

| Calculated by: |                      |
|----------------|----------------------|
| Site name:     | Maria Fidelis School |
| Site location: | NW1 2HR              |

This is an estimation of the greenfield runoff rate limits that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the SuDS Manual, C753 (Ciria, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

#### Whole Site Greenfield Runoff Rate

| Methodology                                        | IH124        |        |         |        |  |  |  |  |
|----------------------------------------------------|--------------|--------|---------|--------|--|--|--|--|
| Site characteristics                               |              |        |         |        |  |  |  |  |
| Total site area (ha)                               |              |        | 0.59    |        |  |  |  |  |
| Methodology                                        |              |        |         |        |  |  |  |  |
| Qbar estimation method Calculate from SPR and SAAR |              |        |         |        |  |  |  |  |
| SPR estimation metho                               | om SOIL type |        |         |        |  |  |  |  |
|                                                    | Default      | Edited |         |        |  |  |  |  |
| SOIL type                                          |              |        | 4       | 4      |  |  |  |  |
| HOST class                                         |              |        |         |        |  |  |  |  |
| SPR/SPRHOST                                        |              |        | 0.47    | 0.47   |  |  |  |  |
| Hydrological charact                               | eristic      | s      | Default | Edited |  |  |  |  |
| SAAR (mm)                                          |              |        | 616     | 616    |  |  |  |  |
| Hydrological region                                |              |        | 6       | 6      |  |  |  |  |
| Growth curve factor: 1                             | 0.85         | 0.85   |         |        |  |  |  |  |
| Growth curve factor: 3                             | 2.3          | 2.3    |         |        |  |  |  |  |
| Growth curve factor: 1                             | 3.19         | 3.19   |         |        |  |  |  |  |

#### Notes:

(1) Is Q<sub>BAR</sub> < 2.0 l/s/ha?

#### (2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consents are usually set at 5.0l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set in which case blockage work must be addressed by using appropriate drainage elements. (3) Is SPR/SPRHOST  $\leq$  0.3?

| Greenfield runoff rates | Default | Edited |
|-------------------------|---------|--------|
| Qbar (l/s)              | 2.45    | 2.45   |
| 1 in 1 year (l/s)       | 2.08    | 2.08   |
| 1 in 30 years (l/s)     | 5.64    | 5.64   |
| 1 in 100 years (l/s)    | 7.82    | 7.82   |

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at http://uksuds.com/terms-and-conditions.htm. The outputs from this tool have been used to estimate storage volume requirements. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at http://uksuds.com/terms-and-conditions.htm. The outputs from this tool have been used to estimate storage volume requirements. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for use of this data in the design or operational characteristics of any drainage scheme

### Greenfield Funcific estimation for sites

www.uksuds.com | Greenfield runoff tool

#### Site coordinates

| Latitude:  | 51.52785° N      |
|------------|------------------|
| Longitude: | 0.13743° W       |
|            |                  |
| Reference: |                  |
| Date:      | 2019-04-04 10:02 |



| Calculated by: |                      |
|----------------|----------------------|
| Site name:     | Maria Fidelis School |
| Site location: | North Gower Street   |

This is an estimation of the greenfield runoff rate limits that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the SuDS Manual, C753 (Ciria, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

#### Catchment 2 Greenfield Runoff Rate

| Methodology                                        | IH124        |        |         |        |  |  |  |  |
|----------------------------------------------------|--------------|--------|---------|--------|--|--|--|--|
| Site characteristics                               |              |        |         |        |  |  |  |  |
| Total site area (ha)                               |              |        | 0.173   |        |  |  |  |  |
| Methodology                                        |              |        |         |        |  |  |  |  |
| Qbar estimation method Calculate from SPR and SAAR |              |        |         |        |  |  |  |  |
| SPR estimation metho                               | om SOIL type |        |         |        |  |  |  |  |
|                                                    | Default      | Edited |         |        |  |  |  |  |
| SOIL type                                          |              |        | 4       | 4      |  |  |  |  |
| HOST class                                         |              |        |         |        |  |  |  |  |
| SPR/SPRHOST                                        |              |        | 0.47    | 0.47   |  |  |  |  |
| Hydrological charact                               | eristic      | s      | Default | Edited |  |  |  |  |
| SAAR (mm)                                          |              |        | 616     | 616    |  |  |  |  |
| Hydrological region                                | 6            | 6      |         |        |  |  |  |  |
| Growth curve factor: 1                             | 0.85         | 0.85   |         |        |  |  |  |  |
| Growth curve factor: 3                             | 2.3          | 2.3    |         |        |  |  |  |  |
| Growth curve factor: 1                             | 3.19         | 3.19   |         |        |  |  |  |  |
|                                                    |              |        |         |        |  |  |  |  |

#### Notes:

(1) Is Q<sub>BAR</sub> < 2.0 l/s/ha?

#### (2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consents are usually set at 5.0l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set in which case blockage work must be addressed by using appropriate drainage elements. (3) Is SPR/SPRHOST  $\leq$  0.3?

| Greenfield runoff rates | Default | Edited |
|-------------------------|---------|--------|
| Qbar (l/s)              | 0.72    | 0.72   |
| 1 in 1 year (l/s)       | 0.61    | 0.61   |
| 1 in 30 years (l/s)     | 1.65    | 1.65   |
| 1 in 100 years (l/s)    | 2.29    | 2.29   |

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at http://uksuds.com/terms-and-conditions.htm. The outputs from this tool have been used to estimate storage volume requirements. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for use of this data in the design or operational characteristics of any drainage scheme

# Greenfield Fundifield Fundifield

www.uksuds.com | Greenfield runoff tool

#### Site coordinates

| Latitude:  | 51.52784° N      |
|------------|------------------|
| Longitude: | 0.13746° W       |
|            |                  |
| Reference: |                  |
| Date:      | 2019-03-27 09:11 |

### CAUSEWAY

\_

\_

### **Drainage Design Report**

#### Flow+

v8.0

Copyright @ 1988-2019 Causeway Software Solutions Limited

| Network            | Storm Network                                                                               |
|--------------------|---------------------------------------------------------------------------------------------|
| Filename           | W:\2018\600\180654\2 Calculation\1 WIP\2 Civil\1 Drainage\1 MicroDrainage\Maria Fidelis.pfd |
| Username           | Sam Rice (sam.rice@conisbee.co.uk)                                                          |
| Last analysed      | 27/03/2019 15:45:45                                                                         |
| Report produced on | 28/03/2019 14:09:53                                                                         |

#### Causeway Sales

| Tel:   | +44(0) 1628 552000     |
|--------|------------------------|
| Fax:   | +44(0) 1628 552001     |
| Email: | marketing@causeway.com |
| Web:   | www.causeway.com       |

#### Technical support web portal:

http://support.causeway.com

### CAUSEWAY

| Rainfall Methodology                 | FSR               |
|--------------------------------------|-------------------|
| Return Period (years)                | 100               |
| Additional Flow (%)                  | 40                |
| FSR Region                           | England and Wales |
| M5-60 (mm)                           | 20.000            |
| Ratio-R                              | 0.400             |
| cv                                   | 1.000             |
| Time of Entry (mins)                 | 5.00              |
| Maximum Time of Concentration (mins) | 30.00             |
| Maximum Rainfall (mm/hr)             | 50.0              |
| Minimum Velocity (m/s)               | 1.00              |
| Connection Type                      | Level Soffits     |
| Minimum Backdrop Height (m)          | 0.200             |
| Preferred Cover Depth (m)            | 1.200             |
| Include Intermediate Ground          | x                 |
| Enforce best practice design rules   | ✓                 |

