

REMEDIATION METHOD STATEMENT

Panther House, 38 Mount Pleasant and 156-164 Gray's Inn Road London WC1X OAN

Client: Panther House Development Limited

16 August 2019

J19225

Document Control

Project title	Panther House, 38 Mount Pleasant, 156-164 Gray's Inn Road, London W		Project No	J19225
Report title	Remediation Method Statement			
Report prepared by	Tron			
	Jordan Wood BSc MSc FGS Assistant Geotechnical Engineer			
Report checked and approved for issue by	Mon			
	Steve Branch BSc MSc CGeol FGS FRGS MIERO Managing Director	rSc		
Issue No Status	Amendment Details	Date	Approved fo	or Issue
1 FINAL		16 August 2019	8	1

This report has been issued by the GEA office indicated below. Any enquiries regarding the report should be directed to the office indicated or to Steve Branch in our Herts office.

✓	Hertfordshire	tel 01727 824666
	Nottinghamshire	tel 01509 674888
	Manchester	tel 0161 209 3032

Geotechnical & Environmental Associates Limited (GEA) disclaims any responsibility to the Client and others in respect of any matters outside the scope of this work. This report has been prepared with reasonable skill, care and diligence within the terms of the contract with the Client and taking account of the manpower, resources, investigation and testing devoted to it in agreement with the Client. This report is confidential to the Client and GEA accepts no responsibility of whatsoever nature to third parties to whom this report or any part thereof is made known, unless formally agreed beforehand. Any such party relies upon the report at their own risk. This report may provide advice based on an interpretation of legislation, guidance notes and codes of practice. GEA does not, however, provide legal advice and if specific legal advice is required a lawyer should be consulted.

© Geotechnical & Environmental Associates Limited 2019

Contents

1.0	INTRODUCTION
	1.1 Limitations
2.0	THE SITE
	2.1 Site History
3.0	GROUND MODEL
	3.1 Contamination Testing
4.0	CONCEPTUAL MODEL
5.0	RISK ASSESSMENT
6.0	REMEDIAL OBJECTIVES
6.0	KEINIEDIAL OBJECTIVES
7.0	REMEDIAL RECOMMENDATIONS
	7.1 Site Workers
	7.2 Waste Classification
8.0	VALIDATION OF REMEDIAL MEASURES

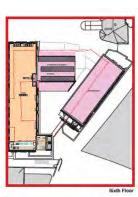
1.0 INTRODUCTION

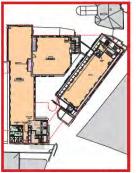
Geotechnical and Environmental Associates (GEA) has been commissioned by Eckersley O'Callaghan, on behalf of Panther House Development Limited, to provide a remediation method statement for the redevelopment of this site at Panther House, 38 Mount Pleasant and 156-164 Gray's Inn Road, London WC1X OAN.

Consideration is being given to redevelopment of Panther House which will comprise, in summary, the following:

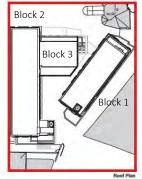
- refurbished office space on the third floor in Panther House Blocks 2 and 3 but the existing roof removed and a floor for new office space in Block 1;
- new office space on the fourth floor in Blocks 2 and 3, where the existing roof is removed and a final level of new office space in Block 1;
- new office space on the fifth floor in Blocks 2 and 3 only;
- new office space on the sixth floor in Block 2 only with a new external plant enclosure at the top of the northern Panther House Block 3; and
- no areas of soft landscaping are proposed and the site will continue to be used for commercial purposes only.

The proposed site layout plans for each floor are provided opposite.


Additionally, 156-164 Gray's Inn Road is to be demolished and reconstructed with a seven-storey mixed retail, residential and commercial building.


A Basement Impact Assessment (BIA) has previously been carried out by GEA (report ref J15249 Rep Iss 5, dated May 2018) and included an interpretation of the ground conditions based on a ground investigation report that had previously been carried out by Site Analytical Services (SAS, report ref 15/23911 dated August 2015) and both are referred to in this report where relevant. In

addition to the site investigation from SAS, a series of trial pits was completed by GB Geotechnics Ltd (GBG) in June 2016, (ref 4141), also referenced in this report where relevant.



1.1 Limitations

The conclusions and recommendations made in this report are limited to those that can be made on the basis of the investigations carried out. The results of the work should be viewed in the context of the range of data sources consulted, the number of locations where the ground was sampled, and the number of soil, gas or groundwater samples tested; no liability can be accepted for information in other data sources or conditions not revealed by the sampling or testing. Any comments made on the basis of information obtained from the client or other

third parties are given in good faith on the assumption that the information is accurate; no independent validation of such information has been made by GEA.

2.0 THE SITE

The site is located in the London Borough of Camden, 450 m to the northwest of Chancery Lane London Underground station. It is irregular in shape and measures approximately 40 m north-south by 65 m east-west and fronts onto Gray's Inn Road to the west and is bounded to the east by Mount Pleasant and by commercial buildings to the north and south. The site may be additionally located by National Grid Reference 531000, 182070.

The site is understood to be sensibly level and currently occupied by various buildings, ranging from single storeys to six-storeys, understood to be of commercial use. In the east of the site is 38 Mount Pleasant, which includes a single storey basement, which extends to a level of about 15.54 m OD. In the west of the site is 156–164 Gray's Inn Road.

Beneath the existing tramshed of Brain Yard, located in the central part of the site, a partial basement is present, which extends to a level of about 17.70 m OD. The remainder of the site is covered by hardstanding. The site is devoid of vegetation and will remain so as part of the proposed development.

2.1 Site History

At the time of the earliest map studied, dated 1877, the site was occupied by a workhouse. On the 1916 map, a canal works is shown immediately to the south of the site. At some time between 1896 and 1916, the layout of the building along the western frontage appears to have changed and similarly between 1916 and 1953. It is understood that the western part of the site was damaged by World War II bombing. On the 1942 Goad Insurance plan, the site is shown to have been occupied by a motor-generator sub-station, opticians, printers, gown

factory and aluminium foil factory. On the 1951 plan, a cinema screen was on site along with a warehouse.

By 1952, an electricity substation is shown in the central part of the site and an optical works in the west. On the 1960 Goad Insurance plan, the cinema screen is shown to have been replaced by a camera repairers and a woodworkers was present on site. By the time of the 1965 map, the optical works is just shown as a works. The eastern side of the site is labelled as a works on the historical maps, until at least 1995.

3.0 GROUND MODEL

The previous desk study research has indicated that the site has had a potentially contaminative history, having been occupied by a workhouse, works, printers, factories, woodworkers and warehouse.

