PCC Consultants

The Annexe, Meadow Lane, South Hykeham, Lincoln LN6 9PF E. info@pcoleconsult.co.uk www.pcoleconsult.co.uk T. 01522 695540

Structural Engineer's Calculations and Report

18a Calthorpe St London WC1X 0JS

PCC Document Management		
Job Number: 9428		
Date of Issue:	July 2016	
Author:	Peter Cole	

Project No	9428
Sheet No	2
Date	7/16
Prepared	PJC

Synopsis

I am instructed by Ciaran Tuohy in connection with the proposed alterations to 18a Calthorpe St, London WC1X 0JS. The work involves the removal of or opening-up of loadbearing walls at ground first floor level. I visited the property on 12 April 2016 and undertook measurements of the interior of the property as well as a series of photographs of the internal area.

The calculations are prepared in accordance with the following design codes:

- Manual for the Design of Building Structures to Eurocode 1 and basis of structural design.
- Manual for the design of steelwork building structures to Eurocode 3.
- Manual for the design of timber building structures to Eurocode 5.
- Manual for the design of of plain masonry in building structures to Eurocode 6.
- Tata Interactive Blue Book

P J Cole BSc CEng FIStructE MICE PCC Consultants Ltd Chartered Structural Engineers

Signed:

On behalf of PCC Consultants Ltd

Date: 19 July 2016

Project No	9428
Sheet No	3
Date	7/16
Prepared	PJC

General Notes

- The span of the floor joists has been checked by non-intrusive methods and it will be the responsibility of the contractor, when undertaking the proposed alterations, to check that the assumed span is correct and that the ceiling joists and roof structure span in the form indicated and onto the walls that are to remain unaltered.
- 2) Walls to be removed and that are not to be replaced with a beam (marked with an indication of reference to note 2) and marked with red cross hatching on the plans, should be checked that they do not carry any load from ceiling structure, roof structure or isolated posts. The plasterwork should be stripped from the studwork and locally from the ceiling to clearly show if any structure is supported. If any members are supported by the studwork walls, PCC Consultants are to be informed immediately so that appropriate provision may be made.
- 3) It is the main contractors responsibility to ensure that any beams or other structural members supplied are of the correct length and suitable allowance shall be made for bearing onto padstones and the like. The contractor shall take responsibility to ensure that the dimensions and levels are correct and permit compliance with all necessary aspects of the building regulations.
- 4) The main contractor will be responsible for all temporary works and these works should ensure that remaining structure is fully supported without damage or distortion following demolition work. Where necessary due to the scale of the works, a specialist subcontractor should be appointed to design and install temporary works to adequately support the applied loads.
- 5) Temporary works shall not be removed until supporting beams, columns or other structure are properly installed, fully bolted or welded and pinned-up by dry packing or shimming and that any mortar packing or concrete is sufficiently mature.
- 6) Refer to Architects drawings & specifications for all waterproofing, DPC, DPM, tanking & insulation details/requirements and any fireproofing requirements.
- 7) Unless noted otherwise use minimum 7 N/mm2 blockwork set in M4 mortar above dpc level.
- 8) All structural timber shall be preservative treated and stress graded to BS 5268 and either C16 or C24 timber as noted on the drawings.
- 9) All fixings i.e. truss clips, framing anchors, etc. shall be galvanised/sheradized.
- 10) All structural steel work is to be grade S275 to BS EN 10025, unless noted otherwise, fabricated and erected in accordance with BS 5950:2001. All steelwork is to be shot blast cleaned to SA 2.5 and primed with total DFT=75 microns. Steelwork to have all scuffs repaired on site and all built in steelwork to be painted with two coats bituminous paint. Exposed steelwork treated with oil based undercoat and gloss, colour to be agreed. Connections to be designed by fabricator to the loads indicated on the drawings.
- 11) Bolts to all structural connections to be grade 8.8 unless noted otherwise.
- 12) Any exposed steelwork shall be hot dip galvanised to BS EN ISO 1461:1999.

