3-7 Frederick Street

Produced by XCO2 for Project 5 Architecture LLP

July 2019

CONTENTS

EXECUTIVE SUMMARY	5
INTRODUCTION	7
BE LEAN – USE LESS ENERGY	13
BE CLEAN – SUPPLY ENERGY EFFICIENTLY	16
BE GREEN – USE RENEWABLE ENERGY	18
CONCLUSIONS	20
ΔΡΡΕΝΝΙΧ Δ – SΔΡ RESULTS	

	01	02			
Remarks	Draft	Draft			
Prepared by	НН	НН			
Checked by	TS	TS			
Authorised by	RM	RM			
Date	04/07/2019	10/07/2019			
Project reference	9.367	9.367			

EXECUTIVE SUMMARY

The energy strategy for the 3–7 Frederick Street development has been developed in line with the energy policies of the London Plan and of the Camden Local Plan. The three-step Energy Hierarchy has been implemented and the estimated regulated CO₂ savings on site are 25.7% against a Part L1B compliant scheme with SAP2012 carbon factors.

This report assesses the predicted energy performance and carbon dioxide emissions of the proposed development at 3–7 Frederick Street, located in the London Borough of Camden.

The proposed development comprises the restoration of 3 Grade II listed townhouses from the previous use of a hostel to 7 dwellings. The proposed change of use development will be compared to the existing building according to Part L1B.

The energy strategy outlined in this report has been developed using the SAP 2012 emissions factors as per the current version of Building Regulations.

The methodology used to determine the expected operational CO_2 emissions for the development is in accordance with the London Plan's three-step Energy Hierarchy (Policy 5.2A) and the CO_2 savings achieved for each step are outlined below:

BE LEAN - USE LESS ENERGY

The first step addresses reduction in energy demand, through the adoption of passive and active design measures.

The proposed energy efficiency measures include improvements to building fabric beyond the existing notional building, efficient lighting, energy efficient individual boilers as well as energy saving controls for space heating.

By means of energy efficiency measures alone, regulated ${\rm CO_2}$ emissions are shown to reduce by:

Table 1: Regulated CO2 Savings

Cumulative Regulated CO₂ Savings							
	SAP2012						
% t/yr							
Domestic	Domestic 25.7 10.2						

BE CLEAN - SUPPLY ENERGY EFFICIENTLY

The application site is located in an area where a district heat network is considered feasible; however, no firm plans for its development are in place to date.

The scale of the development is not deemed large enough to feasibly and economically incorporate a district heat network; high efficiency individual gas boilers are therefore proposed to provide heating and domestic hot water to all dwellings.

BE GREEN - USE RENEWABLE ENERGY

The renewable technologies feasibility study carried out for the development identified that no suitable technologies were deemed acceptable for various reasons. The protected façade and historic nature of the building as well as its location within the Bloomsbury Conservation Area deems the building unsuitable for photovoltaics, solar thermal panels, wind and biomass technologies. The inclusion of these technologies would create unacceptable visual harm and would be contrary to Policies D1 and D2 in Camden's Local Plan, and are unlikely to be supported by the Local Authority's Heritage Officers.

CUMULATIVE ON SITE SAVINGS

The overall regulated CO_2 savings on site against a Part L1B compliant scheme are therefore 25.7% over the existing building baseline.

INTRODUCTION

SITE & PROPOSAL

The proposed development includes the restoration of 3 Grade II listed townhouses. The proposal includes a change of use from a hostel into 7 dwellings. The new scheme includes three 2-storey, one 3-storey apartments and three 1-storey dwellings. The site's main access is from Frederick Street and it is located approximately 1.5 miles from Kings Cross Station.

The location of the development site is shown in the figure below.

Site Location

Figure 1: Proposed site location

POLICY FRAMEWORK

The proposal will seek to respond to the energy policies of the London Plan and of the policies within Camden's Local Plan

The most relevant applicable energy policies in the context of the proposed development are presented below.

THE LONDON PLAN

The London Plan (2016) is the overall strategic plan for London, setting out an integrated economic, environmental, transport and social framework for the development of London over the next 20–25 years.

The overarching energy policies of the London Plan are included in Chapter Five *London's Response to Climate Change* and include Policies 5.2 to 5.9:

- Policy 5.2: Minimising carbon dioxide emissions;
- Policy 5.3: Sustainable Design and Construction;
- Policy 5.4: Retrofitting;
- Policy 5.4A: Electricity and gas supply;
- Policy 5.5: Decentralised energy networks;
- Policy 5.6: Decentralised energy in development proposals;
- Policy 5.7: Renewable energy;
- Policy 5.8: Innovative energy technologies, and,
- Policy 5.9: Overheating and cooling.

Extracts of Policies 5.2, 5.6, 5.7 and 5.9 are presented below as these are considered most relevant to the proposed scheme.

The London Plan also consists of a suite of guidance documents, most relevant of which are the Sustainable Design and Construction SPG (April 2014) & Energy Planning – GLA Guidance on preparing energy assessments (March 2016).

MAYOR OF LONDON

THE LONDON PLAN

THE SPATIAL DEVELOPMENT STRATEGY FOR LONDON CONSOLIDATED WITH ALTERATIONS SINCE 2011

MARCH 2016

POLICY 5.2 MINIMISING CARBON DIOXIDE EMISSIONS

A. Development proposals should make the fullest contribution to minimising carbon dioxide emissions in accordance with the following energy hierarchy:

Be lean: use less energy Be clean: supply energy efficiently Be green: use renewable energy

Be green: use renewable energy
B. The Mayor will work with boroughs and
developers to ensure major developments meet the
following targets for carbon dioxide emissions
reduction in buildings. These targets are expressed
as minimum improvements over the Target Emission
Rate (TER) outlined in the national Building
Regulations leading to zero carbon residential
buildings from 2016 and zero carbon non-domestic
buildings from 2019.

Table 2: CO₂ emissions improvement targets against the current Building Regulations

Residential Buildings					
Year	Minimum improvement over Building Regulations 2013				
2016 - 2031	Zero Carbon				
Non-domestic Buildings					
Year	Minimum improvement over Building Regulations 2013				
2016 - 2019	35%				
2019 - 2031	Zero Carbon				

POLICY 5.6 DECENTRALISED ENERGY IN DEVELOPMENT PROPOSALS

A. Development proposals should evaluate the feasibility of Combined Heat and Power (CHP) systems, and where a new CHP system is appropriate also examine opportunities to extend the system beyond the site boundary to adjacent sites.

B. Major development proposals should select energy systems in accordance with the following hierarchy:

Connection to existing heating or cooling networks;

Site wide CHP network; Communal heating and cooling. C. Potential opportunities to meet the first priority in this hierarchy are outlined in the London Heat Map tool. Where future network opportunities are identified, proposals should be designed to connect to these networks.

POLICY 5.7 RENEWABLE ENERGY

B. Within the framework of the energy hierarchy (see Policy 5.2), major proposals should provide a reduction in expected carbon dioxide emissions through the use of on-site renewable energy generation, where feasible.

D. All renewable energy systems should be located and designed to minimise any potential adverse impacts on biodiversity, the natural environment and historical assets, and to avoid any adverse impacts on air quality.

POLICY 5.9 OVERHEATING AND COOLING

B. Major development proposals should reduce potential overheating and reliance on air conditioning systems and demonstrate this in accordance with the following cooling hierarchy:

- Minimise internal heat generation through energy efficient design
- Reduce the amount of heat entering a building in summer through orientation, shading, albedo, fenestration, insulation and green roofs and walls
- Manage the heat within the building through exposed internal thermal mass and high ceilings
- 4. Passive ventilation
- 5. Mechanical ventilation
- Active cooling systems (ensuring they are the lowest carbon options).

GLA GUIDANCE ON PREPARING ENERGY ASSESSMENTS

This document (last updated in March 2016) provides guidance on preparing energy assessments to accompany strategic planning applications; it contains clarifications on Policy 5.2 carbon reduction targets in the context of zero carbon policy, as well as detailed guidelines on the content of the Energy Assessments undertaken for planning.

The guidance document specifies the emission reduction targets the GLA will apply to applications as follows:

Stage 1 schemes received by the Mayor on or after the f¹ October 2016: Zero carbon for residential development and 35% below Part L 2013 for commercial development.

The definition of zero carbon homes is provided in section 5.3 of the guidance:

'Zero carbon' homes are homes forming part of major development applications where the residential element of the application achieves at least a 35 per cent reduction in regulated carbon dioxide emissions (beyond Part L 2013) on-site. The remaining regulated carbon dioxide emissions, to 100 per cent, are to be offset through a cash in lieu contribution to the relevant borough to be ring fenced to secure delivery of carbon dioxide savings elsewhere.

The new guidance also includes changes to technical requirements relating to presenting carbon information separately for domestic and non-domestic elements of developments and the provision for cooling demand data where active cooling is required.

The structure of this report and the presentation of the carbon emission information for the development follows the guidance in this document.

The proposed development is considered a minor scheme and therefore is not required to comply with the zero carbon homes policies set out by the GLA.

ENERGY PLANNING

Greater London Authority guidance on preparing energy assessments (March 2016)

MAYOR OF LONDON

CAMDEN LOCAL PLAN

The Council's Sustainability Plan 'Green Action for Change' commits the Council to seek low and where possible zero carbon buildings.

New developments in Camden will be expected to be designed to minimise energy use and CO₂ emissions in operation through the application of the energy hierarchy.

It is understood that some sustainable design measures may be challenging for listed buildings and some conservation areas and we would advise developers to engage early with the Council to develop innovative solutions.

Proposals that reduce the energy consumption of listed buildings will be welcomed provided that they do not cause harm to the special architectural and historic interest of the building or group. Energy use can be reduced by means that do not harm the fabric or appearance of the building, for instance roof insulation, draught proofing, secondary glazing, more efficient boilers and Camden Local Plan | Design and Heritage 241 heating and lighting systems and use of green energy sources. Depending on the form of the building, renewable energy technologies may also be installed, for instance solar water heating and photovoltaics.

METHODOLOGY

The sections below present the methodology followed in determining the on-site and off-site carbon savings for the proposed scheme.

ON-SITE CARBON SAVINGS – THE ENERGY HIERARCHY

The methodology employed to develop the energy strategy for the scheme and achieve on-site carbon savings is in line with the GLA's *Guidance on preparing energy assessments* and is as follows:

The baseline CO_2 emissions are first established, i.e. the emissions of a scheme that is compliant with Part L1B of the Building Regulations. For refurbishments and change of use projects, the baseline is obtained based on the existing fabric and building services system.

The software used to model and calculate the energy performance and carbon emissions of the domestic element is SAP2012. The emissions of the domestic element are established by modelling representative dwelling types and multiplying the Target Emission Rate (TER) of each type with the cumulative floor area for that type to establish the total emissions for the domestic element of the proposal. Similarly, the TER for each non-domestic element is multiplied by its floor area to establish the total emissions.

The same approach is followed to determine the energy performance and CO_2 emissions of the proposed scheme for each of the steps of the **Energy Hierarchy**. The CO_2 emissions are estimated based on the SAP Dwelling Emission Rate (DER). The Energy Hierarchy aims at delivering significant carbon savings on-site.

The three consecutive steps of the Energy Hierarchy are:

- Be Lean whereby the demand for energy is reduced through a range of passive and active energy efficiency measures;
- Be Clean whereby as much of the remaining energy demand is supplied as efficiently as possible (e.g. by connecting to a district energy network or developing a site-wide CHP network), and,
- Be Green whereby renewable technologies are incorporated to offset part of the carbon emissions of the development. The uptake of renewable technologies is based on feasibility and viability considerations, including their compatibility with the energy system determined in the previous step.

The implementation of the Energy Hierarchy determines the total regulated carbon savings that can be feasibly and viably achieved on site.

The % improvement against the baseline emissions is compared to the relevant targets for each element. As this scheme is a refurbishment, Camden has no targets as to the percentage savings required.

BE LEAN - USE LESS ENERGY

The proposals incorporate a range of passive and active design measures that will reduce the energy demand for space conditioning, hot water and lighting. The regulated carbon saving achieved in this step of the Energy Hierarchy is 25.7% over the site wide baseline level.

PASSIVE DESIGN MEASURES

ENHANCED U-VALUES

The heat loss of different building fabric elements is dependent upon their U-value. A building with low U-values provides better levels of insulation and reduced heating demand during the cooler months.

The proposed refurbishment will incorporate additional insulation to the basement ground floor and roof to improve the building's performance and reduce the demand for space heating. Additionally, as both existing and new sash windows are required to be single glazed to keep in character with the Conservation Area, these will be improved with secondary glazing. All new casement windows and rooflights will be double glazed to produce an improved u-value.

The tables to the right demonstrate the improved performance of the proposed building fabric beyond the existing building as a Grade II listed building.

Table 3: Thermal Envelope U-values

Domestic (U-values in W/m².K)							
Element	Existing building	Proposed	Improvement				
Floor	2.1	0.18	91%				
Roof	2.1	0.25	10%				
New casement windows	4.8	1.8	38%				
Roof Lights	4.8	1.4	71%				
Retained windows	4.8	2.6	46%				

REDUCING THE NEED FOR ARTIFICIAL LIGHTING

The development has been designed to ensure all habitable spaces within the new dwellings will achieved good levels of daylighting as a way of improving the health and wellbeing of its occupants.

All of the habitable areas will benefit from large areas of glazing and additional glazing such as the rooflights to increase the amount of daylight within the internal spaces where possible. This is expected to reduce the need for artificial lighting whilst delivering pleasant, healthy spaces for occupants.

ACTIVE DESIGN MEASURES

HIGH EFFICACY LIGHTING

The fit out of the refurbishment intends to incorporate low energy lighting fittings throughout the habitable spaces. All light fittings will be specified as low energy lighting, and will accommodate LED, compact fluorescent (CFLs) or fluorescent luminaires only.

