

Document History and Status

Revision	Date	Purpose/Status	File Ref	Author	Check	Review
D1	May 2019	Comment	EMBgk12985- 37-140519- The Hall School-D1.doc	EMB	GK	GK
F1	July 2019	For planning	EMBgk12985- 37-220719- The Hall School-F1.doc	EMB	GK	GK

This document has been prepared in accordance with the scope of Campbell Reith Hill LLP's (CampbellReith) appointment with its client and is subject to the terms of the appointment. It is addressed to and for the sole use and reliance of CampbellReith's client. CampbellReith accepts no liability for any use of this document other than by its client and only for the purposes, stated in the document, for which it was prepared and provided. No person other than the client may copy (in whole or in part) use or rely on the contents of this document, without the prior written permission of Campbell Reith Hill LLP. Any advice, opinions, or recommendations within this document should be read and relied upon only in the context of the document as a whole. The contents of this document are not to be construed as providing legal, business or tax advice or opinion.

© Campbell Reith Hill LLP 2015

Document Details

Last saved	23/07/2019 09:27
Path	EMBgk12985-37-220719-The Hall School-F1.doc
Author	E M Brown, BSc MSc CGeol FGS
Project Partner	E M Brown, BSc MSc CGeol FGS
Project Number	12985-37
Project Name	The Hall School, 23 Crossfield Street London
Planning Reference	2019/1325/P

Structural ◆ Civil ◆ Environmental ◆ Geotechnical ◆ Transportation

Date: July 2019

i

Contents

1.0	Non-technical summary	. 1
2.0	Introduction	. 3
3.0	Basement Impact Assessment Audit Check List	. 5
4.0	Discussion	. 8
5.0	Conclusions	. 11

Date: July 2019

Status: F1

Appendix

Appendix 1: Residents' Consultation Comments

Appendix 2: Audit Query Tracker Appendix 3: Supplementary Supporting Documents

1.0 NON-TECHNICAL SUMMARY

- 1.1. CampbellReith was instructed by London Borough of Camden (LBC) to carry out an audit on the Basement Impact Assessment submitted as part of the Planning Submission documentation for The Hall School, 23 Crossfield Street NW3 4NT (planning reference 2019/1325/P). The basement is considered to fall within Category C as defined by the Terms of Reference.
- 1.2. The Audit reviewed the Basement Impact Assessment for potential impact on land stability and local ground and surface water conditions arising from basement development in accordance with LBC's policies and technical procedures.
- 1.3. CampbellReith was able to access LBC's Planning Portal and gain access to the latest revision of submitted documentation and reviewed it against an agreed audit check list.
- 1.4. The BIA has been prepared by Geotechnical and Environmental Associates (GEA), with supporting documents by Elliott Wood Partnership, using individuals who possess suitable qualifications.
- 1.5. The site is currently occupied by The Hall School, a partly four storey and partly three storey building, including a lower ground level, with a single storey section extending across the south eastern corner of the site. It is proposed that part of the school will be demolished and the current basement area extended using utilising contiguous bored pile walls and localised underpinning. The 2019 scheme shows a reduction on basement area and depth compared to a previously audited and approved scheme (planning reference 2016/6319/P).
- 1.6. The BIA identified the site is underlain by Made Ground over London Clay. The ground water table was encountered during the site investigation in the Made Ground.
- 1.7. The preliminary construction sequence, including sketches to identify methodologies to be utilised and indicative temporary works required to stabilise the excavation during the basement works, have been presented.
- 1.8. A Ground Movement Analysis has been undertaken concluding that damage to neighbouring properties should not exceed Burland Category 0. Damage to retained school buildings is predicted not to exceed Burland Category 1. Queries with respect to the alterations to the existing retaining walls have been resolved.
- 1.9. An outline monitoring strategy has been proposed for the structures within the development's zone of influence. The trigger values support the predicted movement and the damage permitted by Camden's guidance.

Status: F1

1.10. It is accepted that the development site will not impact upon slope stability.

Date: July 2019

- 1.11. It is accepted that the development will not impact on the wider hydrogeology or hydrology of the area and is at low risk of flooding. It is understood that the drainage strategy for the previously consented scheme was accepted by Thames Water and that the scheme is not adversely affected by the proposed amendments.
- 1.12. It is confirmed that the queries described in Section 4 and summarised in Appendix 2 have been addressed and the BIA complies with CPG: Basements.

Status: F1

Date: July 2019

2.0 INTRODUCTION

- 2.1. CampbellReith was instructed by London Borough of Camden (LBC) on 29 January 2019 to comment on pre-application discussions and audit the BIA which was uploaded to Camden's website on 3 April 2019. The BIA relates to a Category C basement at The Hall School, 23 Crossfield Street, NW3 4NT Camden Reference 2019/1325/P.
- 2.2. The Audit was carried out in accordance with the Terms of Reference set by LBC. As noted previously, the current scheme shows a reduction in basement area and depth compared to a previously audited and approved scheme (planning reference 2016/6319/P).
- 2.3. A BIA is required for all planning applications with basements in Camden in general accordance with policies and technical procedures contained within
 - Guidance for Subterranean Development (GSD). Issue 01. November 2010. Ove Arup & Partners.
 - Camden Planning Guidance (CPG): Basements.
 - Camden Development Policy (DP) 27: Basements and Lightwells.
 - Camden Development Policy (DP) 23: Water.
 - Local Plan adopted June 2017.

2.4. The BIA should demonstrate that schemes:

- a) maintain the structural stability of the building and neighbouring properties;
- avoid adversely affecting drainage and run off or causing other damage to the water environment;
- avoid cumulative impacts upon structural stability or the water environment in the local area, and;

evaluate the impacts of the proposed basement considering the issues of hydrology, hydrogeology and land stability via the process described by the GSD and to make recommendations for the detailed design.

2.5. LBC's Audit Instruction described the planning proposal as "Variation of Condition 2 (approved plans) and removal of condition 4 (staircase details) of planning permission dated 05/07/2018 ref no 2016/6319/P for demolition of the Centenary and Wathan Hall buildings erection of new four storey building, two storey rear extension, enlarged basement; changes to include reduction of basement area and depth by one floor, reduction in scale of the extension to

Date: July 2019

3

replace Wathen Hall, removal of external staircase and terrace, new louvres to windows on front elevation."

- 2.6. The Audit instruction confirmed that 23 Crossfield Street is nor listed, not is it a neighbour to a listed building.
- 2.7. CampbellReith accessed LBC's Planning Portal on 2 May 2019 and gained access to the following additional documents for audit purposes:
 - Structural and Civil Engineering Report and Basement Impact Assessment (ref 2190008, rev P2) dated March 2019 by Elliott Wood Partnership Ltd (EWP), containing

Desk Study and Basement Impact Assessment (ref J15302, issue 5, Final revised) dated 27 February 2019 by Geotechnical and Environmental Associates (GEA).

Flood Risk Assessment (ref 2190008, rev P1) dated March 2019 by EWP.

Structural Calculations Basement (ref 2190008, rev P1) dated March 2019 by EWP.

Movement Monitoring Report (ref 2190008, Preliminary rev P1) dated March 2019 by EWP.

- Planning Application Drawings consisting of existing and proposed sections and plans, prepared by NORR Consultants Ltd, dated March 2019.
- Arboricultural Assessment and Method Statement (ref 15204-AA2-AS) by Barrell Tree Consultancy, dated February 2019.
- 2.8. Subsequent to the issue of the initial audit report, CampbellReith was provided with the information listed below. This additional/revised information forms the basis of this final audit report.
 - Letter, reference 2190008 let01, dated 7 June 2019, EWP to London Borough of Camden.
 - Structural and Civil Engineering Report and Basement Impact Assessment (ref 2190008, rev P3) dated June 2019 by EWP.
 - Movement Monitoring Report (ref 2190008, Preliminary rev P2) dated June 2019 by EWP.
 - Email, dated 5 June 2019, GEA to EWP, concerning movement monitoring.

Date: July 2019

3.0 BASEMENT IMPACT ASSESSMENT AUDIT CHECK LIST

Item	Yes/No/NA	Comment
Are BIA Author(s) credentials satisfactory?	Yes	See GEA BIA Section 1.3.2.
Is data required by CI.233 of the GSD presented?	Yes	With the exception of a works programme.
Does the description of the proposed development include all aspects of temporary and permanent works which might impact upon geology, hydrogeology and hydrology?	Yes	
Are suitable plan/maps included?	Yes	See GEA report Section 2.
Do the plans/maps show the whole of the relevant area of study and do they show it in sufficient detail?	Yes	
Land Stability Screening: Have appropriate data sources been consulted? Is justification provided for 'No' answers?	Yes	See GEA report Section 3.1.2.
Hydrogeology Screening: Have appropriate data sources been consulted? Is justification provided for 'No' answers?	Yes	See GEA report Section 3.1.1 and 3.1.3.
Hydrology Screening: Have appropriate data sources been consulted? Is justification provided for 'No' answers?	Yes	See GEA report Section 3.1.1 and 3.1.3.
Is a conceptual model presented?	Yes	See GEA report Sections 5 and 7.
Land Stability Scoping Provided? Is scoping consistent with screening outcome?	Yes	See GEA report Section 4.