Flow+ v8.0 Design Report: Design Settings

W:\2018\600\180654\2 Calculation\1 WIP\2 Civil\1 Drainage\1 MicroDrainage\Maria Fidelis.pfd



Flow+ v8.0 Design Report: Nodes

|   | Name    | Area<br>(ha) | T of E<br>(mins) | Add<br>Inflow<br>(I/s) | Cover<br>Level<br>(m) | Node<br>Type | Manhole<br>Type | Diameter<br>(mm) | Width<br>(mm) | Easting<br>(m) | Northing<br>(m) | Depth<br>(m) | Notes |
|---|---------|--------------|------------------|------------------------|-----------------------|--------------|-----------------|------------------|---------------|----------------|-----------------|--------------|-------|
| 1 | SWMH01  | 0.008        | 5.00             |                        | 25.100                | Manhole      | Adoptable       | 600              |               | 529292.000     | 182644.573      | 1.300        |       |
| 1 | SWMH02  | 0.017        | 5.00             |                        | 25.100                | Manhole      | Adoptable       | 600              |               | 529298.906     | 182645.370      | 1.410        |       |
| 1 | SWMH03  | 0.021        | 5.00             |                        | 25.100                | Manhole      | Adoptable       | 600              |               | 529317.376     | 182645.831      | 1.600        |       |
| 1 | SWMH08  | 0.063        | 5.00             |                        | 25.080                | Manhole      | Adoptable       | 600              |               | 529331.273     | 182666.165      | 1.100        |       |
| 1 | SVVMH09 | 0.026        | 5.00             |                        | 25.080                | Manhole      | Adoptable       | 600              |               | 529331.659     | 182649.441      | 1.280        |       |
| 1 | SWMH10  | 0.009        | 5.00             |                        | 25.100                | Manhole      | Adoptable       | 600              |               | 529317.830     | 182648.896      | 1.480        |       |
| 1 | SVVMH04 | 0.004        | 5.00             |                        | 25.230                | Manhole      | Adoptable       | 600              |               | 529317.745     | 182632.341      | 2.085        |       |
| 1 | SWMH12  | 0.008        | 5.00             |                        | 25.150                | Manhole      | Adoptable       | 600              |               | 529310.721     | 182632.232      | 1.720        |       |
| 1 | SWMH05  |              |                  |                        | 25.220                | Manhole      | Adoptable       | 600              |               | 529321.131     | 182632.392      | 2.165        |       |
| 1 | SWMH06  |              |                  |                        | 25.220                | Manhole      | Adoptable       | 600              |               | 529330.064     | 182632.511      | 2.235        |       |
| 1 | SWMH07  |              |                  |                        | 25.240                | Manhole      | Adoptable       | 1200             |               | 529331.092     | 182627.696      | 2.815        |       |
| 1 | SWMH11  | 0.015        | 5.00             |                        | 25.300                | Manhole      | Adoptable       | 600              |               | 529318.082     | 182620.501      | 1.830        |       |
| 1 | SWMH13  | 0.002        | 5.00             |                        | 25.250                | Manhole      | Adoptable       | 600              |               | 529318.256     | 182614.935      | 1.720        |       |

Copyright © 1988-2019 Causeway Software Solutions Limited

W:\2018\600\180654\2 Calculation\1 WIP\2 Civil\1 Drainage\1 MicroDrainage\Maria Fidelis.pfd



#### Flow+ v8.0 Design Report: Links (Input)

|   | Name    | US<br>Node | DS<br>Node | Length<br>(m) | ics (mm) /<br>n | Velocity<br>Equation | US IL<br>(m) | DS IL<br>(m) | Fall<br>(m) | Slope<br>(1:X) | Dia<br>(mm) | Link<br>Type | T of C<br>(mins) | Rain<br>(mmihr) | Con<br>Offset | Min<br>DS L. | Lateral<br>Area<br>(he) | Lateral<br>Ins Point<br>(%) | Lateral<br>T of E<br>(mina) |
|---|---------|------------|------------|---------------|-----------------|----------------------|--------------|--------------|-------------|----------------|-------------|--------------|------------------|-----------------|---------------|--------------|-------------------------|-----------------------------|-----------------------------|
|   |         | 0484004    | 014841100  | 0.073         | 0.00            | 0.1.1                | 22.000       | 22.000       | 0.440       | 02.0           | 400         | Oinsular     | 5.40             | 50.0            | ***           | 44           | 64                      | (14                         |                             |
| ٢ | FIFE    | SPYINITUT  | SVVIVITIUZ | 0.932         | 0.000           | COIRDIOOK-MALINE     | 23.0UU       | 25.090       | 0.110       | 05.2           | 100         | Circulai     | 3.12             |                 |               |              |                         |                             |                             |
| 1 | PIPE 2  | SWMH02     | SWMH03     | 18.476        | 0.60            | Colebrook-White      | 23.690       | 23.500       | 0.190       | 97.2           | 150         | Circular     | 5.42             | 50.0            |               |              |                         |                             |                             |
| 1 | PIPE 3  | SVVMH03    | SVVMH04    | 13.495        | 0.600           | Colebrook-White      | 23.500       | 23.360       | 0.140       | 96.4           | 225         | Circular     | 5.59             | 50.0            |               |              |                         |                             |                             |
| ? | PIPF 4  | SWMH08     | SWMH09     | 16 728        | 0.600           | Colebrook-White      | 23.980       | 23 800       | 0.180       | 92.9           | 225         | Circular     | 5 21             | 50.0            |               |              |                         |                             |                             |
| ? | PIPE 5  | SWMH09     | SWMH10     | 13.840        | 0.600           | Colebrook-White      | 23.800       | 23.620       | 0.180       | /6.9           | 225         | Circular     | 5.36             | 50.0            |               |              |                         |                             |                             |
| 1 | PIPE 6  | SWMH10     | SWMH03     | 3.098         | 0.600           | Colebrook-White      | 23.620       | 23.500       | 0.120       | 25.8           | 225         | Circular     | 5.38             | 50.0            |               |              |                         |                             |                             |
| ? | PIPE /  | SWMH12     | SWMH04     | 7.025         | 0.60            | Colebrook-White      | 23.430       | 23.360       | 0.070       | 100.4          | 100         | Circular     | 5.15             | 50.0            |               |              |                         |                             |                             |
| 1 | PIPE 8  | SWMH04     | SWMH05     | 3.386         | 0.600           | Colebrook-White      | 23.145       | 23.055       | 0.090       | 37.6           | 225         | Circular     | 5.62             | 50.0            |               |              |                         |                             |                             |
| 1 | PIPE 9  | SWMH05     | SWMH06     | 8.934         | 0.60            | Colebrook-White      | 23.055       | 22.985       | 0.070       | 127.6          | 225         | Circular     | 5.75             | 50.0            |               |              |                         |                             |                             |
| ? | PIPE 10 | SWMH06     | SWMH07     | 4.924         | 0.60            | Colebrook-White      | 22.985       | 22.425       | 0.560       | 8.8            | 225         | Circular     | 5.76             | 50.0            |               |              |                         |                             |                             |
| ? | PIPE 11 | SWMH13     | SWMH11     | 5.569         | 0.600           | Colebrook-White      | 23.530       | 23.470       | 0.060       | 92.8           | 100         | Circular     | 5.12             | 50.0            |               |              |                         |                             |                             |
| 1 | PIPE 12 | SWMH11     | SWMH04     | 11.845        | 0.60            | Colebrook-White      | 23.470       | 23.270       | 0.200       | 59.2           | 100         | Circular     | 5.31             | 50.0            |               |              |                         |                             |                             |