A ground investigation was carried out by SAS in August 2015 which comprised a single rotary percussive borehole, advanced to a depth of 25.00 m, and a single continuous flight auger (cfa) borehole to a depth of 15.00 m. On the basis of the fieldwork, the ground conditions at this site can be characterised as follows:

- □ beneath a moderate to significant thickness of made ground, River Terrace Deposits are underlain by the London Clay, over the Lambeth Group to the maximum depth investigated of 25.00 m (-4.80 m OD);
- the made ground comprises various amounts of brick, concrete, ceramic pipe and ash and extends to depths of between 0.90 m (14.59 m OD) and 3.10 m (17.10 m OD). It is understood that no visual or olfactory evidence of contamination was observed during the fieldwork;
- □ the River Terrace Deposits comprise medium dense to very dense brown sandy gravel and extend to depths of 1.80 m (13.69 m OD) and 5.50 m (14.70 m OD);
- the London Clay is reported to initially comprise stiff mottled brown silty sandy clay with occasional gypsum crystals, extending to depths of 2.00 m

(13.49 m OD) and 5.80 m (14.40 m OD). Below this depth stiff or very stiff dark grey silty sandy fissured clay was proved to the full 15.00 m (0.49 m OD) depth of Borehole No 1 and the base of the stratum was proved at a depth of 17.50 m (2.70 m OD) in Borehole No 2;

- □ three samples of made ground were tested for the presence of contamination as a precautionary measure and no contaminants were elevated. Samples were also screened for the presence of asbestos, but none was detected;
- □ a seepage was encountered at a depth of 0.90 m (14.49 m OD) at the base of the made ground in Borehole No 1. A water strike was encountered at a depth of 5.50 m (14.70 m OD) in Borehole No 2 at the base of the River Terrace Deposits. A seepage was encountered at a depth of 14.00 m (6.20 m OD) from within the London Clay;
- ☐ groundwater has been monitored in standpipes approximately two weeks after the investigation at a depth of 1.77 m (13.72 m OD) in Borehole No 1 and 4.00 m (15.30 m OD) in Borehole No 2 and was subsequently monitored by GEA in February 2016 at a depth of 1.20 m (14.29 m OD) in Borehole No 1, but Borehole No 2 was blocked; and
- □ trial pits excavated by GBG within the existing buildings were generally found to be free of water however, groundwater was encountered at two locations within the existing basement beneath Panther House, at depths of 0.9 m (14.63 m OD) and 1.34 m (14.18 m OD), and at a depth of 2.30 m (15.39 m OD) within a trial excavation completed from the existing basement beneath Brain Yard.

3.1 Contamination Testing

Whilst no visual and olfactory evidence of contamination was reported to be present in the made ground, three samples were analysed for a range of contaminants as a precautionary measure. The results have been compared to the screening values for a commercial end-use as no areas of soft landscaping are proposed. The table below sets out the values measured within the three samples of made ground tested.

Determinant	BH1: 0.50 m	BH2: 0.50 m	BH1: 0.25 m
рН	10.9	7.9	10
Arsenic	6.5	12	5
Cadmium	<0.2	0.2	<0.2
Chromium	14	21	11
Lead	190	210	52
Mercury	<0.3	<0.3	<1
Copper	43	89	17
Nickel	16	23	8
Zinc	53	99	20
Total Cyanide	<1	<1	<2
Total Phenols	<1.0	<1.0	<2
Total PAH	15.90	<1.60	3.8
Sulphide	17	<1.0	<5
Benzo(a)pyrene	1.5	<0.1	0.34
Naphthalene	<0.05	<0.05	<0.1
TPH (aliphatic c5 to c35)	22	<10	100
TPH (aromatic c5 to c35)	51	<10	184
Total Organic Carbon %	0.4	3.1	2.1

The chemical analyses indicated that no contaminants tested are in excess of their respective Generic Risk-Based Screening Values for a commercial end-use with only slightly elevated concentrations of TPH. Additionally, no asbestos was identified.

4.0 CONCEPTUAL MODEL

The table below sets out the risk pathways that could potentially be present following the redevelopment of the site. This Conceptual Model is based upon the findings of the ground model developed in the light of the investigation findings and highlights areas where remedial work should be considered.

SOURCE	RECEPTOR	PATHWAY	COMMENT
	End users	Direct contact, accidental ingestion or inhalation of soil or soil-derived dust	Any contamination present will be located beneath hardstanding as no areas of soft landscaping are proposed across the entire site areas. End-users will not therefore come into contact with potentially contaminated soils given that hardstanding will cover the site.
	Groundwater	Percolation and leaching of surface run-off in areas of soft landscaping	The secondary 'A' aquifer beneath the site at depth could allow the migration of contaminated groundwater through the shallow soils to surrounding sites, although percolation to the chalk
Minor contamination from previous use or in made ground	Adjacent sites	Mobilisation of contaminants to underlying aquifer via leaching	aquifer beneath the site is effectively prevented by the London Clay.
	Groundworkers and future site workers	Ingestion of contaminated soil or dust, through skin contact or inhalation, although in acute dose the risk posed by the concentrations present is considered to be small	Skin contact with the soil should be minimised through the use of normal high standards of hygiene and provision of appropriate PPE.
	Buried services	Direct contact with soil	Contamination will be isolated from buried services through the use of oversized, clean backfilled trenches or through the use of barrier pipe.

5.0 RISK ASSESSMENT

Contamination testing of samples of made ground did not record any concentrations of contaminants in excess of their respective Generic Risk-Based Screening Values for a commercial end-use with only slightly elevated concentrations of TPH. Additionally, no asbestos was identified.

The exact source of the TPH contamination is unknown but it is likely to have originated from localised leakage of oil from vehicles parked in the area from where the sample was retrieved.

6.0 REMEDIAL OBJECTIVES

Based on the above risk assessment the following remedial objectives have been established for this development;

- □ to break the potential chronic human exposure pathways to the contaminated soil in areas that are not to be covered by hard structures and pavements; and
- □ to protect ground workers who will be exposed to the soil.

Good construction practice and health and safety procedures will be adhered to at all times. In particular, the specific requirements of Health and Safety Executive (HSE) guidance¹ and the COSHH² guidance must be followed in addition to the current Building Regulations. Guidelines prepared by CIRIA³ should also be taken into account.

The HSE document sets out the approach to be adopted and the aspects that must be considered under the COSHH Regulations, including an assessment of the risks to health of both employees and the general public and identification of the means by which any risks may be controlled.

7.0 REMEDIAL RECOMMENDATIONS

The site investigation and risk assessment have identified potential risks to commercial end users such that remedial measures are unlikely to be required due to the relatively low sensitivity of the receptors, the low concentrations of contaminants identified across the site and the fact the site is to be completely covered with hardstanding. However, given the potentially contaminative history of the site, it would be prudent to inform site workers of the potential for contamination and maintain a watching brief as detailed below.

7.1 Site Workers

Site workers will be made aware of the potential for contamination in the soils and a programme of working will be identified to protect workers handling any soil. The method of site working will be in accordance with guidelines set out by HSE and CIRIA. Washing facilities will be provided and site workers will be encouraged to wash prior to eating and to use appropriate PPE when on-site to minimise skin contact with the soil.

A watching brief should be maintained and if any suspicious soils or suspected asbestos-containing materials are encountered, provision should be made for the inspection of the suspect soils by the geoenvironmental engineer, with a view to determining the requirement for additional remedial works.

7.1.1 Discovery Strategy and Watching Brief

A Discovery Strategy will be available on-site in order to define the process to be undertaken on-site in the event that previously unidentified pockets of contamination or suspicious material are discovered during the redevelopment of the site. It is intended to be understood and followed by all on-site workers

HSE 1992 HS(G)66 – Protection of workers and the public during the development of contaminated land HMSO

HSE 1998 – Code of practice for the Control of Substances Hazardous to Health and Control of Carcinogenic Substances 2nd Edition

³ CIRIA Report 132 – A Guide for Safe Working on Contaminated Sites

and for all new site workers to be made aware of the procedure during a site briefing, and sets out the actions that must be taken if suspicious soils are encountered.

