8 0 0 4 8	
	4 0.040 4 0 0.040	
©1982-	-2017 XP Solutions	
L		

10 of 16

Appendix 3 – Proposed Run-off Calculation- West Catchment 30yr

Infrastructure Desig	n Studio						Page 1
31 Dyer Street		Pant	cher Ho	use			
Cirencester		West	Catch	ment			4
Glos GL7 2PP							
Date 21/05/2019 17:2	4	Dest	igned b	VE.P	artrio	dae	- MICLO
File 1461 TANK WEST	SPCV	Cho	skod by	у Ц. Г М. То	noc	age	Drainacio
Concernance website	SIGA	Chee	Likeu by	H. 00	017 1	0	J
Causeway		Soui	rce Con	trol 2	01/.1	. 2	
	6 D 1.				_ ·	1 / 100	
Summary	of Results	s for 3	0 year	Retur	n Peri	.od (+40%)	
						a	
	Storm	Max	Max Denth C	Max	Max	Status	
	Evenc	(m)	(m)	(1/e)			
		(111)	()	(1/3)	()		
15	5 min Summer	18.349	0.499	4.6	18.7	O K	
30) min Summer	18.441	0.591	4.6	22.2	O K	
60) min Summer	18.445	0.595	4.6	22.3	O K	
120) min Summer	18.453	0.603	4.6	22.6	OK	
240) min Summer	18.415	0.505	4.6	18.8	O K	
360) min Summer	18.214	0.364	4.6	13.7	O K	
480) min Summer	18.094	0.244	4.6	9.2	O K	
600) min Summer	18.000	0.150	4.6	5.6	O K	
720) min Summer	17.932	0.082	4.6	3.1	O K	
960) min Summer	17.859	0.009	4.6	0.3	O K	
1440) min Summer	17.850	0.000	3.4	0.0	OK	
2100) min Summer	17.850	0.000	2.4	0.0	O K O K	
4320) min Summer	17.850	0.000	1.3	0.0	O K	
5760) min Summer	17.850	0.000	1.1	0.0	O K	
7200) min Summer	17.850	0.000	0.9	0.0	O K	
8640) min Summer	17.850	0.000	0.8	0.0	O K	
10080) min Summer	17.850	0.000	0.7	0.0	O K	
15	min Winter	18.427	0.577	4.6	21.6	OK	
50) min winter	18.009	0.689	4.0	23.8	0 K	
	Storm	Rain	Flooded	l Discha	arge Ti	me-Peak	
	Event	(mm/hr)	Volume	Volu	me	(mins)	
			(m³)	(m ³)		
15	min Summer	132.279	0.0) 2	23.7	20	
30 60	min Summer	51 378	0.0		30.3	33 58	
120	min Summer	32.718	0.0) 4	17.0	92	
180	min Summer	24.557	0.0) 5	53.1	126	
240	min Summer	19.794	0.0) 5	56.9	158	
360	min Summer	14.333	0.0) 6	52.1	222	
480	min Summer	11.282	0.0) 6	54.9	282	
600 720	min Summer	9.334	0.0		57.2	338	
960	min Summer	6.212	0.0		71.6	496	
1440	min Summer	4.354	0.0	5	75.2	0	
2160	min Summer	3.061	0.0) 7	79.4	0	
2880	min Summer	2.396	0.0) 6	32.8	0	
4320	min Summer	1.716	0.0) 8	38.9	0	
5760	min Summer	1.367	0.0	9	94.5	0	
/200 8640	min Summer	1 011	0.0	, 9) 10)4.9	0	
10080	min Summer	0.909	0.0) 10)9.9	0	
15	min Winter	132.279	0.0) 2	26.6	20	
30	min Winter	84.469	0.0) 3	34.0	33	
	©198	32-2017	XP So	Lution	s		