Item	Yes/No/NA	Comment
Hydrogeology Scoping Provided? Is scoping consistent with screening outcome?	Yes	See GEA report Section 4.
Hydrology Scoping Provided? Is scoping consistent with screening outcome?	Yes	See GEA report Section 4.
Is factual ground investigation data provided?	Yes	See GEA report appendix.
Is monitoring data presented?	Yes	See GEA report Section 5.3.
Is the ground investigation informed by a desk study?	Yes	Contained in GEA report.
Has a site walkover been undertaken?	Yes	See GEA report Section 2.1
Is the presence/absence of adjacent or nearby basements confirmed?	Yes	
Is a geotechnical interpretation presented?	Yes	See GEA report Section 5, 7 & 8.
Does the geotechnical interpretation include information on retaining wall design?	Yes	See Audit Paragraph 4.5.
Are reports on other investigations required by screening and scoping presented?	Yes	FRA/Drainage Assessment. Arboricultural Assessment.
Are the baseline conditions described, based on the GSD?	Yes	Included within BIA.
Do the baseline conditions consider adjacent or nearby basements?	Yes	See EWP report Section 8.12
Is an Impact Assessment provided?	Yes	

Item	Yes/No/NA	Comment
Are estimates of ground movement and structural impact presented	Yes	See GEA report Part 3 – queries raised by the initial audit have been closed out.
Is the Impact Assessment appropriate to the matters identified by screen and scoping?	Yes	
Has the need for mitigation been considered and are appropriate mitigation methods incorporated in the scheme?	Yes	Ground monitoring, temporary propping, temporary dewatering and green roofs are proposed.
Has the need for monitoring during construction been considered?	Yes	See EWP BIA Sections 9.8 – 9.10 and Appendix E. Queries raised by the initial audit have been closed out.
Have the residual (after mitigation) impacts been clearly identified?	Yes	Queries raised by the initial audit have been closed out.
Has the scheme demonstrated that the structural stability of the building and neighbouring properties and infrastructure will be maintained?	Yes	Queries raised by the initial audit have been closed out.
Has the scheme avoided adversely affecting drainage and run-off or causing other damage to the water environment?	Yes	FRA / Drainage Assessment.
Has the scheme avoided cumulative impacts upon structural stability or the water environment in the local area?	Yes	Queries raised by the initial audit have been closed out.
Does report state that damage to surrounding buildings will be no worse than Burland Category 1?	Yes	Queries raised by the initial audit have been closed out.
Are non-technical summaries provided?	Yes	

Date: July 2019

8

4.0 DISCUSSION

- 4.1. The Basement Impact Assessment (BIA) has been produced by structural engineering consultants, Elliott Wood Partnership (EWP), with support from Geotechnical and Environmental Associates (GEA). The authors possess relevant qualifications.
- 4.2. The overarching BIA prepared by EWP contains references superseded guidance. However, the screening, scoping and impact assessment prepared by GEA refers to current guidance and policy documents.
- 4.3. The proposal includes the demolition of part of the existing school building, the eastern part of which overlies a basement c. 3.80m deep, while the remainder does not. It is proposed to laterally extend the existing basement to the west and provide a new building over the enlarged basement area. The new basement is to be formed inside a contiguous piled wall, with pile toe depth stated as being 8.00m below ground level (bgl). The redevelopment will result in the existing basement retaining walls acting as cantilevers where they were previously propped.
- 4.4. The BIA provides outline design information of the retaining wall (i.e. pile length, diameter and spacing) and describes a typical bottom up methodology for the construction. The proposal identifies the need for a temporary propping system and outline information is provided. The form of the new basement and the sequence of construction described by EWP have been updated in the BIA.
- 4.5. The relevant map extracts from the Arup GSD, Camden SFRA and Environment Agency (EA) referenced in the screening process are included and it is accepted that the outcomes of the screening process have been correctly identified.
- 4.6. A ground investigation has been carried out by GEA through the installation of 4 no. boreholes and the investigation of surrounding party wall foundations by 5 no. trial pits. These have revealed the site stratigraphy to consist of 1.0m to 3.8m of Made Ground underlain by London Clay to depths exceeding 15m. The ground model including the strength profile is considered reasonable based on the ground investigation data. Although groundwater was monitored at shallow depth, the water encountered is considered to be perched water within the more permeable sections of the Made Ground.
- 4.7. Although Section 8.1 of the BIA anticipates that the impacts of groundwater will be extremely low to negligible, an allowance for dewatering will be made for perched water in the excavation and construction of the basement through the use of sumps with intermittent pumping. It is stated that the basement has been designed to resist buoyancy and heave.

9

- 4.8. A Ground Movement Assessment has been carried out by GEA to determine the effect of the piling and excavation on the adjoining/adjacent properties. The GMA predicts Burland Category 0 damage for surrounding properties and up to Category 1 damage to the retained school buildings. It is noted that the surrounding properties are a minimum 12m from the proposed basement excavation and therefore outside the zone of significant influence of the new basement.
- 4.9. In the initial audit it was noted that the GMA did not consider the impact of possible movement of the existing retaining walls resulting from the removal of the permanent prop. It has since been confirmed that the scheme has been revised so that the retaining wall is propped in the temporary and permanent cases. The GMA is therefore accepted.
- 4.10. Movement and crack width monitoring are proposed together with a traffic lights system of trigger levels and contingency measures to be implemented if movements exceed the predictions, in accordance with best industry practice. Queries were raised in the initial audit as described below:
 - In their previous BIA, EWP (para 9.10) referred to stopping work once any cracking
 >2mm is observed in adjoining structures. This exceeds Category 1 damage as defined by Burland. The revised BIA sets the trigger at 1mm which is accepted.
 - EWP's initial Monitoring Report set amber trigger levels for movement to adjacent structures at 13mm horizontal and 7mm vertical. These have been revised to 9mm and 6mm which GEA have confirmed will limit damage to no worse than Burland category 1.
- 4.11. The BIA had identified the potential for heave of the underlying clay soils to occur and suitable mitigation is proposed. It is proposed that the new basement slab is suspended and it is accepted that the installation of piles will limit the heave that will be realised.
- 4.12. The anticipated construction programme is referred to but has not been submitted. However, it is noted in the CMP that the duration of the works is anticipated to be 68 weeks.
- 4.13. It is accepted that there are no slope stability concerns regarding the proposed development and it is not in an area prone to flooding.
- 4.14. A Drainage and SUDS Assessment has been completed and green roofs are proposed. It is understood the drainage strategy for the consented scheme was accepted by Thames Water.
- 4.15. Reference to the Environment Agency web site shows the site is underlain by a 'non-productive' stratum. The guidance provided by Arup to accompany the BIA screening process advise that whether the basement extends below the water table or not is only relevant where the site is underlain by an aquifer. On this basis of these two facts, combined with the relatively limited

increase in basement width normal to postulated groundwater flow and the distance to other significant basements, it is accepted that the impact to subterranean flows has been correctly assessed in the BIA as being low.

4.16. No objections pertinent to the BIA have been lodged.

EMBgk12985-37-220719-The Hall School-F1.doc Date: July 2019 Status: F1 10

5.0 CONCLUSIONS

- 5.1. The BIA has been carried out by a well-known firm of consultants who possess relevant qualifications and experience.
- 5.2. The proposed basement utilises contiguous bored piled retaining walls installed from existing ground level. The BIA has confirmed that the proposed basement will be founded within London Clay.
- 5.3. The relevant maps extracted from the Arup GSD, Camden SFRA and Environment Agency (EA) identifying the site location have been included, to support statements made in the BIA screening process.
- 5.4. Outline retaining wall design and a preliminary temporary works scheme including sequencing and propping sketches have been provided, in accordance with the CPG.
- 5.5. Damage assessments identify that predicted damage to the neighbouring buildings does not exceed Burland category 1. The initial assessment did not consider the proposal to remove the permanent props to the existing basement walls. The scheme has now been amended to include props top and bottom in the temporary and permanent cases.
- 5.6. It is noted that a robust propping system is proposed as a mitigation measure in conjunction with monitoring and a traffic lights system of trigger levels. Revised trigger levels (permissible crack widths and movement) have been submitted which are supported by the damage assessment and comply with the guidance (maximum Burland Category 1 damage).
- 5.7. It is accepted that there are no slope stability concerns with respect to the development proposals.
- 5.8. It is accepted that the development will not impact on the wider hydrogeology or hydrology of the area and is at low risk of flooding.
- 5.9. It is noted that a Drainage and SUDS Assessment and it is intended to adopt green roofs. It is understood that the drainage strategy has been agreed with Thames Water.
- 5.10. It is confirmed that the queries described in Section 4 and summarised in Appendix 2 have been addressed and the BIA complies with CPG: Basements and the Local Plan with respect to impacts on stability and the water environment.

Appendix 1: Residents' Consultation Comments

None

EMBgk12985-37-220719-The Hall School-F1.doc

Status: F1

Date: July 2019

Appendices

Appendix 2: Audit Query Tracker

EMBgk12985-37-220719-The Hall School-F1.doc

Status: F1

Date: July 2019

Appendices

Audit Query Tracker

Query No	Subject	Query	Status	Date closed out
1	Stability	GMA does consider removal of permanent props from existing basement wall	Closed	22/07/2019
2	Stability	It should be confirmed that the proposed monitoring regime will limit damage to surrounding buildings to Burland Category 1	Closed	22/07/2019

Date: July 2019

Appendix 3: Supplementary Supporting Documents

None

EMBgk12985-37-220719-The Hall School-F1.doc Date: July 2019 Status: F1

2190008 let01 07 June 2019

Central London 46 - 48 Folev St London W1W 7TY 020 7499 5888

Wimbledon 241 The Broadway London SW19 1SD 020 8544 0033

087 0460 0061

Nottingham 1 Sampsons Yard Halifax Place Nottingham NG1 1QN

elliottwood.co.uk

London Borough of Camden Planning Department 5 Pancras Square London N1C 4AG

Dear Nora-Andreea Constantinescu

The Hall School, Hampstead – Planning Application 2019/1325/P – BIA Audit D1

As the project Structural and Civil Engineers appointed for the proposed redevelopment works at The Hall School. Elliott Wood (EW) submitted the Basement Impact Assessment (BIA) as part of the planning application; 2019/1639/P, in April 2019. Subsequently Campbell Reith (CR) have conducted a BIA Audit on behalf of Camden Council. CR have issued technical comments in their audit report revision D1 dated May 2019 and this letter sets out our responses to the points raised.

In this letter we provide a summary of the queries in the BIA Audit, below are the two subject areas that have been queried with responses and clarifications:

GMA does [not] consider removal of permanent props from the existing basement wall (Refer to CR Audit - 4.8)

The profile of the existing basement wall suggests it could have been designed as a cantilever. Archive drawings show that the wall from basement to the ground level is 375m thick and above this is 250mm. thick (see attached Archive drawing). If this is the case, when the wall is cut down the remaining section will continue to act as it does in the existing case.

However, as we are currently unable to prove this by knowing the amount of reinforcement in the basement, therefore we have taken a conservative approach and assumed the wall was designed as a propped cantilever. Since the BIA 2190008 Hall School - EW Planning Report 190311 was issued in April 2019 we have added in a permanent prop at ground level to keep the proposed condition of the wall as similar as possible to the existing. A beam now spans along the top of the wall and connects into the columns that support the floors above the basement, this system will provide lateral restraint to the top of the wall.