It is the responsibility of the site manager to ensure watching briefs are kept, which should include a record of any observations of contamination noted by a member of staff on site and photographic evidence. A photographic record of key stages of development is also required.

The Discovery Strategy should be displayed in the site office, along with the contact names and numbers of the geoenvironmental engineer, so that contact can easily be made if any suspicious substances are encountered. Provision should be made for the inspection of any suspect soils by the geoenvironmental engineer with a view to determining the requirement for additional remedial works. In the event of identifying significant contamination that was not previously identified the remediation strategy will be reviewed and details submitted to the Local Authority for approval.

At the end of the construction phase, an account of any suspected materials will be provided along with details of how the remediation strategy was altered. If no suspicious material is identified then a nominated member of the site personnel will provide a written statement to the effect to be included within the remediation verification report.

7.1.2 Site Briefing

Site workers should be made aware of the possible presence of contamination and a programme of working should be identified to protect workers handling any soil or groundwater and the method of site working should be in accordance with HSE guidelines and the requirements of the Local Authority. Such requirements are likely to include that all site workers are protected from skin contact with any soil, and eating, drinking and smoking on site should be strictly confined to clean areas. Guidelines prepared by CIRIA should also be taken into account.

7.2 Waste Classification

Waste classification is detailed in the final ground investigation report, although a summary is provided here. Additional testing may be required to confirm the waste classification. Any made ground found to be impacted with hydrocarbons is likely to be classified as hazardous waste and should be kept separate from non-contaminated soil so that all spoil can be disposed of correctly.

If fragments of asbestos-containing material (ACM) are present, the waste is Mixed Waste and is Hazardous unless separated.

The results from the ground investigation should be used to help define the sampling plan for such further testing, which could include WAC leaching tests where the totals analysis indicates the soil to be a hazardous waste or inert waste from a contaminated site. It should, however, be noted that the Environment Agency guidance WM3 states that landfill WAC analysis, specifically leaching test results, must not be used for waste classification purposes. WAC (Waste Acceptance Criteria) testing is only applicable to landfill acceptance and does not give an indication as to whether a waste may be hazardous or non-hazardous.

8.0 VALIDATION OF REMEDIAL MEASURES

As no remedial measures are proposed, there is no requirement for validation or a completion report. However, waste transfer tickets for all soil removed from site should be retained.

Aubrey Davidson

Site Analytical Services Ltd Units 14 -15 River Road Business Park 33 River Road Barking Essex IG11 0EA

t: 0208 5948134 f: 0208 5948072

e: aubreyd@siteanalytical.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number: 15-77017

Project / Site name:

Panther House, 156-164 Gray's Inn Road, London WCIX 8ED

Samples received on:

12/08/2015

Your job number:

15-23911

Samples instructed on:

12/08/2015

Your order number:

Analysis completed by:

19/08/2015

21916

Report Issue Number:

Report issued on:

19/08/2015

Samples Analysed:

2 soil samples

Signed:

Rexona Rahman Reporting Manager

For & on behalf of i2 Analytical Ltd.

Emma Winter

Assistant Reporting Manager

For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are:

soils - 4 weeks from reporting leachates - 2 weeks from reporting

waters - 2 weeks from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

asbestos - 6 months from reporting

Project / Site name: Panther House, 156-164 Gray's Inn Road, London WCIX 8ED Your Order No: 21916

