SUDS Strategy

in connection with the proposed development at

No. 9 Nassington Road

Camden

London

NW3 2TX

for

Monique Branchmoore

LBH4572suds Ver 1.0

March 2019

LBH WEMBLEY
ENGINEERING

Site: No. 9 Nassington Road, Camden, London, NW3 2TX

Client: Monique Branchmoore

LBH4572suds Page 2 of 21

	DOCUMENT CONTROL						
	Report Ref: LBH4343suds						
Version	Version Date Comment		Authorised				
			Seamus Lefroy-Brooks BSc(hons) MSc CEng MICE CGeol FGS CEnv MIEnvSc FRGS SiLC RoGEP UK Registered Ground Engineering Adviser NQMS SQP DoWCoP QP				
1.0	18th Mar 2019						

LBH WEMBLEY ENGINEERING

12 Little Balmer

Buckingham Industrial Park

Buckingham

MK18 1TF

Tel: 01280 812310

email: enquiry@lbhgeo.co.uk

website: www.lbhgeo.co.uk

LBH Wembley (2003) Limited. Unit 12 Little Balmer, Buckingham Industrial Park, Buckingham, MK18 1TF. Registered in England No. 4922494

Site: No. 9 Nassington Road, Camden, London, NW3 2TX

Client: Monique Branchmoore

LBH4572suds

Page 3 of 21

Contents

Co	ntents		3
Fo	reword	- Guidance Notes	4
1.	Introdu	uction	5
	1.1	Brief	5
	1.2	Guidance	5
	1.3	Report Structure	6
2.	The Sit	re	7
	2.1	Site Location	7
	2.2	Site Description	7
	2.3	Proposed Development	7
	2.4	Topography	8
3.	Surface	e Water Management (SWM)	10
	3.1	Site characteristics	10
	3.2	Ground Conditions	10
	3.3	SWM objectives for the development	10
	3.3.1	Water quantity	10
	3.3.2	Water quality	11
	3.3.3	Amenity	11
	3.3.4	Biodiversity	11
4.	Discus	sion	12
	4.1	Feasible Discharge routes	12
	4.2	Feasible Drainage Components	12
	4.3	Water Quantity	13
	4.4	Water Quality	13
	4.5	Amenity	13
	4.6	Biodiversity	13
	4.7	Maintenance	14
5.	Initial [Design Considerations	15
	5.1.1	Greenfield runoff rate	15
	5.2	Existing runoff rate	15
	5.3	Proposed Runoff Volumes	15
	5.3.1	Attenuation storage	16
6.	Conclu	ision	17

Site: No. 9 Nassington Road, Camden, London, NW3 2TX

LBH4572suds Client: Monique Branchmoore Page 4 of 21

Foreword - Guidance Notes

GENERAL

This report has been prepared for a specific client and to meet a specific brief. The preparation of this report may have been affected by limitations of scope, resources or time scale required by the client. Should any part of this report be relied on by a third party, that party does so wholly at its own risk and LBH WEMBLEY disclaims any liability to such parties.

The observations and conclusions described in this report are based solely upon the agreed scope of work. LBH WEMBLEY has not performed any observations, investigations, studies or testing not specifically set out in the agreed scope of work and cannot accept any liability for the existence of any condition, the discovery of which would require performance of services beyond the agreed scope of work.

VALIDITY

Should the purpose for which the report is used, or the proposed use of the site change, this report may no longer be valid and any further use of or reliance upon the report in those circumstances shall be at the client's sole and own risk. The passage of time may result in changes in site conditions, regulatory or other legal provisions, technology or economic conditions which could render the report inaccurate or unreliable.

THIRD PARTY INFORMATION

The report may present an opinion based upon information received from third parties. However, no liability can be accepted for any inaccuracies or omissions in that information.

Site: No. 9 Nassington Road, Camden, London, NW3 2TX LBH4572suds
Client: Monique Branchmoore Page 5 of 21

1. Introduction

It is proposed to deepen the existing basement at No. 9 Nassington Road and laterally extend to both the front and rear.

1.1 Brief

LBH WEMBLEY have been commissioned by Monique Branchmoore to prepare a SuDS strategy.

1.2 Guidance

The government advice is that developers should seek opportunities to reduce the overall level of flood risk through the appropriate application of sustainable drainage systems.

Sustainable drainage systems are designed to control surface water run off close to where it falls and mimic natural drainage as closely as possible. They provide opportunities to:

- reduce the causes and impacts of flooding;
- remove pollutants from urban run-off at source;
- combine water management with green space with benefits for amenity, recreation and wildlife.

The aim is to discharge surface run off as high up the following hierarchy of drainage options as reasonably practicable:

- 1. into the ground (infiltration);
- 2. to a surface water body;
- 3. to a surface water sewer, highway drain, or another drainage system;
- 4. to a combined sewer.

The London Borough of Camden requires drainage solutions to incorporate SuDS principles as laid out in the Non-Statutory Technical Standards¹ for Sustainable Drainage Systems and the London Plan².

For redevelopment sites where there is a net increase in impermeable area, development must include at least one 'source control' SuDS measure. Examples of potential Source Control measures include:

- blue/green roof
- rainwater harvesting
- bio-retention
- rain garden
- permeable paving

Underground storage/attenuation tanks are not encouraged and should be used as a last resort.

The Camden Local plan provides guidance for water and flooding under Policy CC3, where the council will seek to ensure a development reduces the risk of flooding where possible and will require a development to utilise Sustainable Drainage Systems (SuDS) in line with the drainage hierarchy to achieve a greenfield run-off rate where feasible.

² London Plan Chapter Five - London's Responses to Climate Change Policy 5.1.3 Sustainable Drainage

DEFRA March 2015 Non-Statutory Technical Standards (NSTS) for sustainable drainage systems

Site: No. 9 Nassington Road, Camden, London, NW3 2TX

Client: Monique Branchmoore

LBH4572suds Page 6 of 21

Additionally, the Camden Planning Guidance for Sustainability (CPG3) (July 2015, updated March 2018) states the following:

"All developments are expected to manage drainage and surface water on-site or as close to the site as possible, using Sustainable Drainage Systems (SUDS) and the hierarchy set out below.

The Council will expect plans and application documents to describe how water will be managed within the development, including an explanation of the proposed SUDS, the reasons why certain SUDS have been ruled out and detailed information on materials and landscaping.

The Council will expect developments to achieve a greenfield surface water run-off rate once SUDS have been installed. As a minimum, surface water run-off rates should be reduced by 50% across the development."

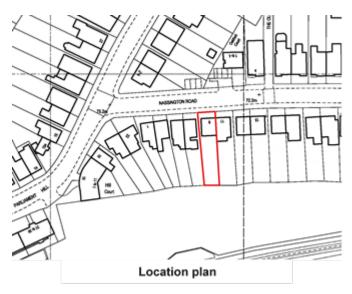
1.3 Report Structure

This report describes the site characteristics, following which consideration is given to the feasibility of SUDS techniques for this site. Finally, the recommended SUDS strategy to mitigate the risk of flooding across the site is presented in accordance with the 2015 CIRIA C753 SUDS Manual.

The assessment has been based on information held in public records together with archive information.

Client: Monique Branchmoore

2. The Site


Site:

2.1 Site Location

The site is situated on the southern side of Nassington Road, within the South Hill Park Estate Conservation Area, approximately 300m to the northeast of the Hampstead Heath Rail Station.

The London Overground railway runs through a cutting, approximately 60m to the south of the site.

The site may be located approximately by postcode NW3 2TX or by National Grid Reference 527585, 185770.

2.2 Site Description

The site is occupied by a late 19th Century four storey semi-detached house with a ground floor level set at the street level of approximately +72m OD. A lower ground floor is present beneath the entire footprint, albeit the front area is a former coal bunker, while the rear is occupied by habitable space that opens out to a patio set approximately 3m lower than street level.

Rear elevation of No. 9 & No. 11Nassington Road

Beyond the patio is the rear garden that slopes down towards the rear boundary.

The roof at present drains directly to a combined sewer below Nassington Road. All the remaining areas of the site appear to drain southwards into the rear garden area.

2.3 Proposed Development

It is proposed to deepen the existing basement at the property to provide headroom for habitable space. A front extension and lightwell will be created. A single storey rear extension will also be constructed as indicated below, necessitating the removal of a pear tree.

It is proposed that the rear section of the existing roof, together with the new extension should drain via a green roof and area of porous paving, into the rear garden area.

No. 9 Nassington Road, Camden, London, NW3 2TX LBH4572suds Client: Monique Branchmoore Page 9 of 21

The following table summarises the envisaged potential changes to the drainage arrangements associated with the proposed scheme.

Site:

Schedule of estimated approximate areas for outline SuDS assessment								
	Existing	Cv	%	%	Proposed	Cv	%	%
Garden	195 m ²	0.40	50	50	160 m²	0.40	42	42
Building (to sewer)	95 m²	0.77	25		80 m²	0.77	20	
Building (to garden)				50	70 m ²	0.77	18	
Green					10 m ²		3	58
Impermeable	90m ²	0.77	25		25 m ²	0.77	7	
Pervious Paving					35m ²	0.77	10	
Total:	380 m²		100	100	380 m ²		100	100

It is envisaged that the net impermeable area of the property that drains to the combined sewer beneath Nassington Road can be reduced by 14% and that this flow could potentially be directed via the proposed stepped planters that are proposed in the front lightwell, which could be designed to provide some flow attenuation. A non-return valve should be fitted to the system to guard against any potential sewer flooding.

The area of the property draining to the rear garden will be increased by 52%. It has been assumed that the rear patio/terrace can be constructed with pervious paving over a porous substrate that will provide additional attenuation storage.

Site: No. 9 Nassington Road, Camden, London, NW3 2TX LBH4572suds Client: Monique Branchmoore Page 10 of 21

3. Surface Water Management (SWM)

3.1 Site characteristics

Thames Water records show that the site is served by a combined trunk sewer located in Nassington Road.

3.2 Ground Conditions

The site is underlain by the London Clay Formation, which is essentially impermeable.

3.3 SWM objectives for the development

The drainage strategy follows the guidance set out in the 2015 CIRIA C753 SUDS Manual; the principle of SUDS design is that surface water runoff is managed for maximum benefit. The types of benefits that may be achieved by utilising SUDS are categorised by the design objectives outlined in the following section.