There will be a change in stiffness from the existing condition to the proposed case therefore the capping beam will be pre-loaded in order to minimise movement once the temporary props have been removed.

The GMA issued with the planning application considers the correct restraints to the existing basement wall and we believe provides a satisfactory analysis.

Attached is an updated S/0900 Lower Ground Floor plan which includes notes about the beam being installed to prop the top of the existing basement wall.

- 2. Confirm that the proposed monitoring regime will limit damage to surrounding buildings to Burland Category 1
 - a. EWP (para 9.10) refer to stopping work once any cracking >2mm is observed in adjoining structures. This exceeds Category 1 damage as defined by Burland

The EW Planning Report has been updated to say for any cracking in the adjacent structures >1mm all works will stop, this now complies with Burland damage category 1 and was a mistake on our part. It should have always read >1mm.

b. EWP's Monitoring Report sets amber trigger levels for movement to adjacent structures at 13mm horizontal and 7mm vertical. These exceed the predicted movements and it should be confirmed that if such movements occurred, they would not result in damage worse than Burland category 1

CR to note that in EW's Movement Monitoring Report the trigger levels are based on movement adjacent to the contig pile wall, and not movement to adjacent properties as suggested in the text of the Audit, as this aligns with GEA's analysis.

The monitoring regime has been revised following CR's comments. We have changed the Amber trigger levels to match the predicted movement stated in GEA's Ground Movement Analysis (GMA) dated February 2019. The red trigger levels are now movement adjacent to the piled wall that would cause neighbouring buildings to exceed Burland category 0 damage and experience category 1 damage. The level of movement to induce this damage has been analysed by GEA and is confirmed in the attached e-mail from them.

The requirements from Camden Council are that neighbouring buildings experience no more than Category 1 damage, therefore this approach is conservative. When construction starts, if the red trigger levels are reached, we have some leeway before inducing damage above Category 1 to the neighbouring structures.

I trust the above response in conjunction with the updated information and additional report from GEA provide sufficient information to answer the queries in the audit that the scheme in question satisfies the criteria of Camden Council

Yours sincerely

Suzanna Cooper

For and on behalf of Elliott Wood Partnership Limited

Enc. 2190008-EWP-ZZ-B1-DR-S-0900-P3

BIA 2190008 Hall School - EW Planning Report P3 190605 (appendices not included)

2190008 rep Movement Monitoring GEA Report dated 05/06/2019

Sections AA & BB Feb88 (Archive Drawing)

C.C Elizabeth Brown - Campbell Reith

The Hall School

Structural and Civil Engineering Planning Report

8

Basement Impact Assessment

engineering a better society

The Hall School 2190008 Structural and Civil Engineering Planning Report & Basement Impact Assessment elliottwood engineering a better society

		Remarks:	Issued for Plann	ing approval	g approval			
Revision:	P1	Prepared by:	Suzanna Cooper	Checked by:	Agata Downey	Approved by:	James Souter	
Date:	01/03/2019	Signature:	Engineer	Signature:	Senior Engineer	Signature:	Associate	

Revision:	P2	Prepared by:	Suzanna Cooper	Checked by:	Agata Downey	Approved by:	James Souter
Date:	11/03/2019	Signature:	Engineer	Signature:	Senior Engineer	Signature:	Associate

Revision:	P3	Prepared by:	Suzanna Cooper	Checked by:	Agata Downey	Approved by:	James Souter
Date:	10/062019	Signature:	Engineer	Signature:	Senior Engineer	Signature:	Associate

Amendments in Revision P3

Section	Amendment
9.10	Changes shown in red

Contents

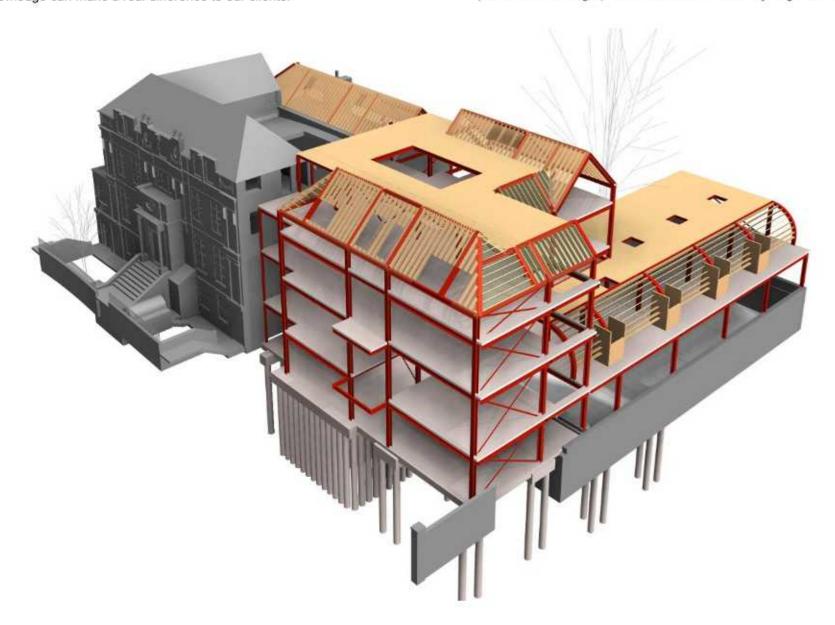
Our practice	1
Introduction	2
BIA Check List	2
Description of Site	3
Site History and Summary of Existing Buildings	3
Site Geology	5
Proposed alterations	5
Summary of Below Ground Drainage	8
Basement Impact Assessment	8
Construction Methodology1	0
Sustainability1	2
Structural Design Criteria 1	2

Appendices

Α	Structural DrawingsA
В	GEA Site InvestigationB
С	Flood Risk Assessment
D	Outline Structural Calculations – Basement
Ε	Movement Monitoring ReportE

Our practice

own in-house academy.


Elliott Wood work with likeminded people to engineer a better society

Our portfolio is extraordinarily diverse, and we particularly enjoy those projects which provide the opportunity to engineer for the common good - from making dramatic improvements to the life of a town or city, through to nurturing a new generation of exceptional engineers in our

Despite more than twenty years in practice, we continue to be curious and find ways to pass on the benefit of our collective experience. We foster enquiring minds and share ideas because we know that this knowledge can make a real difference to our clients.

Engineering is often about the unseen: much of what we do is hidden when a building is complete. But engineering is not a necessary evil - it's much cleverer than that. Our role is to demystify the invisible workings of a structure, to reveal unexpected opportunities and to make the existing engineering work harder.

We value both technical and creative thinking and are activists for a new kind of engineering profession in which our craft is pivotal to the design process. We are no ordinary engineers.

Reveal / Materialise / **Impact**

Engineers make a difference

We like to be involved at the start of our clients' creative and commissioning journey, because we are concerned that not enough people are realising the full potential of their buildings. They are only working with what they can see.

Our process challenges usual perceptions of the engineer's role, because we help clients to see the unseen and achieve results beyond the aspirations of the brief - and which have a positive legacy for their wider communities.

Reveal

We ask questions. With innovative thinking, we reveal the unexpected opportunities in an already ambitious brief.

Materialise

We give ideas life. Using expertise and imagination, we materialise new assets for our clients.

Impact

We make a difference. Our work not only benefits our clients, it has a positive impact on society as a whole.

Structural and Civil Engineering Planning Report & Basement Impact Assessment

engineering

One

Introduction

1.1

This report is for the sole use of the Hall School for whom the report is undertaken and cannot be relied upon by third parties for any use whatsoever without the express authority of Elliott Wood.

1.2

Elliott Wood Partnership Ltd has been appointed by the school to provide structural and civil engineering input for the design of the proposed redevelopment of the Hall School site. The following report has been prepared to ensure that the neighbouring properties are safeguarded during the works. It includes information on the site, the proposed works, and how the works will be constructed. In addition, a Basement Impact Assessment has been undertaken by persons holding the required qualifications relevant to each of the stages. This follows the guidance given in the Camden Planning Guidance on Basements and Lightwells CPG4 and has been prepared in accordance with DP23 and DP27. The report follows Camden Council's updated Local Plan, in particular Policy A5 regarding the risk of damage to neighbouring properties.

1.3

This report has been prepared in collaboration with NORR Consultants Ltd, who are the lead consultant for the project.

1.4

The project involves the redevelopment of the school site, retaining the early school buildings but demolishing and replacing subsequent additions. The front elevation to the new extension will be sympathetic in size and treatment to the retained fabric, with additional studio and classroom space provided on top of the existing hall at the rear of the site. The superstructure of the new extension will be a steel frame with concrete on metal deck floor, below ground the extent of the existing basement will be increased in plan by addition of a new single storey basement between the Old School and the Wathen Hall created with contiguous pile wall.

1.5

A desk study has been undertaken to understand the history of the site and the general ground and site conditions. The study has been used to inform the details of the existing site, buildings and ground conditions presented in Sections 2.0 to 4.0. Geotechnical investigations have been carried out by Geotechnical and Environmental Associates and their report has been included within Appendix C in full.

1.6

The desk study includes information retrieved from or viewed at the following archive sources; London Metropolitan Archives, Camden Local Studies and Archives Centre and Camden Building Control.

Record information has been reviewed from archives held by the school. The archive information is available from Elliott Wood upon request.

Two

BIA Check List

- . This report has been prepared by Elliott Wood LLP for the proposed works at Hall School, 23 Crossfield Road. It contains a description of the structural proposals for a new basement, an assumed construction sequence including temporary works and a Basement Impact Assessment carried out by GEA Ltd.
- The report has been written and reviewed by persons carrying the required Qualifications as set out in CPG4.
- The BIA process has been carried out in accordance with CPG4 and considers the effects of the proposals on Land Stability, Surface Flow and Flooding and Subterranean (Groundwater) Flow.
- The BIA screening procedure highlighted potential issues with the site being located on London Clay and the differential founding depths. The report demonstrates how these risks are mitigated by the proposed structural design and construction methodology. Refer to section 9.0.
- A Site Investigation was carried out by GEA Ltd. in July 2016 as part of the scoping stage of the BIA, including soil properties and contamination testing and groundwater monitoring. Refer to section 5.0 in Appendix C. The Report and Ground Movement Assessment in the report has been fully updated in February 2019. The GEA shows that damage to the neighbouring buildings will be negligible (Category 0).
- The proposals will have no significant adverse effect on surface flow and flooding. Refer to section 3.0 in Appendix C.
- The basements will have no significant adverse effect on the local hydrogeology. Refer to section 3.0 in Appendix C.