Lab Sample Number					, , , , , , , , , , , , , , , , , , , ,		
				475162	475163		
Sample Reference	BH1	BH2					
Sample Number				D2	D2		
Depth (m)				0.50	0.50		
Date Sampled		12/08/2015	12/08/2015				
Time Taken	-	_		None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Moisture Content	%	N/A	NONE	1,2	9.8		
Total mass of sample received	kg	0.001	NONE	0.62	0.74		
	-						
Whole Sample Crushed		N/A	NONE	Crushed	Crushed		
Asbestos in Soil Screen	Туре	N/A	ISO 17025	Not-detected	Not-detected		
20.50.20.20.20							
General Inorganics	Lune	1 11/4	Lucenze	10.0	70	 	
pH Tetal Canaida	pH Units	N/A	MCERTS	10.9	7.9		
Total Cyanide	mg/kg	1 1	MCERTS	<1	<1		
Complex Cyanide Free Cyanide	mg/kg mg/kg	1	NONE NONE	<1	<1		
Total Sulphate as SO ₄	mg/kg mg/kg	50	MCERTS	3200	1100		
Water Soluble Sulphate (Soil Equivalent)	g/l	0.0025	MCERTS	0.072	0.41	 	
Water Soluble Sulphate (3:1 Leachate Equivalent)	9/1	0.0025	MCERTS	0.036	0.41		
Sulphide	mg/kg	1	MCERTS	17	< 1.0		
Total Organic Carbon (TOC)	%	0,1	MCERTS	0.4	3.1		
Total Organic Carach (100)		012	TICENIO 1		0.2		
Total Phenois							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0		
Total Phenois (mononyunc)	під/ку		PICERIS	V 1.0	V 1,0		
Speciated PAHs							
Naphthalene		0.05					
	mg/kg	0.05	MCERTS	< 0.05	< 0.05	 	
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10		
Acenaphthylene Acenaphthene	mg/kg mg/kg	0.1	MCERTS MCERTS	< 0.10 < 0.10	< 0.10 < 0.10		
Acenaphthylene Acenaphthene Fluorene	mg/kg mg/kg mg/kg	0.1 0.1 0.1	MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10		
Acenaphthylene Acenaphthene Fluorene Phenanthrene	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 1.3	< 0.10 < 0.10 < 0.10 < 0.10		
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 1.3 0.51	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10		
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 1.3 0.51 2.9	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10		
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 1.3 0.51 2.9 2.7	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10		
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 1.3 0.51 2.9 2.7 1.6	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10		
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 1.3 0.51 2.9 2.7 1.6	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.00		
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 1.3 0.51 2.9 2.7 1.6 1.7	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10		
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 1.3 0.51 2.9 2.7 1.6	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.00		
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 1.3 0.51 2.9 2.7 1.6 1.7 1.4 0.75	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10		
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 1.3 0.51 2.9 2.7 1.6 1.7 1.4 0.75 1.5	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10		
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)gyrene Indeno(1,2,3-cd)pyrene	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 1.3 0.51 2.9 2.7 1.6 1.7 1.4 0.75 1.5 0.62	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10		
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kq mg/kq mg/kq mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 1.3 0.51 2.9 2.7 1.6 1.7 1.4 0.75 1.5 0.62 0.11	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10		
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kq mg/kq mg/kq mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 1.3 0.51 2.9 2.7 1.6 1.7 1.4 0.75 1.5 0.62 0.11	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10		
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(c)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(qhi)perylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kq mg/kq mg/kq mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 1.3 0.51 2.9 2.7 1.6 1.7 1.4 0.75 1.5 0.62 0.11	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10		
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(phi)perylene Total PAH Speciated Total EPA-16 PAHs	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 1.3 0.51 2.9 2.7 1.6 1.7 1.4 0.75 1.5 0.62 0.11 0.81	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10		
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(phi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 1.3 0.51 2.9 2.7 1.6 1.7 1.4 0.75 1.5 0.62 0.11 0.81	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 <		
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(qhi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 1.3 0.51 2.9 2.7 1.6 1.7 1.4 0.75 1.5 0.62 0.11 0.81	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 1.60 < 0.10 < 1.60		
Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(qhi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Berylilum (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kq mg/kq mg/kq mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 1.3 0.51 2.9 2.7 1.6 1.7 1.4 0.75 1.5 0.62 0.11 0.81	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 1.10 < 0.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10		
Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(priperplene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Bervillum (aqua regia extractable) Beron (total)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 1.3 0.51 2.9 2.7 1.6 1.7 1.4 0.75 1.5 0.62 0.11 0.81 15.9	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 1.60 < 0.10 < 1.70 < 0.10 < 1.80 < 0.10 < 1.80 < 1.80 < 1.80		
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(phi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Beryllium (aqua regia extractable) Boron (total) Cadmium (aqua regia extractable)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	<0.10 <0.10 <0.10 <0.10 1.3 0.51 2.9 2.7 1.6 1.7 1.4 0.75 1.5 0.62 0.11 0.81 15.9	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 1.60 < 0.10 < 1.70 < 0.10 < 1.80 < 1.80 < 1.80		
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)yrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(qhi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Berol (total) Boron (total) Cadmium (aqua regia extractable) Chromlum (aqua regia extractable)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	<0.10 <0.10 <0.10 <0.10 1.3 0.51 2.9 2.7 1.6 1.7 1.4 0.75 1.5 0.62 0.11 0.81 15.9	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 1.10 < 0.10 < 1.10 < 1.10 < 1.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10		
Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(qhi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Beryllium (aqua regia extractable) Boron (total) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	<0.10 <0.10 <0.10 <0.10 1.3 0.51 2.9 2.7 1.6 1.7 1.4 0.75 1.5 0.62 0.11 0.81 15.9	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 1.10 < 0.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.20 < 1.20 < 1.40 21		
Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenz(a,h)anthracene Dibenz(a,h)anthracene Benzo(qhi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Beryillum (aqua regia extractable) Beron (total) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable) Copper (aqua regia extractable)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	<0.10 <0.10 <0.10 <0.10 <1.3 0.51 2.9 2.7 1.6 1.7 1.4 0.75 0.62 0.11 0.81 15.9 6.5 0.8 11 <0.2 <4.0 14 43	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.15 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 <		
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(phi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Beron (total) Cadmium (aqua regla extractable) Chromium (hexavalent) Chromium (qaqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 1.3 0.51 2.9 2.7 1.6 1.7 1.4 0.75 0.62 0.11 0.81 15.9 6.5 0.8 11 < 0.2 < 4.0 14 43 190	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 1.10 < 0.10 < 1.10 < 0.10 < 0.10 < 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)yrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(qhi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Beryllium (aqua regia extractable) Beryllium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 1.3 0.51 2.9 2.7 1.6 1.7 1.4 0.75 1.5 0.62 0.11 0.81 15.9 6.5 0.8 11 < 0.2 < 4.0 14 43 190 < 0.3	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10		
Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(qhi)perylene Total PAH Speclated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Beryllium (aqua regia extractable) Beryllium (aqua regia extractable) Comper (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable) Lead (aqua regia extractable) Lead (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable) Mercury (aqua regia extractable) Mercury (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	<0.10 <0.10 <0.10 <0.10 <1.3 0.51 2.9 2.7 1.6 1.7 1.4 0.75 1.5 0.62 0.11 0.81 15.9 6.5 0.8 11 <0.2 <4.0 14 43 190 <0.3 16	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 <		
Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(qhi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Beryllum (aqua regia extractable) Boron (total) Cadmlum (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable) Mercury (aqua regia extractable) Nickel (aqua regia extractable) Selenium (aqua regia extractable) Selenium (aqua regia extractable) Selenium (aqua regia extractable)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	<0.10 <0.10 <0.10 <0.10 <1.3 0.51 2.9 2.7 1.6 1.7 1.4 0.75 1.5 0.62 0.11 0.81 15.9 6.5 0.8 11 <0.2 <4.0 14 43 190 <0.3 16 <1.0	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 <		
Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(qhi)perylene Total PAH Speclated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Beryllium (aqua regia extractable) Beryllium (aqua regia extractable) Comper (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable) Lead (aqua regia extractable) Lead (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable) Mercury (aqua regia extractable) Mercury (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	<0.10 <0.10 <0.10 <0.10 <1.3 0.51 2.9 2.7 1.6 1.7 1.4 0.75 1.5 0.62 0.11 0.81 15.9 6.5 0.8 11 <0.2 <4.0 14 43 190 <0.3 16	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 <		

Project / Site name: Panther House, 156-164 Gray's Inn Road, London WCIX 8ED Your Order No: 21916

Lab Sample Number				475162	475163		
Sample Reference	BH1	BH2					
Sample Number				D2	D2		
Depth (m)				0.50	0.50		
Date Sampled				12/08/2015	12/08/2015		
Time Taken	None Supplied	None Supplied					
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics							
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0		
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0		
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0		
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0		
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0		
MTBE (Methyl Tertlary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0		
	руму						-
Petroleum Hydrocarbons		0.1			< 0.1		
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8	mg/kg mg/kg	0.1	MCERTS MCERTS				
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10	mg/kg mg/kg mg/kg	0.1	MCERTS MCERTS MCERTS	< 0.1 < 0.1 < 0.1	< 0.1 < 0.1		
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 1	MCERTS MCERTS MCERTS MCERTS	< 0.1 < 0.1 < 0.1 1.0	< 0.1 < 0.1 < 0.1		
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1	MCERTS MCERTS MCERTS	< 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1 < 0.1 < 1.0		
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 1 2	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.1 < 0.1 < 0.1 1.0 6.7	< 0.1 < 0.1 < 0.1 < 1.0 < 2.0		
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC35	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 1 2 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.1 < 0.1 < 0.1 1.0 6.7	< 0.1 < 0.1 < 0.1 < 1.0 < 2.0 < 8.0		
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21	mq/kq mg/kq mg/kq mg/kq mg/kq mg/kq	0.1 0.1 1 2 8 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.1 < 0.1 < 0.1 1.0 6.7 14 < 8.0	< 0.1 < 0.1 < 0.1 < 1.0 < 2.0 < 8.0 < 8.0		
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC35	mq/kq mg/kq mg/kq mg/kq mg/kq mg/kq	0.1 0.1 1 2 8 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.1 < 0.1 < 0.1 1.0 6.7 14 < 8.0	< 0.1 < 0.1 < 0.1 < 1.0 < 2.0 < 8.0 < 8.0		
Petroleum Hydrocarbons TPH-CWG - Allphatic >EC5 - EC6 TPH-CWG - Allphatic >EC8 - EC8 TPH-CWG - Allphatic >EC8 - EC10 TPH-CWG - Allphatic >EC10 - EC12 TPH-CWG - Allphatic >EC12 - EC16 TPH-CWG - Allphatic >EC16 - EC21 TPH-CWG - Allphatic >EC21 - EC35 TPH-CWG - Allphatic >EC21 - EC35 TPH-CWG - Allphatic (EC5 - EC35)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 1 2 8 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.1 < 0.1 < 0.1 1.0 6.7 14 < 8.0 22	< 0.1 < 0.1 < 0.1 < 1.0 < 2.0 < 8.0 < 10		
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aliphatic SEC1 - EC35	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 1 2 8 8 10	MCERTS	< 0.1 < 0.1 < 0.1 1.0 6.7 14 < 8.0 22	< 0.1 < 0.1 < 0.1 < 1.0 < 2.0 < 8.0 < 8.0 < 10		
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC5 - EC35 TPH-CWG - Aliphatic >EC5 - EC35 TPH-CWG - Aliphatic >EC5 - EC35 TPH-CWG - Aliphatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC8	mq/kq mg/kq mg/kq mg/kq mg/kq mg/kq mg/kq mg/kq mg/kq mg/kq	0.1 0.1 1 2 8 8 10	MCERTS	< 0.1 < 0.1 < 0.1 1.0 6.7 14 < 8.0 22 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.1 < 0.1		
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aliphatic >EC6 - EC7 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1 0.1 1 2 8 8 10 0.1 0.1 0.1	MCERTS	< 0.1 < 0.1 < 0.1 1.0 6.7 14 < 8.0 22 < 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.1 < 0.1 < 0.1		
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC12 - EC35 TPH-CWG - Aliphatic >EC15 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC17 - EC35 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg	0.1 0.1 1 2 8 8 10 0.1 0.1 0.1 1	MCERTS	< 0.1 < 0.1 < 0.1 1.0 6.7 14 < 8.0 22 < 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.1 < 0.1 < 0.1 < 0.1		
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC6 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic EC5 - EC35 TPH-CWG - Aliphatic EC5 - EC35 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC10 - EC12	mg/kg mg/kg mg/kq mg/kq mg/kq mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 1 2 8 8 10 0.1 0.1 0.1 1 2	MCERTS	< 0.1 < 0.1 < 0.1 1.0 6.7 14 < 8.0 22 < 0.1 < 0.1 < 0.1 < 1.0 3.1	< 0.1 < 0.1 < 0.1 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.1 < 0.1 < 0.1 < 0.1 < 2.0		

