GEO-ENVIRONMENTAL & GEOTECHNICAL ASSESSMENT (GROUND INVESTIGATION) & BASEMENT IMPACT ASSESSMENT REPORT

FOR

138-140 HIGHGATE ROAD HIGHGATE LONDON NW5 1PB

JOMAS ASSOCIATES LTD

SITE INVESTIGATION & SURVEYS LAND DEVELOPMENT SUPPORT

Tel: 0843-289-2187

www.jomasassociates.com

info@jomasassociates.com

Report Title:		al & Geotechnical Assessmer t for 138-140 Highgate Road, I	•
Report Status:	Final v1.0		
Job No:	P1323J1303/SL		
Date of Issue:	28 March 2018		
	IROL - REVISIONS		
Version		Date	Issued By
Prep	ared by: JOMAS AS	SOCIATES LTD For: DESIGN V	ENTURES HIGHGATE LTD
Shaw Carter	ared by BSc (Hons), FGS lical Engineer	Reviewed by Peter Swettenham BSc (Hons) MSc PgCert CEnv MoIES Principal Geotechnical Engineer	Approved by Suneel Law BSc (Hons), MSc, FGS Prinicipal Geo-environmental Engineer MMA and Roni Savage BEng (Hons), MSc, SiLC, CGeol, MCIWM, FGS Madbuage Technical Director

Should you have any queries relating to this report, please contact

Jomas Associates Ltd

20843 289 2187

🖂 info@jomasassociates.com

CONTENTS

Page

EX	ECUTIVE SUMMARYV
1	INTRODUCTION
1.1	Terms of Reference1
1.2	Proposed Development1
1.3	Objectives2
1.4	Scope of Works2
1.5	Scope of Basement Impact Assessment (BIA)2
1.6	Limitations3
2	SITE SETTING
2.1	Site Information4
2.2	Desk Study Overview4
3	GROUND INVESTIGATION
3.1	Rationale for Ground Investigation6
3.2	Scope of Ground Investigation6
3.3	In-situ Geotechnical Testing7
3.4	Sampling Rationale7
3.5	Sampling Limitations
3.6	Laboratory Analysis
4	GROUND CONDITIONS
4.1	Soil11
4.2	Hydrogeology11
4.3	Physical and Olfactory Evidence of Contamination12
5	RISK ASSESSMENT – ANALYTICAL FRAMEWORK

i

5.1	Context and Objectives	13
5.2	Analytical Framework – Soils	13
5.3	BRE	14
5.4	Analytical Framework – Groundwater and Leachate	14
5.5	Site Specific Criteria	16
6	GENERIC QUANTITATIVE RISK ASSESSMENT	17
6.1	Screening of Soil Chemical Analysis Results – Human Health Risk Assessment	17
6.2	Volatile Organic Compounds	19
6.3	Soil Source Vapour Assessment	19
6.4	Asbestos in Soil	20
6.5	Statistical Analysis	21
6.6	Screening of Groundwater Chemical Analysis Results	21
6.7	Light Non-Aqueous Phase Liquid (LNAPL)	22
6.8	Screening of Soil Chemical Analysis Results – Potential Risks to Plant Growth	23
6.8 6.9		
	Screening for Water Pipes	23
6.9 6.10	Screening for Water Pipes	23 23
6.9 6.10	Screening for Water Pipes 0 Waste Characterisation and Disposal SOIL GAS RISK ASSESSMENT	23 23 25
6.9 6.10 7	Screening for Water Pipes 0 Waste Characterisation and Disposal Soil Gas Results	23 23 25 25
6.9 6.10 7 7.1	Screening for Water Pipes Waste Characterisation and Disposal Soil Gas Results	23 23 25 25 25
6.9 6.10 7 7.1 7.2	Screening for Water Pipes	23 23 25 25 25
6.9 6.10 7 7.1 7.2 8	Screening for Water Pipes 0 Waste Characterisation and Disposal SOIL GAS RISK ASSESSMENT Soil Gas Results Screening of Results SUMMARY OF RESULTS Land Quality Impact Summary	23 23 25 25 29 29
 6.9 6.10 7 7.1 7.2 8 8.1 	Screening for Water Pipes 0 Waste Characterisation and Disposal SOIL GAS RISK ASSESSMENT Soil Gas Results Screening of Results SUMMARY OF RESULTS Land Quality Impact Summary	23 25 25 25 29 29 30
 6.9 6.10 7 7.1 7.2 8 8.1 8.2 	Screening for Water Pipes	23 25 25 25 29 29 30 32

9.3	Data Summary32
9.4	Undrained Shear Strength
9.5	Coefficient of Compressibility35
9.6	Building Near Trees
9.7	Foundations
9.8	Concrete in the Ground
9.9	Ground Floor Slabs
9.10	Excavations
9.11	Retaining Walls40
9.12	Groundwater Control40
10	BASEMENT IMPACT ASSESSMENT
10.1	Basement Impact Assessment (BIA)41
10.2	Flood Resilience41
10.3	Proposed Changes to Areas of External Hardstanding41
10.4	Past Flooding41
10.5	Geological Impact42
10.6	Hydrology and Hydrogeology Impact42
10.7	Impacts of Basement on Adjacent Properties and Pavement43
11	REFERENCES

APPENDICES

APPENDIX 1 – FIGURES

APPENDIX 2 – EXPLORATORY HOLE RECORDS

APPENDIX 3 – CHEMICAL LABORATORY TEST RESULTS

APPENDIX 4 – GEOTECHNICAL LABORATORY TEST RESULTS

APPENDIX 5 – SOIL GAS MONITORING TEST RESULTS

EXECUTIVE SUMMARY

Design Ventures Highgate Ltd commissioned Jomas Associates Ltd to undertake a Geo-environmental and Geotechnical ground investigation at the site 138-140 Highgate Road, Highgate, London, NW5 1PB.

The principle objectives of the study were as follows:

- To determine the nature and where possible, the extent of contaminants potentially present at the site;
- To establish the presence of significant pollutant linkages, in accordance with the procedures set out within the Environment Agency (EA) report R&D CLR11 and relevant guidance within the National Planning Policy Framework (NPPF);
- To assess whether the site is safe and suitable for the purpose for which it is intended, or can be made so by remedial action; and,
- To obtain geotechnical parameters to inform preliminary foundation design;
- To utilise the information from this investigation and the previously undertaken Desk Study / Preliminary Risk Assessment to carry out a Basement Impact Assessment,

It should be noted that the table below is an executive summary of the findings of this report and is for briefing purposes only. Reference should be made to the main report for detailed information and analysis.

	Site History and Ground Investigation
Current Site Use	The site is currently utilised as an operational fuel filling station and MOT test centre.
Proposed Site Use	It is understood that the proposed development will involve the demolition of the existing building and construction of a new four-storey residential development. The new development will include a lower ground floor (half of which is basement due to slope of ground) and a full single-storey basement below.
Desk Study Overview	A Desk Study report has been produced for the site and issued separately (Jomas – March 2018). A brief overview of the desk study findings is presented below. Reference should be made to the full report for detailed information.
	Earliest historical maps (1872) indicate that the site consists of an undeveloped agricultural field. Few major changes occur to the site until 1936 when an industrial-style unit was constructed on site, in the NW boundary of the site. By 1952 the industrial-style unit on site was identified as a garage which was demolished by 1970. By 1974 another garage was constructed in the NE of the site. The canopy above the forecourt are also appears to have been constructed at this time. The site appears to have remained in this configuration until present-day.
	The surrounding area has been utilised predominantly for residential use with limited industrial uses noted including railway, garages, various works and manufactories and an oil processing plant.
	The British Geological Survey indicates that the site is directly underlain by solid deposits of the London Clay Formation. No artificial deposits are reported within the site.
	A review of the EnviroInsight Report indicates that there are no source protection zones within 500m of the site.
	There are no groundwater, surface water or potable water abstractions reported within 500m of the site.
	There are 2No. surface water features within 250m of the site, the nearest identified 182m east.

	Site History and Ground Investigation
	There is a culvert 271m south-west of the site identified as a detailed river network.
Intrusive Investigation	 The ground investigation was undertaken on 12th & 13th February 2018, and consisted of the following: 7No. window sampling boreholes, drilled up to 5.45m below ground level (bgl), with associated in situ testing and sampling;
	 2No. cable percussive boreholes, drilled up to 24.95mbgl, with associated in situ testing and sampling;
	Laboratory analysis for chemical and geotechnical purposes,
	• 4No. return visits to monitor ground gas concentrations and groundwater levels have been completed.
Ground Conditions	The results of the ground investigation revealed a ground profile comprising Made Ground up to 1.20mbgl overlying London Clay Formation to the base of the borehole at 24.95mbgl. Groundwater was not encountered during drilling of any of the exploratory holes, though water was noted to seep into WS2 at 1.1mbgl and WS4 at 4.5mbgl.
	During return monitoring groundwater was reported at depths of between 1.64m and 4.66m bgl within WS2, WS3, WS4 and WS5. No water was reported within WS1 or BH1 during any monitoring visit. Such variance suggests the water may be surface water ingress as oppose to groundwater.
Environmental Considerations	Following generic risk assessments, elevated concentrations of lead, naphthalene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, dibenzo(ah)anthracene and C21-C35 aromatic hydrocarbons were detected in soils in excess of generic assessment criteria for the protection of human health within a 'residential with plant uptake' end-use scenario.
	Asbestos in the form of chrysotile and amosite - loose fibres were detected in 3No. samples analysed in the laboratory. These were quantified to <0.001%, less than the 0.1% fibre content where arisings are considered hazardous for the purpose of disposal.
	Given the locations of the soil exceedances in relation to the location of suspected underground fuel tanks, it is considered likely that underground tanks are the source of the contamination in soil. Removal of these tanks and associated impacted soil will be required to partly address these risks.
	A basement is proposed under the majority of the site. As a result, soils will be removed down to approximately 3.5-4.0m bgl. This removal of soil is likely to also remove any contaminated soils too.
	Due to the presence of asbestos, any areas of proposed soft landscaping should comprise at least 6000mm of clean imported soil placed on a marker layer. A 200mm break layer may form part of this cover.
	Groundwater analysis has reported no concentrations of contaminants above the laboratory detection limit. Due to several installations reported as 'dry' and the underlying geology (London Clay - unproductive strata) it is considered that the water encountered represents surface water ingress as oppose to groundwater.
	Of greater concern is the "free product" reported to be floating on the surface of the water within WS2 and WS5. The source of this product is likely to be water migrating though the contaminated Made Ground. Any product encountered during the tank removal works will also have to be removed. Due to the underlying London Clay, identified as unproductive

	Site History and Ground Investigation
	strata, the product and contaminants within soil are unlikely to migrate to impact off-site controlled waters receptors.
	Calculating the Gas Screening Value using worst case results indicates Characteristic Situation 1. However, concentrations of methane are raised in a single well (WS5) in close proximity to the underground tank locations, with product also reported within the installation. Although raising the site to CS2 must be considered it is possible that following remediation of the site and removal of the underground tanks, future monitoring may be able to reduce the level of gas protection required.
	Given the levels of potentially volatile contaminants identified within soil, a vapour resistant membrane may be required within the proposed structures.
	A remediation strategy and subsequent verification report will be required.
	As with any ground investigation, the presence of further hotspots between sampling points cannot be ruled out, and caution must be exercised during construction works. Should any contamination be encountered, a suitably qualified environmental consultant should be informed immediately, so that adequate measures may be recommended.
Geotechnical Considerations	Based upon the information obtained to date, it is considered that a cantilever retaining wall installed may be constructed with an allowable bearing pressure of 80kPa at 4.0mbgl
	If a greater allowable bearing capacity is required then a piled foundation solution within the underlying London Clay should be considered.
	If a cantilever retaining wall is utilised, then a well reinforced ground bearing floor slab could be used. Such a slab would prop the retaining walls and prevent buckling from the lateral pressures imposed by the cantilever retaining walls. The wall would need to be constructed on a suitable thickness of engineered granular material.
	Any groundwater encountered during construction works could be addressed by conventional pumping from a sump.
	It is recommended that the stability of all excavations should be assessed during construction. Attention is also drawn to the provisions of the Health and Safety at Work Regulations, which state that the sides of any excavations greater than 1.2m depth, into which personnel are required to enter, should be fully supported or battered back to a safe angle.
	Based on the results of chemical testing, the required concrete class for the site is DS-5 assuming an Aggressive Chemical Environment for Concrete classification of AC-4s in accordance with the procedures outlined in BRE Special Digest 1.

Basement Impact Assessment			
Impact Assessment	The overall assessment of the site is that the creation of a basement for the existing development will not adversely impact the site or its immediate environs, providing measures are taken to protect surrounding land and properties during construction.		
	The proposed basement excavation will be within 5m of a public pavement.		
	Unavoidable lateral ground movements associated with the basement excavations must be controlled during temporary and permanent works so as not to impact adversely on the stability of the surrounding ground and any associated services.		
	From the studies that have been undertaken so far it is concluded that the construction of the building will not present a problem for ground water. It is concluded that this site can be successfully developed without causing any problems to the subterranean drainage.		

1 INTRODUCTION

1.1 Terms of Reference

- 1.1.1 Design Ventures Highgate Ltd ("The Client") has commissioned Jomas Associates Ltd, to assess the risk of contamination posed by the ground conditions at a site referred to as 138-140 Highgate Road, Highgate, London, NW5 1PB and to provide indicative recommendations for foundation design prior to the redevelopment of the site.
- 1.1.2 To this end a Desk Study has been produced for the site and issued separately (Jomas, March 2018), followed by an intrusive investigation (detailed in this report).
- 1.1.3 A full list of previous reports undertaken for the site by Jomas are detailed in Table 1.1:

Title	Author	Reference	Date
Geo-environmental Desk Study and Basement Impact Assessment (screening & Scoping) Report for 138-140 Highgate Road, Highgate, London, NW5 1PB	Jomas	P1323J1303, Finalv1.0	March 2018

Table 1.1: Previous Reports - Jomas

1.1.4 The intrusive investigation was undertaken in accordance with Jomas proposal dated 10th January 2018.

1.2 Proposed Development

- 1.2.1 It is understood that the proposed development will involve the demolition of the existing building and construction of a new four-storey residential development. The new development will include a lower ground floor (half of which is below ground due to slope of ground) and a full single -storey basement below. The new building will be located in approximately the same footprint as the existing building, but the basement level will extend out to under most of the site. Proposed plans indicate that private garden will be included.
- 1.2.2 For the purposes of the contamination risk assessment, the proposed development is classified as 'Residential with plant uptake'.
- 1.2.3 For the purpose of geotechnical assessment, it is considered that the project could be classified as a Geotechnical Category (GC) 2 site in accordance with BS EN 1997. GC 2 projects are defined as involving:
 - Conventional structures.
 - Quantitative investigation and analysis.
 - Normal risk.
 - No difficult soil and site conditions.
 - No difficult loading conditions.
 - Routine design and construction methods.

1.3 Objectives

- 1.3.1 The objectives of Jomas' investigation were as follows:
 - To present a description of the present site status, based upon the published geology, hydrogeology and hydrology of the site and surrounding area;
 - To provide an assessment of the environmental sensitivity at the site and the surrounding area, in relation to any suspected or known contamination which may significantly affect the site and the proposed development;
 - To conduct an intrusive investigation, to determine the nature and extent of contaminants potentially present at the site;
 - To establish the presence of significant pollutant linkages, in accordance with the procedures set out within Part IIA of the Environmental Protection Act 1990, associated statutory guidance and current best practice including the EA report R&D CLR 11;
 - To obtain geotechnical parameters to inform preliminary foundation design; and
 - To assess the potential impacts that the proposal may have on ground stability, the hydrogeology and hydrology on the site and its environs.

1.4 Scope of Works

- 1.4.1 The following tasks were undertaken to achieve the objectives listed above:
 - Intrusive ground investigation to determine shallow ground conditions, and potential for contamination at the site;
 - Undertaking of laboratory chemical and geotechnical testing upon samples obtained;
 - The compilation of this report, which collects and discusses the above data, and presents an assessment of the site conditions, conclusions and recommendations;
 - A basement impact assessment.

1.5 Scope of Basement Impact Assessment (BIA)

- 1.5.1 The Jomas' BIA has been undertaken in accordance with "Camden Planning Guidance – Basements and Lightwells, CPG4" (CPG4) dated July 2015.
- 1.5.2 The Jomas BIA covers most items required under CPG4, with the exception of;
 - Plans and sections to show foundation details of adjacent structures;
 - Programme for enabling works, construction and restoration
 - Evidence of consultation with neighbours
 - Construction Sequence Methodology
 - Proposals for monitoring during construction.
 - Drainage Assessment

1.6 Limitations

- 1.6.1 Jomas Associates Ltd has prepared this report for the sole use of Design Ventures Highgate Ltd, in accordance with the generally accepted consulting practices and for the intended purposes as stated in the agreement under which this work was completed. This report may not be relied upon by any other party without the explicit written agreement of Jomas Associates Limited. No other third party warranty, expressed or implied, is made as to the professional advice included in this report. This report must be used in its entirety.
- 1.6.2 The records search was limited to information available from public sources; this information is changing continually and frequently incomplete. Unless Jomas Associates Limited has actual knowledge to the contrary, information obtained from public sources or provided to Jomas Associates Limited by site personnel and other information sources, have been assumed to be correct. Jomas Associates Limited does not assume any liability for the misinterpretation of information or for items not visible, accessible or present on the subject property at the time of this study.
- 1.6.3 Whilst every effort has been made to ensure the accuracy of the data supplied, and any analysis derived from it, there may be conditions at the site that have not been disclosed by the investigation, and could not therefore be taken into account. As with any site, there may be differences in soil conditions between exploratory hole positions. Furthermore, it should be noted that groundwater conditions may vary due to seasonal and other effects and may at times be significantly different from those measured by the investigation. No liability can be accepted for any such variations in these conditions.
- 1.6.4 Any reports provided to Jomas Associates Limited have been reviewed in good faith. Jomas Associates Limited cannot be held liable for any errors or omissions in these reports, or for any incorrect interpretation contained within them.
- 1.6.5 This investigation and report has been carried out in accordance with the relevant standards and guidance in place at the time of the works. Future changes to these may require a re-assessment of the recommendations made within this report.
- 1.6.6 This report is not an engineering design and the figures and calculations contained in the report should be used by the Structural Engineer, taking note that variations may apply, depending on variations in design loading, in techniques used, and in site conditions. Our recommendations should therefore not supersede the Engineer's design.

2 SITE SETTING

2.1 Site Information

2.1.1 The site location plan is appended to this report in Appendix 1.

Name of Site 138-140 Highgate Road, Highgate, **Address of Site** London. NW5 1PB 528629, 185800 Approx. National Grid Ref. 0.07ha Site Area (Approx) Petrol station and MOT test centre **Site Occupation Local Authority** London Borough of Camden Residential with plant uptake inclusive of single-storey **Proposed Site Use** basement

2.2 Desk Study Overview

2.2.1 A Desk Study report has been produced for the site and issued separately (Jomas – March 2018). A brief overview of the desk study findings is presented below. Reference should be made to the full report for detailed information.

Table 2.1: Site Information

- 2.2.2 Earliest historical maps (1872) indicate that the site consists of an undeveloped agricultural field. Few major changes occur to the site until 1936 when an industrial-style unit was constructed on site, in the NW boundary of the site. By 1952 the industrial-style unit on site was identified as a garage which was demolished by 1970. By 1974 another garage was constructed in the NE of the site. The canopy above the forecourt are also appears to have been constructed at this time. The site appears to have remained in this configuration until present-day.
- 2.2.3 The surrounding area has been utilised predominantly for residential use with limited industrial uses noted including railway, garages, various works and manufactories and an oil processing plant.
- 2.2.4 The British Geological Survey indicates that the site is directly underlain by solid deposits of the London Clay Formation. No artificial deposits are reported within the site.
- 2.2.5 A review of the Envirolnsight Report indicates that there are no source protection zones within 500m of the site.
- 2.2.6 There are no groundwater, surface water or potable water abstractions reported within 500m of the site.
- 2.2.7 There are 2No. surface water features within 250m of the site, the nearest identified 182m east.
- 2.2.8 There is 1No. detailed river network reported within 500m of the site; identified as a culvert 271m south-west of the site.

- 2.2.9 The conceptual site model provided within the report identifies the following potential sources, pathways and receptors. The report indicates the following potential sources of contamination:
 - Potential for hydrocarbon contaminated ground associated with previous site use as fuel station/garage – on site (S1)
 - Potential for Made Ground associated with previous development operations – on site (S2)
 - Potential buried tanks associated with former use as a fuel station/garage on site (S3)
 - Current and previous industrial use off site (S4)
 - Potential asbestos containing materials within existing buildings on site (S5)
 - Potential asbestos impacted soils from demolition of previous buildings on site (S6)
 - Potential ground gas generation associated with hydrocarbon impacted soils from historic use as fuel station on site (S7)
- 2.2.10 The conceptual site model identifies the following potential pathways:
 - Ingestion and dermal contact with contaminated soil (P1)
 - Inhalation or contact with potentially contaminated dust and vapours (P2)
 - Leaching through permeable soils, migration within the vadose zone (i.e., unsaturated soil above the water table) and/or lateral migration within surface water, as a result of cracked hard standing or via service pipe/corridors and surface water runoff. (P3)
 - Horizontal and vertical migration of contaminants within groundwater (P4)
 - Accumulation and migration of soil gases (P5)
 - Permeation of water pipes and attack on concrete foundations by aggressive soil conditions (P6)
- 2.2.11 The conceptual site model identifies the following potential receptors:
 - Construction workers (R1)
 - Maintenance workers (R2)
 - Neighbouring site users (R3)
 - Future site users (R4)
 - Building foundations and on site buried services (water mains, electricity and sewer) (R5)
 - Controlled Waters (Culvert) (R6)

3 GROUND INVESTIGATION

3.1 Rationale for Ground Investigation

- 3.1.1 The site investigation has been undertaken generally in accordance with Contaminated Land Report 11, BS10175, NHBC Standards Chapter 4.1, and other associated Statutory Guidance. If required, further targeted investigations and remedial option appraisal would be dependent on the findings of this site investigation.
- 3.1.2 The soil sampling rationale for the site investigation was developed with reference to EA guidance 'Secondary Model Procedure for the Development of Appropriate Soil Sampling Strategies for Land Contamination' (Technical Report P5-066/TR).
- 3.1.3 The sampling proposal was designed in order to gather data representative of the site conditions; to target identified sources (see Table 3.1) and to aid the preparation of the BIA with reference to the scoping and screening assessment.

3.2 Scope of Ground Investigation

- 3.2.1 The ground investigation was undertaken on 12th & 13th February 2018.
- 3.2.2 The work was undertaken in accordance with BS5930 'Code of Practice for Site Investigation' and BS10175 'Investigation of Potentially Contaminated Sites'. All works were completed without incident.
- 3.2.3 The investigation focused on collecting data on the following:
 - Quality of Made Ground/ natural ground within the site boundaries;
 - Presence of groundwater beneath the site (if any), perched or otherwise;
 - Determination of the presence or absence of hazardous ground gases;
 - Obtaining geotechnical parameters to allow initial design to take place.
 - To aid the preparation of the BIA
- 3.2.4 A summary of the fieldwork carried out at the site, with justifications for exploratory hole positions, are offered in Table 3.1 below.

Table 3.1: Scope of Intrusive Investigation

Investigation Type	Number of Exploratory Holes Achieved	Exploratory Hole Designation	Depth Achieved (m BGL)	Justification
Window Sample Boreholes	7	WS1 - 7	Up to 5.45mbgl	Obtain shallow samples for laboratory contamination and geotechnical testing. To allow in-situ geotechnical testing. WS1 & BH2 - Targeting 2No. abandoned tanks WS2 - Targeting petrol interceptor

Investigation Type	Number of Exploratory Holes Achieved	Exploratory Hole Designation	Depth Achieved (m BGL)	Justification
				WS3, WS7, & WS8 - Targeting existing buried fuel tanks.
				WS4 & WS6 - Targeting internal area of existing workshop/MOT test centre.
				WS5 - Targeting 2No. former kerosene and diesel tanks.
Cable Percussion Boreholes	2	BH1 - 2	Up to 24.95mbgl	Obtain deeper samples for laboratory contamination and geotechnical testing.
Borenoies				To allow in-situ geotechnical testing.
				Combined soil gas and groundwater monitoring wells. WS1 - response zone in clay
Monitoring	6	WS1 - WS5, BH1	Up to 5.00mbgl	WS2 - response zone in Made Ground and clay
Wells				WS3 - response zone in clay
				WS4 - response zone in clay
				WS5 - response zone in Made Ground and clay
				BH1 - response zone in clay

- 3.2.5 The exploratory holes were completed to allow soil samples to be taken in the areas of interest identified in Table 3.1 above. In all cases, all holes were logged in accordance with BS:5930 (2015).
- 3.2.6 Exploratory hole positions were located approximately with reference to known features on site as shown in the exploratory hole location plan presented in Appendix 1. The exploratory hole records are included in Appendix 2.
- 3.2.7 Where monitoring well installations were not installed, the exploratory holes were backfilled with the arisings (in the reverse order in which they were drilled) and the ground surface was reinstated so that no depression was left.

3.3 In-situ Geotechnical Testing

3.3.1 In-situ geotechnical testing included Standard Penetration Tests. The determined 'N' values have been used to determine the relative density of granular materials and have been used with standard correlations to infer various other derived geotechnical parameters including the undrained shear strength of the cohesive strata. The results of the individual tests are on the appropriate exploratory hole logs in Appendix 2.

3.4 Sampling Rationale

3.4.1 Our soil sampling rationale for the site investigation was developed with reference to EA guidance 'Secondary Model Procedure for the Development of Appropriate Soil Sampling Strategies for Land Contamination' (Technical Report P5-066/TR).

- 3.4.2 The exploratory holes were positioned by applying a combined non-targeted sampling strategy, as well as sample locations positioned with reference to sources identified from the desk study.
- 3.4.3 Soil samples were taken from across the site at various depths as shown in the exploratory hole logs.
- 3.4.4 Jomas Associates Limited's engineers normally collect samples at appropriate depths based on field observations such as:
 - appearance, colour and odour of the strata and other materials, and changes in these;
 - the presence or otherwise of sub-surface features such as pipework, tanks, foundations and walls; and,
 - areas of obvious damage, e.g. to the building fabric.
- 3.4.5 A number of the samples were taken from the top 0-1m to aid in the assessment of the pollutant linkages identified at the site. In addition, some deeper samples were taken to aid in the interpretation of fate and transport of any contamination identified.
- 3.4.6 Soil samples were taken from across the site at various depths as shown in the exploratory hole logs (copies of which are provided in Appendix 2). The methodology used and type of samples taken were chosen to allow the Sampling category to be A or B according to EN ISO 22475-1. This in turn allows suitable geotechnical testing to be carried out.
- 3.4.7 During return groundwater monitoring visits, where groundwater samples are taken, all boreholes were purged of three well volumes prior to obtaining the sample for testing. This removes stagnant groundwater from the monitoring well.
- 3.4.8 Groundwater strikes noted during drilling, are recorded within the exploratory hole records in Appendix 2.
- 3.4.9 Samples were stored in cool boxes (<4°C) and preserved in accordance with laboratory guidance.

3.5 Sampling Limitations

- 3.5.1 WS1 and BH1 were moved slightly from where initially positioned, due to the presence of parked cars.
- 3.5.2 WS2 was moved slightly from where initially positioned, to avoid services. WS2 did not recover any material from 1.1m to 4.0m bgl.
- 3.5.3 WS6 terminated on reinforced concrete at 0.60mbgl.
- 3.5.4 The remaining boreholes were drilled at the proposed locations and to the proposed depths.

3.6 Laboratory Analysis

3.6.1 A programme of aboratory testing, scheduled by Jomas Associates Limited, was carried out on selected samples of Made Ground and natural strata.

Chemical Testing

- 3.6.2 Soil samples were submitted to i2 Analytical (a UKAS and MCerts accredited laboratory), for analysis.
- 3.6.3 The samples were analysed for a wide range of contaminants as shown in Table 3.2 below:

	No. of tests		
Test Suite	Made Ground / Topsoil	Natural	
Jomas Suite S3	2	0	
Total Organic Carbon	3	1	
Asbestos Screen & ID	6	1	
Jomas Reduced Suite S5	4	3	
Hydrocarbon Suite	4	3	
VOC Suite	1	0	
WAC	3	0	
Water Soluble Sulphate	6*	9*	

Table 3.2: Chemical Tests Scheduled

*Including samples tested for as part of Jomas Suites S3 and S5

3.6.4 The determinands contained in the basic suite are as detailed in Table 3.3 below:

Table 3.3: Basic Suite of Determinands

DETERMINAND	LIMIT OF DETECTION (mg/kg)	UKAS ACCREDITATION	TECHNIQUE
Arsenic	1	Y (MCERTS)	ICPMS
Cadmium	0.2	Y (MCERTS)	ICPMS
Chromium	1	Y (MCERTS)	ICPMS
Chromium (Hexavalent)	4	Y (MCERTS)	Colorimetry
Lead	1	Y (MCERTS)	ICPMS
Mercury	0.3	Y (MCERTS)	ICPMS
Nickel	1	Y (MCERTS)	ICPMS
Selenium	1	Y (MCERTS)	ICPMS
Copper	1	Y (MCERTS)	ICPMS
Zinc	1	Y (MCERTS)	ICPMS
Boron (Water Soluble)	0.2	Y (MCERTS)	ICPMS
pH Value	0.1 units	Y (MCERTS)	Electrometric
Sulphate (Water Soluble)	0.0125g/l	Y (MCERTS)	Ion Chromatography
Total Cyanide	1	Y (MCERTS)	Colorimetry
Speciated/Total PAH	0.05/0.80	Y (MCERTS)	GCFID
Phenols	1	Y (MCERTS)	HPLC
Total Petroleum Hydrocarbons (banded)	-	N Y (MCERTS)	Gas Chromatography

SECTION 3 GROUND INVESTIGATION

- 3.6.5 To support the selection of appropriate tier 1 screening values, 4No. samples were analysed for total organic carbon.
- 3.6.6 Laboratory test results are summarised in Section 6, with raw laboratory data included in Appendix 3.