- The basements will be designed to ensure the ground is capable of supporting the loads and construction techniques to be imposed. Refer to section 8.0 in Appendix 3.
- The basements construction sequence and temporary works will be carried out as described in order to prevent land instability or structural instability to neighbouring structures and highways. Refer to sections 10.0 in Appendix 3.
- A need for monitoring the existing adjacent structures and highways has been identified and proposals have been included in the construction methodology. Refer to section 12.0 in Appendix 3.
- · A suitably qualified contractor will be able to safely construct the proposed development in such a way as to not impact on the structural integrity and natural ability for movement of existing and surrounding structures, utilities and infrastructure.

Figure 1: Proposed Project Development (as seen from the play area)

Three

Description of Site

3.1

The school is distributed across three sites in the Belsize Park Conservation Area, northeast of Swiss Cottage London Underground Station. The proposed development is to the Senior School site.

3.2

The Senior School site is located approximately 400m northeast of Swiss Cottage London Underground Station, and fronts onto Crossfield Road to the west. The site is bounded on the remaining sides by residential properties.

3.3

The overall Senior School site is broadly square in shape and measures approximately 50m by 50m on plan. External playing space occupies around a third of the site in the northeast corner.

3.4

A line of trees extends along the east site boundary and there is a large London plane tree in the centre of the site. The London plane is subject to a Tree Preservation Order (TPO), and is to be retained as part of the proposed scheme.

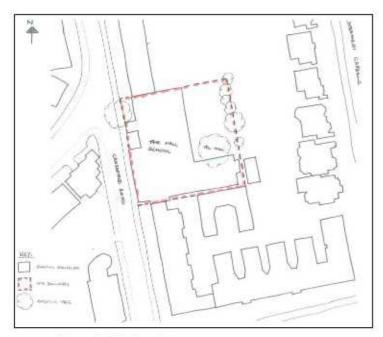


Figure 2: Site location

3.5

The school will remain at the site during the construction phase of the project. Precautions will be put in place to protect the children and staff at all times of the built. Temporary accommodation will be constructed to enhance on site facilities within the rear playground.

3.6

Records for the historic lost rivers known in London indicate that the site is approximately 100m away from the routes shown for two tributaries to the River Tyburn.

3.7

London bomb damage maps indicate that the site and the immediate surroundings did not experience bomb damage during the Second World War. Based on data provided by Zetica, Hampstead is within an area of medium-to-low risk for unexploded ordnance.

3.8

Record information suggests that there are no known underground tunnels or structures near to the site. The Swiss Cottage London Underground Station is located approximately 400m from the site, but the routes of the Jubilee and Metropolitan lines do not pass near to the site.

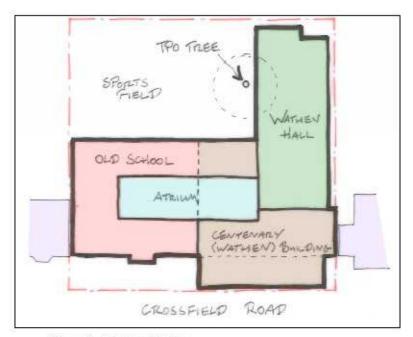


Figure 3: Existing buildings

Four

Site History and Summary of Existing Buildings

4.1

The original Victorian school was constructed c.1900 and occupied the northwest corner of the site. This broadly consisted of a four-storey front elevation, a two-storey central main hall, and a three-storey rear elevation. The original school is understood to be the first construction on the site.

4.2

The Senior School site is located approximately 400m northeast of Swiss Cottage London Underground Station, and fronts onto Crossfield Road to the west. The site is bounded on the remaining sides by residential buildings. The original school was extended to the south with additional single and double-storey accommodation, including new classrooms. Record drawings for these works date to the 1920s and 1930s.

4.3

The rear gable was extended in 1977, providing an additional staircase and further classrooms. The height of the new extension was to match the original building.

4.4

In 1984, the original main hall has damaged by fire. The damaged hall was replaced in 1986 with flat-roofed accommodation.

4.5

A significant extension to the site was carried out in 1989 with the construction of the Centenary (Wathen) Building and Wathen Hall across the south of the site. This included the construction of a new basement, with the hall partially below ground. The three-storey Centenary (Wathen) Building extended the original front elevation, with some existing single storey fabric retained within the envelope of the new structure.

4.6

In 2001, the area of the old hall was infilled with a new Main Atrium structure. The floors are generally across split levels to tie in with the floor levels of the original school building. The curved roof of the atrium extends over to the roof of Wathen Hall, housing additional accommodation.

Old School

4.7

The original school and the 1977 extension are both formed from loadbearing masonry with concrete strip footings, founded on the London Clay stratum present at the site at a shallow depth.

4.8

The suspended floor construction is to be confirmed, but it is assumed to consist of steel beams spanning between the masonry, supporting timber joists.

4.9

The pitched roof is understood to be formed from a series of timber trusses.

Wathen Hall

4.10

The sunken double-height space is created by an insitu reinforced concrete box with castellated steel beams spanning the clear width of the space to form the roof. The retaining walls continue above ground level to support the roof beams, which are grouted into preformed pockets within the concrete walls.

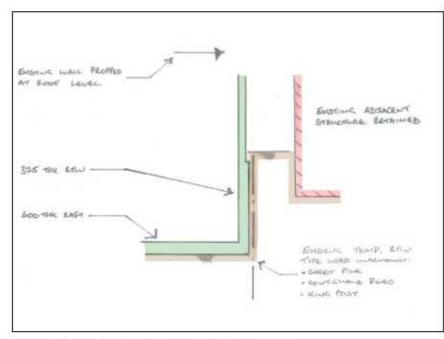


Figure 4: Existing basement wall construction

4.11

It is unclear from the record drawings available what forms of temporary works were used to construct the basement.

4.12

An internal cantilever walkway extends along one elevation of the building. projecting from the reinforced concrete wall

4.13

Half of the roof is designated as a roof terrace, designed with reinforced concrete on profile metal decking spanning between the castellated steelwork to accommodate the higher load case. The remainder of the roof is covered with lightweight metal sheeting designed for nominal access. over.

4.14

The redevelopment of the atrium that followed the construction of the Wathen Hall includes the creation of an occupied space over part of the area designed for the roof terrace. It is assumed that the construction is lightweight and that additional loads were justified within the available capacity of the terrace.

Centenary (Wathen) Building

4.15

The Centenary (Wathen) Building is constructed using two types of structural forms. As viewed from Crossfield Road, the left of the building is a steel frame and the right is constructed from load-bearing masonry.

4.16

This mixed form of construction is assumed as a response to the site constraints. The steel frame is located over an area of existing structure, where part of the older structure was retained. The masonry structure was constructed on previously undeveloped ground where the choice of structure was not constrained by previous works.

4.17

The masonry structure utilises brick and block cavity wall construction, and precast concrete floor planks bearing onto the internal blockwork leaf at each level. In locations of narrow structure, such as between doors and windows, reinforced concrete piers are used instead of blockwork, laterally tied into the floor planks.

4.18

The structure is generally founded on concrete strip footings on the London Clay, with one elevation bearing onto the retaining wall of the sunken Wathen Hall.

4.19

The natural ground locally was ramped in the temporary case to enable excavation and construction access for the adjoining sunken area. The depth of the footings is to bear onto undisturbed ground, and stepped to provide level bearing. The ramp was backfilled with consolidated fill, and the lower ground floor slab over is suspended.

4.20

The steel framed structure is located abutting the area of the building that was the Old Hall. The steelwork structure is framed off four steel columns, founded off a pair of reinforced concrete strip footings.

4.21

The columns penetrate the existing ground floor level without supporting it. The ground floor is instead retained between existing and new masonry walls. Precast floor planks are used at the new floor levels, with the existing timber joists retained between the existing steel beams at ground floor.

4.22

The record information for the Centenary (Wathen) Building makes reference to existing steel posts in the area of the building that was the Old Hall. It is assumed that these formed part of the accommodation provided following the fire damage to the hall.

Main Atrium

4.23

The Main Atrium appears to comprise of a steel frame infill in the centre of the site, interacting with all other phases of construction. A number of steel columns are installed in discrete locations to support the stepped floor slabs and the curved roof over. The roof is partially supported on the roof of Wathen Hall roof.

4.24

The three-storey atrium introduced an additional storey to the centre of the building that was previously provided by the Old Hall. It is therefore assumed that the existing masonry walls did not have the capacity to accommodate the additional vertical loads and new independent vertical structure was required.

engineering

4.25

The foundations to the atrium infill are not known. Given that part of the infill is supported from the Wathen Hall roof, it is assumed that the infill structure is founded on the same stratum as the hall, although there may be a movement joint between the two structural forms.

Five

Site Geology

5.1

A detailed Ground Investigation and Basement Impact Assessment were undertaken for the site by Geotechnical & Environmental Associates (GEA).

5.2

The report issued by GEA can be found in Appendix C and the ground conditions for the site are summarised below:

- . Below a generally moderate but locally significant thickness of made ground, the London Clay Formation was encountered.
- . Made ground extended to depths of between 1.00 m and 3.80 m, although only extended to beyond 1.35 m in one Borehole.
- Seepage of groundwater was encountered in the made ground at depths of 2.40 m and 1.20 m in boreholes and subsequent groundwater monitoring recorded variable water levels within the standpipes, which do not represent a continuous groundwater table, but rather perched water trapped within the standpipes.
- The results of the contamination testing have revealed elevated concentrations of arsenic, lead and total PAH including benzo(a)pyrene in the made ground.

5.3

The recommendations and advice included in the report that have significance to the structural design matters are summarised below:

· The following parameters are suggested for the design of the permanent basement retaining walls.

In Made Ground; Bulk Density = 1700 kg/m3, Effective Cohesion = Zero (c' – kN/m²), Effective Friction Angel = 27 (Φ ' – degrees).