HEAT GENERATION

Space heating and domestic hot water will be provided by new individual highly efficient gas boilers. It is proposed that the gross efficiency of the boilers falls in the region of 89%.

CONTROLS

Advanced lighting and space conditioning controls will be incorporated, specifically:

- For corridors and communal areas, occupant sensors will be fitted for lighting, whereas day lit areas will incorporate daylight sensors where appropriate;
- Heating controls in dwellings will comprise programmers and room thermostats.

MONITORING

Apart from the above design measures, the development will incorporate monitoring equipment and systems to enable occupiers to monitor and reduce their energy use.

Smart meters will be installed to monitor the heat and electricity consumption of each dwelling; the display board will demonstrate real-time and historical energy use data and will be installed at an accessible location within the dwellings

ENERGY USE

The table below shows a breakdown of carbon dioxide emissions associated with the proposed development's fossil fuel. The figures provide a comparison between the baseline condition and the proposed development once energy efficiency measures (Lean) have been applied.

This table demonstrates the energy savings achieved through energy efficiency measures (Lean stage of the Energy Hierarchy).

Table 4: Breakdown of energy consumption and CO_2 emissions for the baseline and the proposed schemes after 'Lean' measures are implemented

	Baseline			Lean		
	Energy (kWh/yr.)	kgCO₂/yr.	kgCO ₂ /m ²	Energy (kWh/yr.)	kgCO₂ /yr.	kgCO ₂ /m ²
Hot Water	17,230	3,720	6.7	17,230	3,720	6.7
Space Heating	112,970	24,400	44.2	112,970	24,400	44.2
Cooling	0	0	0.0	0	0	0.0
Auxiliary	0	0	0.0	530	270	0.5
Lighting	530	270	0.5	2,430	1,260	2.3
Equipment	2,950	1,530	2.8	2,950	1,530	2.8
Total Part L	132,620	28,390	51.4	133,160	29,650	53.7
Total (incl. equipment)	135,570	29,920	54.2	136,110	31,190	56.5

BE LEAN CO₂ EMISSIONS & SAVINGS

By means of energy efficiency measures alone, regulated CO_2 emissions are shown to reduce by 25.7%, equivalent to 10 tonnes per annum.

BE CLEAN - SUPPLY ENERGY EFFICIENTLY

No existing or proposed district energy network is located within feasible proximity to the proposed development. A communal heating scheme will not be feasible for a minor scheme of this size and nature. Consequently, no CO₂ savings will be achieved at this stage of the Energy Hierarchy.

ENERGY SYSTEM HIERARCHY

The energy system for the development has been selected in accordance with the London Plan decentralised energy hierarchy. The hierarchy listed in Policy 5.6 states that energy systems should consider:

- Connection to existing heating and cooling networks;
- 2. Site wide CHP network; and,
- 3. Communal heating and cooling.

Local heat and power sources minimise distribution losses and achieve greater efficiencies when compared to separate energy systems, thus reducing CO_2 emissions.

In a communal energy system, energy in the form of heat, cooling, and/or electricity is generated from a central source and distributed via a network of insulated pipes to surrounding residences.

CONNECTION TO AN EXISTING NETWORK

The London Heat Map identifies existing and potential opportunities for decentralised energy projects in London. It builds on the 2005 London Community Heating Development Study.

The map highlights in a red line any existing and proposed district heating networks within the vicinity of the development.

A review of the map shows that there is an existing heat network approximately 1km away from the proposed site. The scale of the development does not make it economically viable for connection with networks located at a distance from the site. For this reason, connection to district heat networks are currently not considered feasible.

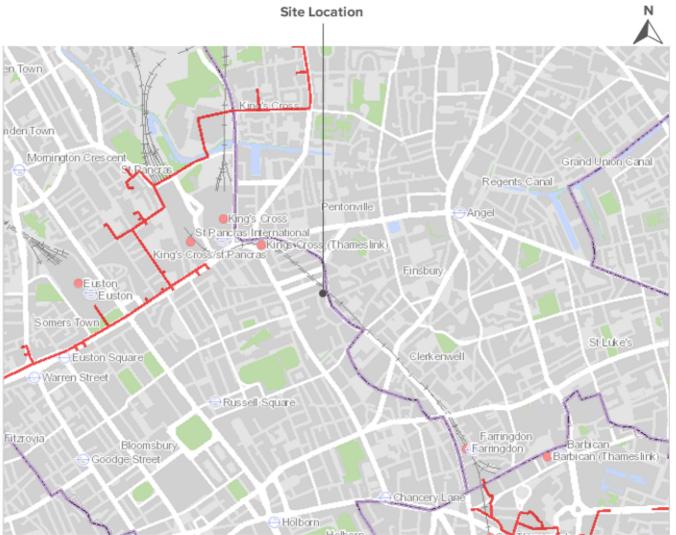


Figure 2: Excerpt from the London Heat Map. Existing district networks outlined in yellow, proposed networks in red.

BE CLEAN CO2 EMISSIONS & SAVINGS

Given that it has not been found feasible or viable for the refurbishment to incorporate the supply of low carbon heating or cooling, no carbon savings are achieved for this step of the Energy Hierarchy.

BE GREEN – USE RENEWABLE ENERGY

The renewable technologies feasibility study carried out for the development identified that there are no suitable technologies for the development at 3-7 Frederick Street.

RENEWABLE TECHNOLOGIES FEASIBILITY STUDY

Methods of generating on-site renewable energy (Green) were assessed, once Lean and Clean measures were taken into account.

The development of 3–7 Frederick Street will benefit from an energy efficient building fabric which will reduce the energy consumption of the proposed development in the first instance. A range of renewable technologies were subsequently considered including:

- · Biomass:
- · Ground/water source heat pumps;
- · Air source heat pump;
- · Wind energy:
- · Photovoltaic panels, and,
- Solar thermal panels.

In determining the appropriate renewable technology for the site, the following factors were considered:

- CO₂ savings achieved;
- Site constraints;
- · Any potential visual impacts, and,
- Compatibility with the 'Clean' stage proposals where applicable.

RENEWABLE ENERGY APPRAISAL SUMMARY

The table below summarises the factors taken into account in determining appropriate renewable technologies for this project. This includes estimated capital cost, lifetime, level of maintenance and level of impact on external appearance. The final column indicates the feasibility of the technology in relation to the site conditions (10 being the most feasible and 0 being infeasible). It is important to note that the information provided is indicative and based upon early project stage estimates.

The feasibility study demonstrates that there are no feasible renewable technologies for the refurbishment of the 3-7 Frederick Street. Making changes to the external or roof of the building would likely result in unacceptable harm to the Grade II listed building and would be contrary to Heritage polices in Camden's Local Plan.

BE GREEN CO2 EMISSIONS & SAVINGS

Given that green technologies have not been found feasible or viable for the refurbishment, no carbon savings are achieved for this step of the Energy Hierarchy.

Table 5: Summary of renewable technologies feasibility study

		Comments	Lifetime	Maintenance	Impact on external appearance	Site feasibility
Biomass		Not adopted -burning of wood pellets releases high NOx emissions and there are limitations for their storage and delivery within an urban location.	20 yrs.	High	High	2
A		Not adopted - PV panels mounted on the pitched roof would significantly alter the appearance and character of the Listed Building.	25 yrs.	Low	Med	3
Solar thermal		Not adopted - Solar thermal array mounted on the pitched roof would significantly alter the appearance and character of the Listed Building.	25 yrs.	Low	Med	3
GSHP		Not adopted -the installation of ground loops requires significant space, additional time at the beginning of the construction process and very high capital costs.	20 yrs.	Med	Low	2
ASHP		Not adopted -ASHP evaporator units are located externally and produce noise which can be an issue in a residential location, especially at night.	20 yrs.	Med	Med	3
Wind	X	Not adopted - Wind turbines located at the site will have a significant visual impact on the existing building within the Conservation Area.	25 yrs.	Med	High	1

CONCLUSIONS

Following the implementation of the three-step Energy Hierarchy, the cumulative CO₂ savings on site are estimated at 25.7% against an existing building baseline, in line with Part L1B.

ON SITE CO2 SAVINGS

By implementing the three step Energy Hierarchy as detailed in the previous sections, the Regulated CO_2 emissions for the development have been reduced against a Part L1B compliant scheme through on site measures alone by:

Table 6: Cumulative CO2 Savings

Cumulative Regulated CO ₂ Savings					
	SAP2012				
% t/yr					
Domestic 25.7 10.2					

The tables in the following pages summarise the implementation of the Energy Hierarchy for the proposed scheme and detail the CO₂ emissions and savings against the baseline scheme for each step of the hierarchy.

Overall, the proposed development has been designed to best meet energy policies set out by the GLA and the London Borough of Camden, which demonstrates the client and the design team's commitment to enhancing sustainability of the scheme.

CUMULATIVE SAVINGS

Table 7: CO₂ emissions after each step of the Energy Hierarchy

	Carbon dioxide emissions for domestic buildings (tonnes CO2 per annum)			
Regulated Unregulated Unregulated				
Baseline	39.9	1.5		
After energy demand reduction	29.7	1.5		
After heat network/CHP	29.7	1.5		
After renewable energy	29.7	1.5		

Table 8: Regulated CO₂ savings from each stage of the Energy Hierarchy

	Regulated domestic carbon dioxide savings				
	Tonnes CO₂ per annum	% over baseline			
Savings from energy demand reduction	10.2	25.7			
Savings from heat network/CHP	0.0	0.0			
Savings from renewable energy	0.0	0.0			
Cumulative on site savings	10.2	25.7			

APPENDIX A - SAP RESULTS

The table below lists the 7 dwellings that were modelled using SAP methodology, the TER and DER outputs and the % CO₂ reduction achieved after the Be Lean, Be Clean and Be Green measures have been applied.

The following pages show the DER/TER FSAP2012 worksheets for 2 sample dwellings. The SAP outputs for all sample flats are available on request.

SAP Ref No.	Unit Ref.	TER (kgCO₂/m²/yr)	DER (kgCO ₂ /m²/yr)	% CO₂ reduction
1	Unit 3a	78.17	57.60	30%
2	Unit 3b	75.76	58.43	25%
3	Unit 5	62.79	46.05	30%
4	Unit 7a	74.13	58.33	24%
5	Unit 7b	70.68	56.99	22%
6	Unit 7c	59.69	48.71	22%
7	Unit 7d	89.22	75.05	19%

		User Details:		
Assessor Name: Software Name:	Stroma FSAP 2012	Stroma Nu Software V	ersion: Versi	on: 1.0.4.18
Address	P	roperty Address: 5 Fre	derick Street	
Address: 1. Overall dwelling dime	ansions:			
1. Overall dwelling diffe	(1310113.	Area(m²)	Av. Height(m)	Volume(m³)
Basement		41.7 (1a) x		108.42 (3a)
Ground floor		42.8 (1b) x	3 (2b) =	128.4 (3b)
Total floor area TFA = (1	a)+(1b)+(1c)+(1d)+(1e)+(1n	84.5 (4)		
Dwelling volume		(3a)+(3b)+(3c)+(3d)+(3e)+(3n) =	236.82 (5)
2. Ventilation rate:				
Z. Vortalation rate.	main secondar	y other	total	m³ per hour
Number of chimneys	heating heating	+ 1 =	1 x 40 =	40 (6a)
Number of open flues	0 + 0	+ 0 =	0 × 20 =	0 (6b)
Number of intermittent fa	ns		2 x 10 =	20 (7a)
Number of passive vents			0 x 10 =	0 (7b)
Number of flueless gas fi	ires		0 x 40 =	0 (7c)
			Air c	hanges per hour
	ys, flues and fans = (6a)+(6b)+(7		60 + (5) =	0.25 (8)
If a pressurisation test has b Number of storeys in the	neen carried out or is intended, proceed	d to (17), otherwise continue	from (9) to (16)	
Additional infiltration	ne dwelling (ns)		[(9)-1]x0.1 =	0 (9)
	.25 for steel or timber frame or	0.35 for masonry cons		
	resent, use the value corresponding to	•	struction	0 (11)
deducting areas of opening		, , , , , , , , , , , , , , , , , , , ,		
If suspended wooden t	floor, enter 0.2 (unsealed) or 0.	1 (sealed), else enter	0	0 (12)
If no draught lobby, en	ter 0.05, else enter 0			0 (13)
Percentage of windows	s and doors draught stripped			0 (14)
Window infiltration		0.25 - [0.2 x (14)	÷ 100] =	0 (15)
Infiltration rate		(8) + (10) + (11) +	(12) + (13) + (15) =	0 (16)
Air permeability value,	q50, expressed in cubic metre	s per hour per square	metre of envelope area	15 (17)
If based on air permeabil	lity value, then (18) = [(17) + 20]+(8	3), otherwise (18) = (16)		1 (18)
	s if a pressurisation test has been don	e or a degree air permeabili	ty is being used	
Number of sides sheltere	ed	(00) - 4 (0.075)	(40)1 -	2 (19)
Shelter factor		(20) = 1 - [0.075 x		0.85 (20)
Infiltration rate incorporat	-	(21) = (18) x (20)	=	0.85 (21)
Infiltration rate modified f				,
Jan Feb	Mar Apr May Jun	Jul Aug Ser	Oct Nov Dec]
Monthly average wind sp	eed from Table 7			_