W:\2018\600\180654\2 Calculation\1 WIP\2 Civil\1 Drainage\1 MicroDrainage\Maria Fidelis.pfd



#### Flow+ v8.0 Design Report: Links (Results)

|    | Name    | US<br>Node | ES<br>Nodu | Val<br>(m/a) | Cap<br>(i/a) | Flow<br>(f/s) | US<br>Depth<br>(m) | BS<br>Depth<br>(m) | Minimum<br>Depth<br>(m) | Maximum<br>Depith<br>(m) | Z Area<br>(ha) | E Add<br>Inflow<br>(fia) | Pro<br>Depth<br>(mm) | Pro<br>Velocity<br>(m/s) | Notae                                                                                                   |
|----|---------|------------|------------|--------------|--------------|---------------|--------------------|--------------------|-------------------------|--------------------------|----------------|--------------------------|----------------------|--------------------------|---------------------------------------------------------------------------------------------------------|
| ?  | PIPE 1  | SWMH01     | SWMHID     | 0.970        | 7 A          | 2 П           | 1 200              | 1.310              | 1 200                   | 1.310                    | N NN8          | 0.0                      | 3F                   | N 82                     | Velocity is less than the specified minimum                                                             |
| 1  | PIPE 2  | SWMH02     | SWMHDS     | 1.019        | 18.0         | 6.9           | 1 260              | 1.450              | 1 260                   | 1.450                    | N N25          | 0.0                      | 61                   | N 93                     |                                                                                                         |
| 1  | PIPE 3  | SWMH03     | SWMH04     | 1.332        | 52.9         | 36.4          | 1.375              | 1.645              | 1.375                   | 1.645                    | 0.144          | 0.0                      | 138                  | 1.43                     |                                                                                                         |
| 2  | PIPE 4  | SWMH08     | SWMHDS     | 1.356        | 53.9         | 15.9          | 0.875              | 1.055              | 3.875                   | 1.055                    | 0.063          | 0.0                      | 84                   | 1.18                     | Upstream Depth is less than the specified minimum   Downstream Depth is less than the specified minimum |
| ę. | PIPE 5  | SWMH09     | SWMH10     | 1.493        | 59.3         | 22.5          | 1.055              | 1.255              | 1.055                   | 1.255                    | 0.089          | 0.0                      | 96                   | 1.39                     | Upstream Depth is less than the specified minimum                                                       |
| 1  | PIPE 6  | SWMH10     | SWMH03     | 2.585        | 102.8        | 24.8          | 1.255              | 1.375              | 1.255                   | 1.375                    | 0.098          | 0.0                      | 75                   | 2.14                     |                                                                                                         |
| ?  | PIPE 7  | SWMH12     | SWMH04     | 0.767        | 6.0          | 2.0           | 1.620              | 1.770              | 1.620                   | 1.770                    | 0.008          | 0.0                      | 40                   | 0.69                     | Velocity is less than the specified minimum                                                             |
| 1  | PIPE 8  | SWMH04     | SWMHRf     | 2 139        | 85 N         | 43.8          | 1 860              | 1.940              | 1 860                   | 1.946                    | R 179          | nn                       | 115                  | 2 15                     |                                                                                                         |
| 1  | PIPE 9  | SWMH05     | SWMHDE     | 1.156        | 45.9         | 43.8          | 1.940              | 2.010              | 1.940                   | 2.010                    | 0.173          | 0.0                      | 176                  | 1.31                     |                                                                                                         |
| ę. | PIPE 10 | SWMH06     | SWMH07     | 4,439        | 176.5        | 43.8          | 2.010              | 2.590              | 2.010                   | 2.590                    | 0.173          | 0.0                      | 76                   | 3.69                     | Velocity is more than 3 m/s   Downstream Depth is more than twice the specified minimum                 |
| 1  | PIPE 11 | SWMH13     | SWMH11     | 0.798        | 6.3          | 0.5           | 1.620              | 1.730              | 1.620                   | 1.730                    | 0.002          | 0.0                      | 19                   | 0.47                     | Velocity is less than the specified minimum                                                             |
| 1  | PIPE 12 | SWMH11     | SWMH04     | 1.003        | 7.9          | 4.3           | 1.730              | 1.860              | 1.730                   | 1.86L                    | U.U17          | U.U                      | 53                   | 1.02                     |                                                                                                         |

W:\2018\600\180654\2 Calculation\1 WIP\2 Civil\1 Drainage\1 MicroDrainage\Maria Fidelis.pfd