Project / Site name: Panther House, 156-164 Gray's Inn Road, London WCIX 8ED

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *	
475162	BH1	D2	0.50	Light brown loam and sand with gravel.	_
475163	BH2	D2		Brown clay and sand.	_

Project / Site name: Panther House, 156-164 Gray's Inn Road, London WCIX 8ED Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos Identification In soil	Asbestos Identification with the use of polarised ligh microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
BTEX and MTBE In soil	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073S-PL	w	MCERTS
Complex cyanide in soil	Determination of complex cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	NONE
Crush Whole Sample	Either: Client specific preparation instructions - sample(s) crushed whole prior to analysis; OR Sample unsuitable for standard preparation and therefore crushed whole prior to analysis.	In house method, applicable to dry samples only.	L019-UK	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	NONE
Hexavalent chromlum in soil	Determination of hexavalent chromlum in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS
Metals In soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soll.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically,	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	w	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-NS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, In soil	Determination of water soluble sulphate by ICP-OES, Results reported directly (leachate equivalent) and corrected for extraction ratio (soll equivalent).	In-house method based on B51377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS

Project / Site name: Panther House, 156-164 Gray's Inn Road, London WCIX 8ED Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	LO23-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCI followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	w	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Aubrey Davidson Site Analytical Services Ltd Units 14 & 15 River Road Business Park 33 River Road Barking Essex IG11 0EA

QTS Environmental Ltd

Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN

t: 01622 850410 russell.jarvis@qtsenvironmental.com

QTS Environmental Report No: 15-34501

Site Reference:

Panther House, 156-164 Gray's Inn Road, London, WC1X 8ED

Project / Job Ref:

15/23911

Order No:

21917

Sample Receipt Date:

13/08/2015

Sample Scheduled Date:

13/08/2015

Report Issue Number:

Reporting Date:

19/08/2015

Authorised by:

Russell Jarvis

Director

On behalf of QTS Environmental Ltd

Authorised by:

Kevin Old Director

On behalf of QTS Environmental Ltd

OTS Environmental Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Soil Analysis Certificate None Supplied QTS Environmental Report No: 15-34501 Date Sampled Time Sampled None Supplied Site Analytical Services Ltd TP / BH No Site Reference: Panther House, 156-164 Gray's Inn BH₁ Road, London, WC1X 8ED **Additional Refs** D1 Project / Job Ref: 15/23911 Depth (m) 0.25 Order No: 21917 Reporting Date: 19/08/2015 **QTSE Sample No** 162262

Determinand	Unit	RL	Accreditation			
Asbestos Screen	N/a	N/a	ISO17025	Not Detected		
pH	pH Units	N/a	MCERTS	10.0		
Total Cyanide	mg/kg	< 2	NONE	< 2		
Complex Cyanide	mg/kg	< 2	NONE	< 2		
Free Cyanide	mg/kg	< 2	NONE	< 2		
Total Sulphate as SO ₄	mg/kg	< 200	NONE	2491		
Total Sulphate as SO ₄	%	< 0.02	NONE	0.25		
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	264		
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.26		
Sulphide	mg/kg	< 5	NONE	< 5		
Organic Matter	%	< 0.1	MCERTS	2.1		
Total Organic Carbon (TOC)	%	< 0.1	MCERTS	1.2		
Arsenic (As)	mg/kg	< 2	MCERTS	5		
W/S Boron	mg/kg	< 1	NONE	< 1		
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2		
Chromium (Cr)	mg/kg	< 2	MCERTS	11		
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2		
Copper (Cu)	mg/kg	< 4	MCERTS	17		
Lead (Pb)	mg/kg	< 3	MCERTS	52		
Mercury (Hg)	mg/kg	< 1	NONE	< 1		
Nickel (Ni)	mg/kg	< 3	MCERTS	8		
Selenium (Se)	mg/kg	< 3	NONE	< 3		
Zinc (Zn)	mg/kg	< 3	MCERTS	20		
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2		

Analytical results are expressed on a dry weight basis where samples are dried at less than 30°C

Analysis carried out on the dried sample is corrected for the stone content

The samples have been examined to identify the presence of asbestiform minerals by polarising light microscopy and dispersion staining technique to In-House Procedures QTSE600 Determination of Asbestos in Bulk Materials; Asbestos in Soils/Sediments (fibre screening and identification)

This report refers to samples as received, and QTS Environmental Ltd, takes no responsibility for the accuracy or competence of sampling by others.

The material description shall be regarded as tentative and is not included in our scope of UKAS Accreditation.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

Asbestos Analyst: Graham Revell

RL: Reporting Limit Pinch Test: Where pinch test is positive it is reported "Loose Fibres - PT" with type(s).