4.9

4.3

3.8

3.8

3.7

4.3

4.5

4.7

5.1

5

Adjusted infiltration rate (allowing for shelter and wind speed) = (21a) x (22a)m 1.09 1.07 1.04 0.94 0.92 0.81 0.81 0.79 0.85 0.92 0.96 1 Calculate effective air change rate for the applicable case If mechanical ventilation: 0 (23a) If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a) If balanced with heat recovery: efficiency in % allowing for in-use factor (from Table 4h) =
1.09 1.07 1.04 0.94 0.92 0.81 0.81 0.79 0.85 0.92 0.96 1
1.09 1.07 1.04 0.94 0.92 0.81 0.81 0.79 0.85 0.92 0.96 1
Calculate effective air change rate for the applicable case If mechanical ventilation: If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a) If balanced with heat recovery: efficiency in % allowing for in-use factor (from Table 4h) = a) If balanced mechanical ventilation with heat recovery (MVHR) (24a)m = (22b)m + (23b) × [1 - (23c) + 100] (24a)m= 0 0 0 0 0 0 0 0 0 0 0 0 0
If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a)
If balanced with heat recovery: efficiency in % allowing for in-use factor (from Table 4h) =
a) If balanced mechanical ventilation with heat recovery (MVHR) (24a)m = (22b)m + (23b) × [1 – (23c) + 100] (24a)m = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(24a)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b) If balanced mechanical ventilation without heat recovery (MV) (24b)m = (22b)m + (23b) (24b)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(24b)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c) If whole house extract ventilation or positive input ventilation from outside if (22b)m < 0.5 × (23b), then (24c) = (23b); otherwise (24c) = (22b) m + 0.5 × (23b) (24c)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (24c) d) If natural ventilation or whole house positive input ventilation from loft if (22b)m = 1, then (24d)m = (22b)m otherwise (24d)m = 0.5 + [(22b)m² × 0.5] (24d)m= 1.09 1.07 1.04 0.94 0.92 0.83 0.83 0.81 0.86 0.92 0.96 1 Effective air change rate - enter (24a) or (24b) or (24c) or (24d) in box (25) (25)m= 1.09 1.07 1.04 0.94 0.92 0.83 0.83 0.81 0.86 0.92 0.96 1 3. Heat losses and heat loss parameter: ELEMENT Gross area (m²) Openings area (m²) Venalue W/m2K (W/K) kJ/m²·K Doors Type 1 1.87 × 1.8 = 3.042 (26)
if (22b)m < 0.5 × (23b), then (24c) = (23b); otherwise (24c) = (22b) m + 0.5 × (23b) (24c)m=
(24c)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
if (22b)m = 1, then (24d)m = (22b)m otherwise (24d)m = 0.5 + [(22b)m ² x 0.5] (24d)m= 1.09
(24d)m= 1.09 1.07 1.04 0.94 0.92 0.83 0.83 0.81 0.86 0.92 0.96 1 Effective air change rate - enter (24a) or (24b) or (24c) or (24d) in box (25) (25)m= 1.09 1.07 1.04 0.94 0.92 0.83 0.83 0.81 0.86 0.92 0.96 1 3. Heat losses and heat loss parameter: ELEMENT Gross area (m²) Openings m² Net Area A, m² W/m2K (W/K) kJ/m²·K Doors Type 1 1.69 x 1.8 = 3.042 Doors Type 2 1.87 x 1.8 = 3.366 (26)
Effective air change rate - enter (24a) or (24b) or (24c) or (24d) in box (25) (25)m= 1.09 1.07 1.04 0.94 0.92 0.83 0.83 0.81 0.86 0.92 0.96 1 3. Heat losses and heat loss parameter: ELEMENT Gross area (m²) Doors Type 1 Doors Type 2 Net Area U-value W/m2K (W/K) kJ/m²-K kJ/K 1.87 x 1.8 = 3.366 (25) (25) (25) (26)
(25)m= 1.09 1.07 1.04 0.94 0.92 0.83 0.83 0.81 0.86 0.92 0.96 1 3. Heat losses and heat loss parameter: ELEMENT Gross area (m²) Openings m² Net Area A ,m² W/m2K (W/K) kJ/m²-K Doors Type 1 1.87 x 1.8 = 3.366 (26)
3. Heat losses and heat loss parameter: ELEMENT Gross area (m²)
ELEMENT Gross area (m²) Openings m² Net Area A ,m² U-value W/m2K A X U (W/K) k-value kJ/m²·K A X k kJ/K Doors Type 1 1.69 x 1.8 = 3.042 (26) Doors Type 2 1.87 x 1.8 = 3.366 (26)
Doors Type 2 A ,m² W/m2K (W/K) kJ/m²-K kJ/K 1.69 x 1.8 = 3.042 1.87 x 1.8 = 3.366 (26)
Doors Type 1
Doors Type 2 1.87 x 1.8 = 3.366 (26)
Windows Type 1 $3.6 \times 1/[1/(2.6) + 0.04] = 8.48$ (27)
Windows Type 2 $1.68 \times 1/[1/(2.6) + 0.04] = 3.96$ (27)
Windows Type 3 $0.55 \times 1/[1/(2.6) + 0.04] = 1.3$ (27)
Windows Type 4 $2.52 \times 1/[1/(2.6) + 0.04] = 5.93$ (27)
Windows Type 5 $0.28 \times 1/[1/(2.6) + 0.04] = 0.66$ (27)
Windows Type 6
Windows Type 7 $0.57 \times 1/[1/(1.8) + 0.04] = 0.96$ (27)
Floor 41.7 × 0.25 = 10.425 (28)
Walls Type1 35.1 12.95 22.15 x 2.1 = 46.51 (29)
Walls Type 2 40.8 1.68 39.12 × 2.1 = 82.15 (29)
Roof 3.9 0 3.9 × 2.3 = 8.97 (30)
Roof 3.9 0 3.9 x 2.3 = 8.97 (30) Total area of elements, m ² 121.5 (31)
Roof 3.9 0 3.9 × 2.3 = 8.97 (30)

(26)...(30) + (32) =

** include the areas on both sides of internal walls and partitions

Fabric heat loss, W/K = S (A x U)

180.16

(33)