Infrastructure Design Studio		Page 2
31 Dyer Street	Panther House	
Cirencester	West Catchment	L.
Glos GL7 2PP		Micco
Date 21/05/2019 17:24	Designed by E. Partridge	
File 1461-TANK WEST.SRCX	Checked by M. Jones	Diamarje
Causeway	Source Control 2017.1.2	

Summary of Results for 30 year Return Period (+40%)

	Ever	nt	Level	Depth	Control	Volume	
			(m)	(m)	(1/s)	(m³)	
60	min	Winter	18.559	0.709	4.6	26.6	ок
120	min	Winter	18.557	0.707	4.6	26.5	ОК
180	min	Winter	18.499	0.649	4.6	24.3	ОК
240	min	Winter	18.406	0.556	4.6	20.9	ОК
360	min	Winter	18.186	0.336	4.6	12.6	ОК
480	min	Winter	18.015	0.165	4.6	6.2	ОК
600	min	Winter	17.901	0.051	4.6	1.9	ОК
720	min	Winter	17.850	0.000	4.5	0.0	ΟK
960	min	Winter	17.850	0.000	3.5	0.0	ОК
1440	min	Winter	17.850	0.000	2.5	0.0	O K
2160	min	Winter	17.850	0.000	1.7	0.0	ОК
2880	min	Winter	17.850	0.000	1.4	0.0	O K
4320	min	Winter	17.850	0.000	1.0	0.0	O K
5760	min	Winter	17.850	0.000	0.8	0.0	O K
7200	min	Winter	17.850	0.000	0.7	0.0	O K
8640	min	Winter	17.850	0.000	0.6	0.0	O K
10080	min	Winter	17.850	0.000	0.5	0.0	O K
	Stor	m	Rain	Flood	ed Disch	arge Ti	me-Peak
	Stor Even	m t	Rain (mm/hr)	Flood Volum	ed Disch me Volu	arge Ti ume	ime-Peak (mins)
	Stor Even	m t	Rain (mm/hr)	Flood Volum (m³)	ed Disch ne Volu (m [:]	arge Ti ume ³)	ime-Peak (mins)
60	Stor Even min	m t Winter	Rain (mm/hr) 51.378	Flood Volum (m³)	ed Disch ne Volu (m ³ .0	arge Ti ume 3) 41.5	ime-Peak (mins) 60
<mark>60</mark> 120	Stor Even min min	m t Winter Winter	Rain (mm/hr) 51.378 32.718	Flood Volum (m ³) 0 0	ed Disch ne Volu (m ³ .0	arge Ti ume 3) 41.5 52.5	me-Peak (mins) 60 98
60 120 180	Stor Even min min min	m t Winter Winter Winter	Rain (mm/hr) 51.378 32.718 24.557	Flood Volum (m ³) 0 0 0 0	ed Disch ne Volu (m ⁴ .0 .0	arge Ti ime 3) 41.5 52.5 59.3	me-Peak (mins) 60 98 136
60 120 180 240	Stor Even min min min min	m t Winter Winter Winter Winter	Rain (mm/hr) 51.378 32.718 24.557 19.794	Flood Volum (m ³) 0 0 0 0	ed Disch ne Volu (m ² .0 .0 .0	arge Ti ume ³) 41.5 52.5 59.3 64.1	me-Peak (mins) 60 98 136 174
60 120 180 240 360	Stor Even min min min min	m t Winter Winter Winter Winter Winter	Rain (mm/hr) 51.378 32.718 24.557 19.794 14.333	Flood Volum (m ³) 0 0 0 0 0 0 0	ed Disch ne Volu (m ³ .0 .0 .0 .0 .0	arge Ti ume 3) 41.5 52.5 59.3 64.1 69.4	(mins) 60 98 136 174 236
60 120 180 240 360 480	Stor Even min min min min min min	m t Winter Winter Winter Winter Winter	Rain (mm/hr) 51.378 32.718 24.557 19.794 14.333 11.282	Flood Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0	ed Disch ne Volu (m ³ .0 .0 .0 .0 .0 .0	arge Ti ume 3) 41.5 52.5 59.3 64.1 69.4 72.7	(mins) (0 98 136 174 236 292
60 120 180 240 360 480 600	Stor Even min min min min min min min	m t Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 51.378 32.718 24.557 19.794 14.333 11.282 9.334	Flood Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ed Disch ne Volu (m ³ .0 .0 .0 .0 .0 .0 .0 .0	arge Ti me 3) 41.5 52.5 59.3 64.1 69.4 72.7 75.3	(mins) 60 98 136 174 236 292 340
60 120 180 240 360 480 600 720	Stor Even min min min min min min min min	winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 51.378 32.718 24.557 19.794 14.333 11.282 9.334 7.978	Flood Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ed Disch ne Volu (m: .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	41.5 52.5 59.3 64.1 69.4 72.7 75.3 77.2	(mins) 60 98 136 174 236 292 340 0
60 120 180 240 360 480 600 720 960	Stor Even min min min min min min min min	winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 51.378 32.718 24.557 19.794 14.333 11.282 9.334 7.978 6.212	Flood Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ed Disch ne Volu (m ² .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	41.5 52.5 59.3 64.1 69.4 72.7 75.3 77.2 80.2	me-Peak (mins) 60 98 136 174 236 292 340 0