3.3.1 Water quantity

The design objective is to control the quantity of runoff to support the management of flood risk and maintain and protect the natural water cycle.

In order to ensure that the surface water runoff from a developed site does not have a detrimental impact on people, property and the environment, it is important to control the rate and volume of the discharge from the site.

Sustainable Drainage Systems (SuDS) should be incorporated into the design of a development unless there are practical reasons for not doing so. In aiming to achieve greenfield runoff rates, surface water runoff should be managed using the following techniques, as outlined in order of priority by the following drainage hierarchy:

SUDS Drainage Hierarchy	Suitable for the site? (Y/N)	Comment
Store rainwater for later use	Y	Consideration could be given to harvesting the discharge from roof of the new rear extension
Use infiltration techniques	N	The London Clay is unsuitable for soakaway infiltration.
Attenuate rainwater in ponds or open water features for gradual release	Y	Attenuation storage will be provided by green roofs and planters.
Attenuate rainwater by storing in tanks or sealed water features for gradual release	Y	There is scope for the inclusion of storage in a porous sub-base to pervious paving beneath the rear patio/terrace. If necessary, there is scope for the construction of sealed tanks beneath the rear garden
Discharge rainwater direct to a watercourse	N	There is no available watercourse.
Discharge rainwater to a surface water sewer/drain	N	No surface water sewer is serving the site.
Discharge rainwater to the combined sewer	Y	Discharge to existing combined sewer serving the site.

Site: No. 9 Nassington Road, Camden, London, NW3 2TX

Client: Monique Branchmoore

LBH4572suds Page 11 of 21

The hierarchy above seeks to ensure that surface water runoff is controlled as near to its source as possible to mimic natural drainage systems and retain water on or near to the site.

Before disposal of surface water to the public sewer is considered, all other options set out in the above hierarchy need to be exhausted.

3.3.2 Water quality

The water quality design objective is to manage the quality of runoff to prevent pollution, supporting the management of water quality in the receiving surface waters and groundwater and design system resilience to cope with future change.

3.3.3 Amenity

The amenity design objective is to create and sustain better places for people by implementing the following criteria for the site:

- Maximise multi-functionality
- Enhance visual character
- Deliver safe surface water management systems
- Support development resilience/adaptability to future change
- Maximise legibility
- Support community environmental learning

3.3.4 Biodiversity

The biodiversity design objective is to create and sustain better places for nature by implementing the following criteria for the site:

- Support and protect natural local habitats and species
- Contribute to the delivery of local biodiversity objectives
- Contribute to habitat connectivity
- Create diverse, self-sustaining and resilient ecosystems

Site: No. 9 Nassington Road, Camden, London, NW3 2TX

Client: Monique Branchmoore

4. Discussion

The following sections discuss the presently envisaged proposals for drainage components.

4.1 Feasible Discharge routes

The surface water falling on the roof will be directed to the areas of green roof and thence to a porous substrate beneath the rear terrace. The residual attenuated run-off from these will be directed to the rear garden area.

4.2 Feasible Drainage Components

SUDS Component	Description	Suitable for the site? (Y/N)	Comment
Rainwater harvesting	Collection of rainwater runoff from roofs or impermeable areas for reuse.	Y	Consideration could be given to harvesting the discharge from roof of the new rear extension.
Green roofs	Vegetated areas installed on the top of buildings provide visual and ecological benefits in addition to surface water runoff reduction and enhanced building performance.	Y	Attenuation storage will be provided by green roofs and planters.
Blue roofs	Roof design intended to store water providing attenuation storage.	N	There is not scope for blue roof storage.
Infiltration systems	Infiltration can contribute to reducing runoff rates and volumes while supporting base flow and groundwater recharge processes.	N	The London Clay is not suitable for soakaway infiltration.
Proprietary treatment systems	Proprietary treatment systems are manufactured products which remove specified pollutants from surface water runoff.	N	Not required
Filter strips/drains	Filter strips are gently sloping strips of grass that provide treatment of runoff from adjacent impermeable areas. Filter drains are gravel or stone filled trenches which provide temporary subsurface storage for attenuation conveyance and filtration of surface water runoff.	? Y	The rear garden can in some ways be regarded as performing the function of a filter strip. The inclusion of filter drains could possibly be considered as an alternative to buried attenuation tanks.
Swales	Swales are shallow, flat bottomed, vegetated open channels designed to convey, treat, and attenuate surface water runoff.	? Y	The rear garden is of limited size but a small area of swale could possibly be considered to manage any overland flow provided that this did not give rise to any slope instability.

LBH WEMBLEY ENGINEERING

LBH4572suds

Page 12 of 21

Site: No. 9 Nassington Road, Camden, London, NW3 2TX

Client: Monique Branchmoore

LBH4572suds

Page 13 of 21

Bioretention systems	Rain gardens or shallow landscaped depressions that may reduce surface water runoff rates and volumes and/or treat pollution using engineered soils and vegetation.	? Y	Again there is limited scope for a rain garden to be formed within the garden area
Trees	Trees aid surface water management through transpiration, inception, infiltration and phytoremediation.	Y	There are a number of trees in the rear garden.
Pervious Pavements	Pervious pavements facilitate the infiltration of surface water into a subsurface structure where filtration, adsorption, biodegradation or sedimentation may also provide treatment of the runoff.	Y	There is scope for pervious paving to the new rear patio/terrace.
Attenuation storage tanks	Attenuation storage tanks provide below-ground void space for the temporary storage of surface water before infiltration, controlled release or use.	? Y	There is limited scope for such tanks beneath the rear garden, but these could not discharge by gravity to the sewer and hence are unlikely to be of use.
Detention basins	Attenuation storage in the form of dry landscaped depressions.	Y	There is limited scope for such a feature in the rear garden.
Ponds and wetlands	Permanent water filled ponds or wetlands that provide attenuation storage or treatment of surface water runoff.	N	A permanent pond is probably not to be encouraged within the site because it could give rise to slope stability concerns.

4.3 Water Quantity

Runoff rates and volumes will be reduced by various SUDS components.

4.4 Water Quality

The soil and uptake zone of the green roofs will filter airborne pollutants and pollutants within rainwater, reducing the amount of pollution delivered to the local drainage system. Given that only roof runoff is contemplated, there is no expectation that any treatment will be necessary to meet the appropriate water quality requirements for the method of discharge.

4.5 Amenity

The proposed green roofs will provide valuable amenity in a densely urban area.

4.6 Biodiversity

The green roof will act as a "stepping stone" or "island" habitat providing ecological value in a highly urbanised area.

Site: No. 9 Nassington Road, Camden, London, NW3 2TX

Client: Monique Branchmoore

LBH4572suds

Page 14 of 21

It is recommended that a sufficient depth of substrate is used on the green roof (no less than 80mm) and the topography is varied (80mm-150mm) in order to provide a range of habitats for invertebrates.

4.7 Maintenance

Suds Component	Maintenance	
	Regular inspections (Annually or after storms)	 Inspect all components including soil substrate, vegetation, drains, irrigation systems, membranes and roof structure for proper operation, integrity of waterproofing and structural stability. Inspect soil substrate for evidence of erosion channels and identify any sediment sources. Inspect drain inlets to ensure unrestricted runoff from the drainage layer to the conveyance or roof drain system. Inspect underside of roof for evidence of leakage.
Green Roofs	Regular maintenance (Biannually)	 Remove debris and litter to prevent clogging of inlet drains and interference with plant growth. During establishment (ie year one), replace dead plants as required (Monthly) Post establishment, replace dead plants as required Remove nuisance and invasive vegetation, including weeds. Mow grass as required, and clippings should be removed.
	Remedial action (As required)	 If erosion channels are evident, these should be stabilised with extra soil substrate similar to the original material, and sources of erosion should be controlled. If drain inlet has settles, cracked or moved, investigate and repair as appropriate.
	Regular	 Brush and clear sand joints of any vegetation or moss. Remove sediment from silt traps (Annually)
Pervious Paving	Monitoring	 Initial inspection (monthly for three months after installation). Inspect for evidence of poor operation and/or weed growth – if required, take remedial action. Monitor inspection chambers (annually).

Maintenance plans and schedules should be prepared in the design phase for the specific maintenance needs of each SUDS component, and necessary adjustments made to suit requirements.

Site: No. 9 Nassington Road, Camden, London, NW3 2TX

Client: Monique Branchmoore

5. Initial Design Considerations

5.1.1 Greenfield runoff rate

The site comprises approximately 380m² of which 50% is impermeably surfaced.

The runoff can be calculated using Wallingford tool

Greenfield Runoff for the site					
Return Period	Greenfield runoff rate (l/s)	Runoff volume in 6 hour storm event (m³)			
1 in 1 year	0.07	1.5			
1 in 2 year (QBAR)	0.08	1.5			
1 in 30 year	0.19	4.2			
1 in 100 year	0.26	5.6			

5.2 Existing runoff rate

The site comprises approximately 185m² (0.019ha) of impermeable surfacing.

The runoff can be calculated using the Wallingford tool

Existing Runoff for the site					
Return Period	Existing runoff rate (I/s)	Runoff volume in 6 hour storm event (m³)			
1 in 1 year	1.6	4.0			
1 in 2 year	2.1	4.9			
1 in 30 year	4.0	9.0			
1 in 100 year	5.1	11.7			

5.3 Proposed Runoff Volumes

There will be an increase in impermeable area post-development and there is an additional potential increase in runoff associated with future climate change.

To mitigate the potential increase in runoff volume in the case of a storm event, the drainage strategy follows the guidance from the 2015 CIRIA C753 SUDS Manual.

LBH4572suds

Page 15 of 21

Site: No. 9 Nassington Road, Camden, London, NW3 2TX

Client: Monique Branchmoore

LBH4572suds

Page 16 of 21

5.3.1 Attenuation storage

HR Wallingford's Surface water storage volume estimation tool has been used to undertake attenuation storage volume calculations. These calculations suggest that a total of around 3m² would be required to maintain greenfield runoff rates for the 1 in 100 year rainfall event in consideration of up to 40% climate change allowance. It is envisaged that this might be achieved in this case through storage comprising +/-0.5m³ green roof and +/-2.5m³ porous substrate to the proposed rear terrace/patio area.

