135-149 Shaftesbury Avenue London WC2H 8AH

Energy Statement

Prepared For: Capital Start Limited

Prepared By:

DSA ENGINEERING

Damaso House 31 Islington Green London N1 8DU

> April 2018 Rev1

Table of Contents

1.	Executive Summary	3
2.	Introduction	4
3.	Establishing CO ₂ Emissions for a Part L 2013 Compliant Development	5
4.	Energy Efficiency Measures "Be Lean" and Sustainability Strategies	6
<i>5.</i>	Decentralised Energy (DE) Networks - Be Clean	8
5.1.	District Heating	8
5.2.	Combined Heat and Power (CHP)	9
6.	Cooling and Overheating	10
6.1.	The Cooling Hierarchy	10
6.1.	Overheating Risk Analysis	10
6.2.	Active Cooling	10
7.	Low & Zero Carbon Technologies Feasibility Study - Be Green	11
7.1.	Wind Turbines	12
7.2.	Ground Source Heat Pump	13
7.3.	Air Source Heat Pumps	14
7.4.	Solar Photovoltaic Panels	15
7.5.	Solar Water Heating	16
7.6.	Recommended Solution	17
8.	Conclusion	18
9.	Appendix	19
9.1.	Appendix 1 – SBEM and BRUKL 'Be Lean'	
9.2.	Appendix 2 – SBEM and BRUKL 'Be Clean'	20
9.3.	Appendix 3 - SBEM and BRUKL 'Be Green'	21
9.4.	Appendix 4 – Drawings M-098	22
9.5.	Appendix 5 – Drawing M-100	23
9.6.	Appendix 6 – Schematic M-210	24

1. Executive Summary

In support of the planning application for the proposed development at 135-149 Shaftesbury Avenue, and to comply with the London Plan and Camden Council's requirements on environmental sustainability and efficient energy design an Energy Statement has been produced.

The Energy Statement contained herein describes the recommended solution to service the proposed development in the most energy efficient and sustainable manner, following the Be Lean, Be Clean, Be Green hierarchy as stipulated by the Greater London Authority (GLA). The results of this study recommend the installation of a highly efficient air source heat pump system to provide the space heating, cooling and domestic hot water for the development. In addition the installation of 58No photovoltaic panels will provide a total installed capacity of 21.2 kWp to further reduce the carbon emissions of the development and comply with Camden's 20% reduction of carbon emissions from renewables.

Carbon Emissions

The table below shows the carbon emissions for the development after each stage of the energy hierarchy.

	Carbon dioxide emi domestic bu (Tonnes of CO2	uildings
	Regulated	Unregulated
Baseline: Part L 2013 of the Building		
Regulations Compliant Development	395.79	116.15
After energy demand reduction	379.16	116.15
After heat network / CHP	379.16	116.15
After renewable energy	300.01	116.15

Table 1 Carbon Dioxide Emissions after each stage of the Energy Hierarchy for non-domestic buildings

The table below shows the different savings at each stage of the energy hierarchy.

	Regulated non-domestic carbon dioxide savings	
	(Tonnes of CO ₂ per annum)	(%)
Savings from energy demand reduction	16.63	4.2%
Savings from heat network / CHP	0.00	0.0%
Savings from renewable energy	79.16	20.0%
Cumulative on site savings	95.79	24.20%

Table 2 Regulated Carbon Dioxide savings from each stage of the Energy Hierarchy for nondomestic buildings

Through energy efficiency techniques as well as the implementation of renewable technologies as mentioned above, the proposed development will reduce annual carbon emissions by 95.79 tons of CO_2 . This accounts for a reduction of approximately 24.2% of the building's expected regulated energy carbon emissions.

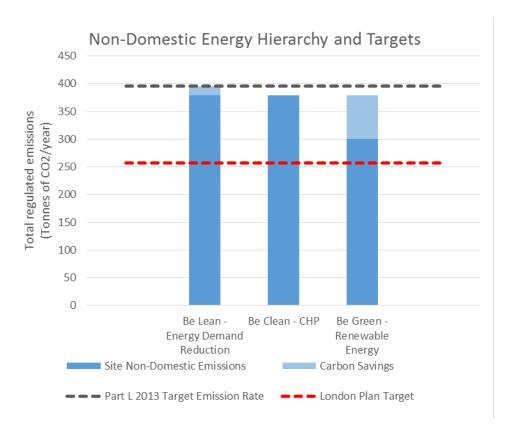


Figure 1 The Non-Domestic Energy Hierarchy

As the development falls short of the London Plan target of 35% reduction in CO₂ emissions a cumulative shortfall calculation for the life of the building has been completed above.

Shortfall in Regulated Carbon Dioxide Savings		
	Annual Shortfall (Tonnes of CO2)	Cumulative Shortfall (Tonnes of CO2) over 30 years
Total Target Savings	139	
Shortfall	43	1282

Table 3 Shortfall in Regulated Carbon

The development will need to cover the 1,282 tonnes of CO₂ shortfall, as per the London Plan and Camden Council's guidance through an in-lieu contribution.

2. Introduction

In support of the planning application, an energy statement study that examines the potential for reduction of carbon emissions for the proposed development at 135-149 Shaftesbury Avenue, The Odeon Shaftesbury Hotel, has been compiled on request of the Applicant.

The proposed development will be a mixed use non-domestic site with a 94 room hotel, a four screen basement cinema, and a spa.

Camden Council has specific requirements with regards to improvements on carbon emissions in comparison to 2013 Building Regulations Part L.

- In line with the London Plan (Policy 5.2), the council's planning guidance (CPG 3) requires that any new development demonstrate that the proposed scheme will provide a 35% improvement on Part L 2013 carbon emissions.
- In line with the London Plan, the proposed development should attempt to meet at least BREEAM Excellent (Refer to DSA's separate Sustainability Report).

This report demonstrates how this development will strive to comply with the Camden Council and GLA's policy requirement of a 35% reduction of carbon emissions on 2013 Building Regulations Part L.

This report follows the Mayor of London's planning guidance of Be Lean, Be Clean, and Be Green.

3. Establishing CO₂ Emissions for a Part L 2013 Compliant Development

Part L 2013 calculations have been performed by using approved modelling SBEM software (HEVACOMP) in order to predict the carbon emissions of the proposed development.

To establish the regulated CO2 emissions for a Part L 2013 compliant development, it has been assumed that the heating will be provided by gas boilers and any active cooling will be provided by electrically powered equipment, in line with GLA guidance on preparing Energy Statements.

Table 7 below shows the carbon emission rate for the development required to meet 2013 Building Regulations (i.e. the Target Emission Rate).

Target Emission Rate for Non- Domestic			
TER 59.5 kgCO2/m ²			

Table 4 Annual carbon emissions for the proposed development

Energy Statement

4. Energy Efficiency Measures "Be Lean" and Sustainability Strategies

The energy efficiency measures for the Proposed Development will be maximised through the use of passive design features including:

- solar shading, and good shading coefficient of the glazing throughout to control heat gains;
- thermal mass to manage heat.

The active cooling and heating demand has been minimised as far as possible through passive design measures including efficient building fabric, improved building air tightness and efficient lighting.

Efficiency of glazing to fabric

During the design process, the design of the glazing of the building has been significantly reduced through the use of solar shading on glazing in order to reduce energy required to heat and cool the space. The first four floors of hotel accommodation will be sheltered as they are located within the curtilage of the existing building. These rooms will look into an atrium that is subsequently being shaded by the existing external wall, greatly reducing solar heat gains.

The fully glazed top floors of the hotel will be provided with a fritted glazing with significantly improves the shading coefficient.

The overall glazing percentage of the building is 35% which is more efficient than a notional Part L building which has 40% of the façade as glazing.

Building fabric U-values

The thermal efficiency of the building elements affects the heating and cooling demand of the building (and thereby affects the demand for natural gas and electricity). Below is a list of the building regulations, and the more stringent target U-values for this development:

Element	Building Regulations (W/m²K)	Proposed for Odeon Hotel (W/m ² K)
Wall	0.35	0.20
Floor	0.25	0.20
Roof	0.25	0.18
Windows	2.2	1.3
Windows (g-Value)	N/A	0.35 / 0.08 (fritted glass)

Table 5 U-Values as proposed for the proposed development comparison to Part L 2013

Thermal Bridging

All thermal bridging will be mitigated through the use of accredited construction details, or bespoke arrangements to ensure the fabrics efficiency is not compromised.

Air permeability

The air permeability (i.e. the tightness to the outdoor elements) of a building affects the heating and cooling demand of the building (and thereby affects the demand for natural gas and electricity). This development will achieve an air permeability which will be significantly more

energy efficient than required by building control. The target air permeability rate for this development is $5.0 \text{ m}^3\text{/h/m}^2$.

The limiting factors which could make it difficult to achieve this air permeability rate are the junctions between the windows, and the openings throughout. The developer and the design team will include this air permeability target in a detailed specification so that the contractor is required to build an airtight building in order to achieve the target set above.

HVAC systems

The efficiency of the mechanical systems has a significant impact on the amount of energy which the building consumes in order to deliver the required heating and cooling loads. Highly efficient equipment will be specified for this development, and wherever practically possible equipment from the government's Energy Technology List will be selected.

A highly efficient air source heat pump system will be installed to provide the space heating and cooling of the development. This heat pump system will also recover heat from the cooling process to pre-heat domestic hot water.

All air handling units for fresh air will be fitted with heat recovery to reduce the energy required for this element.

All new fan coil units shall use direct current variable speed motors. All pumps and fans shall be selected with high efficiency variable drive motors.

Lighting systems

Lighting represents a significant portion of the annual carbon emissions of this development. In order to maximise the natural light and reduce the energy consumed in order to generate artificial light, the following energy efficiency measures have been specified:

- Energy efficient lighting specified for all areas (LEDs);
- Sub-metering of lighting which automatically warns of "out of range" values (commercial only);
- Manual On / Automatic off switching for lighting; and
- PIR sensors in relevant zones (e.g. BOH areas/public toilets/plant rooms/stores)

The table below shows the savings on regulated carbon emissions after the 'Lean' stage of the energy hierarchy for development.

	Regulated non-domestic carbon dioxide savings	
	(Tonnes of CO ₂ per annum)	(%)
Savings from energy demand reduction	16.63	4.2%

Table 6 Non domestic carbon emissions after the Be Lean Stage

5. Decentralised Energy (DE) Networks – Be Clean

5.1. District Heating

System Description

The London Plan's Energy Hierarchy and Camden Council's CPG3 guidance encourages developments to connect to existing decentralised energy (DE) networks where these exist or are proposed in the vicinity of the scheme. These systems combine the energy demands and supplies of nearby developments to more efficiently serve the building service requirements of the community as a whole.

Technical Viability

The figure below is an excerpt from the London Heat Map highlighting any existing and proposed DE networks. The red dot in the center indicates the location of the proposed development at 135-149 Shaftesbury Avenue, and shows that the site currently sits outside the reach of any existing/proposed district heating networks.



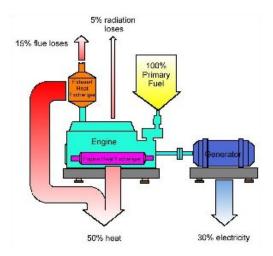
Figure 2 London Heat Map showing that there are no existing or potential networks near the proposed development.

Although the proposed development sits outside the zones identified for potential networks, the site is within proximity (less than 1km) to the Bloomsbury H&P extension and Soho potential networks and will therefore be future proofed to allow future connection of the site into any of these networks if they are implemented.

Appendix 4 shows the allocated space for future provision of district heating heat exchangers in the basement plantroom. Appendix 5 shows routes for pipework to the boundary line on the ground floor (below ground) where the expected route of the district system (Shaftesbury Avenue).

Once a district heating system is planned, and an expected heat availability date is confirmed, connection dates of the proposed development can be established.

Therefore, connecting to an existing DE network is not a feasible solution for this development however provisions for future connection into a district heating system will be allowed for.



5.2. Combined Heat and Power (CHP)

CHP Description

Combined Heat and Power, or CHP as it is more commonly referred to, is the simultaneous generation of usable heat and power in a single process. In other words, it utilises the heat produced in electricity generation rather than releasing it wastefully into the atmosphere. In typical conventional power generation, much of the total energy input is wasted. CHP systems, where the heat produced in electricity generation is put to good use, can reach efficiencies up to 85%. A CHP can provide a secure and highly efficient method of generating electricity and heat at the point of use. Due to utilisation of heat from electricity generation and the avoidance of transmission losses because electricity is generated on site, CHP achieves a significant reduction in primary energy usage compared with power stations and heat only boilers. Typically a good CHP scheme can deliver an increase of around 20% in efficiency against the separate energy system it replaces and can result in savings of up to 50% of the annual CO_2 emissions from the site.

Bio-fuel CHP unit

Typical CHP process

Feasibility

For a CHP to be practical for a development there should be a steady demand for hot water and electricity. A CHP should be designed to cope with 100% of the heat base load of a building (i.e. a load that is continuous and steady all year round), with boilers to supply the peaks in demand during the colder months of the year. The only demand for heat that remains constant year round is domestic hot water.

The proposed development will comprise of hotel rooms with a high demand for hot water and could potentially benefit from the installation of a CHP system. However, a central London hotel will also require comfort cooling and the large amount of rejected heat from cooling plant would serve as a free source of heat for domestic hot water if instead of CHP a dual heating and cooling plant like ASHPs would be implemented.

A CHP is therefore not a feasible solution for this development.

The tables below shows the savings on regulated carbon emissions after the 'Be Clean' stage of the energy hierarchy for the development.

	Regulated non-domestic carbon dioxide savings	
	(Tonnes of CO ₂ per annum)	(%)
Savings from energy demand reduction	16.63	4.2%
Savings from heat network / CHP	0.00	0.0%

Table 7 Non Domestic Carbon emissions after the Be Clean Stage

IGINEERING O

6. Cooling and Overheating

6.1. The Cooling Hierarchy

Minimising Internal Heat Generation through Energy Efficient Design

The servicing infrastructure will be designed to minimise heat gains within the hotel rooms, and utilising highly efficient pipe insulation to minimise distribution heat losses.

Reducing the Amount of Heat Entering the Building in Summer

Through the design development the amount of glazing has been significantly reduced from the original proposals. The images on the right demonstrate the reduction in glazing proportional to the area of external fabric walls as the height of fully glazed new floors has reduced.

The current proposals also have reduced the amount of glazing to the façade. The lower floors of the development which will have an internally fully glazed elevation to hotel rooms will benefit shadowing created by the existing fabric to reduce the solar gains entering the building during the summer (see the section 4 of this report). The upper floors have reduced the size of clear glazing to the hotel room floors through the inclusion of a copper mesh inset glazing panels with significantly better shading coefficient.

Internal shades will be provided for all hotel rooms to reduce solar heat gains further.

Use of Thermal Mass and High Ceilings to Manage the Heat within the Building

The design of the proposed development will maximise the use of thermal mass to reduce peaks in cooling and heating requirements.

Passive Ventilation

Although the central London location and associated air and noise pollution prevents the hotel from incorporating passive ventilation, a free cooling strategy will be built into the developments air handling equipment so that cool outside air is used without conditioning to treat indoor spaces whenever external temperatures are cool enough to allow for this.

Mechanical Ventilation

The fresh air system for the building will incorporate a heat recovery system to reduce the cooling and heating load required from mechanical ventilation.

6.1. Overheating Risk Analysis

Refer to Appendix 6 for the BRUKL Output Document which indicates compliance with Criterion 3 of Part L 2013.

In addition Hevacomp modelling software's CIBSE heat gain analysis has been carried out to ensure internal heat gains (lighting, small power, fabric) have been minimised to reduce the requirement for cooling.

Figure 3 Reduction of glazing through design development

6.2. Active Cooling

Although energy efficient design has been one of the key principles for the proposed developments, due to the nature of a high spec central London hotel, cooling will still be provided. The BRUKL document (Appendix 3) provides a comparison of the cooling demand for the actual building vs the notional building. The table below demonstrates that the actual building has a higher cooling demand than the notional building.