Geotechnical Laboratory Testing

- 3.6.7 In addition to the contamination assessment, soil samples were submitted to the UKAS Accredited laboratory of i2 Analytical Ltd. for a series of analysis.
- 3.6.8 This testing was specifically designed to:
 - to classify the samples; and
 - to obtain parameters (either directly or sufficient to allow relevant correlations to be used) relevant to the technical objectives of the investigation.
- 3.6.9 The following laboratory geotechnical testing (as summarised in Table 3.4) was carried out:

BS 1377 (1990) Test Number	Test Description	Number of tests		
Part 2				
3.2	Moisture Content Determination	5		
4.3 and 5.3	Liquid and Plastic Limit Determination (Atterberg Limits)	8		
Part 7				
8	Determination of the undrained shear strength in triaxial compression with single stage loading and without measurement of pore pressure	8		

Table 3.4 Laboratory Geotechnical Analysis

- 3.6.10 The water soluble sulphate and pH results obtained as part of the chemical analysis was used in combination with BRE Special Digest 1 to allow buried concrete to be designed.
- 3.6.11 The results of the geotechnical laboratory testing are presented as Appendix 4 and discussed in Section 9 of this report.

4 **GROUND CONDITIONS**

4.1 Soil

4.1.1 Ground conditions were logged in accordance with the requirements of BS: 5930 (2015). Detailed exploratory hole logs are provided in Appendix 2. The ground conditions encountered are summarised in Table 4.1 below, based on the strata observed during the investigation.

Stratum and Description	Encountered from (m bgl)	Base of strata (m bgl)	Thickness range (m)
Reinforce concrete over dark brown sandy gravelly clay. Gravel consists of fine to coarse sub-angular to sub-rounded flint, brick and concrete. (MADE GROUND)	0.00	0.30 - 1.20	0.30 - 1.20
Brown mottled grey medium increasing to very high strength silty CLAY (LONDON CLAY FORMATION)	0.30 - 1.20	>4.45 - >24.95	>3.45 - >24.65

Table 4.1: Ground Conditions Encountered

- 4.1.2 It should be noted that the Made Ground was encountered to base of WS6 (reinforced concrete) and that the exact depth of the Made Ground in WS2 could not be determined as there was no recovery from 1.10mbgl.
- 4.1.3 In the remaining locations materials considered to represent the London Clay Formation was noted to the base of the exploratory holes.
- 4.1.4 Where buried tanks and petrol interceptors are located, the depth of Made ground will be greater.

4.2 Hydrogeology

- 4.2.1 Groundwater was not observed during drilling of the exploratory holes, though water was noted to seep into WS2 at 1.1mbgl and WS4 at 4.5mbgl.
- 4.2.2 Within WS2 this may represent a perched water table at the boundary between the Made Ground and the underlying London Clay Formation.
- 4.2.3 Groundwater strikes and groundwater monitoring are summarised below in Table 4.2, In addition, during groundwater monitorin,g product was detected in some installations, this was measured using an interface probe. The depths are also shown below.

Exploratory Hole ID	Depth to product (m bgl)	Depth to water (m bgl)	Depth to Base of Well (m bgl)	Stratum
WS1	-	Dry	5.00 - 5.02	-
WS2	1.49 - 1.56	2.23 - 3.41	3.42	London Clay Formation
WS3	-	4.66 - Dry	4.86 - 4.89	London Clay Formation
WS4	-	4.37 - Dry	4.93 - 4.94	London Clay Formation
WS5	1.48 - 1.54	1.64 - 1.85	4.92 - 4.95	London Clay Formation
BH1	-	Dry	5.07 - 5.10	-

Table 4.2: Groundwater Monitoring Records

- 4.2.4 It should be noted that the difference in ground water levels, and the encountered ground conditions suggest that the water encountered may be surface water ingress that has been unable to egress through the London Clay Formation.
- 4.2.5 It should also be noted that significant thickness of product was detected using the interface probe. These noted thickness of product may not be fully representative as the limitations of the equipment mean that it can often measure an emulsion of oil and water (i.e. oily water) as free product. In addition product can "stick" to the probe whilst it is being lowered down the hole, thus making the thickness appear greater.

4.3 Physical and Olfactory Evidence of Contamination

- 4.3.1 Water seepage into WS2 at 1.10mbgl was described as "black" and "oily". Although there was no recovery from 1.10mbgl in WS2, a single vial sample of soil was obtained at approximately 2.50mbgl. A hand-held photo-ionisation detector was used on this sample; giving a VOC reading of 18ppm.
- 4.3.2 Made Ground recovered from WS5 (0.30m 1.20m bgl) had some evidence of black staining and a hydrocarbon odour. Clay recovered from WS5 at 1.50m to 2.00m bgl had black staining and a "strong" hydrocarbon odour.
- 4.3.3 It should be noted that during the groundwater monitoring, an interface probe detected significant thickness of free product at these two locations (see above).
- 4.3.4 Visual or olfactory evidence of contamination was not reported in the other exploratory holes.

5 RISK ASSESSMENT – ANALYTICAL FRAMEWORK

5.1 Context and Objectives

- 5.1.1 This section seeks to evaluate the level of risk pertaining to human health and the environment which may result from both the existing use and proposed future use of the site. It makes use of the site investigation findings, as described in the previous sections, to evaluate further the potential pollutant linkages identified in the desk study. A combination of qualitative and quantitative techniques is used, as described below.
- 5.1.2 The purpose of generic quantitative risk assessment is to compare concentrations of contaminants found on site against screening level generic assessment criteria (GAC) to establish whether there are actual or potential unacceptable risks. It also determines whether further detailed assessment is required. The approaches detailed all broadly fit within a tiered assessment structure in line with the framework set out in the Department of Environment, Food and Rural Affairs (DEFRA), EA and Institute for Environment and Health Publication, Guidelines for Environmental Risk Assessment and Management.
- 5.1.3 It should be noted that the statistical tests carried out in this report in accordance with CL:AIRE and CIEH (2008) recommendations, are for guidance purposes only and the conclusions of this report should be approved by the local authority prior to any redevelopment works being undertaken.

5.2 Analytical Framework – Soils

- 5.2.1 There is no single methodology that covers all the various aspects of the assessment of potentially contaminated land and groundwater. Therefore, the analytical framework adopted for this investigation is made up of a number of procedures, which are outlined below. All of these are based on a Risk Assessment methodology centred on the identification and analysis of Source – Pathway – Receptor linkages.
- 5.2.2 The CLEA model provides a methodology for quantitative assessment of the long term risks posed to human health by exposure to contaminated soils. Toxicological data have been used to calculate Soil Guideline Values (SGV) for individual contaminants, based on the proposed site use; these represent minimal risk concentrations and may be used as screening values.
- 5.2.3 In the absence of any published SGVs for certain substances, or where the assumptions made in generating the SGVs do not apply to the site, Jomas Associates Limited have obtained Tier 1 screening values for initial assessment of the soil, based on available current UK guidance including the LQM/CIEH S4ULs and DEFRA C4SL. Site-specific assessments are undertaken wherever possible and/or applicable. All assessments are carried out in accordance with the CLEA protocol.
- 5.2.4 CLEA requires a statistical treatment of the test results to take into account the normal variations in concentration of potential contaminants in the soil and allow comparisons to be made with published guidance.
- 5.2.5 The assessment criteria used for the screening of determinands within soils are identified within Table 5.1.

Substance Group	Determinand(s)	Assessment Criteria Selected
Organic Substances		
Non-halogenated Hydrocarbons	Total Petroleum Hydrocarbons (TPHCWG banded)	S4UL
	Total Phenols	S4UL
Polycyclic Aromatic Hydrocarbons (PAH-16)	Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenzo(a,h)anthracene, Benzo(ghi)perylene	S4UL
Volatile Organic Compounds (VOCs/sVOCs).	Toluene, Ethylbenzene, Benzene, Xylenes	S4UL
Inorganic Substances		
Heavy Metals and Metalloids	Arsenic, Cadmium, Chromium, Lead, Mercury, Nickel, Selenium, Copper, Zinc	S4UL
	Copper, Zinc, Nickel	BS: 3882 (2015).
Cyanides	Free Cyanide	CLEA v1.06
Sulphates	Water Soluble Sulphate	BRE Special Digest 1:2005

Table 5.1: Selected Assessment Criteria – Contaminants in Soils

5.3 BRE

5.3.1 The BRE Special Digest 1:2005, 'Concrete in Aggressive Ground' is used with soluble sulphate and pH results to assess the aggressive chemical environment of future underground concrete structures at the site.

5.4 Analytical Framework – Groundwater and Leachate

- 5.4.1 The requirement to protect groundwater from pollution is outlined in Groundwater protection: Principles and practice (GP3, EA, August 2013, v1.1).
- 5.4.2 Where undertaken, the groundwater quality analysis comprises a Level 1 assessment in accordance with the EA Remedial Targets Methodology Document (EA, 2006).
- 5.4.3 The criteria used by Jomas' in the Level 1 assessment of groundwater and leachate quality are shown in Table 5.2.

Table 5.2: Selected Assessment Criteria – Contaminants in Water

Substance Group	Determinand(s)	Assessment Criteria Selected
Metals	Arsenic, Copper, Cyanide, Mercury, Nickel, Lead, Zinc, Chromium	EQS/DWS
	Selenium	DWS
PAHs	Sum of Four – benzo(b)fluoranthene, benzo(ghi)perylene, benzo(k)fluoranthene, indeno(1,2,3- c,d)pyrene	DWS
PAHs	Benzo(a)pyrene,	DWS
PAHs	Remainder	LEC
Total Petroleum Hydrocarbons	Aliphatic C5-C6, Aliphatic >C6-C8, Aliphatic >C8-C10. Aliphatic >C10-C12, Aliphatic >C12-C16, Aliphatic >C16-C21, Aromatic C5-C7, Aromatic >C7-C8, Aromatic >C10-C12, Aromatic >C10-C12, Aromatic >C12-C16, Aromatic >C16-C21, Aromatic >C16-C21, Aromatic >C21-C35	DWS/WHO
Benzene	Benzene	DWS
Toluene	Toluene	EQS
Ethylbenzene	Ethylbenzene	EQS
Xylene	Xylene	EQS
Oxygen Demand	Chemical Oxygen Demand and Biological Oxygen Demand	Urban Waste Water Treatment (England and Wales) Regulations

Environmental Quality Standards EQS

Environmental Quality Standards (EQS) have been released by the EA for dangerous substances, as identified by the EC Dangerous Substances Directive. EQS can vary for each substance, for the hardness of the water and can be different for fresh, estuarine or coastal waters.

Lowest Effect Concentration (LEC)

These criteria relate to the concentration of PAHs in groundwater. They are taken from the EA R&D Technical Report P45 – Polycyclic Aromatic Hydrocarbons (PAH): Priorities for Environmental Quality Standard Development (2001).

WHO Health

These screening criteria have been taken from the World Health Organisation Guidelines for Drinking Water Quality (1984). The health value is a guideline value representing the concentration of a contaminant that does not result in any significant risk to the receptor over a lifetime of exposure.

Further criteria have been obtained from 'Petroleum Products in Drinking-water' -Background document for development of WHO Guidelines for Drinking-water Quality (2005).

UK Drinking Water Standards (DWS)

These comprise screening criteria provided by the Drinking Water Inspectorate (DWI) in the Water Supply (Water Quality) Regulations 2006,

<u>Urban Waste Water Treatment (England and Wales) Regulations - UWWT Regs</u> The Urban Waste Water Treatment (England and Wales) Regulations SI/1994/2841 as amended by SI/2003/1788 sets down minimum standards for the discharge of treated effluent from waste water treatment works to inland surface waters, groundwater, estuaries or coastal waters. Standards of (125mg/L) COD and (25mg/L) BOD have been set.

5.5 Site Specific Criteria

5.5.1 The criteria adopted in the selection of correct screening criteria from published reports as previously described, are provided within Tables 5.3.

Input Details	Value
Land Use	Residential with plant uptake
Soil Organic Matter	1%

Table 5.3: Site Specific Data

- 5.5.2 As the published reports only offer the option of selecting an SOM value of 1%, 2.5% or 6%, an SOM value of 1% has been used for the generation of generic assessment criteria, as 1.33% was the mean value obtained from laboratory analysis.
- 5.5.3 It is understood that the existing buildings on site are to be demolished and a new fourstorey residential development will be constructed. Private gardens are proposed. As a result, the site has been assessed as residential with plant uptake.

6 GENERIC QUANTITATIVE RISK ASSESSMENT

6.1 Screening of Soil Chemical Analysis Results – Human Health Risk Assessment

- 6.1.1 To focus on the contaminants of potential concern (COPC), the results have been compared with the respective SGV/GAC. Those contaminants which exceed the SGV/GAC are considered to be the COPC. Those which do not exceed the respective SGV/GAC are not considered to be COPC and as such do not require further assessment in relation to the proposed development of the site.
- 6.1.2 Laboratory analysis for soils are summarised in Tables 6.1 to 6.4. Raw laboratory data is included in Appendix 3.

Table 6.1: Soil Laboratory Analysis Results - Metals, Metalloids, Phenol, Cyanide

Determinand	Unit	No. samples tested		ening eria	Min	Мах	No. Exceeding
Arsenic	mg/kg	8	S4UL	37	9.5	22	0
Cadmium	mg/kg	8	S4UL	11	<0.2	0.4	0
Chromium	mg/kg	8	S4UL	910	25	64	0
Lead	mg/kg	8	C4SL	200	19	760	2No.; WS1 at 0.25mbgl WS7 at 0.40mbgl
Mercury	mg/kg	8	S4UL	40	<0.3	<0.3	0
Nickel	mg/kg	8	S4UL	180	24	51	0
Copper	mg/kg	8	S4UL	2400	22	270	0
Zinc	mg/kg	8	S4UL	3700	78	240	0
Total Cyanide ^A	mg/kg	8	CLEA v 1.06	33	<1	2	0
Selenium	mg/kg	8	S4UL	250	<1.0	<1.0	0
Boron Water Soluble	mg/kg	8	S4UL	290	2.2	16	0
Phenols	mg/kg	8	S4UL	120	<1.0	<1.0	0

Notes: ^A Generic assessment criteria derived for free inorganic cyanide.

Table 6.2: Soil Laboratory Analysis Results – Polycyclic Aromatic Hydrocarbons (PAHs)

Determinand	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
Naphthalene	mg/kg	8	S4UL	2.3	<0.05	3.6	1No.; WS2 at 0.50mbgl
Acenaphthylene	mg/kg	8	S4UL	170	<0.05	0.49	0
Acenaphthene	mg/kg	8	S4UL	210	<0.05	2.1	0
Fluorene	mg/kg	8	S4UL	170	<0.05	1.6	0
Phenanthrene	mg/kg	8	S4UL	95	<0.05	18	0

138-140 Highgate Road, Highgate, London

Geo-environmental and Geotechnical Assessment P1323J1303 – March 2018 Ltd

SECTION 6 GENERIC QUANTITATIVE RISK ASSESSMENT

Determinand	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
Anthracene	mg/kg	8	S4UL	2400	<0.05	4.7	0
Fluoranthene	mg/kg	8	S4UL	280	<0.05	21	0
Pyrene	mg/kg	8	S4UL	620	<0.05	17	0
Benzo(a)anthracene	mg/kg	8	S4UL	7.2	<0.05	13	3No.; WS1 at 0.25mbgl WS2 at 0.50mbgl WS7 at 0.40mbgl
Chrysene	mg/kg	8	S4UL	15	<0.05	8.0	0
Benzo(b)fluoranthene	mg/kg	8	S4UL	2.6	<0.05	10	3No.; WS1 at 0.25mbgl WS2 at 0.50mbgl WS7 at 0.40mbgl
Benzo(k)fluoranthene	mg/kg	8	S4UL	77	<0.05	4.5	0
Benzo(a)pyrene	mg/kg	8	S4UL	2.2	<0.05	10	3No.; WS1 at 0.25mbgl WS2 at 0.50mbgl WS7 at 0.40mbgl
Indeno(123-cd)pyrene	mg/kg	8	S4UL	27	<0.05	4.6	0
Dibenzo(ah)anthracene	mg/kg	8	S4UL	0.24	<0.05	0.94	3No.; WS1 at 0.25mbgl WS2 at 0.50mbgl WS7 at 0.40mbgl
Benzo(ghi)perylene	mg/kg	8	S4UL	320	<0.05	4.2	0
Total PAH	mg/kg	8	-	-	<0.80	124	-

Table 6.3: Soil Laboratory Analysis Results – Total Petroleum Hydrocarbons (TPH)

TPH Band	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
C8-C10	mg/kg	2	S4UL	27	<0.1	<0.1	0
>C ₁₀ -C ₁₂	mg/kg	2	S4UL	74	<2.0	6.6	0
>C ₁₂ -C ₁₆	mg/kg	2	S4UL	140	11	27	0
>C ₁₆ -C ₂₁	mg/kg	2	S4UL	260	83	190	0
>C ₂₁ -C ₃₅	mg/kg	2	S4UL	1100	220	690	0
Total TPH	mg/kg	2	-	-	316.1	913.7	-

Note: *The lower value of guidelines for Aromatic/Aliphatics has been selected

TPH Band	Unit	No. Samples Tested	Screening	Screening Criteria		Мах	No. Exceeding
>C5-C6 Aliphatic	mg/kg	7	S4UL	42	<0.001	<0.001	0
>C6-C8 Aliphatic	mg/kg	7	S4UL	100	<0.001	<0.001	0
>C8-C10 Aliphatic	mg/kg	7	S4UL	27	<0.001	<0.001	0
>C10-C12 Aliphatic	mg/kg	7	S4UL	130	<1.0	42	0
>C12-C16 Aliphatic	mg/kg	7	S4UL	1100	<2.0	130	0
>C16-C35 Aliphatic	mg/kg	7	S4UL	65000	<16.0	4290	0
>C5-C7 Aromatic	mg/kg	7	S4UL	70	<0.001	<0.001	0
>C7-C8 Aromatic	mg/kg	7	S4UL	130	<0.001	<0.001	0
>C8-C10 Aromatic	mg/kg	7	S4UL	34	<0.001	<0.001	0
>C10-C12 Aromatic	mg/kg	7	S4UL	74	<1.0	5.8	0
>C12-C16 Aromatic	mg/kg	7	S4UL	140	<2.0	50	0
>C16-C21 Aromatic	mg/kg	7	S4UL	260	<10	160	0
>C21-C35 Aromatic	mg/kg	7	S4UL	1100	<10	2000	1No.; WS5 at 1.60mbgl
Total TPH (Ali/Aro)	mg/kg	7	-	-	<20	6700	-

Table 6.4: Soil Laboratory Analysis Results – Total Petroleum Hydrocarbons (TPHCWG)

6.2 Volatile Organic Compounds

6.2.1 In addition to the suites outlined previously, 7No. samples were tested for the presence of volatile organic compounds including BTEX compounds (benzene, toluene, ethylbenzene, xylene). No VOCs were reported above the laboratory detection limit within tested samples.

6.3 Soil Source Vapour Assessment

6.3.1 As outlined in the tables above, a number of compounds have been found in excess of their generic screening criteria for the protection of human health within a 'residential with plant uptake' end-use scenario. The generic screening criteria considers all possible pathways between the source and the receptor. In order to assess potential risks from inhalation of vapour, each compound that has been found in excess of its GAC will be assessed in terms of the contribution to total exposure from vapour inhalation inside a structure as reported within the LQM/CIEH S4UL document. Where a significant proportion of the total exposure is reported from vapour inhalation, there could be a potential risk from vapour inhalation.

Table 6.5: Soil Laboratory Analysis Results – Contribution to Total Exposure from Vapour Inhalation (Indoor)

Compound	Contribution of Vapour Inhalation to Total Exposure (%)	Screening Criteria (mg/kg)	Maximum recorded value (mg/kg)	Potential Vapour Risk?
Naphthalene	64.7	2.3	3.6	✓
Benzo(a)anthracene	0.1	11	13	Х
Benzo(b)fluoranthene	<0.1	3.9	10	Х
Benzo(a)pyrene	0.0	3.2	10	Х
Dibenzo(ah)anthracene	<0.1	0.31	0.94	Х
Aromatic C21-C35	0.0	1900	2000	Х

- 6.3.2 As shown in the table above, naphthalene has significant proportion of its total exposure from vapour inhalation and has been reported in excess of the screening criteria, and therefore a potential vapour risk must be assumed to exist.
- 6.3.3 The well showing the highest levels of these contaminants (WS2) was positioned to target an underground petrol interceptor, and therefore removal of this feature and impacted soils may remove the source of contamination and therefore mitigate the vapour risks described above.

6.4 Asbestos in Soil

6.4.1 7No. samples of the Made Ground were screened in the laboratory for the presence of asbestos. The results of the analysis is summarised below in Table 6.6 below

Sample	Screening result.	Quantification result (%)	Comments
WS1 – 0.25mbgl	None Detected	N/A	N/A
WS2-0.50mbgl	Detected	<0.001	Chrysotile, amosite - loose fibres
WS3 – 0.40mbgl	Detected	<0.001	Chrysotile - loose fibres
WS4 – 0.70mbgl	None Detected	N/A	N/A
WS5 – 1.00mbgl	None Detected	N/A	N/A
WS5 – 0.50mbgl	None Detected	N/A	N/A
WS7 – 0.40mbgl	Detected	<0.001	Chrysotile - loose fibres

Table 6.6: Asbestos Analysis – Summary

- 6.4.2 The results reported an asbestos content of below 0.1%, the fibre content at which arisings are considered hazardous for the purpose of disposal.
- 6.4.3 It should be noted that for the purposes of human health assessment there is no level of asbestos below which it is deemed the materials are "safe".

6.5 Statistical Analysis

- 6.5.1 Given the likely point sources of contamination, i.e. former and existing buried tanks and petrol interceptors, it is considered that undertaking statistical analysis would be of little benefit for the samples showing elevated hydrocarbons and PAHs.
- 6.5.2 In the case of Lead, as can be seen above asbestos was noted in one of the samples that exhibited elevated lead concentrations. Consequently even if statistical analysis showed that the recorded concentrations were not of concern, some remedial action would be required.

6.6 Screening of Groundwater Chemical Analysis Results

- 6.6.1 A sample of groundwater obtained from the borehole installation WS4 was submitted for chemical analysis. The sample was obtained using "low flow" methodology, which allows for reduced sediment sampling relative to traditional bailers, and produces the most representative samples.
- 6.6.2 Samples could not be obtained from WS1, WS3 or BH1 because no water was reported in the wells.
- 6.6.3 The results of the laboratory testing are summarised in Tables 6.7 and 6.8 below, with the raw chemical testing data presented in Appendix 3.

Determinand	Unit	No. samples tested	Screenii	Screening Criteria		No. of Exceedances
Naphthalene	µg/l	1	EQS	2.4	<0.01	0
Acenaphthylene	µg/l	1	-	-	<0.01	0
Acenaphthene	µg/l	1	-	-	<0.01	0
Fluorene	µg/l	1	-	-	<0.01	0
Phenanthrene	µg/l	1	-	-	<0.01	0
Anthracene	µg/l	1	EQS	0.1	<0.01	0
Fluoranthene	µg/l	1	EQS	0.0063	<0.01	0
Pyrene	µg/l	1	-	-	<0.01	0
Benzo(a)anthracene	µg/l	1	-	-	<0.01	0
Chrysene	µg/l	1	-	-	<0.01	0
Sum of four Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Indeno(123-cd)pyrene	µg/l	1	DWS	0.1	<0.04	0
	µg/l	1	DWS	0.01	<0.01	0
Benzo(a)pyrene	µg/l	1	EQS	0.00017	<0.01	0
Dibenzo(ah)anthracene	µg/l	1	-	-	<0.01	0

Table 6.7: Groundwater Analysis Results – Polycyclic Aromatic Hydrocarbons (PAHs)

* Laboratory method detection limit exceeds the EQS.

Table 6.8: Groundwater Analysis Results – TPHCWG & BTEX compounds– Controlled Waters

Determinand	Unit	No. Samples tested	Screening Criteria		Result	No. of Exceedances
Banzana	µg/l	1	EQS	10	<1.0	0
Benzene	µg/l	1	DWS	1	<1.0	0
Toluene	µg/l	1	DWS	700	<1.0	0
roluene	µg/l	1	EQS	74	<1.0	0
Ethyl benzene	µg/l	1	DWS	300	<1.0	0
Xylenes	µg/l	1	DWS	500	<2.0	0
MTBE	µg/l	1	DWS	15	<1.0	0
>C5-C6 Aliphatic	µg/l	1	WHO	15000	<1.0	0
>C6-C8 Aliphatic	µg/l	1	WHO	15000	<1.0	0
>C8-C10 Aliphatic	µg/l	1	WHO	300	<1.0	0
>C10-C12 Aliphatic	µg/l	1	WHO	300	<10	0
>C12-C16 Aliphatic	µg/l	1	WHO	300	<10	0
>C16-C21 Aliphatic	µg/l	1	WHO	-	<10	0
>C21-C35 Aliphatic	µg/l	1	WHO	90	<10	0
>C5-C7 Aromatic	µg/l	1	WHO	10	<1.0	0
>C7-C8 Aromatic	µg/l	1	WHO	700	<1.0	0
>C8-C10 Aromatic	µg/l	1	WHO	300	<1.0	0
>C10-C12 Aromatic	µg/l	1	WHO	90	<10	0
>C12-C16 Aromatic	µg/l	1	WHO	90	<10	0
>C16-C21 Aromatic	µg/l	1	WHO	90	<10	0
>C21-C35 Aromatic	µg/l	1	WHO	90	<10	0

6.6.4 In addition to the suites outlined above, the water sample was also analysed for a suite of volatile organic compounds. None of the compounds analysed for were reported above the laboratory method detection limit.

6.7 Light Non-Aqueous Phase Liquid (LNAPL)

- 6.7.1 Water was not obtained from WS2 or WS5 but a sample of Light Non-Aqueous Phase Liquid (LNAPL) was obtained for chemical testing.
- 6.7.2 2No. samples of LNAPL obtained from WS2 and WS5 were submitted to the laboratory for TPH chromatogram and product ID analysis. For both samples tested, the Total Ion Count (TIC) trace shows a carbon range from C10 to >C40 with both aromatic and aliphatic product sources. The traces do not match any standard product profiles but are indicative of lube oil.

0

6.8 Screening of Soil Chemical Analysis Results - Potential Risks to Plant Growth

- 6.8.1 Zinc, copper and nickel are phytotoxins and could therefore inhibit plant growth in soft landscaped areas. Concentrations measured in soil for these determinands have been compared with the pH dependent values given in BS: 3882 (2015).
- 6.8.2 Adopting a pH value of greater than 7, as indicated by the results of the laboratory analysis, the following is noted;

Table 6.9: Soil Laboratory Analysis Results – Phytotoxic Determinands								
Determinand	Threshold level (mg/kg)	Min Max (mg/kg) (mg/kg)		No. Exceeding				
Zinc	300	78	240	0				
Copper	200	22	270	0				

51

24

6.9 **Screening for Water Pipes**

Nickel

6.9.1 The results of the analysis have been assessed for potential impact upon water supply pipes. Table 6.10 below summarises the findings of the assessment:

110

Determinand	Threshold adopted for PE (mg/kg)	Min Value for site data (mg/kg)	Max Value from site data (mg/kg)
Total VOCs	0.5	<0.056*	<0.056*
BTEX	0.1	<0.005*	<0.005*
MTBE	0.1	<0.001*	<0.001*
EC5-EC10	1	<0.006*	<0.1*
EC10-EC16	10	<6.0*	227.4
EC16-EC40	500	<36.0*	6420
Naphthalene	5	<0.05*	3.6
Phenols	2	<1.0*	<1.0*

Table 6.10: Screening Guide for Water Pipes

*Laboratory detection limit

- 6.9.2 The above results indicate that upgraded pipework will be required.
- 6.9.3 However, it should be noted that following remediation of the site this assessment may change.
- 6.9.4 The water supply pipe requirements for this site should be discussed at an early stage with the relevant Utility provider.

6.10 Waste Characterisation and Disposal

6.10.1 The following comments are given as guidance and should be confirmed by the waste disposal facility accepting the waste. The waste disposal facility may have their own classification methodology and are under no obligation to honour the comments given below.

- 6.10.2 3No. soil samples were submitted to a UKAS and MCERTS accredited laboratory for Waste Acceptance Criteria testing. The WAC results indicate that soil arisings from WS4 at 0.70mbgl and WS7 at 0.90mbgl meet the criteria for disposal at an "inert waste landfill". The results indicate that soil arisings from WS5 at 0.50mbgl meet the criteria for disposal as "stable non-reactive hazardous waste in non-hazardous landfill".
- 6.10.3 In addition to the above, the accepting waste disposal facility must be provided with all chemical results (Tables 6.1 6.6 and Appendix 3) for review.

7 SOIL GAS RISK ASSESSMENT

7.1 Soil Gas Results

- 7.1.1 Four return monitoring visits have been undertaken from 21st February to 15th March 2018, to monitor wells installed within boreholes at the site for soil gas concentrations and groundwater levels.
- 7.1.2 During these visits atmospheric pressure ranged between 985mb and 1026mb.
- 7.1.3 The results of the monitoring undertaken are summarised in Table 7.1 below, with the monitoring records presented in Appendix 5.

Hole No.	CH₄ (%)	CO₂ (%)	O2 (%)	H₂S (ppm)	VOCs (ppm)	Peak Flow Rate (I/hr)	Depth to product (mbgl)	Depth to water (mbgl)	Depth of installation (mbgl)
WS1	0.0	2.1 - 3.5	18.7 - 20.3	0	0 - 8	0.0 - +0.1	-	Dry	5.00 - 5.02
WS2	0.0 - 0.1	0.2 - 0.7	20.1 - 21.6	0	6 - 21	-0.1 - +0.1	1.49 - 1.56	2.23 - 3.41	3.42
WS3	0.0	0.3 - 1.3	20.3 - 20.9	0	0 - 4	0.0 - +0.1	-	4.66 - Dry	4.86 - 4.89
WS4	0.0	0.5 - 2.3	16.4 - 20.3	0	0 - 5	0.0 - +0.4	-	4.37 - Dry	4.93 - 4.94
WS5	3.0 - 4.9	0.8 - 1.0	0.4 - 4.4	0 - 1	27 - 145	-0.4 - 0.0	1.48 - 1.54	1.64 - 1.85	4.92 - 4.95
BH1	0.0	1.1 - 1.9	18.9 - 19.5	0	0 - 5	+0.1 - +0.2	-	Dry	5.07 - 5.10

Table 7.1: Summary of Gas Monitoring Data

7.2 Screening of Results

- 7.2.1 As shown in Table 7.1, methane has been reported to a maximum concentration of 4.9% v/v. Carbon dioxide has been reported to a maximum concentration of 3.5% v/v. Screening of the monitoring well headspaces with a photo-ionisation detector (PID) has detected maximum Volatile organic compound (VOC) concentration to a maximum level of 145 ppm. A maximum flow rate of +0.4l/hr has been reported.
- 7.2.2 In the assessment of risks posed by hazardous ground gases and selection of appropriate mitigation measures, BS: 8485 (2015) identifies four types of development, termed Type A to Type D. Type A buildings are defined as

"Private ownership with no building management controls on alterations to the internal structure, the use of rooms, the ventilation of rooms or the structural fabric of the building. Some small rooms present. Probably conventional building construction (rather than civil engineering). Examples include private housing and some retail premises."