Site: No. 9 Nassington Road, Camden, London, NW3 2TX

Client: Monique Branchmoore

LBH4572suds

Page 17 of 21

6. Conclusion

It has been demonstrated that there are opportunities to introduce various SuDS type features as part of the proposed development and that a combination of storage features can be used to mitigate the risk of future surface water flooding, taking into account potential climate change.

Site: No. 9 Nassington Road, Camden, London, NW3 2TX

Client: Monique Branchmoore

LBH4572suds Page 18 of 21

Appendix

DRAINAGE PRO-FORMA
PRELIMINARY DRAINAGE CALCULATIONS

LBH WEMBLEY ENGINEERING

Site: No. 9 Nassington Road, Camden, London, NW3 2TX
Client: Monique Branchmoore

LBH4572suds
Page 19 of 21

TR	TRACKER OF DRAINAGE ISSUES RAISED BY L B HACKNEY						
Ref :	Date	Issue	Date	Response			
15	18/10/18	I have not been able to locate a drainage strategy based on the principle of sustainable drainage systems (SuDS) as part of the submission. Due to the absence of the above information, we have not been able to assess the drainage proposal. As a result, we are unable to support this application as it has not been demonstrated that the proposed development will not increase the risk of flooding on and offsite and provide SuDS where appropriate. The drainage strategy should refer and comply with the London Plan policy 5.13, supplementary planning guidance (SPG) on sustainable design and construction and the adopted Hackney Development Management Local Plan policy 43. Refer to Hackney Sustainable Drainage Design and Evaluation guide on the Hackney website for further guidance.	05/11/18	Suds Strategy Ver 1.0			
1	8/11/18	Could LBH Wembley Engineering please provide the calculations to support the numbers in their report? These should include the different runoff rates, attenuation storage requirement calculations and the storage volume provided by the blue and green roof.	19/11/18	We attach basic attenuation storage requirement calculations produced by from the Wallingford tool but the actual design of the green and blue roofs has not been progressed.			
2a	8/11/18	Is it the intention to restrict the outflow at each green/blue roof, the flows are then combined into the courtyard and eventually into the River Lea?	19/11/18	Yes, this is the principle of the present proposal			
2b	8/11/18	Could more details be provided on how this would work by including more details in the drainage plan? i.e. flow controls, levels etc.	19/11/18	This would require the detailed design to be progressed.			
2c	8/11/18	How will the rest of the site drain?	19/11/18	There is no further part of the site beyond that which has been described.			

Site: No. 9 Nassington Road, Camden, London, NW3 2TX
Client: Monique Branchmoore

LBH4572suds
Page 20 of 21

2d	8/11/18	Pollution control is essential if surface water is to be collected from road surfaces and discharge into the River.	19/11/18	Agreed, but there is actually now no external component of the site at the front.
3	8/11/18	The preferred option would be to discharge surface water runoff into the River as indicated in the report. However, as there is no consultation carried out with the Environment Agency in regard to new outfall, it is recommended that an alternative drainage option should be included in this document in the event that the necessary approval/consent cannot be obtained	19/11/18	If EA approval to the watercourse discharge is refused, then we agree that a sewer discharge would have to be re-visited.
1	11/02/19	The calculations provided do not correspond with the numbers in the report. The report proposed to limit the discharge rate to greenfield runoff rates and stated that would result in a storage requirement of 30m³. However, the calculations submitted (HR Wallingford) showed that the minimum discharge rate was 5 l/s. The storage volume requirement has therefore been underestimated in the report - revised calculations should, therefore, be provided with the correct storage requirement	20/02/19	The numbers in the report now reflect the appended calculations and pro-forma. It is now estimated that 56m³ of storage would be required to meet greenfield run-off rates.
2	11/02/19	It should be noted that we do not automatically accept the minimum discharge rate of 5 l/s without evidence-based justification. Proprietary systems available in the market, together with an adequate drainage design can reduce the discharge rate to less than 5 l/s with minimal blockage risks.	20/02/19	It is estimated that up some 60m³ of storage is potentially available, and thus greenfield rates could be achieved if the drainage design can avoid blockages as suggested
3	11/02/19	The drainage layout should show where the storage volume will be available to attenuate surface water flows for the 1 in 100-year rainfall events plus an allowance for climate change. This is to ensure that sufficient space has been allowed for in the layout to attenuate the surface water.	20/02/19	The calculations suggest that a total of around 56m2 would be required to maintain greenfield runoff rates for the 1 in 100 year rainfall event with 40% climate change allowance. As per the indicated layout that this might be achieved through storage comprising +/- 20m³ green roof and +/- 30m³ blue roof and +/-10m³ porous substrate to the proposed courtyard area.

Site: No. 9 Nassington Road, Camden, London, NW3 2TX
Client: Monique Branchmoore

LBH4572suds
Page 21 of 21

SUDSER Page 1 of 7

Surface Water Drainage Pro-forma for new developments

LBH 4498

1. Site Details

Site	9 Nassington Road
Address & post code or LPA reference	NW3 2TX
Grid reference	527585, 185770
Is the existing site developed or Greenfield?	Developed
Is the development in a LFRZ or in an area known to be at risk of surface or ground water flooding? If yes, please demonstrate how this is managed, in line with DP23?	No
Total Site Area served by drainage system (excluding open space) (Ha)*	0.019

^{*} The Greenfield runoff off rate from the development which is to be used for assessing the requirements for limiting discharge flow rates and attenuation storage from a site should be calculated for the area that forms the drainage network for the site whatever size of site and type of drainage technique. Please refer to the Rainfall Runoff Management document or CIRIA manual for detail on this.

2. Impermeable Area

	Existing	Proposed	Difference	
			(Proposed-Existing)	
				Notes for developers
Impermeable area (ha)	0.018	0.022	0.004	If the proposed amount of impermeable surface is greater, then runoff rates and volumes will increase. Section 6 must be filled in. If proposed impermeability is equal or less than existing, then section 6 can be skipped and section 7 filled in.
Drainage Method (infiltration/sewer/watercourse)	Infitration / Combined Sewer	Infiltration / Combined Sewer		If different from the existing, please fill in section 3. If existing drainage is by infiltration and the proposed is not, discharge volumes may increase. Fill in section 6.

SUDSER Page 2 of 7

3. Proposing to Discharge Surface Water via

	Yes	No	Evidence that this is possible	Notes for developers
Existing and proposed Drainage calculations	Yes		HR Wallingford	Please provide calculations of existing and proposed run-off rates and volumes in accordance with a recognised methodology or the results of a full infiltration test (see line below) if infiltration is proposed.
Infiltration		No	Soakage will not be possible as the site is directly underlain by impermeable London Clay.	e.g. soakage tests. Section 6 (infiltration) must be filled in if infiltration is proposed.
To watercourse		No	There is no nearby watercourse.	e.g. Is there a watercourse nearby?
To surface water sewer		No	There is no nearby surface water sewer	Confirmation from sewer provider that sufficient capacity exists for this connection.
Combination of above		No	See above - Not possible.	e.g. part infiltration part discharge to sewer or watercourse. Provide evidence above.
Has the drainage proposal had regard to the SuDS hierarchy?	Yes		HR Wallingford	Evidence must be provided to demonstrate that the proposed Sustainable Drainage strategy has had regard to the SuDS hierarchy as outlined in Section 2.5 above.
Layout plan showing where the sustainable drainage infrastructure will be located on site.	Yes		See SUDS Layout Plan	Please provide plan reference numbers showing the details of the site layout showing where the sustainable drainage infrastructure will be located on the site. If the development is to be constructed in phases this should be shown on a separate plan and confirmation should be provided that the sustainable drainage proposal for each phase can be constructed and can operate independently and is not reliant on any later phase of development.

4. Peak Discharge Rates — This is the maximum flow rate at which storm water runoff leaves the site during a particular storm event.

	Existing Rates (I/s) (from Wallingford online tool and Procedure)	Proposed Rates (I/s) (taken as 50% Existing)	(Proposed -	% Difference (Difference / existing x 100)	
	1 Toccdure)				Notes for developers
Greenfield QBAR	0.08	N/A	N/A	N/A	QBAR is approx. 1 in 2 storm event. Provide this if Section 6 (QBAR) is proposed.
1 in 1	0.07	0.035	0.00	-50%	Proposed discharge rates (with mitigation) should aim to be equivalent to greenfield rates for
1 in 30	0.19	0.095	0.10		all corresponding storm events. As a minimum, peak discharge rates must be reduced by 50% from the existing sites for all corresponding rainfall events.
1in 100	0.26	0.13	0.01	-50%	
1 in 100 plus climate change	N/A	0.13	N/A	N/A	The proposed 1 in 100 +CC peak discharge rate (with mitigation) should aim to be equivalent to greenfield rates. As a minimum, proposed 1 in 100 +CC peak discharge rate must be reduced by 50% from the existing 1 in 100 runoff rate sites.

SUDSER Page 3 of 7

5. Calculate additional volumes for storage — The total volume of water leaving the development site. New hard surfaces potentially restrict

the amount of stormwater that can go to the ground, so this needs to be controlled so not to make flood risk worse to properties downstream.

	Greenfield runoff volume (m³)	Existing Volume (m³)	Proposed Volume (m³)	Difference (m³) (Proposed- Existing)	Notes for developers
					Notes for developers
1 in 1	1	4	4	0	Proposed discharge volumes (with mitigation) should be constrained to a value as close as is
1 in 30	4	9	8	-1	reasonably practicable to the greenfield runoff volume wherever practicable and as a minimum should be no greater than existing volumes for all corresponding storm events. Any
1 in 100 6 hour	6	12	11	-1	increase in volume increases flood risk elsewhere. Where volumes are increased section 6 must be filled in.
1 in 100 6 hour plus climate change	N/A	N/A	15	3	The proposed 1 in 100 +CC discharge volume should be constrained to a value as close as is reasonably practicable to the greenfield runoff volume wherever practicable. As a minimum, to mitigate for climate change the proposed 1 in 100 +CC volume discharge from site must be no greater than the existing 1 in 100 storm event. If not, flood risk increases under climate change.

6. Calculate attenuation storage — Attenuation storage is provided to enable the rate of runoff from the site into the receiving watercourse to be limited to an acceptable rate to protect against erosion and flooding downstream. The attenuation storage volume is a function of the degree of development relative to the greenfield discharge rate.