60 120 180 240 360 480 600 720 960 1440	Stor Even min min min min min min min min	winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 51.378 32.718 24.557 19.794 14.333 11.282 9.334 7.978 6.212 4.354	Flood Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ed Disch ne Volu (m ²) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	41.5 52.5 59.3 64.1 69.4 72.7 75.3 77.2 80.2 84.3	(mins) 60 98 136 174 236 292 340 0 0
60 120 180 360 480 600 720 960 1440 2160	stor Even min min min min min min min min min	winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 51.378 32.718 24.557 19.794 14.333 11.282 9.334 7.978 6.212 4.354 3.061	Flood Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ed Disch ne Volu (m ²) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	Aarge Ti me 3) 41.5 52.5 59.3 64.1 69.4 72.7 75.3 77.2 80.2 84.3 88.9 2	(mins) 60 98 136 174 236 292 340 0 0 0
60 120 180 240 360 480 600 720 960 1440 2160 2880	Stor Even min min min min min min min min min mi	m t Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 51.378 32.718 24.557 19.794 14.333 11.282 9.334 7.978 6.212 4.354 3.061 2.396	Flood Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ed Disch ne Volu (m ²) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	Aarge Ti me 3) 41.5 52.5 59.3 64.1 69.4 72.7 75.3 77.2 80.2 84.3 88.9 92.7 92.7	(mins) 60 98 136 174 236 292 340 0 0 0 0 0
60 120 180 240 360 720 960 1440 2160 2880 4320	Stor Even min min min min min min min min min mi	m t Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 51.378 32.718 24.557 19.794 14.333 11.282 9.334 7.978 6.212 4.354 3.061 2.396 1.716	Flood Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ed Disch ne Volu (m ²) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	Aarge Ti me 3) 41.5 52.5 59.3 64.1 69.4 72.7 75.3 77.2 80.2 84.3 88.9 92.7 99.6 0	ime-Peak (mins) 60 98 136 174 236 292 340 0 0 0 0 0 0
60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	Stor Even min min min min min min min min min mi	m t Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 32.718 24.557 19.794 14.333 11.282 9.334 7.978 6.212 4.354 3.061 2.396 1.716 1.367	Flood Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ed Disch ne Volu (m ² .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	Aarge Ti me 3) 41.5 52.5 59.3 64.1 69.4 72.7 75.3 77.2 80.2 84.3 88.9 92.7 99.6 05.8 05.8	(mins) 60 98 136 174 236 292 340 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
60 120 180 240 360 480 720 960 1440 2160 2880 4320 5760 7200	Stor Even min min min min min min min min min mi	m t Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 51.378 32.718 24.557 19.794 14.333 11.282 9.334 7.978 6.212 4.354 3.061 2.396 1.716 1.367 1.155	Flood Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ed Disch ne Volu (m ² .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	Arge Ti 1110 41.5 52.5 59.3 64.1 69.4 72.7 75.3 80.2 84.3 88.9 92.7 99.6 05.8 11.7 -	(mins) 60 98 136 174 236 292 340 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	Stor Even min min min min min min min min min mi	m t Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 32.718 24.557 19.794 14.333 11.282 9.334 7.978 6.212 4.354 3.061 2.396 1.716 1.367 1.155 1.011	Flood Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ed Disch ne Volu (m ² .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	Aarge Ti me 3) 41.5 52.5 59.3 64.1 69.4 72.7 75.3 77.2 80.2 84.3 88.9 92.7 99.6 05.8 11.7 17.5 05.8 11.7 17.5 05.8 11.7 17.5 05.8 11.7 17.5	(mins) 60 98 136 174 236 292 340 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