Cooling Demand (MJ/m2)		
Actual	386.3	
Notional	314.8	

Table 8 Cooling Demand for the Actual vs Notional Building

7. Low & Zero Carbon Technologies Feasibility Study - Be Green

The definition of 'renewable energy' used in the National Planning Policy Framework is:

"those energy flows that occur naturally and repeatedly in the environment – from the wind, the fall of water, the movement of the oceans, from the sun and also from biomass and deep geothermal heat. Low carbon technologies are those that can help reduce emissions (compared to conventional use of fossil fuels)."

This definition has been widened by the UK Government by the use of the term 'Low or Zero Carbon Energy Technologies" (LZCs) within the revised ADL documents. The carbon emissions reduction from applying these technologies when compared to the conventional technologies has also been accepted as 'renewable energy' under the GLA methodology.

In the following pages, the technical viability, indicative costs, and contribution towards the carbon emissions reduction are considered for the following systems:

- **1.** Wind Turbines;
- 2. Ground Sourced Heating;
- 3. Air Sourced Heat Pumps;
- 4. Solar Photovoltaic (PV) panels; and
- **5.** Solar Water Heating Systems.

Energy Statement

7.1. Wind Turbines

dsa NGINEERING

System Description

Wind turbines are modern, high-technology descendants of the old technology windmills that have been around for centuries. The difference is that now the kinetic energy of the wind is used to turn a turbine to generate electricity as opposed to moving water or turning a grist mill wheel. There are two types of wind turbine, one being the horizontal-axis variety which faces up-stream or

two types of wind turbine, one being the horizontal-axis variety which faces up-stream or downstream of the wind and where the rotational movement of the blade is connected to a generator to create electricity. The other type is the vertical-axis design, which is the most flexible type of wind turbine and is best suited for the more urban sites as it operates in any wind direction.

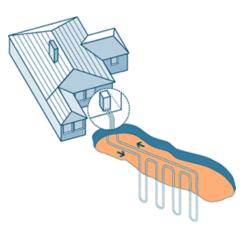
Horizontal-axis wind turbine

Vertical Axis Wind Turbine

Technical Viability

One of the big issues with wind turbines is the available wind speed. Apart from the direction, approximately 4.0 m/s wind velocity is required as a minimum before the turbine will begin to generate electricity. Additionally, if this option were used for this development, the building would need wind turbines protruding from the roof. Wind turbines in urban centres can generate acoustic complaints from both the occupants and the surrounding commercial / residential units.

Wind turbines are therefore not recommended for this development.


Wind Turbines		
Land Use	Foundation unless building mounted	
Planning Issues	Potentially a problem with gaining planning permission	
Noise	Problematic	
Tariffs	FiT 8.46 (4.91 for export) pence/kWh	

7.2. Ground Source Heat Pump

System Description

Ground source heat pumps take advantage of the stable ground temperatures of 10-12°C to provide energy efficient heating and cooling to a building. The energy flow is driven by the temperature difference between the ground and the circulating fluid which can be used to reject heat into the ground and deliver heating or cooling to the building.

System Schematic

Horizontal Pipe

Vertical Pipe Drilling Rig

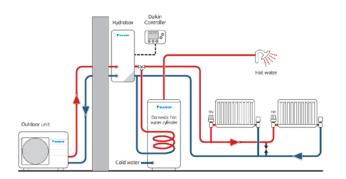
Technical Viability

Proposals to install a Closed Loop Ground Source Heat Pump and/or a direct borehole system to satisfy a large percentage of the heating demand for the building could be a cost-effective option. This system also offers the option of providing "free-cooling" to its occupants via the use of the constant 12°C deep-earth temperature.

This technology can benefit from the Renewable Heat Incentive.

The proposed development has a limited building foot print to house the amount of boreholes required for a successful GSHP installation suitable for a development this size. Furthermore the retained external walls will require the building foot print to reduce in the basements to ensure the foundations of these walls are not compromised, resulting in an even smaller basement footprint. Furthermore an ASHP with simultaneous heating and cooling will prove to be more cost effective than a GSHP.

A GSHP system is therefore not a viable solution for the proposed development.


Ground Source Heat Pumps		
Land Use	Below ground, minimal impact on future use of land	
Planning Issues	Minimal	
Noise	Minimal noise in plant room	
Tariffs	Renewable Heat Incentive 8.95/2.67 pence/kWh	

7.3. Air Source Heat Pumps

System Description

Air source heat pumps use the atmosphere as a renewable source of heat to generate heating and cooling with a refrigeration machine. The heating and cooling is accomplished by moving refrigerant through the heat pump's various indoor and outdoor coils and components. A compressor, condenser, expansion valve and evaporator are used to change states of the refrigerant from liquid to hot gas and then back from gas to liquid. The refrigerant is used to heat or cool coils in a fan coil unit located in the conditioned space. An external heat exchanger is used to heat or cool the refrigerant by absorbing heat from or rejecting heat to the outside air. This use of outside air is considered renewable, and has lead to the term "Air Source" Heat Pump.

Integrated Heating, Cooling, and DHW ASHP Configuration

Combined 4-Pipe Heat Pump Unit

Technical Viability

The COPs achievable with modern ASHPs means that these units will produce about 80% of its energy output from the air, a renewable and clean energy source.

Air sourced heating could provide a large proportion of the development's annual energy demand without a large space requirement for mounting equipment. These units can be located in the roof plantroom, providing a combined heating and cooling solution from one source.

This technology can benefit from the Renewable Heat Incentive.

New heat pump technologies can provide simultaneous cooling and heating (4-pipe Units), and with 'Total Heat Recovery' technology these units can achieve a Total Efficiency Ratio in excess of 7. The 'TER' is the efficiency of the system for when the system is in full heat recovery mode. This efficiency takes into account not only the energy generated by the refrigerant process for cooling but also the heat that would normally be rejected to the atmosphere via rooftop condensers. With the simultaneous cooling and heating heat pumps selected, the heat created while in cooling mode will be recovered and used for 'free' heating, instead of dissipated at rooftop.

The proposed ASHP units are Climaveneta NECS-Q/1314 with a COP of 3.75, EER of 3.30 and TER (Total Efficiency Ratio) of 7.55. This TER is a true representation of the efficiency of this combined heating and cooling system that takes advantage of reject heat generated when cooling is required in the building. Two identical units will be provided, each rated at 362kW to provide 60% of the load required if one were to fail.

Air Source Heat Pumps		
Land Use Requires external plant area		
Planning Issues	Potential issue if located in visible position.	
Noise Noise issues will be evident		
Tariffs Renewable Heat Incentive 2.57 pence/kWh		

Due to the high COPs generated, an ASHP system will be more efficient than other heating systems. The table below demonstrates that the proposed Air Source Heat Pump system will produce approximately 43% less CO2 emissions per kWh of heat generated than a conventional gas boiler system.

	Boiler (natural gas)	Boiler (electric)	ASHP (electric)
COP	89%	1	3.75
SAP 2012 Carbon Factor (kgCO ₂ /kWh)	0.216	0.519	0.519
Carbon Emissions (per KWh of heat generated)	0.243	0.519	0.138

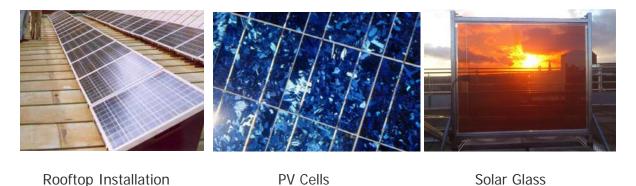
Table 9 Comparison of ASHP vs Conventional Gas Boiler

The heat pumps can be situated on the roof top plantroom, and details of the noise emissions have been considered by the acoustic engineer (please refer to their report for further details).

Buffer cylinders and secondary pumps will be provided in an internal rooftop plantroom to circulate LPHW and CHW throughout the building from this single central energy centre.

Refer to Appendix 6 for a schematic of the proposed concept design.

Metering of the electrical consumption, as well as heat meters recording LPHW and CHW production will be installed to ensure in-use efficiencies are measured.


Air source heat pumps providing domestic hot water, space heating and cooling is therefore a viable option for the Proposed Development.

7.4. Solar Photovoltaic Panels

System Description

Solar photovoltaics (PVs) convert energy from daylight into electricity using a semiconductor material such as silicon. When light hits the semiconductor, the energy in the light is absorbed, 'exciting' the electrons in the semiconductor so that they break free from their atoms. This allows the electrons to flow through the semiconductor material producing electricity.

Technical Viability

Solar PV panels are best mounted at an incline with a southerly orientation, although orientations between south-east and south-west are viable.

This technology can benefit from the Feed in Tariff.

The proposed development has a roof top bar which has been redesigned from glazed panels to solid roof. This presents an opportunity to install a conventional photovoltaic array to further reduce carbon emissions for the development.

The figure below is an indicative layout showing the proposed installation of 58No panels (each 365W) that will provide a total installed capacity of 21.2 kWp. The array will be South East facing and set to a 10deg pitch to minimise the protruding height of the installation. Adequate spacing of the panels has been allowed for to ensure appropriate maintenance regimes can be conducted.

The installation will be higher than the majority of the surrounding buildings so very little overshadowing is expected, except for small amounts of overshadowing of the late evening sun to the South West of the scheme by the proposed works to the development at 125 Shaftesbury Avenue.

Photovoltaics are therefore a viable solution for the Proposed Development.

Photovoltaics	
Land Use	No land use (roof mounted)
	Potential issue if located in visible position. Can be
Planning Issues	located in discrete position.
Noise	None
Tariffs	FiT 2.38 (4.91 for export) pence/kWh

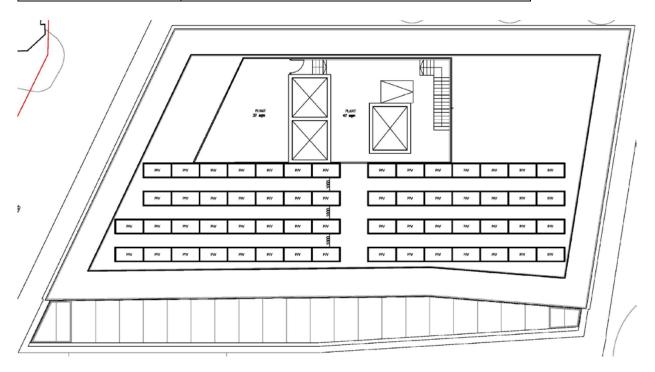
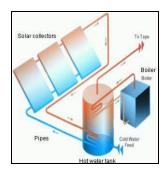
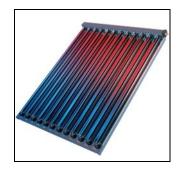


Figure 4 Proposed layout for Photovoltaic Panels

Figure 5 Proposed section of spacing required for photovoltaic panels




7.5. Solar Water Heating

System Description

Solar Water Heating systems convert solar radiation to heat carried by water for use in space heating or the provision of domestic hot water. Solar water heating systems normally operate with a back-up source of heat, such as gas condensing boilers. The solar water heating pre-heats the incoming water, which is topped-up by the back-up heat source when there is insufficient solar energy to reach the target water temperature.

Solar collectors are best mounted at an incline with a southerly orientation, although orientations between south-east and south-west are acceptable. As solar radiation is greatest in the summer when demand is lowest, it is not possible to meet the entire annual demand by increasing the size of the system. It is therefore recommended that a solar hot water system meet no more than 75% of the domestic hot water demand.

System Diagram

Evacuated Tube Collector

Glazed Flat Panel Collector

Technical Viability

In order for a solar panel to perform efficiently, it should be positioned between a 15 and 60 degree incline. As solar radiation is greatest in the summer when demand is lowest, it is not efficient to try to meet the entire annual demand by increasing the size of the system. It is therefore recommended that a solar water heating system meet no more than 65% of the domestic hot water demand.

This technology can benefit from the Renewable Heat Incentive.

Solar hot water systems are more cost efficient on buildings with a high demand for domestic hot water. The proposed development being a hotel, will require a high enough demand for domestic hot water making a solar thermal panel system cost efficient.

The roof area available will be better suited for use of photovoltaic panels rather than solar thermal for the proposed development.

Therefore the installation of Solar Thermal panels is not a viable solution.

Solar Hot Water	
Land Use	No land use
Planning Issues	Potential issue if visible. Can be located in discrete location
Noise	None
Tariffs	Renewable Heat Incentive 10.28 pence/kWh

7.6. Recommended Solution

DSA therefore recommends the following renewable energy strategy for the Odeon Shaftesbury Hotel.

The proposed development has the potential of benefiting from the multiple generation of an Air Source Heat Pump System and a Photovoltaic Panel array.

The table below shows the savings on regulated carbon emissions after the 'Be Green' stage of the energy hierarchy.

	Regulated non-domestic carbon dioxide savings		
	(Tonnes of CO ₂ per annum)	(%)	
Savings from energy demand reduction	16.63	4.2%	
Savings from heat network / CHP	0.00	0.0%	
Savings from renewable energy	79.16	20.0%	

Table 9 Carbon emissions after the Be Green Stage

The carbon savings (79.16 Tonnes of CO_2) for the BE GREEN stage of the Energy Hierarchy, can be attributed to the installation of ASHPs and PV panels. This complies with Camden's policy of 20% carbon reduction from renewables.

8. Conclusion

In order for the development to achieve minimum requirements of energy carbon reductions in line with planning policies and to comply with minimum energy requirements for BREEAM the proposed development must achieve:

 An improvement of 35% on the TER for the development dictated by 2013 Part L Building Regulations to comply with the London Plan and Camden's sustainability requirements and provide offset payments for all outstanding emissions (if any).

In order to maximise carbon reductions, the design team has followed the "Be Lean, Be Clean, Be Green" energy hierarchy as advised by the London Plan. This included reducing the buildings energy demand through energy efficient techniques, exploring the possibility of using decentralised energy systems, and including renewable energy technologies on site.

The Proposed Development will be supplied with a highly efficient air source heat pump system to provide the space heating, cooling, and domestic hot water for the development. In addition the installation of 58No photovoltaic panels will provide a total installed capacity of 21.2 kWp to further reduce the carbon emissions of the development and comply with Camden's 20% reduction of carbon emissions from renewables.

This will result in the following carbon emissions following the Be Lean, Be Clean, Be Green energy hierarchy for both regulated and unregulated use. The table below shows the carbon emissions for the development after each stage of the energy hierarchy.

	Carbon dioxide emissions for non-domestic buildings (Tonnes of CO2 per annum	
	Regulated	Unregulated
Baseline: Part L 2013 of the Building		
Regulations Compliant Development	395.79	116.15
After energy demand reduction	379.16	116.15
After heat network / CHP	379.16	116.15
After renewable energy	300.01	116.15

Table 10 Carbon Dioxide Emissions after each stage of the Energy Hierarchy for non-domestic buildings

The table below shows the different savings at each stage of the energy hierarchy for the development.

	Regulated non-domestic carbon dioxide savings	
	(Tonnes of CO ₂ per annum)	(%)
Savings from energy demand reduction	16.63	4.2%
Savings from heat network / CHP	0.00	0.0%
Savings from renewable energy	79.16	20.0%
Cumulative on site savings 95.79 24.2		24.20%

Table 11 Regulated Carbon Dioxide savings from each stage of the Energy Hierarchy for nondomestic buildings

Through energy efficiency techniques as well as the implementation of renewable technologies as mentioned above, the proposed development will reduce annual carbon emissions by 95.79 tons of CO_2 . This account for a reduction of approximately 24.20% of the buildings expected regulated energy carbon emissions.