		Notes for developers
Storage Attenuation volume (Flow rate control) required to meet greenfield run off rates (m ₃)	6	Volume of water to attenuate on site if discharging at a greenfield run off rate. Can't be used where discharge volumes are increasing
Storage Attenuation volume (Flow rate control) required to reduce rates by 50% (m ₃)	2.5	Volume of water to attenuate on site if discharging at a 50% reduction from existing rates. Can't be used where discharge volumes are increasing
Storage Attenuation volume (Flow rate control) required to meet [OTHER RUN OFF RATE (as close to greenfield rate as possible] (m ₃) . 3 x Greenfield	7.5	Volume of water to attenuate on site if discharging at a rate different from the above – please state in 1st column what rate this volume corresponds to. On previously developed sites, runoff rates should not be more than three times the calculated greenfield rate. Can't be used where discharge volumes are increasing
Storage Attenuation volume (Flow rate control) required to retain rates as existing (m ₃)	2.3	Volume of water to attenuate on site if discharging at existing rates. Can't be used where discharge volumes are increasing
Percentage of attenuation volume stored above ground,	15%	Percentage of attenuation volume which will be held above ground in swales/ponds/basins/green roofs etc. If 0, please demonstrate why.

SUDSER Page 4 of 7

7. How is Storm Water stored on site?

Storage is required for the additional volume from site but also for holding back water to slow down the rate from the site. This is known as attenuation storage and long term storage. The idea is that the additional volume does not get into the watercourses, or if it does it is at an exceptionally low rate. You can either infiltrate the stored water back to ground, or if this isn't possible hold it back with on site storage. Firstly, can infiltration work on site?

	with on the storage. I many, can immudately work on the .		Notes for developers
Infiltration	State the Site's Geology and known Source Protection Zones (SPZ)	London Clay (nil SPZ)	Avoid infiltrating in made ground. Infiltration rates are highly variable and refer to Environment Agency website to identify and source protection zones (SPZ)
	Are infiltration rates suitable?	No	Infiltration rates should be no lower than 1x10 -6 m/s.
	State the distance between a proposed infiltration device base and the ground water (GW) level	n/a	Need 1m (min) between the base of the infiltration device & the water table to protect Groundwater quality & ensure GW doesn't enter infiltration devices. Avoid infiltration where this isn't possible.
	Were infiltration rates obtained by desk study or infiltration test?	n/a	Infiltration rates can be estimated from desk studies at most stages of the planning system if a back up attenuation scheme is provided
	Is the site contaminated? If yes, consider advice from others on whether infiltration can happen.	No	Advice on contaminated Land in Camden can be found on our supporting documents webpage Water should not be infiltrated through land that is contaminated. The Environment Agency may provide bespoke advice in planning consultations for contaminated sites that should be considered.
In light of the above, is infiltration feasible?	Yes/No? If the answer is No, please identify how the storm water will be stored prior to release	No	If infiltration is not feasible how will the additional volume be stored?. The applicant should then consider the following options in the next section.

SUDSER Page 5 of 7

Storage requirements

The developer must confirm that either of the two methods for dealing with the amount of water that needs to be stored on site.

Option 1 Simple — Store both the additional volume and attenuation volume in order to make a final discharge from site at the greenfield run off rate. This is preferred if no infiltration can be made on site. This very simply satisfies the runoff rates and volume criteria.

Option 2 Complex — If some of the additional volume of water can be infiltrated back into the ground, the remainder can be discharged at a very low rate of 2 l/sec/hectare. A combined storage calculation using the partial permissible rate of 2 l/sec/hectare and the attenuation rate used to slow the runoff from site.

		Notes for developers
Please confirm what option has been chosen and how much storage is required		The developer at this stage should have an idea of the site
on site.	Simple	characteristics and be able to explain what the storage
		requirements are on site and how it will be achieved.

8. Please confirm

		Notes for developers
Which Drainage Systems measures have been used, including green roofs?	3 m ³ Storage comprising 2.5m3 porous substrate to basement patio area and	SUDS can be adapted for most situations even where infiltration isn't feasible e.g. impermeable liners beneath some SUDS devices allows treatment but not infiltration. See CIRIA SUDS Manual C697.
Drainage system can contain in the 1 in 30 storm event without flooding	YES	This a requirement for sewers for adoption & is good practice even where drainage system is not adopted.
Will the drainage system contain the 1 in 100 +CC storm event? If no please demonstrate how buildings and utility plants will be protected.	YES	National standards require that the drainage system is designed so that flooding does not occur during a 1 in 100 year rainfall event in any part of: a building (including a basement); or in any utility plant susceptible to water (e.g. pumping station or electricity substation) within the development.
Any flooding between the 1 in 30 & 1 in 100 plus climate change storm events will be safely contained on site.	YES	Safely: not causing property flooding or posing a hazard to site users i.e. no deeper than 300mm on roads/footpaths. Flood waters must drain away at section 6 rates. Existing rates can be used where runoff volumes are not increased.

SUDSER Page 6 of 7

How will exceedance events be catered on site without increasing flood risks (both on site and outside the development)?	As present	Safely: not causing property flooding or posing a hazard to site users i.e. no deeper than 300mm on roads/footpaths. Flood waters must drain away at section 6 rates. Existing rates can be used where runoff volumes are not increased. Exceedance events are defined as those larger than the 1 in 100 +CC event.
How are rates being restricted (vortex control, orifice etc)	Orifice	Detail of how the flow control systems have been designed to avoid pipe blockages and ease of maintenance should be provided.
Please confirm the owners/adopters of the entire drainage systems throughout the development. Please list all the owners.	Monique Branchmoore	If these are multiple owners then a drawing illustrating exactly what features will be within each owner's remit must be submitted with this Proforma.
How is the entire drainage system to be maintained?	by management	If the features are to be maintained directly by the owners as stated in answer to the above question please answer yes to this question and submit the relevant maintenance schedule for each feature. If it is to be maintained by others than above please give details of each feature and the maintenance schedule. Clear details of the maintenance proposals of all elements of the proposed drainage system must be provided. Details must demonstrate that maintenance and operation requirements are economically proportionate. Poorly maintained drainage can lead to increased flooding problems in the future.

SUDSER Page 7 of 7

9. Evidence Please identify where the details quoted in the sections above were taken from. i.e. Plans, reports etc. Please also provide relevant drawings that need to accompany your proforma, in particular exceedance routes and ownership and location of SuDS (maintenance access strips etc

Pro-forma Section		Page Number
Section 2	Suds Report	var
Section 3	Suds Report	var
Section 4	Calculation Sheets	var
Section 5	Calculation Sheets	var
Section 6	Calculation Sheets	var
Section 7	Suds Report	var
Section 8	Suds Report	var

The above form should be completed using evidence from the Flood Risk Assessment and site plans. It should serve as a summary sheet of thedrainage proposals and should clearly show that the proposed rate and volume as a result of development will not be increasing. If there is an increase in rate or volume, the rate or volume section should be completed to set out how the additional rate/volume is being dealt with drainage proposals and should clearly show that the proposed rate and volume as a result of development will not be increasing. If there is an increase in rate or volume, the rate or volume section should be completed to set out how the additional rate/volume is being dealt with.

This form is completed using factual information from the Flood Risk Assessment and Site Plans and can be used as a summary of the surface water drainage strategy on this site.

VERSION	DATE	COMMENT	AUTHORISED
1	15th March 2019	Initial Issue	Seamus Lefroy-Brooks BSc(hons) MSc CEng MICE CGeol FGS CEnv MIEnvSc FRGS SiLC RoGEP UK Registered Ground Engineering Adviser NQMS SQP DoWCoP QP

GREENFIELD RUN-OFF

Catchment Area: 185sqm 0.019ha

PO Code: NW3 2TX

Hydrological

Region: 6 From Wallingford on-line tool

SAAR: 625mm From Wallingford on-line tool

SOIL type: 4 From Wallingford on-line tool

SPR: 0.47 Derived as follows:

SOIL	Sand	Clayey Sand	Sandy Clay	Clay	Rock
	1	2	3	4	5
SPR	0.1	0.3	0.37	0.47	0.53

From Wallingford on-line tool using IH 124 Method

Qbar: 220.15 Calculated from SPR and SAAR

Greenfield Peak

Run-off Rate: Growth curve Factor

 1 in 1
 187.1 l/sec
 0.85

 1 in 30
 506.3 l/sec
 2.30

 1 in 100
 702.3 l/sec
 3.19

 1 in 200
 823.4 l/sec
 3.74

Qbar:	0.08 l/sec									
Greenfield										
Peak Run-off	Rate:									
1 in 1	0.07 l/sec									
1 in 30	0.19 l/sec									
1 in 100	0.26 l/sec									
1 in 200	0.30 l/sec									

National Non-Statutory Guidance:

For greenfield developments, the peak runoff rate from the development to any highway drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event should never exceed the peak greenfield runoff rate for the same event.

For developments which were previously developed, the peak runoff rate from the development to any drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event should be as close as reasonably practicable to the greenfield runoff rate from the development for the same rainfall event, but should never exceed the rate of discharge from the development prior to redevelopment for that event.

Where reasonably practicable, for greenfield development, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event should never exceed the greenfield runoff volume for the same event.

Where reasonably practicable, for developments which have been previously developed, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event must be constrained to a value as close as is reasonably practicable to the greenfield runoff volume for the same event, but should never exceed the runoff volume from the development site prior to redevelopment for that event.