#### Flow+ v8.0 Design Report: Pipeline Schedule

| Link<br>Name | Length<br>(m) | Slopa<br>(1:X) | Dia<br>(mm) | Link<br>Type | US CL<br>(m) | US IL<br>(m) | US<br>Depth | DS CL<br>(m) | CIS IL.<br>(m) | D6<br>Depth | US Node<br>Name | Dia<br>(mm) | Width<br>(mm) | Node<br>Type | NH<br>Type | DS Node<br>Num e | Cia<br>(mm) | ₩idsh<br>(mm) | Node<br>Type | MH<br>Type |
|--------------|---------------|----------------|-------------|--------------|--------------|--------------|-------------|--------------|----------------|-------------|-----------------|-------------|---------------|--------------|------------|------------------|-------------|---------------|--------------|------------|
| PIPE 1       | 6.952         | 63.2           | 100 Ci      | rcular       | 25.100       | 23.800       | 1.200       | 25.100       | 23.690         | 1.310       | SVMH01          | 600         |               | Manhole      | Adoptable  | SVMH02           | 600         |               | Manhole      | Adoptable  |
| PIPE 2       | 18.476        | 97.2           | 150Ci       | rcular       | 25.100       | 23.690       | 1.260       | 25.100       | 23.500         | 1.450       | SVMH02          | 600         |               | Manhole      | Adoptable  | SV/MH03          | 600         |               | Manhole      | Adoptable  |
| PIPE 3       | 13.495        | 96.4           | 225Ci       | rcular       | 25.100       | 23.500       | 1.375       | 25.230       | 23.360         | 1.645       | SVMH03          | 600         |               | Manhole      | Adoptable  | SV/MH04          | 600         |               | Manhole      | Adoptable  |
| PIPE 4       | 16.728        | 92.9           | 225Ci       | rcular       | 25.080       | 23.980       | 0.875       | 25.080       | 23.800         | 1.055       | SVMH08          | 600         |               | Manhole      | Adoptable  | SV/MH09          | 600         |               | Manhole      | Adoptable  |
| PIPE 5       | 13.840        | 76.9           | 225 Ci      | rcular       | 25.080       | 23.800       | 1.055       | 25.100       | 23.620         | 1.255       | SVMH09          | 600         |               | Manhole      | Adoptable  | SV/MH10          | 600         |               | Manhole      | Adoptable  |
| PIPE 6       | 3.098         | 25.8           | 225Ci       | rcular       | 25.100       | 23.620       | 1.255       | 25.100       | 23.500         | 1.375       | SVMH10          | 600         |               | Manhole      | Adoptable  | SV/MH03          | 600         |               | Manhole      | Adoptable  |
| PIPE 7       | 7.025         | 100.4          | 100Cii      | rcular       | 25.150       | 23.430       | 1.620       | 25.230       | 23.360         | 1.770       | SV/MH12         | 600         |               | Manhole      | Adoptable  | SV/MH04          | 600         |               | Manhole      | Adoptable  |
| PIPE 8       | 3.386         | 37.6           | 225 Ci      | rcular       | 25.230       | 23.145       | 1.860       | 25.220       | 23.055         | 1.940       | SV/MH04         | 600         |               | Manhole      | Adoptable  | SVMH05           | 600         |               | Manhole      | Adoptable  |
| PIPE 9       | 8.934         | 127.6          | 22501       | rcular       | 26.220       | 23.055       | 1.940       | 25.22U       | 22.985         | 2.010       | SVM HU5         | 6UL         |               | Manhole      | Adoptable  | SVMHU6           | 600         |               | Manhole      | Adoptable  |
| PIPE 10      | 4.924         | 8.8            | 225Ci       | rcular       | 25.220       | 22.985       | 2.010       | 25.240       | 22.425         | 2.590       | SVMH08          | 600         |               | Manhole      | Adoptable  | SV/MH07          | 1200        |               | Manhole      | Adoptable  |
| PIPE 11      | 5.569         | 92.8           | 1000        | rcular       | 25.250       | 23.530       | 1.62U       | 25.300       | 23.47U         | 1.73L       | SVMH13          | 6UL         |               | Manhole      | Adoptable  | SVMH11           | 600         |               | Manhole      | Adoptable  |
| PIPE 12      | 11.845        | 59.2           | 10001       | rcular       | 25.300       | 23.470       | 1.730       | 25.230       | 23.270         | 1.860       | SVMH11          | 600         |               | Manhole      | Adoptable  | SVMH04           | 600         |               | Manhole      | Adoptable  |

W:\2018\600\180654\2 Calculation\1 WIP\2 Civil\1 Drainage\1 MicroDrainage\Maria Fidelis.pfd



Flow+ v8.0 Design Report: Manhole Schedule

| Node<br>Name | Easting<br>(m) | Northing<br>(m) | CL<br>(m) | Depth<br>(m) | Dia<br>(mm) | Width<br>(mm) | Node<br>Type | МН<br>Туре  |   | Link<br>ID | IL<br>(m) | Dia<br>(mm) | Link<br>Type |
|--------------|----------------|-----------------|-----------|--------------|-------------|---------------|--------------|-------------|---|------------|-----------|-------------|--------------|
| SVVMH01      | 529292.000     | 182644.573      | 25.100    | 1.300        | 600         |               | Manhole      | Adoptable   |   |            |           |             |              |
|              |                |                 |           |              |             |               |              |             | - |            |           |             |              |
|              |                |                 |           |              |             |               |              |             | D | PIPE 1     | 23.800    | 100         | Circular     |
| SWMH02       | 529298.906     | 182645.370      | 25.100    | 1.410        | 600         |               | Manhole      | Adoptable   | 1 | PIPE 1     | 23.690    | 100         | Circular     |
|              |                |                 |           |              |             |               |              |             |   |            |           | 150         |              |
| 204041102    | 500247 276     | 100645-034      | 25.400    | 4.600        | 600         |               | Manhala      | A dan tabla | 0 | PIPE 2     | 23.690    | 150         | Circular     |
| SAAIAILIOS   | 529317.376     | 102040.031      | 25.100    | 1.600        | 600         |               | wannole      | Adoptable   | - |            | 23.000    | 100         | Circular     |
|              |                |                 |           |              |             |               |              |             | 2 | FIFE 0     | 23.000    | 220         | Circurar     |
|              |                |                 |           |              |             |               |              |             | D | PIPE 3     | 23.500    | 225         | Circular     |
| SVVMH08      | 529331.273     | 182666.165      | 25.080    | 1.100        | 600         |               | Manhole      | Adoptable   |   |            |           |             |              |
|              |                |                 |           |              |             |               |              |             |   |            |           |             |              |
|              |                |                 |           |              |             |               |              |             | D | PIPE 4     | 23.980    | 225         | Circular     |
| SWMH09       | 529331.659     | 182649.441      | 25.080    | 1.280        | 600         |               | Manhole      | Adoptable   | 1 | PIPE 4     | 23.800    | 225         | Circular     |
|              |                |                 |           |              |             |               |              |             |   |            |           |             |              |
|              |                |                 |           |              |             |               |              |             | D | PIPE 5     | 23.800    | 225         | Circular     |
| SWMH10       | 529317.830     | 182648.896      | 25.100    | 1.480        | 600         |               | Manhole      | Adoptable   | 1 | PIPE 5     | 23.620    | 225         | Circular     |
|              |                |                 |           |              |             |               |              |             | n | PIPE 6     | 23.620    | 725         | Circular     |
| SW/MH04      | 529317 745     | 182632 341      | 25 230    | 2 085        | 600         |               | Manhole      | Adoptable   | 1 | PIPE 7     | 23,360    | 100         | Circular     |
|              | 020017.740     | 102002.041      | 20.200    | 2.000        |             |               |              | radytable   | 2 | PIPE 12    | 23.270    | 100         | Circular     |
|              |                |                 |           |              |             |               |              |             | 3 | PIPE 3     | 23.360    | 225         | Circular     |
|              |                |                 |           |              |             |               |              |             | D | PIPE 8     | 23.145    | 225         | Circular     |
| SWMH12       | 529310.721     | 182632.232      | 25.150    | 1.720        | 600         |               | Manhole      | Adoptable   |   |            |           |             |              |
|              |                |                 |           |              |             |               |              |             |   |            |           |             |              |

W:\2018\600\180654\2 Calculation\1 WIP\2 Civil\1 Drainage\1 MicroDrainage\Maria Fidelis.pfd