Subcontracted analysis (5)

QTS Environmental Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Soil Analysis Certificate - Speciated PAHs QTS Environmental Report No: 15-34501	Date Sampled	None Supplied		
Site Analytical Services Ltd	Time Sampled	None Supplied		
Site Reference: Panther House, 156-164 Gray's Inn Road, London, WC1X 8ED	TP / BH No	BH1		
Project / Job Ref: 15/23911	Additional Refs	D1		
Order No: 21917	Depth (m)	0.25		
Reporting Date: 19/08/2015	OTSE Sample No	162262		

Determinand	Unit	RL	Accreditation				
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1			
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1			
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1			
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1			
Phenanthrene	mg/kg	< 0.1	MCERTS	0.38			
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1			
Fluoranthene	mg/kg	< 0.1	MCERTS	0.72			
Pyrene	mg/kg	< 0.1	MCERTS	0.62			-
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	0.35			-
Chrysene	mg/kg	< 0.1	MCERTS	0.38			
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	0.43			-
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	0.18			-
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	0.34			_
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	0.24			
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1			
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	0.19			
Coronene	mg/kg	< 0.1	NONE	< 0.1		-	
Total Oily Waste PAHs	mg/kg	< 1		1.9			
Total Dutch 10 PAHs	mg/kg	< 1		2.8			
Total EPA-16 PAHs	mg/kg	< 1.6		3.8			
Total WAC-17 PAHs	mg/kg	< 1.7	NONE 20°C	3.8			

Analytical results are expressed on a dry weight basis where samples are dried at less than 30°C

QTS Environmental Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone

Kent ME17 2JN Tel: 01622 850410

Soil Analysis Certificate - TPH CWG Banded OTS Environmental Report No: 15-34501	Date Sampled	None Supplied		
Site Analytical Services Ltd	Time Sampled	None Supplied		
Site Reference: Panther House, 156-164 Gray's Inn Road, London, WC1X 8ED	TP / BH No	BH1		
Project / Job Ref: 15/23911	Additional Refs	D1		
Order No: 21917	Depth (m)	0.25		
Reporting Date: 19/08/2015	QTSE Sample No	162262		

Determinand	Unit	RL	Accreditation			
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01		
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05		
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2		
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2		
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3		
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	10		
Aliphatic >C21 - C34	mg/kg	< 10		90		
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	100		
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01		
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05		
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2		
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2		
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2		
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	17		
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	167		
Aromatic (C5 - C35)	mg/kg	< 21	NONE	184		
Total >C5 - C35	mg/kg	< 42	NONE	284		

Analytical results are expressed on a dry weight basis where samples are dried at less than 30°C

QTS Environmental Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone

Elliai	Kent ME17 2JN
	Tel: 01622 850410

OTS Environmental Report No: 15-34501	Date Sampled	None Supplied		
Site Analytical Services Ltd	Time Sampled	None Supplied		
Site Reference: Panther House, 156-164 Gray's Inn Road, London, WC1X 8ED	TP / BH No	BH1		
Project / Job Ref: 15/23911	Additional Refs	D1		
Order No: 21917	Depth (m)	0.25		
Reporting Date: 19/08/2015	QTSE Sample No	162262		

Determinand	Unit	RL	Accreditation		
Benzene	ug/kg	< 2	MCERTS	< 2	
Toluene	ug/kg	< 5	MCERTS	< 5	
Ethylbenzene	ug/kg	< 2	MCERTS	< 2	
p & m-xylene	ug/kg	< 2	MCERTS	< 2	
o-xylene	ug/kg	< 2	MCERTS	< 2	
MTBE	ug/kg	< 5	MCERTS	< 5	

Analytical results are expressed on a dry weight basis where samples are dried at less than 30°C

QTS Environmental Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone

Maidstone Kent ME17 2JN Tel: 01622 850410

QTS Environmental Report No: Site Analytical Services Ltd			Mana			-						
Site Analytical Services Ltd	15-34501	Date Sampled	None Supplied			Landfill Wast	te Acceptance C	criteria Limits				
		Time Sampled	None Supplied									
Site Reference: Panther House, 156-164 Gray's Inn Road, London, WC1X 8ED		TP / BH No	TP / BH No	TP / BH No	TP / BH No	TP / BH No	BH1				Stable Non- reactive	Hazardous
Project / Job Ref: 15/23911		Additional Refs	D1			Inert Waste Landfill	HAZARDOUS waste in non-	Waste Landfill				
Order No: 21917		Depth (m)	0.25				hazardous Landfill	Lanuini				
Reporting Date: 19/08/2015		QTSE Sample No	162262									
Determinand	Unit					201	50/	6%				
TOC ^{MU}	%	< 0.1	1.2			3%	5%					
Loss on Ignition	%	< 0.01	2.90					10%				
BTEX ^{MU}	mg/kg	< 0.05	< 0.05			6						
Sum of PCBs	mg/kg	< 0.7	< 0.7			1						
Mineral Oil ^{MU}	mg/kg	< 10	100	0.1		500						
Total PAH ^{MU}	mg/kg	< 1.7	3.8			100						
pH ^{MU}	pH Units	N/a	10.0				>6					
Acid Neutralisation Capacity	mol/kg (+/-)	<1	1.8				To be evaluated	To be evaluated				
	·		2:1	8:1	Cumulative	Limit values	for compliance	leaching tes				
Eluate Analysis			2.1		10:1	using BS I	EN 12457-3 at I	./S 10 I/kg				
			mg/l	mg/l	mg/kg		(mg/kg)					
Arsenic			< 0.01	< 0.01	< 0.2	0.5	2	25				
Barium ^U			0.04	0.03	0.3	20	100	300				
Cadmium ^U	1		< 0.0005	< 0.0005	< 0.02	0.04	1	5				
Chromium	1		< 0.005	< 0.005	< 0.20	0.5	10	70				
Copper ^U	1	2.1	0.02	< 0.01	< 0.5	2	50	100				
Mercury ^U	1		< 0.005	< 0.005	< 0.01	0.01	0.2	2				
Molybdenum ^U	-		0.014	0.006	< 0.1	0.5	10	30				
Nickel ^U	1		< 0.007	< 0.007	< 0.2	0.4	10	40				
Lead ^U	1		< 0.005	< 0.005	< 0.2	0.5	10	50				
Antimony	-		< 0.005	< 0.005	< 0.06	0.06	0.7	5				
Selenium ^U	-	3	0.005	< 0.005	< 0.1	0.1	0.5	7				
Zinc ^U			0.006	< 0.005	< 0.2	4	50	200				
	-		23	6	79	800	15000	25000				
Chloride ^U	-	1	< 0.5	< 0.5	<1	10	150	500				
Fluoride	-		162	70	799	1000	20000	50000				
Sulphate ^U	-	i i	309	177	1908	4000	60000	100000				
TO 0	-		< 0.01	< 0.01	< 0.5	1	-	1				
TDS	-		9	6.4	66.8	500	800	1000				
Phenol Index				<u> </u>								
Phenol Index DOC	And the same of th				The second secon	4						
Phenol Index						1						
Phenol Index DOC						-						
Phenol Index DOC												
Phenol Index DOC												
Phenol Index DOC												
Phenol Index DOC Leach Test Information			0.10									
Phenol Index DOC Leach Test Information Sample Mass (kg)			0.19			-						
Phenol Index DOC Leach Test Information Sample Mass (kg) Dry Matter (%)			92.7			-						
Phenol Index DOC Leach Test Information Sample Mass (kg) Dry Matter (%) Moisture (%)												
Phenol Index DOC Leach Test Information Sample Mass (kg) Dry Matter (%) Moisture (%) Stage 1			92.7 7.8									
Phenol Index DOC Leach Test Information Sample Mass (kg) Dry Matter (%) Moisture (%) Stage 1 Volume Eluate L2 (litres)			92.7 7.8 0.34									
Phenol Index DOC Leach Test Information Sample Mass (kg) Dry Matter (%) Moisture (%) Stage 1			92.7 7.8									

Results are expressed on a dry weight basis, after correction for moisture content where applicable
Stated limits are for guidance only and QTS Environmental cannot be held responsible for any discrepencies with current legislation
M Denotes MCERTS accredited test
U Denotes ISO17025 accredited test