SuDs CALCULATIONS

Project: 9 Na

9 Nassington Road

GREENFIELD RUN-OFF

Sheet 1 of 7

15/03/2019

Project Reference:

LBH 4572

Date:

Rev:

Client:

Monique Branchmoore

LBH WEMBLEY ENGINEERING

RAINFALL PEAK INTENSITY (i)

M5-60:20From Wallingford Fig A1r:0.42From Wallingford Fig A2

D Du	ration	Z 1	M5-D
5min	5min	0.38	7.6mm
10min	10min	0.55	11.0mm
15min	15min	0.65	13.0mm
30min	30min	0.75	15.0mm
1hr	60min	1.00	20.0mm
2hr	120min	1.20	24.0mm
4hr	240min	1.40	28.0mm
6hr	360min	1.60	32.0mm
10hr	600min	1.70	34.0mm
24hr	1440min	2.20	44.0mm
48hr	2880min	2.50	50.0mm

				Z2								
D Du	ration	M5-D	M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D	
5min	5min	7.6mm	0.62	0.79	0.89	0.97	1.02	1.19	1.36	1.43	1.79	
10min	10min	11.0mm	0.61	0.79	0.90	0.97	1.03	1.22	1.41	1.49	1.91	
15min	15min	13.0mm	0.61	0.79	0.90	0.97	1.03	1.22	1.41	1.49	1.91	
30min	30min	15.0mm	0.62	0.81	0.90	0.97	1.03	1.24	1.44	1.53	1.99	
1hr	60min	20.0mm	0.64	0.81	0.90	0.97	1.03	1.24	1.45	1.54	2.03	
2hr	120min	24.0mm	0.64	0.81	0.90	0.97	1.03	1.24	1.45	1.54	2.03	
4hr	240min	28.0mm	0.66	0.82	0.91	0.97	1.03	1.24	1.44	1.53	2.01	
6hr	360min	32.0mm	0.68	0.83	0.91	0.97	1.03	1.22	1.42	1.51	1.97	
10hr	600min	34.0mm	0.68	0.83	0.91	0.97	1.03	1.22	1.42	1.51	1.97	
24hr	1440min	44.0mm	0.70	0.84	0.92	0.97	1.02	1.19	1.38	1.47	1.89	
48hr	2880min	50.0mm	0.72	0.85	0.93	0.98	1.02	1.17	1.34	1.42	1.81	

		MT-D									
D Du	ration	M5-D	M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	7.6mm	4.7mm	6.0mm	6.8mm	7.4mm	7.8mm	9.0mm	10.3mm	10.8mm	13.6mm
10min	10min	11.0mm	6.7mm	8.7mm	9.9mm	10.7mm	11.3mm	13.4mm	15.5mm	16.4mm	21.0mm
15min	15min	13.0mm	7.9mm	10.3mm	11.7mm	12.6mm	13.4mm	15.9mm	18.3mm	19.4mm	24.8mm
30min	30min	15.0mm	9.3mm	12.2mm	13.5mm	14.6mm	15.5mm	18.6mm	21.6mm	22.9mm	29.9mm
1hr	60min	20.0mm	12.8mm	16.2mm	18.0mm	19.4mm	20.6mm	24.8mm	29.0mm	30.9mm	40.6mm
2hr	120min	24.0mm	15.4mm	19.4mm	21.6mm	23.3mm	24.7mm	29.8mm	34.8mm	37.0mm	48.7mm
4hr	240min	28.0mm	18.5mm	23.0mm	25.5mm	27.2mm	28.8mm	34.7mm	40.3mm	42.9mm	56.3mm
6hr	360min	32.0mm	21.8mm	26.6mm	29.1mm	31.0mm	33.0mm	39.0mm	45.4mm	48.4mm	63.0mm
10hr	600min	34.0mm	23.1mm	28.2mm	30.9mm	33.0mm	35.0mm	41.5mm	48.3mm	51.5mm	67.0mm
24hr	1440min	44.0mm	30.8mm	37.0mm	40.5mm	42.7mm	44.9mm	52.4mm	60.7mm	64.5mm	83.2mm
48hr	2880min	50.0mm	36.0mm	42.5mm	46.5mm	49.0mm	51.0mm	58.5mm	67.0mm	71.0mm	90.5mm

							Intensity i				
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	0.08hr	56.5mm/hr	72.0mm/hr	81.2mm/hr	88.5mm/hr	93.0mm/hr	108.5mm/hr	124.0mm/hr	130.1mm/hr	163.2mm/hr
10min	10min	0.17hr	40.3mm/hr	52.1mm/hr	59.4mm/hr	64.0mm/hr	68.0mm/hr	80.5mm/hr	93.1mm/hr	98.3mm/hr	126.1mm/hr
15min	15min	0.25hr	31.7mm/hr	41.1mm/hr	46.8mm/hr	50.4mm/hr	53.6mm/hr	63.4mm/hr	73.3mm/hr	77.5mm/hr	99.3mm/hr
30min	30min	0.50hr	18.6mm/hr	24.3mm/hr	27.0mm/hr	29.1mm/hr	30.9mm/hr	37.2mm/hr	43.2mm/hr	45.8mm/hr	59.7mm/hr
1hr	60min	1.00hr	12.8mm/hr	16.2mm/hr	18.0mm/hr	19.4mm/hr	20.6mm/hr	24.8mm/hr	29.0mm/hr	30.9mm/hr	40.6mm/hr
2hr	120min	2.00hr	7.7mm/hr	9.7mm/hr	10.8mm/hr	11.6mm/hr	12.4mm/hr	14.9mm/hr	17.4mm/hr	18.5mm/hr	24.4mm/hr
4hr	240min	4.00hr	4.6mm/hr	5.7mm/hr	6.4mm/hr	6.8mm/hr	7.2mm/hr	8.7mm/hr	10.1mm/hr	10.7mm/hr	14.1mm/hr
6hr	360min	6.00hr	3.6mm/hr	4.4mm/hr	4.9mm/hr	5.2mm/hr	5.5mm/hr	6.5mm/hr	7.6mm/hr	8.1mm/hr	10.5mm/hr
10hr	600min	10.00hr	2.3mm/hr	2.8mm/hr	3.1mm/hr	3.3mm/hr	3.5mm/hr	4.1mm/hr	4.8mm/hr	5.1mm/hr	6.7mm/hr
24hr	1440min	24.00hr	1.3mm/hr	1.5mm/hr	1.7mm/hr	1.8mm/hr	1.9mm/hr	2.2mm/hr	2.5mm/hr	2.7mm/hr	3.5mm/hr
48hr	2880min	48.00hr	0.6mm/hr	0.8mm/hr	0.8mm/hr	0.9mm/hr	0.9mm/hr	1.1mm/hr	1.3mm/hr	1.3mm/hr	1.7mm/hr
48hr	2880min	48.00hr	0.8mm/hr	0.9mm/hr	1.0mm/hr	1.0mm/hr	1.1mm/hr	1.2mm/hr	1.4mm/hr	1.5mm/hr	1.9mm/hr

SuDs CALCULATIONS

Project: 9 Nassington Road

RAINFALL PEAK INTENSITY

Sheet 2 of 7

Project Reference: LBH 4572

Date: 15/03/2019 Rev: A

Client: Monique Branchmoore

LBH WEMBLEY

ENGINEERING

GREENFIELD PEAK RUN-OFF

Hydrological

Region: 6 From Wallingford on-line tool Qbar: 0.08 l/sec

		Run-Off Q										
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D	
5min	5min	0.08hr	0.07 l/sec	0.07 l/sec	0.08 l/sec	0.09 l/sec	0.10 l/sec	0.13 l/sec	0.16 l/sec	0.20 l/sec	0.26 l/sec	
10min	10min	0.17hr	0.07 l/sec	0.07 l/sec	0.08 l/sec	0.09 l/sec	0.10 l/sec	0.13 l/sec	0.16 l/sec	0.20 l/sec	0.26 l/sec	
15min	15min	0.25hr	0.07 l/sec	0.07 l/sec	0.08 l/sec	0.09 l/sec	0.10 l/sec	0.13 l/sec	0.16 l/sec	0.20 l/sec	0.26 l/sec	
30min	30min	0.50hr	0.07 l/sec	0.07 l/sec	0.08 l/sec	0.09 l/sec	0.10 l/sec	0.13 l/sec	0.16 l/sec	0.20 l/sec	0.26 l/sec	
1hr	60min	1.00hr	0.07 l/sec	0.07 l/sec	0.08 l/sec	0.09 l/sec	0.10 l/sec	0.13 l/sec	0.16 l/sec	0.20 l/sec	0.26 l/sec	
2hr	120min	2.00hr	0.07 l/sec	0.07 l/sec	0.08 l/sec	0.09 l/sec	0.10 l/sec	0.13 l/sec	0.16 l/sec	0.20 l/sec	0.26 l/sec	
4hr	240min	4.00hr	0.07 l/sec	0.07 l/sec	0.08 l/sec	0.09 l/sec	0.10 l/sec	0.13 l/sec	0.16 l/sec	0.20 l/sec	0.26 l/sec	
6hr	360min	6.00hr	0.07 l/sec	0.07 l/sec	0.08 l/sec	0.09 l/sec	0.10 l/sec	0.13 l/sec	0.16 l/sec	0.20 l/sec	0.26 l/sec	
10hr	600min	10.00hr	0.07 l/sec	0.07 l/sec	0.08 l/sec	0.09 l/sec	0.10 l/sec	0.13 l/sec	0.16 l/sec	0.20 l/sec	0.26 l/sec	
24hr	1440min	24.00hr	0.07 l/sec	0.07 l/sec	0.08 l/sec	0.09 l/sec	0.10 l/sec	0.13 l/sec	0.16 l/sec	0.20 l/sec	0.26 l/sec	
48hr	2880min	48.00hr	0.07 l/sec	0.07 l/sec	0.08 l/sec	0.09 l/sec	0.10 l/sec	0.13 l/sec	0.16 l/sec	0.20 l/sec	0.26 l/sec	

		Run-Off Volume										
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D	
5min	5min	0.08hr	0.0 m3	0.1 m3	0.1 m3							
10min	10min	0.17hr	0.0 m3	0.0 m3	0.0 m3	0.1 m3	0.2 m3					
15min	15min	0.25hr	0.1 m3	0.2 m3	0.2 m3							
30min	30min	0.50hr	0.1 m3	0.1 m3	0.1 m3	0.2 m3	0.2 m3	0.2 m3	0.3 m3	0.4 m3	0.5 m3	
1hr	60min	1.00hr	0.2 m3	0.3 m3	0.3 m3	0.3 m3	0.4 m3	0.5 m3	0.6 m3	0.7 m3	0.9 m3	
2hr	120min	2.00hr	0.5 m3	0.5 m3	0.6 m3	0.7 m3	0.8 m3	1.0 m3	1.2 m3	1.4 m3	1.9 m3	
4hr	240min	4.00hr	1.0 m3	1.0 m3	1.2 m3	1.3 m3	1.5 m3	1.9 m3	2.3 m3	2.8 m3	3.7 m3	
6hr	360min	6.00hr	1.5 m3	1.5 m3	1.8 m3	2.0 m3	2.3 m3	2.9 m3	3.5 m3	4.2 m3	5.6 m3	
10hr	600min	10.00hr	2.5 m3	2.6 m3	3.0 m3	3.4 m3	3.8 m3	4.8 m3	5.8 m3	7.0 m3	9.4 m3	
24hr	1440min	24.00hr	6.0 m3	6.2 m3	7.1 m3	8.1 m3	9.0 m3	11.4 m3	13.8 m3	16.9 m3	22.5 m3	
48hr	2880min	48.00hr	12.0 m3	12.4 m3	14.3 m3	16.1 m3	18.0 m3	22.8 m3	27.7 m3	33.8 m3	44.9 m3	