Heat capacity Cm = S(A	Axk)						((28)	.(30) + (32	2) + (32a).	(32e) =	0	(34)
Thermal mass parameter	-) = Cm ÷	TFA) in	k.l/m²K			Indica	tive Value	: Medium		250	(35)
For design assessments when	•		,			ecisely the				able 1f	200	(00)
can be used instead of a deta			00/101/001	011 410 1101	i idiowii pi	colocity inc	n raioativo	values of	7,000	1010 11		
Thermal bridges : S (L x	x Y) cald	culated (using Ap	pendix l	K						18.23	(36)
if details of thermal bridging a	re not kn	own (36) =	0.05 x (3	1)								
Total fabric heat loss							(33) +	(36) =			198.38	(37)
Ventilation heat loss cal	lculated	monthly	/				(38)m	= 0.33 × (25)m x (5)			_
Jan Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m= 84.98 83.31	81.65	73.47	71.92	64.73	64.73	63.39	67.5	71.92	75.05	78.31		(38)
Heat transfer coefficient	t, W/K						(39)m	= (37) + (38)m		ı	
(39)m= 283.36 281.69	280.03	271.85	270.3	263.11	263.11	261.77	265.88	270.3	273.43	276.7	1	
								Average =	Sum(39) ₁	_12 /12=	271.79	(39)
Heat loss parameter (HI	LP), W/	m²K					(40)m	= (39)m ÷	(4)			_
(40)m= 3.35 3.33	3.31	3.22	3.2	3.11	3.11	3.1	3.15	3.2	3.24	3.27		
Number of days in most	th /Tabl	- 1-1						Average =	Sum(40) ₁	_12 /12=	3.22	(40)
Number of days in mont	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	1	
(41)m= 31 28	31	30	31	30	31	31	30	31	30	31		(41)
(11)	01	00	0.	- 00		-	00	01	- 00	-		
4. Water heating energ	y requi	rement:		_						kWh/y	ear:	
	_											
Assumed occupancy, N									2	54		(42)
Assumed occupancy, N if TFA > 13.9, N = 1 +		[1 - exp	(-0.0003	349 x (TF	A -13.9)2)] + 0.(0013 x (ΓFA -13.		54		(42)
if TFA > 13.9, N = 1 + if TFA £ 13.9, N = 1	1.76 x							ΓFA -13.		54		
if TFA > 13.9, N = 1 + if TFA £ 13.9, N = 1 Annual average hot wat	1.76 x ter usag	je in litre	s per da	ay Vd,av	erage =	(25 x N)	+ 36		9)	.59		(42)
if TFA > 13.9, N = 1 + if TFA £ 13.9, N = 1	ter usag	je in litre	es per da 5% if the o	ay Vd,av	erage =	(25 x N)	+ 36		9)			
if TFA > 13.9, N = 1 + if TFA £ 13.9, N = 1 Annual average hot wat Reduce the annual average hot mot more that 125 litres per per	ter usag not water i erson per	je in litre usage by t day (all w	es per da 5% if the d ater use, I	y Vd,av	erage = designed (id)	(25 x N) to achieve	+ 36 a water us	se target o	9) 94	.59		
if TFA > 13.9, N = 1 + if TFA £ 13.9, N = 1 Annual average hot wat Reduce the annual average h	ter usag not water erson per	je in litre usage by s day (all w Apr	es per da 5% if the d ater use, I May	ay Vd,av welling is not and co	erage = designed (id) Jul	(25 x N) to achieve	+ 36		9)			
if TFA > 13.9, N = 1 + if TFA £ 13.9, N = 1 Annual average hot wat Reduce the annual average hot mot more that 125 litres per	ter usag not water erson per Mar day for ea	je in litre usage by s day (all w Apr ch month	es per da 5% if the d ater use, I May Vd,m = fa	ay Vd,av welling is not and co. Jun ctor from 1	erage = designed lid) Jul Table 1c x	(25 x N) to achieve Aug (43)	+ 36 a water us Sep	oe target o	9) 94 Nov	.59 Dec		
if TFA > 13.9, N = 1 + if TFA £ 13.9, N = 1 Annual average hot wat Reduce the annual average h not more that 125 litres per pe	ter usag not water erson per	je in litre usage by s day (all w Apr	es per da 5% if the d ater use, I May	ay Vd,av welling is not and co	erage = designed (id) Jul	(25 x N) to achieve	+ 36 a water us Sep	Oct	9) 94 Nov	.59 Dec	1135.08	(43)
if TFA > 13.9, N = 1 + if TFA £ 13.9, N = 1 Annual average hot wat Reduce the annual average hot mot more that 125 litres per	ter usag not water erson per Mar day for ea	ge in litre usage by s day (all w Apr ch month 92.7	es per da 5% if the d ater use, I May Vd,m = fa 88.91	y Vd,av welling is not and co Jun ctor from 1	erage = designed (id) Jul Table 1c x 85.13	(25 x N) to achieve Aug (43) 88.91	+ 36 a water us Sep	Oct 96.48 Fotal = Su	9) 94 Nov 100.27 m(44)112	.59 Dec	1135.08	
if TFA > 13.9, N = 1 + if TFA £ 13.9, N = 1 Annual average hot wat Reduce the annual average h not more that 125 litres per per Jan Feb Hot water usage in litres per of (44)m= 104.05 100.27 Energy content of hot water usage	er usag not water erson per Mar day for ea 96.48	ge in litre usage by s day (all w Apr ch month 92.7	es per da 5% if the d ater use, i May Vd,m = fa 88.91	y Vd,av lwelling is not and co Jun ctor from 1 85.13	erage = designed (id) Jul Table 1c x 85.13	(25 x N) to achieve Aug (43) 88.91	+ 36 a water us Sep	Oct 96.48 Fotal = Su	9) 94 Nov 100.27 m(44)	.59 Dec	1135.08	(43)
if TFA > 13.9, N = 1 + if TFA £ 13.9, N = 1 Annual average hot wat Reduce the annual average h not more that 125 litres per per Jan Feb Hot water usage in litres per of (44)m= 104.05 100.27 Energy content of hot water usage	ter usag not water erson per Mar day for ea	ge in litre usage by s day (all w Apr ch month 92.7	es per da 5% if the d ater use, I May Vd,m = fa 88.91	y Vd,av welling is not and co Jun ctor from 1	erage = designed li id) Jul Table 1c x 85.13	(25 x N) to achieve Aug (43) 88.91	+ 36 a water us Sep 92.7 0 kWh/mon 108.17	Oct 96.48 Total = Su th (see Ta 126.06	9) 94 Nov 100.27 m(44)2 = ables 1b, 1 137.61	.59 Dec 104.05 c, 1d) 149.43	1135.08	(43)
if TFA > 13.9, N = 1 + if TFA £ 13.9, N = 1 Annual average hot wat Reduce the annual average h not more that 125 litres per per Jan Feb Hot water usage in litres per of (44)m= 104.05 100.27 Energy content of hot water usage	ter usage of water erson per Mar day for ea 96.48	ge in litre usage by a day (all w Apr ch month 92.7	es per da 5% if the da ater use, I May Vd,m = fa 88.91 onthly = 4.	Jun ctor from 1 85.13	erage = designed to do	(25 x N) to achieve Aug (43) 88.91 07m / 3600 106.89	+ 36 a water us Sep 92.7 0 kWh/more 108.17	Oct 96.48 Total = Su th (see Ta 126.06	9) 94 Nov 100.27 m(44)	.59 Dec 104.05 c, 1d) 149.43		(43)
if TFA > 13.9, N = 1 + if TFA £ 13.9, N = 1 Annual average hot wat Reduce the annual average hot mot more that 125 litres per per per litres per per litres per per litres per	ter usage of water erson per Mar day for ea 96.48	ge in litre usage by a day (all w Apr ch month 92.7	es per da 5% if the da ater use, I May Vd,m = fa 88.91 onthly = 4.	Jun ctor from 1 85.13	erage = designed to do	(25 x N) to achieve Aug (43) 88.91 07m / 3600 106.89	+ 36 a water us Sep 92.7 0 kWh/more 108.17	Oct 96.48 Total = Su th (see Ta 126.06	9) 94 Nov 100.27 m(44)2 = ables 1b, 1 137.61	.59 Dec 104.05 c, 1d) 149.43		(43)
if TFA > 13.9, N = 1 + if TFA £ 13.9, N = 1 Annual average hot wat Reduce the annual average hot mot more that 125 litres per per per litres per	ter usage of water person per Mar day for ea 96.48	pe in litre usage by s day (all w Apr ch month 92.7 culated mo 121.41 of use (no	es per da 5% if the da ater use, i May Vd,m = fa 88.91 onthly = 4. 116.5 hot water	y Vd,av lwelling is not and co Jun 85.13 190 x Vd,r 100.53 r storage),	erage = designed (d) Jul Table 1c x 85.13 m x nm x E 93.15 enter 0 in 13.97	(25 x N) to achieve Aug (43) 88.91 7m / 3600 106.89 boxes (46) 16.03	+ 36 a water us 92.7 92.7 108.17 106.17	Oct 96.48 Total = Su 126.06 Total = Su 18.91	9) Nov 100.27 m(44)	.59 Dec 104.05 c, 1d) 149.43		(43)
if TFA > 13.9, N = 1 + if TFA £ 13.9, N = 1 Annual average hot wat Reduce the annual average hot mot more that 125 litres per	ter usage of water person per Mar day for ea 96.48	pe in litre usage by s day (all w Apr ch month 92.7 culated mo 121.41 of use (no	es per da 5% if the da ater use, i May Vd,m = fa 88.91 onthly = 4. 116.5 hot water	y Vd,av lwelling is not and co Jun 85.13 190 x Vd,r 100.53 r storage),	erage = designed (d) Jul Table 1c x 85.13 m x nm x E 93.15 enter 0 in 13.97	(25 x N) to achieve Aug (43) 88.91 7m / 3600 106.89 boxes (46) 16.03	+ 36 a water us 92.7 92.7 108.17 106.17	Oct 96.48 Total = Su 126.06 Total = Su 18.91	9) Nov 100.27 m(44) 112 = ables 1b, 1 137.61 m(45) 112 = 20.64	.59 Dec 104.05 c, 1d) 149.43		(43)
if TFA > 13.9, N = 1 + if TFA £ 13.9, N = 1 Annual average hot wat Reduce the annual average hot mot more that 125 litres per	ter usage of water person per Mar day for ea 96.48 sed - calc 139.26 g at point 20.89 including and no ta	Apr ch month 92.7 121.41 of use (not) 18.21 g any sonk in dw	es per da 5% if the dater use, i May Vd,m = fa 88.91 onthly = 4. 116.5 o hot water 17.47	y Vd,av lwelling is not and co Jun ctor from 1 85.13 190 x Vd,r 100.53 r storage), 15.08	erage = designed (d) Jul Table 1c x 85.13 m x nm x E 93.15 enter 0 in 13.97 storage	(25 x N) to achieve Aug (43) 88.91 7m / 3600 106.89 boxes (46) 16.03 within sa (47)	+ 36 a water us Sep 92.7 108.17 106.23 ame vess	Oct 96.48 Total = Su 126.06 Total = Su 18.91	9) Nov 100.27 m(44)112 = ables 1b, 1 137.61 m(45)112 = 20.64	.59 Dec 104.05 c, 1d) 149.43		(43) (44) (45) (46)
if TFA > 13.9, N = 1 + if TFA £ 13.9, N = 1 Annual average hot wat Reduce the annual average hot mot more that 125 litres per	ter usage of water person per Mar day for ea 96.48 sed - calc 139.26 g at point 20.89 including and no ta	Apr ch month 92.7 121.41 of use (not) 18.21 g any sonk in dw	es per da 5% if the dater use, i May Vd,m = fa 88.91 onthly = 4. 116.5 o hot water 17.47	y Vd,av lwelling is not and co Jun ctor from 1 85.13 190 x Vd,r 100.53 r storage), 15.08	erage = designed (d) Jul Table 1c x 85.13 m x nm x E 93.15 enter 0 in 13.97 storage	(25 x N) to achieve Aug (43) 88.91 7m / 3600 106.89 boxes (46) 16.03 within sa (47)	+ 36 a water us Sep 92.7 108.17 106.23 ame vess	Oct 96.48 Total = Su 126.06 Total = Su 18.91	9) Nov 100.27 m(44)112 = ables 1b, 1 137.61 m(45)112 = 20.64	.59 Dec 104.05 c, 1d) 149.43		(43) (44) (45) (46)
if TFA > 13.9, N = 1 + if TFA £ 13.9, N = 1 Annual average hot wat Reduce the annual average hot mot more that 125 litres per	ter usage to twater water wate	Apr Apr ch month 92.7 culated mo 121.41 of use (no 18.21 g any so nk in dw	es per da 5% if the d ater use, I May Vd,m = fa 88.91 onthly = 4. 116.5 o hot water 17.47 olar or W relling, e	Jun ctor from 1 85.13 190 x Vd,r 100.53 r storage), 15.08 /WHRS nter 110	erage = designed in d) Jul Table 1c x 85.13 m x nm x E 93.15 enter 0 in 13.97 storage 0 litres in neous co	(25 x N) to achieve Aug (43) 88.91 7m / 3600 106.89 boxes (46) 16.03 within sa (47)	+ 36 a water us Sep 92.7 108.17 106.23 ame vess	Oct 96.48 Total = Su 126.06 Total = Su 18.91	9) Nov 100.27 m(44)112 = ables 1b, 1 137.61 m(45)112 = 20.64	.59 Dec 104.05 c, 1d) 149.43		(43) (44) (45) (46)
if TFA > 13.9, N = 1 + if TFA £ 13.9, N = 1 Annual average hot wat Reduce the annual average hot mot more that 125 litres per	ter usage to twater water clared local control water w	Apr Apr Ch month 92.7 Culated mo 121.41 of use (no 18.21 g any so nk in dw or (this in	es per da 5% if the d ater use, I May Vd,m = fa 88.91 onthly = 4. 116.5 o hot water 17.47 olar or W relling, e	Jun ctor from 1 85.13 190 x Vd,r 100.53 r storage), 15.08 /WHRS nter 110	erage = designed in d) Jul Table 1c x 85.13 m x nm x E 93.15 enter 0 in 13.97 storage 0 litres in neous co	(25 x N) to achieve Aug (43) 88.91 7m / 3600 106.89 boxes (46) 16.03 within sa (47)	+ 36 a water us Sep 92.7 108.17 106.23 ame vess	Oct 96.48 Total = Su 126.06 Total = Su 18.91	9) Nov 100.27 m(44) 112 = ables 1b, 1 137.61 m(45) 112 = 20.64	.59 Dec 104.05 c, 1d) 149.43		(43) (44) (45) (46)
if TFA > 13.9, N = 1 + if TFA £ 13.9, N = 1 Annual average hot wat Reduce the annual average hot mot more that 125 litres per	ter usage to twater water clared local control water w	Apr Apr Ch month 92.7 Culated mo 121.41 of use (no 18.21 g any so nk in dw or (this in	es per da 5% if the d ater use, I May Vd,m = fa 88.91 onthly = 4. 116.5 o hot water 17.47 olar or W relling, e	Jun ctor from 1 85.13 190 x Vd,r 100.53 r storage), 15.08 /WHRS nter 110	erage = designed in d) Jul Table 1c x 85.13 m x nm x E 93.15 enter 0 in 13.97 storage 0 litres in neous co	(25 x N) to achieve Aug (43) 88.91 7m / 3600 106.89 boxes (46) 16.03 within sa (47)	+ 36 a water us Sep 92.7 108.17 106.23 ame vess	Oct 96.48 Total = Su 126.06 Total = Su 18.91	9) Nov 100.27 m(44)12 = ables 1b, 1 137.61 m(45)12 = 20.64	.59 Dec 104.05 c, 1d) 149.43 22.41		(43) (44) (45) (46) (47)
if TFA > 13.9, N = 1 + if TFA £ 13.9, N = 1 Annual average hot wat Reduce the annual average hot mot more that 125 litres per	ter usage tot water and water and anot water another	Apr Ch month 92.7 201ated mo 121.41 of use (no 18.21 g any so nk in dw or (this in coss facto 2b , kWh/ye	es per da 5% if the d ater use, i May Vd,m = fa 88.91 116.5 hot water 17.47 color or W relling, e acludes i or is known	y Vd,av lwelling is not and co Jun 85.13 190 x Vd,r 100.53 r storage), 15.08 /WHRS nter 110 nstantar	erage = designed (d) Jul Table 1c x 85.13 n x nm x E 93.15 enter 0 in 13.97 storage litres in neous con/day):	(25 x N) to achieve Aug (43) 88.91 7m / 3600 106.89 boxes (46) 16.03 within sa (47)	+ 36 a water us Sep 92.7 108.17 106.23 ame vess ers) ente	Oct 96.48 Total = Su 126.06 Total = Su 18.91	9) Nov 100.27 m(44)	.59 Dec 104.05 c, 1d) 149.43 22.41		(43) (44) (45) (46) (47)
if TFA > 13.9, N = 1 + if TFA £ 13.9, N = 1 Annual average hot wat Reduce the annual average hot mot more that 125 litres per	ter usage tot water and water and anot water another	Apr Ch month 92.7 201ated mo 121.41 of use (no 18.21 g any so nk in dw or (this in coss facto 2b , kWh/ye	es per da 5% if the d ater use, i May Vd,m = fa 88.91 116.5 hot water 17.47 color or W relling, e acludes i or is known	y Vd,av lwelling is not and co Jun 85.13 190 x Vd,r 100.53 r storage), 15.08 /WHRS nter 110 nstantar	erage = designed (d) Jul Table 1c x 85.13 n x nm x E 93.15 enter 0 in 13.97 storage litres in neous con/day):	(25 x N) to achieve Aug (43) 88.91 7m / 3600 106.89 boxes (46) 16.03 within sa (47) ombi boil	+ 36 a water us Sep 92.7 108.17 106.23 ame vess ers) ente	Oct 96.48 Total = Su 126.06 Total = Su 18.91	9) Nov 100.27 m(44)	.59 Dec 104.05 c, 1d) 149.43 22.41 0		(43) (44) (45) (46) (47) (48) (49)

Hot water storage loss	factor fr	om Tahl	o 2 (kW)	h/litre/da	w)					0	1	(51)
If community heating s			6 Z (KVV	ii/iiiie/ue	iy)					0	l	(51)
Volume factor from Ta	ble 2a									0]	(52)
Temperature factor fro	m Table	2b								0		(53)
Energy lost from water	storage	, kWh/ye	ear			(47) x (51)	x (52) x (53) =		0		(54)
Enter (50) or (54) in (5	,									0		(55)
Water storage loss cal	culated t	for each	month			((56)m = (55) × (41)ı	n				
(56)m= 0 0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinder contains dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	lix H	
(57)m= 0 0	0	0	0	0	0	0	0	0	0	0		(57)
Primary circuit loss (ar	inual) fro	m Table	3							0		(58)
Primary circuit loss cal			,	,		, ,						
(modified by factor fi	om Tab					ng and a	cylinde	r thermo	stat)		1	
(59)m= 0 0	0	0	0	0	0	0	0	0	0	0		(59)
Combi loss calculated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m						
(61)m= 50.96 46.03	49.17	45.71	45.31	41.98	43.38	45.31	45.71	49.17	49.32	50.96		(61)
Total heat required for	water h	eating ca	alculated	for eacl	h month	(62)m =	0.85 × (45)m +	(46)m +	(57)m +	(59)m + (61)r	n
(62)m= 205.26 180.98	188.43	167.12	161.81	142.51	136.53	152.2	153.88	175.23	186.92	200.39		(62)
Solar DHW input calculated	using App	endix G or	Appendix	H (negati	ve quantity	/) (enter '0	if no sola	r contribut	ion to wate	er heating)		
(add additional lines if	FGHRS	and/or \	WHRS	applies	, see Ap	pendix 0	3)					
(63)m= 0 0	0	0	0	0	0	0	0	0	0	0		(63)
Output from water hea	ter											
(64)m= 205.26 180.98	188.43	167.12	161.81	142.51	136.53	152.2	153.88	175.23	186.92	200.39		_
						Outp	ut from wa	ater heate	(annual)	12	2051.27	(64)
Heat gains from water	heating,	kWh/m	onth 0.2	5 ′ [0.85	× (45)m	+ (61)m] + 0.8 x	(46)m	+ (57)m	+ (59)m]	
(65)m= 64.04 56.38	58.6	51.8	50.06	43.92	41.82	46.87	47.4	54.21	58.08	62.43		(65)
include (57)m in cald	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	neating	
5. Internal gains (see	Table 5	and 5a):									
Metabolic gains (Table	5), Wat	ts										
Jan Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m= 152.56 152.56	152.56	152.56	152.56	152.56	152.56	152.56	152.56	152.56	152.56	152.56		(66)
Lighting gains (calcula	ted in Ap	pendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5					
(67)m= 51.64 45.87	37.3	28.24	21.11	17.82	19.26	25.03	33.6	42.66	49.79	53.08		(67)
Appliances gains (calc	ulated ir	Append	dix L, eq	uation L	13 or L1	3a), also	see Tal	ble 5				
(68)m= 341.18 344.72	335.8	316.8	292.83	270.29	255.24	251.7	260.62	279.61	303.59	326.12		(68)
Cooking gains (calcula	ted in A	ppendix	L, equat	tion L15	or L15a)), also se	e Table	5				
(69)m= 52.8 52.8	52.8	52.8	52.8	52.8	52.8	52.8	52.8	52.8	52.8	52.8		(69)
Pumps and fans gains	(Table §	5a)										
(70)m= 3 3	3	3	3	3	3	3	3	3	3	3		(70)
Losses e.g. evaporation	n (nega	tive valu	es) (Tab	le 5)								
(71)m= -101.71 -101.71	-101.71	-101.71	-101.71	-101.71	-101.71	-101.71	-101.71	-101.71	-101.71	-101.71		(71)
Water heating gains (T	able 5)											
(72)m= 86.08 83.9	78.76	71.94	67.29	61	56.21	63	65.83	72.86	80.67	83.91	1	(72)
											,	