In London Clay; Bulk Density = 2000 kg/m3, Effective Cohesion = Zero (c' – kN/m²), Effective Friction Angel = 24 (Φ ' – degrees).

- Heave, net unloading of around 70 kN/m2 which will lead to heave of the underlying London Clay. This will comprise immediate elastic movement, which will account for approximately 40% of the total movement and may be expected to be complete during the construction period, and long term movements, which will theoretically take many years to complete.
- Net allowable bearing pressure for spread foundations excavated from basement level of 150kN/m2, which incorporates an adequate factor of safety against bearing capacity failure and should ensure that settlement remains within normal tolerable
- Piled foundations, for the ground conditions at this site some form of bored pile is likely to be the most appropriate type. A conventional rotary augured pile may be appropriate, with temporary casing installed to maintain stability and prevent groundwater inflows, or alternatively the use of bored piles installed using continuous flight auger (cfa) techniques, which would not require the provision of casing, would also be an appropriate choice of pile. A table of ultimate coefficients is provided for the preliminary design of bored piles, based on the SPT & Cohesion / level graph. Refer to Appendix 3 for further information.

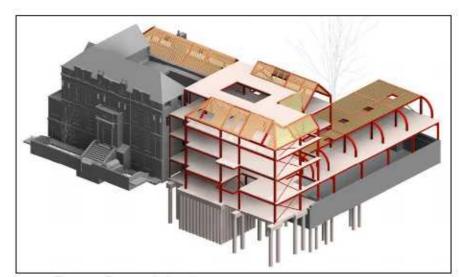


Figure 5: Proposed alterations

Six

Proposed alterations

6.1

The original proposal has been revised since the last Planning Application, the main revisions being as follows:

- · Retention of the existing single-storey basement under the Wathen Hall, instead of deepening it to a double-storey basement
- · Reduction of an overall plan area of the single-storey basement
- · Reducing the number of floors above the sports hall to a single level of classrooms under a green roof

6.2

The proposed development of the site can be broadly divided into three

- demolition of the Wathen Hall superstructure to be replaced with new studio and classroom space over the existing single-storey substructure
- demolition of the Centenary (Wathen) Building, to be replaced with a new four-storey school building supported partially over the existing Wathen Hall basement, partially on a new single-storey basement next to the Old School, and partially on new piled foundations from ground level
- refurbishment of the Old School building, including the reconstruction of the roof to the rear elevation at a higher level, and low-key alterations to the internal structure to accommodate the interface with the new school building.

6.3

It is anticipated that the proposed extent of demolition will enable the construction works to proceed by providing necessary site access to the rear of the site. Appropriate measures will be required to provide protection to the retained fabric and to the protected London plane tree and its extensive roots.

Proposed alterations - Substructure Proposal

6.4

It is proposed to retain the existing single-storey basement under the Wathen Hall and to create a new single-storey basement under the part of the footprint of the new building between the Old School building and the Wathen Hall.

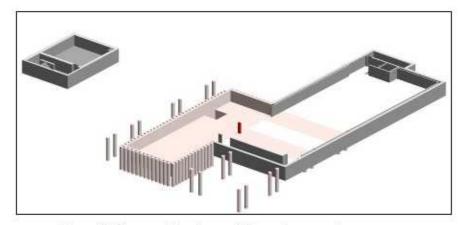


Figure 6: Basement structure: existing and proposed

6.5

The basement under the new school building is proposed using a contiguous piled retaining wall. The piles are anticipated to be 450mm diameter bored piles, designed to be propped in the permanent case by the slab at the lower ground floor level. The internal face of the piled retaining wall will be lined with an insitu waterproof concrete lining wall.

6.6

To mitigate the impact of the new basement on the foundations to the retained Old School building, the piled retaining wall will be set approximately 3m from the face of the existing masonry wall. This offset means that excavations required to form the capping beam to the piled wall will be at an adequate distance to avoid undermining the existing foundation.

6.7

Cantilever ground beams are proposed to support the new vertical structure set tight against the existing masonry wall of the Old School building. Each ground beam will run continuously over a pair of piles centred around 1.2m from the face of the wall; this offset is driven by the constraints of the piling equipment. The depth of the ground beams will be sized to avoid undermining the existing foundations.

6.8

The lower ground and basement slabs under the school building will be typically formed from a suspended flat slab construction. The internal columns will be founded on piled foundations.

6.9

It is proposed to retain the existing basement walls of the Wathen Hall as part of the new permanent structure. In the temporary case, horizontal propping across the basement volume will resist the lateral earth pressure. The retaining walls will act as cantilevers in the permanent case.

6.10

The new columns of the single-storey extension above the Walthen Hall basement will be inset from the basement wall and be founded on pile caps at basement level.

6.11

To provide a column-free space, the ground floor structure will span the clear width of the hall. This long span structure will be sensitive to vibration, particularly as the floor will be used for group activities. The structure is therefore proposed using deep, fabricated steelwork sections acting compositely with the reinforced concrete floor slab. Similar but heavier steelwork sections will act as transfer beams where the hall extends under the new school building.

Proposed alterations - Superstructure Proposal

6.12

The superstructure to the new building is proposed as a steel frame. This is primarily in response to the long spans required over the hall. Steelwork is typically more suitable for long span structures, and this is complemented by the lightweight nature of steel frames when compared to equivalent reinforced concrete frames.

6.13

The floor slabs are generally proposed as reinforced concrete cast on profile metal decking, acting compositely with the steelwork.

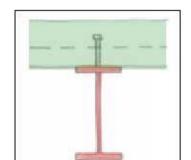


Figure 7: Deep long-span structure

6.14

The superstructure over the hall consists of one storey, with a column-free space at the lower ground floor level. Deep steelwork sections are proposed to achieve this space, supporting the classrooms spaces under a green roof. The roof follows a curved profile, formed using curved steelwork.

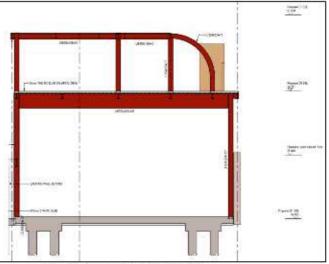


Figure 8: Sports hall structure.

6.15

The superstructure to the new school building is a four-storey steel frame. The internal room layouts allow for a regular column grid to extend up the full height of the building. The columns will typically be formed from steel "H" sections, although narrow rectangular hollow sections are proposed where new structure is proposed tight against the existing walls of the Old School building, to mitigate the extent to which these columns protrude into the new circulation space adjacent.

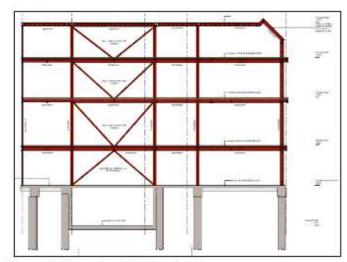


Figure 9: New school building structure.

6.16

A flat roof is discretely positioned behind the pitched roof around the top of the new school building. To achieve this profile, the top of the steel frame is designed with cranked steelwork sections that follow the pitched profile. These beams are typically shallower column sections rather than traditional beam sections, as these achieve a shallower structural depth.

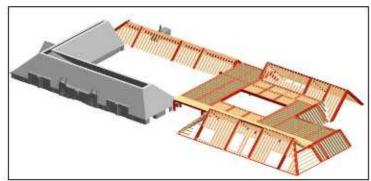


Figure 10: Roof structure.

6.17

The floor levels of the existing Old School building differ between the front and rear elevations, and this continues through to the new school building and the hall; the levels of the new school building typically match those of the front elevation, whilst the classroom over the hall follow the levels of the rear elevation. The half landings of the main stair have been set at these intermediate levels, which can also be accessed from the lift. Local areas of floor slab will be integrated into the structural frame, supported off stub columns or hangers as appropriate.

6.18

The mansard roof to the rear elevation to the Old School building is to be reconstructed to accommodate the new window arrangement proposed. This reconstruction will be formed from load-bearing masonry in keeping

with the existing fabric, with new timber roof trusses and steelwork to provide the new roof form.

6.19

The two proposed stairs that enter the basement are reinforced concrete and supported on the local reinforced concrete beams and walls. Above ground staircases are to be lightweight steel built off steel beams at floor level and half landing levels.

Structural Stability

6.20

The lateral loads exerted on the new building, including wind loads and notional horizontal loads, will be transferred by diaphragm action through the reinforced concrete slabs at each level to structural bracing located around the building's floor plate. These are typically located within partitions and behind panels of masonry cladding, positioned to avoid clashes with door and window positions. Where those clashes could not be avoided, steel moment frames will be used to provide stability.

6.21

The stability strategy for the retained Old School building will be maintained as existing, relying upon the cellular nature of the masonry structure to transfer lateral loads to the foundations.

6.22

A movement joint is proposed between the new building and the Old School building. The two buildings will be structurally independent.

Facade

6.23

The external façade construction will be a cavity construction infill to the steel superstructure. This is likely to consist of an outer leaf of single skin of brickwork supported on shelf angles and an inner leaf construction of blockwork or SFS built off perimeter beams. The two leafs of the wall will be laterally tied together and to the steel frame. Movement joints will be allowed for as part of the design process. Elliott Wood have advised Norr and set out the parameters for movement joints and vertical load detailing.

6.24

A full glazed façade will be provided in the area next to the retained Old School, this provides a visual break between the two different areas of construction, on both front and rear elevations. Typical steel to glass connections will be implemented.

Robustness and Progressive Collapse

6.25

The new building contains four superstructure storeys of educational space. It is therefore considered to be a Class 2b building under the requirements of Part A of the Building Regulations.

6.26

The requirements of a Class 2b building is that effective horizontal and vertical ties are provided to all supporting building elements.

6.27

When detailed appropriately, reinforced concrete elements cast insitu are inherently robust. All steelwork and timber elements will be tied together and connected back to the structural frame to maintain robustness.

Basement Waterproofing

6.28

The proposed basement is designed to achieve a Grade 3 standard of internal environment throughout (Habitable to BS 8102).

6.29

The overall waterproofing strategy for the building is the responsibility of the Architect. As part of the overall strategy, it is anticipated that the basement structure will be cast using water-resistant concrete to provide the primary barrier against water ingress. It is anticipated that an internal drained cavity system will be used as a secondary form of protection, with any water seepage collected in a sump and pumped from the basement as part of the wider basement drainage strategy. The final waterproofing detailing and construction will be carried out by a specialist sub-contractor as a contractor design item.