Project No	9428
Sheet No	4
Date	7/16
Prepared	PJC

<u>Unit Loads</u>

ROOF CONSTRUCTION		Dead	Live
		kN/m2	kN/m2
Slates/tiles		0.65	
Rafters, purlins, ceiling joists		0.15	
Ceiling		0.20	
Snow	BS 6399 Part 3		0.60
TOTAL		1.00	0.60
FLOOR CONSTRUCTION		Dead	Live
		kN/m2	kN/m2
Allowance for partitions		0.50	
Boarding and joists		0.35	
Plastered ceiling		0.15	
Live Load, Domestic	BS 6399 Part 3		1.50
TOTAL		1.00	1.50

Masonry

- Allow for 4.6 kN/m2 to include for 9 inch masonry and plaster on 2 faces.
- Allow for 4.0 kN/m2 to include for block and brick cavity wall, plastered.
- Allow for 1.0 kN/m2 for studwork partitions.

	Project 18a Calthorpe St., W1CX 0JS				Job no. 9428	
PCC Consultants Ltd	Calcs for	Bea	im 2		Start page no./R	evision 8
The Annexe, Holly House 11 Meadow Lane South Hykeham, Lincoln. LN6 9PF	Calcs by PJC	Calcs date 19-Jul-16	Checked by	Checked date	Approved by	Approved date

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

Support conditions Support A

Support B

Applied loading Beam loads Vertically restrained Rotationally free Vertically restrained Rotationally free

Permanent self weight of beam × 1 Permanent full UDL 13.8 kN/m Variable full UDL 16.6 kN/m Permanent point load 19.8 kN at 2800 mm Variable point load 6.6 kN at 2800 mm

	Support B	Permanent × 1.35
		Variable × 1.50
	Span 1	Permanent × 1.35
		Variable × 1.50
Load combination 1	Support A	Permanent × 1.35
Load combinations		

	Project 18a Calthorpe St., W1CX 0JS				9428	
PCC Consultants Ltd	Calcs for	Be	am 2	Start page no./Revision 9		Revision 9
11 Meadow Lane South Hykeham, Lincoln. LN6 9PF	Calcs by PJC	Calcs date 19-Jul-16	Checked by	Checked date	Approved by	Approved dat
				Variab	ole × 1.50	
Analysis results			0	M	0 kNm	
Maximum moment		M _{max} = 69.	2 KNM		103 5 KN	
Maximum shear		$V_{max} = 77.9$	9 KN	V min =	-103.5 KN	
Deflection		δ _{max} = 5.7	mm	δmin =	U mm	
Maximum reaction at support A		$R_{A_{max}} = 7$	7.9 kN	RA_min	= 77.9 kN	
Unfactored permanent load rea	action at support	A RA_Permanen	t = 26.2 kN			
Unfactored variable load reacti	on at support A	RA_Variable =	= 28.4 kN			
Maximum reaction at support E	3	R _{B_max} = 1	03.5 kN	R _{B_min}	= 103.5 kN	
Infactored permanent load rea	action at support	B RB_Permanen	t = 40 kN			
Unfactored variable load reacti	on at support B	RB_Variable =	33 kN			
Section details			00-05 (D04 4)			
Section type		UB 203x1	33x25 (BS4-1)			
Steel grade		S275				
EN 10025-2:2004 - Hot rolled	products of str	uctural steels				
Nominal thickness of element		t = max(t _f ,	t _w) = 7.8 mm			
Nominal yield strength		fy = 275 N	/mm²			
Nominal ultimate tensile streng	jth	fu = 410 N	/mm²			
Modulus of elasticity		E = 21000	0 N/mm ²			
	-7.8					
	★ ★					
	3.2		5.7			
	- 20					
	7.8					
	¥ *					
	1					
		◄ 133.	2			
Dartial factors - Castion 6.4						
		×××× = 1 00				
Resistance of cross-sections		γM0 - 1.00				
Resistance of members to ins	tability	γm1 = 1.00				
Resistance of tensile member	s to fracture	γ _{M2} = 1.10				
Lateral restraint						