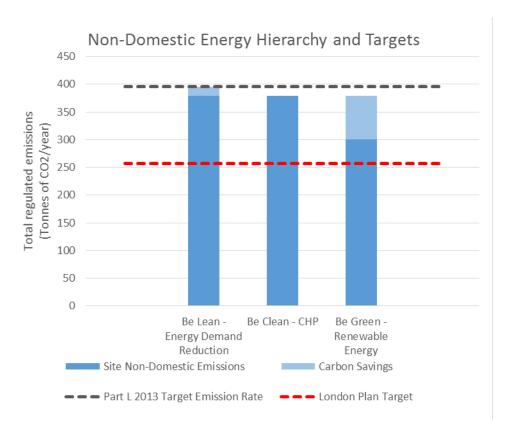


Figure 6 The Non-Domestic Energy Hierarchy

As the development falls short of the London Plan target of 35% reduction in CO₂ emissions a cumulative shortfall calculation for the life of the building has been completed above.

Shortfall in Regulated Carbon Dioxide Savings				
	Annual Shortfall (Tonnes of CO2)	Cumulative Shortfall (Tonnes of CO2) over 30 years		
Total Target Savings	139			
Shortfall	43	1282		

Table 12 Shortfall in Regulated Carbon

The development will need to cover the 1,282 tonnes of CO₂ shortfall, as per the London Plan and Camden's guidance with an in lieu contribution.

135-149 Shaftesbury Avenue

Energy Statement

9. Appendix9.1. Appendix 1 – SBEM and BRUKL 'Be Lean'

BRUKL Output Document

Compliance with England Building Regulations Part L 2013

Project name

135-149 Shaftesbury Avenue

As designed

Date: Mon Apr 16 14:25:44 2018

Administrative information

Building Details

Address: 135-149 Shaftesbury Avenue, London,

Certification tool

Calculation engine: SBEM

Calculation engine version: v5.4.a.1

Interface to calculation engine: Design Database

Interface to calculation engine version: v26.06.00.06

BRUKL compliance check version: v5.4.a.1

Owner Details

Name: Information not provided by the user

Telephone number: Information not provided by the user

not provided by the user, Information not provided by the user, Information not provided by the user Address: Information not provided by the user, Information

Certifier details

Name: DSA Engineering

Telephone number: 02072427272

Address: Damaso House, 31 Isligton Green, London, N1

Criterion 1: The calculated CO₂ emission rate for the building must not exceed the target

CO ₂ emission rate from the notional building, kgCO ₂ /m ² .annum	59.5
Target CO₂ emission rate (TER), kgCO₂/m².annum	59.5
Building CO₂ emission rate (BER), kgCO₂/m².annum	57
Are emissions from the building less than or equal to the target?	BER =< TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

Values which do not achieve the standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

Building fabric

Element	U _{a-Limit}	Ua-Cak	U _{i-Calc}	Surface where the maximum value occurs*
Wall**	0.35	0.21	0.21	B1 CINE LO Wall 1
Floor	0.25	-	-	"No heat loss floors"
Roof	0.25	0.15	0.15	L4 VOID01 Exposed Roof 1
Windows***, roof windows, and rooflights	2.2	1.3	1.3	G KITCHEN Window 1
Personnel doors	2.2	-	-	"No external personnel doors"
Vehicle access & similar large doors	1.5	-	-	"No external vehicle access doors"
High usage entrance doors	3.5	-	-	"No external high usage entrance doors"
U=Limit = Limiting area-weighted average U-values [V U=Calc = Calculated area-weighted average U-values			Ui-cate = C	Calculated maximum individual element U-values [W/(m²K)]

There might be more than one surface where the maximum U-value occurs.

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

Air Permeability	Worst acceptable standard	This building	
m³/(h.m²) at 50 Pa	10	5	

Building services

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details

Whole building lighting automatic monitoring & targeting with alarms for out-of-range values	YES
Whole building electric power factor achieved by power factor correction	>0.95

1- Full Air Systems

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency
This system	0.91	2.96		1.5	0.8
Standard value	0.91*	N/A	N/A	1.6^	0.5
Automatic moni	toring & targeting w	ith alarms for out-of	-range values for th	s HVAC syster	n YES

^{*} Standard shown is for gas single boiler systems <=2 MW output. For single boiler systems >2 MW or multi-boiler systems, (overall) limiting efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82.

2- Fan Coils & Fresh Air

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency				
This system	0.91	2.96		1	0.8				
Standard value	0.91*	N/A	N/A	1.6^	0.45				
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES									

^{*} Standard shown is for gas single boiler systems <=2 MW output. For single boiler systems >2 MW or multi-boiler systems, (overall) limiting efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82.

1- Default DHW

	Water heating efficiency	Storage loss factor [kWh/litre per day]
This building	Hot water provided by HVAC system	-
Standard value	N/A	N/A

Local mechanical ventilation, exhaust, and terminal units

ID	System type in Non-domestic Building Services Compliance Guide
Α	Local supply or extract ventilation units serving a single area
В	Zonal supply system where the fan is remote from the zone
С	Zonal extract system where the fan is remote from the zone
D	Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery
E	Local supply and extract ventilation system serving a single area with heating and heat recovery
F	Other local ventilation units
G	Fan-assisted terminal VAV unit
Н	Fan coil units
1	Zonal extract system where the fan is remote from the zone with grease filter

Zone name		SFP [W/(I/s)]									UD - CC - I	
	ID of system type	Α	В	С	D	E	F	G	Н	1	HR efficiency	
	Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
B1 CINE LO		-	-	-	-	-	-	-	-	-	-	N/A
B1 CINE ST		-	-	-	-	•	-	-	-		-	N/A
B1 CINE01		-	-	-	-	(#E)	-	-		-	-	N/A
B1 CINE02		-	-	-	-	9- 97	-	-	-	-	-	N/A

Page 1 of 15 Page 2 of 15

^{**} Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

^{***} Display windows and similar glazing are excluded from the U-value check.

[^] Limiting SFP may be extended by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide.

[^] Limiting SFP may be extended by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide.

Zone name		SFP [W/(I/s)]								HR efficiency	
ID of system type	Α	В	С	D	E	F	G	Н	1	HRE	тсепсу
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
B1 CINE03	-	-	-	-	-	-	(=)(-	-	-	N/A
B1 CINE04	-	-	-	-	-	-	-	-	-	-	N/A
G KITCHEN	-	-	-	-	-	-	1-11		-	-	N/A
G LOBBY01	-	-	-	-	-				-	-	N/A
G LOBBY02	-	-	-	-	-	-	-	-	-	-	N/A
G LOBBY03	-	-	-	-	-	-	(=))	-	-	-	N/A
G OFF LUG	-	-	-	-	-	-	-	-	-	-	N/A
G POP-UP	-	-	-	-	-	-	19-11	-	-	-	N/A
G RESTAU	-	-	-	-	-		2=25	-	-	-	N/A
B1 CORR01	-	-	-	-	-	-	(a)	0.2	-	-	N/A
B1 CORR02	-	-	-	-	-		-11	0.2	-	-	N/A
B1 CORR03	-	-	-	-	-	-	-	0.2	-	-	N/A
B1 CORR04	-	-	-	-	-		-	0.2	-	-	N/A
B1 CORR05	-	-	-	-	-		(- 0)	0.2	-	-	N/A
B1 CORR06	-	-	-	2	_	-	-	0.2	2	-	N/A
B1 CORR07	-	-	-	-	-	-	-11	0.2	-	-	N/A
B1 CORR08	-	-	-	-	-			0.2	-	-	N/A
B1 FIRE C	-	-	-	_	-	-	-	0.2	-	-	N/A
B1 PROJ01	-	-	-	-	-	10-0	1(40)	0.2	-	-	N/A
B1 PROJ02	-	-	-	-	_	-	-	0.2	-	-	N/A
B1 PROJ03	-	-	-	-	-	-	-	0.2	-	-	N/A
B1 PROJ04	-	-	-	-	-	-	-	0.2	-	-	N/A
B1 STAIR01	-	-	-	-	-	: - :	S=31	0.2	-	-	N/A
B1 STAIR02	-	-	-	2	-	-	-	0.2	2	-	N/A
B1 TOILE01	-	-	-	-	-		(-):	0.2	-	-	N/A
B1 TOILE02	-	-	-	-	-	-	1.00	0.2	-	-	N/A
B1 TOILE03	-	-	-	-	-	-		0.2	-	-	N/A
B2 BOH01	-	-	-	-	-		2-02	0.2	-	-	N/A
B2 CORR01	ļ. —	-	-	-	-	-	-	0.2	-	-	N/A
B2 CORR02	ļ. —	-	-	-	-	-	-1	0.2	-	-	N/A
B2 CORR03	ļ. —	-	-	-	-		0	0.2	-	-	N/A
B2 PLANT01	-	-	-	_	-	-	-	0.2	-	-	N/A
B2 PLANT02	-	-	-	-	-	- 1	- 1	0.2	-	-	N/A
B2 STAIR01	-	-	-	-	-	-	-	0.2	-	-	N/A
B2 STAIR02	ļ. —	-	† -	-	-	-		0.2	_	-	N/A
B3 CORR01	-	-	-	-	-	-	(=0)	0.2	-	-	N/A
B3 CORR02	ļ. —	-	-	-	-	-	-	0.2	-	-	N/A
B3 CORR04	ļ. —	-	-	_	-	-	-	0.2	_	-	N/A
B3 PLANT01	ļ.	-	ļ.	-	-	-	-	0.2	-	-	N/A
B3 SPA	-	-	-	_	-	-	-	0.2	_	_	N/A
B3 STAIR01	-	-	-	-	-	-	1-0	0.2	-	-	N/A
B3 STAIR02	-	-	-	_	-	-	2	0.2	_	-	N/A
20 017 11 TOE	1	-	-	33			200	0.2	20		N/A

	SFP [W/(I/s)]										HR efficiency	
ID of system type	Α	В	С	D	E	F	G	н	1	HRE	efficiency	
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard	
G BOH01	-	-	-	-		-	-	0.2		- 1	N/A	
G ELEC INT	-	-	-	-	-	-	-	0.2	-	-	N/A	
G LOAD BAY	-	-	-	-	-	-	-	0.2	-	-	N/A	
G STAIR01	-	-	-	-		-	-	0.2			N/A	
G STAIR02	-	-	-	-	-	_	-	0.2	-	-	N/A	
L1 BALC02	-	-	-	-	1,=11	-	-	0.2	·-:	1,=01	N/A	
L1 BALC03	-	-	-	-	-	-	_	0.2	-	-	N/A	
L1 BALC04	-	-	-	-		-	-	0.2	-	10	N/A	
L1 CORR01	-	-	-	-	- ye	-	-	0.2	- :	7 - 34	N/A	
L1 LOBBY01	-	-	-	-	-	-	_	0.2	-	-	N/A	
L1 LOBBY02	-	-	ļ. —	-	1-11	-	-	0.2	1-0	-	N/A	
L1 LOBBY03	-	-	-	-	-	-	-	0.2	-	-	N/A	
L1 ROOM03	-	-	-	-	-	-		0.2	-	-	N/A	
L1 ROOM04	-	-	-	-	- 11	-	_	0.2	-	-	N/A	
L1 ROOM05	-	-	١.	-	-	_	_	0.2	-	-	N/A	
L1 ROOM06	-	-	-	-	-	-	_	0.2	-	-	N/A	
L1 ROOM07	-	-	-	-	-	-	-	0.2	-	-	N/A	
L1 ROOM08	-	-	-	-	-	_	-	0.2	-	-	N/A	
L1 ROOM09	-	-	-	-	1-10	-	-	0.2		1=10	N/A	
L1 ROOM10	-	-	ļ. —	-	_	_	_	0.2	-	-	N/A	
L1 ROOM11	-	-	ļ <u>. </u>	-	-	-	_	0.2	-	1-0	N/A	
L1 ROOM12	-	-	† <u> </u>	-	-	-	-	0.2		-	N/A	
L1 ROOM13	-	-	-	-	- :	-		0.2		-	N/A	
L1 ROOM14	-	-	-	-	-	_	_	0.2	-	-	N/A	
L1 ROOM15	-	-	-	-	-	_	-	0.2	-	-	N/A	
L1 ROOM16	-	-	-	-		-	-	0.2	-	-	N/A	
L1 STAIR01	-	-	ļ. —	-	-	_	_	0.2	-	-	N/A	
L1 STAIR02	-	-	-	-	1-01	-	-	0.2	-	-	N/A	
L1 VOID01	-	-	١.	-	-	4	-	0.2	_	-	N/A	
L1 VOID02	-	-	-	-	-	-	_	0.2	-	-1	N/A	
L1. ROOM01	-	-	ļ	-		_	-	0.2	-	-	N/A	
L1. ROOM02	-	-	<u>-</u>	-	-	_	_	0.2	-	-	N/A	
L2 BALC02	-	-	-	-	- 1	-	-	0.2	:	-	N/A	
L2 BALC03	-	-	-	-	-	-		0.2	-	-	N/A	
L2 BALC04	-	-	-	-	-	-	-	0.2	-	-	N/A	
L2 CORR01	-	-	-	-		-		0.2		-	N/A	
L2 LOBB01	-	-	ļ. —	-	-	_	_	0.2	-	-	N/A	
L2 LOBB02	-	-	-	-	-	-	-	0.2		-	N/A	
L2 LOBB03	-	-	-	-	-	-	-	0.2	-	-	N/A	
L2 ROOM03	-	-	-	-	-	-	_	0.2	-	-	N/A	
L2 ROOM04	-	-	-	-	1-0	-	-	0.2		-	N/A	
L2 ROOM05	-	-	-	-	-	_	-	0.2	_	-	N/A	
L2 ROOM06					- 1	_		0.2	-	-	N/A	

Page 3 of 15 Page 4 of 15

Zone name	SFP [W/(I/s)]									LID - MI-I	
ID of system type	Α	В	С	D	E	F	G	Н	I	HRE	efficiency
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
L2 ROOM07	-	-	-	-	-	-	·	0.2	-	-	N/A
L2 ROOM08	-	-	-	-	-	-	-	0.2	-	-	N/A
L2 ROOM09	-	-	-	-	-	-	-1	0.2	-	-	N/A
L2 ROOM10	-	-	-	-	-			0.2	-	-	N/A
L2 ROOM11	-	-	-	-	-	-	-	0.2	-	-	N/A
L2 ROOM12	-	-	-	-	-	•	(-))	0.2	-	-	N/A
L2 ROOM13	-	-	-	<u>=</u>	-	-	-	0.2	-	-	N/A
L2 ROOM14	-	-	-	-	-	-	-0	0.2	-	-	N/A
L2 ROOM15	-	-	-	-	-	-	(-)	0.2	-	-	N/A
L2 ROOM16	-	-	-	-	-	-	(21)	0.2	-	-	N/A
L2 STAIR01	-	-	-	-	-	*		0.2	-	-	N/A
L2 STAIR02	-	-	-	-	-	-	-	0.2	-	-	N/A
L2 VOID	-	-	-	-	-		-	0.2	-	-	N/A
L2 VOID01	-	-	-	-	-		(- 2)	0.2	-	-	N/A
L2. ROOM01	-	-	-	-	-	-	-1	0.2	-	-	N/A
L2. ROOM02	-	-	-	-	-		1	0.2	-	-	N/A
L3 BALC02	-	-	-	-	-			0.2	-	-	N/A
L3 BALC03	-	-	-	-	-		-	0.2	-	-	N/A
L3 BALC04	-	-	-	-	-	-	1(=0)	0.2		-	N/A
L3 CORR01	-	-	-	<u>=</u>	_	-	-	0.2	_	-	N/A
L3 LOBB01	-	-	-	-	-	-	(=)	0.2	-	-	N/A
L3 LOBB02	-	-	-	_	-			0.2	_	-	N/A
L3 LOBB03	-	-	-	-	-	-	(-)(0.2	-	-	N/A
L3 ROOM03	-	-	-	-	-	-	-	0.2	-	-	N/A
L3 ROOM04	-	-	-	-	-	-	-	0.2	-	-	N/A
L3 ROOM05	-	-	-	-	-		1811	0.2	-	-	N/A
L3 ROOM06	-	-	-	_	-	-	-	0.2	-	-	N/A
L3 ROOM07	-	-	-	-	-	-	- 1	0.2	-	-	N/A
L3 ROOM08	-	-	-	-	-	-	-	0.2	-	-	N/A
L3 ROOM09	-	-	-	-	-	-	(-)	0.2	-	-	N/A
L3 ROOM10	-	-	-	-	-	-	(=))	0.2	-	-	N/A
L3 ROOM11	-	-	-	_	-		1211	0.2	_	-	N/A
L3 ROOM12	-	-	-	-	-		-	0.2	-	-	N/A
L3 ROOM13	-	-	-	-	-	-	-	0.2	-	-	N/A
L3 ROOM14	-	-	-	_	-	-	-	0.2	-	-	N/A
L3 ROOM15	-	-	-	-	-		(=) ₁	0.2	-	-	N/A
L3 ROOM16	-	-	-	_	_	-	-	0.2	-	-	N/A
L3 STAIR01	-	-	-	-	-	-	-	0.2	-	-	N/A
L3 STAIR02	-	-	-	-	-		-	0.2	-	-	N/A
L3 VOID01	-	-	-	_	-	-	-	0.2	_	-	N/A
L3 VOID02	-	-	-	-	-	-	- 1	0.2	-	-	N/A
L3. ROOM01	-	-	-	_	-	-	-	0.2	-	-	N/A
L3. ROOM02	-	-	ļ. —	-	-	-	-	0.2	-	-	N/A