Fire Protection

6.30

The reinforced concrete elements of the new structure will use its inherent fire protection in the design. The cover to the proposed columns, walls and slabs will be selected to provide the appropriate level of protection, to meet the requirements specified by the Architect.

6.31

The steelwork superstructure will require fire protection, and it is anticipated that this will be provided by either an intumescent paint system or by cladding the steelwork with fire-resistant boarding. The required protection and the adopted method will be specified by the Architect, to be compatible with the proposed finishes.

Temporary Works

6.32

The Contractor shall provide adequate temporary support to ensure the stability of the party walls and adjacent structures throughout the works where required.

6.33

An outline of the assumed sequence and associated temporary works for piled walls is given below:

- Install piles
- Install capping beam
- Prop at high level
- Dig down to formation level
- Install basement slab and liner walls
- Remove propping after concrete has cured

Old School Refurbishment

6.34

Refurbishment to the Old School at Lower Ground, Ground and First Floor is minor; single door openings formed in load bearing masonry using multiple precast concrete lintels, timber infill of floor holes where existing stairs are removed, non-load bearing partitions demolished. The final details will be provided during detailed design following site investigations to confirm detail of existing structure. Refer to drawings for works.

6.35

Roof area to the rear elevation to the Old School is to be reconstructed to accommodate a raised roof and new dormer window arrangement. New roof and dormers constructed from timber rafters supported on new steel frames built off the existing load bearing masonry walls.



Figure 11: Reconstructed roof at the rear of Old School

Implications of Tree Subject to Tree Preservation Order

6.36

The existing London plane tree is subject to a Tree Preservation Order (TPO) and is located close to the edge of the Wathen Hall. In addition to its influence on the architectural design, the retention of the tree has implications for the design and the construction of the structural works.

6.37

The extent of the existing tree roots is known due to a ground penetrating radar survey which has been undertaken on site. Advice from the arboriculturalist suggests that the major tree roots will have spread away from the basement and that it is highly unlikely that significant roots would be found under the depth of the existing basement.

6.38

Record information indicates that there is a root barrier between the tree and the basement. The root barrier predates the construction of the existing basement and has been found via on site trial pits.

6.39

Protection of the tree during the construction phase will need to be considered. This includes the layout of laydown areas on the site, and how materials are handled both during deliveries and as they are erected, to mitigate potential risks to the tree.

6.40

All construction traffic and material storage should be outside of the tree root protection zone in order to minimise potential damage to the tree.

Seven

Summary of Below Ground Drainage

7.1

The Below Ground Drainage Strategy and Flood Risk Assessment have been produced to support the detailed planning application for the Hall School development.

The reports can be seen in Appendix D.

Eight

Basement Impact Assessment

8.1

As part of the work undertaken by GEA, a Basement Impact Assessment (BIA) has been completed. This includes a Hydrological and Hydrogeological Assessment and Land Stability Assessment (also referred to as Slope Stability Assessment), all of which form part of the BIA procedure specified in the London Borough of Camden (LBC) Planning Guidance CPG4 and their Guidance for Subterranean Development 2 prepared by Arup (the "Arup report"). The aim of the work is to provide information on surface water, groundwater and land stability and in particular to assess whether the development will affect neighbouring properties or groundwater movements and whether any identified impacts can be appropriately mitigated by the design of the development. The assessment is contained within Appendix 3 as part of the ground investigation report and BIA, a summary is presented below.

8.2

The Ground Movement Assessment (GMA) has concluded that the risk of damage to the neighbouring properties is limited to Burland Category 0 (negligible) and Category 1 (very slight).

Qualifications

8.3

For the three sections of the assessment, each stage was carried out by a person holding the required qualifications as set out in CPG4.

 Surface Flow and Flooding – A Hydrologist specialising in flood risk management and surface water drainage, with The "C.WEM" (Chartered Water and Environmental Manager) qualification from the Chartered Institution of Water and Environmental Management:

Rupert Evans MSc CEnv CWEM MCIWEM AIEMA (Geotechnical & Environmental Associates) (Refer to Appendix 3, Section 1.3.2)

Subterranean (Groundwater) Flow - A Hydrogeologist with the "CGeol" (Chartered Geologist) qualification from the Geological Society of London:

John Evans MSc FGS CGeol (Geotechnical & Environmental Associates) (Refer to Appendix 3, Section 1.3.2)

. Land Stability - A Member of the Institution of Civil Engineers and a Geotechnical Specialist as defined by the Site Investigation Steering Group:

Martin Cooper BSc CEng MICE (Geotechnical & Environmental Associates) (Refer to Appendix 3, Section 1.3.2)

Stage 1 - Screening

8.4

A screening assessment, in the form of responses to the flowcharts within CPG4, was carried out to determine whether a full BIA is required. The screening responses for Subterranean (groundwater) Screening and Stability Screening were carried out by GEA and can be found in Appendix 3 (section 3.1.1 and 3.1.2 respectively). The screening for Surface Flow and Flooding was carried out by GEA (Refer to section 3.1.3 of Appendix

8.5

The assessments for Subterranean (groundwater) Screening and Surface Flow and Flooding Screening identify no potential issues. The assessment for Stability Screening identified several potential issues, requiring the completion of a full BIA. These potential impacts can be seen in section 9.1 of Appendix 3.

8.6

The undertaking of such projects is specialist work and EWP will be involved in the selection of an appropriate Contractor who will need the relevant expertise and experience for this type of project.

Stages 2 & 3 - Scoping and Site investigation

8.7

These stages have been carried out by GEA and details can be found in section 4 of Appendix 3. The site investigation works included 4no. boreholes (1no. boreholes to 25m depth and 3no. borehole to 5m depth) and 5no. trial pits, as well as tests to determine soil properties. 3no. groundwater monitoring standpipes were installed within the boreholes and monitored on two occasions over one-month period.

Stage 4 - Impact Assessment

Potential impacts with regards to stability were identified in the screening stage of the BIA. These are presented below, along with the proposed mitigation strategy for each impact:

8.9

The site is underlain by the London Clay Formation.

Risk: The investigation has confirmed the presence of the London Clay Formation, which can give rise to a number of potential issues with regard to excavation and construction of a new basement structure. These include slope instability on existing and new slopes greater than 7°, heave of the clay soils associated with the unloading from the basement excavation and shrinking and swelling of the clay soils due to the removal of trees.

Mitigation: No slopes with angles greater than 7° exist or will be created by the development and there are no proposals to fell any trees. In addition, although the depth of the proposed basement will give rise to unloading of the clay and therefore heave movements and pressures, these heave movements are unlikely to be significant as they will, to a certain extent, be restricted by the pressure applied by the loads of the proposed building. Normal design and construction measures will be taken to mitigate any heave movements applying well-established engineering solutions including compressible void formers below the slab and the use of tension piles if necessary.

8.10

The development is located within 5 m of the public highway

Risk: Should the design of retaining walls and foundations not take into account the presence of nearby infrastructure, it may lead to the structural damage of footway, highway and associated buried services.

Mitigation: The design of the retaining walls will take into account any loading from the adjacent highway and the construction work will be carried out in accordance with best practice.

8.11

The site is underlain by the London Clay Formation.

Risk: Having differential founding depths can result in differential settlements, which could arise from seasonal shrink and swell, if underlain by clay soils, or as result of the varied foundations stiffness of the foundations.

Mitigation: The proposed basement does not share any party walls with neighbouring structures and so differential founding depths of neighbouring foundations will not be created. Differential founding depths will exist between the two parts of the building within the school site; the new foundations are to be suitably designed using standard engineering practice, to ensure there is no reason for the proposed basement to cause structural instability of adjacent foundations.

8.12

Combined Effect of Underground Developments - Camden Local

As part of the planning appraisal the Planning Officer has requested that the BIA is updated to reflect the policy requirements of Camden's updated Local Plan in particular Section A5 paragraph 6.129 extract below:

Basement Impact Assessments must identify all other basements in the neighbouring area, including their extent and ground conditions, and make an assessment of the combined effect of underground development with all nearby basements considered together. The assessment must include existing development and planned development including schemes with planning permission and those to be developed under permitted development or with a Certificate of Lawful Development.

The original GEA report covered the cumulative impact aspect and included a diagram showing surrounding basements and lower ground floors. In order to ensure compliance with the new policy a planning search of the surrounding properties has been carried out, summary of findings:

- . No record of basements on the side same side of Crossfield Road as the proposed development.
- Only basement on Crossfield Road is on the opposite side; Hall School - Middle School.
- No record of basements locally on Eaton Avenue to South of Development.
- Basement in closest proximity to development is 28 Adamson Road.

engineering

- Record of "Lower Ground Floor Flats" 6, 8, 10 and 12 Strathray Gardens east of proposed development. The floor level of the flats are below Strathray Road but level with their rear gardens.
- · 14 Strathray Gardens existing basement has been seen in applications, the levels are understood to be similar to the neighbouring flats.

Refer to Figure 12

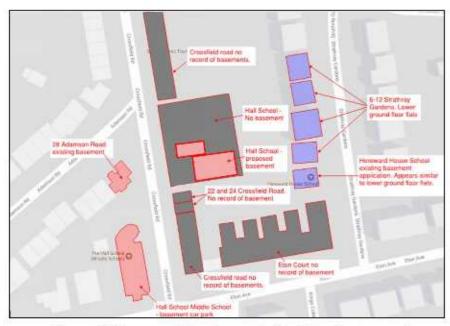


Figure 12: Summary of Planning search of neighbouring basements

The above information has been incorporated into GEA's updated report. refer to section 2.3 on Page 5 for discussion on surrounding structures and section 9.0 and page 24 where cumulative impact is specifically discussed.

8.13

The conclusions drawn from the Basement Impact Assessment is that the proposed development, incorporating the mitigation measures described above, is unlikely to result in any specific land or slope stability issues. groundwater or surface water issues. The ground movement analysis has indicated that the predicted damage to the neighbouring properties will be Category 0 'Negligible' or Category 1 'Very Slight' within acceptable limits of Camden's Local Plan. For further information refer to updated Site Investigation Report in Appendix 3.