- 7.2.3 Type A has been adopted as the relevant category for the proposed development.
- 7.2.4 The soil gas assessment method is based on that proposed by Wilson & Card (1999), which was a development of a method proposed in CIRIA publication R149 (CIRIA, 1995). The method uses both gas concentrations and borehole flow rates to define a characteristic situation based on the limiting borehole gas volume flow for methane and carbon dioxide. In both these methods, the limiting borehole gas volume flow is renamed as the Gas Screening Value (GSV).

7.2.5 The Gas Screening Value (litres of gas per hour) is calculated by using the following equation

GSV = (Concentration/100) X Flow rate

Where concentration is measured in percent (%) and flow rate is measured in litres per hour (I/hr)

- 7.2.6 The Characteristic Situation is then determined from Table 8.5 of CIRIA C665.
- 7.2.7 To accord with C665, worst case conditions are used in the calculation of GSVs for the site.
- 7.2.8 A worst case flow rate of 0.4l/hr (maximum reported) will be used in the calculation of GSVs for the site. The Characteristic Situation is then determined from Table 8.5 of CIRIA C665.
- 7.2.9 To accord with C665, worst case conditions are used in the calculation of GSVs for the site. These have been summarised below in Table 7.2

Gas	Concentration (v/v %)	Peak Flow Rate (l/hr)	GSV (I/hr)	Characteristic Situation (after CIRIA C665)
CO ₂	3.5	0.4	0.014	1
CH₄	4.9	0.4	0.0196	1

Table 7.2: Summary of Gas Monitoring Data

- 7.2.10 The methodology set out in BS 8485 (2015) has been used for determining the required gas protection measures. Although the site is a CS1 based on GSV calculations, concentrations of CH₄ were reported greater than 1.0% v/v, and therefore consideration must be given to increasing this to CS2. Specialist ground gas risk assessments may prove that this is not necessary.
- 7.2.11 Elevated methane was only detected in WS5 which was positioned to target two former kerosene and diesel tanks. Product was also noted within the well. Therefore, it is assumed that the source of ground gas is due to hydrocarbon contamination from these tanks. A course of ground gas monitoring should be undertaken following removal of tanks and any remedial work undertaken at the site to remove the potential source of elevated methane.
- 7.2.12 A CS2 site on a Type A development requires a minimum of 3.5 protection points in accordance with B8485.
- 7.2.13 A basement is to be formed under approximately half of the building due to the topography. Assuming the basement floor and walls conform to BS 8102:2009 Grade 2 waterproofing, then this will provide the site with 2 protection points. If basement floor and walls conform to BS 8102:2009 Grade 3 waterproofing, this will provide 2.5 protection points.
- 7.2.14 This can be achieved in a number of ways, within BS8485 it is recommended that a range of protection measures are utilised with a minimum of two separate methods chosen from the three groupings (Structural, Ventilation and Barrier).

Protection Measures	BS 8485 Score
<u>Structural</u> Cast in situ monolithic reinforced ground bearing raft or reinforced cast in situ suspended floor slab with minimal penetrations	1.5
Ventilation Active positive pressurization by the creation of a blanket of external fresh air beneath the building floor slab by pumps supplying air to points across the central footprint of the building into a permeable layer, usually formed of a thin geocomposite blanket	2.5
 Barrier Gas/hydrocarbon vapour resistant membrane meeting all of the following criteria: sufficiently impervious to the gases with a methane gas transmission rate <40.0 ml/day/m2/atm (average) for sheet and joints (tested in accordance with BS ISO 15105-1 manometric method); sufficiently durable to remain serviceable for the anticipated life of the building and duration of gas emissions; sufficiently strong to withstand in-service stresses (e.g. settlement if placed below a floor slab); sufficiently strong to withstand the installation process and following trades until covered (e.g. penetration from steel fibres in fibre reinforced concrete, penetration of reinforcement ties, tearing due to working above it, dropping tools, etc); capable, after installation, of providing a complete barrier to the entry of the relevant gas; and verified in accordance with CIRIA C735 	2
MINIMUM REQUIRED TOTAL	3.5

Table 7.3: Recommended Gas Protection Measures

- 7.2.15 During construction where personnel are required to enter excavations of greater than 1.2m the air quality (Carbon Dioxide, Methane and Oxygen as a minimum) should be regularly checked prior and during person entry. Appropriate precautions, including but not limited to, venting, PPE and gas alarms should be undertaken
- 7.2.16 Any permanent excavations such as manholes, inspection chambers or other void spaces formed beneath the sites ground surface are potential ground gas traps and precautions, as per above, are considered the minimum necessary prior to person entry.
- 7.2.17 BS 8576:2013 has been used to derived threshold levels for Carbon Monoxide and Volatile Organic Compounds.
- 7.2.18 Given the recorded levels it is not considered that additional protection measures need to be incorporated to protect end users from the recorded Carbon Monoxide concentrations.

7.2.19 PID screening of the monitoring well headspace has revealed maximum concentrations of VOCs of 145ppm. No VOCs were detected in soils or water tested in the laboratory. The likely source of elevated VOCs is the identified LNAPL encountered within WS5. It is considered that the PID screening of monitoring well confirms the assessment that risks to human health receptors via vapour inhalation pathways require further evaluation once remedial works are undertaken.

8 SUMMARY OF RESULTS

8.1 Land Quality Impact Summary

- 8.1.1 Following the ground investigation, the following is noted:
 - It is understood that the proposed development will involve the demolition of the existing building and construction of a new four-storey residential development. The new development will include a lower ground floor (half of which is below ground due to slope of ground) and a full single -storey basement below. The new building will be located in approximately the same footprint as the existing building, but the basement level will extend out to under most of the site. Proposed plans indicate that private garden will be included.
 - Following generic risk assessments, elevated concentrations of lead, naphthalene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, dibenzo(ah)anthracene and C21-C35 aromatic hydrocarbons were detected in soils in excess of generic assessment criteria for the protection of human health within a 'residential with plant uptake' end-use scenario.
 - Asbestos in the form of chrysotile and amosite loose fibres were detected in 3No. samples analysed in the laboratory. These were quantified to <0.001%, lesser than the 0.1% fibre content where arisings are considered hazardous for the purpose of disposal.
 - Given the locations of the soil exceedances in relation to the location of suspected underground fuel tanks, it is considered likely that underground tanks are the source of the hydrocarbon contamination in soil. Removal of these tanks and associated impacted soil will be required to partly address these risks.
 - A basement is proposed under the majority of the site. As a result, soils will be removed down to approximately 3.5-4.0m bgl. This removal of soil would also remove significant amounts of (if not all of) the contaminated soils.
 - Due to the presence of asbestos, any areas of proposed soft landscaping should comprise at least 600mm of clean imported soil placed on a break layer. Where crush concrete is used as a break layer, a 200mm thick layer may be installed as part of the 600mm cover.
 - Groundwater analysis has reported no concentrations of contaminants above the laboratory detection limit. Due to several installations reported as 'dry' and the underlying geology (London Clay - unproductive strata) it is considered that the water encountered represents surface water ingress as oppose to groundwater. Of greater concern is the "free product" reported to be floating on the surface of the water within WS2 and WS5. The source of this product is likely to be water migrating though the contaminated Made Ground. Any product encountered during the tank removal works must also removed. Due to the underlying London Clay, identified as unproductive strata, the product and contaminants within soil are unlikely to migrate to impact off-site controlled waters receptors.
 - Calculating the Gas Screening Value using worst case results indicates Characteristic Situation 1. However, concentrations of methane are raised at

the site, with corresponding depleted oxygen, meaning raising the site to CS2 must be considered.

- It is noted that the elevated levels were only recorded in a single well (WS5) in close proximity to the underground tank locations, with product also reported within the installation. The other wells on site reported significantly reduced gas readings. It is possible that following remediation of the site, including the removal of the underground tanks and associated contaminated soils and free product, future monitoring may be able to reduce the level of gas protection required. Given the levels of potentially volatile contaminants identified within soil, a vapour resistant membrane may be required within the proposed structures.
- As with any ground investigation, the presence of further hotspots between sampling points cannot be ruled out.
- A remediation strategy and subsequent verification report will be required.
- 8.1.2 The above conclusions are made subject to approval by the statutory regulatory bodies.

8.2 Review of Pollutant Linkages Following Site Investigation

8.2.1 The site CSM has been revised and updated from that suggested in the desk study in view of the ground investigation data, including soil laboratory analysis results. Table 8.1 highlights whether pollutant linkages identified in the original CSM are still relevant following the risk assessment, or whether pollutant linkages, not previously identified, exist.

Potential Source (from desk study)	Pathway	Receptor	Relevant Pollutant Linkage?	Comment
 Potential for hydrocarbon contaminated ground associated with previous site use as fuel station/garage – on site (S1) Potential for Made Ground associated with previous development operations – on site (S2) Potential buried tanks associated with former use 	 Ingestion and dermal contact with contaminated soil (P1) Inhalation or contact with potentially contaminated dust and vapours (P2) Permeation of water pipes and attack on concrete foundations by aggressive soil conditions (P6) 	 Construction workers (R1) Maintenance workers (R2) Neighbouring site users (R3) Future site users (R4) Building foundations and on site buried services (water mains, electricity and sewer) (R5) 	✓	see 8.1 above for remedial measures. A remediation strategy and subsequent verification report will be required. The findings of this report should be included in the construction health and safety file, with adequate measures put in place for the protection of construction and maintenance workers.
 as a fuel station/garage – on site (S3) Current and previous industrial use – off site (S4) 	 Accumulation and migration of soil gases (P5) 		~	Gas Protection measures are required. However, additional monitoring undertaken post-remediation may reduce this or prove otherwise.
 Potential asbestos containing materials within existing buildings – on site (S5) Potential asbestos impacted soils from demolition of previous buildings – on site (S6) Potential ground gas generation associated with hydrocarbon impacted soils from historic use as fuel station - on site (S7) 	 Leaching through permeable soils, migration within the vadose zone (i.e., unsaturated soil above the water table) and/or lateral migration within surface water, as a result of cracked hardstanding or via service pipe/corridors and surface water runoff. (P3) Horizontal and vertical migration of contaminants within groundwater (P4) 	 Neighbouring site users (R3) Building foundations and on site buried services (water mains, electricity and sewer) (R5) Controlled Waters (Culvert) (R6) 	*	Remedial measures required and set out in Section 8.1. All free product should be removed form site. Contact should be made with relevant utility providers to confirm if upgraded materials are required. It should be noted that remediation may negate the requirement for this.

9 GEOTECHNICAL ENGINEERING RECOMMENDATIONS

9.1 Ground Investigation Summary

- 9.1.1 No detailed structural engineering design information, with respect to the type of construction and associated structural loadings, was provided at the time of preparing this report. Consequently, a detailed discussion of all the problems that may arise during the proposed redevelopment scheme is beyond the scope of this report.
- 9.1.2 Practical solutions to the difficulties encountered, both prior to, and during construction, are frequently decided by structural constraints or economic factors. For these reasons, this discussion is predominantly confined to remarks of a general nature, which are based on site conditions encountered during the intrusive investigations.
- 9.1.3 It is understood that the proposed development will involve the demolition of the existing building and construction of a new four-storey residential development. The new development will include a lower ground floor (half of which is below ground due to slope of ground) and a full single -storey basement below. The new building will be located in approximately the same footprint as the existing building, but the basement level will extend out to under most of the site. Proposed plans indicate that private garden will be included.

9.2 Geotechnical Classification

- 9.2.1 At the Desk Study stage this development was deemed to be a GC2 development in accordance with BS: 1997.
- 9.2.2 The findings of the investigation undertaken and discussed previously does not change this assessment.

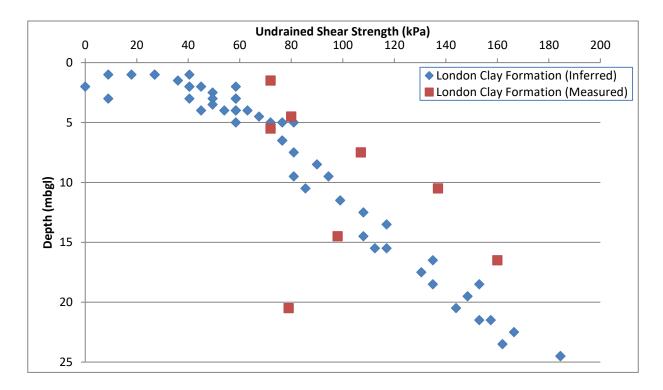
9.3 Data Summary

- 9.3.1 The results of the ground investigation revealed a ground profile comprising a variable thickness of Made Ground up to 1.20mbgl overlying London Clay Formation to the base of the borehole at 24.95mbgl.
- 9.3.2 A summary of ground conditions obtained from the ground investigation and the derived geotechnical parameters, is provided in Table 9.1 below.

- - -

	Table 9.1:	Ground C	conditions a	nd Derived (Geotechnic	al Param	eters		
Strata	Depth Encountered (from-to) (mbgl)	SPT 'N' Value			Moisture content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (corrected plasticity) (%)	NHBC Volume Change Classification
Reinforce concrete over dark brown sandy gravelly clay. Gravel consists of fine to coarse sub-angular to sub- rounded flint, brick and concrete. (MADE GROUND) Encountered to base of WS6. No recovery from 1.10mbgl in WS2.	0.00 to 0.30 - 1.20	-	-	-	-	-	-	-	-
Brown mottled grey CLAY (LONDON CLAY FORMATION) Encountered to the base of WS1, WS3, WS4, WS5, WS7, BH1 & BH2	0.30 - 1.20 to >4.45 - >24.95	0 - 41	0 - 184.5	72 - 160	26 - 34	72 - 80	26 - 32	44 - 52 (43.56 - 52)	High

....


9.4 Undrained Shear Strength

- 9.4.1 Standard Penetration Tests were undertaken at regular intervals throughout the window sampler holes and cable percussive boreholes within the London Clay Formation. Due to the shallow nature of the Made Ground no tests were carried out with those materials.
- 9.4.2 The N values recorded in the London Clay Formation varies with depth, this infers that the undrained shear strength of the clay similarly varies. Figure 9.1 below shows the undrained shear strength inferred by the correlation suggested by Stroud (1974),

 $c_u = f_1 \times N$ can be applied,

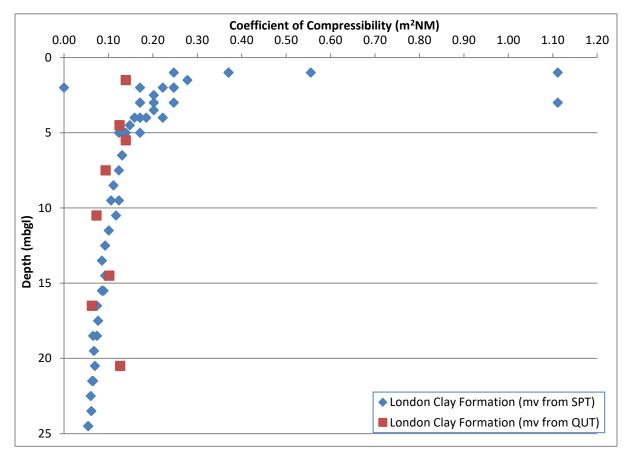
in which c_u = mass shear strength (kN) f_1 = constant N= SPT Value achieved during boring operations

- 9.4.3 In the above equation f_1 is dependent on the plasticity of the material that the SPT is being carried out in. As the plasticity indices were shown to be greater than 27% a value for f_1 of 4.5 has been adopted after Tomlinson (2001).
- 9.4.4 The graph below shows the shear strength profile of the London Clay Formation encountered at the site, based on the SPT to shear strength correlation described above, as well as the results of undrained triaxial tests on undisturbed samples taken from the boreholes.

Figure 9.1: Undrained Shear Strength v Depth

- 9.4.5 As can be seen from above using a f_1 of 4.5 provided a generally good correlation between the inferred undrained shear strengths and the measured results. A f_1 of 5 could be used but due to the conservative nature of using 4.5 this value has been kept.
- 9.4.6 It should be noted that some very low strengths were inferred at 1m 3m in WS5. This location was located in close proximity to a known tank and at 4m the recorded SPT 'N' values (and thus the inferred undrained shear strengths) jump up to levels noted elsewhere. It is possible that the materials noted between 1m and 3m in WS5 are actually materials disturbed to allow the installation of the known tanks.

9.5 Coefficient of Compressibility


9.5.1 Stroud and Butler (1974) developed a relationship between the coefficient of compressibility (m_v) and SPT 'N' value.

 $m_v = 1 / (f_2 \times N)$ can be applied,

in which $m_v = \text{coefficient of compressibility (m²/MN)}$ $f_2 = \text{constant dependant on the plasticity index}$ N = SPT Value achieved during boring operations

- 9.5.2 Using the plasticity indices obtained (See Table 9.1) and the graphs provided in Tomlinson (2001) a value of f_2 of 0.45 has been taken and used with the SPT 'N' values to infer coefficient of compressibility (m_v).
- 9.5.3 Where the undrained shear strength of the clays was obtained using the quick undrained triaxial methodology the m_v value was used by rearranging the equations for f_1 and f_2 and the measured undrained shear strength.

Figure 9.2: of Coefficient of Volume Compressibility (m_v) v Depth

- 9.5.4 As would be expected, the results reduce with depth as the clay increases in strength and the over burden increases, reducing the potential for compressibility.
- 9.5.5 As would be expected the results from of the London Clay are generally of "low" to "medium" compressibility. A number of near surface clays are noted to be of "high" compressibility. However this is considered to be due to the lack of overburden pressure allowing the clays to relax and so compress slightly as well as the potential for these materials to be disturbed / Made Ground.

9.6 Building Near Trees

- 9.6.1 The underlying soil conditions have been shown to be of high volume change potential.
- 9.6.2 Using the geotechnical testing obtained (summarised in Table 9.1) and with reference to NHBC Chapter 4.2 it can be seen that a minimum founding depth of 1.50m will be required. This would allow for restricted new planting.
- 9.6.3 As a basement is proposed, the foundations are likely to be formed at a depth greater than the 1.50m minimum founding depth.
- 9.6.4 Presence of existing and proposed trees may increase this minimum depth. It is recommended that a tree survey that should include: location, species and height of all trees on and near to the proposed development is recommended.

9.6.5 Guidance is also given in relation to other aspects of construction where the shrink / swell potential of the soils may be needed to take into consideration. This guidance is summarised in the appropriate sections below.

9.7 Foundations

- 9.7.1 Foundations should not be formed in either the Made Ground or Topsoil due to the unacceptable risk of total and differential settlement. It should be noted that the demolition and removal of existing structures including, foundations, services, tanks etc may increase the depth of Made Ground on the site.
- 9.7.2 It is considered likely that an excavation circa 4.0m deep, below the ground level at the front of the site, would be required to form the basement.
- 9.7.3 The topography of the site means that the finished floor level would be at significantly different levels below local ground level, increasing towards the rear (north-east) of the site.
- 9.7.4 Based upon the information obtained to date, it is considered that a cantilever retaining wall installed may be constructed with an allowable bearing pressure of 80kPa at 4.0m below the ground level adjacent to Highgate Road.
- 9.7.5 The exact allowable bearing capacity that could be achieved would need to be reviewed on receipt of foundation design details. This would include a check against sliding failure would need to be made to the retaining wall design. This may alter the above recommendations
- 9.7.6 If a greater allowable bearing capacity is required and towards the rear of the site where there could be upto two storeys of basement, then it is considered that conventional foundations would be unsuitable for the proposed development and a piled foundation solution within the underlying London Clay should be considered.
- 9.7.7 The piled foundations will carry their working load in a combination of skin friction along the sides of the pile and end bearing at the base of the pile. The piles should be designed by a suitably qualified and experienced piling specialist using a suitable factor of safety with the settlement at working load specified to meet any structural requirements. Table 9.2 provides some indicative capacities for a single pile for the diameter and depths shown.

			Pile dian	neter (m)		
Pile toe depth (m bgl)	0.30	0.45	0.60	0.75	0.90	1.20
(Indicativ	e Allowabl	e Pile Capa	city (kN)	
10	140	220	315	415	530	785
12	190	300	425	555	700	1025
14	250	390	545	715	895	1295
16	315	490	680	885	1105	1585
18	385	600	830	1075	1340	1910
20	465	605	840	1095	1365	1955

Table 9.2: Indicative Piles Capacities (kN)

- 9.7.8 The above assumes a bored piling system. Other methods of piling and equipment may provide different results.
- 9.7.9 Should any loading be placed directly on the ground which cause the ground to settle relative to the piles then additional negative skin friction loads could be imposed on the piles.
- 9.7.10 If piling is used then an engineered granular piling mat designed and constructed to BRE 470 would need to be constructed to support the rig to prevent it overturning and / or sinking into the ground.
- 9.7.11 Once structural loads have been fully determined a full design check in accordance with BS EN 1997 should be undertaken to confirm suitability of foundation choice.
- 9.7.12 Alternatively, a fully embedded retaining wall consisting of a contiguous or secant piled box could be utilised to form the basement. Such a retaining wall would also need to be designed to carry structural loadings. The piles should be designed to withstand the earth pressures, and still meet the required structural requirements regarding issues such as deflection, deformation and bending.
- 9.7.13 The above comments are indicative only based on limited ground investigation data. Foundations should be designed by a suitably qualified Engineer. Once structural loads have been fully determined a full design check in accordance with BS EN 1997 should be undertaken to confirm suitability of foundation choice.

9.8 Concrete in the Ground

- 9.8.1 Sulphate attack on building foundations occurs where sulphate solutions react with the various products of hydration in Ordinary Portland Cement (OPC) or converted High-Alumina Cement (HAC). The reaction is expansive, and therefore disruptive, not only due to the formation of minute cracks, but also due to loss of cohesion in the matrix.
- 9.8.2 In accordance with BRE Special Digest 1, as there are less than 10 results in the data set the highest value has been taken.
- 9.8.3 Table 9.3 summarises the analysis of the aggressive nature of the ground for each of the strata encountered within the ground investigation.

Stratum	No. Samples	pH range	Highest WS Sulphate (mg/l)	Design Sulphate Class	ACEC Class
Made Ground	5	8.6 - 10.7	1780	DS-3	AC-2s
London Clay Formation	9	6.6 - 9.0	6100	DS-5	AC-4s

Table 9.3: Co	ncrete in the	Ground	Classes
---------------	---------------	--------	---------

- 9.8.4 It should be noted that within the BRE SD-1 where there are results from 10 or more samples from a strata the mean of the top 20% is taken as the design value. The highest value noted and used in the above assessment is approximately twice as high as the next value and is considered likely to be due to the disseminated pyrite noted to exist in the London Clay Formation.
- 9.8.5 Taking the mean of the two highest results obtained would mean that concrete could be designed to design sulphate DS4 and ACEC Class AC-3s.

9.9 Ground Floor Slabs

- 9.9.1 Given that there is to be a basement formed on the site, it is expected that the finished floor level would be approximately 4.5m below current ground level.
- 9.9.2 If a cantilever retaining wall is utilised, then a ground bearing floor slab could be used. Such a slab would need to be constructed on a suitable thickness of engineered granular material.
- 9.9.3 In this case, formations of the structures should be inspected by a competent person. Any loose or soft material should be removed and replaced with well-graded, properly compacted granular fill or lean mix concrete. The formation should be blinded if left exposed for more than a few hours or if inclement weather is experienced.
- 9.9.4 Such a floor slab would also need to be suitably reinforced, not only to distribute the structural loading but also to ensure that the floor slab can prop the retaining walls and does not buckle from the lateral pressures imposed by the cantilever retaining walls.
- 9.9.5 Such a floor slab could also be used for a fully embedded retaining wall (secant or contiguous piled retaining wall) however the floor would need to be independent of the walls. In normal circumstances such a retaining wall would use a suspended floor slab, in which case the piles would need to be designed to carry the floor loads as well as the structural loads. The void beneath such a suspended floor slab would require a clear void or equivalent compressible material to provide an equivalent of 150mm void.
- 9.9.6 The floor slab (and basement walls) would need to be constructed to conform to BS: 8102 (2009).

9.10 Excavations

- 9.10.1 It is likely that some shallow excavations will be required at the site for services etc, in addition to larger excavations during the remediation and construction works. These are anticipated to remain stable for the short term only.
- 9.10.2 The stability of all excavations should be assessed during construction. The sides of any excavations into which personnel are required to enter, should be assessed and where necessary fully supported or battered back to a safe angle.
- 9.10.3 Due to the requirement to remove former fuel tanks from the site and the location of these tanks in relation to the site boundary and specifically the highway, it may not be possible to batter back, and additional support will be required.
- 9.10.4 As these excavations need to be undertaken to remediate the site it would make sense to attempt to schedule the remedial and construction works so that retaining walls / foundations etc could be formed directly into the remedial excavations rather than having to back fill and then re-excavate.
- 9.10.5 For the north-east of the site where there is likely to be upto two storeys of basement and a fully embedded retaining wall is likely to be required, it would be prudent to install the piles first to act as the retaining wall to support the excavations to form the basement.
- 9.10.6 Given the noted ground gas conditions, protective precautions and monitoring of the gas levels within excavations of 1.2m or deeper prior to persons entering the excavations.

9.11 Retaining Walls

- 9.11.1 At the current time, it is not known how the retaining walls to the basement will be constructed. It is assumed that the retaining walls will be of the cast in-situ cantilever type and formed in short sections to help prevent instability issues.
- 9.11.2 These walls would need to be designed to both withstand the earth pressures and to be able to transfer the above loading successfully i.e. the retaining wall should be designed to act as a foundation for the structure.
- 9.11.3 A check against sliding failure would need to be made to the retaining wall design. This may alter the above recommendations regarding allowable bearing capacities.
- 9.11.4 At the current time, insufficient structural information is available to allow details of the retaining wall to be determined. Given the obtained information it is considered that a friction angle for the materials could be taken as 0° in its undrained state.
- 9.11.5 Given the proposed depth of the basement, it is considered that heave precautions will not be required at the base of the underpinned walls. However, where underpinning extends up above 3mbgl, it would be recommended that heave precautions are included. Given the high-volume change potential of the underlying clays these should consist of 35mm void or the equivalent thickness of compressible material adjacent to the foundation.

9.12 Groundwater Control

- 9.12.1 Groundwater was not encountered during drilling of any of the exploratory holes, though water was noted to seep into WS2 at 1.1mbgl and WS4 at 4.5mbgl.
- 9.12.2 During return monitoring groundwater was reported at depths of between 1.64m and 4.66m bgl within WS2, WS3, WS4 and WS5. No water was reported within WS1 or BH1 during any monitoring visit. Such variance suggests the ingress of surface water, as opposed to the natural groundwater table.
- 9.12.3 Subject to seasonal variations, any groundwater encountered during site works could be readily dealt with by conventional pumping from a sump used to collate waters. Surface water or rainfall ingress could be similarly dealt with.

10 BASEMENT IMPACT ASSESSMENT

10.1 Basement Impact Assessment (BIA)

10.1.1 The BIA uses information produced as part of the Desk Study (Jomas - March 2018). The full report should be referred to in conjunction with the below.

10.2 Flood Resilience

- 10.2.1 In accordance with general basement flood policy and basement design, the proposed development will utilize the flood resilient techniques recommended in the NPPF Technical Guidance where appropriate and also the recommendations that have previously been issued by various councils.
- 10.2.2 These include:
 - Basement to be fully waterproofed (tanked) and waterproofing to be tied in to the ground floor slab as appropriate: to reduce the turnaround time for returning the property to full operation after a flood event.
 - Plasterboards will be installed in horizontal sheets rather than conventional vertical installation methods to minimise the amount of plasterboard that could be damaged in a flood event
 - Wall sockets will be raised to as high as is feasible and practicable in order to minimise damage if flood waters inundate the property
 - Any wood fixings on basement / ground floor will be robust and/or protected by suitable coatings in order to minimise damage during a flood event
 - The basement waterproofing where feasible will be extended to an appropriate level above existing ground levels.
 - The concrete sub floor as standard will likely be laid to fall to drains or gullies which will remove any build-up of ground water to a sump pump where it will be pumped into the mains sewer. This pump will be fitted with a non-return valve to prevent water backing up into the property should the mains sewer become full.
- 10.2.3 Insulation to the external walls will be specified as rigid board which has impermeable foil facings that are resistant to the passage of water vapour and double the thermal resistance of the cavity.

10.3 Proposed Changes to Areas of External Hardstanding

- 10.3.1 The proposed basement is beneath an existing building and beneath areas of hard paving.
- 10.3.2 The site has been shown to lie directly on very low permeability London Clay Formation.
- 10.3.3 It is not considered likely that additional areas of hardstanding will be created. Small additional areas of hardstanding are not considered likely to significantly change the ingress of the surface water into the ground.

10.4 Past Flooding

10.4.1 The National Planning Policy Framework sets strict tests to protect people and property from flooding which all local planning authorities are expected to follow.

- 10.4.2 When assessing the site-specific flood risk and the potential for historic flooding to reoccur, the above guidance recommends that historic flooding records and any other relevant and available information including flood datasets (e.g. flood levels, depths and/or velocities) and any other relevant data, which can be acquired are assessed.
- 10.4.3 The BGS does not consider the area to be prone to groundwater flooding based on rock type. Furthermore, groundwater was not reported during intrusive works at the site and water reported during monitoring is considered to represent surface water ingress unable to drain out of the well, rather than groundwater.
- 10.4.4 The SFRA produced by URS for London Borough of Camden includes several maps regarding flood risks within the local authority. The site is not shown to be at risk from groundwater or sewer flooding. The site is shown to be at 'low' risk of surface water flooding and has a 'low' flood hazard rating (<0.75m).