SuDs CALCULATIONS

Project: 9 Nassington Road

GREENFIELD PEAK RUN-OFF

Sheet 3 of 7

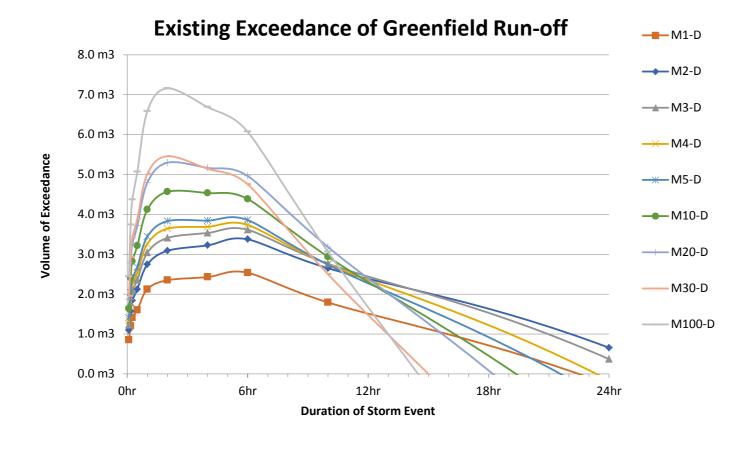
Project Reference: LBH 4572

Date: 15/03/2019 Rev: A

Client: Monique Branchmoore

LBH WEMBLEY
ENGINEERING

EXISTING PEAK RUN-OFF


C_V: 0.77 Volumetric Run-Off CoefficientC_R: 1.3 Routing Coefficient

		Run-Off Q										
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D	
5min	5min	0.08hr	2.9 l/sec	3.7 l/sec	4.2 l/sec	4.6 l/sec	4.8 l/sec	5.6 l/sec	6.4 l/sec	6.7 l/sec	8.4 l/sec	
10min	10min	0.17hr	2.1 l/sec	2.7 l/sec	3.1 l/sec	3.3 l/sec	3.5 l/sec	4.1 l/sec	4.8 l/sec	5.1 l/sec	6.5 l/sec	
15min	15min	0.25hr	1.6 l/sec	2.1 l/sec	2.4 l/sec	2.6 l/sec	2.8 l/sec	3.3 l/sec	3.8 l/sec	4.0 l/sec	5.1 l/sec	
30min	30min	0.50hr	1.0 l/sec	1.3 l/sec	1.4 l/sec	1.5 l/sec	1.6 l/sec	1.9 l/sec	2.2 l/sec	2.4 l/sec	3.1 l/sec	
1hr	60min	1.00hr	0.7 l/sec	0.8 l/sec	0.9 l/sec	1.0 l/sec	1.1 l/sec	1.3 l/sec	1.5 l/sec	1.6 l/sec	2.1 l/sec	
2hr	120min	2.00hr	0.4 l/sec	0.5 l/sec	0.6 l/sec	0.6 l/sec	0.6 l/sec	0.8 l/sec	0.9 l/sec	1.0 l/sec	1.3 l/sec	
4hr	240min	4.00hr	0.2 l/sec	0.3 l/sec	0.3 l/sec	0.3 l/sec	0.4 l/sec	0.4 l/sec	0.5 l/sec	0.6 l/sec	0.7 l/sec	
6hr	360min	6.00hr	0.2 l/sec	0.2 l/sec	0.2 l/sec	0.3 l/sec	0.3 l/sec	0.3 l/sec	0.4 l/sec	0.4 l/sec	0.5 l/sec	
10hr	600min	10.00hr	0.1 l/sec	0.1 l/sec	0.2 l/sec	0.3 l/sec	0.3 l/sec					
24hr	1440min	24.00hr	0.1 l/sec	0.2 l/sec								
48hr	2880min	48.00hr	0.0 l/sec	0.0 l/sec	0.0 l/sec	0.1 l/sec						

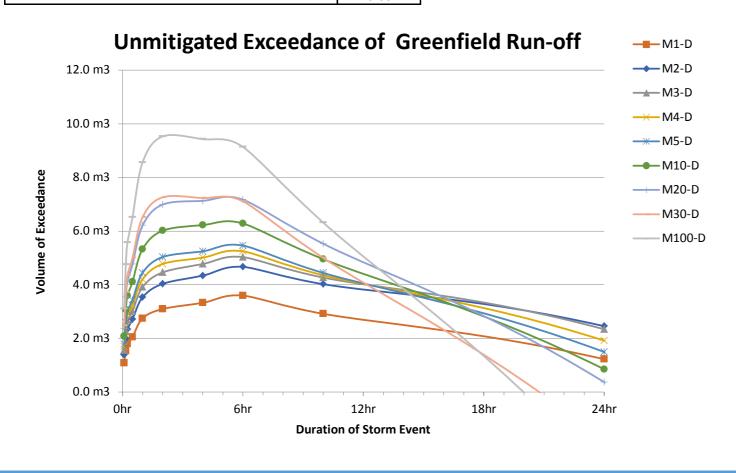
				Run-Off Volume									
	D Duration			M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D		
5min	5min	0.08hr	0.9 m3	1.1 m3	1.3 m3	1.4 m3	1.4 m3	1.7 m3	1.9 m3	2.0 m3	2.5 m3		
10min	10min	0.17hr	1.2 m3	1.6 m3	1.8 m3	2.0 m3	2.1 m3	2.5 m3	2.9 m3	3.0 m3	3.9 m3		
15min	15min	0.25hr	1.5 m3	1.9 m3	2.2 m3	2.3 m3	2.5 m3	2.9 m3	3.4 m3	3.6 m3	4.6 m3		
30min	30min	0.50hr	1.7 m3	2.3 m3	2.5 m3	2.7 m3	2.9 m3	3.4 m3	4.0 m3	4.2 m3	5.5 m3		
1hr	60min	1.00hr	2.4 m3	3.0 m3	3.3 m3	3.6 m3	3.8 m3	4.6 m3	5.4 m3	5.7 m3	7.5 m3		
2hr	120min	2.00hr	2.8 m3	3.6 m3	4.0 m3	4.3 m3	4.6 m3	5.5 m3	6.4 m3	6.9 m3	9.0 m3		
4hr	240min	4.00hr	3.4 m3	4.3 m3	4.7 m3	5.0 m3	5.3 m3	6.4 m3	7.5 m3	8.0 m3	10.4 m3		
6hr	360min	6.00hr	4.0 m3	4.9 m3	5.4 m3	5.8 m3	6.1 m3	7.2 m3	8.4 m3	9.0 m3	11.7 m3		
10hr	600min	10.00hr	4.3 m3	5.2 m3	5.7 m3	6.1 m3	6.5 m3	7.7 m3	8.9 m3	9.5 m3	12.4 m3		
24hr	1440min	24.00hr	5.7 m3	6.8 m3	7.5 m3	7.9 m3	8.3 m3	9.7 m3	11.3 m3	12.0 m3	15.4 m3		
48hr	2880min	48.00hr	6.7 m3	7.9 m3	8.6 m3	9.1 m3	9.5 m3	10.8 m3	12.4 m3	13.2 m3	16.8 m3		

				Exceedance of Greenfield Run-Off Volume									
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D		
5min	5min	0.08hr	0.9 m3	1.1 m3	1.2 m3	1.3 m3	1.4 m3	1.6 m3	1.9 m3	2.0 m3	2.4 m3		
10min	10min	0.17hr	1.2 m3	1.6 m3	1.8 m3	1.9 m3	2.0 m3	2.4 m3	2.8 m3	2.9 m3	3.7 m3		
15min	15min	0.25hr	1.4 m3	1.8 m3	2.1 m3	2.3 m3	2.4 m3	2.8 m3	3.3 m3	3.4 m3	4.4 m3		
30min	30min	0.50hr	1.6 m3	2.1 m3	2.4 m3	2.5 m3	2.7 m3	3.2 m3	3.7 m3	3.9 m3	5.1 m3		
1hr	60min	1.00hr	2.1 m3	2.7 m3	3.0 m3	3.3 m3	3.4 m3	4.1 m3	4.8 m3	5.0 m3	6.6 m3		
2hr	120min	2.00hr	2.3 m3	3.1 m3	3.4 m3	3.6 m3	3.8 m3	4.6 m3	5.3 m3	5.5 m3	7.2 m3		
4hr	240min	4.00hr	2.4 m3	3.2 m3	3.5 m3	3.7 m3	3.8 m3	4.5 m3	5.2 m3	5.1 m3	6.7 m3		
6hr	360min	6.00hr	2.5 m3	3.4 m3	3.6 m3	3.7 m3	3.9 m3	4.4 m3	5.0 m3	4.8 m3	6.1 m3		
10hr	600min	10.00hr	1.8 m3	2.6 m3	2.8 m3	2.7 m3	2.7 m3	2.9 m3	3.2 m3	2.5 m3	3.1 m3		
24hr	1440min	24.00hr	-0.3 m3	0.7 m3	0.4 m3	-0.2 m3	-0.7 m3	-1.7 m3	-2.6 m3	-4.9 m3	-7.0 m3		
48hr	2880min	48.00hr	-5.3 m3	-4.5 m3	-5.6 m3	-7.1 m3	-8.6 m3	-12.0 m3	-15.3 m3	-20.6 m3	-28.1 m3		

			C _v :
Catchment Area:	185sqm	100%	
Permeable:	0sqm	0%	0.40
Impermeable:	185sqm	100%	0.77
			0.77

SuD	s CALCUL	ATIONS
Project:	9 Nassin	gton Road
EXIST	NG PEAK I	RUN-OFF
	Sheet 4 of	7
Project Ref	erence:	LBH 4572
Date:	15/03/2019	Rev: A
Client:	Monique Brar	nchmoore
LBH	HWEN	IBLEY
ENG	GINEE	RING

POST- DEVELOPMENT PEAK RUN-OFF + CC


C_V: 0.69 Volumetric Run-Off Coefficient Climate Change Allowance: 40%
 C_R: 1.3 Routing Coefficient