©1982-2017 XP Solutions

Appendix 3 – Proposed Run-off Calculation- West Catchment 30yr

Infrastructure Design Studio		Page 3
31 Dyer Street	Panther House	
Cirencester	West Catchment	4
Glos GL7 2PP		- Cm
Date 21/05/2019 17:24	Designed by E. Partridge	MICLO
File 1461-TANK WEST.SRCX	Checked by M. Jones	Urainage
Causeway	Source Control 2017.1.2	
<u></u> <u>Ra</u>	ainfall Details	
Rainfall Model	FEH Winter Storms Ye	es
Return Period (years)	30 Cv (Summer) 0.75	50
FEH Rainfall Version	2013 Cv (Winter) 0.84	40
Data Type	Point Longest Storm (mins) 1008	30
Summer Storms	Yes Climate Change % +4	10
ті	me Area Diagram	
Tot	Al Area (na) 0.096	
From: To:	(ha) From: To: (ha)	
0	4 0.048 4 8 0.048	
©1982	-2017 XP Solutions	

12 of 16

Appendix 3 – Proposed Run-off Calculation- West Catchment 100yr

Infrastructure Design S	tudio						Page 1
31 Dyer Street		Pant	cher Ho	ouse			
Cirencester		West	Catcl	hment			L.
Glos GL7 2PP							Micco
Date 21/05/2019 17:23		Dest	igned l	by E. H	Partri	dge	
File 1461-TANK WEST.SRC	X	Cheo	cked b	у М. Јо	ones	2	Drainage
Causeway		Sour	rce Cor	ntrol 2	2017.1	. 2	
-							
Summary of	Results	for 1	00 yea	r Retu	rn Per	iod (+40%)	
Sto	orm	Max	Max	Max	Max	Status	
EV	ent	Level	Depth (Control (1/s)	(m ³)		
		(ш)	(111)	(1/3)	()		
15 mi	n Summer	18.555	0.705	4.6	26.4	O K	
30 mi	n Summer	18.703	0.853	4.6	32.0	O K	
60 mi 120 mi	n Summer	18.751	0.901	4.6	33.8	OK	
120 mi	n Summer	18,775	0.925	4.6	34.7	O K	
240 mi	n Summer	18.740	0.890	4.6	33.4	O K	
360 mi	n Summer	18.633	0.783	4.6	29.4	O K	
480 mi	n Summer	18.508	0.658	4.6	24.7	O K	
600 mi	n Summer	18.357	0.507	4.6	19.0	O K	
720 mi	n Summer	18.219	0.369	4.6	13.8	O K	
960 mi 1440 mi	n Summer	17 959	0.176	4.6	6.6 0.3	OK	
2160 mi	n Summer	17.850	0.000	3.3	0.0	O K	
2880 mi	n Summer	17.850	0.000	2.5	0.0	ок	
4320 mi	n Summer	17.850	0.000	1.8	0.0	O K	
5760 mi	n Summer	17.850	0.000	1.4	0.0	O K	
7200 mi	n Summer	17.850	0.000	1.1	0.0	O K	