10.5 Geological Impact

- 10.5.1 The published geological maps indicate that the site is directly underlain by solid deposits of the London Clay Formation. This was confirmed by the intrusive investigation.
- 10.5.2 At the depths that the basement would be constructed at, the London Clay is unlikely to be prone to seasonal shrinkage and swelling that arises due to changing water content in the soil. This is due to a lack of significant vegetation capable of removing water within the zone of influence; the hard cover minimising the amount of water entering the ground and the lack of proven groundwater. The measured groundwater is considered to represent surface water that has percolated through the near surface soils into the well and then not been able to drain away.

10.6 Hydrology and Hydrogeology Impact

- 10.6.1 Based on the information available at the time of writing, the risk of flooding from groundwater is considered to be low. The proposed basement is unlikely to have a detectable impact on the local groundwater regime. Appropriate water proofing measures should be included within the whole of the proposed basement wall/floor design as a precaution.
- 10.6.2 The proposed dwelling will lie outside of flood risk zones and is therefore assessed as being at a very low probability of fluvial flooding.
- 10.6.3 There are no surface water features on or in the immediate vicinity of the site. It is therefore not anticipated that the site will make any impact upon the hydrology of the area.
- 10.6.4 The information available suggests that the site lies in an area that is not at significant risk of surface water flooding. Flooding via this source is therefore considered to be low.
- 10.6.5 The proposed basement construction is considered unlikely to create a reduction of impermeable area in the post development scenario.
- 10.6.6 No risk of flooding to the site from artificial sources has been identified.

10.7 Impacts of Basement on Adjacent Properties and Pavement

- 10.7.1 The proposed basement excavation will be within 5m of a public pavement.
- 10.7.2 Unavoidable lateral ground movements associated with the basement excavations must be controlled during temporary and permanent works so as not to impact adversely on the stability of the surrounding ground, any associated services and structures.
- 10.7.3 It is recommended that the site is supported by suitably designed temporary support with cast-in-situ cantilever retaining walls or a fully embedded piled retaining wall that is likely to require propping during construction. This will ensure that the adjacent land is adequately supported in the temporary and permanent construction. Alternatively, the excavation should proceed in a manner that maintains the integrity of the ground on all sides.
- 10.7.4 Careful and regular monitoring of the structure will need to be undertaken during the construction phase to ensure that vertical movements do not adversely affect the above property with the "flying freehold". If necessary the works may have to be carried out in stages with the above structure suitably propped and supported. It is understood that sacrificial bearing piles will be utilised during construction.
- 10.7.5 It will be necessary to ensure that the basements are designed in accordance with the NHBC Standards and take due cognisance of the potential impacts highlighted above. This may be achieved by ensuring best practice engineering and design of the proposed scheme by competent persons and in full accordance with the Construction (Design and Management) Regulations. This will include:
 - Establishment of the likely ground movements arising from the temporary and permanent works and the mitigation of excessive movements;
 - Assessment of the impact on any adjacent structures (including adjacent properties and the adjacent pavement with potential services);
 - Determination of the most appropriate methods of construction of the proposed basements;
 - Undertake pre-condition surveys of adjacent structures;
 - Monitor any movements and pre-existing cracks during construction;
 - Establishment of contingencies to deal with adverse performance;
 - Ensuring quality of workmanship by competent persons.
- 10.7.6 Full details of the suitable engineering design of the scheme in addition to an appropriate construction method statement should be submitted by the Developer to London Borough of Camden.

11 REFERENCES

BRE Report BR211: Radon: Protective measures for new dwellings, 2007

BRE Special Digest 1: Concrete in Aggressive Ground, 2005

British Standards Institution (2007) BS 3882:2007 Specification for topsoil and requirements for use. Milton Keynes: BSI

British Standards Institution (2011) BS 10175:2011 Code of practice for the investigation of potentially contaminated sites. Milton Keynes: BSI

British Standards Institution (2015) BS 5930:2015 Code of practice for site investigations. Milton Keynes: BSI

CIEH & CL:AIRE (2008) Guidance on comparing soil contamination data with a critical concentration. London: Chartered Institute of Environmental Health (CIEH) and CL:AIRE

Environment Agency (2004) *Model procedures for the management of land contamination*. CLR11. Bristol: Environment Agency

Environment Agency, NHBC & CIEH (2008) *Guidance for the safe development of housing on land affected by contamination.* R & D Publication 66. London: Environment Agency

Environment Agency (2006) Remedial Targets Methodology: Hydrogeological Risk Assessment for Land Contamination Environment Agency

LQM/CIEH S4ULs. LQM, 2014

National Planning Policy Framework. Department for Communities and Local Government, March 2012

CIRIA C665 (2007) Assessing risks posed by hazardous ground gases to buildings London, CIRIA

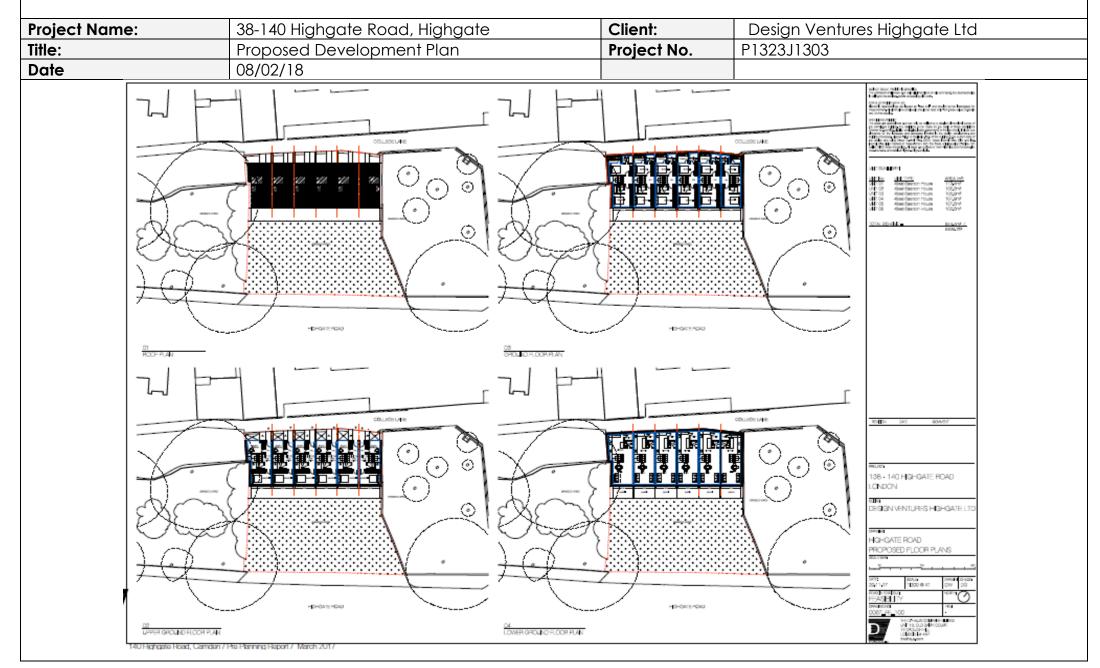
British Standards Institution (2015) BS 8485:2015 Incorporating corrigendum No.1 Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings Milton Keynes: BSI

British Standards Institution (2013) BS 8576:2013 Guidance on investigations for ground gas – Permanent gases and Volatile Organic Compounds (VOC's), Milton Keynes: BSI

London Borough of Camden Strategic Flood Risk Assessment - 47070547. URS, July 2014

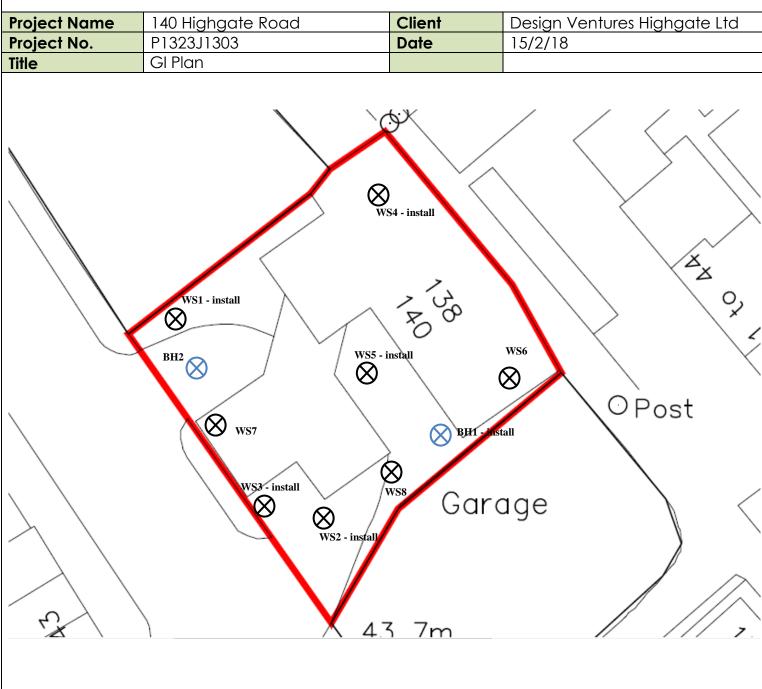
APPENDICES

APPENDIX 1 – FIGURES



Project Name:	38-140 Highgate Road, Highgate	Client:	Design Ventures Highgate Ltd
Title:	Site Location Plan	Project No.	P1323J1303

JOMAS ASSOCIATES LTD T: 0843 289 2187



Project Name:	38-140 Highgate Road, Highgate	Client:	Design Ventures Highgate Ltd
itle:	Proposed Development - Elevations	Project No.	P1323J1303
)ate	March 2018		
Ground Leve			
Lower Groum	d		
É			
_ . T			
Basement			

JOMAS ASSOCIATES LTD T: 0843 289 2187



Project Name	Highgate Road	Client	Design Ventures Highgate Ltd
Title V	WS Drilling Photographic Log	Project No.	P1323J1303

Photo 1: WS1

Photo 2: WS2

JOMAS ASSOCIATES LTD

Project Name	Highgate Road	Client	Design Ventures Highgate Ltd
Title	WS Drilling Photographic Log	Project No.	P1323J1303

Photo 3: WS3

Photo 4: WS5

Project Name	Highgate Road	Client	Design Ventures Highgate Ltd
Title	WS Drilling Photographic Log	Project No.	P1323J1303

Photo 5:

APPENDIX 2 – EXPLORATORY HOLE RECORDS

								-			WINDOW/WINDOWLESS SAMPLING BOREHOLE RECORD							
				JOMAS									tory Hole No:		WS1			
Site Address:			140	Highg	ate Ro	ad, Hig	hgate,	Londo	on, NW5 1	PB		Project	No:			P1323J1303		
Client:			Des	Design Ventures Highgate Ltd									Level:					
Logged By:			JT	JT									mmenced:			12/02/2018		
Checked By: Type and diamet	or of oquip	mont	W/in	dow S	amplar							Date Co Sheet N	mpleted:			12/02/2018 1 Of 1		
Water levels re					ampier							Sheet N	10.			1011		
Date:		<u> </u>					T											
Hole depth:																		
Casing depth:			_															
Level water on st Water Level after																		
Remarks	Lonnis													I				
1: *Field descrip	tion.																	
2: No water repo																		
3: VOC readings 4:	of each sa	mple gi	ven in	ppm.														
4.		Sample	e or Te	ests							Strata							
			<u> </u>		Dereit				1			Water	1	Church a D				
Type Depth (mbgl)			Resul	t				Legend	Depth (mbgl)	Strikes (mbgl)		Strata De	escription		Insta	allatior		
		75	75	75	75	75	75	N				(ingli)						
									0.00 -				Soft* consiste Gravel consist	ncy dark bro	own sandy gra	ivelly clay.		133
		1											sub-rounded b	rick, concre	te and flint. C	133		
P+J D	0.25 Oppm								· ·				frequent rootle odour noted. (ets. No blac MADE GRO	< staining or h JND).	ydrocarbon	E	
																		IEE
P+J D	0.50 Oppm								0.50 -		0.60							
	oppill												Very stiff* mo staining or hyd	ttled brown	-grey CLAY. Noted (1	o black ONDON	E	
		1											CLAY).		Loai noteu. (L		1333	IE:
		1							-	E							EEE	123
P+J D	1.00								1.00 -									
SPT	Oppm	1	1	2	3	2	2	9										
311				2	3	2	2	9	-									
									-									
									1.50 -									
									-									
									-									
									-									
P+J	2.00								2.00 -									Ø:::
	Oppm								-									
SPT		1	2	2	3	2	3	10	-									
									2.50 -									
									-									
									-									
		1							-	†=====								
P+J	3.00	1							3.00 -	E								
	Oppm																	
SPT		1	2	3	4	3	3	13	-									
		1							-									
		1							2 50									
		1							3.50 -	E								
		1							.	+								
		1							-									
									-									
P+J	4.00								4.00 -	+								
SPT	Oppm	1	2	3	3	3	4	13		E								
JF I			-				4	13	.									
		1							-									
		1							4.50 -									
		1							-									
		1																
P+J	5.00	1							5.00 -		5.00							0
(Oppm																	
SPT		2	2 Samplir	4 ng Cod	4 e: U- l	4 Jndistu	4 rbed	16 B - Lai	rge Distur	bed D - Sm	all Disturbed	W - Water	(U*) Non reco	very of San	nple			
			e	5.24	Jon	nas Ass	sociate	s Ltd -	Lakeside	House, 1 Furz	eground Way	, Stockley Pa	ark, UB11 1BD	, <u> </u>				
						T: 084	13 289	2187	E: info@jo	omasassociate	s.com W: ww	w.jomasasso	ociates.com					

					-	_		_	-			V	VI NDOW/WI NI	DOWLESS S	SAMPLING BC	REHOLE R	ECORD	
						•]	Y		5			Explora	itory Hole No:			WS2		
Site Address:			140	Highga	ate Roa	ad, Hig	hgate,	Londo	on, NW5 1F	в		Project	No:			P1323J1303	1	-+
Client:			Desi				te Ltd					Ground	Level:					
Logged By:			JT										ommenced:			13/02/2018		
Checked By:	tor of orall	nont	10/6-0-1	low C	moler								ompleted:			13/02/2018		-+
Type and diame Water levels r				dow Sa n	mpier							Sheet N	NU:			1 Of 1		
Date:		ring boi	ling, ii				T											
Hole depth:																		
Casing depth:																		
Level water on							_											
Water Level aft Remarks	er 20mins:						<u> </u>											
1: *Field descr	iption.																	
2: Metal bar (a	pprox. 15mn	n in diam	neter)	hit at	approx	. 1.05	m bgl.											
3: Seepage of	-				n bgl.													
4: VOC reading		mple give Sample	· ·	·							Strata							
			0. 10						-			Water	-					
Туре	Depth (mbgl)				Result				-	Legend	Depth (mbgl)	Strikes (mbgl)		Strata De	escription		Installa	ation
		75	75	75	75	75	75	N	0.00 —			(
									-		8		Reinforced cor	ncrete. (MAI	DE GROUND).		扫描	====
									-		0.20		Soft* consiste	ncy dark br	own sandv grav	velly clav		33
											8		Gravel consist sub-rounded b	s of fine to a	coarse sub-ang	jular to	扫描	====
P+J D	0.50								0.50 —		8		staining or hyd					크크
173 0	0.50 Oppm								0.00 -		8		GROUND).				E크	
									1 –		8							EE
									-		8						E	
P+J D	1.00								1.00 —		8						目	
P+J D	Oppm								1.00 —		1.10							
	oppin								_	****	â		No recovery fr from approx.		00m bgl (excep	ot one vial		
									_	****	8			0,				
									_	****	8							
									1.50 —	****	8							
										****	â							
										****	a l							
									_	****	a l							
									2.00 —	****	8							
									_	XXXX	â							
									_	****	â							
										****	a							
VIAL ONLY	2.50								2.50 —	****	a							
	18ppm								-		â							
									_	XXX	à							
											à							
									3.00 —	XXX	à							
									-	XXX	2							
										****	8							
										****	2							
									3.50 —	****	á							~~~~
									-	xxxx	à							\otimes
									-	***	a							\otimes
										****	a							\otimes
									4.00 —		4.00							\otimes
																		7
									-									
									-									
									4 50									
									4.50 —									
									_									
									-									
									5.00 —									
		Sa	amplin	g Code									(U*) Non reco ark, UB11 1BD	very of San	nple			
											es.com W: ww							

												V	/INDOW/WIND	OWLESS S	SAMPLING BO	DREHOLE RI	ECORD	J
					J	0	<i>[</i>]					Explorat	tory Hole No:			WS3		
Site Address:			140	Highg	ate Ro	ad, Hig	hgate,	Londo	n, NW5	1PB		Project	No:			P1323J1303		
Client:						Highga						Ground	Level:					
Logged By:			JT										mmenced:			12/02/2018		
Checked By:	aton of omila		14/1-0	day. C									mpleted:			12/02/2018		
Type and diam Water levels					ampler							Sheet N	10:			1 Of 1		
Date:		ang be	, ing,															
Hole depth:																		
Casing depth:																		
Level water on																		
Water Level aft	er 20mins:																	
Remarks 1: *Field descr	intion																	
2: No water re	-																	
3: VOC reading	-	mple giv	ven in	ppm.														
4:																		
		Sample	e or Te	ests							Strata		_					
_	Depth				Result	t					Depth	Water Strikes		Strata De	escription		Insta	llation
Туре	(mbgl)	75	75				75		-	Legend	(mbgl)	(mbgl)						
		75	75	75	75	75	75	N	0.00 -									
													Reinforced cond	crete. (MAI	DE GROUND).		133	[===]
											0.20		Soft* consisten	cy mid to r	dark brown so	ndy aravelly		
													clay. Gravel cor	nsists of fir	ne to coarse su	ıb-angular	EE	
P+J D	0.40												to sub-rounded staining or hydr					
	Oppm								0.50 -				GROUND).					
																	EEE	EE
P+J D	0.80																	
	Oppm										0.90		Very stiff* mot	lad brown	grov CLAV N	block	1333	
SPT	1.00	1	1	1	2	2	1	6	1.00 -				staining or hydi					
													CLAY).					8
									1.50 -									
									1.50									8
P+J D	2.00								2.00 -									<u></u>
0.07	0ppm																	
SPT		1	1	2	2	2	3	9										
									2.50 -									
										-6-2-2-2-2-								<u></u>
	3.00								3.00 -									
P+J	0ppm								3.00 -									g
SPT		1	1	2	2	2	3	9										
									3.50 -									g
																		g
P+J	4.00								4.00 -	+								
	Oppm									+								
SPT		1	2	2	3	4	4	13										
																		<u>í</u>
									4 50									
									4.50 -								::::	
										+2-2-2-2-2								
											5.00							
P+J	5.00								5.00 -		5.00							2
	Oppm																	
SPT		2	4 Samplir	3 ng Cod	5 e: U- I	4 Jndistu	6 rbed	18 B-Lar	ge Distu	rbed D - Sm	II Disturbed	W - Water	(U*) Non recov	very of San	nple			
			p.	. 	Jon	nas Ass	sociate	s Ltd -	Lakeside	e House, 1 Furz	eground Way	, Stockley Pa	ark, UB11 1BD		1.1-			
						T: 084	13 289	2187	E: info@j	omasassociate	s.com W: ww	w.jomasasso	ociates.com					
L																		

												W	/INDOW/WINDOWLESS	SAMPLING BOREHOLE	RECORD	
					J	Ø	Ĩ					Explorat	tory Hole No:	WS4		
Site Address:			140	Highg	ate Ro	ad, Hig	hgate,	Londo	n, NW5 1	PB		Project	No:	P1323J130)3	
Client:				ign Vei								Ground				
Logged By:			JT										mmenced:	13/02/201		
Checked By:													mpleted:	13/02/201	8	
Type and diame Water levels r				idow Sa	ampler							Sheet N	0:	1 Of 1		
Date:	ecorded do	ining bo	inng,				1									
Hole depth:																
Casing depth:																
Level water on																
Water Level aft	er 20mins:															
Remarks 1: Field descrip	otion															
2: Water seepa		x. 4.50m	n bgl.													
3: VOC reading				ppm.												
4:																
	1	Sample	e or Te	ests					-		Strata		-			
Туре	Depth				Resul	t				Legend	Depth	Water Strikes	Strata D	escription	Insta	llation
Турс	(mbgl)	75	75	75	75	75	75	N	1	Legena	(mbgl)	(mbgl)				
									0.00 —	×××××××			Reinforced concrete. (MA			1
									-						====	
									-						扫扫	[=]=]
									-						E===1	
									0.50 —		0.50					
									-	1333333			Very stiff* mottled brown staining or hydrocarbon o	-grey CLAY. No black dour noted. (LONDON	扫扫	[=]=]
P+J D	0.70								-				CLAY).	· ·	====	
	Oppm								-						E-2-3	55
									-						133	[=]=]
P+J D	1.00								1.00 —							
SPT	Oppm	1	0	1	0	1	2	4								
511			0				-		-							
									-							
									1.50 —							
									-							
									-							
									_							
P+J D	2.00								2.00 —	17777777						
	Oppm								-							
SPT		1	2	2	3	4	4	13	-							
									-							
									-							
									2.50 —							
									-							
									-							
P+J	3.00								3.00 —							
SPT	Oppm	1	2	2	3	4	4	13	-							
381			2	2		4	4	13		E						
									-	1333333						
									3.50 —	[]						
									-							
									-							
									-	[=====]						
P+J	4.00								4.00 -	E						
FTJ	0ppm								- 00.							
SPT		1	2	3	3	4	4	14	-	1333333						
									-	[]						
									-							
									4.50 —							
									-	[=====]						
										<u> </u>						
									-							
SPT	5.00	1	2	4	4	5	4	17	5.00 —		5.00					8
						L										
			ampli	na Cod	e: U- !	Indistu	rbed	B-Lar	ae Distur	bed D-Sma	II Disturbed	W - Water	(U*) Non recovery of Sar	nple		
		5		5 000	Jon	nas Ass	ociate	s Ltd -	Lakeside	House, 1 Furz	eground Way,	Stockley Pa	ark, UB11 1BD	r		
						T: 084	3 289	2187	_: info@jo	masassociates	.com W: www	v.jomasasso	ociates.com			
L																

epth hbgl)	ble give	140 l Desig JT Wind ing, n	Highga gn Ver dow Sa dow Sa n n	ate Roa	ad, Highgz			n, NW5 1	2B		Project I Ground	Level: mmenced: mpleted:		WS5 P1323J1303 13/02/2018 13/02/2018 1 Of 1		
epth bbgl)	ble give	Designed and the second	Jow Sa Jow Sa Joypm. Ststs	ampler Result	Highga	-		n, NW5 1	2B		Ground Date Co Date Co	Level: mmenced: mpleted:		13/02/2018 13/02/2018		
epth bbgl)	ble give	UT Wind Wind en in p	dow Sa n opm. sts	Result							Date Co Date Co	mmenced: mpleted:		13/02/2018		
epth bbgl)	ble give	en in p	n opm. sts	Result							Date Co	mpleted:		13/02/2018		
epth bbgl)	ble give	en in p	n opm. sts	Result							Sheet N			1 Of 1		
: mins: sach samp sath sbgl)	ble give	en in p or Te	opm. ests													
nins:	ample	or Te	sts													
nins:	ample	or Te	sts													
nins:	ample	or Te	sts													
I. each samp Sa epth hbgl)	ample	or Te	sts		:											
I. each samp Sa epth hbgl)	ample	or Te	sts													
Sa epth hbgl)	ample	or Te	sts		:											
epth hbgl)			1		:											
.50	75	75			:					Strata						_
.50	75	75	75	75						Depth	Water		Strata Description		Insta	allat
0.50			10		75	75	N		Legend	(mbgl)	Strikes (mbgl)					
								0.00 —	*****	0.08		Concrete. (MADE	GROUND).			TF-
								_		0.00		Concrete. (MADE			臣	
								-		0.30		Soft* consistency	/ mid to dark brown sar	ndy gravelly	臣	
		1						- 0.50				clay. Gravel cons	ists of fine to coarse su prick, concrete and flint	ub-angular	È	
								- 0.50				black staining an	d a moderate hydrocarl t. (MADE GROUND).		E	
								-							E==	E
I								_							EE	13
.00								1.00 —							<u></u>	-
n	1	1	0	1	0	1	2	-		1.20						
	1	1	0	1	0		2	_					ed brown-grey CLAY. Da rong hydrocarbon odou			
								-				approx. 1.50m-2	.00m bgl. Softer consis ox. 2.00m-3.00m bgl.	stency and		
.60								1.50 —				CLAY).	ox. 2.0011 5.0011 5gl.	(LONDON		
om								-								
								-								
.00	0	0	0	0	0	0		2.00 —								
								-								
								-								
								-								
n.50								2.50 —								
								-								
								-								
.00	0	1	0	0	1	1	2	3.00 —								
								-								
								_								
								-								
.50								3.50 —								
n								_								
								-								
.00	1	2	,	3	2	3	10	4.00 —								
		2	-	5	-	5		-								
								-								
								_								
.50								4.50 —								
n								-								
								-								
								-		5.00						
	2	2	2	3	4	4	13	5.00 —		2.00						·/
.00					l	urbeer'	L		und D Cr	II Diotomber d	10/ 10/	(11*) Nam	ny of Commis		1	
0(5(2000 - 20	D 1 D 2 D 2	D 1 2 D 2 2	D 1 2 2 D 2 2 2	D 1 2 2 3 D 1 2 2 3 D 2 2 2 3	D 1 2 2 3 2 D 1 2 2 3 2 D 2 2 2 3 4 Sampling Code: U- Undistu	0 1 2 2 3 2 3 0 1 2 2 3 2 3 0 2 2 2 3 4 4 Sampling Code: U- Undisturbed	D 1 2 2 3 2 3 10 D 1 2 2 3 2 3 10 D 2 2 2 3 4 4 13 Sampling Code: U- Undisturbed B - Lar	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 2 2 3 2 3 10 4.00 0 1 2 2 3 10 4.00 4.50 0 1 1 1 1 1 1 1 1 1	

								3.4	7			W	INDOW/WINI	DOWLESS S	SAMPLING BO	DREHOLE RE	CORD
				-	J	0]	¥ Fa					Explorat	ory Hole No:			WS6	
Site Address:			140	Higha	ato Po	ad Hia	haato	Londo	n, NW5 1F	B		Project I	No:			P1323J1303	
Client:						Highga		Lonuo	11, 14975 11	D		Ground				1132331303	
			JT	iyii vei	itures	nignga	ie Liu						mmenced:			12/02/2010	
Logged By:			JI													13/02/2018	
Checked By:													mpleted:			13/02/2018	
Type and diame				dow Sa	ampler							Sheet N	0:			1 Of 1	
Water levels r	ecorded dur	ing bo	pring, i	m										1		1	
Date:																	
Hole depth:																	
Casing depth:																	
Level water on s	strike:																
Water Level after	er 20mins:																
Remarks																	
1: Concrete cor	er refused at	0.60m	n due te	o prese	ence of	vertica	al reba	r.									
2:		2.5011	2.30 1														
3:																	
4:			_					_			01						
		sample	e or Te	ests							Strata		-				
Туре	Depth (mbgl)				Result					Legend	Depth (mbgl)	Water Strikes (mbgl)		Strata De	escription		Installation
		75	75	75	75	75	75	N				(29.)					
									0.00 —				Reinforced cor	ncrete. (MAI	DE GROUND).		