	Run-Off Q												
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D		
5min	5min	0.08hr	3.7 l/sec	4.7 l/sec	5.3 l/sec	5.7 l/sec	6.0 l/sec	7.1 l/sec	8.1 l/sec	8.5 l/sec	10.6 l/sec		
10min	10min	0.17hr	2.6 l/sec	3.4 l/sec	3.9 l/sec	4.2 l/sec	4.4 l/sec	5.2 l/sec	6.0 l/sec	6.4 l/sec	8.2 l/sec		
15min	15min	0.25hr	2.1 l/sec	2.7 l/sec	3.0 l/sec	3.3 l/sec	3.5 l/sec	4.1 l/sec	4.8 l/sec	5.0 l/sec	6.5 l/sec		
30min	30min	0.50hr	1.2 l/sec	1.6 l/sec	1.8 l/sec	1.9 l/sec	2.0 l/sec	2.4 l/sec	2.8 l/sec	3.0 l/sec	3.9 l/sec		
1hr	60min	1.00hr	0.8 l/sec	1.1 l/sec	1.2 l/sec	1.3 l/sec	1.3 l/sec	1.6 l/sec	1.9 l/sec	2.0 l/sec	2.6 l/sec		
2hr	120min	2.00hr	0.5 l/sec	0.6 l/sec	0.7 l/sec	0.8 l/sec	0.8 l/sec	1.0 l/sec	1.1 l/sec	1.2 l/sec	1.6 l/sec		
4hr	240min	4.00hr	0.3 l/sec	0.4 l/sec	0.4 l/sec	0.4 l/sec	0.5 l/sec	0.6 l/sec	0.7 l/sec	0.7 l/sec	0.9 l/sec		
6hr	360min	6.00hr	0.2 l/sec	0.3 l/sec	0.3 l/sec	0.3 l/sec	0.4 l/sec	0.4 l/sec	0.5 l/sec	0.5 l/sec	0.7 l/sec		
10hr	600min	10.00hr	0.2 l/sec	0.3 l/sec	0.3 l/sec	0.3 l/sec	0.4 l/sec						
24hr	1440min	24.00hr	0.1 l/sec	0.2 l/sec	0.2 l/sec	0.2 l/sec							
48hr	2880min	48.00hr	0.0 l/sec	0.1 l/sec									

						R	Run-Off Volum	ne			
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	0.08hr	1.1 m3	1.4 m3	1.6 m3	1.7 m3	1.8 m3	2.1 m3	2.4 m3	2.5 m3	3.2 m3
10min	10min	0.17hr	1.6 m3	2.0 m3	2.3 m3	2.5 m3	2.7 m3	3.1 m3	3.6 m3	3.8 m3	4.9 m3
15min	15min	0.25hr	1.9 m3	2.4 m3	2.7 m3	3.0 m3	3.1 m3	3.7 m3	4.3 m3	4.5 m3	5.8 m3
30min	30min	0.50hr	2.2 m3	2.8 m3	3.2 m3	3.4 m3	3.6 m3	4.4 m3	5.1 m3	5.4 m3	7.0 m3
1hr	60min	1.00hr	3.0 m3	3.8 m3	4.2 m3	4.5 m3	4.8 m3	5.8 m3	6.8 m3	7.2 m3	9.5 m3
2hr	120min	2.00hr	3.6 m3	4.5 m3	5.1 m3	5.4 m3	5.8 m3	7.0 m3	8.1 m3	8.7 m3	11.4 m3
4hr	240min	4.00hr	4.3 m3	5.4 m3	6.0 m3	6.4 m3	6.7 m3	8.1 m3	9.4 m3	10.0 m3	13.2 m3
6hr	360min	6.00hr	5.1 m3	6.2 m3	6.8 m3	7.3 m3	7.7 m3	9.1 m3	10.6 m3	11.3 m3	14.7 m3
10hr	600min	10.00hr	5.4 m3	6.6 m3	7.2 m3	7.7 m3	8.2 m3	9.7 m3	11.3 m3	12.0 m3	15.7 m3
24hr	1440min	24.00hr	7.2 m3	8.6 m3	9.5 m3	10.0 m3	10.5 m3	12.3 m3	14.2 m3	15.1 m3	19.5 m3
48hr	2880min	48.00hr	8.4 m3	9.9 m3	10.9 m3	11.5 m3	11.9 m3	13.7 m3	15.7 m3	16.6 m3	21.2 m3

				Exceedance of Greenfield Run-Off Volume								
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D	
5min	5min	0.08hr	1.1 m3	1.4 m3	1.6 m3	1.7 m3	1.8 m3	2.1 m3	2.4 m3	2.5 m3	3.1 m3	
10min	10min	0.17hr	1.5 m3	2.0 m3	2.3 m3	2.4 m3	2.6 m3	3.1 m3	3.5 m3	3.7 m3	4.8 m3	
15min	15min	0.25hr	1.8 m3	2.3 m3	2.7 m3	2.9 m3	3.0 m3	3.6 m3	4.1 m3	4.4 m3	5.6 m3	
30min	30min	0.50hr	2.1 m3	2.7 m3	3.0 m3	3.2 m3	3.4 m3	4.1 m3	4.8 m3	5.0 m3	6.5 m3	
1hr	60min	1.00hr	2.7 m3	3.5 m3	3.9 m3	4.2 m3	4.4 m3	5.3 m3	6.2 m3	6.5 m3	8.6 m3	
2hr	120min	2.00hr	3.1 m3	4.0 m3	4.5 m3	4.8 m3	5.0 m3	6.0 m3	7.0 m3	7.3 m3	9.5 m3	
4hr	240min	4.00hr	3.3 m3	4.3 m3	4.8 m3	5.0 m3	5.2 m3	6.2 m3	7.1 m3	7.2 m3	9.4 m3	
6hr	360min	6.00hr	3.6 m3	4.7 m3	5.0 m3	5.2 m3	5.5 m3	6.3 m3	7.2 m3	7.1 m3	9.1 m3	
10hr	600min	10.00hr	2.9 m3	4.0 m3	4.3 m3	4.4 m3	4.4 m3	5.0 m3	5.5 m3	5.0 m3	6.3 m3	
24hr	1440min	24.00hr	1.2 m3	2.5 m3	2.3 m3	1.9 m3	1.5 m3	0.8 m3	0.4 m3	-1.8 m3	-3.0 m3	
48hr	2880min	48.00hr	-3.5 m3	-2.4 m3	-3.4 m3	-4.7 m3	-6.1 m3	-9.1 m3	-12.0 m3	-17.2 m3	-23.7 m3	

			C _v :
Catchment Area:	220sqm	100%	
Permeable	45sqm	20%	0.40
Impermeable:	175sqm	80%	0.77
			0.69

SuDs CALCULATIONS

Project: 9 Nassington Road

POST-DEV. PEAK RUN-OFF

Sheet 5 of 7

Project Reference: LBH 4572

Date: 15/03/2019 Rev: A

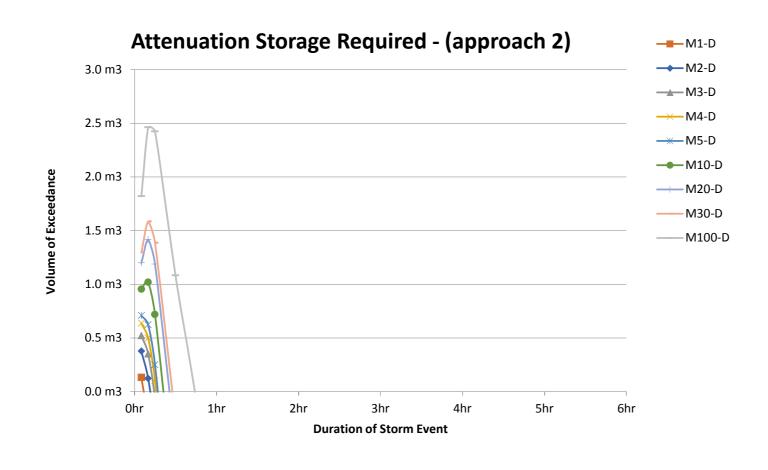
Client: Monique Branchmoore

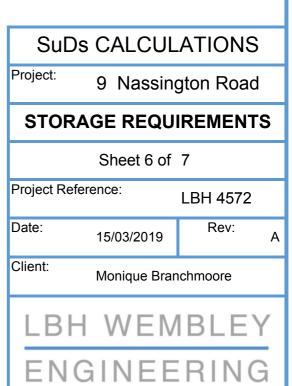
LBH WEMBLEY

ENGINEERING

POST- DEVELOPMENT & SOURCE MITIGATION PEAK RUN-OFF + CC ATTENUATION STORAGE REQUIREMENTS

Proposed Discharge Rate: 2.55 l/sec (approach 2 - 50% Existing)


0.08 l/sec QBar


							INFLOW				
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	0.08hr	0.9 m3	1.1 m3	1.3 m3	1.4 m3	1.5 m3	1.7 m3	2.0 m3	2.1 m3	2.6 m3
10min	10min	0.17hr	1.3 m3	1.7 m3	1.9 m3	2.0 m3	2.2 m3	2.5 m3	2.9 m3	3.1 m3	4.0 m3
15min	15min	0.25hr	1.5 m3	2.0 m3	2.2 m3	2.4 m3	2.5 m3	3.0 m3	3.5 m3	3.7 m3	4.7 m3
30min	30min	0.50hr	1.8 m3	2.3 m3	2.6 m3	2.8 m3	2.9 m3	3.5 m3	4.1 m3	4.4 m3	5.7 m3
1hr	60min	1.00hr	2.4 m3	3.1 m3	3.4 m3	3.7 m3	3.9 m3	4.7 m3	5.5 m3	5.9 m3	7.7 m3
2hr	120min	2.00hr	2.9 m3	3.7 m3	4.1 m3	4.4 m3	4.7 m3	5.7 m3	6.6 m3	7.0 m3	9.3 m3
4hr	240min	4.00hr	3.5 m3	4.4 m3	4.8 m3	5.2 m3	5.5 m3	6.6 m3	7.7 m3	8.2 m3	10.7 m3
6hr	360min	6.00hr	4.1 m3	5.0 m3	5.5 m3	5.9 m3	6.3 m3	7.4 m3	8.6 m3	9.2 m3	12.0 m3
10hr	600min	10.00hr	4.4 m3	5.4 m3	5.9 m3	6.3 m3	6.7 m3	7.9 m3	9.2 m3	9.8 m3	12.7 m3
24hr	1440min	24.00hr	5.9 m3	7.0 m3	7.7 m3	8.1 m3	8.5 m3	9.9 m3	11.5 m3	12.3 m3	15.8 m3
48hr	2880min	48.00hr	6.8 m3	8.1 m3	8.8 m3	9.3 m3	9.7 m3	11.1 m3	12.7 m3	13.5 m3	17.2 m3