#### Flow+ v8.0 Design Report: Manhole Schedule

|         |            |            |        |       |      |         |           | D | PIPE 7  | 23.430 | 100Circular  |
|---------|------------|------------|--------|-------|------|---------|-----------|---|---------|--------|--------------|
| SWMH05  | 529321.131 | 182632.392 | 25.220 | 2.165 | 600  | Manhole | Adoptable | 1 | PIPE 8  | 23.055 | 225 Circular |
|         |            |            |        |       |      |         |           |   |         |        |              |
|         |            |            |        |       |      |         |           |   |         |        |              |
|         |            |            |        |       |      |         |           | D | PIPE 9  | 23.055 | 225 Circular |
| SVVMH06 | 529330.064 | 182632.511 | 25.220 | 2.235 | 600  | Manhole | Adoptable | 1 | PIPE 9  | 22.985 | 225 Circular |
|         |            |            |        |       |      |         |           |   |         |        |              |
|         |            |            |        |       |      |         |           |   |         |        |              |
|         |            |            |        |       |      |         |           | D | PIPE 10 | 22.985 | 225 Circular |
| SWMH07  | 529331.092 | 182627.696 | 25.240 | 2.815 | 1200 | Manhole | Adoptable | 1 | PIPE 10 | 22.425 | 225 Circular |
|         |            |            |        |       |      |         |           |   |         |        |              |
|         |            |            |        |       |      |         |           |   |         |        |              |
|         |            |            |        |       |      |         |           |   |         |        |              |
| SWMH11  | 529318.082 | 182620.501 | 25.300 | 1.830 | 60C  | Manhole | Adoptable | 1 | PIPE 11 | 23.470 | 100Circular  |
|         |            |            |        |       |      |         |           |   |         |        |              |
|         |            |            |        |       |      |         |           |   |         |        |              |
|         |            |            |        |       |      |         |           | D | PIPE 12 | 23.470 | 100Circular  |
| SWMH13  | 529318.256 | 182614.935 | 25.250 | 1.720 | 600  | Manhole | Adoptable |   |         |        |              |
|         |            |            |        |       |      |         |           |   |         |        |              |
|         |            |            |        |       |      |         |           |   |         |        |              |
|         |            |            |        |       |      |         |           | D | PIPE 11 | 23.530 | 100Circular  |

W:\2018\600\180654\2 Calculation\1 WIP\2 Civil\1 Drainage\1 MicroDrainage\Maria Fidelis.pfd

### CAUSEWAY 🛟

| Rainfall Methodology       | FSR               | Return Period (years) | Climate Change (%) |
|----------------------------|-------------------|-----------------------|--------------------|
| FSR Region                 | England and Wales | 100                   | 30                 |
| M5-60 (mm)                 | 20.000            |                       |                    |
| <b>Ratio-R</b>             | 0.400             |                       |                    |
| Summer CV                  | 1.000             |                       |                    |
| Winter CV                  | 1.000             |                       |                    |
| Analysis Speed             | Detailed          |                       |                    |
| Skip Steady State          | x                 |                       |                    |
| Drain Down Time (mins)     | 240               |                       |                    |
| Additional Storage (m³/ha) | 20.0              |                       |                    |
| Storm Durations (mins)     | 30                |                       |                    |
|                            | 60                |                       |                    |
|                            | 120               |                       |                    |
|                            | 180               |                       |                    |
|                            | 240               |                       |                    |
|                            | 360               |                       |                    |
|                            | 480               |                       |                    |
|                            | 600               |                       |                    |
|                            | 720               |                       |                    |
|                            | 960               |                       |                    |
|                            | 1440              |                       |                    |
| Check Discharge Rate(s)    | 1                 |                       |                    |
| 1 year (I/s)               |                   |                       |                    |
| 30 year (l/s)              |                   |                       |                    |
| 100 year (Vs)              |                   |                       |                    |
| Check Discharge Volume     | 1                 |                       |                    |
| 100 year 360 minute (m²)   |                   |                       |                    |

Flow+ v8.0 Design Report: Simulation Settings

W:\2018\600\180654\2 Calculation\1 WIP\2 Civil\1 Drainage\1 MicroDrainage\Maria Fidelis.pfd



| Site Makeup                  | Greenfield |
|------------------------------|------------|
| Greenfield Method            | H124       |
| Positively Drained Area (ha) |            |
| SAAR (mm)                    |            |
| Soli Index                   |            |
| SPR                          | 0.10       |
| Region                       |            |
| Growth Factor 1 year         | 0.8        |
| Growth Factor 30 years       | 1.9        |
| Growth Factor 100 years      | 2.4        |
| Betterment (%)               | (          |
| QBar                         |            |
| Q 1 year (l <i>i</i> s)      |            |
| Q 30 year (l/s)              |            |
| Q 100 year (l/s)             |            |
|                              |            |

Flow+ v8.0 Design Report: Pre-development Discharge Rate

W:\2018\600\180654\2 Calculation\1 WIP\2 Civil\1 Drainage\1 MicroDrainage\Maria Fidelis.pfd

### CAUSEWAY 🛟

#### Flow+ v8.0 Design Report: Flow Controls

| Hydro-Brake® |               |                     |                    |                                |                    |                        |                        |                        |                                |                   |                             |                               |                              |
|--------------|---------------|---------------------|--------------------|--------------------------------|--------------------|------------------------|------------------------|------------------------|--------------------------------|-------------------|-----------------------------|-------------------------------|------------------------------|
|              |               |                     |                    |                                |                    |                        |                        |                        |                                |                   |                             |                               |                              |
| Node         | Flap<br>Valve | Online /<br>Offline | Dewnstream<br>Link | Replaces<br>Downstream<br>Link | Loop<br>ta<br>Node | invert<br>Level<br>jmj | Design<br>Depth<br>(m) | Design<br>Flow<br>(Vs) | Objective                      | Sump<br>Available | Produst<br>Number           | Nin Cutiet<br>Diameter<br>(m) | Min Node<br>Diameter<br>(mm) |
| SWMH07       | x             | Online              |                    | 1                              |                    | 22.425                 | 2.600                  | 1.0                    | (HE) Minimise upstream storage | x                 | CTL-CHE-0036-1000-2600-1000 | 0.075                         | 1200                         |

W:\2018\600\180654\2 Calculation\1 WIP\2 Civil\1 Drainage\1 MicroDrainage\Maria Fidelis.pfd



Flow+ v8.0 Design Report: Storage Structures

| Depth/Area/Inf Area |                                   |                                   |                  |          |                        |                                 |              |              |                      |
|---------------------|-----------------------------------|-----------------------------------|------------------|----------|------------------------|---------------------------------|--------------|--------------|----------------------|
|                     |                                   |                                   |                  |          |                        |                                 |              |              |                      |
| Nøde                | Base Inf<br>Coefficient<br>(m/hr) | Side Inf<br>Coefficient<br>(m/hr) | Safety<br>Factor | Porosity | invert<br>Levei<br>(m) | Time to<br>haif empty<br>(mins) | Depth<br>(m) | Area<br>(m²) | Inf.<br>Area<br>(m²) |
| SWMH05              | 0.00000                           | 0.0000                            | 2.0              | 0.95     | 23.420                 |                                 | 0.000        | 84.0         | 0.0                  |
|                     |                                   |                                   |                  |          |                        |                                 | 1.200        | 84.0         | 0.0                  |
|                     |                                   |                                   |                  |          |                        |                                 | 1.201        | 0.0          | 0.0                  |
| SWMH04              | 0.00000                           | D.00000                           | 2.0              | 0.30     | 24.650                 | 105                             | 0.000        | 204.0        | 0.0                  |
|                     |                                   |                                   |                  |          |                        |                                 | 0.250        | 204.0        | 0.0                  |
|                     |                                   |                                   |                  |          |                        |                                 | 0.251        | D.0          | 0.0                  |

W:\2018\600\180654\2 Calculation\1 WIP\2 Civil\1 Drainage\1 MicroDrainage\Maria Fidelis.pfd