8640 mi	n Summer	17.850	0.000	1.0	0.0	O K	
10080 mi 15 mi	n Summer n Winter	18 655	0.000	0.9	30.2	OK	
30 mi	n Winter	18.833	0.983	4.6	36.9	O K	
Sta		Pain	Floodo	d Disch	argo Ti	mo-Dook	
Eve	ant	(mm/hr)	Volume	e Volu	ume	(mins)	
		(,,	(m ³)	(m ³	•)	(
				_			
15 mi	n Summer	175.809	0.	0	31.6	21	
30 mi:	n Summer	113.111 60 02E	0.	0	40.8 19 7	34 60	
120 mi	n Summer	44.121	0.	0	63.4	96	
180 mi	n Summer	33.455	0.	0	72.5	130	
240 mi	n Summer	27.202	0.	0	78.4	166	
360 mi	n Summer	19.935	0.	0	86.0	234	
480 mi:	n Summer	15.794	0.	0	90.8	304	
600 mi	n Summer	13.106	0.	0	94.4	368	
/20 mi	n Summer	g 701	0.	0 1	96.9 00 5	4ZZ 530	
1440 mi	n Summer	6.080	0.	0 1	05.0	738	
2160 mi	n Summer	4.213	0.	0 1	09.2	0	
2880 mi	n Summer	3.249	0.	0 1	12.3	0	
4320 mi	n Summer	2.263	0.	0 1	17.3	0	
5760 mi:	n Summer	1.760	0.	0 1	21.7	0	
7200 mi	n Summer	1.458	0.	0 1	25.9	0	
8640 mi:	n Summer	1 110	0.	0 1	30.2 34 E	U	
15 mi	n Winter	175.809	0.	0	35.3	21	
30 mi	n Winter	113.111	0.	0	45.5	34	
	©198	32-2017	XP Sc	olution	s		

Infrastructure Design Studio	
31 Dyer Street	Panther House
Cirencester	West Catchment
Glos GL7 2PP	
Date 21/05/2019 17:23	Designed by E. Pa
File 1461-TANK WEST.SRCX	Checked by M. Jor
Causeway	Source Control 20

S	ummary o	of Re	esults	for 1	00 yea	ar Retu	r
		Stor	m	Max	Max	Max	
		Even	t	Level	Depth	Control	١
				(m)	(m)	(l/s)	
	60	min	Winter	18,910	1.060	4.6	
	120	min	Winter	18.950	1.100	4.6	
	180	min	Winter	18.929	1.079	4.6	
	240	min	Winter	18.872	1.022	4.6	
	360	min	Winter	18.706	0.856	4.6	
	480	min	Winter	18.515	0.665	4.6	
	600	min	Winter	18.274	0.424	4.6	
	720	min	Winter	18.092	0.242	4.6	
	960	min	Winter	17.880	0.030	4.6	
	1440	min	Winter	17.850	0.000	3.4	
	2160	min	Winter	17.850	0.000	2.4	
	2880	min	Winter	17.850	0.000	1.8	
	4320	min	Winter	17.850	0.000	1.3	
	5760	min	Winter	17.850	0.000	1.0	
	7200	min	Winter	17.850	0.000	0.8	
	8640	min	Winter	17.850	0.000	0.7	
	10000						