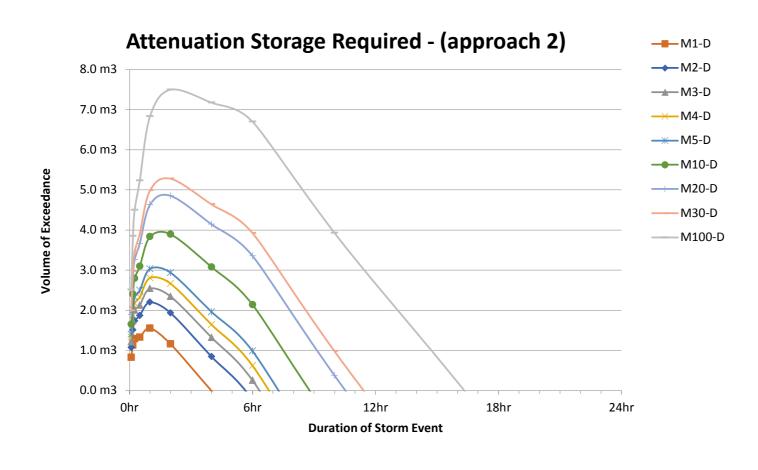
	·						OUTFLOW				
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	0.08hr	0.8 m3								
10min	10min	0.17hr	1.5 m3								
15min	15min	0.25hr	2.3 m3								
30min	30min	0.50hr	4.6 m3								
1hr	60min	1.00hr	9.2 m3								
2hr	120min	2.00hr	18.4 m3								
4hr	240min	4.00hr	36.7 m3								
6hr	360min	6.00hr	55.1 m3								
10hr	600min	10.00hr	91.8 m3								
24hr	1440min	24.00hr	220.3 m3								
48hr	2880min	48.00hr	440.6 m3								

				ATTENUATION STORAGE REQUIRED TO MEET PROPOSED DISCHARGE R								
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D	
5min	5min	0.08hr	0.1 m3	0.4 m3	0.5 m3	0.6 m3	0.7 m3	1.0 m3	1.2 m3	1.3 m3	1.8 m3	
10min	10min	0.17hr	-0.3 m3	0.1 m3	0.4 m3	0.5 m3	0.6 m3	1.0 m3	1.4 m3	1.6 m3	2.5 m3	
15min	15min	0.25hr	-0.8 m3	-0.3 m3	-0.1 m3	0.1 m3	0.2 m3	0.7 m3	1.2 m3	1.4 m3	2.4 m3	
30min	30min	0.50hr	-2.8 m3	-2.3 m3	-2.0 m3	-1.8 m3	-1.7 m3	-1.1 m3	-0.5 m3	-0.2 m3	1.1 m3	
1hr	60min	1.00hr	-6.7 m3	-6.1 m3	-5.8 m3	-5.5 m3	-5.3 m3	-4.5 m3	-3.7 m3	-3.3 m3	-1.5 m3	
2hr	120min	2.00hr	-15.4 m3	-14.7 m3	-14.3 m3	-13.9 m3	-13.7 m3	-12.7 m3	-11.7 m3	-11.3 m3	-9.1 m3	
4hr	240min	4.00hr	-33.2 m3	-32.4 m3	-31.9 m3	-31.6 m3	-31.2 m3	-30.1 m3	-29.1 m3	-28.6 m3	-26.0 m3	
6hr	360min	6.00hr	-50.9 m3	-50.0 m3	-49.5 m3	-49.2 m3	-48.8 m3	-47.7 m3	-46.4 m3	-45.9 m3	-43.1 m3	
10hr	600min	10.00hr	-87.4 m3	-86.4 m3	-85.9 m3	-85.5 m3	-85.1 m3	-83.9 m3	-82.6 m3	-82.0 m3	-79.1 m3	
24hr	1440min	24.00hr	-214.5 m3	-213.3 m3	-212.6 m3	-212.2 m3	-211.8 m3	-210.4 m3	-208.8 m3	-208.1 m3	-204.5 m3	
48hr	2880min	48.00hr	-433.8 m3	-432.6 m3	-431.8 m3	-431.3 m3	-431.0 m3	-429.5 m3	-427.9 m3	-427.2 m3	-423.4 m3	

Approach 2 ATTENUATION STORAGE REQUIRED: 2.5 m3

POST- DEVELOPMENT & SOURCE MITIGATION PEAK RUN-OFF + CC ATTENUATION STORAGE REQUIREMENTS

Proposed Discharge Rate: 0.24 l/sec (3 x Qbar approach 2) 0.08 l/sec QBar 0.04 l/sec (2.0 l/sec/ha)


							INFLOW				
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D
5min	5min	0.08hr	0.9 m3	1.1 m3	1.3 m3	1.4 m3	1.5 m3	1.7 m3	2.0 m3	2.1 m3	2.6 m3
10min	10min	0.17hr	1.3 m3	1.7 m3	1.9 m3	2.0 m3	2.2 m3	2.5 m3	2.9 m3	3.1 m3	4.0 m3
15min	15min	0.25hr	1.5 m3	2.0 m3	2.2 m3	2.4 m3	2.5 m3	3.0 m3	3.5 m3	3.7 m3	4.7 m3
30min	30min	0.50hr	1.8 m3	2.3 m3	2.6 m3	2.8 m3	2.9 m3	3.5 m3	4.1 m3	4.4 m3	5.7 m3
1hr	60min	1.00hr	2.4 m3	3.1 m3	3.4 m3	3.7 m3	3.9 m3	4.7 m3	5.5 m3	5.9 m3	7.7 m3
2hr	120min	2.00hr	2.9 m3	3.7 m3	4.1 m3	4.4 m3	4.7 m3	5.7 m3	6.6 m3	7.0 m3	9.3 m3
4hr	240min	4.00hr	3.5 m3	4.4 m3	4.8 m3	5.2 m3	5.5 m3	6.6 m3	7.7 m3	8.2 m3	10.7 m3
6hr	360min	6.00hr	4.1 m3	5.0 m3	5.5 m3	5.9 m3	6.3 m3	7.4 m3	8.6 m3	9.2 m3	12.0 m3
10hr	600min	10.00hr	4.4 m3	5.4 m3	5.9 m3	6.3 m3	6.7 m3	7.9 m3	9.2 m3	9.8 m3	12.7 m3
24hr	1440min	24.00hr	5.9 m3	7.0 m3	7.7 m3	8.1 m3	8.5 m3	9.9 m3	11.5 m3	12.3 m3	15.8 m3
48hr	2880min	48.00hr	6.8 m3	8.1 m3	8.8 m3	9.3 m3	9.7 m3	11.1 m3	12.7 m3	13.5 m3	17.2 m3

				OUTFLOW										
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D			
5min	5min	0.08hr	0.1 m3											
10min	10min	0.17hr	0.1 m3											
15min	15min	0.25hr	0.2 m3											
30min	30min	0.50hr	0.4 m3											
1hr	60min	1.00hr	0.9 m3											
2hr	120min	2.00hr	1.8 m3											
4hr	240min	4.00hr	3.5 m3											
6hr	360min	6.00hr	5.3 m3											
10hr	600min	10.00hr	8.8 m3											
24hr	1440min	24.00hr	21.1 m3											
48hr	2880min	48.00hr	42.2 m3											

				ATTENUATION STORAGE REQUIRED TO MEET PROPOSED DISCHARGE RATE									
	D Duration		M1-D	M2-D	M3-D	M4-D	M5-D	M10-D	M20-D	M30-D	M100-D		
5min	5min	0.08hr	0.8 m3	1.1 m3	1.2 m3	1.3 m3	1.4 m3	1.6 m3	1.9 m3	2.0 m3	2.5 m3		
10min	10min	0.17hr	1.1 m3	1.5 m3	1.7 m3	1.9 m3	2.0 m3	2.4 m3	2.8 m3	3.0 m3	3.8 m3		
15min	15min	0.25hr	1.3 m3	1.7 m3	2.0 m3	2.2 m3	2.3 m3	2.8 m3	3.3 m3	3.5 m3	4.5 m3		
30min	30min	0.50hr	1.3 m3	1.9 m3	2.1 m3	2.3 m3	2.5 m3	3.1 m3	3.7 m3	3.9 m3	5.2 m3		
1hr	60min	1.00hr	1.6 m3	2.2 m3	2.5 m3	2.8 m3	3.0 m3	3.8 m3	4.6 m3	5.0 m3	6.8 m3		
2hr	120min	2.00hr	1.2 m3	1.9 m3	2.3 m3	2.7 m3	2.9 m3	3.9 m3	4.9 m3	5.3 m3	7.5 m3		
4hr	240min	4.00hr	0.0 m3	0.8 m3	1.3 m3	1.6 m3	2.0 m3	3.1 m3	4.1 m3	4.6 m3	7.2 m3		
6hr	360min	6.00hr	-1.1 m3	-0.2 m3	0.3 m3	0.6 m3	1.0 m3	2.1 m3	3.4 m3	3.9 m3	6.7 m3		
10hr	600min	10.00hr	-4.4 m3	-3.4 m3	-2.9 m3	-2.5 m3	-2.1 m3	-0.9 m3	0.4 m3	1.0 m3	3.9 m3		
24hr	1440min	24.00hr	-15.3 m3	-14.1 m3	-13.4 m3	-13.0 m3	-12.6 m3	-11.2 m3	-9.6 m3	-8.9 m3	-5.3 m3		
48hr	2880min	48.00hr	-35.4 m3	-34.2 m3	-33.4 m3	-32.9 m3	-32.5 m3	-31.1 m3	-29.5 m3	-28.7 m3	-25.0 m3		

Approach 2 ATTENUATION STORAGE REQUIRED: 7.5 m3

to be released at 2 year greenfield rate ("QBar"): 0.24 l/sec