Flow+ v8.0 Design Report: Other

| Default Values        |       | Overrides |            |           |      |                |
|-----------------------|-------|-----------|------------|-----------|------|----------------|
|                       |       |           |            |           |      |                |
| Entry Loss (manhole)  | 0.250 | Link      | Entry Loss | Exit Loss | Node | Flood Risk (m) |
| Exit Loss (manhole)   | 0.250 |           |            |           |      |                |
| Entry Loss (junction) | 0.000 |           |            |           |      |                |
| Exit Loss (junction)  | 0.000 |           |            |           |      |                |
| Flood Risk (m)        | 0.300 |           |            |           |      |                |

W:\2018\600\180654\2 Calculation\1 WIP\2 Civil\1 Drainage\1 MicroDrainage\Maria Fidelis.pfd



| Node Size                                 | 1 |         |
|-------------------------------------------|---|---------|
| Node Losses                               | 1 |         |
| Link Size                                 | 1 |         |
| Minimum Diameter (mm)                     |   | 150     |
| Link Length                               | 1 |         |
| Maximum Length (m)                        |   | 100.000 |
| Coordinates                               | 1 |         |
| Accuracy (m)                              |   | 1.000   |
| Crossings                                 | 1 |         |
| Cover Depth                               | 1 |         |
| Minimum Cover Depth (m)                   |   |         |
| Maximum Cover Depth (m)                   |   | 3.000   |
| Backdrops                                 | 1 |         |
| Minimum Backdrop Height (m)               |   |         |
| Maximum Backdrop Height (m)               |   | 1.500   |
| Full Bore Velocity                        | 1 |         |
| Minimum Full Bore Velocity (m <i>i</i> s) |   |         |
| Maximum Full Bore Velocity (m/s)          |   | 3.000   |
| Proportional Velocity                     | 1 |         |
| Return Period (years)                     |   |         |
| Minimum Proportional Velocity (m/s)       |   | 0.750   |
| Maximum Proportional Velocity (m/s)       |   | 3.000   |
| Surcharged Depth                          | 1 |         |
| Return Period (years)                     |   |         |
| Maximum Surcharged Depth (m)              |   | 0.100   |
| Flooding                                  | 1 |         |
| Return Period (years)                     |   | 30      |
| Discharge Rates                           | 1 |         |
| 1 year (l/s)                              |   |         |
| 30 year (l/s)                             |   |         |
| 100 year (Vs)                             |   |         |
| Discharge Volume                          | 1 |         |

Flow+ v8.0 Design Report: Approval Settings

W:\2018\600\180654\2 Calculation\1 WIP\2 Civil\1 Drainage\1 MicroDrainage\Maria Fidelis.pfd



Flow+ v8.0 Design Report: Approval Settings

W:\2018\600\180654\2 Calculation\1 WIP\2 Civil\1 Drainage\1 MicroDrainage\Maria Fidelis.pfd



| Event                            | Peak<br>Intensity<br>(mm/hr) | Average<br>Intensity<br>(mm <i>i</i> hr) |
|----------------------------------|------------------------------|------------------------------------------|
| 100 year +30% 30 minute summer   | 297.655                      | 84.226                                   |
| 100 year +30% 30 minute winter   | 208.881                      | 84.226                                   |
| 100 year +30% 60 minute summer   | 199.275                      | 52.662                                   |
| 100 year +30% 60 minute winter   | 132.393                      | 52.662                                   |
| 100 year +30% 120 minute summer  | 120.330                      | 31.800                                   |
| 100 year +30% 120 minute winter  | 79.945                       | 31.800                                   |
| 100 year +30% 180 minute summer  | 90.748                       | 23.353                                   |
| 100 year +30% 180 minute winter  | 58.989                       | 23.353                                   |
| 100 year +30% 240 minute summer  | 70.550                       | 18.644                                   |
| 100 year +30% 240 minute winter  | 46.872                       | 18.644                                   |
| 100 year +30% 360 minute summer  | 52.629                       | 13.543                                   |
| 100 year +30% 360 minute winter  | 34.210                       | 13.543                                   |
| 100 year +30% 480 minute summer  | 40.838                       | 10.792                                   |
| 100 year +30% 480 minute winter  | 27.132                       | 10.792                                   |
| 100 year +30% 600 minute summer  | 33.061                       | 9.043                                    |
| 100 year +30% 600 minute winter  | 22.589                       | 9.043                                    |
| 100 year +30% 720 minute summer  | 29.188                       | 7.823                                    |
| 100 year +30% 720 minute winter  | 19.616                       | 7.823                                    |
| 100 year +30% 960 minute summer  | 23.616                       | 6.219                                    |
| 100 year +30% 960 minute winter  | 15.643                       | 6.219                                    |
| 100 year +30% 1440 minute summer | 16.765                       | 4.493                                    |
| 100 year +30% 1440 minute winter | 11.267                       | 4.493                                    |

W:\2018\600\180654\2 Calculation\1 WIP\2 Civil\1 Drainage\1 MicroDrainage\Maria Fidelis.pfd

Copyright © 1988-2019 Causeway Software Solutions Limited

Flow+ v8.0 Design Report: Rainfall



Flow+ v8.0 Design Report: 100 year +30% Critical

| Results for 100 year | •30% Critical Ste | orm Duration. 1 | d seem trewo. | alance: 94.62% | 6              |                     |               |             |              |               |                  |                   |          |                     |                          |
|----------------------|-------------------|-----------------|---------------|----------------|----------------|---------------------|---------------|-------------|--------------|---------------|------------------|-------------------|----------|---------------------|--------------------------|
|                      |                   |                 |               |                |                |                     |               |             |              |               |                  |                   |          |                     |                          |
| Event                | US Node<br>ID     | Peak<br>(mins)  | Level<br>(m)  | Depth<br>(m)   | inflow<br>(Vs) | Node<br>Vol<br>(m²) | Flood<br>(m²) | Status      | Linis<br>10  | DS Node<br>ID | Outflow<br>(I/s) | Velocity<br>(m/s) | Flow/Cap | Link<br>Vol<br>(m²) | Discharge<br>Vel<br>(m²) |
| 720 minute winter    | SWMH01            | 705             | 24.843        | 1.043          | 0.4            | 0.4234              | 0.000         | OFLOOD RISK | PIPE 1       | SWMH02        | 0.3              | 0.324             | 0.045    | 0.0544              |                          |
| 720 minute winter    | SWMH02            | 705             | 24.843        | 1.153          | 1.2            | 0.6041              | 0.000         | OFLOOD RISK | PIPE 2       | SWMH03        | 1.1              | 0.234             | D.062    | 0.3253              |                          |
| 720 minute winter    | SWMH03            | 705             | 24.843        | 1.343          | 7.1            | 0.7319              | 0.000         | OFLOOD RISK | PIPE 3       | SWMH04        | 7.0              | 0.571             | 0.133    | 0.5367              |                          |
| 30 minute summer     | SWMH08            | 19              | 24.880        | 0.900          | 42.0           | 1.2848              | 0.000         | OFLOOD RISK | PIPE 4       | SWMH09        | 37.6             | 1.110             | 0.698    | 0.6653              |                          |
| 720 minute winter    | SWMH09            | 705             | 24.843        | 1.043          | 4.7            | 0.7185              | 0.000         | FLOOD RISK  | PIPE 5       | SWMH10        | 4.5              | 0.824             | 0.076    | 0.5504              |                          |
| 720 minute winter    | SWMH10            | 705             | 24.843        | 1.223          | 6.6            | 0.4940              | 0.000         | OFLOOD RISK | PIPE 6       | SWMH03        | 4.9              | 0.642             | 0.048    | 0.1232              |                          |
| 720 minute winter    | SWMH04            | 705             | 24.843        | 1.698          | 8.3            | 12.3788             | 0.000         | SURCHARGED  | PIPE 8       | SWMH05        | 8.2              | 0.585             | 0.096    | 0.1347              |                          |
| 720 minute winter    | SWMH12            | 705             | 24.843        | 1.413          | 0.4            | 0.5312              | 0.000         | SURCHARGED  | PIPE 7       | SWMH04        | 0.3              | 0.287             | D.054    | 0.0550              |                          |
| 720 minute winter    | SWMH05            | 705             | 24.843        | 1.788          | 8.2            | 96.3458             | 0.000         | SURCHARGED  | PIPE 9       | SWMH06        | 1.5              | 0.698             | D.032    | 0.3553              |                          |
| 720 minute winter    | SWMH06            | 705             | 24.843        | 1.858          | 2.1            | 0.5258              | 0.000         | SURCHARGED  | PIPE 10      | SWMH07        | 1.3              | 0.135             | D.007    | 0.1958              |                          |
| 720 minute winter    | SWMH07            | 705             | 24.843        | 2.418          | 1.3            | 2.7345              | 0.000         | оок         | Hydro-Brake® |               | 1.0              |                   |          |                     | 46.                      |
| 720 minute winter    | SWMH11            | 705             | 24.843        | 1.373          | 0.8            | 0.6137              | 0.000         | SURCHARGED  | PIPE 12      | SWMH04        | 0.7              | 0.345             | D.092    | 0.0927              |                          |
| 720 minute winter    | SWMH13            | 705             | 24.843        | 1.313          | 0.1            | 0.4018              | 0.000         | SURCHARGED  | PIPE 11      | SWMH11        | 0.1              | 0.018             | 0.023    | 0.0436              |                          |