Design Studio						Page 2
	Pant	her Hou	ıse			
	West	Catchn	nent			۲ <u>ـ</u>
Þ						1 mm
17.00	F				1	Micro
1/:23	Dest	Igned by	/ Е. Р	artri	age	Drainage
WEST.SRCX	Cheo	cked by	M. Jo	nes		Diamage
	Sour	cce Cont	rol 2	017.1	. 2	
mary of Results	for 1	00 year	Retur	n Per	iod (+40%)	
4		4			, , , ,	
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth Co	ntrol	Volume		
	(m)	(m) (1/s)	(m ³)		
				• •		
60 min Winter	18.910	1.060	4.6	39.8	O K	
120 min Winter	18.950	1.100	4.6	41.3	O K	
180 min Winter	18.929	1.079	4.6	40.5	O K	
240 min Winter	18.872	1.022	4.6	38.3	OK	
360 min Winter	18.706	0.856	4.6	32.1	OK	
480 min Winter	10.015	0.005	4.6	15 0	0 K	
720 min Winter	18.092	0.242	4.0	4 1 1 2 . 9	0 K	
960 min Winter	17,880	0.030	4.6	1.1	0 K	
1440 min Winter	17.850	0.000	3.4	0.0	O K	
2160 min Winter	17.850	0.000	2.4	0.0	O K	
2880 min Winter	17.850	0.000	1.8	0.0	O K	
4320 min Winter	17.850	0.000	1.3	0.0	O K	
5760 min Winter	17.850	0.000	1.0	0.0	O K	
7200 min Winter	17.850	0.000	0.8	0.0	O K	
8640 min Winter	17.850	0.000	0.7	0.0	O K	
10080 min Winter	17.850	0.000	0.6	0.0	O K	
Storm	Rain	Flooded	Discha	arge Ti	.me-Peak	
Event	(mm/hr)	Volume	Volu	me	(mins)	
		(m³)	(m ³)		
60 min Winter	69.025	0.0	5	55.7	60	
120 min Winter	44.121	0.0		71.0	102	
180 min Winter	33.455	0.0	5	31.0	140	
360 min Winter	19 935	0.0	c	963	254	
480 min Winter	15.794	0.0	10	02.1	328	
600 min Winter	13.106	0.0	10)5.8	386	
720 min Winter	11.215	0.0	10	08.6	436	
960 min Winter	8.721	0.0	11	12.5	522	
1440 min Winter	6.080	0.0	11	17.7	0	
2160 min Winter	4.213	0.0	12	22.3	0	
2880 min Winter	3.249	0.0	12	25.8	0	
4320 min Winter	2.263	0.0	13	31.4	0	
5760 min Winter	1.760	0.0	13	36.3	0	
7200 min Winter	1.458	0.0	14	11.1	0	
8640 min Winter	1.256	0.0	14	15.8	0	
10080 min Winter	1.112	0.0	15	0.0	U	
©198	82-2017	XP Sol	ution	s		

Appendix 3 – Proposed Run-off Calculation- West Catchment 100yr

Infrastructure Design Studio		Page 3
31 Dyer Street	Panther House	
Cirencester	West Catchment	L.
Glos GL7 2PP		Micco
Date 21/05/2019 17:23	Designed by E. Partridge	Desinage
File 1461-TANK WEST.SRCX	Checked by M. Jones	Diamarje
Causeway	Source Control 2017.1.2	
<u>Ra</u>	infall Details	
Rainfall Model	FEH Winter Storms Yes	s
Return Period (years)	100 Cv (Summer) 0.75	0
FEH Rainfall Version Site Location GB 5	2013 CV (Winter) 0.84 31001 182083 Shortest Storm (mins) 11	5
Data Type	Point Longest Storm (mins) 1008	0
Summer Storms	Yes Climate Change % +4	0
Tir	ne Area Diagram	
Tot	al Area (ba) 0.096	
102		
Time (mins) From: To:	Area Time (mins) Area (ha) From: To: (ha)	
0	1 0 040 4 0 0 040	
0 4	4 0.040 4 0 0.040	
©1982-	-2017 XP Solutions	