									-	*******							
									-	*******							
									0.50 —	*******							
										*******	0.60						×****
									_								
									-								
									-								
									1.00 —								
									-								
									-								
									_								
									_								
									1.50 —								
									1.50 -								
									-								
									-								
									-								
									-								
									2.00 —								
									_								
									_								
									_								
									2.50 —								
									-								
									-								
									_								
									_								
									3.00 —								
									3.00								
									-								
									-								
									-								
									-								
									3.50 —								
									–								
									.								
									_								
									-								
									-								
									4.00 —								
									-								
1																	
									-								

Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 0843 289 2187 E: info@jomasassociates.com W: www.jomasassociates.com

4.50

5.00 -

								_	-			W	/INDOW/WINDOWLESS	SAMPLING BOREHOLE	RECORD
					J	Ø	¥ Ë					Explora	tory Hole No:	WS7	
Site Address:			140) Highg	ate Ro	ad, Hig	hgate,	Londo	on, NW5 11	В		Project	No:	P1323J130	3
Client:				sign Ve	ntures	Highga	ate Ltd					Ground		10/00/001	
Logged By: Checked By:			JT										ommenced: ompleted:	12/02/201 12/02/201	
Type and diam	eter of equip	ment:	Win	ndow S	ampler							Sheet N		1 Of 1	
Water levels	recorded du	iring bo	ring,	m			-								
Date: Hole depth:			_												
Casing depth:															
_evel water on	strike:														
Water Level af	ter 20mins:														
Remarks I: *Field desc	ription														
: No water re															
8: VOC readin	gs of each sa	mple giv	ven in	ppm.											
:		Sample	or T	ests							Strata				
									-			Water	-		
Туре	Depth (mbgl)	75	75	75	Resul	t 75	75	N	-	Legend	Depth (mbgl)	Strikes (mbgl)	Strata D	escription	Installatio
			-						0.00 —	*****			Reinforced concrete. (MA	DE GROUND).	
									-		0.25				
D. 1 =	0.15								-				Soft* consistency mid bro Gravel consists of fine to	coarse sub-angular to	
P+J D	0.40 Oppm								0.50 —				sub-rounded brick, concre staining or hydrocarbon of	ete and flint. No black	
													GROUND).		
P+J D	0.90														
SPT	0pp1m00	1	1	1	2	1	2	6	1.00 —		1.00		Very stiff* mottled brown	-grey CLAX No black	
									-				staining or hydrocarbon of	dour noted. (LONDON	
													CLAY).		
									_	22222					
P+J D	1.50								1.50 —						
	Oppm														
									_						
									-						
SPT	2.00	1	2	2	2	3	2	9	2.00 —	3-3-3-3-3					
									_						
									-						
									2.50 —						
									2.50 -						
										333333					
P+J	3.00								3.00 —						
	Oppm								-						
SPT		1	2	3	2	3	3	11							
									3.50 —						
									-						
									_						
									-		4.00				
P+J	4.00								4.00 —		4.00				
SPT	Oppm	1	2	3	3	3	3	12							
			-						-						
									-						
									4.50 —						
									-						
									5.00 —						
									0.00						
		S	amplii	ng Cod									(U*) Non recovery of Sar ark, UB11 1BD	nple	
					JOL						eground way s.com W: ww				

													CABLE PE	ERCUSSIC	N BOREHOLE	RECORD		
					J		Ĩ	43	5			Explora	tory Hole No:			BH1		
Site Address:			140	Highg	ate Ro	ad, Hig	ghgate	Londo	n, NW5 1	PB		Project	No:			P1323J1303		
Client:				ign Vei								Ground						
Logged By:			RD										mmenced:			13/02/2018		
Checked By: Type and diame	ter of equipr	nent:	Dar	ndo 400	00							Sheet N	mpleted:			13/02/2018 1 Of 5		
Water levels r																		
Date:																		
Hole depth: Casing depth:																		
Level water on a	strike:																	
Water Level after	er 20mins:																	
Remarks	a anta d																	
1: No water rep 2:	Joi teu																	
3:																		
4:		Sample	or T	octo							Strata							
		Sample							1		Strata	Water	-					
Туре	Depth (mbgl)				Result	t				Legend	Depth (mbgl)	Strikes (mbgl)		Strata De	escription		Insta	llation
		75	75	75	75	75	75	N	0.00		x · 57	(ingai)						
									0.00 -				Concrete. (MAD	e groune))			
									·		0.30							
	0.15								· ·		0.30		Brown medium	to high str	ength silty CL	AY.	133	
D	0.40								0.50 -								EEE	33
									· ·									
																	EE	13-3-
D	1.00								1.00 -									
									· ·									
U	1.50								1.50 -									
									· ·									
									2.00 -									
									· ·									
D	2.50								2.50 -									
s	2.00	2	2	2	3	3	3	11	2.00									
									· ·									
									3.00 -									
D	3.50								3.50 -									
									· ·									
									4.00 -									
									·									
	4.50								4.50									.
U	4.50 45 blows for	100%	recov	erv					4.50 -	E								
									.									
									· ·									
									5.00 -									
			amnlii	na Cod	e: U- I	, Indisti	Irbed	B-lar	ne Distu	bed D - Sma	all Disturbed	W - Water	(U*) Non recov	erv of Sam	nple		1	
		5		5 000	Jon	nas As	sociate	s Ltd -	Lakeside	House, 1 Furz	eground Way	, Stockley Pa	ark, UB11 1BD					
						1: 084	43 Z89	218/1	⊑: into@j	omasassociate	S.COM W: WW	w.jumasasso	ciates.com					

							Se	43					CABLE F	PERCUSSIC	N BOREHOL	E RECORD	
]	S E	ΈĒ					Explora	tory Hole No:			BH1	
ite Address:			140	Highg	ate Ro	ad, Hig	hgate,	Londo	n, NW5 1PB			Project	No:			P1323J1303	3
lient:				ign Ve	ntures	Highga	ate Ltd					Ground				10/00/0010	<u>,</u>
ogged By: hecked By:			RD										mmenced:			13/02/2018 13/02/2018	
ype and diame Vater levels r				ndo 400	00							Sheet N	0:			2 Of 5	
vater levels r late:	recoraea au	ring bo	oring,	m													
lole depth: asing depth:																	
evel water on	strike:																
/ater Level afte emarks	er 20mins:																
No water rep	ported																
		Sample T	e or T	ests							Strata		_				
Туре	Depth (mbgl)				Result	t				.egend	Depth (mbgl)	Water Strikes		Strata D	escription		Installat
	(mbgr)	75	75	75	75	75	75	N	5.00	-	(mbgr)	(mbgl)					
									5.00				Brown mediur	n to high sti	rength silty CL	AY.	
D	5.50								5.50								
S		2	4	4	4	4	4	16									
									6.00								
D S	6.50						-	17	6.50								
5		2	4	4	4	4	5	17									
									7.00								
U	7.50 60 blows for	100%	recov	ery					7.50								
									8.00								
D	8.50								8.50								
S	0.50	3	4	4	5	5	6	20									
									9.00								
D	9.50								9.50								
S		3	4	5	5	5	6	21									
									10.00								
	1																1

						•]	È E					Explora	tory Hole No:	BH1	
												Exploia		BEL	
Address:									n, NW5 1F	В		Project		P1323J13	03
nt:				ign Ve	ntures	Highga	ate Ltd					Ground			
jed By: :ked By:			RD										mmenced:	13/02/20	
	eter of equipr	nent:	Dar	ndo 400	00							Sheet N	mpleted:	3 Of 5	
	recorded du														
:															
depth:															
ng depth:	atally a														
l water on	ter 20mins:														
narks							1								
lo water re	ported														
		Sample	e or T	ests							Strata				
												Water	-		
Туре	Depth (mbgl)				Result	t				Legend	Depth (mbgl)	Strikes	Strat	a Description	Install
	(· · · · · · · · · · · · · · · · · · ·	75	75	75	75	75	75	N			())/	(mbgl)			
									10.00				Brown medium to hig	n strength silty CLAY.	
									_						
									_	33333					
									_						
U	10.50	1000/							10.50-						
	80 blows for	1100%	recov	ery					_						
									_	8888					
									_	33333					
									11.00-						
									_	33333					
									_						
D	11.50								11.50-						
S		4	5	5	5	6	6	22	-						
									_						
									_	33333					
									 12.00—						
									12.00						
									_	33333					
									_		10.40				
									_		12.40		Grey high to very high	strength CLAY. (LONDON	
D	12.50			_			_		12.50-				CLAY)	•	
S		3	4	5	6	6	7	24							
									_						
									_	33333					
									13.00-						
										33333					
									_						
U	13.50								13.50-	33333					
	80 blows for	100%	recov	ery					1						
									-						
									14.00						
									_						
									_						
D	14.50								14.50-						
S		3	4	5	6	6	7	24							
									-	33333					
									-						
									 15.00—						
									13.00-						
	1	I		-					L				(U*) Non recovery of		
				C				12 Lor	and Distund				(LLW) Non-receivent of	Encode	

									-				CABLE PERCU	USSIO	N BOREHOLE	E RECORD	
					J	0		43				Explora	tory Hole No:			BH1	
Site Address:									n, NW5 1F	В		Project				P1323J1303	
Client: Logged By:			Des RD	sign Ve	ntures	Highga	ite Ltd					Ground	Level: mmenced:			13/02/2018	
Checked By:			ing.										mpleted:			13/02/2018	
Type and diame				ndo 400	00							Sheet N	0:			4 Of 5	
Water levels r Date:	ecoraea au	ring bo	ring,	m													
Hole depth:																	
Casing depth: Level water on	strike																
Water Level after																	
Remarks																	
1: No water rep 2:	Donted																
3:																	
4:		Sample	e or T	ests							Strata						
	Depth				Result	t					Depth	Water	Stra	ata De	escription		Installation
Туре	(mbgl)	75	75	75	75	75	75	N		Legend	(mbgl)	Strikes (mbgl)					
		75	/5	75	75	75	15		15.00				Grey high to very hi	niah stre	enath CLAY. (LONDON	
									_				CLAY)	iigii sii	ongin ozna (
									_								
DS	15.50	3	4	5	6	7	7	25	15.50-								
									_								
									_								
									16.00-								
									_								
									_								
U	16.50 70 blows fo	100%	recov						16.50								
		10078	Tecov	ery					_								
									_								
									17.00								
									_								
									-								
									_								
D S	17.50	4	5	6	7	7	9	29	17.50-								
5		4	5		′	<i>'</i>	7	27	_								
									_								
									18.00								
									_								
									_								
DS	18.50	4	5	6	7	8	9	20	18.50-	3-3-3-3-3							
5		4	5		′	8	9	30									
									_								
									 19.00								
									-								
									_								
U	19.50	10001							19.50-								
	80 blows fo	100%	recov	ery					-								
									_								
									 20.00								
									20.00								
		S	ampli	ng Cod	e: U- I	Jndistu	rbed	B - Lar	ge Disturb	ed D - Sma	all Disturbed	W - Water	(U*) Non recovery	of Sam	nple		
					Jon	nas Ass	ociate	s Ltd -	Lakeside H	louse, 1 Furz		Stockley Pa	ark, UB11 1BD				
						504		/ L									

									_				CABLE F	PERCUSSIC	N BOREHOLE	RECORD	
					J	0]	Ĩ					Explorat	tory Hole No:			BH1	
Site Address:									n, NW5 1F	В		Project I				P1323J1303	
Client: Logged By:			Desi RD	ign Vei	ntures	Highga	ite Ltd					Ground Date Co	Level: mmenced:			13/02/2018	
Checked By:													mpleted:			13/02/2018	
Type and diame			_	do 400	00							Sheet N	0:			5 Of 5	
Water levels r Date:	ecorded dur	ring bo	ring, I	m			1										
Hole depth:																	
Casing depth:																	
Level water on Water Level after																	
Remarks	2011113.		-				<u> </u>									<u> </u>	
1: No water rep	ported																
2:																	
4:													1				
	:	Sample T	e or Te	ests					-		Strata	Water	-				
Туре	Depth (mbgl)				Result	t				Legend	Depth (mbgl)	Strikes		Strata De	escription		Installation
	(Tigan)	75	75	75	75	75	75	N	20.00		(Tigari)	(mbgl)					
D S D S U U	20.50 21.50 22.50 150 blows fr 23.50 24.00	4 5	7 7	7 8 ery 8	8	9	9	32 34 36					Grey high to v CLAY)				
5	24.50	7 Si	8 amplir	9 ng Cod	e: U- L Jon	10 Indistu	12 rbed	41 B - Lar s Ltd -	24.50 	ed D - Sma	24.95 II Disturbed eground Way	W - Water , Stocklev Pa	(U*) Non reco ark, UB11 1BD	very of San	nple		
						T: 084	3 289	2187	E: info@jor	masassociates	.com W: www	w.jomasasso	ciates.com				

									_				CABLE PER	RCUSSIC	N BOREHOLE	RECORD	
					J							Explorat	tory Hole No:			BH2	
Site Address:									n, NW5 1F	В		Project				P1323J1303	
Client: Logged By:			Des RS	ign Ve	ntures	Highga	ate Ltd					Ground	Level:			13/02/2018	
Checked By:			ĸs										mpleted:			13/02/2018	
Type and diam	eter of equip	ment:	Dar	ndo 400	00							Sheet N				1 Of 5	
Water levels	recorded du	iring bo	oring,	m			1					1					
Date: Hole depth:																	
Casing depth:																	
Level water on																	
Water Level aft Remarks	er 20mins:																
1: No water re	ported																
2:																	
3:																	
4.		Sample	e or T	ests							Strata						
	Depth				Resul	+			1		Depth	Water		Strata De	escription		Installation
Туре	(mbgl)							1	-	Legend	(mbgl)	Strikes (mbgl)			seription		Instantion
		75	75	75	75	75	75	N	0.00 —	~~~~~~		-		CDOUNE	2)		
													Concrete. (MADE	GROUNL))		
											0.30						
D	0.40												Brown medium to	o high str	ength silty CLA	ΑY.	
									0.50 —								
									-								
										33333							
D	1.00								1.00 —								
									_								
									-								
S	1.50	2	2	2	2	2	2	8	1.50 —								
									-								
									-								
D	2.00								2.00 —								
									-								
U	2.50								2.50 —								
0	60 blows fo	r 100%	recov	ery					2.50 -								
									-								
									3.00 —								
									-								
									-								
D	3.50								3.50 —								
S		2	3	2	3	3	3	11	-	33333							
									-								
									4.00 —								
									-								
									–								
D	4.50								4.50 —								
S		2	3	3	4	4	4	15									
									_								
									-								
									5.00 —								XXXXXXXXX
																	1
		S	iamplii	ng Cod	e: U- l Jon	Jndistu nas Ase	rbed sociate	B - Lar s Ltd -	ge Disturk Lakeside I	ed D - Sma louse, 1 Furz	all Disturbed	W - Water Stocklev Pa	(U*) Non recover ark, UB11 1BD	ry of Sam	nple		
											s.com W: www						

									7				CABLE F	PERCUSSIC		RD
					J	•]	¥ F					Explora	tory Hole No:		BH2	
Site Address:									n, NW5 1F	В		Project			P1323J1	303
Client: Logged By:			Des RS	sign Ve	ntures	Highga	ate Ltd					Ground	Level:		13/02/2	018
Checked By:			KJ										ompleted:		13/02/2	
Type and diam				ndo 400	00							Sheet N	lo:		2 Of	5
Water levels Date:	recorded du	ring bo	oring,	m												
Hole depth:																
Casing depth:			_													
Level water on Water Level af			_													
Remarks														1		
1: No water re	eported															
2: 3:																
4:																
		Sample	e or T	ests					-		Strata	Water	-			
Туре	Depth				Resul	t				Legend	Depth	Strikes		Strata D	escription	Installation
51	(mbgl)	75	75	75	75	75	75	N			(mbgl)	(mbgl)				
									5.00 —				Brown mediur	n to high sti	rength silty CLAY.	
									_							
									-							
U	5.50								5.50 —							
0	60 blows for	r 100%	recov	ery						33333						
									6.00 —							
									-							
									_							
D	6.50								6.50 —							
S		3	3	4	4	4	5	17								
									_	33333						
									7.00 —							
									_							
									_	2-2-2-2-2						
									-							
D S	7.50	3	3	4	4	5	5	18	7.50 —							
5			5		1		5		_							
									-							
									8.00 -							
										2-2-2-2-2						
									-							
U	8.50								8.50 —							
	70 blows for	r 100%	recov	/ery					-							
									9.00 —							
									-							
									_							
D	9.50								9.50 —							
S		2	3	4	4	4	6	18	-	<u> </u>						
									-							
									10.00—							
		S	Sampli	ng Cod	le: U- l	Jndistu	rbed	B - Lar	ge Disturb	ed D - Sma	all Disturbed	W - Water	(U*) Non reco ark, UB11 1BD	overy of San	nple	
					JOH	T: 084	13 289	2187 I	E: info@jo	nasassociate	s.com W: ww	w.jomasass	ciates.com			

						_		= 4	-				CABLE PERCUSSI	ON BOREHOLE RECORD	
					J	O	è E					Explora	tory Hole No:	BH2	
Site Address:			140) Highg	ate Ro	ad, Hig	hgate,	Londo	n, NW5 1P	В		Project	No:	P1323J130	3
Client:				sign Ve	ntures	Highga	te Ltd					Ground			
Logged By: Checked By:			RS										mmenced: mpleted:	13/02/201 13/02/201	
Type and diam	eter of equip	ment:	Dar	ndo 400	00							Sheet N		3 Of 5	2
Water levels i														1	
Date:															
Hole depth: Casing depth:							-								
Level water on	strike:														
Water Level aft	er 20mins:														
Remarks	n onto d														
1: No water re 2:	porteu														
3:															
4:															
		Sample	e or l	ests					-		Strata	Water	-		
Туре	Depth (mbgl)				Resul	t				Legend	Depth (mbgl)	Strikes	Strata D	escription	Installation
	(mbgr)	75	75	75	75	75	75	N			(mogr)	(mbgl)			
									10.00				Brown medium to high st	rength silty CLAY.	
		1													
		1							-	33333					
_		1													
D S	10.50	3	4	4	4	5	6	19	10.50						
Ŭ		Ĭ							_	3333					
									11.00-						
		1							-						
U	11.50	1							11.50-						
U	70 blows fo	r 100%	recov	ery							11.60		Grey high to very high st		
									-				CLAY)	ENGUI CLAT. (LUNDUN	
									12.00						
									_	33333					
D	12.50								12.50	33333					
S															
		1													
		1							13.00						
									-						
		1													
		1													
D	13.50	1							13.50						
S		3	4	6	6	7	7	26		33333					
		1													
		1								33333					
		1							14.00						
		1													
		1													
		1							-						
U	14.50								14.50						
	65 blows fo	r 100%	recov	ery											
		1							-						
		1							15.00						
		1													
		5	Sampli	ng Cod									(U*) Non recovery of Sar ark, UB11 1BD	nple	
					JOL					nasassociates					

													CABLE F	PERCUSSIC	N BOREHOLE REC	ORD	
					J	0	Ĩ					Explora	tory Hole No:		E	H2	
Site Address:						-	-		n, NW5 1P	В		Project			P132	3J1303	
Client: Logged By:			RS RS	ign Ve	ntures	Highga	ite Ltd					Ground Date Co	Level:		13/0	2/2018	
Checked By:													mpleted:			2/2018	
Type and diameter Water levels re-				ndo 400 m	00							Sheet N	lo:		4	Of 5	
Date:			- g,														
Hole depth: Casing depth:							_										
Level water on st	rike:																
Water Level after	20mins:																
Remarks 1: No water repo	orted																
2:																	
3: 4:																	
		Sample	or Te	ests							Strata		_				
Туре	Depth (mbgl)				Resul	t				Legend	Depth (mbgl)	Water Strikes		Strata De	escription	I	Installation
	(75	75	75	75	75	75	N	15.00		((mbgl)					
D S D S	15.50	4	4	5	6	7	8	26					Grey high to v CLAY)	ery high str	ength CLAY. (LOND	ON DO	
U	17.50 <mark>70 blows fo</mark> r	r 100%	recove	ery					17.00								
DS	18.50	4	7	7	8	8	11	34	18.00 								
S		4 Sa	5 amplir	6 ng Cod	Jon	nas Ass	sociate	s Ltd -	Lakeside H	ed D - Sma louse, 1 Furze nasassociates	eground Way,	Stockley Pa	(U*) Non reco ark, UB11 1BD ociates.com	overy of San	nple		

ent: Design Ventures Highgate Ltd Ground Level: gged By: RS Date Commenced: 13/02/2018 be and diameter of equipment: Dando 4000 Sheet No: 5 Of 5 atter levels recorded during boring, m te: Image: Commence Co									-	-				CABLE F	PERCUSSIC	ON BOREHOLE RECORD	
mit jegn / vitures: large / vitures / vitures: large / vitures / v						J		È P					Explora	tory Hole No:		BH2	
Open function Open function Under Second (M)	ite Address:			140	0 Highg	jate Ro	ad, Hig	hgate,	Londo	n, NW5 1F	В		Project	No:		P1323J130)3
	lient:					ntures	Highga	ate Ltd									
sin and decisent of any prover in the free free free free free free free fr				RS													
Image: Second S		eter of equipr	ment	Da	ndo 40(00											8
						00							Sheet h			0010	
	ate:		0														
operation image	lole depth:																
Upper Long Long <thlong< th=""> Long Long <th< td=""><td>asing depth:</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></thlong<>	asing depth:			_													
Secondar Agencies Se				_													
	emarks	20111113.															
		eported															
	:																
	:																
	:		Sampl	o or T	octo							Strata					
Type Deam View Legend Deam String Decription Instant U 10					ests					-			Water	-			
u 10 75 75 75 75 76 70 </td <td>Туре</td> <td></td> <td></td> <td></td> <td></td> <td>Resul</td> <td>t</td> <td></td> <td></td> <td></td> <td>Legend</td> <td></td> <td>Strikes</td> <td></td> <td>Strata D</td> <td>escription</td> <td>Installatio</td>	Туре					Resul	t				Legend		Strikes		Strata D	escription	Installatio
u 30.50 1000 necessy u		(11.591)	75	75	75	75	75	75	N			(11.59.)	(mbgl)				
u 20.50 u <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>20.00</td> <td></td> <td></td> <td></td> <td>Grey high to v</td> <td>ery high str</td> <td>rength CLAY. (LONDON</td> <td></td>										20.00				Grey high to v	ery high str	rength CLAY. (LONDON	
0 1000000000000000000000000000000000000														CLAY)			
0 1000000000000000000000000000000000000										_							
0 1000000000000000000000000000000000000										_							
D 21.50 4 7 8 8 9 10 35 21.50 4 7 8 8 9 10 35 21.50 4 8 9 10 15 21.50 22.50	U									20.50							
D 21.50 4 7 8 8 9 10 5 21.60 D 22.50 4 8 8 9 10 15 22.60 S 22.50 4 8 9 10 10 10 20 D 23.50 4 8 9 10 10 17 24.50 D 20.50 4 8 9 10 11		70 blows for	r 100%	6 recov	very					_							
D 21.50 4 7 8 8 9 10 5 21.60 D 22.50 4 8 8 9 10 15 22.60 S 22.50 4 8 9 10 10 10 20 D 23.50 4 8 9 10 10 17 24.50 D 20.50 4 8 9 10 11										_							
D 21.50 4 7 8 8 9 10 5 21.60 D 22.50 4 8 8 9 10 15 22.60 S 22.50 4 8 9 10 10 10 20 D 23.50 4 8 9 10 10 17 24.50 D 20.50 4 8 9 10 11										_							
S Image: Amount of the second sec										21.00-							
S Image: Amount of the second sec										-							
S Image: Amount of the second sec																	
S Image: Amount of the second sec																	
D 22.50 4 8 8 9 10 10 37 22.50 S 22.50 4 8 8 9 10 10 37 22.50 S 24.50 4 8 9 10 10 11 11 41 42 50 S 24.50 4 8 9 10 10 11 11 41 42 50 S 24.50 4 8 9 10 10 11 11 41 41 41 41 41 41 41 41 41 41 41	D	21.50								21.50							
D 22.50 4 8 8 9 10 10 37 25.0 U 23.50 9 10 10 37 25.0 10	S		4	7	8	8	9	10	35	-							
D 22.50 4 8 8 9 10 10 37 25.0 U 23.50 9 10 10 37 25.0 10										-							
D 22.50 4 8 8 9 10 10 37 25.0 U 23.50 9 10 10 37 25.0 10										-							
D 22.50 4 8 8 9 10 10 37 25.0 U 23.50 9 10 10 37 25.0 10										-							
S 4 8 8 9 10 10 37										22.00							
S 4 8 8 9 10 10 37										_							
S 4 8 8 9 10 10 37										_							
S 4 8 8 9 10 10 37										_							
U 23.50 80 blows for 100% recovery D 24.50 S 24.50 4 8 9 10 11 11 11 41 41 41 41 41 41 41 41 41 41		22.50					1.0			22.50-							
U 23.50 80 blows for 100% recovery F F F F F F F F F F F F F F F F F F F	S		4	8	8	9	10	10	37								
U 23.50 80 blows for 100% recovery F F F F F F F F F F F F F F F F F F F																	
U 23.50 80 blows for 100% recovery F F F F F F F F F F F F F F F F F F F										_							
80 blows for 100% recovery 10 10% recovery 10 10% recovery 10 10% recovery D 24.50 10 11 11 11 11 11 S 24.50 10 11 11 11 11 11 S 24.50 10 11 11 11 11 11 S S 10 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11										23.00							
80 blows for 100% recovery 10 10% recovery 10 10% recovery 10 10% recovery D 24.50 10 11 11 11 11 11 S 24.50 10 11 11 11 11 11 S 24.50 10 11 11 11 11 11 S S 10 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11										-							
80 blows for 100% recovery 10 10% recovery 10 10% recovery 10 10% recovery D 24.50 10 11 11 11 11 11 S 24.50 10 11 11 11 11 11 S 24.50 10 11 11 11 11 11 S S 10 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11																	
80 blows for 100% recovery 10 10% recovery 10 10% recovery 10 10% recovery D 24.50 10 11 11 11 11 11 S 24.50 10 11 11 11 11 11 S 24.50 10 11 11 11 11 11 S S 10 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 11 11 11 11 11 11 S 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11																	
80 blows for 100% recovery 10 10% recovery 10 10% recovery 10 10% recovery D 24.50 10 11 11 11 11 11 S 24.50 10 11 11 11 11 11 S 24.50 10 11 11 11 11 11 S 24.50 10 11 11 11 11 11 A 10 11 11 11 11 11 11 11 A 10 11 11 11 11 11 11 11 A 10 11 11 11 11 11 11 11 A 10 11 11 11 11 11 11 11 B 10 11 11 11 11 11 11 11 B 10 11 11 11 11 11 11 11 A 10 11 11 11 11 11 11 11 B 10 11 11 11 11 11 11 11 11 11 B 10 11 11 11 11 11 11 11 11 11 11 11 B 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11	U	23.50								23.50							
D 24.50 S 24.50 4 8 9 10 11 11 41 24.50 25.00 25			100%	6 recov	very					-							
D 24.50 S 24.50 A 8 9 10 11 11 41 24.50 24.50 24.50 24.50 25.00 Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD] –							
D 24.50 S 24.50 A 8 9 10 11 11 41 24.50 24.50 24.50 24.50 25.00 Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD																	
D 24.50 S 24.50 A 8 9 10 11 11 41 24.50 24.50 24.50 24.50 25.00 Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										_							
D 24.50 4 8 9 10 11 11 41 24.50 - <										24.00							
D 24.50 4 8 9 10 11 11 41 24.50 - <																	
D 24.50 4 8 9 10 11 11 41 24.50 - <																	
D 24.50 4 8 9 10 11 11 41 24.50 - <										_							
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD	D	24.50								24.50		24.50					
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD	S		4	8	9	10	11	11	41	-							
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD																	
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD																	
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										25.00							
Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD										25.00							
Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD			1	-					_	I				I			
			9	Sampli	ing Cod										very of Sar	nple	

APPENDIX 3 – CHEMICAL LABORATORY TEST RESULTS

Emma Hucker Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: Jomas Associates

Analytical Report Number : 18-76317

Replaces Analytical Report Number : 18-76317, issue no. 1

Project / Site name:	138-140 Highgate Road, Highgate, London, NW5 1PB	Samples received on:	14/02/2018
Your job number:	JJ1303	Samples instructed on:	16/02/2018
Your order number:	P1323JJ1303.10	Analysis completed by:	16/03/2018
Report Issue Number:	2	Report issued on:	16/03/2018
Samples Analysed:	12 soil samples		

Signed:

Nicole Fay Quality Assistant For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Project / Site name: 138-140 Highgate Road, Highgate, London, NW5 1PB Your Order No: P1323JJ1303.10

Lab Sample Number				909736	909737	909738	909739	909740
Sample Reference				WS1	WS2	WS2	WS3	WS3
Sample Number				tjv	tjv	tjv	tjv	tjv
Depth (m)				0.25	2.50	0.50	0.40	2.00
Date Sampled				12/02/2018	13/02/2018	13/02/2018	12/02/2018	12/02/2018
Time Taken	-	1		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	16	16	12	16	21
Total mass of sample received	kg	0.001	NONE	1.2	-	1.4	1.2	1.4
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	Chrysotile & Amosite	Chrysotile	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	Detected	Detected	-
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	< 0.001	< 0.001	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	< 0.001	< 0.001	-
General Inorganics		N1/4	M059-5	0.0			10.1	0.0
pH - Automated	pH Units	N/A	MCERTS	8.6	-	9.2	10.1	8.3
Total Cyanide Total Sulphate as SO₄	mg/kg mg/kg	1 50	MCERTS MCERTS	< 1 1300	-	< 1 11000	< 1 2000	<u>2</u> 1800
Water Soluble SO4 16hr extraction (2:1 Leachate	iiig/kg	- 50	PICENTS	1300		11000	2000	1000
Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.067	-	1.8	0.32	0.85
Equivalent)	mg/l	1.25	MCERTS	67.2	-	1780	318	851
Total Organic Carbon (TOC)	%	0.1	MCERTS	2.6	-	1.2	-	-
Total Phenois				1.0		1.0	1.0	1.0
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	ma/ka	0.05	MCERTS	< 0.05	-	3.6	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	0.49	_	0.25	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	0.45	-	2.1	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	0.42	-	1.6	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	6.1	-	18	< 0.05	< 0.05
Anthracene				1.3	-	4.7	0.05	
	mg/kg	0.05	MCERTS	1.5	-	4./	< 0.05	< 0.05
Fluoranthene	mg/kg mg/kg	0.05	MCERTS MCERTS	1.5	-	21	< 0.05	< 0.05 < 0.05
Fluoranthene Pyrene		0.05 0.05	MCERTS MCERTS	15 13		21 17	< 0.05 < 0.05	< 0.05 < 0.05
Fluoranthene Pyrene Benzo(a)anthracene	mg/kg mg/kg mg/kg	0.05 0.05 0.05	MCERTS MCERTS MCERTS	15 13 9.5		21 17 13	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05
Fluoranthene Pyrene Benzo(a)anthracene Chrysene	mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS	15 13 9.5 5.7	- - - -	21 17 13 8.0	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05
Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS	15 13 9.5 5.7 7.7	- - - - -	21 17 13 8.0 10	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	15 13 9.5 5.7 7.7 3.8	- - - - - -	21 17 13 8.0 10 4.5	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	15 13 9.5 5.7 7.7 3.8 8.0	- - - - -	21 17 13 8.0 10 4.5 10	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	15 13 9.5 5.7 7.7 3.8 8.0 3.8	- - - - - - -	21 17 13 8.0 10 4.5 10 4.6	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	15 13 9.5 5.7 7.7 3.8 8.0	- - - - - - -	21 17 13 8.0 10 4.5 10	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	15 13 9.5 5.7 7.7 3.8 8.0 3.8 0.71	- - - - - - -	21 17 13 8.0 10 4.5 10 4.6 0.94	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	15 13 9.5 5.7 7.7 3.8 8.0 3.8 0.71	- - - - - - -	21 17 13 8.0 10 4.5 10 4.6 0.94	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	15 13 9.5 5.7 7.7 3.8 8.0 3.8 0.71	- - - - - - -	21 17 13 8.0 10 4.5 10 4.6 0.94	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	15 13 9.5 5.7 7.7 3.8 8.0 3.8 0.71 3.4	- - - - - - - - - - -	21 17 13 8.0 10 4.5 10 4.6 0.94 4.2	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.
Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	15 13 9.5 5.7 7.7 3.8 8.0 3.8 0.71 3.4 79.6	- - - - - - - - - - - -	21 17 13 8.0 10 4.5 10 4.6 0.94 4.2 124	< 0.05 < 0.05	< 0.05 < 0.05
Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	15 13 9.5 5.7 7.7 3.8 8.0 3.8 0.71 3.4 79.6	- - - - - - - - - - - - -	21 17 13 8.0 10 4.5 10 4.6 0.94 4.2 124 15	< 0.05 < 0.05	< 0.05 < 0.05
Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	15 13 9.5 5.7 7.7 3.8 8.0 3.8 0.71 3.4 79.6 11 3.9	- - - - - - - - - - - - - - - -	21 17 13 8.0 10 4.5 10 4.6 0.94 4.2 124 15 7.2	< 0.05 < 0.05	< 0.05 < 0.05
Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable)	mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	15 13 9.5 5.7 7.7 3.8 8.0 3.8 0.71 3.4 79.6 11 3.9 0.4	- - - - - - - - - - - - - - - - - - -	21 17 13 8.0 10 4.5 10 4.6 0.94 4.2 124 15 7.2 < 0.2	< 0.05 < 0.02	< 0.05 <
Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	15 13 9.5 5.7 7.7 3.8 8.0 3.8 0.71 3.4 79.6 11 3.9 0.4 < 4.0	- - - - - - - - - - - - - - - - - - -	21 17 13 8.0 10 4.5 10 4.6 0.94 4.2 124 15 7.2 < 0.2 < 4.0	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.02 < 0.80	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.02 < 0.80
Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable)	mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	$ \begin{array}{r} 15\\ 13\\ 9.5\\ 5.7\\ 7.7\\ 3.8\\ 8.0\\ 3.8\\ 0.71\\ 3.4\\ 79.6\\ 11\\ 3.9\\ 0.4\\ < 4.0\\ 25\\ \end{array} $	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 21 \\ 17 \\ 13 \\ 8.0 \\ 10 \\ 4.5 \\ 10 \\ 4.6 \\ 0.94 \\ 4.2 \\ \end{array}$ $\begin{array}{c} 124 \\ 15 \\ 7.2 \\ < 0.2 \\ < 0.2 \\ < 4.0 \\ 28 \end{array}$	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.
Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable) Copper (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	$ \begin{array}{r} 15\\ 13\\ 9.5\\ 5.7\\ 7.7\\ 3.8\\ 8.0\\ 3.8\\ 0.71\\ 3.4\\ \hline 79.6\\ \hline 11\\ 3.9\\ 0.4\\ < 4.0\\ 25\\ 35\\ \end{array} $		$\begin{array}{c} 21 \\ 17 \\ 13 \\ 8.0 \\ 10 \\ 4.5 \\ 10 \\ 4.6 \\ 0.94 \\ 4.2 \\ \end{array}$ $\begin{array}{c} 124 \\ 15 \\ 7.2 \\ < 0.2 \\ < 4.0 \\ 28 \\ 37 \end{array}$	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0
Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	$ \begin{array}{r} 15\\ 13\\ 9.5\\ 5.7\\ 7.7\\ 3.8\\ 8.0\\ 3.8\\ 0.71\\ 3.4\\ \hline 79.6\\ \hline 11\\ 3.9\\ 0.4\\ <4.0\\ 25\\ 35\\ 280\\ \end{array} $		$\begin{array}{c} 21 \\ 17 \\ 13 \\ 8.0 \\ 10 \\ 4.5 \\ 10 \\ 4.6 \\ 0.94 \\ 4.2 \\ \hline 124 \\ \hline 15 \\ 7.2 \\ < 0.2 \\ < 4.0 \\ 28 \\ 37 \\ 160 \\ \end{array}$	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.
Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (hexavalent) Cepper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	$ \begin{array}{r} 15\\ 13\\ 9.5\\ 5.7\\ 7.7\\ 3.8\\ 8.0\\ 3.8\\ 0.71\\ 3.4\\ \hline 79.6\\ \hline 11\\ 3.9\\ 0.4\\ < 4.0\\ 25\\ 35\\ 280\\ < 0.3\\ \end{array} $		$\begin{array}{c} 21 \\ 17 \\ 13 \\ 8.0 \\ 10 \\ 4.5 \\ 10 \\ 4.6 \\ 0.94 \\ 4.2 \\ \end{array}$ $\begin{array}{c} 124 \\ 124 \\ 15 \\ 7.2 \\ < 0.2 \\ < 4.0 \\ 28 \\ 37 \\ 160 \\ < 0.3 \end{array}$	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.02 < 0.2 < 4.0 90 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.02 < 4.0 64 29 69 < 0.3 < 0.3
Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	$ \begin{array}{r} 15\\ 13\\ 9.5\\ 5.7\\ 7.7\\ 3.8\\ 8.0\\ 3.8\\ 0.71\\ 3.4\\ \hline 79.6\\ \hline 11\\ 3.9\\ 0.4\\ <4.0\\ 25\\ 35\\ 280\\ \end{array} $		$\begin{array}{c} 21 \\ 17 \\ 13 \\ 8.0 \\ 10 \\ 4.5 \\ 10 \\ 4.6 \\ 0.94 \\ 4.2 \\ \hline 124 \\ \hline 15 \\ 7.2 \\ < 0.2 \\ < 4.0 \\ 28 \\ 37 \\ 160 \\ \end{array}$	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.