Nine

Construction Methodology

Programme

9.1

For an outline Programme of Works refer to separate document by GVA Document.

9.2

Some of the issues that affect the sequence of works on this project are:

- The stability of the existing building during demolition;
- The protection of adjacent buildings;
- Forming sensible access onto the site to minimise disruption to the neighbouring residents;
- Providing a safe working environment;
- Not breaching the tree preservation order.

9.3

The proposed works involve the partial demolition of the existing buildings on the site and the construction of a new steel framed structure varying from one to four storeys over a single-storey basement.

9.4

The undertaking of such projects is specialist work and EWP will be involved in the selection of an appropriate Contractor who will need the relevant expertise and experience for this type of project.

9.5

Once the works commence EWP will have an ongoing role on site to monitor that the works are being carried out generally in accordance with our design and specification. This role will typically involve weekly site visits at the very beginning of the Contract and fortnightly thereafter. A written report of each site visit is to be provided for the Design Team, Contractor and Party Wall Surveyor.

9.6

The Contractor is entirely responsible for maintaining the stability of all existing buildings and structures, within and adjacent to the works, and of all the works from the date for possession of the site until practical completion of the works.

Noise and Vibration

9.7

The Contractor shall undertake the works in such a way as to minimise noise, dust and vibration when working close to adjoining buildings in order to protect the amenities of the nearby occupiers. The breaking out of existing structure shall be carried out by saw cutting where possible to minimise vibration to the adjacent properties and associated construction noise. All demolition and excavation work will be undertaken in a carefully controlled sequence, taking into account the requirement to minimise vibration and noise.

Monitoring

9.8

Monitoring of the ground and adjacent structures will consist of visual and measured monitoring. Prior to commencing works, the Contractor will identify all adjacent assets and buried services, and provide a schedule of condition of all adjacent properties with photographs agreed with relevant Party Wall Surveyors. The locations for monitoring targets and trigger limits will also be agreed. Monitoring will take place on a weekly basis during the main demolition and construction works. For any movements recorded above the agreed limits, all works stop until the cause of the movement can be established and a solution developed and agreed with Elliott Wood Partnership. Before commencement of excavation works, targets will be set up on the piled wall, to ensure that any movement during excavation is within allowable limits. Refer to Elliott Wood 'Movement Monitoring' report for further details.

9.9

An allowance for groundwater monitoring will be made during the construction period, the extent and regularity will be agreed with Camden Council.

9.10

Visual monitoring the adjoining structures and highway will be carried out during the works to monitor any cracking that may occur. For any cracking above Burland damage category 1 (cracks >1mm), all works will stop until the cause of the cracking can be established and a solution developed and agreed with Elliott Wood Partnership.

elliottwood

Stage 1: Site Set-Up

9.11

The services within around the site should be identified and isolated as necessary. Erect a fully enclosed painted site hoarding.

Stage 2: Enabling Works

9.12

The contractor will most likely set up the site accommodation and welfare facilities within the existing sports field at the rear of the site. This is subject to advice from Barrell Tree Consultancy and Tree Protection Officer.

Stage 3: Demolition of the Existing Structure

9.13

The contractor is to demolish the existing Centenary (Wathen Building) and Wathen Hall buildings above ground level and establish a sequence that maintains the stability of the building at all times. The Old School is to be maintained.

9.14

The Contractor shall provide adequate temporary support to ensure the stability of the party walls and adjacent structures throughout the works where required.

9.15

Where possible all below ground obstructions are to be removed from site so that the proposed works can progress without issue. The site is to be cleared of debris and levelled to allow for a CFA piling rig to access site.

Stage 4: Proposed Substructure

9.16

The contractor is to demolish the existing Centenary (Wathen Building) and Wathen Hall buildings above ground level and establish a sequence that maintains the stability of the building at all times. The Old School is to be maintained.

9.17

The Contractor shall provide adequate temporary support to ensure the stability of the party walls and adjacent structures throughout the works where required.

9.18

Where possible all below ground obstructions are to be removed from site so that the proposed works can progress without issue. The site is to be cleared of debris and levelled to allow for a CFA piling rig to access site.

Stage 4: Proposed Substructure

9.19

There are two different methods of basement substructure construction: new contiguous piles with liner wall and CFA piles with pile caps installed at the ground level. This is subject to detailed temporary work design.

- Carry out required demolition work and construct temporary access platform to allow access for CFA piling rig to install piles.
- 2. The CFA piling rig is to cast all internal and perimeter piles from high level for new single-storey basement.
- 3. While installing piles construct new continuous capping beam to top of existing basement wall. Once all piles install complete continuous capping beam.
- 4. Install lateral props between capping beams. Remove high level props to existing basement.
- 6. Install all below ground drainage and heave protection. Cast suspended basement slab.
- Cast reinforced concrete liner walls, columns and core walls to the underside of ground floor. Install ground floor structure.
- 8. Erect tower cranes. Suitable locations for which could be within the rear sports field and within the proposed building.

Stage 5: Proposed Superstructure

9.20

Construct the lift core, install steel frame with composite concrete on metal deck floor.

Structural and Civil Engineering Planning Report & Basement Impact Assessment

Ten

Sustainability

10.1

The structural design has been prepared in line with the principles of "lean design". This approach leads to an efficient structural solution that, where practically possible, uses composite design, direct load paths, and minimises the implementation of transfer structures.

10.2

The steelwork has typically been designed to act compositely with the reinforced concrete floor slabs, except in areas where floor depths are limited by the existing site constraints and the steelwork is proposed within the depth of the slab. Transfer structures are limited to over the sports hall only.

10.3

The flowing table summarises how other sustainable opportunities are being considered for inclusion within the structural specification:

Opportunity	Comments
Over 50% GGBS substitute for cement in concrete mixes	This can be adopted within all insitu concrete structure works. The % substitute is to be confirmed during the detailed design stage.
30% recycled coarse	It is possible to substitute a percentage of the coarse aggregate with recycled material that could have a negligible effect on the overall concrete strength.
aggregate substitution in concrete mixes	Location of batching plants, availability and cost of replacement aggregates will be reviewed as part of the detailed design of the concrete mix.
	Well graded recycled concrete aggregate (RCA) may also be used.
Reuse of materials from existing buildings on site	It may be possible to utilise the demolished material from the buildings e.g. for the temporary piling mat.
Power floating of insitu concrete floor slabs	Power float the floor slabs to ensure suitably level floors and avoid the need for additional levelling screed.

Eleven

Structural Design Criteria

11.1

Codes and Standards used for Structural Design

Where appropriate, the following codes and regulations will be applied in the structural design:

Approved Document A - Structure	
Weights of Building Materials	BS 648
Eurocode Basis of Structural Design	BS EN 1990
Eurocode 1 Actions on Structures	BS EN 1991
Eurocode 2 Design of Concrete Structures	BS EN 1992
Eurocode 3 Design of Steel Structures	BS EN 1993
Eurocode 6 Design of Masonry Structures	BS EN 1996
Eurocode 7 Geotechnical Design	BS EN 1997

Documents may be added to the list as and when specific circumstances arise.

11.2

Loadings

The materials used in the project will use the following densities for load calculation.

Reference BS EN 1991 -1

Material	Load (kN/m3)
Concrete (Reinforced)	25.0
Steel	78.5
Brickwork	20.0
Blockwork	16.0
Glass	27.9
Screed	19.0

The following tables give values for the proposed design load allowances for the building.

	Finishes (kN/m2)	Live (kN/m2)	Partitions (kN/m2)
Classrooms	2.5	3.0	1.0
Studio	2.5	5.0	1.0
Corridors, stairways	2.5	4.0	•
Plantroom	2.5	7.5	920
Roof (plant loading)	2.5	5.0	(2)
Roof (sedum loading)	3.0	1.5	(50
Roof (other)	1.5	1.5	1.0

11.3

Wind Loading

Wind loads will be in accordance with BS EN 1991 and should be considered in conjunction with notional loads on the structure and combinations of factored and unfactored dead and imposed loads.

Grid Reference	TQ 269 845
Design annual risk	50 years
Basic Wind Speed, Vb	21.4 m/s
Site altitude	57m
Probability factor, Sp	1.0
Seasonal factor, Ss	1.0
Directionality factor, Sd	1.0
Nearest distance to sea	65 km

11.4

Vertical and Lateral Deflections

Vertical Deflections - The following vertical deflection limits will be used in the design of all new structural members. Where possibly affected, nonstructural elements should be designed to accommodate these movements. The steel frame inclusive of any beam is to be designed/fabricated to allow for pre-cambering in order to optimise the overall design of the structural floor and subsequently to satisfy the serviceability check for the predicted deflections.

Element	Deflection Type	Limit
Reinforced Concrete Beams and Slabs	Long term deflection due to dead and imposed loads (including long term creep effects of sustained loading)	L/250
	Incremental deflection due to dead and imposed loads occurring after construction of finishes and partitions (including long term creep effects of sustained loading)	L/500
Steel Beams - General	Elastic deflection due to dead and imposed loads (subtracting camber, if any)	L/250
Steel Beams Supporting Plaster or Brittle Finishes	Elastic deflection due to imposed loads	L/360
Steel Beams Supporting Non-Brittle Finishes	Elastic deflection due to imposed loads	L/300
Steel Beams Supporting Masonry Partitions	Elastic deflection due to imposed loads	L/500
Secondary Framing	Elastic deflection due to wind load	L/360

Note:

L=distance between supports for span considered. For cantilevers, L is equivalent to twice cantilever length.

Lateral Deflections - Analysis and design of the lateral load resisting system is based on the following allowable drift criteria:

Maximum Total Drift: H/500 (under service load conditions)

Maximum Interstorey Drift: h/500 (under service load conditions)

Where H = Total building height

h = Storey height under consideration

Where possibly affected, non-structural elements should be designed to accommodate these movements.

Tolerances

The structure is to be built, as a minimum, to tolerances stated in the National Structural Steelwork Specification and National Structural Concrete Specification. Specified tolerances may differ from the NSSS or NSCS as required to suit any specific building requirements.

11.5

Design Life

The structural frame will be designed in accordance with the relevant Eurocodes which provide a design life of 50 years. Appropriate concrete cover for concrete elements (taking into consideration sulphates, fire, carbonation, chlorides, and freeze/thaw attack) and paint/galvanising systems for steel elements will be specified as required to provide adequate protection. Periodic inspection and maintenance will be required throughout the life of the building to ensure protection measures are performing adequately. External structures will require more frequent inspection and maintenance than internal structures due to more severe exposure conditions.