Infrastruc	ture	Desig	n Stu	dio						
31 Dyer St	reet				F	Panth	er Ho	use		
Cirenceste	r				М	Vest	Catch	ment	5	
Glos G	L7 2P	P								
Date 21/05	/2019	17:2	3		Γ)esig	ned b	уE.	. Par	tri
File 1461-	TANK	WEST.	SRCX		C	Check	ed by	М.	Jone	s
Causeway					S	Sourc	e Con	trol	L 201	7.1
					Mo	del 1	Detail	ls		
			Stora	nge is	0nli	ine Co	ver Le	vel	(m) 1	9.85
				Ta	nk oi	r Pon	ıd Str	ucti	ure	
				I	nvert	Leve	l (m) :	17.8	50	
Depth (m) Are	a (m²)	Deptl	h (m)	Area	(m²)	Depth	(m)	Area	(m²
0.0	00	37.5	:	1.100		37.5	1	.101		1.
		1	Hydro	-Bra	ke® (Optim	um Ou	tfl	ow Co	ntr
				τ	Jnit F	Refere	nce MD	-SHE	-0096	-480
				De	esign	Head	(m)			
				Desi	ign Fl	low (l	/s)			
					Fl	lush-F	'lo™ ivo M	inim	i co u	natr
					Apr	olicat	ion	±11±10	use uj	psci
				5	Sump A	Availa	ble			
					Diame	eter (mm)			
	Min	i mum O	+1+	Int	vert I	Level	(m)			
	Min	uggest	ed Mar	nhole	Diame	eter (eter (mm) mm)			
			Co	ontrol	Poir	nts	Hea	ad (1	n) Flo	w (1
		De	esign 1	Point	(Cal	culate	ed)	1.50	00	
					Fl	ush-F	lo™	0.42	23	
		Mc	an Fl	ow ou	K	ick-Fl	lo®	0.80	60	
		Me	an Fi	ow ov	ег не	ad Kal	ige		_	
The hydrol	ogical	calcu	latior	ns hav	ve bee	en bas	ed on	the	Head/1	Disc
Hydro-Brak	e® Opt	imum a	s spec	cified	1. Sh	hould these	anothe	r ty	pe of	con
invalidate	d d	inunio D	e util	Liseu	chen	cilese	stora	ye i	oucin	y ca
Depth (m)	Flow	(1/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(1/
0.100		3.1	1	.200		4.3	3	.000		6
0.200		4.2	1	.400		4.6	3	.500		7
0.300		4.5	1	.600		4.9	4	500		-7 2
0.400		4.6	2	.000		5.5	5	.000		8
0.600		4.5	2	.200		5.7	5	.500		8
0.800		4.0	2	.400		6.0	6	.000		9
1.000		4.0	2	.600		6.2	6	.500		9
				©19	82-2	017	XP Sol	luti	ons	

	Page 4
idge 1.2	Micro Drainage
350	
²) Depth (m) A	rea (m²)
.0 2.000	1.0
rol	
800-1500-4800 1.500 4.8 Calculated tream storage Surface Yes 96 17.550 150 1200 (1/s) 4.8 4.6 3.7 4.1 scharge relation	nship for the
ontrol device of	ther than a
alculations wil	ll be
/s) Depth (m)	Flow (l/s)
6.6 7.1 7.500 7.6 8.000 8.0 8.500 8.4 9.000 8.8 9.500 9.2 9.5	9.9 10.2 10.5 10.8 11.1 11.4

Appendix 5 – Sustainable Drainage Proforma – Sheet 1

	Project / Site Name (including sub- catchment / stage / phase where appropriate)	Panther House
	Address & post code	Grays Inn Road, London, WC1X OAN
	OC Crider (Fratian Northing)	E 530982
s	US Grid ref. (Easting, Northing)	N 182069
etai	LPA reference (if applicable)	
. Project & Site D	Brief description of proposed work	Redevelopment and addition of extra floors to existing commercial/office development
i.	Total site Area	2120 m ²
	Total existing impervious area	2120 m ²
	Total proposed impervious area	2120 m ²
	Is the site in a surface water flood risk catchment (ref. local Surface Water Management Plan)?	Critical Drainage Area Group3_003 - See FRA section 3.2.2
	Existing drainage connection type and location	1 Connection onto Mount Pleasant & 1 connection onto Grays Inn Road
	Designer Name	M. Jones
	Designer Position	Director
	Designer Company	IDS Ltd. (for Eckersley O'Callaghan)