Zone name				SF	P [W	(l/s)]		y		HR efficiency	
ID of system type	Α	В	С	D	E	F	G	н	1	HR	emiciency
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
L4 BALC02	-	-	-	-	·- :	-	-	0.2		:-::	N/A
L4 BALC03	-	-	-	-	-	-	-	0.2	-	-	N/A
L4 BALC04	-	-	-	-	-	-	-	0.2	-	- 1	N/A
L4 CORR01	-	-	-	-		-	-	0.2		S-12	N/A
L4 LOBB01	-	-	-	-	-	-	-	0.2	-	- 1	N/A
L4 LOBB02	-	-	-	-	0.00	-	-	0.2		0.000	N/A
L4 LOBB03	-	-	-	-	-	-	-	0.2		-	N/A
L4 ROOM03	-	-	-	-	(-1)	-	-	0.2	-	1-11	N/A
L4 ROOM04	-	-	-	-	2 - 33	-	-	0.2	-	2-35	N/A
L4 ROOM05	-	-	-	-	(2)	-	-	0.2	*	(4)	N/A
L4 ROOM06	-	-	-	-	(#1)	-	-	0.2		(- 1)	N/A
L4 ROOM07	-	-	-	-	-	-	-	0.2	-		N/A
L4 ROOM08	-	-	-	-	-	-		0.2	-	-	N/A
L4 ROOM09	-	-	-	-	- 11	-	-	0.2			N/A
L4 ROOM10	-	-	-	-	-	-	_	0.2	-	21	N/A
L4 ROOM11	-	-	-	-	-	-	-	0.2	-	-	N/A
L4 ROOM12	-	-		-	:	-	-	0.2		-	N/A
L4 ROOM13		-	ļ	-	-	-	-	0.2	-	-1	N/A
L4 ROOM14	-	-	ļ. —	-	1-10	-	-	0.2	-	1=10	N/A
L4 ROOM15	-	-	-	-	-	-	_	0.2	-	-	N/A
L4 ROOM16	-	-	-	-	-	-	_	0.2	-	1-0	N/A
L4 STAIR01	-	-	ļ. —	-	_	-	-	0.2	-	-	N/A
L4 STAIR02	-	-	-	-	- 7	-		0.2		1-11	N/A
L4 VOID01	-	-	-	-	-	-	_	0.2	-	-	N/A
L4 VOID02	-	-	-	-	-	-	-	0.2	-	-	N/A
L4. ROOM01	-	-	-	-		-	-	0.2			N/A
L4. ROOM02	-	-	-	-		-	-	0.2	-		N/A
L5 CORR01	-	-	ļ. —	-	1-0	-	-	0.2		1-0	N/A
L5 CORR02	-	-	ļ. —	-	-	_	_	0.2	-	-	N/A
L5 CORR03	-	-	ļ. —	-	-	-	_	0.2	-	(-)	N/A
L5 CORR04	-	-	ļ. —	-		-	-	0.2	-	1:	N/A
L5 ROOM01	-	-	ļ	-	-	-	_	0.2	-	120	N/A
L5 ROOM02	-	-	-	-	- 1	-	_	0.2		1-11	N/A
L5 ROOM03	-	-	-	-	-	-	-	0.2	-	-	N/A
L5 ROOM04		-	-	-	-	-	-	0.2	-	-	N/A
L5 ROOM05	-	-	-	-	-	-		0.2			N/A
L5 ROOM06	-	-	-	-	-	-	_	0.2	-	-	N/A
L5 ROOM07	-	-		-	-			0.2	-	-	N/A
L5 ROOM08	-	-	-	-	-	-	-	0.2	-		N/A
L5 ROOM09	-	-	-	-	-	-	-	0.2	-	-	N/A
L5 ROOM10	-	-	-	-	-	-	-	0.2	-	-	N/A
L5 ROOM11	-	-	-	-	-	_	-	0.2	_	-	N/A
L5 ROOM12	-	-	-	-	-	-	-	0.2	-	-	N/A
LO NOOIVI IZ	_	1-	1-	-	7-27	1-	-	0.2		A	IN/A

Page 5 of 15

Zone name				SI	P [W/	(l/s)]				HR efficiency	
ID of system type	Α	В	С	D	E	F	G	н	1	HR	efficiency
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
L5 ROOM13	-	-	-	-	-		S=31	0.2	-	-	N/A
L5 ROOM14	-	-	-	-	-	-	-	0.2	-	-	N/A
L5 ROOM15	-	-	-	-	-	-		0.2	-	-	N/A
L5 STAIR01	-	-	-	7	70		ST 15	0.2	-	-	N/A
L5 STAIR02	-	-	-	-	-	-	-	0.2	-	-	N/A
L5 VOID02	-	-	-	-	-		(4))	0.2	-	-	N/A
L5 VOID03	-	-	-	<u>=</u>	-	-	-	0.2	-	-	N/A
L6 CORR01	-	-	-	-	-	-	(- 0)	0.2	-	-	N/A
L6 CORR02	-	-	-	-	-		2=25	0.2	-	-	N/A
L6 CORR03	-	-	-	-	-	-	(and	0.2	-	-	N/A
L6 CORR04	-	-	-	-	-			0.2	-	-	N/A
L6 ROOM01	-	-	-	-	-	-		0.2	-	-	N/A
L6 ROOM02	-	-	-	-	-	-		0.2	-	-	N/A
L6 ROOM03	-	-	-	-	-		8.73	0.2	-	-	N/A
L6 ROOM04	-	-	-	-	-	-	-	0.2	-	-	N/A
L6 ROOM05	-	-	-	-	-	-	-1	0.2	-	-	N/A
L6 ROOM06	-	-	-	-	-	100	er is	0.2	-	-	N/A
L6 ROOM07	-	-	-	-	-	-	-	0.2	-	-	N/A
L6 ROOM08	-	-	-	-	-	- 1	1(=0)	0.2	-	-	N/A
L6 ROOM09	-	-	-	-	-	-	-	0.2	-	-	N/A
L6 ROOM10	-	-	-	-	-	-	1-11	0.2	-	-	N/A
L6 ROOM11	-	-	-	-	-	-	-	0.2	-	-	N/A
L6 ROOM12	-	-	-	-	-		(=)i	0.2	-	-	N/A
L6 ROOM13	-	-	-	-	-	-	-	0.2	-	-	N/A
L6 ROOM14	-	-	-	-	-	-	(-)	0.2	-	-	N/A
L6 ROOM15	-	-	-	-	-		170	0.2	-	-	N/A
L6 STAIR01	-	-	-	<u>-</u>	-	-		0.2	-	-	N/A
L6 STAIR02	-	-	-	-	-	-		0.2	-	-	N/A
L6 VOID02	-	-	-	-	-	-	-	0.2	-	-	N/A
L6 VOID03	-	-	-	-	-	-	(-)	0.2	-	-	N/A
L7 BOH01	-	-	-	-	-	-	(=)	0.2	-	-	N/A
L7 CORR01	-	-	-	_	-	<u>.</u>	51	0.2	2	-	N/A
L7 CORR02	-	-	-	-	-	-	-1	0.2	-	-	N/A
L7 ROOFBAR	-	-	-	ā	-	-	-	0.2	-	-	N/A
L7 STAIR01	-	-	-	-	-	-	(4)	0.2	-	-	N/A
L7 STAIR02	-	-	-	-	-		(- 0)	0.2	-	-	N/A

[&]quot;LENI calculation for lighting energy provided in a separate submission."

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%)	Internal blinds used?		
B1 CINE LO	N/A	N/A		
B1 CINE ST	N/A	N/A		

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
B1 CINE01	N/A	N/A
B1 CINE02	N/A	N/A
B1 CINE03	N/A	N/A
B1 CINE04	N/A	N/A
G KITCHEN	YES (+10.1%)	YES
G LOBBY01	NO (-65.6%)	YES
G LOBBY02	N/A	N/A
G LOBBY03	N/A	N/A
G OFF LUG	N/A	N/A
G POP-UP	NO (-67.9%)	YES
G RESTAU	NO (-36.6%)	YES
B1 CORR01	N/A	N/A
B1 CORR02	N/A	N/A
B1 CORR03	N/A	N/A
B1 CORR04	N/A	N/A
B1 CORR05	N/A	N/A
B1 CORR06	N/A	N/A
B1 CORR07	N/A	N/A
B1 CORR08	N/A	N/A
B1 FIRE C	N/A	N/A
B1 PROJ01	N/A	N/A
B1 PROJ02	N/A	N/A
B1 PROJ03	N/A	N/A
B1 PROJ04	N/A	N/A
B1 STAIR01	N/A	N/A
B1 STAIR02	N/A	N/A
B1 TOILE01	N/A	N/A
B1 TOILE02	N/A	N/A
B1 TOILE03	N/A	N/A
B2 BOH01	N/A	N/A
B2 CORR01	N/A	N/A
B2 CORR02	N/A	N/A
B2 CORR03	N/A	N/A
B2 PLANT01	N/A	N/A
B2 PLANT02	N/A	N/A
B2 STAIR01	N/A	N/A
B2 STAIR02	N/A	N/A
B3 CORR01	N/A	N/A
B3 CORR02	N/A	N/A
B3 CORR04	N/A	N/A
B3 PLANT01	N/A	N/A
B3 SPA	N/A	N/A
B3 STAIR01	N/A	N/A
B3 STAIR02	N/A	N/A
G B STOR01	NO (-25%)	YES
G BOH01	N/A	N/A
G ELEC INT	N/A	N/A
G LOAD BAY	N/A	N/A
G STAIR01	N/A	N/A

Page 7 of 15

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
G STAIR02	N/A	N/A
L1 BALC02	NO (-86.2%)	YES
L1 BALC03	NO (-74%)	YES
L1 BALC04	NO (-84.2%)	YES
L1 CORR01	N/A	N/A
L1 LOBBY01	N/A	N/A
L1 LOBBY02	NO (-82.1%)	YES
L1 LOBBY03	N/A	N/A
L1 ROOM03	NO (-85.8%)	YES
L1 ROOM04	N/A	N/A
L1 ROOM05	N/A	N/A
L1 ROOM06	N/A	N/A
L1 ROOM07	N/A	N/A
L1 ROOM08	N/A	N/A
L1 ROOM09	N/A	N/A
		N/A
L1 ROOM10	N/A	
L1 ROOM11	N/A	N/A
L1 ROOM12	N/A	N/A
L1 ROOM13	NO (-76.8%)	YES
L1 ROOM14	N/A	N/A
L1 ROOM15	NO (-74.2%)	YES
L1 ROOM16	N/A	N/A
L1 STAIR01	N/A	N/A
L1 STAIR02	N/A	N/A
L1 VOID01	NO (-85.5%)	YES
L1 VOID02	NO (-38.2%)	YES
L1. ROOM01	N/A	N/A
L1. ROOM02	NO (-86.7%)	YES
L2 BALC02	NO (-81.6%)	YES
L2 BALC03	NO (-74%)	YES
L2 BALC04	NO (-84.2%)	YES
L2 CORR01	N/A	N/A
L2 LOBB01	N/A	N/A
L2 LOBB02	NO (-82.1%)	YES
L2 LOBB03	N/A	N/A
L2 ROOM03	NO (-85.8%)	YES
L2 ROOM04	N/A	N/A
L2 ROOM05	N/A	N/A
L2 ROOM06	N/A	N/A
L2 ROOM07	N/A	N/A
L2 ROOM08	N/A	N/A
L2 ROOM09	N/A	N/A
L2 ROOM10	N/A	N/A
L2 ROOM11	N/A	N/A
L2 ROOM12	N/A	N/A
L2 ROOM13	NO (-79.4%)	YES
L2 ROOM14	N/A	N/A
L2 ROOM15	NO (-74.2%)	YES
L2 ROOM16	N/A	N/A
	L	

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
L2 STAIR01	N/A	N/A
L2 STAIR02	N/A	N/A
L2 VOID	NO (-38%)	YES
L2 VOID01	NO (-86%)	YES
L2. ROOM01	N/A	N/A
L2. ROOM02	NO (-80.1%)	YES
L3 BALC02	NO (-81.9%)	YES
L3 BALC03	NO (-74.4%)	YES
L3 BALC04	NO (-84.5%)	YES
L3 CORR01	N/A	N/A
L3 LOBB01	N/A	N/A
L3 LOBB02	NO (-82.1%)	YES
L3 LOBB03	N/A	N/A
L3 ROOM03	NO (-85.8%)	YES
L3 ROOM04	N/A	N/A
L3 ROOM05	N/A	N/A
L3 ROOM06 L3 ROOM07	N/A	N/A
	N/A	N/A
L3 ROOM08	N/A	N/A
L3 ROOM09	N/A	N/A
L3 ROOM10	N/A	N/A
L3 ROOM11	N/A	N/A
L3 ROOM12	N/A	N/A
L3 ROOM13	NO (-73%)	YES
L3 ROOM14	N/A	N/A
L3 ROOM15	NO (-74.2%)	YES
L3 ROOM16	N/A	N/A
L3 STAIR01	N/A	N/A
L3 STAIR02	N/A	N/A
L3 VOID01	NO (-86.5%)	YES
L3 VOID02	NO (-38.2%)	YES
L3. ROOM01	N/A	N/A
L3. ROOM02	NO (-80.1%)	YES
L4 BALC02	NO (-81.9%)	YES
L4 BALC03	NO (-74.4%)	YES
L4 BALC04	NO (-84.5%)	YES
L4 CORR01	N/A	N/A
L4 LOBB01	N/A	N/A
L4 LOBB02	NO (-82.1%)	YES
L4 LOBB03	N/A	N/A
L4 ROOM03	NO (-85.8%)	YES
L4 ROOM04	N/A	N/A
L4 ROOM05	N/A	N/A
L4 ROOM06	N/A	N/A
L4 ROOM07	N/A	N/A
L4 ROOM08	N/A	N/A
L4 ROOM09	N/A	N/A
L4 ROOM10	N/A	N/A
L4 ROOM11	N/A	N/A