Total internal gains =				(66)m + (67)r	n + (68	3)m + (69)m +	(70)m + (71)m + (72)m		
(73)m= 585.55 581.13 558.	.51	523.64 487.8	3 4	55.77 437.36	446	.38 466.7	501.78	540.7	569.76		(73)
6. Solar gains:											
Solar gains are calculated using	solar	flux from Table 6	a an		ations	to convert to the	ne applica		tion.		
Orientation: Access Facto Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b	7	FF Fable 6c		Gains (W)	
Southeast 0.9x 0.77	×	1.68	x	36.79	x	0.76	×	0.7	=	22.79	(77)
Southeast 0.9x 0.77	×	0.55	x	36.79	Ī×	0.76	Ħ × Ē	0.7	=	7.46	(77)
Southeast 0.9x 0.77	x	1.87	x	36.79	x	0.76	= × [0.7	=	25.37	(77)
Southeast 0.9x 0.77	×	0.57	x	36.79	×	0.85	x [0.7	=	8.65	(77)
Southeast 0.9x 0.77	x	1.68	x	62.67	x	0.76	x [0.7		38.82	(77)
Southeast 0.9x 0.77	x	0.55	x	62.67	x	0.76	x [0.7	=	12.71	(77)
Southeast 0.9x 0.77	×	1.87	x	62.67	×	0.76	x [0.7	=	43.21	(77)
Southeast 0.9x 0.77	x	0.57	x	62.67	x	0.85	x	0.7	=	14.73	(77)
Southeast 0.9x 0.77	×	1.68	x	85.75	×	0.76	x [0.7	=	53.11	(77)
Southeast 0.9x 0.77	x	0.55	x	85.75	x	0.76	x	0.7	=	17.39	(77)
Southeast 0.9x 0.77	×	1.87	X	85.75	×	0.76	×	0.7		59.12	(77)
Southeast 0.9x 0.77	×	0.57	×	85.75	×	0.85	×	0.7		20.15	(77)
Southeast 0.9x 0.77	x	1.68	х	106.25	_ x	0.76	×	0.7	=	65.81	(77)
Southeast 0.9x 0.77	x	0.55	х	106.25	x	0.76	х	0.7	=	21.54	(77)
Southeast 0.9x 0.77	×	1.87	X	106.25	×	0.76	х	0.7	=	73.25	(77)
Southeast 0.9x 0.77	x	0.57	Х	106.25	х	0.85	х	0.7	=	24.97	(77)
Southeast 0.9x 0.77	×	1.68	×	119.01	x	0.76	×	0.7	=	73.71	(77)
Southeast 0.9x 0.77	×	0.55	х	119.01	x	0.76	×	0.7	=	24.13	(77)
Southeast 0.9x 0.77	×	1.87	x	119.01	x	0.76	×	0.7	=	82.05	(77)
Southeast 0.9x 0.77	×	0.57	x	119.01	×	0.85	×	0.7	=	27.97	(77)
Southeast 0.9x 0.77	x	1.68	х	118.15	x	0.76	× [0.7	=	73.18	(77)
Southeast 0.9x 0.77	x	0.55	X	118.15	×	0.76	× [0.7	=	23.96	(77)
Southeast 0.9x 0.77	×	1.87	X	118.15	×	0.76	× [0.7	=	81.46	(77)
Southeast 0.9x 0.77	x	0.57	X	118.15	×	0.85	× [0.7	=	27.77	(77)
Southeast 0.9x 0.77	×	1.68	X	113.91	×	0.76	× [0.7	=	70.55	(77)
Southeast 0.9x 0.77	x	0.55	х	113.91	×	0.76	_ ×	0.7	_ =	23.1	(77)
Southeast 0.9x 0.77	×	1.87	×	113.91	×	0.76	_ ×	0.7	_ =	78.53	(77)
Southeast 0.9x 0.77	×	0.57	X	113.91	×	0.85	× [0.7	_ =	26.77	(77)
Southeast 0.9x 0.77	×	1.68	×	104.39	×	0.76	×	0.7	_ =	64.66	(77)
Southeast 0.9x 0.77	×	0.55	X	104.39	×	0.76	× [0.7	=	21.17	(77)
Southeast 0.9x 0.77	×	1.87	X	104.39	×	0.76	_ ×	0.7	_ =	71.97	(77)
Southeast 0.9x 0.77	×	0.57	x	104.39	×	0.85	_ ×	0.7	- ⁼	24.53	(77)
Southeast 0.9x 0.77	×	1.68	X	92.85	×	0.76	_ ×	0.7	_ =	57.51	(77)
Southeast 0.9x 0.77	X	0.55	X	92.85	X	0.76	× [0.7	=	18.83	(77)

South cost of T		1		1		1				1		٦
Southeast 0.9x	0.77	×	1.87	×	92.85	X	0.76	x	0.7	=	64.01	(77)
Southeast 0.9x	0.77	×	0.57	×	92.85	×	0.85	×	0.7	=	21.82	(77)
Southeast 0.9x	0.77	×	1.68	×	69.27	×	0.76	×	0.7	=	42.9	(77)
Southeast 0.9x	0.77	×	0.55	×	69.27	х	0.76	x	0.7	=	14.05	(77)
Southeast 0.9x	0.77	×	1.87	×	69.27	×	0.76	×	0.7	=	47.75	(77)
Southeast 0.9x	0.77	×	0.57	x	69.27	x	0.85	x	0.7	=	16.28	(77)
Southeast 0.9x	0.77	×	1.68	×	44.07	x	0.76	×	0.7	=	27.3	(77)
Southeast 0.9x	0.77	×	0.55	×	44.07	×	0.76	×	0.7	=	8.94	(77)
Southeast 0.9x	0.77	x	1.87	x	44.07	x	0.76	x	0.7	=	30.38	(77)
Southeast 0.9x	0.77	×	0.57	×	44.07	×	0.85	×	0.7	=	10.36	(77)
Southeast 0.9x	0.77	×	1.68	×	31.49	x	0.76	x	0.7	=	19.5	(77)
Southeast 0.9x	0.77	×	0.55	×	31.49	x	0.76	×	0.7	=	6.38	(77)
Southeast 0.9x	0.77	×	1.87	×	31.49	x	0.76	x	0.7	=	21.71	(77)
Southeast 0.9x	0.77	×	0.57	x	31.49	x	0.85	x	0.7	=	7.4	(77)
Northwest 0.9x	0.77	×	3.6	×	11.28	×	0.76	×	0.7	=	14.98	(81)
Northwest 0.9x	0.77	×	2.52	×	11.28	x	0.76	x	0.7	=	10.48	(81)
Northwest 0.9x	0.77	x	0.28	x	11.28	x	0.76	x	0.7	=	1.16	(81)
Northwest 0.9x	0.77	×	3.6	Х	22.97	Х	0.76	Х	0.7	=	30.48	(81)
Northwest 0.9x	0.77	×	2.52	×	22.97	х	0.76	x	0.7	=	21.34	(81)
Northwest 0.9x	0.77	×	0.28	×	22.97	×	0.76	×	0.7	=	2.37	(81)
Northwest 0.9x	0.77	×	3.6	×	41.38	x	0.76	×	0.7	=	54.92	(81)
Northwest 0.9x	0.77	×	2.52	×	41.38	Х	0.76	x	0.7	=	38.44	(81)
Northwest 0.9x	0.77	×	0.28	×	41.38	x	0.76	×	0.7	=	4.27	(81)
Northwest 0.9x	0.77	×	3.6	×	67.96	x	0,76	×	0.7	=	90.19	(81)
Northwest 0.9x	0.77	×	2.52	×	67.96	x	0.76	x	0.7	=	63.14	(81)
Northwest 0.9x	0.77	×	0.28	×	67.96	×	0.76	x	0.7	=	7.02	(81)
Northwest 0.9x	0.77	×	3.6	x	91.35	x	0.76	x	0.7	=	121.24	(81)
Northwest 0.9x	0.77	×	2.52	×	91.35	x	0.76	x	0.7	=	84.87	(81)
Northwest 0.9x	0.77	×	0.28	x	91.35	x	0.76	x	0.7	=	9.43	(81)
Northwest 0.9x	0.77	×	3.6	x	97.38	x	0.76	x	0.7	=	129.25	(81)
Northwest 0.9x	0.77	×	2.52	×	97.38	x	0.76	x	0.7	=	90.48	(81)
Northwest 0.9x	0.77	×	0.28	×	97.38	x	0.76	x	0.7	=	10.05	(81)
Northwest 0.9x	0.77	×	3.6	×	91.1	x	0.76	×	0.7	=	120.91	(81)
Northwest 0.9x	0.77	×	2.52	×	91.1	×	0.76	x	0.7	=	84.64	(81)
Northwest 0.9x	0.77	×	0.28	x	91.1	x	0.76	x	0.7	=	9.4	(81)
Northwest 0.9x	0.77	×	3.6	×	72.63	x	0.76	x	0.7	=	96.39	(81)
Northwest 0.9x	0.77	×	2.52	×	72.63	x	0.76	x	0.7	=	67.48	(81)
Northwest 0.9x	0.77	×	0.28	×	72.63	×	0.76	x	0.7	=	7.5	(81)
Northwest 0.9x	0.77	×	3.6	×	50.42	×	0.76	x	0.7	=	66.92	(81)
Northwest 0.9x	0.77	×	2.52	×	50.42	×	0.76	x	0.7	i =	46.84	(81)
Northwest 0.9x	0.77	×	0.28	×	50.42	×	0.76	x	0.7	=	5.2	(81)
	-	,		,		1				1		٦.

Northwest 0.9x 0.77	x	3.6	x [28.07] x [0.76	_ x [0.7	=	37.25	(81)
Northwest 0.9x 0.77	x	2.52	x	28.07	x [0.76	x [0.7	=	26.08	(81)
Northwest 0.9x 0.77	x	0.28	x	28.07] x [0.76	_ × [0.7	=	2.9	(81)
Northwest 0.9x 0.77	×	3.6	x F	14.2	x	0.76	_ × [0.7	=	18.84	(81)
Northwest 0.9x 0.77	×	2.52	x [14.2	İ×Ē	0.76	Ħ×Ĕ	0.7	■ -	13.19	(81)
Northwest 0.9x 0.77	×	0.28	x [14.2	× F	0.76	╡ × [0.7	=	1.47	(81)
Northwest 0.9x 0.77	×	3.6	x F	9.21	İxĒ	0.76	Ħ×Ĕ	0.7	╡ -	12.23	(81)
Northwest 0.9x 0.77	×	2.52	x F	9.21	İ×Ē	0.76	Ħ×Ĕ	0.7	−	8.56	(81)
Northwest 0.9x 0.77	×	0.28	x F	9.21	İ×Ē	0.76	ī×Ē	0.7	╡ -	0.95	(81)
	_		_		. –				_		_
Solar gains in watts, calcul	ated for e	ach month	1		(83)m =	Sum(74)m .	(82)m				
	.41 345.9		_	3.14 413.91	353.6	9 281.14	187.21	110.47	76.74		(83)
Total gains – internal and s	solar (84)r	n = (73)m	+ (83	3)m , watts						l	
(84)m= 676.44 744.79 805	5.92 869.5	6 911.27	891	.91 851.27	800.0	7 747.84	688.99	651.17	646.5		(84)
7. Mean internal temperat	ure (heati	na season	1)								
Temperature during heati		~		roa from Tak	مام ۵	Th1 (°C)				21	(85)
-			-		Jie 3,	IIII (C)				21	(65)
Utilisation factor for gains	$\overline{}$	_			Α		0-4	Nov	Dan	l	
	lar Ap		_	un Jul	Aug	_	Oct	Nov	Dec		(00)
(86)m= 0.99 0.99 0.9	98 0.97	0.95	0.8	89 0.81	0.84	0.93	0.98	0.99	0.99		(86)
Mean internal temperature	e in living	area T1 (f	ollow	steps 3 to 7	7 in Ta	ble 9c)					
(87)m= 17.78 17.98 18	.39 19.0	19.66	20.	.27 20.62	20.56	20.07	19.27	18.46	17.79		(87)
Temperature during heati	ng periods	in rest of	dwe	lling from Ta	able 9,	Th2 (°C)					
	18.6	$\overline{}$	$\overline{}$.69 18.69	18.7		18.65	18.64	18.62		(88)
Utilisation factor for gains	for root of	dwolling	h2 m	y (soo Tablo	02/						
(89)m= 0.99 0.98 0.9			0.7		9a) 0.61	0.86	0.96	0.98	0.99		(89)
								0.50	0.33		(00)
Mean internal temperature						_					
(90)m= 14.66 14.95 15	.56 16.49	17.4	18.	.23 18.59	18.56		16.86	15.67	14.69		(90)
						f	LA = Livir	ng area + (4	1) =	0.16	(91)
Mean internal temperature	e (for the	whole dwe	elling)) = fLA × T1	+ (1 –	fLA) × T2					
(92)m= 15.15 15.43 16	.01 16.8	17.76	18.	.55 18.91	18.88	18.32	17.24	16.11	15.18		(92)
Apply adjustment to the m	nean inter	nal tempe	rature	e from Table	4e, w	here appro	priate			•	
(93)m= 15.15 15.43 16	.01 16.8	17.76	18.	.55 18.91	18.88	3 18.32	17.24	16.11	15.18		(93)
8. Space heating requirer	nent	•									
Set Ti to the mean interna	l tempera	ture obtai	ned a	at step 11 of	Table	9b, so tha	t Ti,m=(76)m an	d re-calc	ulate	
the utilisation factor for ga	ins using	Table 9a									
Jan Feb M	1ar Ap	May	Jı	un Jul	Aug	g Sep	Oct	Nov	Dec		
Utilisation factor for gains	, hm:										
(94)m= 0.98 0.97 0.9	96 0.93	0.88	0.7	77 0.59	0.64	0.84	0.94	0.97	0.98		(94)
Useful gains, hmGm, W	= (94)m x	(84)m									
(95)m= 662 724.05 773	3.32 811.1	7 800.27	683	3.01 499.22	508.5	3 626.67	646.61	632.1	634.28		(95)
Monthly average external	temperat	re from T	able	8							
(96)m= 4.3 4.9 6.	5 8.9	11.7	14	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat loss rate for mean in			Lm,	W =[(39)m	x [(93)	m– (96)m]				
(97)m= 3074.35 2966.27 266	2.56 2172.	75 1637.6	104	0.42 608.26	648.3	7 1121.77	1793.62	2463.32	3036.88		(97)