11.6

Methods of Analysis and Design

The following programmes will be used to assist with the analysis and design of the existing and proposed structures.

Software	Actions
Tekla Structural Designer	Global analysis and design,
Robot	BIM compatible
TEDDS	Global analysis and design,
Excel Spreadsheets (bespoke)	Finite Element analysis and design

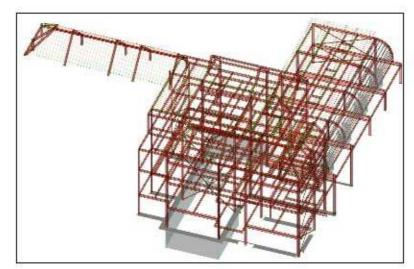


Figure 13: 3D analytical model view

Outline Material Specification:

Material	Specification
Concrete – Superstructure Elements	Minimum 40N/mm2 cube strength. Minimum cement content and maximum w/c ratio to be adjusted to suit exposure conditions taking into consideration carbonation, chlorides, and freeze/thaw attack. Cement Replacement – 50% GGBS, Course Aggregates – 20% Recycled Course Aggregate (RCA)
Reinforcing Bars	fy = 500 N/mm2 (High Yield – Deformed) to BS 4449
Reinforcing Mesh	fy = 500 N/mm2 (Minimum Yield Strength) to BS 4483
Structural Steelwork	Grade S275/S355 as required
Bolts	Grade 8.8 to BS 4190
Welding	To Comply with BS EN 1011

ellottwood

engineering a better **society**

London

46 – 48 Foley St W1W 7TY +44 207 499 5888

Wimbledon

241 The Broadway London SW19 1SD +44 208 544 0033

Nottingham

1 Sampsons Yard Halifax Place Nottingham NG1 1QN +44 870 460 0061

www.elliottwood.co.uk

The Hall School 23 Crossfield Road Hampstead NW3 4NU

Movement Monitoring Report

Job number: 2190008 Revision: P2

Status: Preliminary

Date: June 2019

Document Control

		remarks:	Secant Piled Wall Added					
revision:	P1	prepared by:	Suzanna Cooper	checked by:	Agata Downey	approved by:	James Souter	
date:	04/03/19	signature:	Engineer	signature:	Senior Engineer	signature:	Associate Director	

		remarks:	Trigger Levels Updated				
revision:	P2	prepared by:	Suzanna Cooper	checked by:	Agata Downey	approved by:	James Souter
date:	06/06/2019	signature:	Engineer	signature:	Senior Engineer	signature:	Associate Director

2 of 7

The Hall School

Contents

1.0	Introduction	page	4
2.0	General	page	4
3.0	Monitoring of Perimeter Wall Structures	page	4
4.0	Trigger Levels	page	6

1.0 Introduction

1.1 Elliott Wood Partnership Ltd has been appointed to act as structural and civil engineers for the proposed redevelopment of the Hall School site, further details of which can be found in the 'Structural and Civil Engineering Planning Report and Basement Impact Assessment'. This report sets out the proposed movement monitoring regime to be carried out during the works. It will be updated to incorporate any specific requirements or trigger level limits agreed under the Party Wall Awards.

2. General

- 2.1. The contractor shall be responsible for establishing and setting out all levels and data in order to coordinate any work with the future proposed constructions.
- 2.2. The integrity of the excavation is to be maintained by the contractor at all times.
- 2.3. The contractor shall take all necessary precautions to ensure that noise, dust and vibration as a result of the works are kept to a minimum.

Monitoring of Perimeter Wall Structures

- 3.1. The contractor is to identify all buried services provide a schedule of conditions of all adjacent properties with photographs agreed with the CA and relevant wall surveyors prior to works commencing.
- 3.2. Any cracks to the fabric of the adjacent structures of perimeter retained walls are to have graduated tell tales applied prior to commencement of all demolition works, or as they are uncovered, subject to the contractor gaining approval from the respective party wall surveyors.
- In accordance with the Burland Category of Damage, the category of damage shall not exceed "1
 Very Slight". This limits crack width to 1mm and tensile strain to 0.05-0.075.
- 3.4. The perimeter walls shall be monitored regularly for signs of movement via the following methods.

4 of 7

- 3.4.1. Visual inspection
- 3.4.2. Accurate survey techniques
- 3.4.3. Graduated tell tales

- 3.5. Movement shall be measured with the use of prism reflector targets allowing measurement of movement in all three directions using an electronic distance measuring instrument (EDM). Location of monitoring targets shall be agreed prior to commencing works and shall be recorded on survey drawings and results tabulated and presented graphically and submitted to the CA on a weekly basis.
- 3.6. During demolition, excavation and basement works, visual monitoring should be carried out daily in conjunction with measured monitoring in the morning and evening. Once basement works have been completed, measured monitoring to be carried out weekly whilst daily visual monitoring should be maintained.
- 3.7. Monitoring of movement shall have a minimum accuracy of ± 1 mm. Monitoring cracks shall have a minimum accuracy of ± 0.2 mm.
- 3.8. Exact monitoring positions to be agreed with the contractor/surveyor to permit a line of sight. 3-D monitoring to be undertaken weekly by an independent survey company during the main demolition and construction works until the demolition and basement works are complete. Following this, monitoring should continue on a monthly basis. During the defects/liability period, two measurements should be taken at least six months apart.

5 of 7

Trigger Levels

- 4.1. Monitoring to be undertaken for a suitable period prior to main excavation works commencing to enable base movement due to daily thermal effects to be established.
- 4.2. Readings should be taken at the same time each day to minimise the effects of temperature fluctuations.
- 4.3. Frequency of monitoring to be in accordance with CIRIA Guide C579.
- 4.4. Lateral or vertical movements and deflections of the perimeter retained party walls and adjacent structures above those due to thermal effects will be monitored based on a traffic light system to be proposed by the contractor based on the following trigger points (to be agreed with party wall surveyor):

Adjacent to Contiguous Piled Wall			
LEVEL	ALLOWABLE HORIZONTAL MOVEMENT	ALLOWABLE VERTICAL MOVEMENT	ACTIONS TO BE TAKEN
Green	Up to 9mm	Up to 6mm	Site works and frequency of monitoring can proceed as normal.
Amber	Exceeding 9mm but less than 15mm	Exceeding 6mm but less than 9mm	Monitoring frequency is increased and a meeting is to be convened to review working procedure and assumptions.
Red	Exceeding 15mm	Exceeding 9mm	All work to be immediately ceased and a meeting is to be convened to identify reasons for the exceedance of the limit and to discuss remedial actions that may be required.

Wimbledon 241 The Broadway

London SW19 1SD

tel. (020) 8544 0033 fax. (020) 8544 0066

Central London

46-48 Foley Street London W1W 7TY

tel. (020) 7499 5888 fax. (020) 7499 5444

Nottingham

1 Sampsons Yard Halifax Place Nottingham NG1 1QN

tel. 0870 460 0061 fax. 0870 460 0062

email: info@elliottwood.co.uk www.elliottwood.co.uk

Elliott Wood Partnership Ltd Structural and Civil Engineers

Suzie Cooper

From: Matt Legg <matt.legg@gea-ltd.co.uk>

Sent: 05 June 2019 17:26 **To:** Suzie Cooper

Cc: James Souter; Ella Seed

Subject: RE: Hall School - movement monitoring

Hi Suzie,

Having reviewed the movements, the most sensitive neighbouring elevations are those of 24 Crossfield B, C & D, which are predicted to sustain Category 0 and Negligible damage. Taking into consideration this we would suggest the following movement trigger levels:

Amber: 6mm Vertical and 9mm Horizontal Red: 9mm Vertical and 15mm Horizontal

The rationale for these triggers are as follows:

Amber – These are the maximum movements currently predicted by the analysis. If we reach these movements there will need to be a review of the analysis results in the context of the basement construction at the time, but work may continue.

Red – At these levels of movements the neighbouring elevations of 24 Crossfield B, C & D are still Category 0, however the retained elevation of the school referenced as 'The Hall B', will experience a level of damage that corresponds to halfway between Category 1 and Category 2. As these movements are above those predicted and are part way to resulting in a building damage of Cat 2, albeit a neighbouring elevation, work should be stopped, the construction work reviewed and the movement analysis revisited prior to work continuing.

Trust the above is useful and makes sense but do let me know if you require anything further. I am out of the office tomorrow but can be contacted on my mobile – 07912099709.

Best Regards

Matt

Geotechnical & Environmental Associates

Widbury Barn | Widbury Hill | Ware | SG12 7QE

tel 01727 824666 matt.legg@gea-ltd.co.uk www.gea-ltd.co.uk

Also in Notts tel 01509 674888 and Manchester tel 0161 209 3032

The contents of this email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom it is addressed. If you are not the intended recipient of this email you may not copy, forward, disclose or otherwise use it or part of it in any form whatsoever. If you have received this email in error please contact the sender immediately. The views herein do not necessarily represent those of the company.

Birmingham London Friars Bridge Court Chantry House 41- 45 Blackfriars Road High Street, Coleshill London, SE1 8NZ Birmingham B46 3BP T: +44 (0)20 7340 1700 T: +44 (0)1675 467 484 E: london@campbellreith.com E: birmingham@campbellreith.com Manchester Surrey No. 1 Marsden Street Raven House 29 Linkfield Lane, Redhill Manchester Surrey RH1 1SS M2 1HW T: +44 (0)1737 784 500 T: +44 (0)161 819 3060 E: manchester@campbellreith.com E: surrey@campbellreith.com **Bristol** UAE Office 705, Warsan Building Hessa Street (East) Wessex House Pixash Lane, Keynsham PO Box 28064, Dubai, UAE Bristol BS31 1TP T: +44 (0)117 916 1066 E: bristol@campbellreith.com T: +971 4 453 4735 E: uae@campbellreith.com Campbell Reith Hill LLP. Registered in England & Wales. Limited Liability Partnership No OC300082 A list of Members is available at our Registered Office at: Friars Bridge Court, 41- 45 Blackfriars Road, London SE1 8NZ VAT No 974 8892 43