Page 9 of 15

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
L4 ROOM12	N/A	N/A
L4 ROOM13	NO (-82.3%)	YES
L4 ROOM14	N/A	N/A
L4 ROOM15	NO (-74.2%)	YES
L4 ROOM16	N/A	N/A
L4 STAIR01	N/A	N/A
L4 STAIR02	N/A	N/A
L4 VOID01	YES (+37.1%)	YES
L4 VOID02	NO (-80.5%)	YES
L4. ROOM01	N/A	N/A
L4. ROOM02	NO (-80.1%)	YES
L5 CORR01	N/A	N/A
L5 CORR02	N/A	N/A
L5 CORR03	N/A	N/A
L5 CORR04	NO (-89.1%)	NO
L5 ROOM01	N/A	N/A
L5 ROOM02	NO (-67%)	NO
L5 ROOM03	NO (-66.3%)	NO
L5 ROOM04	NO (-64.1%)	NO
L5 ROOM05	NO (-64.1%)	NO
L5 ROOM06	NO (-64.1%)	NO
L5 ROOM07	NO (-64.1%)	NO
L5 ROOM08	NO (-64.1%)	NO
L5 ROOM09	NO (-64.1%)	NO
L5 ROOM10	NO (-64.1%)	NO
L5 ROOM11	NO (-64.1%)	NO
L5 ROOM12	NO (-82%)	NO
L5 ROOM13	NO (-99%)	NO
L5 ROOM14	NO (-95.4%)	NO
L5 ROOM15	NO (-95.8%)	NO
L5 STAIR01	N/A	N/A
L5 STAIR02	NO (-96.8%)	NO
L5 VOID02	N/A	N/A
L5 VOID03	NO (-75.7%)	NO
L6 CORR01	N/A	N/A
L6 CORR02	N/A	N/A
L6 CORR03	N/A	N/A
L6 CORR04	NO (-70.9%)	NO
L6 ROOM01	N/A	N/A
L6 ROOM02	NO (-66.9%)	NO
L6 ROOM03	NO (-65.6%)	NO
L6 ROOM04	NO (-60.3%)	NO
L6 ROOM05	NO (-60.3%)	NO
L6 ROOM06	NO (-60.3%)	NO
L6 ROOM07	NO (-60.1%)	NO
L6 ROOM08	NO (-60.3%)	NO
L6 ROOM09	NO (-60.3%)	NO
L6 ROOM10	NO (-60.3%)	NO
L6 ROOM11	NO (-60.3%)	NO

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
L6 ROOM12	NO (-66.8%)	NO
L6 ROOM13	NO (-50%)	YES
L6 ROOM14	NO (-70.9%)	NO
L6 ROOM15	NO (-71%)	NO
L6 STAIR01	N/A	N/A
L6 STAIR02	NO (-71%)	NO
L6 VOID02	N/A	N/A
L6 VOID03	NO (-73.2%)	NO
L7 BOH01	N/A	N/A
L7 CORR01	N/A	N/A
L7 CORR02	N/A	N/A
L7 ROOFBAR	NO (-72.2%)	NO
L7 STAIR01	N/A	N/A
L7 STAIR02	N/A	N/A

Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

EPBD (Recast): Consideration of alternative energy systems

Were alternative energy systems considered and analysed as part of the design process?		
Is evidence of such assessment available as a separate submission?	YES	
Are any such measures included in the proposed design?	YES	

Page 11 of 15

Technical Data Sheet (Actual vs. Notional Building)

Building Global Parameters

Building Use

% F

	Actual	Notional
Area [m²]	6682	6682
External area [m²]	4382.8	4382.8
Weather	LON	LON
Infiltration [m³/hm²@ 50Pa]	5	3
Average conductance [W/K]	2227.71	2859.65
Average U-value [W/m²K]	0.51	0.65
Alpha value* [%]	19.57	17.11

^{*} Percentage of the building's average heat transfer coefficient which is due to thermal bridging

Area	Building Type
	A1/A2 Retail/Financial and Professional services A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways B1 Offices and Workshop businesses B2 to B7 General Industrial and Special Industrial Groups B8 Storage or Distribution
	C1 Hotels
	C2 Residential Institutions: Hospitals and Care Homes C2 Residential Institutions: Residential schools C2 Residential Institutions: Universities and colleges C2A Secure Residential Institutions Residential spaces

- D1 Non-residential Institutions: Community/Day Centre
- D1 Non-residential Institutions: Libraries, Museums, and Galleries
- D1 Non-residential Institutions: Education
- D1 Non-residential Institutions: Primary Health Care Building
- D1 Non-residential Institutions: Crown and County Courts
- D2 General Assembly and Leisure, Night Clubs, and Theatres
- Others: Passenger terminals
- Others: Emergency services
- Others: Miscellaneous 24hr activities
- Others: Car Parks 24 hrs
- Others: Stand alone utility block

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	15.62	13.42
Cooling	12.04	11.83
Auxiliary	22.89	27.7
Lighting	18.96	20.27
Hot water	121.84	121.84
Equipment*	61.52	61.52
TOTAL**	191.35	195.06

Energy used by equipment does not count towards the total for consumption or calculating emissions.
 Total is net of any electrical energy displaced by CHP generators, if applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	0	0
Wind turbines	0	0
CHP generators	0	0
Solar thermal systems	0	0

Energy & CO₂ Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m²]	225.21	192.85
Primary energy* [kWh/m²]	329	344.01
Total emissions [kg/m²]	57	59.5

^{*} Primary energy is net of any electrical energy displaced by CHP generators, if applicable.

H	IVAC Sys	stems Per	formanc	е						
Sy	stem Type	Heat dem MJ/m2	Cool dem MJ/m2		Cool con kWh/m2	Aux con kWh/m2	Heat SSEEF	Cool SSEER	Heat gen SEFF	Cool gen SEER
[S1	Constant	volume sys	tem (variat	le fresh air	rate), [HS]	LTHW boile	er, [HFT] Na	tural Gas,	[CFT] Elect	ricity
	Actual	3.7	386.3	1	30.1	46.6	1	3.56	0.91	5.5
	Notional	9.4	314.8	3.2	24.3	28.7	0.82	3.6		
[S1	∏ Fan coil s	ystems, [H	3] LTHW bo	iler, [HFT] I	Natural Gas	, [CFT] Ele	ctricity		d U	
	Actual	53.7	138.8	18.5	8.4	18.2	0.81	4.57	0.91	5.5
	Notional	45.6	121.2	15.5	9.4	27.5	0.82	3.6		

Key to terms

Heat dem [MJ/m2] = Heating energy demand
Cool dem [MJ/m2] = Cooling energy demand
Heat con [kWh/m2] = Heating energy consumption
Cool con [kWh/m2] = Cooling energy consumption
Aux con [kWh/m2] = Auxiliary energy consumption

Heat SSEFF = Heating system seasonal efficiency (for notional building, value depends on activity glazing class)

Cool SSEER = Cooling system seasonal energy efficiency ratio
Heat gen SSEFF = Heating generator seasonal efficiency

Cool gen SSER = Cooling generator seasonal energy efficiency ratio

ST = System type
HS = Heat source
HFT = Heating fuel type
CFT = Cooling fuel type

Page 13 of 15 Page 14 of 15

Key Features

The Building Control Body is advised to give particular attention to items whose specifications are better than typically expected.

Building fabric

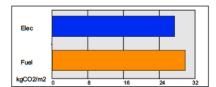
Element	U _{і-Тур}	Ui-Min	Surface where the minimum value occurs
Wall	0.23	0.21	B1 CINE LO Wall 1
Floor	0.2	-	"No heat loss floors"
Roof	0.15	0.15	L4 VOID01 Exposed Roof 1
Windows, roof windows, and rooflights	1.5	1.3	G KITCHEN Window 1
Personnel doors	1.5	-	"No external personnel doors"
Vehicle access & similar large doors	1.5	-	"No external vehicle access doors"
High usage entrance doors	1.5	-	"No external high usage entrance doors"
U _{LTyp} = Typical individual element U-values [W/(m²k	0)		U _{I-Min} = Minimum individual element U-values [W/(m ² K)]
* There might be more than one surface where the	minimum L	J-value oc	ours.

Air Permeability	Typical value	This building
m³/(h.m²) at 50 Pa	5	5

SBEM Main Calculation Output Document

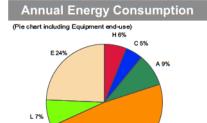
Mon Apr 16 14:25:40 2018

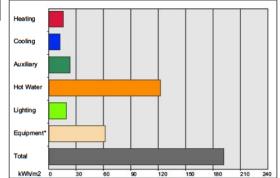
v5.4.a.1

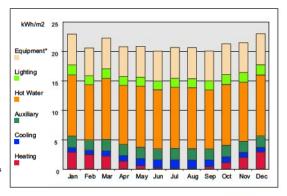

Building name

135-149 Shaftesbury Avenue

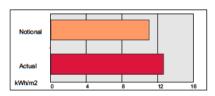
Building type:C1 Hotels

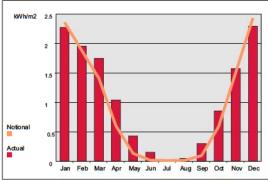

SBEM is an energy calculation tool for the purpose of assessing and demonstrating compliance with Building Regulations (Part L for England and Wales, Section 6 for Scotland, Part F for Northern Ireland, Part L for Republic of Ireland, and Building Bye-laws Jersey Part 11) and to produce Energy Performance Certificates and Building Energy Ratings. Although the data produced by the tool may be of use in the design process, SBEM is not intended as a building design tool.

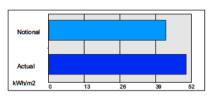

Building Energy Performance and CO2 emissions

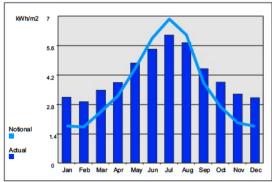

0 kgCO2m2 displaced by the use of renewable sources.

Building area is 6682.02 m2






(*) Although energy consumption by equipment is shown in the graphs for information, this end-use has not been included in the total results of the building or the calculation of the ratings.


Annual Heating Demand

Annual Cooling Demand

Page 1 of 2

135-149 Shaftesbury Avenue Energy Statement

9.2. Appendix 2 – SBEM and BRUKL 'Be Clean'

(Refer to Appendix 1. 'Be Clean' and 'Be Lean' SBEM and BRUKL Reports are identical)

9.3. Appendix 3 - SBEM and BRUKL 'Be Green'

BRUKL Output Document

Compliance with England Building Regulations Part L 2013

Project name

135-149 Shaftesbury Avenue

As designed

Date: Thu Apr 19 10:11:37 2018

Administrative information

Building Details

Address: 135-149 Shaftesbury Avenue, London,

Certification tool

Calculation engine: SBEM

Calculation engine version: v5.4.a.1

Interface to calculation engine: Design Database

Interface to calculation engine version: v26.06.00.06

BRUKL compliance check version: v5.4.a.1

Owner Details

Name: Information not provided by the user

Telephone number: Information not provided by the user

not provided by the user, Information not provided by the user, Information not provided by the user Address: Information not provided by the user, Information

Certifier details

Name: DSA Engineering

Telephone number: 02072427272

Address: Damaso House, 31 Isligton Green, London, N1

Criterion 1: The calculated CO₂ emission rate for the building must not exceed the target

CO ₂ emission rate from the notional building, kgCO ₂ /m ² .annum	55.2	
Target CO₂ emission rate (TER), kgCO₂/m².annum	55.2	
Building CO₂ emission rate (BER), kgCO₂/m².annum	45.1	
Are emissions from the building less than or equal to the target?	BER =< TER	
Are as built details the same as used in the BER calculations?	Separate submission	

Criterion 2: The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

Values which do not achieve the standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

Building fabric

Element	U _{a-Limit}	Ua-Cak	U _{i-Calc}	Surface where the maximum value occur				
Wall**	0.35	0.21	0.21	B1 CINE LO Wall 1				
Floor	0.25	-	-	"No heat loss floors"				
Roof	0.25	0.15	0.15	L4 VOID01 Exposed Roof 1				
Windows***, roof windows, and rooflights	2.2	1.3	1.3	G KITCHEN Window 1				
Personnel doors	2.2	-	-	"No external personnel doors"				
Vehicle access & similar large doors	1.5	-	-	"No external vehicle access doors"				
High usage entrance doors	3.5	-	-	"No external high usage entrance doors"				
U=Limit = Limiting area-weighted average U-values [V U=Calc = Calculated area-weighted average U-values			Ui-cate = C	Calculated maximum individual element U-values [W/(m²K)]				

There might be more than one surface where the maximum U-value occurs.

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

Air Permeability	Worst acceptable standard	This building
m³/(h.m²) at 50 Pa	10	5

Building services

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details

Whole building lighting automatic monitoring & targeting with alarms for out-of-range values	YES
Whole building electric power factor achieved by power factor correction	>0.95

1- Full Air Systems

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency
This system	3.75	2.96		1.5	0.8
Standard value	2.5*	N/A	N/A	1.6^	0.5
Automatic moni	toring & targeting w	ith alarms for out-of	-range values for th	s HVAC syster	n YES

^{*} Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. For types <=12 kW output, refer to EN 14825 for limiting standards.

2- Fan Coils & Fresh Air

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency
This system	3.75	2.96		1	0.8
Standard value	2.5*	N/A	N/A	1.6^	0.45
Automatic moni	toring & targeting w	ith alarms for out-of	range values for thi	s HVAC syster	n YES

^{*} Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. For types <=12 kW output, refer to EN 14825 for limiting standards.

1- Default DHW

	Water heating efficiency	Storage loss factor [kWh/litre per day]
This building	1.94	-
Standard value	2*	N/A
* Standard shown is for all	types except absorption and gas engine heat pumps	

Local mechanical ventilation, exhaust, and terminal units

ID	System type in Non-domestic Building Services Compliance Guide
Α	Local supply or extract ventilation units serving a single area
В	Zonal supply system where the fan is remote from the zone
С	Zonal extract system where the fan is remote from the zone
D	Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery
E	Local supply and extract ventilation system serving a single area with heating and heat recovery
F	Other local ventilation units
G	Fan-assisted terminal VAV unit
Н	Fan coil units
I	Zonal extract system where the fan is remote from the zone with grease filter

Zone name		SFP [W/(I/s)]									up.	UD 40 1	
	ID of system type Standard value	Α	В	3 C	D	1.6	F	G 1.1	H	1	HR efficiency		
		0.3	.3 1.1		1.9						Zone	Standard	
B1 CINE LO		-	-	-	-	-	-	-	-		-	N/A	
B1 CINE ST		-	-	-	-	(#E)	-	-		-	-	N/A	
B1 CINE01		-	-	-	-	-17	-	-	-	-	-	N/A	

Page 1 of 15 Page 2 of 15

^{**} Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

^{***} Display windows and similar glazing are excluded from the U-value check.

[^] Limiting SFP may be extended by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide.

[^] Limiting SFP may be extended by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide.