Space heating requirement fo B)m= 1794.79 1506.77 1405.59		622.98						_	1707 53		
3)m= 1/94./9 1506.// 1405.59	980.33	622.98	0	0	0 Tota	0	853.37	1318.48) = Sum(9	1787.53	10269.86	(98
Name	1-10/1-/2				TOTA	i per year	(KVVII/yeal) - Sum(9	O J15,912 —		┥`
Space heating requirement in										121.54	(99
a. Energy requirements – Indi	vidual h	eating sy	/stems i	ncluding	micro-C	HP)					
Space heating: Fraction of space heat from se	econdary	//supple	mentary	system					- 1	0	(20
raction of space heat from m	ain syst	em(s)			(202) = 1 -	- (201) =			i	1	(20
raction of total heating from	main sys	tem 1			(204) = (20	02) × [1 –	(203)] =		İ	1	(20
Efficiency of main space heati	ng syste	m 1							Ì	90.3	(20
Efficiency of secondary/supple	ementar	y heating	g systen	1, %					ĺ	0	(20
Jan Feb Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
Space heating requirement (c	alculated	d above)									
1794.79 1506.77 1405.59	980.33	622.98	0	0	0	0	853.37	1318.48	1787.53		
11)m = {[(98)m x (204)] } x 1											(21
1987.59 1668.63 1556.58	1085.64	689.9	0	0	0	0	945.04	1460.11	1979.55	11373.05	(21
Space heating fuel (secondar) {[(98)m x (201)] } x 100 ÷ (20 15)m= 0 0 0		month 0	0	0	0	0	0	0	0		
ater heating utput from water heater (calc		7						215) _{15,1012}		0	(2
205.26 180.98 188.43	167.12	161.81	142.51	136.53	152.2	153.88	175.23	186.92	200.39		٦؞؞
ficiency of water heater	88.81	88.21	81	81	81	81	88.57	89.03	89.27	81	(21
17)m= 89.25 89.2 89.09 uel for water heating, kWh/mo 19)m = (64)m x 100 ÷ (217)	onth	00.21	01	01	01	01	00.57	69.03	69.27		(2)
19)m= 229.99 202.89 211.5	188.17	183.43	175.94	168.56	187.91	189.98	197.85	209.95	224.49		
					Tota	I = Sum(2	19a) ₁₂ =			2370.64	(21
nnual totals							k'	Wh/year		kWh/year	-
pace heating fuel used, main	system	1							ļ	11373.05	╛
ater heating fuel used										2370.64	
ectricity for pumps, fans and	electric l	keep-ho	t								
entral heating pump:									30		(23
ooiler with a fan-assisted flue									45		(23
otal electricity for the above, k	Wh/yea	r			sum	of (230a).	(230g) =			75	(23
ectricity for lighting									j	364.79	= (23
											_

Fuel

kWh/year

Fuel Cost

£/year

Fuel Price

(Table 12)

Space heating - main system 1	(211) x	3.48 × 0.01 =	395.78	(240)
Space heating - main system 2	(213) x	0 x 0.01 =	0	(241)
Space heating - secondary	(215) x	13.19 x 0.01 =	0	(242)
Water heating cost (other fuel)	(219)	3.48 × 0.01 =	82.5	(247)
Pumps, fans and electric keep-hot	(231)	13.19 × 0.01 =	9.89	(249)
(if off-peak tariff, list each of (230a) to (230g) sepa				7
Energy for lighting	(232)	13.19 × 0.01 =	40.12	(250)
Additional standing charges (Table 12)			120	(251)
Appendix Q items: repeat lines (253) and (254) as				7,055
9 ,	7) + (250)(254) =		656.29	(255)
11a. SAP rating - individual heating systems				
Energy cost deflator (Table 12)			0.42	(256)
	66)] + [(4) + 45.0] =		2.13	(257)
SAP rating (Section 12)			70.31	(258)
12a. CO2 emissions – Individual heating systems	s including micro-CHP			
	Energy kWh/year	Emission factor kg CO2/kWh	kg CO2/yea	ir
Space heating (main system 1)	(211) x	0.216	2456.58	(261)
Space heating (main system 1) Space heating (secondary)	(211) x (215) x	0.216	2456.58	(261)
				7
Space heating (secondary)	(215) x	0.519	0	(263)
Space heating (secondary) Water heating	(215) x (219) x	0.519	512.06	(263)
Space heating (secondary) Water heating Space and water heating	(215) x (219) x (261) + (262) + (263) + (264) =	0.519 = 0.216 =	0 512.06 2968.64	(263) (264) (265)
Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric keep-hot	(215) x (219) x (261) + (262) + (263) + (264) = (231) x (232) x	0.519 = 0.519 =	0 512.06 2968.64 38.93	(263) (264) (265) (267)
Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric keep-hot Electricity for lighting	(215) x (219) x (261) + (262) + (263) + (264) = (231) x (232) x	0.519 = 0.519 = 0.519 = 0.519	0 512.06 2968.64 38.93 189.33	(263) (264) (265) (267) (268)
Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric keep-hot Electricity for lighting Total CO2, kg/year	(215) x (219) x (261) + (262) + (263) + (264) = (231) x (232) x	0.519 = 0.519 = 0.519 = m of (265)(271) =	0 512.06 2968.64 38.93 189.33	(263) (264) (265) (267) (268) (272)
Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric keep-hot Electricity for lighting Total CO2, kg/year CO2 emissions per m²	(215) x (219) x (261) + (262) + (263) + (264) = (231) x (232) x	0.519 = 0.519 = 0.519 = m of (265)(271) =	0 512.06 2968.64 38.93 189.33 3196.89	(263) (264) (265) (267) (268) (272) (273)
Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric keep-hot Electricity for lighting Total CO2, kg/year CO2 emissions per m² El rating (section 14)	(215) x (219) x (261) + (262) + (263) + (264) = (231) x (232) x	0.519 = 0.519 = 0.519 = m of (265)(271) =	0 512.06 2968.64 38.93 189.33 3196.89	(263) (264) (265) (267) (268) (272) (273)
Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric keep-hot Electricity for lighting Total CO2, kg/year CO2 emissions per m² El rating (section 14)	(215) x (219) x (261) + (262) + (263) + (264) = (231) x (232) x sun (27)	0.519 = 0.519	0 512.06 2968.64 38.93 189.33 3196.89 37.83 67	(263) (264) (265) (267) (268) (272) (273)
Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric keep-hot Electricity for lighting Total CO2, kg/year CO2 emissions per m² El rating (section 14) 13a. Primary Energy	(215) x (219) x (261) + (262) + (263) + (264) = (231) x (232) x sun (27)	0.519 = 0.519	0 512.06 2968.64 38.93 189.33 3196.89 37.83 67	(263) (264) (265) (267) (268) (272) (273) (274)
Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric keep-hot Electricity for lighting Total CO2, kg/year CO2 emissions per m² El rating (section 14) 13a. Primary Energy Space heating (main system 1)	(215) x (219) x (261) + (262) + (263) + (264) = (231) x (232) x sun (27) Energy kWh/year (211) x	0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.52) + (4) = 0.52 = 0.	0 512.06 2968.64 38.93 189.33 3196.89 37.83 67 P. Energy kWh/year	(263) (264) (265) (267) (268) (272) (273) (274)
Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric keep-hot Electricity for lighting Total CO2, kg/year CO2 emissions per m² El rating (section 14) 13a. Primary Energy Space heating (main system 1) Space heating (secondary)	(215) x (219) x (261) + (262) + (263) + (264) = (231) x (232) x sun (27) Energy kWh/year (211) x (215) x	0.519 = 0.519	0 512.06 2968.64 38.93 189.33 3196.89 37.83 67 P. Energy kWh/year 13875.12 0	(263) (264) (265) (267) (268) (272) (273) (274) (261) (263)
Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric keep-hot Electricity for lighting Total CO2, kg/year CO2 emissions per m² El rating (section 14) 13a. Primary Energy Space heating (main system 1) Space heating (secondary) Energy for water heating	(215) x (219) x (261) + (262) + (263) + (264) = (231) x (232) x sun (27) Energy kWh/year (211) x (215) x (219) x	0.519 = 0.519	0 512.06 2968.64 38.93 189.33 3196.89 37.83 67 P. Energy kWh/year 13875.12 0 2892.18	(263) (264) (265) (267) (268) (272) (273) (274) (261) (263) (264)

(232) x

sum of (265)...(271) =

Electricity for lighting

'Total Primary Energy

(268)

(272)

1119.91

18117.46

Primary energy kWh/m²/year

 $(272) \div (4) =$

214.41

(273)

DRAET

		lles 5) otollar						
		User D							
Assessor Name:	Ctro		Strom				\/!-	4 0 4 40	
Software Name:	Stroma FSAP 2012	Proporty	Softwa			troot	versio	on: 1.0.4.18	
Address :		roperty	Address:	7b Free	derick S	ıreeı			
Overall dwelling dime	nsions:								
		Are	a(m²)		Av. He	ight(m)		Volume(m	³)
Ground floor			75.1	(1a) x	;	3.7	(2a) =	277.87	(3a)
Total floor area TFA = (1a	a)+(1b)+(1c)+(1d)+(1e)+(1	n) =	75.1	(4)			-		_
Dwelling volume				(3a)+(3b)+(3c)+(3c	i)+(3e)+	(3n) =	277.87	(5)
2. Ventilation rate:									
	main seconda heating heating	ry	other		total			m³ per hou	ır
Number of chimneys		¬ + г	1] = [1	×	40 =	40	(6a)
Number of open flues	0 + 0	╡╻┝	0	j = F	0	x	20 =	0	(6b)
Number of intermittent far	ns			,	2	= x	10 =	20	(7a)
Number of passive vents				F	0	\dashv ,	10 =	0	(7b)
				Ļ			40 =		
Number of flueless gas fi	res			L	0	^	+0 =	0	(7c)
							Air ch	nanges per h	our
Infiltration due to chimner	ys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) =	Г	60		+ (5) =	0.22	(8)
	een carried out or is intended, procee			ontinue fr			_/	0.22	
Number of storeys in the	ne dwelling (ns)							0	(9)
Additional infiltration	25.4					[(9)	-1]x0.1 =	0	(10)
	.25 for steel or timber frame or resent, use the value corresponding t			,	ruction			0	(11)
deducting areas of opening		o ine great	cr wan arc	a (anter					
If suspended wooden f	loor, enter 0.2 (unsealed) or 0).1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, ent								0	(13)
•	s and doors draught stripped							0	(14)
Window infiltration			0.25 - [0.2		-	± (4E) =		0	(15)
Infiltration rate	q50, expressed in cubic metre	oe nor h	(8) + (10)				area	0	(16)
, , , , , , , , , , , , , , , , , , , ,	ity value, then (18) = [(17) + 20]+				elle oi e	ilvelope	alea	0.97	(17)
	s if a pressurisation test has been do				is being u	sed		0.97	(10)
Number of sides sheltere	d							2	(19)
Shelter factor			(20) = 1 -	0.075 x (1	19)] =			0.85	(20)
Infiltration rate incorporat	ing shelter factor		(21) = (18)	x (20) =				0.82	(21)
Infiltration rate modified for								1	
Jan Feb	Mar Apr May Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp								,	
(22)m= 5.1 5	4.9 4.4 4.3 3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22	2)m + 4								
	1.23 1.1 1.08 0.95	0.95	0.92	1	1.08	1.12	1.18]	
		•						,	

. —		`	ing for sh				 	<u> </u>				,	
1.05 alculate effec	1.03	1.01	0.9	0.88	0.78	0.78	0.76	0.82	0.88	0.92	0.96		
If mechanica		_	rate for t	пс аррп	cable ca	30						0	(2
If exhaust air he	at pump (using App	endix N, (2	3b) = (23a	a) × Fmv (equation (I	N5)) , othe	rwise (23b) = (23a)			0	(2
If balanced with	heat reco	overy: effic	eiency in %	allowing t	for in-use f	actor (fron	n Table 4h) =				0	(2
a) If balance	d mech:	anical ve	entilation	with he	at recov	ery (MV	HR) (24a	a)m = (22	2b)m + (23b) × [1 – (23c)	÷ 100]	
4a)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(2
b) If balance	d mech	anical ve	entilation	without	heat red	covery (I	MV) (24b)m = (22	2b)m + (23b)		•	
4b)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(2
c) If whole he									5 × (23b	o)			
4c)m= 0	0	0	0	0	0	0	0	0	0	0	0	l	(2
d) If natural	ventilation	on or wh	ole hous	e positi	ve input	ventilatio	on from	oft				1	
if (22b)n									0.5]				
4d)m= 1.05	1.03	1.01	0.91	0.89	0.8	0.8	0.79	0.84	0.89	0.93	0.97		(2
Effective air	change	rate - er	nter (24a) or (24l	b) or (24	c) or (24	d) in bo	(25)					
5)m= 1.05	1.03	1.01	0.91	0.89	0.8	0.8	0.79	0.84	0.89	0.93	0.97		(2
B. Heat losses	s and he	eat loss	parar net	er:								_	_
LEMENT	Gros area		Openin	-	Net Ar A ,r		U-val W/m2		A X U (W/	K)	k-value kJ/m²-l		A X k kJ/K
oors				.	1.68	×	3] = [5.04				(2
/in <mark>dows</mark> Type	1				2.5	x1	/[1/(2.6)+	0.04] =	5.89	Ħ			(2
/indows Type	2				2.5		/[1/(2.6)+	0.04] =	5.89	Ħ			(2
/indows Type	3			,	2.5	= x₁	/[1/(2.6)+	0.04] =	5.89	5			(2
/indows Type	4				2.5	x1	/[1/(2.6)+	0.04] =	5.89	Ħ			(2
/indows Type	5				1.85	x1	/[1/(2.6)+	0.04] =	4.36	╡			(2
/indows Type					1.69	=	/[1/(2.6)+	;	3.98	Ħ			(2
/indows Type					1.9	=	/[1/(2.6)+	ļ	4.47	╡			(2
/alls Type1	104.	71	17.1	2	87.59	=	2.1	i_i	183.94	≓ Γ		¬ г	(2
/alls Type2	21.4	=	0		21.46	=	2.1	╡┇	45.07	╡╏		╡╞	(2
otal area of e					126.1	=	2.1	'	40.07				\`` (\$
arty wall		,			29.6	=		[0	_ r			(S
for windows and	roof wind	ows. use e	effective wi	ndow U-v			o formula 1			L as given in	paragraph	 1 3.2	(
include the area						area com	, , , , , , , , , , , , , , , , , , , ,	TI TO TOTAL	,, .	o green in	paragrapii		
abric heat los	s, W/K	= S (A x	U)				(26)(30) + (32) =				270.4	1 (3
eat capacity	Cm = S((Axk)						((28)	.(30) + (3	2) + (32a).	(32e) =	0	(3
hermal mass	parame	ter (TMI	P = Cm -	· TFA) ii	n kJ/m²K			Indica	tive Value	: Medium		250	(3
or design assess an be used instea				construct	tion are no	t known pr	recisely the	indicative	values of	TMP in Ta	able 1f		
or design assess	ad of a del	tailed calc	ulation.				recisely the	indicative	values of	TMP in Te	able 1f	18.9	3 (3