Iss No 18-76317-2 138-140 Highgate Road, Highgate, London, NW5 1PB JJ1303

Project / Site name: 138-140 Highgate Road, Highgate, London, NW5 1PB Your Order No: P1323JJ1303.10

Lab Sample Number				909736	909737	909738	909739	909740
Sample Reference				WS1	WS2	WS2	WS3	WS3
Sample Number				tjv	tjv	tjv	tjv	tjv
Depth (m)				0.25	2.50	0.50	0.40	2.00
Date Sampled				12/02/2018	13/02/2018	13/02/2018	12/02/2018	12/02/2018
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					

Monoaromatics								
Benzene	ug/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons								
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	-	-
_								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	7.6	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	29	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	150	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	190	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	5.8	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	20	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	160	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	440	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	620	< 10	< 10
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	-	6.6	-	-
TPH (C12 - C16)	mg/kg	4	MCERTS	11	-	27	-	-
TPH (C16 - C21)	mg/kg	1	MCERTS	83	-	190	-	-
TPH (C21 - C40)	mg/kg	10	MCERTS	220	-	690	-	-

Iss No 18-76317-2 138-140 Highgate Road, Highgate, London, NW5 1PB JJ1303

Project / Site name: 138-140 Highgate Road, Highgate, London, NW5 1PB Your Order No: P1323JJ1303.10

Lab Sample Number		909736	909737	909738	909739	909740		
Sample Reference				WS1	WS2	WS2	WS3	WS3
Sample Number				tiv	tjv	tjv	tjv	tiv
Depth (m)				0.25	2.50	0.50	0.40	2.00
Date Sampled				12/02/2018	13/02/2018	13/02/2018	12/02/2018	12/02/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								
Chloromethane Chloroethane	µg/kg	1	ISO 17025 NONE	-	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	μg/kg μg/kg	1	ISO 17025	-	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
Vinyl Chloride	µg/kg	1	NONE	-	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	µg/kg	1	NONE	-	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	µg/kg	1	NONE	-	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	1	ISO 17025	-	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane 2,2-Dichloropropane	μg/kg μg/kg	1	MCERTS	-	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
Trichloromethane	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	µg/kg	1	NONE	-	< 1.0	< 1.0	< 1.0	< 1.0
Benzene Tetrachloromethane	µg/kg	1	MCERTS MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	µg/kg µg/kg	1	MCERTS	-	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
Trichloroethene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	-	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025 MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Toluene 1,1,2-Trichloroethane	μg/kg μg/kg	1	MCERTS	-	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
1,3-Dichloropropane	µg/kg µg/kg	1	ISO 17025	-	< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane	µg/kg	1	ISO 17025	-	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	µg/kg	1	NONE	-	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	µg/kg	1	ISO 17025	-	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane Ethylbenzene	μg/kg μg/kg	1	MCERTS MCERTS	-	< 1.0 5.7	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
p & m-Xylene	μg/kg μg/kg	1	MCERTS	-	42	< 1.0	< 1.0	< 1.0
Styrene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane	µg/kg	1	NONE	-	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	µg/kg	1	MCERTS	-	20	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene Bromobenzene	µg/kg	1	MCERTS MCERTS	-	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
n-Propylbenzene	μg/kg μg/kg	1	ISO 17025	-	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	µg/kg	1	ISO 17025	-	15	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	µg/kg	1	MCERTS	-	4.6	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025	-	35	< 1.0	< 1.0	< 1.0
sec-Butylbenzene 1,3-Dichlorobenzene	μg/kg μg/kg	1 1	MCERTS ISO 17025	-	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0
p-Isopropyltoluene	μg/kg μg/kg	1	ISO 17025	-	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Butylbenzene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	µg/kg	1	ISO 17025	-	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene 1,2,3-Trichlorobenzene	μg/kg μg/kg	1	MCERTS ISO 17025	-	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
	P9/N9	-	100 17025		1.0	2 1.0	. 110	× 2.0

Iss No 18-76317-2 138-140 Highgate Road, Highgate, London, NW5 1PB JJ1303

Project / Site name: 138-140 Highgate Road, Highgate, London, NW5 1P Your Order No: P1323JJ1303.10

Lab Sample Number			909741	909742	909743	909744	909745	
Sample Reference								
•				WS4	WS5	WS5	WS5	WS7
Sample Number Depth (m)				tjv 0.70	tjv 1.00	tjv 0.50	tjv 1.60	tjv 0.40
Date Sampled				13/02/2018	13/02/2018	13/02/2018	13/02/2018	12/02/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	-	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	24	23	-	23	12
Total mass of sample received	kg	0.001	NONE	1.6	1.2	-	1.2	1.3
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	Chrysotile
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	-	Detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	< 0.001
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	< 0.001
General Inorganics pH - Automated	pH Units	N/A	MCERTS	9.0	10.7	-	8.7	9.5
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	-	< 1	< 1
Total Sulphate as SO₄	mg/kg	50	MCERTS	1300	3400		1200	4100
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.57	0.93	-	0.54	0.99
Equivalent)	mg/l	1.25	MCERTS	574	931	-	538	987
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.4	-	-	-	1.1
Tabel Discussion								
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	_	< 1.0	< 1.0
	iiig/kg		PICERT5	< 1.0	< 1.0	-	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	0.23	0.80
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	1.2	0.49
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	0.42	6.4
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	0.47	2.2
Fluoranthene Pyrene	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05	0.42 0.69	-	1.4 3.1	15 13
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	0.78	8.1
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	0.69	6.1
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	0.45	8.2
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	0.27	2.7
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	0.38	7.7
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	0.25	3.6
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	0.63
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	0.74	3.4
Total PAH Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	1.11	-	10.4	78.7
Heavy Metals / Metalloids				0.7	12		0.5	22
Arsenic (aqua regia extractable) Boron (water soluble)	mg/kg	1 0.2	MCERTS MCERTS	9.7 3.3	12 16		9.5 2.2	<u>22</u> 4.0
Cadmium (aqua regia extractable)	mg/kg mg/kg	0.2	MCERTS	< 0.2	< 0.2	-	< 0.2	0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	-	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	58	52	-	43	31
Copper (aqua regia extractable)	mg/kg	1	MCERTS	130	38	-	22	270
Lead (aqua regia extractable)	mg/kg	1	MCERTS	19	68	-	140	760
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	49	40	-	35	41
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	83	81	-	85	240

Iss No 18-76317-2 138-140 Highgate Road, Highgate, London, NW5 1PB JJ1303

Project / Site name: 138-140 Highgate Road, Highgate, London, NW5 1P Your Order No: P1323JJ1303.10

Wish Wish <th< th=""><th>Lab Sample Number</th><th>909741</th><th>909742</th><th>909743</th><th>909744</th><th>909745</th></th<>	Lab Sample Number	909741	909742	909743	909744	909745			
Sample Number tjv <	Sample Reference	WS4	WS5	WS5	WS5	WS7			
Date Sampled 13/02/2018 13/02/2018 13/02/2018 13/02/2018 13/02/2018 12/02/2018 Time Taken None Supplied None Suppli	Sample Number	tjv	tjv	tjv	tjv	tjv			
Time Taken None Supplied None Supplied None Supplied None Supplied None Supplied None Supplied Analytical Parameter (Soil Analysis) Soil Analysis Soil Analysis Soil Analysis Soil Analysis Soil Analysis Soil Analysis	Depth (m)		0.70	1.00	0.50	1.60	0.40		
Analytical Parameter Units defection of Limits	Date Sampled				13/02/2018	13/02/2018	13/02/2018	13/02/2018	12/02/2018
Analytical Parameter Unit of Status (Soil Analysis)	Time Taken	None Supplied							
	Analytical Parameter Units Status Soil Analysis) Units								

Monoaromatics								
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0

Petroleum Hydrocarbons								
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	-	-	-	-	-
-								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	7.8	-	42	1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	13	-	130	9.6
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	40	-	190	15
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	46	980	-	4100	120
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	48	1000	-	4500	140
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	4.2	-	5.4	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	11	-	50	9.6
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	36	-	130	47
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	580	-	2000	94
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	630	-	2200	150
TPH (C10 - C12)	mg/kg	2	MCERTS	-	-	-	-	-
TPH (C12 - C16)	mg/kg	4	MCERTS	-	-	-	-	-
TPH (C16 - C21)	mg/kg	1	MCERTS	-	-	-	-	-
TPH (C21 - C40)	mg/kg	10	MCERTS	-	-	-	-	-

Project / Site name: 138-140 Highgate Road, Highgate, London, NW5 1P Your Order No: P1323JJ1303.10

Lab Sample Number		909741	909742	909743	909744	909745		
Sample Reference				WEA	WCE	WCE	WCE	W/67
Sample Number				WS4 tiv	WS5 tjv	WS5 tiv	WS5 tjv	WS7 tiv
Depth (m)				0.70	1.00	0.50	1.60	0.40
Date Sampled				13/02/2018	13/02/2018	13/02/2018	13/02/2018	12/02/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								
Chloromethane	µg/kg	1	ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
Chloroethane	µg/kg	1	NONE	< 1.0	< 1.0	-	< 1.0	< 1.0
Bromomethane	µg/kg	1	ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
Vinyl Chloride	µg/kg	1	NONE	< 1.0	< 1.0	-	< 1.0	< 1.0
Trichlorofluoromethane	µg/kg	1	NONE	< 1.0	< 1.0	-	< 1.0	< 1.0
1,1-Dichloroethene	µg/kg	1	NONE	< 1.0	< 1.0	-	< 1.0	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	1	ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
Cis-1,2-dichloroethene	µg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	< 1.0	-	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane	µg/kg µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
2,2-Dichloropropane	μg/kg μg/kg	1	MCERTS	< 1.0	< 1.0 < 1.0	-	< 1.0 < 1.0	< 1.0 < 1.0
Trichloromethane	µg/kg µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
1,1,1-Trichloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
1,2-Dichloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
1,1-Dichloropropene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Trans-1,2-dichloroethene	µg/kg	1	NONE	< 1.0	< 1.0	-	< 1.0	< 1.0
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Tetrachloromethane	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
1,2-Dichloropropane	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Trichloroethene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Dibromomethane	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Bromodichloromethane	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
1,1,2-Trichloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
1,3-Dichloropropane	µg/kg	1	ISO 17025 ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
Dibromochloromethane	µg/kg	1	NONE	< 1.0 < 1.0	< 1.0	-	< 1.0	< 1.0
Tetrachloroethene 1,2-Dibromoethane	µg/kg µg/kg	1	ISO 17025	< 1.0	< 1.0 < 1.0	-	< 1.0 < 1.0	< 1.0 < 1.0
Chlorobenzene	µg/kg µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0		< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
p & m-Xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Styrene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Tribromomethane	µg/kg	1	NONE	< 1.0	< 1.0	-	< 1.0	< 1.0
o-Xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Isopropylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Bromobenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
n-Propylbenzene	µg/kg	1	ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
2-Chlorotoluene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
4-Chlorotoluene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
1,3,5-Trimethylbenzene	µg/kg	1	ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
tert-Butylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
sec-Butylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
1,3-Dichlorobenzene	µg/kg	1	ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
p-Isopropyltoluene	µg/kg	1 1	ISO 17025	< 1.0	< 1.0 < 1.0	-	< 1.0	< 1.0
1,2-Dichlorobenzene 1.4-Dichlorobenzene	µg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	< 1.0 < 1.0		< 1.0 < 1.0	< 1.0 < 1.0
Butylbenzene	μg/kg μg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	μg/kg μg/kg	1	ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
1,2,4-Trichlorobenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
	NU	÷ .	LICENTS	× 1.0			× 1.0	
Hexachlorobutadiene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0

Iss No 18-76317-2 138-140 Highgate Road, Highgate, London, NW5 1PB JJ1303

Project / Site name: 138-140 Highgate Road, Highgate, London, NW5 1P Your Order No: P1323JJ1303.10

Lah Camula Number		000749	000740		1				
Lab Sample Number				909748	909749		<u> </u>		
Sample Reference				WS4	WS5				
Sample Number				tjv	tjv				
Depth (m)				2.00	4.50				
Date Sampled				13/02/2018	13/02/2018				
Time Taken	Т	1		None Supplied	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status						
Stone Content	%	0.1	NONE	< 0.1	< 0.1				
Moisture Content	%	N/A	NONE	23	20				
Total mass of sample received	kg	0.001	NONE	1.4	0.90				
	-								
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-				
Asbestos in Soil	Туре	N/A	ISO 17025	-	-				
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-		l		
Asbestos Quantification Total	%	0.001	ISO 17025	-	-				
Conoral Inorganics									
General Inorganics pH - Automated	pH Units	N/A	MCERTS	7.9	7.9		1	1	
Total Cyanide	mg/kg	1	MCERTS	-	-				
Total Sulphate as SO ₄	mg/kg	50	MCERTS	-	-		1		
Water Soluble SO4 16hr extraction (2:1 Leachate									
Equivalent) Water Soluble SO4 16br outraction (201 Leashate	g/l	0.00125	MCERTS	1.8	2.3				
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-	-				
Total Organic Carbon (TOC)	//////////////////////////////////////	0.1	MCERTS	-	-				
	70	011	HOLINIO						
Total Phenols									
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	-				
Speciated PAHs		0.05					1		
Naphthalene Acenaphthylene	mg/kg	0.05	MCERTS MCERTS	-	-				
Acenaphthene	mg/kg mg/kg	0.05	MCERTS		-				
Fluorene	mg/kg	0.05	MCERTS	-	-				
Phenanthrene	mg/kg	0.05	MCERTS	-	-				
Anthracene	mg/kg	0.05	MCERTS	-	-				
Fluoranthene	mg/kg	0.05	MCERTS	-	-				
Pyrene	mg/kg	0.05	MCERTS	-	-				
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-				
Chrysene	mg/kg	0.05	MCERTS	-	-				
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-				
Benzo(k)fluoranthene Benzo(a)pyrene	mg/kg mg/kg	0.05	MCERTS MCERTS	-	-		1		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-		t		
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-		1		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-				
Total PAH									
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	-				
Henry Makala / Matallala									
Heavy Metals / Metalloids Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	-		1		
Boron (water soluble)	mg/kg mg/kg	0.2	MCERTS	-	-		<u> </u>		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	-		1		
Chromium (hexavalent)	mg/kg	4	MCERTS	-	-		1		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	-				
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	-				
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	-		 		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	-		l		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	-				
	mg/kg mg/kg mg/kg	1 1 1	MCERTS MCERTS MCERTS						

Iss No 18-76317-2 138-140 Highgate Road, Highgate, London, NW5 1PB JJ1303

Project / Site name: 138-140 Highgate Road, Highgate, London, NW5 1P Your Order No: P1323JJ1303.10

Lab Sample Number	909748	909749					
Sample Reference	WS4	WS5					
Sample Number	tjv	tjv					
Depth (m)				2.00	4.50		
Date Sampled				13/02/2018	13/02/2018		
Time Taken	None Supplied	None Supplied					
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				

Monoaromatics							
Benzene	ug/kg	1	MCERTS	-	-		
Toluene	µg/kg	1	MCERTS	-	-		
Ethylbenzene	µg/kg	1	MCERTS	-	-		
p & m-xylene	µg/kg	1	MCERTS	-	-		
o-xylene	µg/kg	1	MCERTS	-	-		
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	-		

Petroleum Hydrocarbons							
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	-	-		
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-		
		-	_				
TPH (C10 - C12)	mg/kg	2	MCERTS	-	-		
TPH (C12 - C16)	mg/kg	4	MCERTS	-	-		
TPH (C16 - C21)	mg/kg	1	MCERTS	-	-		
TPH (C21 - C40)	mg/kg	10	MCERTS	-	-		

Project / Site name: 138-140 Highgate Road, Highgate, London, NW5 1P Your Order No: P1323JJ1303.10

Lab Sample Number				909748	909749		
Sample Reference							
Sample Number		WS4 tiv	WS5 tjv				
Depth (m)				2.00	4.50		
Date Sampled				13/02/2018	13/02/2018	 	
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
VOCs							1
Chloromethane	µg/kg	1	ISO 17025	-	-		
Chloroethane	µg/kg	1	NONE	-	-		
Bromomethane	µg/kg	1	ISO 17025	-	-		
Vinyl Chloride	µg/kg	1	NONE	-	-		
Trichlorofluoromethane	µg/kg	1	NONE	-	-		
1,1-Dichloroethene	µg/kg	1	NONE	-	-		
1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene	µg/kg µg/kg	1 1	ISO 17025 MCERTS	-	-		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg μg/kg	1	MCERTS	-	-		
1,1-Dichloroethane	µg/kg µg/kg	1	MCERTS	-	-		
2,2-Dichloropropane	µg/kg	1	MCERTS	-	-		
Trichloromethane	µg/kg	1	MCERTS	-	-	 	
1,1,1-Trichloroethane	µg/kg	1	MCERTS	-	-		
1,2-Dichloroethane	µg/kg	1	MCERTS	-	-		
1,1-Dichloropropene	µg/kg	1	MCERTS	-	-		
Trans-1,2-dichloroethene	µg/kg	1	NONE	-	-	 	
Benzene Tetrachloromethane	µg/kg	1	MCERTS MCERTS	-	-		
1,2-Dichloropropane	µg/kg µg/kg	1	MCERTS	-	-		
Trichloroethene	µg/kg µg/kg	1	MCERTS	-	-		
Dibromomethane	µg/kg	1	MCERTS	-	-		
Bromodichloromethane	µg/kg	1	MCERTS	-	-		
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	-	-		
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	-	-		
Toluene	µg/kg	1	MCERTS	-	-		
1,1,2-Trichloroethane	µg/kg	1	MCERTS	-	-		
1,3-Dichloropropane Dibromochloromethane	µg/kg	1	ISO 17025 ISO 17025	-	-		
Tetrachloroethene	µg/kg µg/kg	1	130 17023 NONE	-	-		
1,2-Dibromoethane	µg/kg µg/kg	1	ISO 17025	-	-		
Chlorobenzene	µg/kg	1	MCERTS	-	-		
1,1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	-	-		
Ethylbenzene	µg/kg	1	MCERTS	-	-		
p & m-Xylene	µg/kg	1	MCERTS	-	-		
Styrene	µg/kg	1	MCERTS	-	-		
Tribromomethane	µg/kg	1	NONE	-	-	 	
o-Xylene	µg/kg	1	MCERTS	-	-	 	
1,1,2,2-Tetrachloroethane Isopropylbenzene	µg/kg	1	MCERTS MCERTS	-	-		
Bromobenzene	µg/kg µg/kg	1	MCERTS	-	-	 	
n-Propylbenzene	µg/kg µg/kg	1	ISO 17025	-	-		
2-Chlorotoluene	µg/kg	1	MCERTS	-	-		
4-Chlorotoluene	µg/kg	1	MCERTS	-	-		
1,3,5-Trimethylbenzene	µg/kg	1	ISO 17025	-	-		
tert-Butylbenzene	µg/kg	1	MCERTS	-	-	 	
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025	-	-		
sec-Butylbenzene	µg/kg	1	MCERTS	-	-	 	
1,3-Dichlorobenzene p-Isopropyltoluene	μg/kg μg/kg	1	ISO 17025 ISO 17025	-	-		
1,2-Dichlorobenzene	µg/kg µg/kg	1	MCERTS	-	-	 	
1,4-Dichlorobenzene	µg/kg µg/kg	1	MCERTS	-	-		
Butylbenzene	µg/kg	1	MCERTS	-	-		
1,2-Dibromo-3-chloropropane	µg/kg	1	ISO 17025	-	-	 	
1,2,4-Trichlorobenzene	µg/kg	1	MCERTS	-	-	 	
Hexachlorobutadiene	µg/kg	1	MCERTS	-	-	 	
1,2,3-Trichlorobenzene	µg/kg	1	ISO 17025	-	-		

Iss No 18-76317-2 138-140 Highgate Road, Highgate, London, NW5 1PB JJ1303

Analytical Report Number:18-76317Project / Site name:138-140 Highgate Road, Highgate, London, NW5 1PBYour Order No:P1323JJ1303.10

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
909738	WS2	0.50	178	Loose Fibres	Chrysotile & Amosite	< 0.001	< 0.001
909739	WS3	0.40	161	Loose Fibres	Chrysotile	< 0.001	< 0.001
909745	WS7	0.40	170	Loose Fibres	Chrysotile	< 0.001	< 0.001

Both Qualitative and Quantitative Analyses are UKAS accredited.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Iss No 18-76317-2 138-140 Highgate Road, Highgate, London, NW5 1PB JJ1303

Project / Site name: 138-140 Highgate Road, Highgate, London, NW5 1PB

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
909736	WS1	tjv	0.25	Brown loam and clay with gravel and vegetation.
909737	WS2	tjv	2.50	Light brown clay and sand with gravel.
909738	WS2	tjv	0.50	Brown sand with rubble and brick.
909739	WS3	tjv	0.40	Grey clay and sand with rubble and brick.
909740	WS3	tjv	2.00	Brown clay.
909741	WS4	tjv	0.70	Brown clay.
909742	WS5	tjv	1.00	Brown clay.
909743	WS5	tjv	0.50	-
909744	WS5	tjv	1.60	Grey clay and sand.
909745	WS7	tjv	0.40	Brown sand with gravel and rubble.
909748	WS4	tjv	2.00	Brown clay.
909749	WS5	tjv	4.50	Brown clay.

Project / Site name: 138-140 Highgate Road, Highgate, London, NW5 1PB

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

	7				
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	w	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
PRO (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS

Project / Site name: 138-140 Highgate Road, Highgate, London, NW5 1PB

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L076-PL	D	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L088/76-PL	W	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

L For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
WS4	tjv	S	18-76317	909741	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
WS4	tjv	S	18-76317	909741	b	TPHCWG (Soil)	L088/76-PL	b
WS4	tjv	S	18-76317	909741	b	Volatile organic compounds in soil	L073B-PL	b

Emma Hucker Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: Jomas Group

Analytical Report Number : 18-76460

Project / Site name:	138-140 Highgate Road, Highgate, London	Samples received on:	15/02/2018
Your job number:	JJ1303	Samples instructed on:	16/02/2018
Your order number:	P1323JJ1303.13	Analysis completed by:	26/02/2018
Report Issue Number:	1	Report issued on:	26/02/2018
Samples Analysed:	4 soil samples		

LAS Signed:

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Analytical Report Number: 18-76460 Project / Site name: 138-140 Highgate Road, Highgate, London

Your Order No: P1323JJ1303.13

Lab Sample Number	ab Sample Number					910622	910623	
Sample Reference				BH1	BH1	BH2	BH2	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				5.50	15.00	7.50	24.50	
Date Sampled	14/02/2018	14/02/2018	14/02/2018	14/02/2018				
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	20	18	19	18	
Total mass of sample received	kg	0.001	NONE	1.0	0.75	0.85	1.0	

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	6.6	8.1	7.5	8.9	
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	3.2	0.84	6.1	0.43	

Project / Site name: 138-140 Highgate Road, Highgate, London

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
910620	BH1	None Supplied	5.50	Brown clay.
910621	BH1	None Supplied	15.00	Brown clay.
910622	BH2	None Supplied	7.50	Light brown clay.
910623	BH2	None Supplied	24.50	Brown clay.