Zone name	SFP [W/(I/s)]											
ID of system type	Α	В	С	D	E	F	G	н	L	HR efficiency		
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard	
B1 CINE02	-	-	-	-	-		S=31	-	-	-	N/A	
B1 CINE03	-	-	-	-	-	-	-	-	-	-	N/A	
B1 CINE04	-	-	-	-	-	-	-11	.=	-	-	N/A	
G KITCHEN	-	-	-	-	-				-	-	N/A	
G LOBBY01	-	-	-	-	-		-	-	-	-	N/A	
G LOBBY02	-	-	-	-	-	-	(4))	1-	-	-	N/A	
G LOBBY03	-	-	-	<u>=</u>	-	-	-	-	-	-	N/A	
G OFF LUG	-	-	-	-	-	-	100	-	-	-	N/A	
G POP-UP	-	-	-	-	-		2-04	-	-	-	N/A	
G RESTAU	-	-	-	-	-	-	(and	-	-	-	N/A	
B1 CORR01	-	-	-	-	-			0.2	-	-	N/A	
B1 CORR02	-	-	-	-	-	-	-	0.2	-	-	N/A	
B1 CORR03	-	-	-	-	-	-	-	0.2	-	-	N/A	
B1 CORR04	-	-	-	-	-		8 - 33	0.2	-	-	N/A	
B1 CORR05	-	-	-	-	-	-	-	0.2	-	-	N/A	
B1 CORR06	-	-	-	-	-	-	11	0.2	-	-	N/A	
B1 CORR07	-	-	-	-	-	-		0.2	-	-	N/A	
B1 CORR08	-	-	-	_	-		-	0.2	-	-	N/A	
B1 FIRE C	-	-	-	-	-	-	1(=0)	0.2		-	N/A	
B1 PROJ01	-	-	-	<u>=</u>	_	-	-	0.2	_	-	N/A	
B1 PROJ02	-	-	-	-	-	-	1-11	0.2	-	-	N/A	
B1 PROJ03	-	-	-	_	-		-	0.2	_	-	N/A	
B1 PROJ04	-	-	-	-	-	-	3 - 37	0.2	-	-	N/A	
B1 STAIR01	-	-	-	-	-	-	-	0.2	-	-	N/A	
B1 STAIR02	-	-	-	-	-	-	-):	0.2	-	-	N/A	
B1 TOILE01	-	-	-	-	-		170	0.2	-	-	N/A	
B1 TOILE02	-	-	-	_	-	-	-	0.2	-	-	N/A	
B1 TOILE03	-	-	-	-	-	-	1-01	0.2	-	-	N/A	
B2 BOH01	-	-	-	-	-	-	-	0.2	-	-	N/A	
B2 CORR01	-	-	-	-	-	-	(-1)	0.2	-	-	N/A	
B2 CORR02	-	-	-	-	-		(-)	0.2	-	-	N/A	
B2 CORR03	-	-	-	_	-		-	0.2	_	-	N/A	
B2 PLANT01	-	-	-	-	-	-	-	0.2	-	-	N/A	
B2 PLANT02	-	-	-	-	-	-	-	0.2	-	-	N/A	
B2 STAIR01	-	-	-	-	-	-	(<u></u>	0.2	-	-	N/A	
B2 STAIR02	-	-	-	-	-	-	. .	0.2	-	-	N/A	
B3 CORR01	-	-	-	_	_	-	-	0.2	-	-	N/A	
B3 CORR02	-	-	-	-	-	-	(-):	0.2	-	-	N/A	
B3 CORR04	-	-	-	-	-		(*)	0.2	-	-	N/A	
B3 PLANT01	-	-	-	_	-	-	-	0.2	_	-	N/A	
B3 SPA	-	-	-	-	-	-	1-01	0.2	-	-	N/A	
B3 STAIR01	-	-	-	_	-	-	-	0.2	-	-	N/A	
B3 STAIR02	-	-	ļ. —	-	-	-	-	0.2	-	-	N/A	

Zone name	SFP [W/(I/s)]										HR efficiency	
ID of system type	Α	В	С	D	E	F	G	Н	1	HRE	епісіепсу	
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard	
G B STOR01	-	-	-	-	:	-	-	0.2	•	:=:::	N/A	
G BOH01	-	-	-	-	-	-	-	0.2	-	-	N/A	
G ELEC INT	-	-	-	-	-	-	-	0.2	-	-	N/A	
G LOAD BAY	-	-	-	-	100	-	-	0.2			N/A	
G STAIR01	-	-	-	-	-	-	-	0.2	-	-	N/A	
G STAIR02	-	-	-	-	0=00	-	-	0.2		(,=))	N/A	
L1 BALC02	-	-	-	-	-	-	_	0.2	-	-	N/A	
L1 BALC03	-	-	-	-	-0	-	-	0.2	-	0-0	N/A	
L1 BALC04	-	-	-	-	2 - 25	-	-	0.2	- :	2-35	N/A	
L1 CORR01	-	-	-	-	(a)	-	-	0.2		(a)	N/A	
L1 LOBBY01	-	-	-	-		-	-	0.2		-	N/A	
L1 LOBBY02	-	-	-	-	-	-	-	0.2	-	-	N/A	
L1 LOBBY03	-	-	-	-	-	-		0.2	-	-	N/A	
L1 ROOM03	-	-	-	-		-	-	0.2	-	-	N/A	
L1 ROOM04	-	-	-	-	-	-	_	0.2	-	-	N/A	
L1 ROOM05	-	-	-	-	-	-	-	0.2	-	-	N/A	
L1 ROOM06	-		١.	-	-	-	-	0.2		-	N/A	
L1 ROOM07	-		١.	-	-	-	-	0.2	-	-	N/A	
L1 ROOM08	-	-	ļ <u>.</u>	-	1-0	-	-	0.2		1-00	N/A	
L1 ROOM09	-	-	ļ <u>.</u>	-	-	_	_	0.2	-	-	N/A	
L1 ROOM10	-	-	<u> - </u>	-	-	-	_	0.2	-	-	N/A	
L1 ROOM11	-	-	<u> - </u>	-	_	_	_	0.2	-	-	N/A	
L1 ROOM12	-	-	-	-	:-::	-	-	0.2		7-17	N/A	
L1 ROOM13	-	-	-	-	-	-	_	0.2	-	-	N/A	
L1 ROOM14	-	-	ļ. —	-	-:	-	-	0.2			N/A	
L1 ROOM15	-	-	-	-		-	-	0.2		9 - 33	N/A	
L1 ROOM16	-	-	-	-	-	_	-	0.2	-	-1	N/A	
L1 STAIR01	-	-	-	-	1-01	-	-	0.2		-	N/A	
L1 STAIR02	-	-	١.	-	-	-	_	0.2	-	-	N/A	
L1 VOID01	-	-	١.	-	-13	-	-	0.2		-0	N/A	
L1 VOID02	-	-	-	-	0:	-	-	0.2		-	N/A	
L1. ROOM01	-	-	-	-	-	-	-	0.2	-	is i	N/A	
L1. ROOM02	-	-	-	-	- 1	-	-	0.2	1-0	-	N/A	
L2 BALC02	-	-	-	-	-	-	-	0.2	-	-	N/A	
L2 BALC03	-	-	ļ.	-	-	_	-	0.2	-	(-)	N/A	
L2 BALC04	-	-	ļ. —	-	n=0:	-	-	0.2	-	7-37	N/A	
L2 CORR01	-	-	-	-	-	-	-	0.2	-	-	N/A	
L2 LOBB01	-	-	-	-	-	-	_	0.2	-	-	N/A	
L2 LOBB02	-	-	-	-		-	-	0.2	-	-	N/A	
L2 LOBB03	-	-	-	-	5-12	-	_	0.2	-	-	N/A	
L2 ROOM03	-	-	-	-	- 1	-	-	0.2	1-0	-	N/A	
L2 ROOM04	-	-	-	-	-	_	-	0.2	_	-	N/A	
L2 ROOM05	-	-	-	-	-	-	_	0.2	-	-	N/A	

Page 3 of 15

Zone name	SFP [W/(I/s)]										. Clale		
ID of system type	Α	В	С	D	E	F	G	Н	I	HRE	HR efficiency		
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard		
L2 ROOM06	-	-	-	-	-	-	·	0.2	-	-	N/A		
L2 ROOM07	-	-	-	-	-	-	211	0.2	-	-	N/A		
L2 ROOM08	-	-	-	-	-	-	-1	0.2	-	-	N/A		
L2 ROOM09	-	-	-	7	-		ST. 13	0.2	-	-	N/A		
L2 ROOM10	-	-	-	-	-	-	-	0.2	-	-	N/A		
L2 ROOM11	-	-	-	-	-	•	(-))	0.2	-	-	N/A		
L2 ROOM12	-	-	-	<u>=</u>	-	-	-	0.2	-	-	N/A		
L2 ROOM13	-	-	-	-	-	-	-0	0.2	-	-	N/A		
L2 ROOM14	-	-	-	-	-	-	(-)	0.2	-	-	N/A		
L2 ROOM15	-	-	-	-	-	-	(21)	0.2	-	-	N/A		
L2 ROOM16	-	-	-	-	-	*		0.2	-	-	N/A		
L2 STAIR01	-	-	-	-	-	-	-	0.2	-	-	N/A		
L2 STAIR02	-	-	-	-	-		-	0.2	-	-	N/A		
L2 VOID	-	-	-	-	-		(- 2)	0.2	-	-	N/A		
L2 VOID01	-	-	-	-	-	-	-1	0.2	-	-	N/A		
L2. ROOM01	-	-	-	-	-		1	0.2	-	-	N/A		
L2. ROOM02	-	-	-	-	-			0.2	-	-	N/A		
L3 BALC02	-	-	-	-	-		-	0.2	-	-	N/A		
L3 BALC03	-	-	-	-	-	-	1(=0)	0.2		-	N/A		
L3 BALC04	-	-	-	<u>=</u>	_	-	-	0.2	_	-	N/A		
L3 CORR01	-	-	-	-	-	-	(=)	0.2	-	-	N/A		
L3 LOBB01	-	-	-	_	-			0.2	_	-	N/A		
L3 LOBB02	-	-	-	-	-	-	(-)(0.2	-	-	N/A		
L3 LOBB03	-	-	-	-	-	-	-	0.2	-	-	N/A		
L3 ROOM03	-	-	-	-	-	-	-	0.2	-	-	N/A		
L3 ROOM04	-	-	-	-	-		(7 .1)	0.2	-	-	N/A		
L3 ROOM05	-	-	-	_	-	-	-	0.2	-	-	N/A		
L3 ROOM06	-	-	-	-	-	-	- 1	0.2	-	-	N/A		
L3 ROOM07	-	-	-	-	-	-	-	0.2	-	-	N/A		
L3 ROOM08	-	-	-	-	-	-	(-)	0.2	-	-	N/A		
L3 ROOM09	-	-	-	-	-	-	(=))	0.2	-	-	N/A		
L3 ROOM10	-	-	-	_	-		1211	0.2	_	-	N/A		
L3 ROOM11	-	-	-	-	-		-	0.2	-	-	N/A		
L3 ROOM12	-	-	-	-	-	-	-	0.2	-	-	N/A		
L3 ROOM13	-	-	-	-	-	-	(<u>-</u>)	0.2	-	-	N/A		
L3 ROOM14	-	-	-	-	-	-	1 - 27	0.2	-	-	N/A		
L3 ROOM15	-	-	-	_	_	-	-	0.2	-	-	N/A		
L3 ROOM16	-	-	-	-	-	-	-	0.2	-	-	N/A		
L3 STAIR01	-	-	-	-	-		-	0.2	-	-	N/A		
L3 STAIR02	-	-	-	_	-	-	-	0.2	_	-	N/A		
L3 VOID01	-	-	-	-	-	-	- 1	0.2	-	-	N/A		
L3 VOID02	-	-	-	_	-	-	-	0.2	-	-	N/A		
L3. ROOM01	-	-	١.	-	-	-	-	0.2	-	-	N/A		

Zone name	SFP [W/(l/s)]		6 1 - 1								
ID of system type	Α	В	С	D	E	E F G H I		eπiciency			
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
L3. ROOM02	-	-	-	-	: - ::	-	-	0.2		: - 3:	N/A
L4 BALC02	-	-	-	-	-	-	-	0.2	-	-	N/A
L4 BALC03	-	-	-	-	-	-	-	0.2	-	-1	N/A
L4 BALC04	-	-	-	-	100	-	-	0.2	-	87.8	N/A
L4 CORR01	-	-	-	-	- 1	-	-	0.2	-	-	N/A
L4 LOBB01	-	-	-	-	3,702	-	-	0.2		0=00	N/A
L4 LOBB02	-	-	-	-	-	-	-	0.2		-	N/A
L4 LOBB03	-	-	-	-	-0	-	-	0.2	-	1-11	N/A
L4 ROOM03	-	-	-	-	2 - 35	_	-	0.2		5-35	N/A
L4 ROOM04	-	-	-	-	(a)	-	-	0.2	-	(2)	N/A
L4 ROOM05	-	-	-	-		-	-	0.2		1	N/A
L4 ROOM06	-	-	-	-	-	-	-	0.2	-	-	N/A
L4 ROOM07	-	-	-	-	-	-	-	0.2	-	-	N/A
L4 ROOM08	-	-	-	-	3.00	-	-	0.2	-		N/A
L4 ROOM09	-	-	-	-	-	-	_	0.2	-	-	N/A
L4 ROOM10	-	-	-	-	-	-	_	0.2	-	-	N/A
L4 ROOM11			-	_	-	-	-	0.2	-	-	N/A
L4 ROOM12	-	-	-	-	- 1	_	-	0.2	-	-	N/A
L4 ROOM13				-	1=10	-	-	0.2		1-10	N/A
L4 ROOM14	-	-	-	-	-	-	_	0.2	-	-	N/A
L4 ROOM15	-	-	-	-	-	-	_	0.2	-	-	N/A
L4 ROOM16	-	-	-	-	-	-	-	0.2	-	-	N/A
L4 STAIR01		-	-		-	-		0.2	-		N/A
L4 STAIR02	-	-	-	-	-	-	_	0.2	-		N/A
L4 VOID01	-		-	-	-	-		0.2	-		N/A
L4 VOID02		-	-	-	-	-	-	0.2	-		N/A
L4. ROOM01			-		- 1	-	-	0.2	-	-	N/A
L4. ROOM02	-		-		-	-	-	0.2	-	-	N/A
L5 CORR01	-	-	-	-	-	_	-	0.2	_	-	N/A
L5 CORR02	-	-	-	-	-	-	_	0.2	-	-	N/A
L5 CORR03	-	-	-	-	-	-	-	0.2	-	-	N/A
L5 CORR04	-	-	-	-	1457	2	-	0.2	-	-	N/A
L5 ROOM01	-	-	-	-	-	-	-	0.2	-	-	N/A
L5 ROOM02	-		-	-	-	-	-	0.2	-	-	N/A
L5 ROOM02	-		-	-	-	-	-	0.2	-	-	N/A
L5 ROOM04	_	_	_	_	_	-	_	0.2	_	_	N/A
	-	-	-	-	•	-	-	0.2	-		
L5 ROOM05	-	-	-	-	-	-	-	0.2		-	N/A
L5 ROOM06	_	_	-	_	_	+	_	_	_	_	N/A
L5 ROOM07	-	-	-	-		-	-	0.2	-		N/A
L5 ROOM08	-	-	-	-	- 1	-	-	0.2	-	- 1	N/A
L5 ROOM09	-	-	-	-	-	-	-	0.2	(- ()		N/A
L5 ROOM10	-	-	-	-	•	-	-	0.2	-	-	N/A
L5 ROOM11	-	-	-	-	-	-	-	0.2	-)=))	N/A

Page 5 of 15

Zone name		SFP [W/(I/s)]		# alama							
ID of system type	Α	В	С	D	E	F	G	н	1	HR efficiency	
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
L5 ROOM12	-	-	-	-	-	-	3 - 31	0.2	-	-	N/A
L5 ROOM13	-	-	-	2	-	-	- 1	0.2	-	-	N/A
L5 ROOM14	-	-	-	-	-	-	- 1	0.2	-	-	N/A
L5 ROOM15	-	-	-	-	-			0.2	-	-	N/A
L5 STAIR01	-	-	-	-	-		-	0.2	-	-	N/A
L5 STAIR02	-	-	-	*	-	-	(-))	0.2	-	-	N/A
L5 VOID02	-	-	-	-	-	-	-	0.2	-	-	N/A
L5 VOID03	-	-	-	-	-	-	(- 0)	0.2	-	-	N/A
L6 CORR01	-	-	-	-	-		2-35	0.2	-	-	N/A
L6 CORR02	-	-	-	-	-	-	(- 17	0.2	-	-	N/A
L6 CORR03	-	-	-	-	-			0.2	-	-	N/A
L6 CORR04	-	-	-	-	-	-	-	0.2	-	-	N/A
L6 ROOM01	-	-	-	_	-		-	0.2	-	-	N/A
L6 ROOM02	-	-	-	-	-		())	0.2	-	-	N/A
L6 ROOM03	-	-	-	2	-	-	-	0.2	-	-	N/A
L6 ROOM04	-	-	-	_	-	-	- 1	0.2	-	-	N/A
L6 ROOM05	-	-	-	-	-		er is	0.2	-	-	N/A
L6 ROOM06	-	-	-	-	-		-	0.2	-	-	N/A
L6 ROOM07	-	-	-	-	-	-	100	0.2	-	-	N/A
L6 ROOM08	-	-	-	-	-	-	-	0.2	-	-	N/A
L6 ROOM09	-	-	-	-	-	-	-	0.2	-	-	N/A
L6 ROOM10	-	-	-	-	-	-	-	0.2	-	-	N/A
L6 ROOM11	-	-	-	-	-		S=31	0.2	-	-	N/A
L6 ROOM12	-	-	-	-	-	-	-	0.2	-	-	N/A
L6 ROOM13	-	-	-	-	-	-	(-):	0.2	-	-	N/A
L6 ROOM14	-	-	-	-	-	1.7°	180	0.2	-	-	N/A
L6 ROOM15	-	-	-	_	-	-		0.2	-	-	N/A
L6 STAIR01	-	-	-	-	-	-	1-77	0.2	-	-	N/A
L6 STAIR02	-	-	-	-	-	-	-	0.2	-	-	N/A
L6 VOID02	-	-	-	-	-	-	(-1)	0.2	-	-	N/A
L6 VOID03	-	-	-	-	-		(-)	0.2	-	-	N/A
L7 BOH01	-	-	-	_	-	-	121	0.2	2	-	N/A
L7 CORR01	-	-	-	-	-	-	-	0.2	-	-	N/A
L7 CORR02	-	-	-	ā	-	-	-	0.2	-	-	N/A
L7 ROOFBAR	-	-	-	_	-	-	(<u>-</u>)	0.2	-	-	N/A
L7 STAIR01	-	-	-	-	-	•	(-)	0.2	-	•	N/A
L7 STAIR02	-	-	-	-	-	-	-	0.2	-	-	N/A

[&]quot;LENI calculation for lighting energy provided in a separate submission."