Total fabric heat loss	(33) + (36) = 289.33 (37)
Ventilation heat loss calculated monthly	(38)m = 0.33 × (25)m × (5)
Jan Feb Mar Apr May Jun Jul	Aug Sep Oct Nov Dec
(38)m= 95.99 94.11 92.23 83.25 81.57 73.74 73.74	72.29 76.76 81.57 84.96 88.52 (38)
Heat transfer coefficient, W/K	(39)m = (37) + (38)m
(39)m= 385.32 383.44 381.56 372.58 370.9 363.07 363.07	361.63 366.09 370.9 374.3 377.85
Heat loss parameter (HLD) \W/m²l/	Average = Sum(39) ₁₋₁₂ /12= 372.56 (39) (40) ₁₀₋₁₂ (20) ₁₀₋₁₂ (4)
Heat loss parameter (HLP), W/m²K (40)m= 5.13 5.11 5.08 4.96 4.94 4.83 4.83	(40)m = (39)m + (4) 4.82 4.87 4.94 4.98 5.03
(40)m= 5.13 5.11 5.08 4.96 4.94 4.83 4.83	
Number of days in month (Table 1a)	Average = Sum(40) ₁₁₂ /12= 4.96 (40)
Jan Feb Mar Apr May Jun Jul	Aug Sep Oct Nov Dec
(41)m= 31 28 31 30 31 30 31	31 30 31 30 31 (41)
Water heating energy requirement:	kWh/year:
The trace hearing energy requirement.	
Assumed occupancy, N	2.36 (42)
if TFA > 13.9, N = 1 + 1.76 x [1 - $exp(-0.000349 \times (TFA - 13.9))]$ if TFA £ 13.9, N = 1	(1)2)] + 0.0013 X (1FA -13.9)
Annual average hot water usage in litres per day Vd,average	(25 x N) + 36 90.33 (43)
Reduce the annual average hot water usage by 5% if the dwelling is designed	to achieve a water use target of
not more that 125 litres per person per day (all water use, hot and cold)	
Jan Feb Mar Apr May Jun Jul	Aug Sep Oct Nov Dec
Hot water usage in litres per day for each month Vd,m = factor from Table 1c	
(44)m= 99.36 95.75 92.14 88.52 84.91 81.3 81.3	84.91 88.52 92.14 95.75 99.36
Energy content of hot water used - calculated monthly = 4,190 x Vd,m x nm x	Total = Sum(44) ₁₁₂ = 1083.95 (44) DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)
(45)m= 147.35 128.87 132.99 115.94 111.25 96 88.96	102.08 103.3 120.38 131.41 142.7
	Total = Sum(45) ₁₁₂ = 1421.23 (45)
If instantaneous water heating at point of use (no hot water storage), enter 0 is	n boxes (46) to (61)
(46)m= 22.1 19.33 19.95 17.39 16.69 14.4 13.34	15.31 15.49 18.06 19.71 21.41 (46)
Water storage loss:	
Storage volume (litres) including any solar or WWHRS storage	within same vessel 0 (47)
If community heating and no tank in dwelling, enter 110 litres i	* *
Otherwise if no stored hot water (this includes instantaneous of	ombi boilers) enter '0' in (47)
Water storage loss: a) If manufacturer's declared loss factor is known (kWh/day):	(40)
	0 (48)
Temperature factor from Table 2b	0 (49)
Energy lost from water storage, kWh/year b) If manufacturer's declared cylinder loss factor is not known	$(48) \times (49) = 0 \tag{50}$
Hot water storage loss factor from Table 2 (kWh/litre/day)	0 (51)
If community heating see section 4.3	
Volume factor from Table 2a	0 (52)
Temperature factor from Table 2b	0 (53)
Energy lost from water storage, kWh/year	$(47) \times (51) \times (52) \times (53) = 0$ (54)
Enter (50) or (54) in (55)	0 (55)

Water storage	loss cal	culated t	for each	month			((56)m = (55) × (41)	m				
(56)m= 0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinder contain	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m= 0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primary circuit	loss (ar	nual) fro	om Table	e 3							0		(58)
Primary circuit	loss cal	culated	for each	month (59)m =	(58) + 36	65 × (41)	m					
(modified by	factor f	rom Tab	le H5 if t	here is s	solar wat	ter heati	ng and a	cylinde	r thermo	stat)			
(59)m= 0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi loss ca	lculated	for each	month ((61)m =	(60) + 30	65 × (41)m						
(61)m= 50.63	44.07	46.95	43.65	43.27	40.09	41.43	43.27	43.65	46.95	47.22	50.63		(61)
Total heat req	uired for	water he	eating ca	alculated	for eac	h month	(62)m =	0.85 ×	(45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m= 197.98	172.94	179.94	159.6	154.52	136.09	130.38	145.35	146.95	167.34	178.63	193.34		(62)
Solar DHW input	calculated	using App	endix G or	Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add additiona	l lines if	FGHRS	and/or \	WWHRS	applies	, see Ap	pendix (3)					
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output from w	ater hea	ter											
(64)m= 197.98	172.94	179.94	159.6	154.52	136.09	130.38	145.35	146.95	167.34	178.63	193.34		
							Outp	out from wa	ater heate	r (annual) ₁	12	1963.05	(64)
Heat gains fro	m water	heating.	kWh/m	onth 0.2	5 ' [0.85	× (45)m	+ (61)m	1 + 0.8 >	k [(46)m	+ (57)m	+ (59)m	1	
(65)m= 61.65	53.87	55.96	49.46	47.81	41.94	39.94	44.76	45.26	51.77	55.5	60.11		(65)
include (57)	m in cal	culation	of (65)m	only if c	ylinder i	s in the	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Internal ga	ains (see	Table 5	and <mark>5a</mark>):									
Metabolic gair	s (Table	5), Wat	ts										
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m= 141.8	141.8	141.8	141.8	141.8	141.8	141.8	141.8	141.8	141.8	141.8	141.8		(66)
Lighting gains	(calcula	ted in Ap	pendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5					
(67)m= 46.56	41.35	33.63	25.46	19.03	16.07	17.36	22.57	30.29	38.46	44.89	47.85		(67)
Appliances ga	ins (calc	ulated ir	Append	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5			1	
(68)m= 311.79	315.02	306.87	289.51	267.6	247.01	233.25	230.02	238.17	255.53	277.44	298.03		(68)
Cooking gains	(calcula	ted in A	ppendix	L. eguat	tion L15	or L15a), also se	ee Table	5			1	
(69)m= 51.54	51.54	51.54	51.54	51.54	51.54	51.54	51.54	51.54	51.54	51.54	51.54		(69)
Pumps and fa	ns gains	(Table 5	 Ба)										
(70)m= 3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses e.g. ev	/anoratio	n (nega		es) (Tah	le 5)								
(71)m= -94.53	-94.53	-94.53	-94.53	-94.53	-94.53	-94.53	-94.53	-94.53	-94.53	-94.53	-94.53		(71)
Water heating	gains (1	able 5)										1	
(72)m= 82.87	80.16	75.21	68.7	64.26	58.25	53.68	60.16	62.86	69.58	77.08	80.79		(72)
Total internal	gains =				(66)	m + (67)m	ı + (68)m +	+ (69)m +	(70)m + (7	1)m + (72))m		
(73)m= 543.02	_	517.52	485.48	452.7	423.14	406.1	414.55	433.13	465.37	501.22	528.48		(73)
		ı											

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	Access Factor Table 6d	r Area m²			Flux Table 6a		g_ Table 6b		FF Table 6c	Gains (W)		
Southeast 0.9x	0.77	x	1.85	×	36.79	×	0.76	×	0.7] =	25.1	(77)
Southeast 0.9x	0.77	x	1.69	×	36.79	×	0.76	×	0.7] =	22.92	(77)
Southeast 0.9x	0.77	x	1.9	×	36.79	×	0.76	x	0.7] =	25.77	(77)
Southeast 0.9x	0.77	x	1.85	×	62.67	×	0.76	×	0.7	j =	42.75	(77)
Southeast 0.9x	0.77	x	1.69	×	62.67	x	0.76	x	0.7] =	39.05	(77)
Southeast 0.9x	0.77	x	1.9	×	62.67	×	0.76	×	0.7] =	43.9	(77)
Southeast 0.9x	0.77	x	1.85	×	85.75	×	0.76	×	0.7	=	58.49	(77)
Southeast 0.9x	0.77	x	1.69	×	85.75	×	0.76	x	0.7] =	53.43	(77)
Southeast 0.9x	0.77	x	1.9	×	85.75	×	0.76	x	0.7	=	60.07	(77)
Southeast 0.9x	0.77	x	1.85	×	106.25	×	0.76	x	0.7	=	72.47	(77)
Southeast 0.9x	0.77	x	1.69	×	106.25	×	0.76	x	0.7	=	66.2	(77)
Southeast 0.9x	0.77	x	1.9	×	106.25	×	0.76	x	0.7] =	74.43	(77)
Southeast 0.9x	0.77	x	1.85	×	119.01	×	0.76	x	0.7	=	81.17	(77)
Southeast 0.9x	0.77	x	1.69	×	119.01	×	0.76	×	0.7] =	74.15	(77)
Southeast 0.9x	0.77	x	1.9	×	119.01	×	0.76	x	0.7	=	83.37	(77)
Southeast 0.9x	0.77	X	1.85	×	118.15	×	0.76	×	0.7] =	80.58	(77)
Southeast 0.9x	0.77	x	1.69	×	118.15	×	0.76	×	0.7	-	73.61	(77)
Southeast 0.9x	0.77	x	1.9	х	118.15	×	0.76	×	0.7	=	82.76	(77)
Southeast 0.9x	0.77	x	1.85	×	113.91	×	0.76	×	0.7	=	77.69	(77)
Southeast 0.9x	0.77	x	1.69	×	113,91	×	0.76	×	0.7	=	70.97	(77)
Southeast 0.9x	0.77	x	1.9	×	113.91	×	0.76	×	0.7	=	79.79	(77)
Southeast 0.9x	0,77	x	1.85	×	104.39	×	0.76	×	0.7	=	71.2	(77)
Southeast 0.9x	0.77	x	1.69	x	104.39	x	0.76	x	0.7	=	65.04	(77)
Southeast 0.9x	0.77	x	1.9	×	104.39	×	0.76	×	0.7	=	73.12	(77)
Southeast 0.9x	0.77	x	1.85	x	92.85	×	0.76	x	0.7	=	63.33	(77)
Southeast 0.9x	0.77	x	1.69	x	92.85	x	0.76	x	0.7	=	57.85	(77)
Southeast 0.9x	0.77	x	1.9	×	92.85	×	0.76	x	0.7	=	65.04	(77)
Southeast 0.9x	0.77	x	1.85	×	69.27	×	0.76	x	0.7] =	47.24	(77)
Southeast 0.9x	0.77	x	1.69	×	69.27	×	0.76	×	0.7] =	43.16	(77)
Southeast 0.9x	0.77	X	1.9	×	69.27	×	0.76	×	0.7] =	48.52	(77)
Southeast 0.9x	0.77	x	1.85	×	44.07	×	0.76	x	0.7] =	30.06	(77)
Southeast 0.9x	0.77	X	1.69	×	44.07	×	0.76	x	0.7	=	27.46	(77)
Southeast 0.9x	0.77	x	1.9	x	44.07	x	0.76	x	0.7	=	30.87	(77)
Southeast 0.9x	0.77	x	1.85	x	31.49	×	0.76	x	0.7	=	21.48	(77)
Southeast 0.9x	0.77	x	1.69	×	31.49	×	0.76	x	0.7	=	19.62	(77)
Southeast 0.9x	0.77	x	1.9	×	31.49	×	0.76	x	0.7	=	22.06	(77)
Northwest 0.9x	0.77	x	2.5	×	11.28	×	0.76	x	0.7] =	10.4	(81)
Northwest 0.9x	0.77	x	2.5	×	11.28	×	0.76	x	0.7	=	10.4	(81)
Northwest 0.9x	0.77	x	2.5	×	11.28	×	0.76	x	0.7	=	10.4	(81)