Project / Site name: 138-140 Highgate Road, Highgate, London

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Emma Hucker Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: Jomas Group

Analytical Report Number : 18-76323

Project / Site name:	138-140 Highgate Road, Highgate, London, NW5 1PB	Samples received on:	14/02/2018
Your job number:	JJ1303	Samples instructed on:	16/02/2018
Your order number:	P1323JJ1303.11	Analysis completed by:	23/02/2018
Report Issue Number:	1	Report issued on:	23/02/2018
Samples Analysed:	3 WAC 10:1 Samples		

Signed:

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:	Results	18-76	5323					
•								
					Client:	JOMASASSO	С	
Location	138-140 Highgate Road, Highgate, London, NW5 1PB							
Lab Reference (Sample Number)		909812 /	000813		Landfill Waste Acceptance Crite			
						Limits Stable Non-		
Sampling Date Sample ID		12/02, WS5				reactive		
Depth (m)	0.50		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill			
Solid Waste Analysis								
OC (%)**	0.4				3%	5%	6%	
loss on Ignition (%) **	1.8						10%	
3TEX (μg/kg) **	< 10				6000			
Sum of PCBs (mg/kg) **	< 0.007				1			
Mineral Oil (mg/kg)	370				500			
Fotal PAH (WAC-17) (mg/kg)	4.6				100			
oH (units)**	10.1			-		>6		
cid Neutralisation Capacity (mol / kg)	39					To be evaluated	To be evaluate	
luate Analysis	10:1			10:1		es for compliance le		
BS EN 12457 - 2 preparation utilising end over end leaching rocedure)	mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/k			
Arsenic *	0.0119			0.0814	0.5	2	25	
3arium *	0.0239			0.164	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	0.0004			< 0.0040	0.5	10	70	
Copper *	0.0038			0.026	2	50	100	
fercury *	< 0.0005			< 0.0050	0.01	0.2	2	
10lybdenum *	0.0123			0.0844	0.5	10	30	
Nickel *	0.0019	-		0.013	0.4	10	40	
ead *	< 0.0010	-		< 0.010	0.5	10	50	
Antimony *	< 0.0017			< 0.017	0.06	0.7	5	
Selenium *	< 0.0040	-		< 0.040	0.1	0.5	7	
Zinc *	0.0094			0.065	4	50 4000	200 25000	
Chloride *	95				800 10	4000		
Fluoride Sulphate *	0.41 430			2.8 3000	10	20000	500 50000	
TDS	230			1600	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	4000	-	-	
	7.60			52.1	500	800	1000	
each Test Information								
tone Content (%)	26							
Sample Mass (kg)	1.4							
Dry Matter (%)	82							
Aoisture (%)	18							
esults are expressed on a dry weight basis, after correction for mo	isture content whe	re applicable.			*= UKAS accredit	ed (liquid eluate and	alvsis only)	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3. This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Iss No 18-76323-1 138-140 Highgate Road, Highgate, London, NW5 1PB JJ1303

i2 Analytical	

Waste Acceptance Criteria Analytical Results

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Report No:

					Client:	JOMASASSO	С	
Location	138-140 Highgate Road, Highgate, London, NW5 1PB			, NW5 1PB				
Lab Reference (Sample Number)	909814 / 909815				Landfill Waste Acceptance Criteria			
						Limits		
Sampling Date		12/02				Stable Non- reactive		
Sample ID		WS4	ŧţv		Inert Waste	HAZARDOUS	Hazardous	
Depth (m)	0.70				Landfill	waste in non- hazardous Landfill	Waste Landfill	
Solid Waste Analysis								
TOC (%)**	0.3				3%	5%	6%	
Loss on Ignition (%) **	1.9						10%	
BTEX (µg/kg) **	< 10				6000			
Sum of PCBs (mg/kg) **	< 0.007				1			
Mineral Oil (mg/kg)	60				500			
Total PAH (WAC-17) (mg/kg)	< 0.9				100			
pH (units)**	8.9					>6		
Acid Neutralisation Capacity (mol / kg)	8.7					To be evaluated	To be evaluated	
Eluate Analysis	10:1			10:1		es for compliance le		
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
Arsenic *	0.0024			0.0167	0.5	2	25	
Barium *	0.0023			0.0155	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	< 0.0004			< 0.0040	0.5	10	70	
Copper *	0.0097			0.066	2	50	100	
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2	
Molybdenum *	0.0023			0.0155	0.5	10	30	
Nickel *	0.0003			< 0.0030	0.4	10	40	
Lead *	0.0021			0.014	0.5	10	50	
Antimony *	< 0.0017			< 0.017	0.06	0.7	5	
Selenium *	< 0.0040			< 0.040	0.1	0.5	7	
Zinc *	0.0055			0.038	4	50	200	
Chloride *	6.4			43	800	4000	25000	
Fluoride	0.29			2.0	10	150	500	
Sulphate *	91			620	1000	20000	50000	
TDS	150			1000	4000	60000	100000	
Phenol Index (Monhydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	4.52			30.8	500	800	1000	
l os sk Tosk Information								
Leach Test Information								
Stone Content (%)	< 0.1							
Sample Mass (kg)	1.6							
Dry Matter (%)	76							
Moisture (%)	24							
Results are expressed on a dry weight basis, after correction for me					*= UKAS accredit	ed (liquid eluate and	alysis only)	
Stated limits are for guidance only and i2 cannot be held responsib	e for any discrepen	cies with current leg	islation		** = MCERTS acc	rediited		

18-76323

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		18-76323					
				Cliente	1014464660	~	
				Client:	JOMASASSO	C	
Location	138-140 H	ighgate Road, Highgate, Lon	idon, NW5 1PB				
Lab Reference (Sample Number)		909816 / 909817		Landfill Waste Acceptance Criteria			
Sampling Date		12/02/2018			Limits Stable Non-		
Sample ID	WS7 tiv			-	reactive		
Depth (m)	0.90			Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis							
TOC (%)**	0.9			3%	5%	6%	
Loss on Ignition (%) **	3.1					10%	
BTEX (µg/kg) **	< 10			6000			
Sum of PCBs (mg/kg) **	< 0.007			1			
Mineral Oil (mg/kg)	190			500			
Total PAH (WAC-17) (mg/kg)	3.1			100			
pH (units)**	8.2				>6		
Acid Neutralisation Capacity (mol / kg)	14				To be evaluated	To be evaluated	
Eluate Analysis	10:1		10:1	Limit valu	es for compliance l	eaching test	
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l		mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
Arsenic *	< 0.0011		< 0.0110	0.5	2	25	
Barium *	0.0126		0.0845	20	100	300	
Cadmium *	< 0.0001		< 0.0008	0.04	1	5	
Chromium *	0.0008		0.0056	0.5	10	70	
Copper *	0.0056		0.038	2	50	100	
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2	
Molybdenum *	0.0221		0.148	0.5	10	30	
Nickel *	0.0003		< 0.0030	0.4	10	40	
Lead *	< 0.0010		< 0.010	0.5	10	50	
Antimony *	< 0.0017		< 0.017	0.06	0.7	5	
Selenium *	< 0.0040		< 0.040	0.1	0.5	7	
Zinc *	0.0033		0.022	4	50	200	
Chloride *	13		86	800	4000	25000	
Fluoride	1.5		9.9	10	150	500	
Sulphate *	48		320	1000	20000	50000	
TDS	120		830	4000	60000	100000	
Phenol Index (Monhydric Phenols) *	< 0.010		< 0.10	1	-	-	
DOC	10.5		70.2	500	800	1000	
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.1			1	1	1	
Dry Matter (%)	83			1	1		
Moisture (%)	17						
Desulte are expressed on a day uniable basis offer severation for an	icturo contant	a applicable		*- 11KAC	tod (liquid eluste		
Results are expressed on a dry weight basis, after correction for mo	isture content whe	e applicable.		*= UKAS accredit	ted (liquid eluate an	aiysis only)	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3. This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project / Site name: 138-140 Highgate Road, Highgate, London, NW5 1PB

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
909812	WS5	tjv	0.50	Light brown clay and sand with stones.
909814	WS4	tjv	0.70	Brown clay.
909816	WS7	tjv	0.90	Light brown clay and sand with gravel.

Iss No 18-76323-1 138-140 Highgate Road, Highgate, London, NW5 1PB JJ1303

Project / Site name: 138-140 Highgate Road, Highgate, London, NW5 1PB

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance""	L046-UK	w	NONE
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
BTEX in soil (Monoaromatics)	soil (Monoaromatics) Determination of BTEX in soil by headspace GC-MS. In-house method based on USE		L073B-PL	W	MCERTS
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	w	ISO 17025
Dissolved organic carbon 10:1 WAC	solved organic carbon 10:1 WAC Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.		L037-PL	w	NONE
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	w	ISO 17025
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L047-PL	D	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	w	ISO 17025
Mineral Oil (Soil) C10 - C40	ral Oil (Soil) C10 - C40 Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.		L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols 10:1 WAC	nohydric phenols 10:1 WAC Determination of phenols in leachate by distillation followed by colorimetry.		L080-PL	W	ISO 17025
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	w	MCERTS

Project / Site name: 138-140 Highgate Road, Highgate, London, NW5 1PB

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS

For method numbers ending in 'UL' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
WS4	tjv	S	18-76323	909814	b	BTEX in soil (Monoaromatics)	L073B-PL	b
WS4	tjv	S	18-76323	909814	b	Total BTEX in soil (Poland)	L073-PL	b

Emma Hucker Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: Jomas Group

Analytical Report Number : 18-77141

Project / Site name:	138-140 Highgate Road, Highgate, London, NW5 1PB	Samples received on:	22/02/2018
Your job number:	JJ1303	Samples instructed on:	23/02/2018
Your order number:	P1323JJ1303.14	Analysis completed by:	02/03/2018
Report Issue Number:	1	Report issued on:	02/03/2018
Samples Analysed:	3 water samples		

fat Signed:

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: 138-140 Highgate Road, Highgate, London, NW5 1PB

Your Order No: P1323JJ1303.14

Your Order No: P1323JJ1303.14						-	
Lab Sample Number				914716	914717	914718	
Sample Reference					WS5	WS4	
Sample Number	None Supplied	None Supplied	None Supplied				
Depth (m)				None Supplied	None Supplied	None Supplied	
Date Sampled				21/02/2018	21/02/2018	21/02/2018	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Total Phenois							
Total Phenols (monohydric)	µg/l	10	ISO 17025	-	-	< 10	
Speciated PAHs					1		
Naphthalene	µg/l	0.01	ISO 17025	-	-	< 0.01	
Acenaphthylene	μg/l	0.01 0.01	ISO 17025		-	< 0.01	
Acenaphthene	µg/l		ISO 17025	-		< 0.01	 ł
Fluorene	µg/l	0.01	ISO 17025	-	-	< 0.01	
Phenanthrene	µg/l	0.01	ISO 17025	-	-	< 0.01	 ł
Anthracene Fluoranthene	µg/l	0.01 0.01	ISO 17025 ISO 17025		-	< 0.01 < 0.01	ł
	µg/l	0.01	ISO 17025 ISO 17025	-	-	< 0.01	 ╂─────
Pyrene Benzo(a)anthracene	µg/l	0.01	ISO 17025 ISO 17025		-	< 0.01	ł
Chrysene	μg/l μg/l	0.01	ISO 17025 ISO 17025		-	< 0.01	
Benzo(b)fluoranthene	μg/I μg/I	0.01	ISO 17025 ISO 17025	-	-	< 0.01	╂─────
Benzo(k)fluoranthene	μg/i μq/i	0.01	ISO 17025 ISO 17025		-	< 0.01	
Benzo(a)pyrene	μg/i μq/i	0.01	ISO 17025 ISO 17025	-	-	< 0.01	 <u> </u>
Indeno(1,2,3-cd)pyrene	μg/i μq/i	0.01	ISO 17025 ISO 17025		-	< 0.01	
Dibenz(a,h)anthracene	μg/I μg/I	0.01	ISO 17025 ISO 17025		-	< 0.01	 ł
Benzo(ghi)perylene	μg/I μq/I	0.01	ISO 17025 ISO 17025		-	< 0.01	
Denzo(gni)peryiene	µg/1	0.01	130 17025	-	-	< 0.01	<u>I</u>
Total PAH							
Total EPA-16 PAHs	l/pu	0.16	ISO 17025	-	-	< 0.16	

Project / Site name: 138-140 Highgate Road, Highgate, London, NW5 1PB

Your Order No: P1323JJ1303.14

Tour Order No. P1323331303.14								
Lab Sample Number				914716	914717	914718		
Sample Reference				WS2	WS5	WS4		
Sample Number				None Supplied	None Supplied	None Supplied		
Depth (m)				None Supplied	None Supplied	None Supplied		
Date Sampled				21/02/2018	21/02/2018	21/02/2018		
Time Taken			-	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics							-	-
Benzene	µg/l	1	ISO 17025	-	-	< 1.0		
Toluene	µg/l	1	ISO 17025	-	-	< 1.0		
Ethylbenzene	µg/l	1	ISO 17025	-	-	< 1.0		
p & m-xylene	µg/l	1	ISO 17025	-	-	< 1.0		
o-xylene	µg/l	1	ISO 17025	-	-	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	-	-	< 1.0		

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	-	-	< 1.0	
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	-	-	< 1.0	
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	-	-	< 1.0	
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	-	-	< 10	
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	-	-	< 10	
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	-	-	< 10	
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	-	-	< 10	
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	-	-	< 10	
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	-	-	< 1.0	
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	-	-	< 1.0	
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	-	-	< 1.0	
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	-	-	< 10	
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	-	-	< 10	
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	-	-	< 10	
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	-	-	< 10	
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	-	-	< 10	

Project / Site name: 138-140 Highgate Road, Highgate, London, NW5 1PB

Your Order No: P1323JJ1303.14

Your Order No: P1323JJ1303.14				a : -	a	A	1	
Lab Sample Number				914716	914717	914718		
Sample Reference				WS2	WS5	WS4		
Sample Number				None Supplied	None Supplied	None Supplied		
Depth (m)				None Supplied	None Supplied	None Supplied		
Date Sampled				21/02/2018 None Supplied	21/02/2018	21/02/2018		
Time Taken			1	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								
Chloromethane	µg/l	1	ISO 17025	-	-	< 1.0		
Chloroethane	µg/l	1	ISO 17025	-	-	< 1.0		
Bromomethane	µg/l	1	ISO 17025	-	-	< 1.0		
Vinyl Chloride	µg/l	1	NONE	-	-	< 1.0		
Trichlorofluoromethane	µg/l	1	NONE	-	-	< 1.0		
1,1-Dichloroethene	µg/l	1	ISO 17025	-	-	< 1.0		
1,1,2-Trichloro-1,2,2-trifluoroethane	µg/l	1	ISO 17025	-	-	< 1.0		
Cis-1,2-dichloroethene	µg/l	1	ISO 17025	-	-	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	-	-	< 1.0		
1,1-Dichloroethane	µg/l	1	ISO 17025	-	-	< 1.0		
2,2-Dichloropropane	µg/l	1	ISO 17025	-	-	< 1.0		
Trichloromethane	µg/l	1	ISO 17025	-	-	< 1.0		
1,1,1-Trichloroethane	µg/l	1	ISO 17025	-	-	< 1.0		
1,2-Dichloroethane	µg/l	1	ISO 17025	-	-	< 1.0		
1,1-Dichloropropene	µg/l	1	ISO 17025	-	-	< 1.0		
Trans-1,2-dichloroethene	µg/l	1	ISO 17025 ISO 17025	-	-	< 1.0		
Benzene Tetrachloromethane	µg/l	1	ISO 17025 ISO 17025	-	-	< 1.0		
1,2-Dichloropropane	µg/l	1 1	ISO 17025 ISO 17025	-	-	< 1.0		
Trichloroethene	µg/l	1	ISO 17025 ISO 17025	-	-	< 1.0 < 1.0		
Dibromomethane	μg/l μg/l	1	ISO 17025 ISO 17025	-	-	< 1.0		
Bromodichloromethane	µg/l	1	ISO 17025	-	-	< 1.0		
Cis-1,3-dichloropropene	µg/l	1	ISO 17025	-	_	< 1.0		
Trans-1,3-dichloropropene	µg/l	1	ISO 17025	-	-	< 1.0		
Toluene	µg/l	1	ISO 17025	-	-	< 1.0		
1,1,2-Trichloroethane	µg/l	1	ISO 17025	-	-	< 1.0		
1,3-Dichloropropane	µg/l	1	ISO 17025	-	-	< 1.0		
Dibromochloromethane	µg/l	1	ISO 17025	-	-	< 1.0		
Tetrachloroethene	µg/l	1	ISO 17025	-	-	< 1.0		
1,2-Dibromoethane	µg/l	1	ISO 17025	-	-	< 1.0		
Chlorobenzene	µg/l	1	ISO 17025	-	-	< 1.0		
1,1,1,2-Tetrachloroethane	µg/l	1	ISO 17025	-	-	< 1.0		
Ethylbenzene	µg/l	1	ISO 17025	-	-	< 1.0		
p & m-Xylene	µg/l	1	ISO 17025	-	-	< 1.0		
Styrene	µg/l	1	ISO 17025	-	-	< 1.0		
Tribromomethane o-Xylene	µg/l	1 1	ISO 17025 ISO 17025	-	-	< 1.0 < 1.0		
0-Xylene 1,1,2,2-Tetrachloroethane	µg/l µg/l	1	ISO 17025 ISO 17025	-	-	< 1.0		
Isopropylbenzene	µg/I µg/I	1	ISO 17025 ISO 17025	-	-	< 1.0		
Bromobenzene	µg/I µg/I	1	ISO 17025 ISO 17025	-	-	< 1.0		
n-Propylbenzene	µg/I	1	ISO 17025 ISO 17025	_	-	< 1.0		
2-Chlorotoluene	µg/l	1	ISO 17025	-	-	< 1.0		
4-Chlorotoluene	µg/l	1	ISO 17025	-	-	< 1.0		
1,3,5-Trimethylbenzene	µg/l	1	ISO 17025	-	-	< 1.0		
tert-Butylbenzene	µg/l	1	ISO 17025	-	-	< 1.0		
1,2,4-Trimethylbenzene	µg/l	1	ISO 17025	-	-	< 1.0		
sec-Butylbenzene	µg/l	1	ISO 17025	-	-	< 1.0		
1,3-Dichlorobenzene	µg/l	1	ISO 17025	-	-	< 1.0		
p-Isopropyltoluene	µg/l	1	ISO 17025	-	-	< 1.0		
1,2-Dichlorobenzene	µg/l	1	ISO 17025	-	-	< 1.0		
1,4-Dichlorobenzene	µg/l	1	ISO 17025	-	-	< 1.0		
Butylbenzene	µg/l	1	ISO 17025	-	-	< 1.0		
1,2-Dibromo-3-chloropropane	µg/l	1	ISO 17025	-	-	< 1.0		
1,2,4-Trichlorobenzene	µg/l	1	ISO 17025	-	-	< 1.0		
Hexachlorobutadiene 1,2,3-Trichlorobenzene	µg/l	1	ISO 17025 ISO 17025	-	-	< 1.0 < 1.0		
	µg/l	1	130 1/025		-	< 1.U		

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: 138-140 Highgate Road, Highgate, London, NW5 1PB

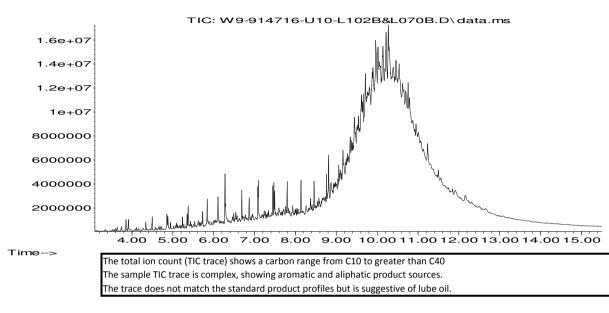
Your Order No: P1323JJ1303.14

Lab Sample Number	914716	914717	914718					
Sample Reference				WS2	WS5	WS4		
Sample Number				None Supplied	None Supplied	None Supplied		
Depth (m)				None Supplied	None Supplied	None Supplied		
Date Sampled				21/02/2018	21/02/2018	21/02/2018		
Time Taken				None Supplied	None Supplied	None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Miscellaneous Organics		-	-				-	-
Product ID		N/A	NONE	See Attached	See Attached	-		

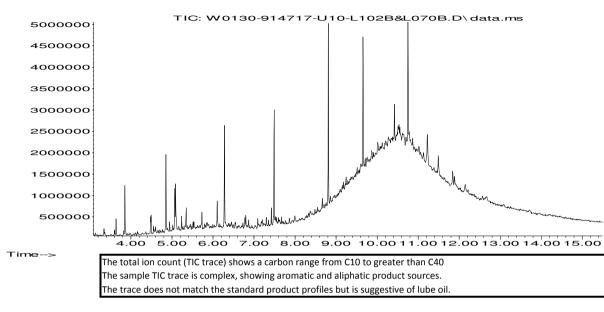
U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: 138-140 Highgate Road, Highgate, London, NW5 1PB

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)


Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Product ID	Determination of product ID by interpretation against standard chromatograms - Water.	In-house method	L070-PL/UK	W	NONE
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
TPH Chromatogram	TPH Chromatogram.	In-house method	L070-PL	W	NONE
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE
Volatile organic compounds in water	Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.


For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Abundance

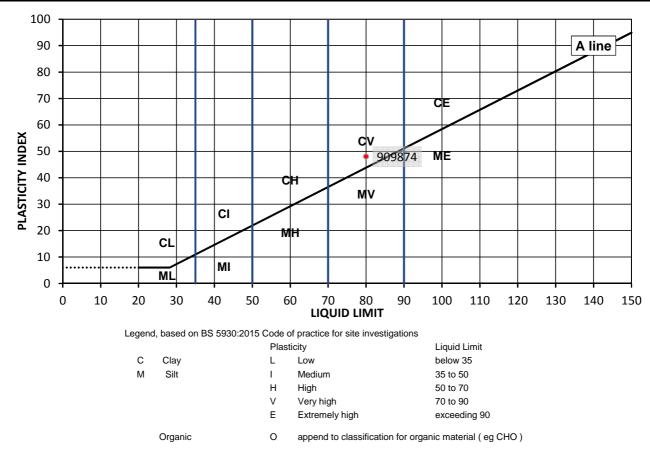
Abundance

APPENDIX 4 – GEOTECHNICAL LABORATORY TEST RESULTS

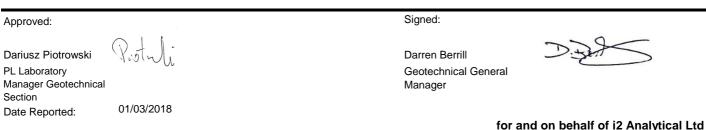
i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Depth Base [m]: Not Given

Determination of Liquid and Plastic Limits Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method


4041		
Client:	Jomas Associates Ltd	Client Reference: JJ1303
Client Address:	Lakeside House	Job Number: 18-76333
	1 Furzeground Way	Date Sampled: Not Given
	Stockley Park UB11 1BD	Date Received: 15/02/2018
Contact:	Emma Hucker	Date Tested: 23/02/2018
Site Name:	138-140 Highgate Road, Highgate, London NW5 1PB	Sampled By: Not Given
Site Address:	138-140 Highgate Road, Highgate, London NW5 1PB	

TEST RESULTS	6	Laboratory Reference: Sample Reference:	909874 Not Given	
Description:	Brown CLAY			Sample Type: B
Location:	BH1			Depth Top [m]: 2.50


Sample Preparation:

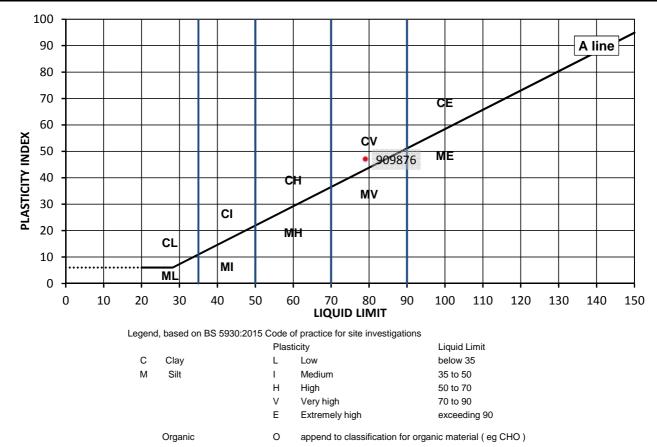
Tested in natural condition

As Received Moisture	•	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
33	80	32	48	100

Remarks

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park **Determination of Liquid and Plastic Limits** Watford Herts WD18 8YS


Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Jomas Associates Ltd Client: Client Reference: JJ1303 **Client Address:** Lakeside House Job Number: 18-76333 1 Furzeground Way Date Sampled: Not Given Stockley Park Date Received: 15/02/2018 UB11 1BD Contact: Emma Hucker Date Tested: 23/02/2018 138-140 Highgate Road, Highgate, London NW5 1PB Site Name: Sampled By: Not Given Site Address: 138-140 Highgate Road, Highgate, London NW5 1PB

TEST RESUL	TS Laboratory Reference: Sample Reference:	909876 Not Given	
Description:	Yellowish brown CLAY		Sample Type: B
Location:	BH1		Depth Top [m]: 3.50
Sample Prepara	ation:		Depth Base [m]: Not Given

Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
32	79	32	47	100

Remarks

Signed: Approved: Piotuli Dariusz Piotrowski Darren Berrill PL Laboratory Geotechnical General Manager Geotechnical Manager Section 01/03/2018 Date Reported:

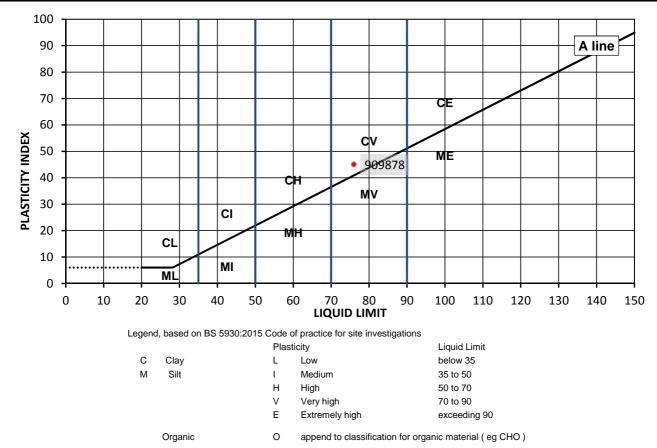
"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Depth Base [m]: 10.95

Determination of Liquid and Plastic Limits

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method


Client:	Jomas Associates Ltd	Client Reference: JJ1303
Client Address:	Lakeside House	Job Number: 18-76333
	1 Furzeground Way	Date Sampled: Not Given
	Stockley Park UB11 1BD	Date Received: 15/02/2018
Contact:	Emma Hucker	Date Tested: 26/02/2018
Site Name:	138-140 Highgate Road, Highgate, London NW5 1PB	Sampled By: Not Given
Site Address:	138-140 Highgate Road, Highgate, London NW5 1PB	

TEST RESULT	S Laboratory Reference: Sample Reference:	909878 Not Given	
Description:	Dark brown CLAY		Sample Type: U
Location:	BH1		Depth Top [m]: 10.50

Sample Preparation:

Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
27	76	31	45	100

Remarks

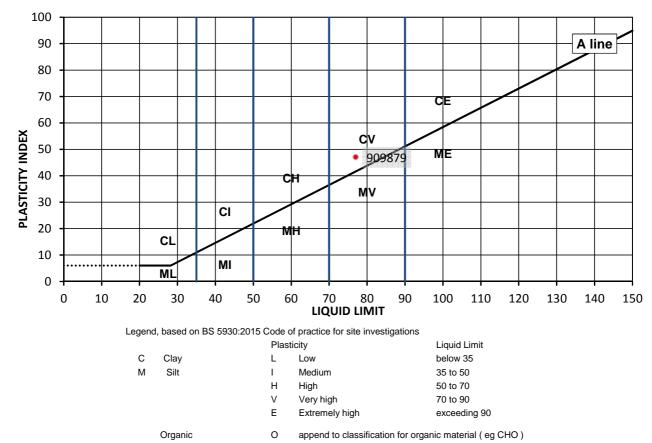
Approved: Signed: Piotuli Dariusz Piotrowski Darren Berrill PL Laboratory Geotechnical General Manager Geotechnical Manager Section 01/03/2018 Date Reported:

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park **Determination of Liquid and Plastic Limits** Watford Herts WD18 8YS

Depth Base [m]: Not Given

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method


Jomas Associates Ltd Client: Client Reference: JJ1303 **Client Address:** Lakeside House Job Number: 18-76333 1 Furzeground Way Date Sampled: Not Given Stockley Park Date Received: 15/02/2018 UB11 1BD Contact: Emma Hucker Date Tested: 23/02/2018 138-140 Highgate Road, Highgate, London NW5 1PB Site Name: Sampled By: Not Given Site Address: 138-140 Highgate Road, Highgate, London NW5 1PB

TEST RESUL	TS Laboratory Reference: Sample Reference:	909879 Not Given	
Description:	Dark brown CLAY		Sample Type: D
Location:	BH1		Depth Top [m]: 12.50

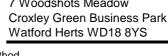
Sample Preparation:

Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
26	77	30	47	100

Remarks

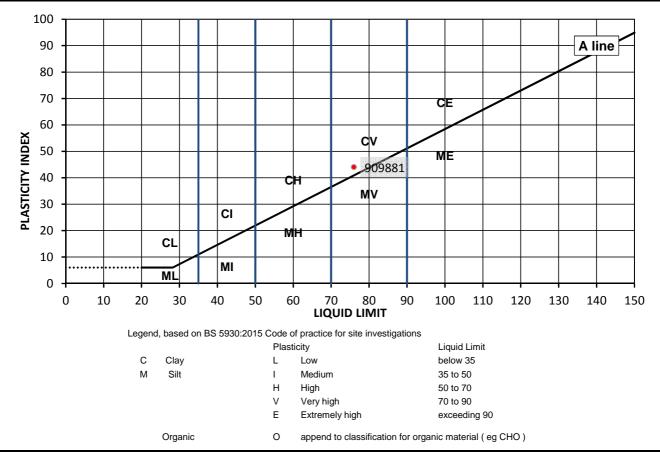
Signed: Approved: Piotuli Dariusz Piotrowski Darren Berrill PL Laboratory Geotechnical General Manager Geotechnical Manager Section 01/03/2018 Date Reported:


Page 1 of 1

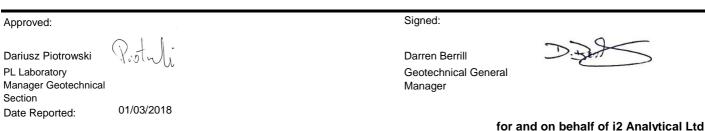
"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

i2 Analytical Ltd **Determination of Liquid and Plastic Limits**

7 Woodshots Meadow



Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method


TEST RESULTS	Laboratory Reference: 909881	
Site Address:	138-140 Highgate Road, Highgate, London NW5 1PB	
Site Name:	138-140 Highgate Road, Highgate, London NW5 1PB	Sampled By: Not Given
Contact:	Emma Hucker	Date Tested: 26/02/2018
	Stockley Park UB11 1BD	Date Received: 15/02/2018
	1 Furzeground Way	Date Sampled: Not Given
Client Address:	Lakeside House	Job Number: 18-76333
Client:	Jomas Associates Ltd	Client Reference: JJ1303
4041		

I LOI NLOOLIC		000001	
	Sample Reference:	Not Given	
Description:	Dark brown slightly gravelly CLAY		Sample Type: U
Location:	BH1		Depth Top [m]: 23.50
Sample Preparation	n: Tested after >425um removed by	hand	Depth Base [m]: 23.95

As Received Moisture Liquid Limit **Plastic Limit Plasticity Index** % Passing 425µm Content [%] [%] [%] [%] **BS Test Sieve** 27 76 32 44 99

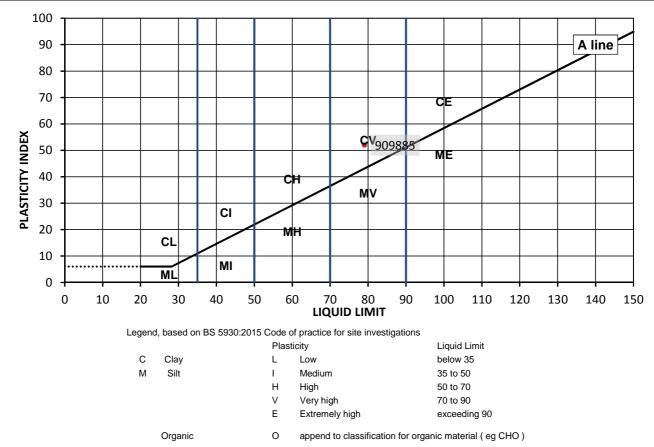
Remarks

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park **Determination of Liquid and Plastic Limits** Watford Herts WD18 8YS