W:\2018\600\180654\2 Calculation\1 WIP\2 Civil\1 Drainage\1 MicroDrainage\Maria Fidelis.pfd



Flow+ v8.0 Design Report: Manhole Type Library

| Adoptable      |               |            |               |               |            |
|----------------|---------------|------------|---------------|---------------|------------|
|                |               |            |               |               |            |
| Max Width (mm) | Diameter (mm) | Width (mm) | Max Depth (m) | Diameter (mm) | Width (mm) |
| 374            | 1200          |            | 1.500         | 1050          |            |
| 499            | 1350          |            | 99.999        | 1200          |            |
| 749            | 1500          |            |               |               |            |
| 900            | 1800          |            |               |               |            |
| >900           | Link+900 mm   |            |               |               |            |

W:\2018\600\180654\2 Calculation\1 WIP\2 Civil\1 Drainage\1 MicroDrainage\Maria Fidelis.pfd



| Circular            |          |          |   |  |
|---------------------|----------|----------|---|--|
|                     |          |          |   |  |
| Shape               | Circular | Dia (mm) |   |  |
| Barreis             | 1        | 100      | ) |  |
| Helght (mm)         |          | 150      | ) |  |
| Width (mm)          |          |          |   |  |
| Side Slope (1:X)    |          |          |   |  |
| Auto increment (mm) | 75       |          |   |  |
| Preferred Cover (m) |          |          |   |  |
| Steep Slope (1:X)   |          |          |   |  |
| Follow Ground       | х        |          |   |  |
| Velocity            | Default  |          |   |  |
| ks (mm) / n         |          |          |   |  |
|                     |          |          |   |  |

Flow+ v8.0 Design Report: Link Type Library

W:\2018\600\180654\2 Calculation\1 WIP\2 Civil\1 Drainage\1 MicroDrainage\Maria Fidelis.pfd

#### APPENDIX H: SUDS MAINTENANCE STRATEGY

\_

\_

#### 1.0 INTRODUCTION

The purpose of this document is to outline the proposed maintenance schedule for the drainage system and all SuDS features for the proposed development Maria Fidelis School.

The maintenance schedule set out here complies with the CIRIA SuDS Manual (C753), which is identified as providing current best practice in the industry. The report does not replace manufacturers' requirements and these should be followed for each product in addition to the information in this document.

For the proposed extents of SuDS features on a plan drawing, please refer to the separate drainage layout plans and drainage strategy report.

#### 2.0 ORGANISATION RESPONSIBLE

The client, London Borough of Camden council (or appointed management company), will be responsible for undertaking maintenance of the proposed drainage for the whole life of the site.

#### 3.0 CONVENTIONAL DRAINAGE SYSTEMS

#### 3.1 Gullies, Silt Traps, Manholes, Catch pits & Pipework

On completion of construction, the internal surfaces of the sewers and manholes shall be thoroughly cleansed to remove all deleterious matter, without such matter being passed forward into the existing sewers.

All trapped gullies, silt traps, manholes and catch pits are to be regularly inspected every three months and cleared out on a regular frequency for the first nine months. After this period, the frequency can be reduced to every six months.

All drainage runs will be inspected once a year. The system is to be jetted clear if/when necessary.

#### 3.2 Flow controls (including Hydrobrakes)

The manhole containing the flow control is to be regularly inspected once a year and any debris and silt are to be removed from the sump and manhole.

Hydrobrakes / vortex flow controls should be maintained in accordance with the manufacturer's requirements.

#### 4.0 SUDS FEATURES

#### 4.1 Introduction

The following SuDS measures are proposed for Maria Fidelis School:-

- Permeable Paving
- Below Ground Attenuation Tank

During the first year of the operation of all types of SuDS should be inspected at least monthly and after significant storm events to ensure that the system is functioning as designed and that no damage or faults are evident.

It is recommended that a report on the condition of the SuDS is undertaken further to an inspection at least once annually.

4.2 Permeable pavements

The pavement should be inspected regularly for clogging, litter, weeds and water ponding, preferably during and after heavy rainfall to check effective operation. Permeable pavements need to be regularly cleaned of silt and other sediments to preserve their infiltration capacity. The SuDS Manual indicates that sweeping once per year is sufficient for most sites, however the sweeping frequency should be adjusted to suit site specific conditions and should also be informed by annual inspection reports.

Care should be taken in adjusting vacuuming equipment to avoid removal of joining material. Any lost material should be replaced.