												_
Northwest 0.9x	0.77	X	2.5	X	11.28	x	0.76	x	0.7	=	10.4	(81)
Northwest 0.9x	0.77	×	2.5	×	22.97	x	0.76	x	0.7	=	21.17	(81)
Northwest 0.9x	0.77	×	2.5	×	22.97	x	0.76	×	0.7	=	21.17	(81)
Northwest 0.9x	0.77	x	2.5	x	22.97	x	0.76	x	0.7	=	21.17	(81)
Northwest 0.9x	0.77	×	2.5	×	22.97	×	0.76	×	0.7	=	21.17	(81)
Northwest 0.9x	0.77	×	2.5	x	41.38	x	0.76	x	0.7	=	38.14	(81)
Northwest 0.9x	0.77	×	2.5	x	41.38	x	0.76	x	0.7	=	38.14	(81)
Northwest 0.9x	0.77	×	2.5	×	41.38	x	0.76	x	0.7	=	38.14	(81)
Northwest 0.9x	0.77	×	2.5	x	41.38	x	0.76	x	0.7	=	38.14	(81)
Northwest 0.9x	0.77	×	2.5	×	67.96	×	0.76	x	0.7	=	62.63	(81)
Northwest 0.9x	0.77	×	2.5	×	67.96	x	0.76	x	0.7	=	62.63	(81)
Northwest 0.9x	0.77	×	2.5	x	67.96	x	0.76	x	0.7	=	62.63	(81)
Northwest 0.9x	0.77	×	2.5	×	67.96	×	0.76	×	0.7	=	62.63	(81)
Northwest 0.9x	0.77	×	2.5	x	91.35	x	0.76	x	0.7	=	84.19	(81)
Northwest 0.9x	0.77	×	2.5	×	91.35	x	0.76	x	0.7	=	84.19	(81)
Northwest 0.9x	0.77	×	2.5	×	91.35	x	0.76	x	0.7	=	84.19	(81)
Northwest 0.9x	0.77	×	2.5	x	91.35	x	0.76	x	0.7	=	84.19	(81)
Northwest 0.9x	0.77	×	2.5	X	97.38	Х	0.76	×	0.7	=	89.76	(81)
Northwest 0.9x	0.77	×	2.5	х	97.38	х	0.76	x	0.7	=	89.76	(81)
Northwest 0.9x	0.77	×	2.5	×	97.38	×	0.76	×	0.7	=	89.76	(81)
Northwest 0.9x	0.77	×	2.5	x	97.38	x	0.76	×	0.7	=	89.76	(81)
Northwest 0.9x	0.77	×	2.5	×	91.1	Х	0.76	x	0.7	=	83.97	(81)
Northwest 0.9x	0.77	×	2.5	×	91.1	х	0.76	×	0.7	=	83.97	(81)
Northwest 0.9x	0.77	×	2.5	×	91.1	x	0,76	×	0.7	=	83.97	(81)
Northwest 0.9x	0.77	×	2.5	×	91.1	x	0.76	x	0.7	=	83.97	(81)
Northwest 0.9x	0.77	×	2.5	×	72.63	×	0.76	x	0.7	=	66.94	(81)
Northwest 0.9x	0.77	×	2.5	x	72.63	x	0.76	x	0.7	=	66.94	(81)
Northwest 0.9x	0.77	×	2.5	×	72.63	×	0.76	×	0.7	=	66.94	(81)
Northwest 0.9x	0.77	×	2.5	×	72.63	x	0.76	x	0.7	=	66.94	(81)
Northwest 0.9x	0.77	×	2.5	x	50.42	x	0.76	x	0.7	=	46.47	(81)
Northwest 0.9x	0.77	×	2.5	×	50.42	×	0.76	×	0.7	=	46.47	(81)
Northwest 0.9x	0.77	×	2.5	x	50.42	x	0.76	x	0.7	=	46.47	(81)
Northwest 0.9x	0.77	×	2.5	×	50.42	x	0.76	x	0.7	=	46.47	(81)
Northwest 0.9x	0.77	×	2.5	×	28.07	x	0.76	x	0.7	=	25.87	(81)
Northwest 0.9x	0.77	×	2.5	x	28.07	x	0.76	x	0.7	=	25.87	(81)
Northwest 0.9x	0.77	×	2.5	×	28.07	x	0.76	×	0.7	=	25.87	(81)
Northwest 0.9x	0.77	×	2.5	×	28.07	×	0.76	x	0.7	=	25.87	(81)
Northwest 0.9x	0.77	×	2.5	×	14.2	×	0.76	x	0.7	=	13.09	(81)
Northwest 0.9x	0.77	×	2.5	×	14.2	×	0.76	x	0.7	=	13.09	(81)
Northwest 0.9x	0.77	×	2.5	×	14.2	×	0.76	x	0.7	=	13.09	(81)
Northwest 0.9x	0.77	x	2.5	x	14.2	x	0.76	x	0.7	=	13.09	(81)

Northw	est _{0.9x}	0.77	x	2.	5	x .	9.21	x	0.76	x [0.7	=	8.49	(81)
Northw	est 0.9x	0.77	x	2.	5	x	9.21	x 🗆	0.76	x	0.7	=	8.49	(81)
Northw	est 0.9x	0.77	×	2.	5	x .	9.21	×	0.76	×	0.7	=	8.49	(81)
Northw	est 0.9x	0.77	x	2.	5	x =	9.21	×	0.76	i x F	0.7	=	8.49	(81)
								. –						_
Solar	gains in	watts, ca	alculated	for eac	h month			(83)m = S	ium(74)m .	(82)m				
(83)m=	115.39	210.37	324.54	463.63	575.46	595.99	564.32	477.12	372.11	242.4	140.73	97.12		(83)
Total g	ains – i	nternal a	nd solar	(84)m =	(73)m	+ (83)m	, watts						•	
(84)m=	658.41	748.72	842.06	949.12	1028.16	1019.13	970.42	891.68	805.24	707.77	641.94	625.6		(84)
7. Me	an inter	nal temr	erature	(heating	season)								
7. Mean internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85)										(85)				
-		_		living are		_		, , , , ,	. (0)					
Otilio	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	l	
(86)m=	0.99	0.98	0.98	0.96	0.93	0.88	0.81	0.84	0.92	0.97	0.98	0.99		(86)
										0.07	0.00	0.00	l	()
				living are									l	
(87)m=	16.82	17.06	17.58	18.35	19.16	19.93	20.39	20.31	19.67	18.66	17.64	16.82		(87)
Temp	erature	during h	eating p	eriods ir	rest of	dwelling	from Ta	ble 9, T	h2 (°C)					
(88)m=	18.06	18.07	18.07	18.09	18.09	18.11	18.11	18.12	18.11	18.09	18.09	18.08		(88)
Utilis	ation fac	tor for g	ains for	rest of d	welling.	h2,m (se	ee Table	9a)						
(89)m=	0.98	0.98	0.97	0.94	0.88	0.73	0.47	0.54	0.83	0.95	0.98	0.99		(89)
Mear	interna	l temper	ature in	the rest	of dwalli	ng T2 (f	ollow etc	ne 3 to	7 in Tabl	a 9c)				
(90)m=	13.22	13.56	14.3	15.4	16.53	17.54	18.01	17.96	17.25	15.85	14.39	13.21	1	(90)
(3-4)					-						g area + (4		0.26	(91)
Mean internal temperature (for the whole dwelling) = fLA × T1 + (1 – fLA) × T2														
											45.05	44.40		(02)
(92)m=	14.18	14.49	15.17	16.18	17.23	18.18	18.64	18.59	17.89	16.59	15.25	14.16		(92)
(93)m=	14.18	14.49	ne mear 15.17	16.18	17.23	18.18	18.64	18.59	ere appro	16.59	15.25	14.16	1	(93)
					17.23	10.10	10.04	10.59	17.09	10.59	15.25	14.10		(33)
8. Space heating requirement Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate														
				using Ta		icu at st	ер п оп	Table 3	b, 50 tria	t 11,111–(r Ojiii aii	u ie-caic	Julate	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilis	ation fac	tor for g	ains, hm	1:			•							
(94)m=	0.97	0.96	0.94	0.91	0.85	0.74	0.57	0.62	0.82	0.92	0.96	0.97		(94)
Usefu	ıl gains,	hmGm ,	W = (94	4)m x (8	4)m									
(95)m=	638.95	719.76	795.26	864.19	873.07	752.31	553.03	554.55	658.96	653.32	616.63	608.88		(95)
Mont	hly aver	age exte	rnal tem	perature	from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	for mea	an intern	al tempe	erature,	Lm , W :	=[(39)m	x [(93)m	– (96)m]				
(97)m=				2712.66				790.86	1388.18			3764.11		(97)
Spac						Wh/mon	th = 0.02	24 x [(97)m – (95		_			
(98)m=	2355.88	1987.62	1869.54	1330.9	875.2	0	0	0	0	1167.25	1753.73	2347.49		_
Total per year (kWh/year) = Sum(98) ₁₅₄₁₂ =									8)15,912 =	13687.59	(98)			
Spac	e heatin	g require	ement in	kWh/m²	/year								182.26	(99)
-		-												_

9a. Energy requirements – Indi	ividual heating s	systems i	ncludin <u>a</u>	micro-C	CHP)					
Space heating:										/0041
Fraction of space heat from se	1	(201)								
Fraction of space heat from main system(s) (202) = 1 - (201) = Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] =										(202)
Fraction of total heating from	•			(204) - (2	02) * [1 =	(203)] =			1	(204)
Efficiency of main space heati			0.1						90.3	(206)
Efficiency of secondary/supple	<u> </u>								0 kWh/ye	(208)
	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec									
Space heating requirement (c 2355.88 1987.62 1869.54		9)	0	0	0	1167.25	1753.73	2347.49	1	
(211)m = {[(98)m x (204)] } x 1						1101.20	1700.70	2011110	J	(211)
2608.94 2201.13 2070.36		0	0	0	0	1292.63	1942.11	2599.66	1	(211)
				Tota	l (kWh/yea	ar) =Sum(2	211),5,1012	=	15157.91	(211)
Space heating fuel (secondary	y), kWh/month									_
= {[(98)m x (201)]} x 100 + (20	8)								,	
(215)m= 0 0 0	0 0	0	0	0	0	0	0	0		_
				Tota	l (kWh/yea	ar) =Sum(2	215),5,1013	Ē	0	(215)
Water heating	ulated above)									
Output from water heater (calc 197.98 172.94 179.94	159.6 154.52	136.09	130.38	145.35	146.95	167.34	178.63	193.34		
Efficiency of water heater									81	(216)
(217)m= 89.5 89.48 89.4	89.2 88.77	81	81	81	81	89.02	89.35	89.52		(217)
Fuel for water heating, kWh/mo										
(219) m = (64) m x $100 \div (217)$ (219)m = 221.2 193.28 201.28	m 178.91 174.06	168,01	160.97	179.44	181.42	187.98	199.91	215.97	1	
(218)117 221.2 100.20 201.20	170.51 174.00	100.01	100.57		I = Sum(2		100.01	210.57	2262.45	(219)
Annual totals						kWh/yea				
Space heating fuel used, main	system 1						Wh/year		15157.91	
Water heating fuel used									2262.45	╕
Electricity for pumps, fans and	electric keep-ho	ot								_
central heating pump:								30	1	(230c
]]	(230e
boiler with a fan-assisted flue 45 Total electricity for the above, kWh/year sum of (230a)(230g) =									_	
Total electricity for the above, k	(Wh/year			sum	or (230a).	(230g) =			75	(231)
Electricity for lighting									328.89	(232)
10a. Fuel costs - individual he	ating systems:									
		Fu kW	el /h/year			Fuel P (Table			Fuel Cost £/year	t
Space heating - main system 1		(21	1) x			3.4	8	x 0.01 =	527.5	(240)
Space heating - main system 2	2	(213	3) x					x 0.01 =	0	(241)
Space heating - secondary		(215	5) x			12	19	x 0.01 =	n	(242)
Space heating - secondary Water heating cost (other fuel)		(215 (215				13.		x 0.01 = x 0.01 =	0 78.73	(242)

Pumps, fans and electric keep-hot	(231)	13.19 × 0.01 =	9.89 (249)
(if off-peak tariff, list each of (230a) to (230g) sep			
Energy for lighting	(232)	13.19 × 0.01 =	45.56
Additional standing charges (Table 12)			120 (251)
Appendix Q items: repeat lines (253) and (254) a	s needed		
	7) + (250)(254) =		779.5 (255)
11a. SAP rating - individual heating systems			
Energy cost deflator (Table 12)			0.42 (256)
Energy cost factor (ECF) [(255) x (2	56)] + [(4) + 45.0] =		2.73 (257)
SAP rating (Section 12)			61.97 (258)
12a. CO2 emissions – Individual heating system	ns including micro-CHP		
	Energy	Emission factor	Emissions
	kWh/year	kg CO2/kWh	kg CO2/year
Space heating (main system 1)	(211) x	0.216	3274.11 (261)
Space heating (secondary)	(215) x	0.519	0 (263)
Water heating	(219) x	0.216	488.69 (264)
Space and water heating	(261) + (262) + (263) + (264)	=	3762.8 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519	38.93 (267)
Electricity for lighting	(232) x	0.519 =	170.7 (268)
Total CO2, kg/year	1	sum of (265)(271) =	3972.42 (272)
CO2 emissions per m²		(272) + (4) =	52.9 (273)
El rating (section 14)			56 (274)
13a. Primary Energy			
Total Times and Signature	_		
	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.22	18492.65 (261)
Space heating (secondary)	(215) x	3.07 =	0 (263)
Energy for water heating	(219) x	1.22	2760.19 (264)
Space and water heating	(261) + (262) + (263) + (264)	=	21252.83 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	3.07	230.25 (267)
Electricity for lighting	(232) x	0 =	1009.7 (268)
'Total Primary Energy		sum of (265)(271) =	22492.79 (272)
Primary energy kWh/m²/year		(272) ÷ (4) =	299.5 (273)
			. ,