	2a. Infiltration Feasibility					
	Superficial geology classification	L	Lynch Hill Gravel			
	Bedrock geology classification		London Clay			
	Site infiltration rate	N/A	m/s			
	Depth to groundwater level	4	m belo	w ground level		
	Is infiltration feasible?		No			
s	2b. Drainage Hierarchy					
gement		Feasible (Y/N)	Proposed (Y/N)			
ran	1 store rainwater for later use	Ν	Ν			
arge Ari	2 use infiltration techniques, such surfaces in non-clay areas	Ν	N			
l Discha	3 attenuate rainwater in ponds or features for gradual release	Ν	N			
oposed	4 attenuate rainwater by storing in sealed water features for gradual researched water features features for gradual researched water features features for gradual researched water features feature	Y	Y			
. Pr	5 discharge rainwater direct to a w	vatercourse	N	N		
2	6 discharge rainwater to a surface sewer/drain	water	Ν	N		
	7 discharge rainwater to the comb	ined sewer.	Y	Y		
	2c. Proposed Discharge Details					
	Proposed discharge location	As existing				
	Has the owner/regulator of the discharge location been consulted?	See Drainage Strategy				

See	Drai	nage	Strat	egv

Appendix 5 – Sustainable Drainage Proforma – Sheet 2

	3a. Discharge F	Rates & Required	d Storage	-	-		4a. Discharge & Drainage Strategy
	Obar	Greenfield (GF) runoff rate (I/s)	Existing discharge rate (l/s)	Required storage for GF rate (m ³)	Proposed discharge rate (l/s)		Infiltration feasibility (2a) – geotechnical factual and interpretive reports, including infiltration results
	1 in 1	0.6	10.49	26	10.49		
	1 in 30	1.7	41.57	57	27.41		Drainage hierarchy (2b)
	1 in 100	2.5	55.67	71	35.08		
	1 in 100 + CC		><<	108	35.08		Proposed discharge details (2c) – utility plans, correspondence / approval from
	Climate change o	allowance used	40%			uo	owner/regulator of discharge location
rategy	3b. Principal Method of Flow Control		Hydrobrake			formati	Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations
age St	3c. Proposed S	uDS Measures	Catchment	Plan area	Storage	ing In	Proposed SuDS measures & specifications (3b)
rain			area (m²)	(m ²)	vol. (m ³)	ort	4b. Other Supporting Details
Ö.	Rainwater harves	sting	0	\geq	0	ddng	Detailed Development Layout
	Infiltration syste	ms	0	\leq	0	4. 5	
	Green roofs		0	0	0		Detailed drainage design drawings,
	Blue roofs		0	0	0		including exceedance now routes
	Filter strips		0	0	0		Detailed landscaping plans
	Filter drains		0	0	0		Maintenance strategy
	Bioretention / tre	ee pits	0	0	0		Domonstration of how the proposed
	Pervious paveme	ents	0	0	0		SuDS measures improve:
	Swales		0	0	0		
	Basins/ponds		0	0	0		a) water quality of the runoff?
	Attenuation tank	<s< td=""><td>2120</td><td>\geq</td><td>38</td><td></td><td>b) biodiversity?</td></s<>	2120	\geq	38		b) biodiversity?
	Total		2120	0	38		c) amenity?

Page/section of drainage report
4.4
2.1;
2.1 & 4.4
Appendix 2 - 3
4.4
Page/section of drainage report
Appendix 1
Appendix 1
Appendix 1
Section 6
Roofwater discharge only
No Change