QTS Environmental Ltd Unit 1, Rose Lane Industrial Estate Rose Lane

Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Soil Analysis Certificate - Sample Descriptions	
QTS Environmental Report No: 15-34501	
Site Analytical Services Ltd	
Site Reference: Panther House, 156-164 Gray's Inn Road, London, WC1X 8ED	
Project / Job Ref: 15/23911	
Order No: 21917	
Reporting Date: 19/08/2015	

QTSE Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
^ 162262	BH1	D1	0.25	7.2	Brown sandy gravel

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\text{US}}$ Unsuitable Sample $^{\text{US}}$ ^ no sampling date provided; unable to confirm if samples are within acceptable holding times

QTS Environmental Ltd Unit 1, Rose Lane Industrial Estate

Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Soil Analysis Certificate - Methodology & Miscellaneous Information
QTS Environmental Report No: 15-34501
Site Analytical Services Ltd
Site Reference: Panther House, 156-164 Gray's Inn Road, London, WC1X 8ED
Project / Job Ref: 15/23911
Order No: 21917
Reporting Date: 19/08/2015

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR	BTEX	Determination of BTEX by headspace GC-MS	E001
Soil	D	Cations	Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Ovanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D	Cyclobeyane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diecel Pange Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR		Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Flemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
	AR	FPH (C10 - C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EDH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AK	EDH TEYAS (C6-C9 C9-C10 C10-C12	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	E004
Soil	AR	C12-C16, C16-C21, C21-C40)	headsnace GC-MS	E004
	D	Fluorida - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with Iron (II) suiphate	E010
Soil	D	Loss on Ignition @ 4500C	Determination of loss on Ignition in soil by gravimetrically with the sample being ignited in a muffle	E019
Call	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by agua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
C-II	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR	Ha	Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phonois - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009
		Sulphate (as SO4) - Total	Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D	Culphata (ac COA) - Water Soluble (2:1)	Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	D	Sulphiate (as 504) - Water Soluble (2:1)	Determination of water soluble by distillation followed by colorimetry	E018
Soil	AR	Sulphine Culphin Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024
Soil	D AR	SVOC	Determination of comissolatile organic compounds by extraction in acetone and hexage followed by	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	U		Determination of organic matter by oxidising with potassium dichromate followed by titration with	
Soil	D	Total Organic Carbon (TOC)	iron (II) sulphate	E010
Soil	AR	TPH CWG (all: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil	AR	VOCs	Determination of volatile organic compounds by headspace GC-MS	E001
	MI	1000	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried AR As Received

7.3 Piled Foundations

For the ground conditions at this site some form of bored pile is likely to be the most appropriate. A conventional rotary augered pile may be appropriate but consideration will need to be given to the possible instability and water ingress in the made ground and within any silty or sandy zones within the London Clay. The use of bored piles installed using continuous flight auger (cfa) techniques may therefore be the most appropriate.

The following table of ultimate coefficients may be used for the preliminary design of bored piles from ground floor level, based on the measured SPT and cohesion / depth graph in the appendix.

Ultimate Skin Friction		kN/m ²
Made Ground / London Clay	GL to 17 m	Ignore (Basement excavation)
London Clay $(\alpha = 0.5)$	17 m to 40 m	Increasing linearly from 55 to 105
Ultimate End Bearing		kN/m ²
London Clay	30 m to 40 m	Increasing linearly from 1440 to 1890

In the absence of pile tests, guidance from the London District Surveyors Association (LDSA)⁸ suggests that a factor of safety of 2.6 should be applied to the above coefficients in the computation of safe theoretical working loads. On this basis the following safe working loads have been estimated for pile diameters ranging from 450 mm to 900 mm and bearing at depths of between 10 m and 28 m below the proposed basement level.

Pile Diameter mm	Pile length m (Toe level m OD)	Safe Working Load kN)
450	20 (-23.75)	900
450	25 (-28.75)	1200
600	15 (-18.75)	900
600	20 (-23.75)	1200
	10 (-13.75)	900
900	13 (-16.75)	1200
	19 (-22.75)	1800

The above examples are not intended to constitute any form of recommendation with regard to pile size or type, but merely serve to illustrate the use of the above coefficients. Specialist

LDSA (2009) Foundations No 1 – Guidance notes for the design of straight shafted bored piles in London Clay. LDSA Publications