Table 1 outlines the proposed operation and maintenance regime for permeable pavements. This is adapted from The SuDS Manual (C753).

| Maintenance<br>Schedule   | Required Action                                                                                                                                                                                    | Frequency                                                                                                                                                                                                                                                                                                             |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Regular<br>maintenance    | Brushing and vacuuming<br>(standard cosmetic sweep over whole<br>surface)                                                                                                                          | Once a year, after autumn leaf fall or<br>reduced frequency as required, based on<br>site- specification observations of clogging<br>- pay particular attention to areas where<br>water runs onto pervious surface from<br>adjacent impermeable areas as this area<br>is most likely to collect the most<br>sediments |
|                           | Stabilise and mow contributing and advancement areas                                                                                                                                               | As required                                                                                                                                                                                                                                                                                                           |
| Occasional<br>maintenance | Removal of weeds or management<br>using glyphosphate applied directly<br>into the weeds by an applicator rather<br>than spraying                                                                   | As required –once per year on less frequently used pavements                                                                                                                                                                                                                                                          |
| Remedial<br>actions       | Remediate any landscaping which<br>through vegetation maintenance or<br>soil slip, has been raised to within 50<br>mm of the level of the paving                                                   | As required                                                                                                                                                                                                                                                                                                           |
|                           | Remedial work to any depressions<br>rutting and cracked or broken blocks<br>considered detrimental to the<br>structural performance or a hazard to<br>users, and replace lost jointing<br>material | As required                                                                                                                                                                                                                                                                                                           |
|                           | Rehabilitation of surface and upper structure by remedial sweeping.                                                                                                                                | Every 10 to 15 years or as required (if<br>infiltration performance is reduced due to<br>significant clogging)                                                                                                                                                                                                        |
|                           | Initial inspection                                                                                                                                                                                 | Monthly for three months after installation                                                                                                                                                                                                                                                                           |
| Monitoring                | Inspect for evidence of poor operation<br>and/or weed growth- if required, take<br>remedial action                                                                                                 | Three-monthly, 48h after large storms in first six months                                                                                                                                                                                                                                                             |

#### Table 1: Operation and maintenance requirements for permeable pavements

\_

\_

| Inspect silt accumulation rates and establish appropriate brushing frequencies | Annually |
|--------------------------------------------------------------------------------|----------|
| Monitor inspection chambers                                                    | Annually |

#### 4.3 Below ground attenuation tank

Regular maintenance and inspection of below ground attenuation tanks are required to ensure the effective long term operation of attenuation tanks. The main activity is associated with dealing with debris and silt.

Before connecting a newly constructed upstream drainage system to an attenuation tank, the new drainage system should be jetted and cleaned thoroughly.

Table 2 provides the proposed operation and maintenance regime for the attenuation tanks. This is adapted from The SuDS Manual (C753).

| Maintenance<br>Schedule | Required Action                                                                                                                                                                                                 | Frequency                                  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|                         | Inspect and identify any areas that are not operating correctly. If required, take remedial action.                                                                                                             | Monthly for 3<br>months, then<br>annually. |
| Pogular                 | Remove debris from the catchment surface (where it may cause risks to performance)                                                                                                                              | Monthly                                    |
| maintenance             | For systems where rainfall infiltrates into the tank from<br>above, check surface of filter for blockage by sediment, algae<br>or other matter, remove and replace surface infiltration<br>medium as necessary. | Annually                                   |
|                         | Remove sediment from pre-treatment structures and/or internal forebays.                                                                                                                                         | Annually, or as requested                  |
| Remedial actions        | Repair/rehabilitate inlets, outlet, overflows and vents.                                                                                                                                                        | As required                                |
| Monitoring              | Inspect/check all inlets, outlets, vents and overflows to<br>ensure that they are in good condition and operating as<br>designed.                                                                               | Annually                                   |

#### Table 2: Operation and maintenance requirements for below ground attenuation tank

| Survey inside of the tank for sediment build -up and remove | E |
|-------------------------------------------------------------|---|
| if necessary                                                | а |

#### 5.0 SUDS PROGRAMME

The proposed SuDS for the site will come on line approximately Autumn 2019.

The contractor should ensure that during the construction phase that SuDS are not damaged by construction works.

#### 6.0 OPERATION AND MAINTENANCE MANUAL RECORDS

6.1 Documents to be handed over

Conisbee will provide this document to London Borough of Camden council, who will provide the document to the construction contractor, and London Borough of Camden will also include it in the Operation and Maintenance Manual.

London Borough of Camden council will have copies of the drainage design drawings which show locations of the proposed SuDS and any 'as-builts' provided by the contractor.

6.2 Maintenance Records

London Borough of Camden council will be provided with the standard proforma in Appendix B of The SuDS Manual to enable them to record the outcomes of inspections.

APPENDIX I: THAMES WATER PRE-DEVELOPMENT ENQUIRY RESPONSE

\_

\_



Mr Jagdev Sehmi

CONISBEE 1-5 Offord Street, London, N1 1DH Wastewater pre-planning Our ref DS6055148

21 November 2018

### **Pre-planning enquiry: Capacity Confirmation**

Dear Jagdev,

Thank you for providing information on your development.

#### Site: Maria Fields Convent School, North Gower Street, Kings Cross, London - NW1 2LY

Existing site: Senior School (450 pupils) + Sports hall (35 pupils). Existing foul water discharge by gravity into sewer 1168x787mm, 1168x762mm & 1448x838mm. Existing surface water discharge at 3.5 l/s at 1:1, 7.0 l/s for 1:10, 8.7 l/s for 1:30 & 11.3 l/s for 1:100yr into sewer 1168x762mm, 1448x838mm & 1168x786mm. Proposed site: Sports hall (35 pupils) + Restaurant (70 no's) + Offices (1,550m2) + Classroom/Workshop (980m2). Proposed foul water discharge by gravity into sewer 1168x787mm. Proposed surface water flows at 2.3 l/s for all storm events up to and including 1:100yr into sewer 1168x762mm.

#### Foul Water

From the information you have provided, we can confirm that the existing **combined sewer** network does have sufficient capacity to accommodate the proposed foul water discharge from the proposed development.

This confirmation for capacity is valid for 12 months or for the life of any planning approval that this information is used to support, to a maximum of three years.

You'll need to keep us informed of any changes to your design – for example, an increase in the number or density of homes. Such changes could mean there is no longer sufficient capacity.

#### Surface Water

Please note that discharging surface water to the public sewer network should only be considered after all other methods of disposal have been investigated and proven to not be viable. In accordance with the Building Act 2000 Clause H3.3, positive connection to a public sewer will only be consented when it can be demonstrated that the hierarchy of disposal methods have been examined and proven to be impracticable. The disposal hierarchy being: 1st Soakaways; 2nd Watercourses; 3rd Sewers.

Only when it can be proven that soakage into the ground or a connection into the adjacent watercourse is not possible would we consider a restricted discharge into the public surface water sewer network.

We would encourage techniques such as green roofs and/or permeable paving that restricts surface water discharge from your site.

When redeveloping an existing site, policy 5.13 of the London Plan and Policy 3.4 of the Supplementary Planning Guidance (Sustainable Design And Construction) states that every attempt should be made to use flow attenuation and SUDS/storage to reduce the surface water discharge from the site as much as possible.

If they are consulted as part of any planning application, Thames Water Planning team would ask to see why it is not practicable to attenuate the flows to Greenfield run-off rates i.e. 5l/s/hectare of the total site area or if the site is less than hectare in size then the flows should be reduced by 95% of existing flows. Should the policy above be followed, we would envisage no capacity concerns with regards to surface water for this site.

Please note that the Local Planning authority may comment on surface water discharge under the planning process.

#### What happens next?

Please make sure you submit your connection application, giving us at least 21 days' notice of the date you wish to make your new connection/s.

If you've any further questions, please contact me on 020 3577 7608.

Yours sincerely

Zaid Kazi

Development Engineer Developer Services – Sewer Adoptions Team