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
B1 CINE LO	N/A	N/A

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
B1 CINE ST	N/A	N/A
B1 CINE01	N/A	N/A
B1 CINE02	N/A	N/A
B1 CINE03	N/A	N/A
B1 CINE04	N/A	N/A
G KITCHEN	YES (+10.1%)	YES
G LOBBY01	NO (-65.6%)	YES
G LOBBY02	N/A	N/A
G LOBBY03	N/A	N/A
G OFF LUG	N/A	N/A
G POP-UP	NO (-67.9%)	YES
G RESTAU	NO (-36.6%)	YES
B1 CORR01	N/A	N/A
B1 CORR02	N/A	N/A
B1 CORR03	N/A	N/A
B1 CORR04	N/A	N/A
B1 CORR05	N/A	N/A
B1 CORR06	N/A	N/A
B1 CORR07	N/A	N/A
B1 CORR08	N/A	N/A
B1 FIRE C	N/A	N/A
B1 PROJ01	N/A	N/A
B1 PROJ02	N/A	N/A
B1 PROJ03	N/A	N/A
B1 PROJ04	N/A	N/A
B1 STAIR01	N/A	N/A
B1 STAIR02	N/A	N/A
B1 TOILE01	N/A	N/A
B1 TOILE02	N/A	N/A
B1 TOILE03	N/A	N/A
B2 BOH01	N/A	N/A
B2 CORR01	N/A	N/A
B2 CORR02	N/A	N/A
B2 CORR03	N/A	N/A
B2 PLANT01	N/A	N/A
B2 PLANT02	N/A	N/A
B2 STAIR01	N/A	N/A
B2 STAIR02	N/A	N/A
B3 CORR01	N/A	N/A
B3 CORR02	N/A	N/A
B3 CORR04	N/A	N/A
B3 PLANT01	N/A	N/A
B3 SPA	N/A	N/A
B3 STAIR01	N/A	N/A
B3 STAIR02	N/A	N/A
G B STOR01	NO (-25%)	YES
G BOH01	N/A	N/A
G ELEC INT	N/A	N/A
G LOAD BAY	N/A	N/A

Page 7 of 15

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
G STAIR01	N/A	N/A
G STAIR02	N/A	N/A
L1 BALC02	NO (-86.2%)	YES
L1 BALC03	NO (-74%)	YES
L1 BALC04	NO (-84.2%)	YES
L1 CORR01	N/A	N/A
L1 LOBBY01	N/A	N/A
L1 LOBBY02	NO (-82.1%)	YES
L1 LOBBY03	N/A	N/A
L1 ROOM03	NO (-85.8%)	YES
L1 ROOM04	N/A	N/A
L1 ROOM05	N/A	N/A
L1 ROOM06	N/A	N/A
L1 ROOM07	N/A	N/A
L1 ROOM08	N/A	N/A
L1 ROOM09	N/A	N/A
L1 ROOM10	N/A	N/A
L1 ROOM11	N/A	N/A
L1 ROOM12	N/A	N/A
L1 ROOM13	NO (-76.8%)	YES
L1 ROOM14	N/A	N/A
L1 ROOM15	NO (-74.2%)	YES
L1 ROOM16	N/A	N/A
L1 STAIR01	N/A	N/A
L1 STAIR01	N/A	N/A
L1 VOID01	NO (-85.5%)	YES
L1 VOID02	NO (-38.2%)	YES
L1. ROOM01	N/A	N/A
L1. ROOM02	NO (-86.7%)	YES
L2 BALC02	NO (-81.6%)	YES
L2 BALC03	NO (-74%)	YES
L2 BALC04	NO (-84.2%)	YES
L2 CORR01	N/A	N/A
L2 LOBB01	N/A	N/A
L2 LOBB01	NO (-82.1%)	YES
L2 LOBB02 L2 LOBB03	N/A	N/A
L2 ROOM03	NO (-85.8%)	YES
L2 ROOM03	N/A	N/A
L2 ROOM05	N/A	N/A
L2 ROOM06	N/A	N/A
L2 ROOM07	N/A	N/A
	N/A	N/A
L2 ROOM08	N/A	N/A
L2 ROOM10		
L2 ROOM10	N/A	N/A
L2 ROOM11	N/A	N/A
L2 ROOM12	N/A	N/A
L2 ROOM13	NO (-79.4%)	YES
L2 ROOM14	N/A	N/A
L2 ROOM15	NO (-74.2%)	YES

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
L2 ROOM16	N/A	N/A
L2 STAIR01	N/A	N/A
L2 STAIR02	N/A	N/A
L2 VOID	NO (-38%)	YES
L2 VOID01	NO (-86%)	YES
L2. ROOM01	N/A	N/A
L2. ROOM02	NO (-80.1%)	YES
L3 BALC02	NO (-81.9%)	YES
L3 BALC03	NO (-74.4%)	YES
L3 BALC04	NO (-84.5%)	YES
L3 CORR01	N/A	N/A
L3 LOBB01	N/A	N/A
L3 LOBB02	NO (-82.1%)	YES
L3 LOBB03	N/A	N/A
L3 ROOM03	NO (-85.8%)	YES
L3 ROOM04	N/A	N/A
L3 ROOM05	N/A	N/A
L3 ROOM06	N/A	N/A
L3 ROOM07	N/A	N/A
L3 ROOM08	N/A	N/A
L3 ROOM09	N/A	N/A
L3 ROOM10	N/A	N/A
L3 ROOM11	N/A	N/A
L3 ROOM12	N/A	N/A
L3 ROOM13	NO (-73%)	YES
L3 ROOM14	N/A	N/A
L3 ROOM15	NO (-74.2%)	YES
L3 ROOM16	N/A	N/A
L3 STAIR01	N/A	N/A
L3 STAIR02	N/A	N/A
L3 VOID01	NO (-86.5%)	YES
L3 VOID02	NO (-38.2%)	YES
L3. ROOM01	N/A	N/A
L3. ROOM02	NO (-80.1%)	YES
L4 BALC02	NO (-81.9%)	YES
L4 BALC03	NO (-74.4%)	YES
L4 BALC04	NO (-84.5%)	YES
L4 CORR01	N/A	N/A
L4 LOBB01	N/A	N/A
L4 LOBB02	NO (-82.1%)	YES
L4 LOBB03	N/A	N/A
L4 ROOM03	NO (-85.8%)	YES
L4 ROOM04	N/A	N/A
L4 ROOM05	N/A	N/A
L4 ROOM06	N/A	N/A
L4 ROOM07	N/A	N/A
L4 ROOM08	N/A	N/A
L4 ROOM09	N/A	N/A
L4 ROOM10	N/A	N/A

Page 9 of 15

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
L4 ROOM11	N/A	N/A
L4 ROOM12	N/A	N/A
L4 ROOM13	NO (-82.3%)	YES
L4 ROOM14	N/A	N/A
L4 ROOM15	NO (-74.2%)	YES
L4 ROOM16	N/A	N/A
L4 STAIR01	N/A	N/A
L4 STAIR02	N/A	N/A
L4 VOID01	YES (+37.1%)	YES
L4 VOID02	NO (-80.5%)	YES
L4. ROOM01	N/A	N/A
L4. ROOM02	NO (-80.1%)	YES
L5 CORR01	N/A	N/A
L5 CORR02	N/A	N/A
L5 CORR03	N/A	N/A
L5 CORR04	NO (-89.1%)	NO
L5 ROOM01	N/A	N/A
L5 ROOM02	NO (-67%)	NO
L5 ROOM03	NO (-66.3%)	NO
L5 ROOM04	NO (-64.1%)	NO
L5 ROOM05	NO (-64.1%)	NO
L5 ROOM06	NO (-64.1%)	NO
L5 ROOM07	NO (-64.1%)	NO
L5 ROOM08	NO (-64.1%)	NO
L5 ROOM09	NO (-64.1%)	NO
L5 ROOM10	NO (-64.1%)	NO
L5 ROOM11	NO (-64.1%)	NO
L5 ROOM12	NO (-82%)	NO
L5 ROOM13	NO (-99%)	NO
L5 ROOM14	NO (-95.4%)	NO
L5 ROOM15	NO (-95.8%)	NO
L5 STAIR01	N/A	N/A
L5 STAIR02	NO (-96.8%)	NO
L5 VOID02	N/A	N/A
L5 VOID03	NO (-75.7%)	NO
L6 CORR01	N/A	N/A
L6 CORR02	N/A	N/A
L6 CORR03	N/A	N/A
L6 CORR04	NO (-70.9%)	NO
L6 ROOM01	N/A	N/A
L6 ROOM02	NO (-66.9%)	NO
L6 ROOM03	NO (-65.6%)	NO
L6 ROOM04	NO (-60.3%)	NO
L6 ROOM05	NO (-60.3%)	NO
L6 ROOM06	NO (-60.3%)	NO
L6 ROOM07	NO (-60.1%)	NO
L6 ROOM08	NO (-60.3%)	NO
L6 ROOM09	NO (-60.3%)	NO
L6 ROOM10	NO (-60.3%)	NO

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
L6 ROOM11	NO (-60.3%)	NO
L6 ROOM12	NO (-66.8%)	NO
L6 ROOM13	NO (-50%)	YES
L6 ROOM14	NO (-70.9%)	NO
L6 ROOM15	NO (-71%)	NO
L6 STAIR01	N/A	N/A
L6 STAIR02	NO (-71%)	NO
L6 VOID02	N/A	N/A
L6 VOID03	NO (-73.2%)	NO
L7 BOH01	N/A	N/A
L7 CORR01	N/A	N/A
L7 CORR02	N/A	N/A
L7 ROOFBAR	NO (-72.2%)	NO
L7 STAIR01	N/A	N/A
L7 STAIR02	N/A	N/A

Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

EPBD (Recast): Consideration of alternative energy systems

Were a	Iternative energy systems considered and analysed as part of the design process?	YES
Is evide	ence of such assessment available as a separate submission?	YES
Are any	y such measures included in the proposed design?	YES

Page 11 of 15

Technical Data Sheet (Actual vs. Notional Building)

Building Global Parameters

Building Use

	Actual	Notional
Area [m²]	6682	6682
External area [m²]	4382.8	4382.8
Weather	LON	LON
Infiltration [m³/hm²@ 50Pa]	5	3
Average conductance [W/K]	2227.71	2859.65
Average U-value [W/m²K]	0.51	0.65
Alpha value* [%]	19.57	17.11

^{*} Percentage of the building's average heat transfer coefficient which is due to thermal bridging

Area	Building Type
	A1/A2 Retail/Financial and Professional services A3/A4/A5 Restaurants and Cefes/Drinking Est./Takeaways B1 Offices and Workshop businesses B2 to B7 General Industrial and Special Industrial Groups B8 Storage or Distribution
0	C1 Hotels
	C2 Residential Institutions: Hospitals and Care Homes C2 Residential Institutions: Residential schools C2 Residential Institutions: Universities and colleges C2A Secure Residential Institutions Residential spaces

- D1 Non-residential Institutions: Community/Day Centre
- D1 Non-residential Institutions: Libraries, Museums, and Galleries
- D1 Non-residential Institutions: Education
- D1 Non-residential Institutions: Primary Health Care Building
- D1 Non-residential Institutions: Crown and County Courts
- D2 General Assembly and Leisure, Night Clubs, and Theatres

Others: Passenger terminals

Others: Emergency services

Others: Miscellaneous 24hr activities

Others: Car Parks 24 hrs Others: Stand alone utility block

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	3.79	4.52
Cooling	12.04	11.83
Auxiliary	22.89	27.7
Lighting	18.96	20.27
Hot water	54.29	67.72
Equipment*	61.52	61.52
TOTAL**	111.97	132.04

^{*} Energy used by equipment does not count towards the total for consumption or calculating emissions.
** Total is not of any electrical energy displaced by CHP generators, if applicable.

	Actual	Notional
Photovoltaic systems	2.39	0
Wind turbines	0	0
CHP generators	0	0
Solar thermal systems	0	0

Energy Production by Technology [kWh/m²]

Energy & CO₂ Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m²]	225.21	192.85
Primary energy* [kWh/m²]	272.25	323.93
Total emissions [kg/m²]	45.1	55.2

^{*} Primary energy is net of any electrical energy displaced by CHP generators, if applicable.

HVAC S	stems Pe	rformanc	е							
System Type	Heat dem MJ/m2		Heat con kWh/m2	Cool con kWh/m2	Aux con kWh/m2	Heat SSEEF	Cool SSEER	Heat gen SEFF	Cool gen SEER	
[ST] Constar	t volume sys	stem (varial	ole fresh air	rate), [HS]	Heat pump	(electric):	air source,	[HFT] Elect	ricity, [CFT]	Elec
Actual	3.7	386.3	0.2	30.1	46.6	4.1	3.56	3.75	5.5	
Notional	9.4	314.8	1.1	24.3	28.7	2.43	3.6			
[ST] Fan coil	systems, [H	S] Heat pun	np (electric): air source	e, [HFT] Ele	ctricity, [CI	Electric	ity	20	
Actual	53.7	138.8	4.5	8.4	18.2	3.32	4.57	3.75	5.5	
Notional	45.6	121.2	5.2	9.4	27.5	2.43	3.6			

Key to terms

Heat dem [MJ/m2] = Heating energy demand
Cool dem [MJ/m2] = Cooling energy demand
Heat con [kWh/m2] = Cooling energy consumption
Aux con [kWh/m2] = Auxiliary energy consumption

Heat SSEFF = Heating system seasonal efficiency (for notional building, value depends on activity glazing class)

Cool SSEER = Cooling system seasonal energy efficiency ratio

Heat gen SSEFF = Heating generator seasonal efficiency

Cool gen SSEER = Cooling generator seasonal energy efficiency ratio ST = System type

HS = System type
HS = Heat source
HFT = Heating fuel type
CFT = Cooling fuel type

Page 13 of 15 Page 14 of 15

Key Features

The Building Control Body is advised to give particular attention to items whose specifications are better than typically expected.

Building fabric

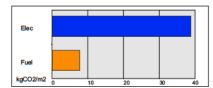
Element	U _{і-Тур}	U _{i-Min}	Surface where the minimum value occurs	
Wall	0.23	0.21	B1 CINE LO Wall 1	
Floor	0.2	-	"No heat loss floors"	
Roof	0.15	0.15	L4 VOID01 Exposed Roof 1	
Windows, roof windows, and rooflights	1.5	1.3	G KITCHEN Window 1	
Personnel doors	1.5	-	"No external personnel doors"	
Vehicle access & similar large doors	1.5	-	"No external vehicle access doors"	
High usage entrance doors	1.5	-	"No external high usage entrance doors"	
U _{LTyp} = Typical individual element U-values [W/(m²k	0)		U _{I-Min} = Minimum individual element U-values [W/(m²K)]	
* There might be more than one surface where the	minimum L	J-value oc	ours.	