Depth Base [m]: Not Given

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method


Jomas Associates Ltd Client: Client Reference: JJ1303 **Client Address:** Lakeside House Job Number: 18-76333 1 Furzeground Way Date Sampled: Not Given Stockley Park Date Received: 15/02/2018 UB11 1BD Contact: Emma Hucker Date Tested: 23/02/2018 138-140 Highgate Road, Highgate, London NW5 1PB Site Name: Sampled By: Not Given Site Address: 138-140 Highgate Road, Highgate, London NW5 1PB

TEST RESULTS Laboratory Reference: 909885 Sample Reference: Not Given Dark brown CLAY Sample Type: B Description: Location: BH2 Depth Top [m]: 18.50

Sample Preparation:

Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
26	79	27	52	100

Remarks

Signed: Approved: Pistuli Dariusz Piotrowski Darren Berrill PL Laboratory Geotechnical General Manager Geotechnical Manager Section 01/03/2018 Date Reported:

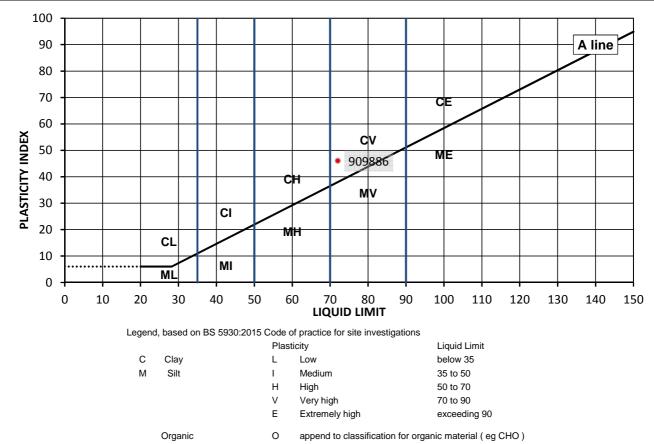
"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Depth Base [m]: Not Given

Determination of Liquid and Plastic Limits

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method


Jomas Associates Ltd	Client Reference: JJ1303
Lakeside House	Job Number: 18-76333
1 Furzeground Way	Date Sampled: Not Given
Stockley Park UB11 1BD	Date Received: 15/02/2018
Emma Hucker	Date Tested: 23/02/2018
138-140 Highgate Road, Highgate, London NW5 1PB	Sampled By: Not Given
138-140 Highgate Road, Highgate, London NW5 1PB	
	Lakeside House 1 Furzeground Way Stockley Park UB11 1BD Emma Hucker 138-140 Highgate Road, Highgate, London NW5 1PB

TEST RESULTS	Laboratory Reference: Sample Reference:	909886 Not Given	
Description:	Dark brown CLAY		Sample Type: D
Location:	BH2		Depth Top [m]: 9.50

Sample Preparation:

Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
27	72	26	46	100

Remarks

Approved: Signed: Piotuli Dariusz Piotrowski Darren Berrill PL Laboratory Geotechnical General Manager Geotechnical Manager Section 01/03/2018 Date Reported:

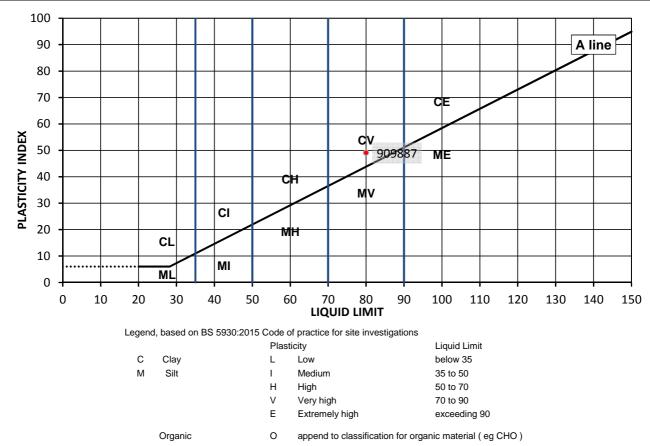
"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

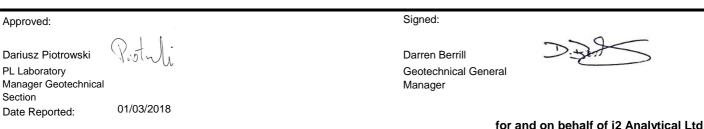
Depth Base [m]: Not Given

Determination of Liquid and Plastic Limits

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method


Client:	Jomas Associates Ltd	Client Reference: JJ1303
Client Address:	Lakeside House	Job Number: 18-76333
	1 Furzeground Way	Date Sampled: Not Given
	Stockley Park UB11 1BD	Date Received: 15/02/2018
Contact:	Emma Hucker	Date Tested: 23/02/2018
Site Name:	138-140 Highgate Road, Highgate, London NW5 1PB	Sampled By: Not Given
Site Address:	138-140 Highgate Road, Highgate, London NW5 1PB	

TEST RESULTS		Laboratory Reference: Sample Reference:	909887 Not Given	
Description:	Brown CLAY			Sample Type: D
Location:	BH2			Depth Top [m]: 2.00


Sample Preparation:

Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm	
Content [%]	[%]	[%]	[%]	BS Test Sieve	
34	80	31	49	100	

Remarks

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Summary of Classification Test Results

Client: Client Address:	Jomas Associates Ltd Lakeside House 1 Furzeground Way
	Stockley Park UB11 1BD
Contact:	Emma Hucker
Site Name:	138-140 Highgate Road, Highgate, London NW5 1PB
Site Address:	138-140 Highgate Road, Highgate, London NW5 1PB

Test results

Client Reference: JJ1303 Job Number: 18-76333 Date Sampled: Not Given Date Received: 15/02/2018 Date Tested: 23/02 - 26/02/2018 Sampled By: Not Given

			Sa	mple			De	nsity			Atte	rberg		
Laboratory Reference	Hole No.	Reference	Top depth [m]	Base depth [m]	Туре	Soil Description	bulk	dry	M/C	% Passing 425um	LL	PL	PI	PD
							Mg/m3	Mg/m3	%	%	%	%	%	Mg/m3
909874	BH1	Not Given	2.50	Not Given	В	Brown CLAY			33	100	80	32	48	
909876	BH1	Not Given	3.50	Not Given	В	Yellowish brown CLAY			32	100	79	32	47	
909878	BH1	Not Given	10.50	10.95	U	Dark brown CLAY			27	100	76	31	45	
909879	BH1	Not Given	12.50	Not Given	D	Dark brown CLAY			26	100	77	30	47	
909881	BH1	Not Given	23.50	23.95	U	Dark brown slightly gravelly CLAY			27	99	76	32	44	
909887	BH2	Not Given	2.00	Not Given	D	Brown CLAY			34	100	80	31	49	
909886	BH2	Not Given	9.50	Not Given	D	Dark brown CLAY			27	100	72	26	46	
909885	BH2	Not Given	18.50	Not Given	В	Dark brown CLAY			26	100	79	27	52	

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 01/03/2018

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The nanalysis was carried out at 12 Analytical Limited, u. Pionierow 39, 41-711 Ruda Slaska, Poland."

Piotuli

Signed:

Darren Berrill

Geotechnical General Manager

Client:

Contact:

Site Name:

Site Address:

Client Address:

TEST CERTIFICATE

Determination of Unconsolidated Undrained Triaxial Compression

Jomas Associates Ltd

Lakeside House

Stockley Park

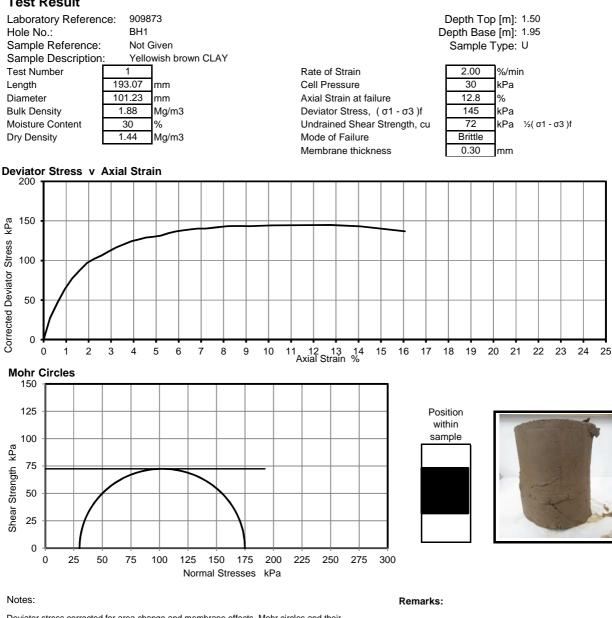
Emma Hucker

UB11 1BD

1PB

1PB

1 Furzeground Way


Tested in Accordance with BS1377: Part 7: 1990, clause 8, single specimen

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: JJ1303 Job Number: 18-76333 Date Sampled: Not Given Date Received: 15/02/2018 Date Tested: 26/02/2018 138-140 Highgate Road, Highgate, London NW5 Sampled By: Not Given 138-140 Highgate Road, Highgate, London NW5

Test Result

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Ristali

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported:

01/03/2018

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Signed:

Darren Berrill Geotechnical General Manager

Client:

Contact:

Site Name:

Site Address:

Client Address:

TEST CERTIFICATE

Determination of Unconsolidated Undrained Triaxial Compression

Jomas Associates Ltd

1 Furzeground Way

Lakeside House

Stockley Park

Emma Hucker

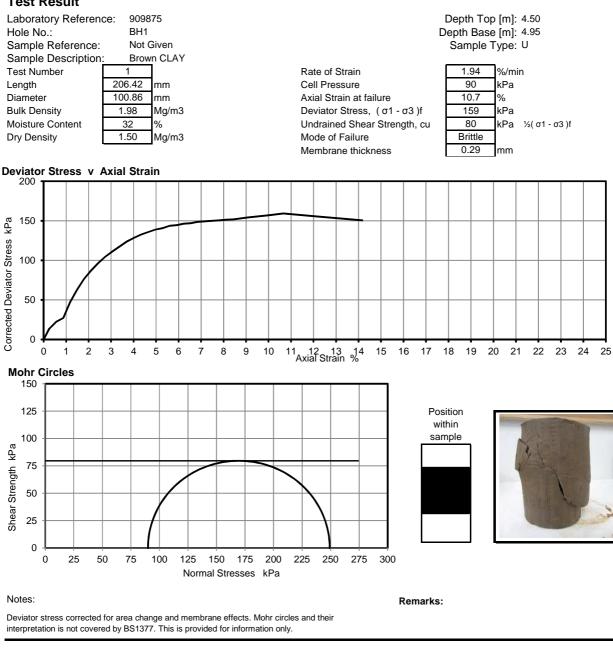
UB11 1BD

1PB

1PB

Tested in Accordance with BS1377: Part 7: 1990, clause 8, single specimen

138-140 Highgate Road, Highgate, London NW5


138-140 Highgate Road, Highgate, London NW5

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: JJ1303 Job Number: 18-76333 Date Sampled: Not Given Date Received: 15/02/2018 Date Tested: 26/02/2018 Sampled By: Not Given

Test Result

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Postali

Date Reported: 01/03/2018

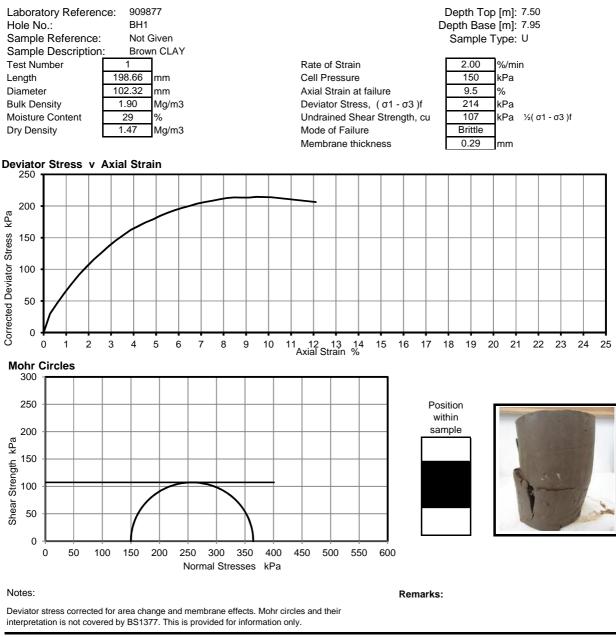
"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Signed:

Darren Berrill Geotechnical General Manager

Determination of Unconsolidated Undrained Triaxial Compression

Tested in Accordance with BS1377: Part 7: 1990, clause 8, single specimen


i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client:	Jomas Associates Ltd
Client Address:	Lakeside House
	1 Furzeground Way
	Stockley Park
	UB11 1BD
Contact:	Emma Hucker
Site Name:	138-140 Highgate Road, Highgate, London NW5 1PB
Site Address:	138-140 Highgate Road, Highgate, London NW5 1PB

Client Reference: JJ1303 Job Number: 18-76333 Date Sampled: Not Given Date Received: 15/02/2018 Date Tested: 26/02/2018 Sampled By: Not Given

Test Result

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 01/03/2018

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at 12 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Pistuli

Signed:

Darren Berrill Geotechnical General Manager

Client:

Contact:

Site Name:

Client Address:

TEST CERTIFICATE

Determination of Unconsolidated Undrained Triaxial Compression

Jomas Associates Ltd

Lakeside House

Stockley Park

Emma Hucker

UB11 1BD

1PB

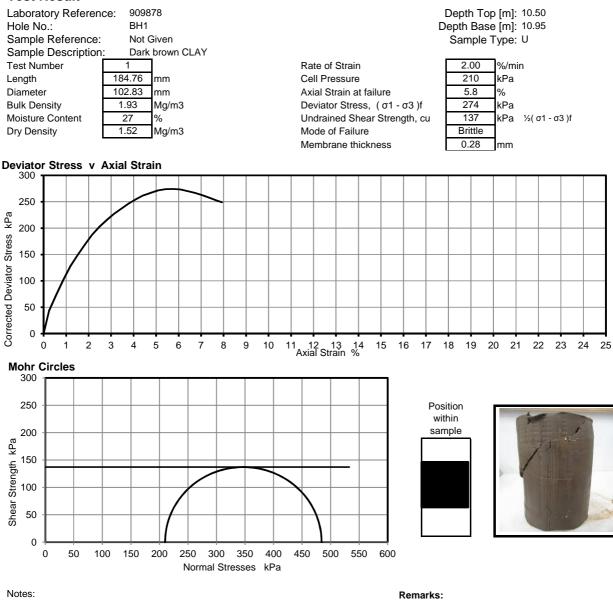
1PB

1 Furzeground Way

Tested in Accordance with BS1377: Part 7: 1990, clause 8, single specimen

138-140 Highgate Road, Highgate, London NW5

138-140 Highgate Road, Highgate, London NW5


i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: JJ1303 Job Number: 18-76333 Date Sampled: Not Given Date Received: 15/02/2018 Date Tested: 26/02/2018 Sampled By: Not Given

Test Result

Site Address:

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 01/03/2018

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at 12 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

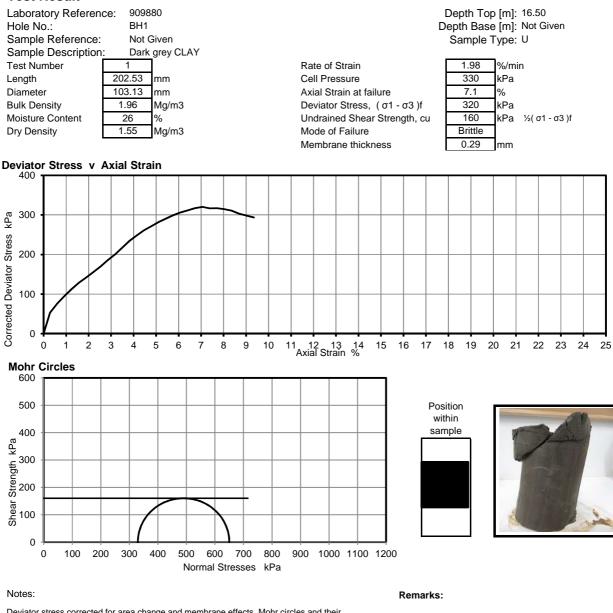
Pistuli

Signed:

Darren Berrill Geotechnical General Manager

Determination of Unconsolidated Undrained Triaxial Compression

Tested in Accordance with BS1377: Part 7: 1990, clause 8, single specimen


i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client:	Jomas Associates Ltd
Client Address:	Lakeside House
	1 Furzeground Way
	Stockley Park
_	UB11 1BD
Contact:	Emma Hucker
Site Name:	138-140 Highgate Road, Highgate, London NW5 1PB
Site Address:	138-140 Highgate Road, Highgate, London NW5 1PB

Client Reference: JJ1303 Job Number: 18-76333 Date Sampled: Not Given Date Received: 15/02/2018 Date Tested: 26/02/2018 Sampled By: Not Given

Test Result

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Pistuli

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

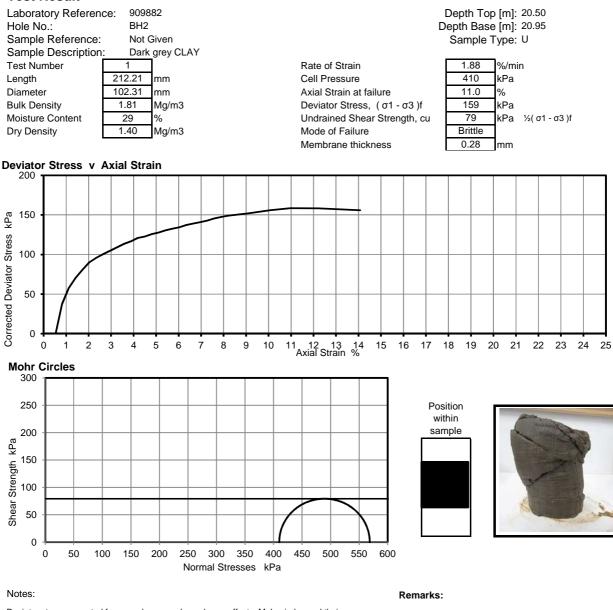
Date Reported: 01/03/2018

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland." Signed:

Darren Berrill Geotechnical General Manager

Determination of Unconsolidated Undrained Triaxial Compression

Tested in Accordance with BS1377: Part 7: 1990, clause 8, single specimen


i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client:	Jomas Associates Ltd
Client Address:	Lakeside House
	1 Furzeground Way
	Stockley Park
	UB11 1BD
Contact:	Emma Hucker
Site Name:	138-140 Highgate Road, Highgate, London NW5 1PB
Site Address:	138-140 Highgate Road, Highgate, London NW5 1PB

Client Reference: JJ1303 Job Number: 18-76333 Date Sampled: Not Given Date Received: 15/02/2018 Date Tested: 26/02/2018 Sampled By: Not Given

Test Result

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Pistuli

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

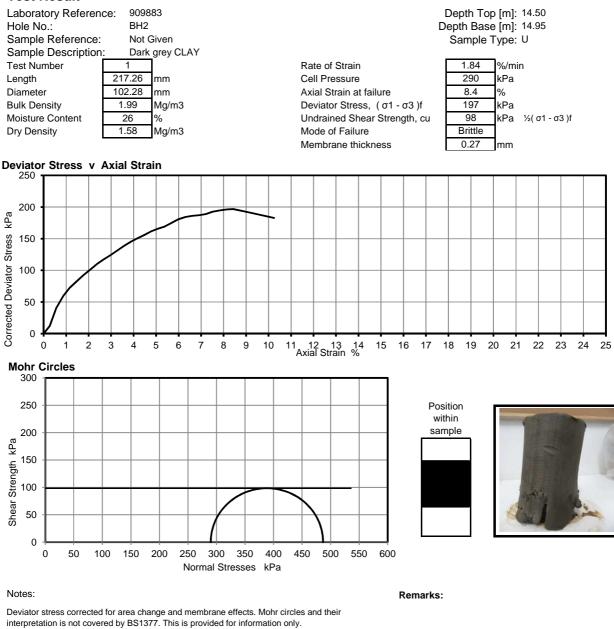
Date Reported: 01/03/2018

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, u. Pionierow 39, 41-711 Ruda Slaska, Poland." Signed:

Darren Berrill Geotechnical General Manager

Determination of Unconsolidated Undrained Triaxial Compression

Tested in Accordance with BS1377: Part 7: 1990, clause 8, single specimen


i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client:	Jomas Associates Ltd
Client Address:	Lakeside House
	1 Furzeground Way
	Stockley Park
	UB11 1BD
Contact:	Emma Hucker
Site Name:	138-140 Highgate Road, Highgate, London NW5 1PB
Site Address:	138-140 Highgate Road, Highgate, London NW5 1PB

Client Reference: JJ1303 Job Number: 18-76333 Date Sampled: Not Given Date Received: 15/02/2018 Date Tested: 26/02/2018 Sampled By: Not Given

Test Result

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported:

01/03/2018

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at 12 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Pistuli

Signed:

Darren Berrill Geotechnical General Manager

Client:

Contact:

Site Name:

Client Address:

TEST CERTIFICATE

Determination of Unconsolidated Undrained Triaxial Compression

Jomas Associates Ltd

Lakeside House

Stockley Park

Emma Hucker

UB11 1BD

1PB

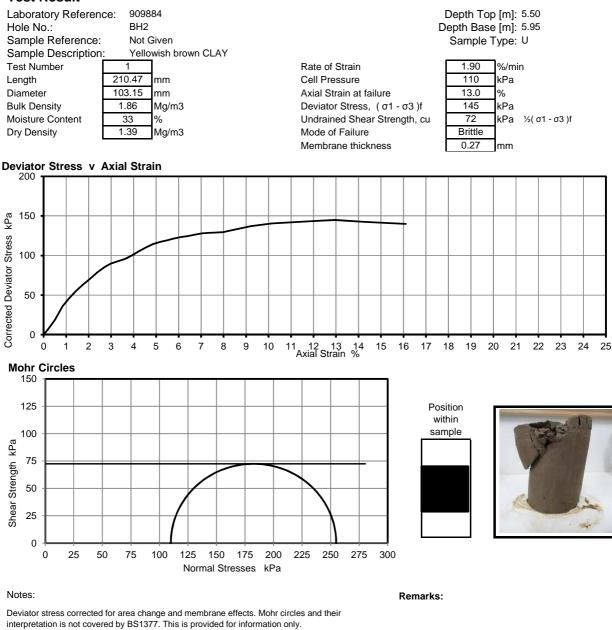
1PB

1 Furzeground Way

Tested in Accordance with BS1377: Part 7: 1990, clause 8, single specimen

138-140 Highgate Road, Highgate, London NW5

138-140 Highgate Road, Highgate, London NW5


i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: JJ1303 Job Number: 18-76333 Date Sampled: Not Given Date Received: 15/02/2018 Date Tested: 26/02/2018 Sampled By: Not Given

Test Result

Site Address:

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported:

01/03/2018

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at 12 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Ristali

Signed:

Darren Berrill Geotechnical General Manager

APPENDIX 5 – SOIL GAS MONITORING TEST RESULTS

GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET									
Site: Highgate Road	Operative(s): AJH	Date: 21/02/18	Time:	09:00	Round: 1	Page:			
MONITORING EQUIPMENT									
Instrument Type Instrument Make					Date Last Calibrated				
Analox	GA5000	GA5000			10/01/2018				
PID	Phocheck tiger		T-106448		03/10/2017				
Dip Meter	GeoTech								
MONITORING CONDITIONS									
Weather Conditions: Over	cast	Ground Conditions: Dry	Temperature: 7°C						
Barometric Pressure (mba	r): 1023	Barometric Pressure Trend (24hr):	end (24hr): Steady Ambient Concentration: 0.0 %CH ₄ , 0.2 %CO						

	MONITORING RESULTS													
Monitoring	F	low	Atmospheric					VOC (ppm)				Depth to	Depth to	Depth to
Point Location	Peak	Steady	Pressure (mbar)	CH₄ %	CH₄ % LEL	CO₂ %	O ₂ %	Peak	steady	H₂S (ppm)	CO (ppm)	product (mbgl)	water (mbgl)	Base of well (mbgl)
BH1	+0.1	+0.1	1023	0.0	/	1.1	19.5	5	5	0	17	/	Dry	5.10
WS1	0.0	0.0	1023	0.0	/	2.1	20.3	0	0	0	0	/	Dry	5.00
WS2**	0.0	0.0	1024	0.0	/	0.2	21.6	6	6	0	0	1.56	3.41	3.42
WS3*	0.0	0.0	1024	0.0	/	0.6	20.9	1	1	0	0	/	4.88	4.88
WS4	+0.2	+0.2	1024	0.0	/	0.5	20.3	0	0	0	4	/	4.67	4.93
WS5**	0.0	0.0	1023	4.9	/	0.8	4.4	54	54	0	8	1.52	1.77	4.95

* Open tap ** Oil layer, HC odour noted

	GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET									
Site: Highgate Road	Operative(s): AJH	erative(s): AJH Date: 26/02/18 Time: 12:00 Round: 2								
MONITORING EQUIPMENT										
Instrument Type Instrument Make			Serial No.		Date Last Calibrated					
Analox	GA5000	GA5000			10/01/2018					
PID	Phocheck tiger		T-106448		03/10/2017					
Dip Meter	GeoTech									
	-	MONITORING C	ONDITIONS		-					
Weather Conditions: Clear		Ground Conditions: Dry		Temper	Temperature: 1°C					
Barometric Pressure (mbar): 1026	Barometric Pressure Trend (24h	arometric Pressure Trend (24hr): Steady then Illing			Ambient Concentration: 0.0 %CH ₄ , 0.3 %CO ₂ , 20.7%O ₂				

	MONITORING RESULTS													
Monitoring Point Location	Flow		Atmospheric					VOC (ppm)				Depth to	Depth to	Depth to
	Peak	Steady	Pressure (mbar)	CH4 %	CH₄ % LEL	CO2 %	O2 %	Peak	steady	H₂S (ppm)	CO (ppm)	product (mbgl)	water (mbgl)	Base of well (mbgl)
BH1	+0.1	+0.1	1026	0.0	/	1.9	18.9	2	2	0	7	/	Dry	5.07
WS1	+0.1	+0.1	1027	0.0	/	3.4	19.2	0	0	0	0	/	Dry	5.02
WS2*	0.0	0.0	1027	0.0	/	0.2	21.0	18	18	0	0	1.55	2.23	3.42
WS3	+0.1	+0.1	1027	0.0	/	1.1	20.3	0	0	0	0	/	4.86	4.89
WS4	0.0	0.0	1026	0.0	/	1.1	19.0	1	1	0	0	/	4.90	4.94
WS5*	-0.1	-0.1	1026	3.5	/	1.0	4.1	145	145	0	1	1.54	1.85	4.95

* Oil layer, HC odour noted

GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET											
Site: Highgate Road	Operative(s): JWT	Date: 26/02/18	Time:	09:30	Round: 3	Page:					
MONITORING EQUIPMENT											
Instrument Type	Instrument Make		Serial No.	1	Date Last Calibr	Date Last Calibrated					
Analox	GA5000		G501805		10/01/2018	10/01/2018					
PID	Phocheck tiger		T-106448		03/10/2017	03/10/2017					
Dip Meter	GeoTech										
	MONITORING CONDITIONS										
Weather Conditions: Sunny		Ground Conditions: Wet		Temp	Temperature: 6°C						
Barometric Pressure (mbar): 986	Barometric Pressure Trend (24hr): Steady then falling			Ambient Concentration: 0.0 %CH ₄ , 0.2 %CO ₂ , 21.0%O ₂						

	MONITORING RESULTS													
Monitoring Point Location	Flow		Atmospheric					VOC (ppm)				Depth to	Depth to	Depth to
	Peak	Steady	Pressure (mbar)	CH4 %	CH₄ % LEL	CO2 %	O2 %	Peak	steady	H₂S (ppm)	CO (ppm)	product (mbgl)	water (mbgl)	Base of well (mbgl)
BH1	+0.2	+0.2	987	0.0	/	1.6	19.2	0	0	0	0	/	Dry	5.07
WS1	0.0	0.0	987	0.0	/	3.4	19.2	0	0	0	0	/	Dry	5.02
WS2*	-0.1	-0.1	987	0.0	/	0.3	20.7	16	16	0	1	1.52	2.62	3.42
WS3	+0.1	+0.1	987	0.0	/	0.3	20.9	2	1	0	0	/	4.81	4.89
WS4	+0.2	+0.2	987	0.0	/	1.6	18.4	3	3	0	0	/	Dry	4.94
WS5*	-0.4	-0.4	987	3.0	/	0.9	0.4	27	27	1	2	1.49	1.64	4.95

* Oil layer, HC odour noted

GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET											
Site: Highgate Road	Operative(s): JWT	Date: 15/03/18	Time:	09:40	Round: 4	Page:					
MONITORING EQUIPMENT											
Instrument Type	Instrument Make		Serial No.		Date Last Calibrated						
Analox	GA5000		G501805		10/01/2018						
PID	Phocheck tiger		T-106448		03/10/2017						
Dip Meter	GeoTech										
MONITORING CONDITIONS											
Weather Conditions: Overcas	t	Ground Conditions: Wet	Tempe		Temperature: 10°C						
Barometric Pressure (mbar):	985	Barometric Pressure Trend (24hr): Steady then falling			Ambient Concentration: 0.0 %CH ₄ , 0.2 %CO ₂ , 20.8%O ₂						

	MONITORING RESULTS													
Monitoring Point Location	Flow		Atmospheric					VOC (ppm)				Depth to	Depth to	Depth to
	Peak	Steady	Pressure (mbar)	CH₄ %	CH₄ % LEL	CO2 %	O2 %	Peak	steady	H₂S (ppm)	CO (ppm)	product (mbgl)	water (mbgl)	Base of well (mbgl)
BH1*	/	/	/	/	/	/	/	/	/	/	/	/	/	/
WS1	0.0	0.0	985	0.0	/	3.5	18.7	8	8	0	0	/	Dry	5.01
WS2**	+0.1	+0.1	986	0.1	/	0.7	20.1	21	21	0	2	1.49	**	3.42
WS3	0.0	0.0	986	0.0	/	1.3	20.3	4	2	0	0	/	4.66	4.86
WS4	+0.4	+0.4	986	0.0	/	2.3	16.4	5	4	0	0	/	4.37	4.93
WS5**	-0.3	-0.3	985	4.3	/	0.9	1.2	76	76	1	2	1.48	**	4.92

*Could not be accessed due to parked vehicle **No interface probe to measure difference in product/water. Dip-meter used to measure depth to product.