Effective length factors

Effective length factor in major axis Effective length factor in minor axis Effective length factor for torsion Span 1 has full lateral restraint

K_y = 1.000 K_z = 1.000 K_{LT.A} = 1.000 K_{LT.B} = 1.000

		Broject				Job no.	
			18a Calthorpe	St., W1CX 0J	S	9	428
	RCC Consultants Ltd				Start page no./Revision		
	The Annexe, Holly House	Be	Beam 2			10	
	11 Meadow Lane	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	South Hykeham, Lincoln. LN6 9PF	PJC	19-Jul-16	6			
	Classification of cross section	ons - Section 5.	5				
			ε = √[235	$N/mm^2 / f_y] = 0.$	92		
	Internal compression parts s	subject to bend	ing - Table 5.2 (sheet 1 of 3)			
	Width of section		c = d = 17	2.4 mm			
			c / t _w = 32.	7 × ε <= 72 × ε	Class 1		
	Outstand flanges - Table 5.2	(sheet 2 of 3)					
	Width of section		c = (b - t _w	- 2 × r) / 2 = 56	.1 mm		
			c / t _f = 7.8	3 × e => 3 ×	Class 1		
						Sec	tion is class 1
	Check shear - Section 6.2.6						
	Height of web		h _w = h - 2	< t _f = 187.6 mm	n		
	Shear area factor		η = 1.000				
			h _w / t _w < 72	2×ε/η			
					Shear buckling	resistance o	an be ignored
	Design shear force		V _{Ed} = max	(abs(V _{max}), abs	s(V _{min})) = 103.5 kN		
	Shear area - cl 6.2.6(3)		$A_v = max(a)$	$A - 2 \times b \times t_f + 0$	$(t_w + 2 \times r) \times t_f, \eta \times$	$h_w \times t_w$) = 12	82 mm²
	Design shear resistance - cl 6.	.2.6(2)	$V_{c,Rd} = V_{pl}$	$Rd = A_v \times (f_y / \sqrt{v})$	[3]) / γ _{M0} = 203.5 k	N	
			PAS	SS - Design sl	hear resistance e	xceeds desi	gn shear force
	Combined bending and shea	ar - Section 6.2.	8				
	Reduction factor - cl.6.2.8(3)		$\rho_v = [(2 \times V)$	/Ed / Vpl,Rd) - 1] ²	$^{2} = 0$		
	Check bending moment maj	or (y-y) axis - S	ection 6.2.5				
	Design bending moment		M _{Ed} = max	(abs(Ms1_max), a	$abs(M_{s1_{min}})) = 69.$	2 kNm	
	Design bending resistance mo	oment - eq 6.13	$M_{c,Rd} = M_{p}$	$_{,Rd} = [(W_{pl.y} - t_w)]$	\times h ² / 4) + (t _w \times h ²	/ 4) × (1 - ρ _v)] × fy / умо =
			70.9 kNm				
		PASS	- Design bend	ing resistance	e moment exceed	ls design bei	nding moment
	Check vertical deflection - S	ection 7.2.1					
	Consider deflection due to var	iable loads					
	Limiting deflection		$\delta_{lim} = L_{s1} /$	360 = 9.2 mm			
	Maximum deflection span 1		$\delta = \max(a$	os(δ _{max}), abs(δ	_{min})) = 5.66 mm		
			PAS	SS - Maximum	deflection does	not exceed o	deflection limit

PROJECT NO. 9428 PCC Consultants The Annex, Holly House, Meadow Lane, South Hykeham, Lincoln. LN6 9PF T. 01522 695540 E. info@pcoleconsult.co.uk www.pcoleconsult.co.uk SHEET NO. 12 DATE 7/16 CHECKED PREPARED PROJECT TITLE 18a CALTHORPE ST., WCIX OJS. PJC ASSUME ZZS WALL IN BASEMENT TRY ZZS X ZZS X ISO DEEP PADSTONE . CAPACITY - 225x225x 5.01 x10 2.5 101 km. -USE 300 x 225 PADSTONE.