Air Permeability	Typical value	This building
m³/(h.m²) at 50 Pa	5	5

SBEM Main Calculation Output Document

Thu Apr 19 10:11:32 2018

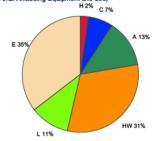
v5.4.a.1

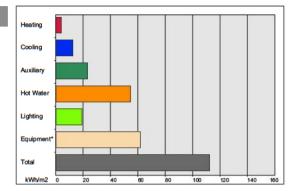

Building name

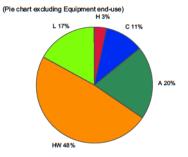
135-149 Shaftesbury Avenue

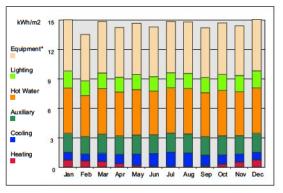
Building type:C1 Hotels

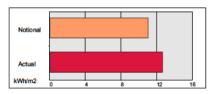
SBEM is an energy calculation tool for the purpose of assessing and demonstrating compliance with Building Regulations (Part L for England and Wales, Section 6 for Scotland, Part F for Northern Ireland, Part L for Republic of Ireland, and Building Bye-laws Jersey Part 11) and to produce Energy Performance Certificates and Building Energy Ratings. Although the data produced by the tool may be of use in the design process, SBEM is not intended as a building design tool.

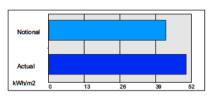

Building Energy Performance and CO2 emissions

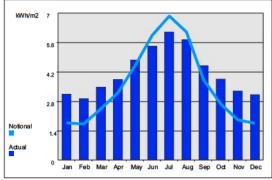



1 kgCO2m2 displaced by the use of renewable sources.

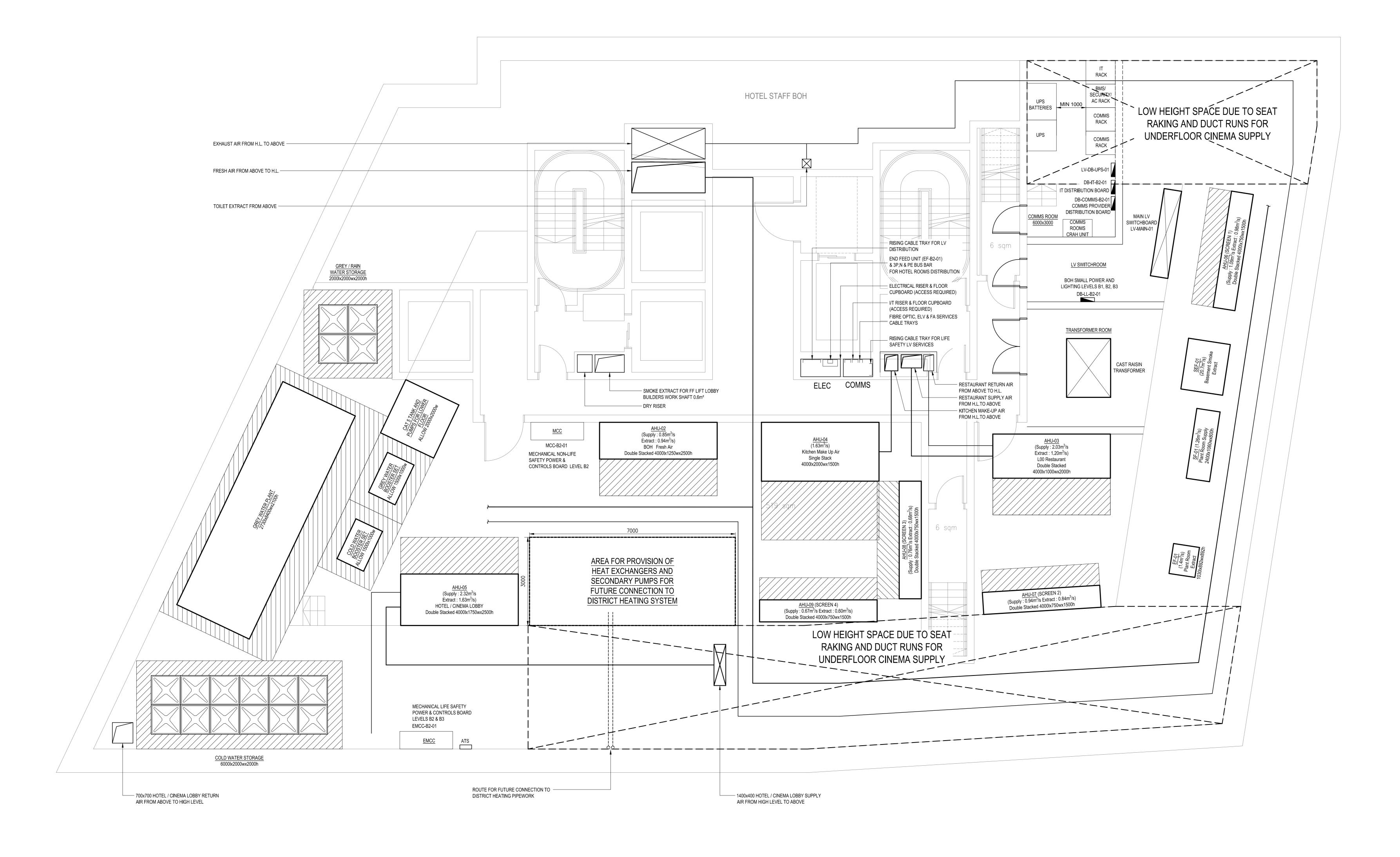

Building area is 6682.02 m2

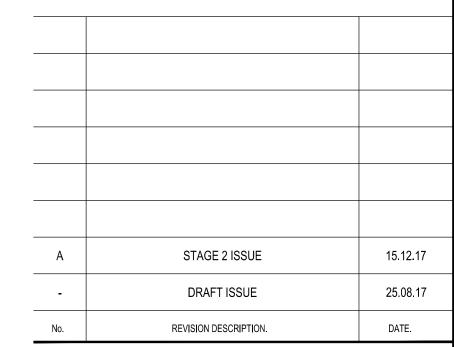



(*) Although energy consumption by equipment is shown in the graphs for information, this end-use has not been included in the total results of the building or the calculation of the ratings.


Annual Heating Demand

Annual Cooling Demand





Page 1 of 2

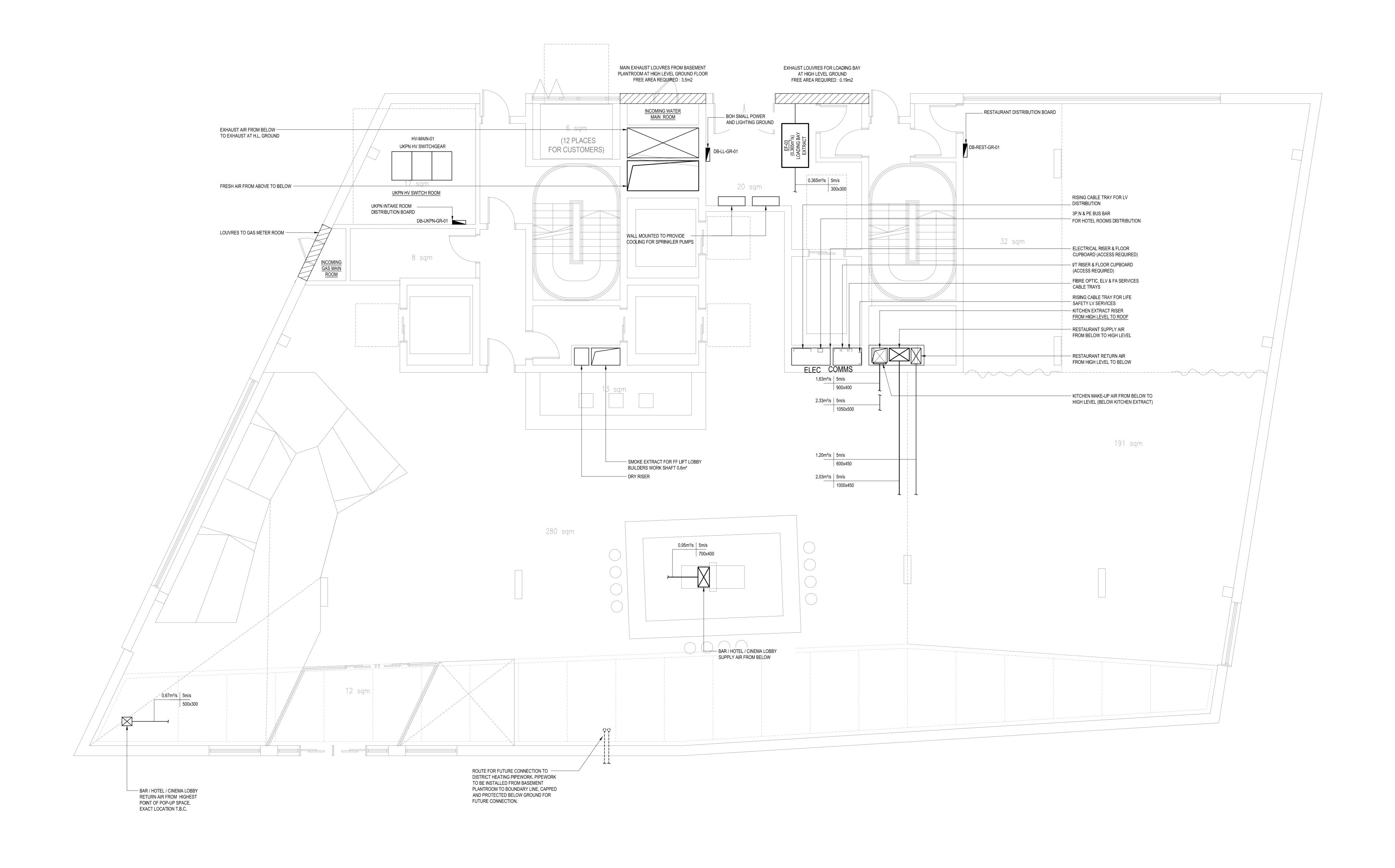
9.4. Appendix 4 – Drawings M-098

STAGE 2

The Property Rights and Copyright of this drawing belong to DSA Engineering Ltd. The contents shall not be reproduced, copied or passed to any third party without the express written permission of DSA Engineering Ltd.

31 Islington Green LONDON N1 8DU tel +44 (0) 20 7242 7272 fax +44 (0) 20 7430 5131 Email: mail @ dsaengineers.com

Odeon Shaftesbury Avenue


wing trite

MECHANICAL SERVICES
BASEMENT 2

urawing r	iumbei	M-09	18	rev
drawing r	umbor			l rov
scale	1:50 @ A0	date	May '17	drawn Cad
project no	17.15030.00			

9.5. Appendix 5 – Drawing M-100

A STAGE 2 ISSUE 15.12.17

- DRAFT ISSUE 25.08.17

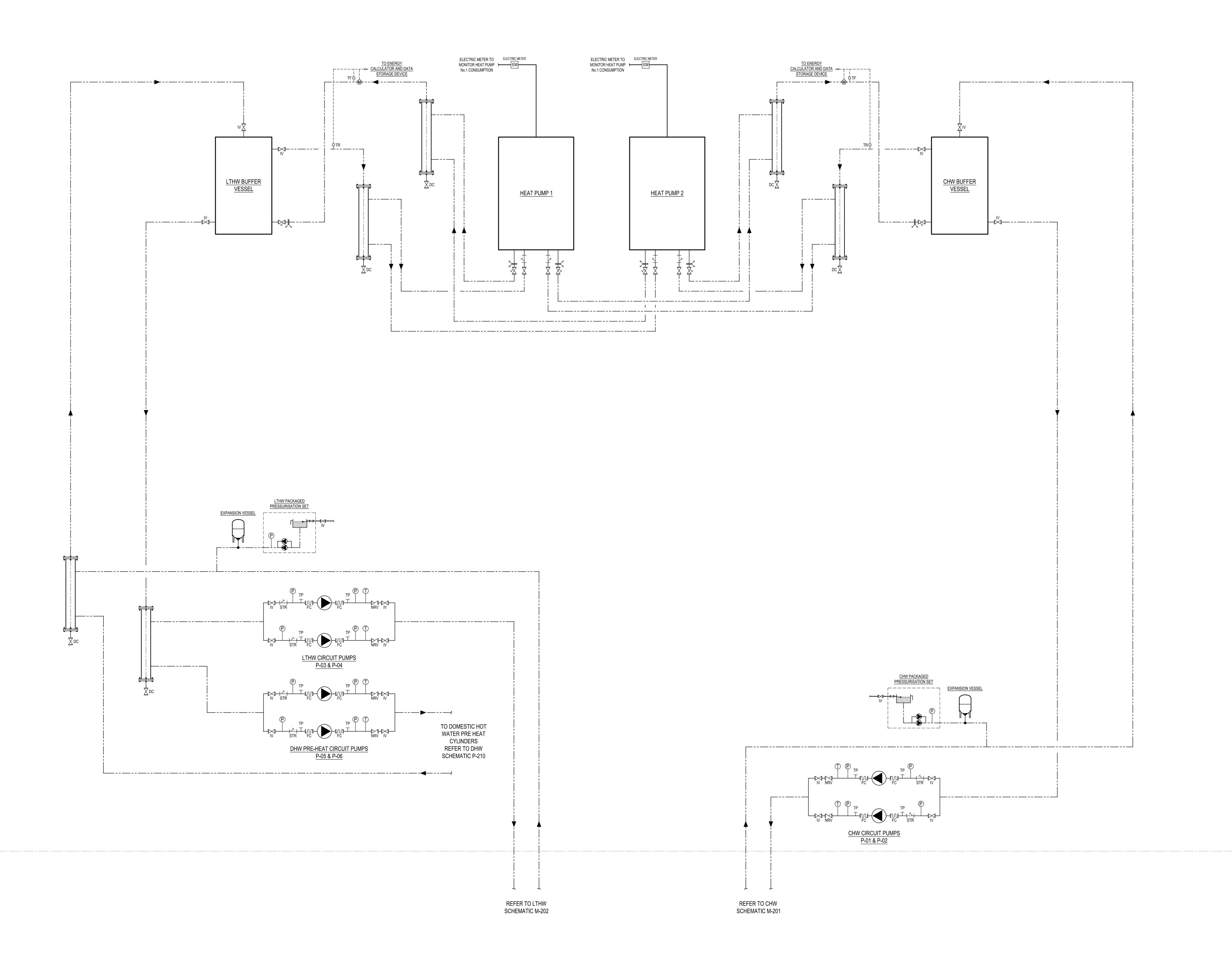
No. REVISION DESCRIPTION. DATE.

STAGE 2

The Property Rights and Copyright of this drawing belong to DSA Engineering Ltd. The contents shall not be reproduced, copied or passed to any third party without the express written permission of DSA Engineering Ltd.

31 Islington Green LONDON N1 8DU tel +44 (0) 20 7242 7272 fax +44 (0) 20 7430 5131 Email: mail @ dsaengineers.com

dsa FNGINFFRING


Odeon Shaftesbury Avenue

wing title

MECHANICAL SERVICES
GROUND FLOOR

9.6. Appendix 6 – Schematic M-210

LEVEL 7

A STAGE 2 ISSUE 15.12.17

- DRAFT ISSUE 25.08.17

No. REVISION DESCRIPTION. DATE.

STAGE 2 Property Rights and Copyright of this drawing belong

The Property Rights and Copyright of this drawing belong to DSA Engineering Ltd. The contents shall not be reproduced, copied or passed to any third party without the express written permission of DSA Engineering Ltd.

31 Islington Green LONDON N1 8DU tel +44 (0) 20 7242 7272 fax +44 (0) 20 7430 5131 Email: mail @ dsaengineers.com

Odeon Shaftesbury Avenue

MECHANICAL SERVICES
HEAT PUMP SCHEMATIC