www.gea-ltd.co.uk

Herts | 01727 824666 Notts | 01509 674888

Generic Risk-Based Soil Screening Values

Job Number
Panther House, 38 Mount Pleasant, London WC1X 0AN
J19225

Client Panther House Development Limited

Sheet 1 / 2

Engineer Eckerlsey O'Callaghan

Proposed End Use Commercial

Soil pH 7

Soil Organic Matter content % 1.0

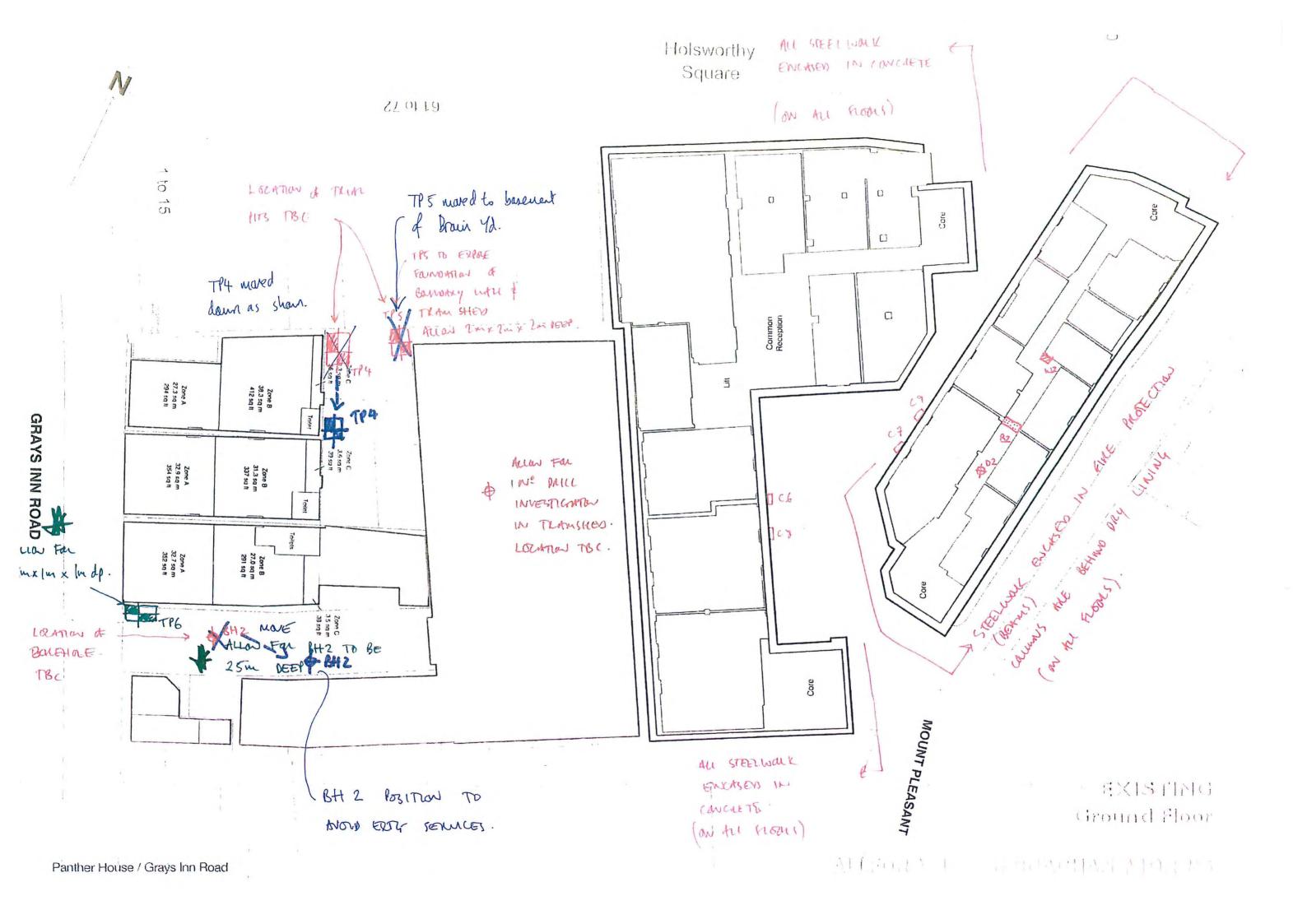
Contaminant	Screening Value mg/kg	Data Source	Contaminant	Screening Value mg/kg	Data Source
Metals			Anions		
Arsenic	640	C4SL	Soluble Sulphate	500 mg/l	Structures
Cadmium	410	C4SL	Sulphide	50	Structures
Chromium (III)	30400	LQM/CIEH	Chloride	400	Structures
Chromium (VI)	49	C4SL	Others		
Copper	71,700	LQM/CIEH	Organic Carbon (%)	10	Methanogenic potential
Lead	2330	C4SL	Total Cyanide	12000	WRAS
Elemental Mercury	170	SGV	Total Mono Phenols	3200	SGV
Inorganic Mercury	3600	SGV	PAH		
Nickel	1350	LQM/CIEH	Naphthalene	200.00	C4SL exp & LQM/CIEH
Selenium	13000	SGV	Acenaphthylene	84,000	LQM/CIEH
Zinc	665,000	LQM/CIEH	Acenaphthene	85,000	LQM/CIEH
Hydrocarbons		Fluorene	64,000	LQM/CIEH	
Benzene	27	C4SL	Phenanthrene	22,000	LQM/CIEH
Toluene	870	SGV	Anthracene	530,000	LQM/CIEH
Ethyl Benzene	48000	SGV	Fluoranthene	23,000	LQM/CIEH
Xylene	475	SGV	Pyrene	54,000	LQM/CIEH
Aliphatic C5-C6	3400	LQM/CIEH	Benzo(a) Anthracene	90.0	C4SL exp & LQM/CIEH
Aliphatic C6-C8	8300	LQM/CIEH	Chrysene	140	C4SL exp & LQM/CIEH
Aliphatic C8-C10	2100	LQM/CIEH	Benzo(b) Fluoranthene	100.0	C4SL exp & LQM/CIEH
Aliphatic C10-C12	10000	LQM/CIEH	Benzo(k) Fluoranthene	140.0	C4SL exp & LQM/CIEH
Aliphatic C12-C16	61000	LQM/CIEH	Benzo(a) pyrene	42.00	C4SL
Aliphatic C16-C35	1,600,000	LQM/CIEH	Indeno(1 2 3 cd) Pyrene	60.0	C4SL exp & LQM/CIEH
Aromatic C6-C7	See Benzene	LQM/CIEH	Dibenzo(a h) Anthracene	13.00	C4SL exp & LQM/CIEH
Aromatic C7-C8	See Toluene	LQM/CIEH	Benzo (g h i) Perylene	650	C4SL exp & LQM/CIEH
Aromatic C8-C10	3700	LQM/CIEH	Screening value for PAH	600.0	B(a)P / 0.15
Aromatic C10-C12	17000	LQM/CIEH	Chlorinated Solvents		
Aromatic C12-C16	36000	LQM/CIEH	1,1,1 trichloroethane (TCA)	552	LQM/CIEH
Aromatic C16-C21	28000	LQM/CIEH	tetrachloroethane (PCA)	150	LQM/CIEH
Aromatic C21-C35	28000	LQM/CIEH	tetrachloroethene (PCE)	63.1	LQM/CIEH
PRO (C ₅ –C ₁₀)	18397	Calc	trichloroethene (TCE)	6.42	LQM/CIEH
DRO (C ₁₂ –C ₂₈)	1,725,000	Calc	1,2-dichloroethane (DCA)	0.71	LQM/CIEH
Lube Oil (C ₂₈ –C ₄₄)	1,628,000	Calc	vinyl chloride (Chloroethene)	0.0587	LQM/CIEH
ТРН	1000	Trigger for speciated	tetrachloromethane (Carbon tetra	3	LQM/CIEH
		testing	trichloromethane (Chloroform)	79.4	LQM/CIEH
Notes			` '		

Notes

Concentrations measured below the above values may be considered to represent 'uncontaminated conditions' which pose 'LOW' risk to human health. Concentrations measured in excess of these values indicate a potential risk which require further, site specific risk assessment.

SGV - Soil Guideline Value, derived from the CLEA model and published by Environment Agency 2009

LQM/CIEH - Generic Assessment Criteria for Human Health Risk Assessment 2nd edition (2009)derived using CLEA 1.04 model 2009


C4SL - Defra Category 4 Screening value based on Low Level of Toxicological Risk

C4SL exp & LQM/CIEH calculated using C4SL revisions to exposure assessment but LQM/CIEH health criteria values

Calc - sum of nearest available carbon range specified including BTEX for PRO fraction

B(a)P / 0.15 - GEA experience indicates that Benzo(a) pyrene (one of the most common and most carcinogenic of the PAHs) rarely exceeds 15% of the total PAH concentration, hence this Total PAH threshold is regarded as being conservative

- = POSMON AGREED ON SITE 15/7/15. ECC MARK UPS SHAWING EOC MALK UP 15/7/15 JH. PROPOSED INVESTIGNATIONS ALLOW FOR TP9 IN BOSEMENT 15078 JH OF BRAIN YO. LOCKTON TOBE CONTINED. thear laxlaxlando PLANNING NOTE: IT IS PASSIBLE THAT EXTLE. BUILDING IS Existing Tramshed ALLEN FOR BN= DAILL FOLKORD ON A CAPT THIS IS TO BE IMPSTIGHTED INVESTIGATION IN (e.g. by MILLIAM) that TO CONTRUCTING THAN SHED TRIA PIBI-3. BASEMENT 20m peel. NOTE HILLOR. NOTE: ALL INVESTIGNATION LOCATIONS to BE 3m HENDROAM NOTICHELE ACMERS ON SITE PRIOR TO Commencement of works. Panther House CUT Dain RIG RED O FOR BH, Octagon Assets Ltd. 156 - 164 Gray's Inn Road Mount Pleasant TPI LOCATED IN NOON Existing Basement Floor Plan 560 NEXT TO WAS ONLY MEN OF EXTELLIMA Mf 27/04/2009 1:100 4A1 wale FRANCIS

H:\ShellFolders\Documents\21835-ZZ-ZZ-M3-A-0001_Susana.Mitjans.rvt

Rev Date Issued for

By Authorised

Limited for clarification.

© Copyright 2014 - Veretec Ltd